
Traffic data processing using large scale
graph processing systems

Yorin Anne De Jong

Master of Telematics - Communication Networks and Networked Services (2

Supervisor: Yuming Jiang, ITEM

Department of Telematics

Submission date: July 2014

Norwegian University of Science and Technology

Title: Tra�c data processing usinglarge scale graph processing
Student: Yorin Anne de Jong

Problem description:

Computers connected to the internet are subject to being infected with di�erent kinds
of malware. Often, an infected computer will try to infect more computers, launch
attacks, send spam or produce other malicious tra�c. The general scope of the thesis
work is to investigate method(s) to automatically detect such malicious tra�c from
large datasets (e.g. in the order of hundreds of gigabytes of metadata) by means of
anomaly detection. The specific goal of the thesis work is to investigate di�erent
methods to store NetFlow data in a scalable graph structure, and subsequently try
di�erent graph processing systems on the NetFlow data to detect malicious tra�c.
It is expected that the work will use at least one of the available graph processing
frameworks to detect malicious tra�c on the network. NetFlow data is provided by
UNINETT and consists of metadata of tra�c but not payload (e.g. the fact that
two IP addresses exchanged packets, but not their contents).

Responsible professor: Yuming Jiang, ITEM
Supervisor: Gurvinder Singh, UNINETT

Abstract

Anomaly detection in internet tra�c today is largely based on quantifying
tra�c data. This thesis proposes a new algorithm SpreadRank, which
detects spreading of internet tra�c as an additional metric for tra�c
anomaly detection. SpreadRank uses large scale graph processing to
calculate spreading from multiple gigabytes of NetFlow data obtained
from core routers. Studying spreading is a useful tool in determining the
role of an end-host and in identifying malicious behaviour.

Sammendrag

Anomalideteksjon i nettrafikk i dag er stortsett basert på mengder tra-
fikk. Denne avhandlingen introduserer en ny algoritme SpreadRank, som
vil detektere spredning i nettrafikk som et ekstra målepunkt for ano-
malideteksjon. SpreadRank vil bruke flere gigabytes i NetFlow logg fra
core-rutere i storskala grafprosessering for å beregne spredning. Spredning
er et nyttig verktøy for å undersøke hva slags rolle en datamaskin på
nettet har og for å finne skadelig oppførsel.

Preface

Writing this Master’s thesis has been an educative experience. I would like
to gratefully acknowledge the guidance, support and encouragement of my
supervisors, Yuming Yiang from the Norwegian University of Science and
Technology (NTNU) and Gurvinder Singh from UNINETT AS, as well as
Tor Gjerde from UNINETT for his continued availability, enthusiasm and
willingness to provide data and expert opinions. My gratitude extends to
Arne Øslebø and Rune Sydskjør at UNINETT for providing me with the
opportunity to check my findings against UNINETT’s logging systems.

Finally, I would like to thank my family for giving me support through-
out, and to my friends in Norway for being there when I needed them,
and for inviting me to dinner when I was too busy to cook.

Contents

List of Figures xi

List of Algorithms xiii

List of Terms xv

List of Acronyms xvii

1 Introduction 1
1.1 Anomaly detection . 1
1.2 Graph processing . 2
1.3 Privacy . 2

2 NetFlow 3
2.1 Format . 3
2.2 Available information . 3
2.3 Direction . 4

3 Graph processing 5
3.1 Bulk Synchronous Parallel model . 5
3.2 Giraph . 6
3.3 Design choices . 7

3.3.1 Optimisations . 7

4 Tra�c in a graph 9
4.1 Model optimisation . 10

4.1.1 Data conversion . 11
4.2 Spreading . 14

5 Anomalies 15
5.1 Servers undergoing maintenance . 15
5.2 Home connections which run a personal server 16
5.3 VPN servers . 17

vii

5.4 Protocols with natural spreading . 17
5.4.1 BGP . 17
5.4.2 DNS . 18
5.4.3 SMTP . 18

5.5 HTTP/HTTPS . 18
5.6 Combination . 18
5.7 Worm infection . 19
5.8 Peer to peer tra�c . 19

5.8.1 Stealth worm . 19

6 DOSRank 21
6.1 Expected results . 21
6.2 Purpose . 22

7 SpreadRank 23
7.1 Overview of algorithm . 23
7.2 OSI model . 24
7.3 Data types . 25

7.3.1 Filtering . 25
7.3.2 Loop protection . 26

7.4 Implementation . 27
7.5 Expected results . 28

7.5.1 Depth . 28
7.5.2 Spreading . 28
7.5.3 Clients . 29

8 Results 31
8.1 Longest path . 31
8.2 Protocols . 32
8.3 Diagram . 34
8.4 Observed anomalies . 34

8.4.1 Botnet . 35
8.4.2 DNS . 36
8.4.3 SMTP . 37

8.5 Performance . 37
8.6 Comparison to other systems . 37

9 Conclusion 41
9.1 Future work . 42

9.1.1 Automation . 42
9.1.2 Test-data . 42
9.1.3 Real-time monitoring . 42

9.1.4 IPv6 . 42

References 45

Appendices

A Commands 49
A.1 Convert NetFlow to CSV . 50
A.2 Execute SpreadRank . 51
A.3 Filter results . 52
A.4 Aggregate . 53

B SpreadRank results 55

List of Figures

2.1 Illustration of which flows are logged . 4

3.1 BSP programming model [21] . 6

4.1 A network observed on the transport layer; clients have direct contact to
servers . 9

4.2 A network observed on the network layer; all devices are interconnected
via routers . 10

4.3 Graph with IP as vertex, ports and time as edge 11
4.4 Graph with IP and port as vertex, time as edge 11

5.1 Observed spreading caused by a server under maintenance 16
5.2 Observed spreading caused by a single home server 16
5.3 Observed spreading caused by a VPN server 17
5.4 Observed spreading caused by a combination of benign factors 19

7.1 Small example graph with results of one node, all nodes are hosts 24
7.2 Data type of a SpreadRank vertex ID 25
7.3 Data type of a SpreadRank edge . 25
7.4 Data type of a SpreadRank vertex value 25
7.5 Removal of duplicate flows . 26
7.6 Spreading can only occur in sequence 26
7.7 Spreading with two clients and one server 27
7.8 Spreading with two clients and two servers 27
7.9 False positive spreading . 27
7.10 Illustration of how a single DNS resolver will have many incoming and

outgoing connections. 29

8.1 Spreading per vertex . 32
8.2 Distribution of protocols that exhibit spreading 33
8.3 End-hosts scored with SpreadRank over one month 34
8.4 SpreadRank pattern over one month . 35
8.5 HTTP and SSH tra�c in SpreadRank over one month 35

xi

8.6 DNS tra�c in SpreadRank over one month 36
8.7 Time used to calculate SpreadRank . 38
8.8 Screenshot of NFSEN (http://nfsen.sourceforge.net/details-graphs.png) 39

B.1 Vertices scored with SpreadRank using one day of flows 56
B.2 Vertices scored with SpreadRank using one week of flows 56
B.3 Vertices scored with SpreadRank using two weeks of flows 57
B.4 Vertices scored with SpreadRank using one month of flows 57

List of Algorithms

6.1 DOSRank . 21
6.2 ReverseDOSRank . 22
7.1 SpreadRank . 28

xiii

List of Terms

client An entity on the network that initiates connec-
tions.

contact port Fixed port used to contact a service.

denial of service A method for making a service unavailable to
its users.

depth The longest path between hosts that copy each
others behaviour.

ephemeral port Short-lived automatically allocated temporary
port.

Giraph Open source graph processing system.
graph Mathematical structure consisting of vertices

and edges.

host An entity on the network, indicated by and IP
address.

natural spreading Spreading is the intended behaviour of the pro-
tocol.

NetFlow Proprietary data format from Cisco describing
tra�c flows.

network layer 3rd layer in the OSI model, the internet is a net-
work where hosts are interconnected via routers.

nfdump Open source utility to convert NetFlow to text.

xv

server An entity on the network that answers connec-
tion requests.

service An IP address and port number pair.
spreading Score for a host indicating how far tra�c sent

from said host spreads.

transport layer 4th layer in the OSI model, the internet is a
network where hosts can communicate directly
with each other.

well-known port Fixed port that has been allocated by the IANA
for a specific service.

List of Acronyms

Bash Bourne Again Shell.

BGP Border Gateway Protocol.

CSV Comma Separated Value.

DNS Domain Name System.

DoS Denial of Service.

HDFS the Hadoop File System.

HTTP HyperText Transfer Protocol.

HTTPS HyperText Transfer Protocol Secure.

NTNU the Norwegian University of Science and Technology.

NTP Network Time Protocol.

SMTP Simple Mail Transfer Protocol.

SSH Secure Shell.

xvii

Chapter1Introduction

The internet today is a very important communication network. Nearly everybody
is connected to it, many are dependent on it, and the possibilities are virtually
endless. The applications range from looking at pictures of cats, to high intensity
stock trading and remote surgeries; however, not all applications are well intended
towards other internet users. Criminals write malware that will send spam and spy
on people’s computers to look for credit card information. Activists use botnets to
bombard sites they don’t like, in order to make them unavailable.

Internet providers want to block clients that participate in harmful activity, but
this is not a simple task. The amount of tra�c that passes through a back bone router
is huge, and special provisions need to be in place to log this. Cisco is a large supplier
of router hardware, and has introduced the NetFlow format [5]. NetFlow data does
need to be stored an processed, for which multiple solutions are available [25, 15].

Current software for analysing NetFlow logs is based on counting flows. A
relatively high number of flows in a short period of time is reason for alarm, and a
high number of flows for a single IP address may be a reason to investigate. The
challenge is that a high number of flows does not necessarily indicate a problem.

1.1 Anomaly detection

An anomaly is a non-conforming pattern [3]. There are multiple methods to detect
anomalous tra�c. It is possible to detect high or low resource consumption [11],
standards-conforming or non-standards-conforming packets [8], or asymmetric tra�c
which should be symmetric [10]. However, these anomalies do not necessary indicate
malicious activity. Non-standard packets may be sent between hosts running legacy
and/or proprietary software, asymmetric tra�c may be caused by network scanning
tools, improperly configured firewalls or IP spoofing, and high-rate tra�c can just as
well indicate a popular server, as an attack [7].

1

2 1. INTRODUCTION

This thesis will focus on spreading of tra�c as an anomaly, as malicious tra�c
is intended to spread as far as possible, while bona fide tra�c will often remain
between two hosts. To illustrate: a criminal who created malware that steals credit
cards wants it installed on as many computers as possible. The owner of a botnet
wants as many computers as possible to join it. An end user sending an e-mail or
doing online banking, however, will want this information to be only available to the
intended recipients.

1.2 Graph processing

Graph processing is often associated with data mining, due to Facebook actively
working on the technology to mine social data [4], though it has a lot of di�erent
uses. Some examples of graph processing in real-world applications are navigation
(roads as edges), financial (currency flow), internet search (Google pagerank [17])
and rumour spreading [16]. This thesis will use graphs to process network data from
NetFlow, which is a graph that shows information flow.

The NetFlow data will be provided by UNINETT, which administers the core
routers in the Norwegian academic network. Backbone NetFlow tra�c is typically
hundreds of megabytes to gigabytes of flow data per day. By observing such a large
network, it is possible to look for patterns. Observing individual network nodes
may give some indication of the type of tra�c being sent, though observing the
interaction between many di�erent hosts can show information that is not visible by
only observing a few hosts.

1.3 Privacy

This thesis is based on sampled NetFlow data from December 2013, made available by
UNINETT. NetFlow data contains, among others, source IP, destination IP, protocol,
and time, but no payload information. Sampled NetFlow is a NetFlow log where not
everything is logged, UNINETT logs about 1 % of flows, this is done for performance
and storage reasons. Even though no payload information was made available for
this study, payload information can be helpful when identifying tra�c. There are
known techniques for using payload information without infringing on privacy [18].

Chapter2NetFlow

2.1 Format

The tra�c data provided by UNINETT is stored in the NetFlow File Format [5].
This format consists of flows, which are data units consisting of information from
the network layer and transport layer, for example IP addresses, transport protocol,
and port numbers where applicable. NetFlow can be converted to human readable
text using the nfdump program1.

2.2 Available information

NetFlow data is logged on the core routers, which means that only tra�c that passes
through these routers is observable. UNINETT peers with most Norwegian education
institutions, which have their own routers connected to the core routers. This means
that UNINETT can only observe tra�c that happens between institutions, or between
institutions and hosts on the outside. In other words, tra�c between hosts within an
institution is not observable for UNINETT.

Figure 2.1 shows some hosts in di�erent networks, and some flows between them.
The figure illustrates how only flows that go through UNINETT’s core routers will
show up in the NetFlow log. Flows between hosts within an institution will never
pass through UNINETT’s core routers, even though the institution is connected
to the internet through UNINETT. Flows completely outside of UNINETT’s core
network are not logged either, naturally. Flows that are between one host at an
institution connected through UNINETT – for example NTNU – and one host in
another institution, can be logged by UNINETT’s core routers, because the tra�c
must pass through these routers.

1
http://nfdump.sourceforge.net

3

http://nfdump.sourceforge.net

4 2. NETFLOW

Figure 2.1: Illustration of which flows are logged
UNINETT

NTNU

UiO

2.3 Direction

Flows are between a source and destination IP address. One TCP or UDP session
will usually be observed as multiple flows, because NetFlow logs are written by core
routers operating on the network layer, which will not keep track of TCP of UDP
connections, as this is a transport layer function. In order to observe spreading, it is
important to know which host initiated the connection. A possible solution would
be to take the first flow between two hosts, and merge it with all subsequent flows
that are between the same IP addresses and port numbers, until a time-out occurs.
However, for performance reasons, UNINETT makes use of sampled NetFlow data,
which means that only 1 % of all the packets are logged. This makes it harder to
reliably establish which party initiated a connection, as the first observed flow may
be in the opposite direction from the actual first flow.

TCP and UDP are transport protocols which o�er end-to-end communication
between hosts. In order to allow hosts to run multiple services, these protocols use a
two byte port number to indicate the type of service. In order to set up a TCP or
UDP connection, a client must first select a port number at random. This port is
called the ephemeral port, and its range di�ers per operating system, but it is never
lower than 1024. The client will then send an initial packet to the server, from the
ephemeral port, to the contact port. The contact port will often be a well-known port,
which is a port number under 1024. The direction of a flow can therefore be assumed
to be initiated by the party with the lowest port number. The list of well-known
ports is maintained by IANA [20].

Chapter3Graph processing

In order to process large graphs, a graph processing system is required. A graph
processing system uses a data model of vertices which are connected by edges [21].
Vertices can have an ID and a value, edges can have a direction and a value. The
vertex values are modified during computation, and edges can be added and/or
removed during computation. A graph system can scale out horizontally (linearly
with size), and is therefore able to process graph data at large scale. A large graph
system must also be able to handle failover, such as network, storage or hardware
failure. There are multiple graph systems available, for example GraphLab [13],
GraphX [24], Pregel [14] and Giraph [1, 4]. This thesis will focus on Giraph, but
other systems are expected to give similar results.

3.1 Bulk Synchronous Parallel model

By running calculations in parallel, more computations per second are possible.
The case for parallel computing is strengthened by the fact that processing power
is cheap nowadays, but fast processing is achieved by using many processors in
parallel. Parallel computing does, however, pose an important challenge, in that a
single processor cannot share memory with another processor, and synchronisation
is expensive, as it requires processors to wait, as memory cannot be reliably changed
by two di�erent processes.

The Bulk Synchronous Parallel model [22] (figure 3.1) is a model for parallel
computing. It consists of components that handle processing and/or memory. Oper-
ations are divided in so-called supersteps. A router allows components to exchange
point to point messages at the end of a superstep execution, which allows for storage
access between components. The model is useful for running large calculations that
will take a very long time with standard hardware.

5

6 3. GRAPH PROCESSING

Figure 3.1: BSP programming model [21]

3.2 Giraph

Giraph is a software based implementation of the the Bulk Synchronous Parallel
model, and allows for a large amount of physical machines to form a cluster. A
Giraph computation program consists of a single calculate function, which has two
arguments; (1) the vertex and (2) the messages that were sent to the vertex during
the last superstep. During every superstep of the computation, a vertex may send a
message to another vertex via one of its outgoing edges. A vertex may also “vote
to halt”, to indicate that it is done calculating. If a vertex votes to halt, it will not
be called during subsequent supersteps, unless it receives a message from another
vertex. A vertex that has received a message will always be called, and any previous
votes to halt are forgotten; the vertex will have to vote to halt again.

Before the computation is started, the graph is read by a VertexInputFormat or
an EdgeInputFormat. After computation, the graph is written by a VertexOutputFormat
or EdgeOutputFormat1. When the program is started, Giraph will start worker pro-
cesses on the physical machines. The workers will each read a part of the graph,
Giraph will distribute the graph, workers will execute supersteps and after the last
step is completed, the workers write their part of the graph.

Giraph takes care of the communication between the workers, and distributes the
workload over the workers. Due to the nature of BSP, it is important for Giraph that
every worker will take roughly the same amount of time to complete a superstep.

1
https://giraph.apache.org/io.html

https://giraph.apache.org/io.html

3.3. DESIGN CHOICES 7

After each superstep, the nodes have to synchronise and start working on the next
superstep, which means that if one worker is slow, all other workers have to wait for
it to finish.

3.3 Design choices

3.3.1 Optimisations

When implementing a computation for a graph system, such as Giraph, it is important
to make the run-time of each computation as short as possible. During each superstep,
all workers will run computations, so that each vertex is computed once per superstep.
During a single computation, all incoming messages to the vertex for that superstep
must be handled, and possibly all outgoing edges must be iterated over to send
messages to neighbouring vertices. Iteration is a weak spot for parallel systems, as it
is not executed in parallel. Therefore, in order to cut on computation time, vertices
should have as few edges as possible.

Chapter4Tra�c in a graph

The internet is a world-wide network where all hosts can communicate with each
other. Seen from a consumers’ viewpoint, the internet is an outlet in the wall, or
a wireless subscription. Connecting to the internet will give instant access to any
website in the world (figure 4.1). Seen from the viewpoint of a network engineer, it is
a vast infrastructure with countless routers connected with countless wires (figure 4.2).
Connecting to the internet is to peer with an ISP, which peers with other ISPs, etc.,
making a global network where any host can communicate with virtually any other
host. These two definitions are both correct, but they describe the internet on a
di�erent layer in the OSI model. The OSI model [26] is a model that partitions the
internal functions of a communication system into abstraction layers.

Figure 4.1: A network observed on the transport layer; clients have direct contact
to servers

The network layer describes how datagrams are routed between two hosts on the
network. This delivery is realised by routers between these hosts, where each router
forwards datagrams to a router that is closer to the destination. Datagrams are data
packets, which start with an IP-header, which contains the source and destination
IP address of the datagram. IP-addresses are fixed-length numbers of 32-bits (IPv4)
or 128-bits (IPv6).

9

10 4. TRAFFIC IN A GRAPH

Figure 4.2: A network observed on the network layer; all devices are interconnected
via routers

The transport layer describes segments being sent directly between hosts, not
considering any routers. Typically, segments will have a protocol header, often
TCP or UDP. The TCP and UDP headers contain two 16-bit port numbers (source
port and destination port), which often indicate the kind of tra�c in the packet.
For example, port 80 indicates web tra�c, 443 indicates encrypted web tra�c, 53
indicates DNS tra�c and 22 indicates SSH tra�c.

4.1 Model optimisation

A possible approach to implement the NetFlow data model as a graph, is to represent
IP addresses as vertices, and a combination of (1) ports and (2) time as edges
(figure 4.3). This model contains vertices with many edges, which could take a long
time to calculate per superstep. However, this model contains information that is
not going to be used. Removing this information will allow computation to speed up,
as unnecessary information will not take up computation time. In SpreadRank, the
ephemeral port number is not important, so it can be discarded. Because SpreadRank
will only look for spreading over identical port numbers (using port numbers as a
metric for same-type communication), the vertices can be split. The result is a model
in which a client that requests a DNS record and then a website will be represented
by two vertices; one for the DNS client and one for the HTTP client. The model is
inaccurate when compared to real-world TCP or UDP, in that the source port and
the destination port are equal (whereas in the real world the connections initiated
from the client would be initiated from an ephemeral port), but this model will make
it easier to detect spreading over identical ports, as will be explained in chapter 7.

Figure 4.4 shows the optimised version of figure 4.3. There will not be any
edge from a DNS vertex to a HTTP vertex. This will make it easier for Giraph to
distribute the graph over di�erent workers, in such a way that no vertices need to be

4.1. MODEL OPTIMISATION 11

Figure 4.3: Graph with IP as vertex, ports and time as edge

10.0.0.100

10.0.0.1

10.0.0.200

src:28607 [time] dst:53

src:39663 [time] dst:80

moved in between supersteps.

Figure 4.4: Graph with IP and port as vertex, time as edge

10.0.0.100:53 10.0.0.1:53

10.0.0.200:80

[time]

[time]10.0.0.100:80

4.1.1 Data conversion

In order to convert NetFlow to a graph in Giraph, an InputFormat for NetFlow data
must be devised. Giraph has standard abstract readers and writers available that
work with text formats. For easier implementation, a Bourne Again Shell (Bash)
script was created that uses nfdump to convert NetFlow to Comma Separated Value
(CSV) files, and a Giraph EdgeInputFormat was implemented that reads these CSV
files.

The script filters its output so that only TCP and UDP flows remain where at
least one port number is under 1024. It will invert flows where the source port is the

12 4. TRAFFIC IN A GRAPH

lowest port. The script passes all its arguments to nfdump.

The recommended way to use this script is to convert NetFlow logs by day, so
that multiple Giraph workers can read the graph at the same time. This will not
only speed up reading, but it may prevent a worker crashing from reading a too large
file, since the graph is stored in memory.

Using nfdump is not ideal, a better solution would have been to use a NetFlowInputReader
in Giraph directly. At the time of writing, such a reader was not available. It is
beyond the scope of this thesis to write such an input format reader.

4.1.
M

O
D

EL
O

PT
IM

ISAT
IO

N
13

#!/bin/bash
nfdump "$@" -o ’fmt:%ts %te %sa %da %pr %sp %dp %sas %das %in %out %tos %flg’ | while read \

flowstartdate \
flowstarttime \
flowenddate \
flowendtime \
srcaddr \
dstaddr \
proto \
srcpt \
dstpt \
REST

do
if ["${proto}" = "TCP" -o "${proto}" = "UDP"]
then

if ["$srcpt" -lt 1024 -a "$dstpt" -ge 1024 -o "$srcpt" -ge 1024 -a "$dstpt" -lt 1024]
then

[$srcpt -lt $dstpt] \
&& echo $flowstartdate\ $flowstarttime,$dstaddr,$srcaddr,$srcpt \\
|| echo $flowstartdate\ $flowstarttime,$srcaddr,$dstaddr,$dstpt \\

fi
fi

done

14 4. TRAFFIC IN A GRAPH

4.2 Spreading

Most hosts on the internet are either configured as a client or as a server, but some
hosts are configured as both. A server is, for the purpose of this analysis, defined
as a host that will receive connections. A client is, for the purpose of this analysis,
defined as a host that will initiate connections. A connection is thus always initiated
by a client, but it allows two-way communication, which allows client and server to
exchange information.

This model is based on the assumption that most home users (“clients”) will not
run permanent services on their machines, but they will use e-mail and browse the
web, which they do by contacting servers. In some cases, however, home users may
choose to run servers on their own equipment as well. This can, for example, be a
cheap solution to host a website or a mail server, or it can be done out of curiosity.
On the other hand, servers may themselves be clients, either temporary, for example
during maintenance, or as mode of operation, for example a slave DNS server.

In some cases when a client initiates a connection to a server, the server may relay
this connection to another server, or it may open a similar connection to another
server. This happens for example for proxy servers, which are configured to simply
relay information. Another example is a DNS resolver, which may be queried for a
record in the global domain name system. If it does not have this record available, it
will query an authoritative server.

Spreading may also indicate the spreading of malware, for example a computer
worm [19]. By looking at how far tra�c spreads and which port number it uses, it is
possible to get an insight of what happens in the network. This may prove helpful
for finding infected machines in the network.

Chapter5Anomalies

This thesis will introduce the SpreadRank algorithm, which will detect tra�c spread-
ing on the transport layer. This means that it will detect hosts (clients and servers)
that initiate the same kind of connections that they receive. The discriminator used
to identify same-kind connections is the contact port number associated with the
flow. The assumption is that a service both receiving and initiating connections
to the same port is an anomaly. For example, a workstation with a web browser
and e-mail client will initiate connections to ports 80 (HTTP), 443 (HTTPS), 587
(SMTP submission) and 143 or 993 (IMAP and IMAPS respectively). However, it is
not expected that such a workstation would receive connections towards these port
numbers. Neither is it expected that a web server would initiate connections directed
towards port 80 or 443.

This is not true for all protocols. For example, a mail server can forward e-mail
to another mail server via port 25 (SMTP), and this second mail server may forward
it to a third mail server over port 25 and so forth. There are several other protocols
that exhibit natural spreading, these are described in section 5.4.

5.1 Servers undergoing maintenance

Figure 5.1 shows spreading caused by a server undergoing maintenance. A server
undergoing maintenance may connect to another server, for example to get the latest
software updates. Additionally, there exists server software that includes a graphical
user interface, which gives the server the same look and feel as a workstation. On
these servers, the administrator may be inclined to use a web browser to download
software, or even browse the web.

15

16 5. ANOMALIES

Figure 5.1: Observed spreading caused by a server under maintenance

software
update
server

server
under

maintenance

clients

longest path: 2 steps

Figure 5.2: Observed spreading caused by a single home server

web
server

home
server

clients

longest path: 2 steps

5.2 Home connections which run a personal server

Figure 5.2 shows spreading caused by servers run by home users on a shared public
IP address. Users with a home server will often run the home server on the same IP
address as the client. This is done either by simply using the same machine as server
and client, or by using a NAT router, allowing a separate client and server machine
to share a public IP address. When a client and a server share an IP address, this
IP address will generally both receive and initiate connections. Since there is no
direct way to distinguish whether incoming and outgoing flows are related, such a
situation might register as a case of spreading. However, home servers are quite
common, though a large trail of users with home servers contacting each other can

5.3. VPN SERVERS 17

appear to be as an anomaly.

5.3 VPN servers

Figure 5.3: Observed spreading caused by a VPN server

web server VPN server clients

longest path: 2 steps

Clients can set up a secure connection to a VPN server (figure 5.3). All internet
tra�c initiated at the client (apart from the VPN tra�c itself), will be sent to the
VPN server in encapsulated form. The VPN server removes the encapsulating, and
forwards the tra�c towards the internet, mimicking the client. Thus, if the client
uses another VPN service through this VPN server, the VPN server may appear to
be a VPN client as well.

Some software allows using SSH, HTTP or HTTPS for VPN. Examples of software
that can do this are sshttp [9] and Microsoft RRAS [23]. When a user connects to a
VPN server over HTTPS, and then uses the VPN to connect to a HTTPS host, this
can register as spreading. However, some VPN providers allocate dedicated public
IP addresses to their clients, which means that connections are not forwarded over
the same IP, which means that the VPN does not register as spreading.

5.4 Protocols with natural spreading

5.4.1 BGP

Border Gateway Protocol (BGP) is a protocol used by routers to exchange routing
information. Even though routers are level three devices themselves, they exchange
routing information with each other the same way hosts do. Routers both listen
for incoming BGP connections, and send BGP to neighbouring routers at regular

18 5. ANOMALIES

intervals. Since routers both receive and initiate BGP flows, BGP spreading is
expected to be high.

5.4.2 DNS

DNS is used to find the IP address associated to a hostname. There are two types
of DNS servers; recursive and authoritative. When a recursive DNS server receives
a query, and does not have the requested record in its cache, it must forward the
query to an upstream server, or find the authoritative DNS server for that record and
forward the query there. An authoritative server has collections of records (zones)
configured, though will only answer queries about these zones. Recursive DNS servers
are expected to have high spreading, authoritative DNS servers are expected to have
low spreading.

5.4.3 SMTP

Most e-mail clients are configured with a so-called “smart host”, which is the server
that all outgoing mail is sent to. This smart host will then find out which server
handles e-mail for the recipient, and forward the message there. In some cases, the
e-mail will pass through multiple servers before finally reaching a mailbox. Naturally,
this means that some spreading in the SMTP protocol is expected.

5.5 HTTP/HTTPS

A large number of di�erent services use HTTP and HTTPS as underlying layer for
their data. SpreadRank may therefore observe trails of machines connecting over
port 80 or 443, without these flows actually being related. There is currently no
direct way to view the di�erence between di�erent services provided over HTTP or
HTTPS, purely based on NetFlow data.

5.6 Combination

A combination of di�erent occurrences of spreading may lead to larger spreading,
as shown in figure 5.4; however, the longest path is still relatively short, which
means that relatively short paths are not anomalies. Longer paths will typically be
anomalies, though it depends on the protocol how long the path must be before it is
considered an anomaly, for instance, one would expect higher spreading in SMTP
and DNS than in HTTP.

5.7. WORM INFECTION 19

Figure 5.4: Observed spreading caused by a combination of benign factors

home
server

clients

longest path: 4 steps

software
update
server

server
under

maintenance

VPN server clients

5.7 Worm infection

A worm is a piece of software that is programmed to infect other hosts and start
instances of itself on these hosts. It infects hosts by looking for systems that run
unpatched software, abusing a known security hole to get access to the service and
install itself on the host. After infection, the victim host will also try to infect other
hosts [19]. This process can go on for ever, until a system administrator starts
blocking these flows. Consequently, a worm that successfully spreads over many
hosts, will show large spreading.

5.8 Peer to peer tra�c

Peer to peer tra�c is another case of spreading that happens intentionally; a hallmark
example is BitTorrent. BitTorrent is a protocol for distributed file sharing, where all
clients will make chunks they have downloaded available to other clients. This di�ers
from the traditional client/server model, where clients do not spread information
to other clients but get all their information from a central server. BitTorrent,
however, operates over many di�erent port numbers, which makes it di�cult to
match incoming and outgoing flows together.

The same is true for Tor tra�c. Tor is a mechanism for anonymous internet
access, which works by encrypting tra�c and routing it at random through multiple
hops, before sending it to the final destination. Tor also operates on random ports,
which makes it di�cult to match flows together.

5.8.1 Stealth worm

Due to BitTorrent and Tor being able to hide their activity from an algorithm such
as SpreadRank, the question arises whether a worm can do the same thing to hide

20 5. ANOMALIES

its activity. The important di�erence between benign tra�c, such as BitTorrent
and Tor, and malicious tra�c such as worms, is consent from the owner of the host.
If a host is participating in BitTorrent or Tor, it is because the owner of this host
voluntarily installed software to supports these protocols. Because these protocols
can rely on software being installed, they can use virtually any connection model
imaginable.

This is di�erent for malware; the initial infection must happen through a known
vulnerability in the host. This vulnerability will typically be part of the operating
system or part of installed software. Malware has therefore limited possibilities for
infection, and must use the port of the service it wants to attack. Thus, in order to
attack a specific service, malware must target the same port for every attack.

Once a host has been infected, the malware can install itself, and it may communi-
cate with command-and-control servers through stealth communication channels that
may not be as easy to detect; however, it will in all likelihood still try to attack other
hosts, to increase the amount of infected hosts, for which it will have to generate
observable tra�c, for reasons mentioned earlier.

Chapter6DOSRank

To test Giraph, two simple algorithms, DOSRank and ReverseDOSRank are created,
which count the amount of respectively incoming and outgoing edges from or to a
vertex. This proof of concept will count the amount of flows per service. It can
be used to detect if a machine is executing or su�ering from a Denial of Service
(DoS) attack, as these are typically identified by a large number of flows. These
two algorithms will count respectively the amount of outgoing and the amount of
incoming edges. DOSRank (6.1), which will calculate outgoing edges (incoming
connections) is trivial; it will set its value during the first superstep and then vote
to halt. ReverseDOSRank (6.2) is a bit more complex; since incoming edges are
not visible in Giraph, the first superstep is used to send a message over every edge.
During the second superstep, every vertex will receive an amount of messages that is
equal to its amount of incoming edges.

f(x) = N

≠(x). (6.1)

f(y) = N

+(y). (6.2)

Algorithm 6.1 DOSRank
result = vertex.getNumEdges();
vertex.voteToHalt();

6.1 Expected results

The algorithm will find IP addresses that are associated with large amounts of flows.
Opening a large amount of flows is di�erent from sending large amounts of data, as
sending a large amount of data is often a completely legitimate thing to do: For
example, sharing files via peer-to-peer protocols or serving large files over HTTP. A

21

22 6. DOSRANK

Algorithm 6.2 ReverseDOSRank
if superstep = 0 then
begin

result = 0;
sendMessageToAllEdges();

end
else
begin

while(messages.hasNext)
do

message.next();
result++;

end;
vertex.voteToHalt();

end.

large amount of flows; however, may be an indication that something is amiss. It
can indicate port scanning, or even targeted attacks like SYN flooding; however, a
large amount of flows can also simply indicate a very active or popular host.

6.2 Purpose

These algorithms are just a proof-of-concept to show that graph systems can be used
for tra�c analysis. The algorithm itself is most likely easier to implement using other
systems. A simple MapReduce algorithm could probably yield the same results a
smaller amount of time [15]; however, this algorithm does show that Giraph can be
used for tra�c analysis, and it opens the door for more complex algorithms, like
SpreadRank.

Chapter7SpreadRank

The previous algorithm, DOSRank, calculated the amount of flows. While a large
amount of flows may indicate that something is wrong, it may also simply indicate
a very active node. This chapter proposes SpreadRank, an algorithm to find hosts
that are standing out due to the spreading they are causing. SpreadRank calculates
how far connections spread. Spreading as an anomaly is described in chapter 5.

7.1 Overview of algorithm

This thesis proposes SpreadRank, an algorithm to determine how far similar tra�c
spreads over hosts. depth in SpreadRank is defined in equation 7.1 and illustrated in
figure 7.1. The value of d is the longest path from a host initiating a connection to
another host receiving a similar connection. spreading in SpreadRank is defined in
equation 7.2 and illustrated in figure 7.1. The value of s is the sum of all neighbours’ d

value, plus the amount of neighbours. Another way of looking at SpreadRank, is that
during the first superstep, all nodes will send a token in the opposite direction of the
flow. This token contains the timestamp from the flow. During all subsequent steps,
all nodes that have received a token will send tokens again, but only to flows that
have a lower timestamp than the token. Depth is then defined as the last superstep
during which tokens were received, and spread is defined as the total amount of
tokens received.

d(x) = 1 + max
yœN

≠(x)
d(y). (7.1)

s(x) =
ÿ

yœN

≠(x)
d(y) +

--
N

≠(x)
--
. (7.2)

Where E is the set of all edges in the graph, f(x) and f(y) are vertex values and
N

≠(x) is a set of all incoming edges from vertex x.

23

24 7. SPREADRANK

Figure 7.1: Small example graph with results of one node, all nodes are hosts

s=2

s=2

s=1

depth d = 3
spread s = 5
clients c = 2

SpreadRank bears similarities to Google’s PageRank [17]. Both algorithms use a
graph model where vertices and edges represent real-world elements. PageRank’s
model consists of web pages and hyperlinks and SpreadRank’s model consists of
services and flows. Both algorithms calculate values for vertices based on how they
are connected to other vertices. The algorithms do, however, calculate di�erent
things, and as such use di�erent metrics for calculating vertex values. This is most
apparent in that in PageRank vertices send each other part of their current score,
while in SpreadRank vertices simply send the timestamp of a flow start. This is
because time is not important in PageRank; it does not matter who made a link first,
while for SpreadRank it is important to know when a flow occurred, as spreading
must occur in chronological order.

7.2 OSI model

The network layer provides stateless communication between hosts, and can be
used to observe which hosts communicate with each other by means of IP addresses.
Additionally, the IP header contains a protocol number, which gives some rough idea of
the type of service. The transport layer (layer 4) provides end-to-end communication,
and can be used to observe what kind of services are being used, by looking at the
protocol header. Internet tra�c consists mostly of TCP tra�c, which makes TCP
port numbers an interesting thing to look at. SpreadRank only looks at TCP tra�c,
and assumes that identical port numbers indicate identical types of service.

SpreadRank must not be confused with the Dijkstra algorithm [6], which can be
used by layer 3 devices to find the shortest path between hosts. SpreadRank operates
on NetFlow data, which contains IP addresses of hosts and port numbers, which is

7.3. DATA TYPES 25

layer 4 data. The path that is observed is not a path via internet routers, but a path
of hosts imitating each others behaviour.

7.3 Data types

In the SpreadRank algorithm proposed in this thesis, IP-address and port number
tuples are represented by vertices (figure 7.2). The choice for this combination is
due to spreading occurring over the same port, which is the best NetFlow metric
available to indicate type of tra�c. The vertex’s value (figure 7.4) contains how far
the tra�c reaches (depth) and how far their tra�c spreads (spreading). Flows are
represented by edges. The edge has the flow start timestamp as value (figure 7.3).

Figure 7.2: Data type of a SpreadRank vertex ID

63 56 48 40 32 24 16 8 7 0

port number <1024 IPv4 address

Figure 7.3: Data type of a SpreadRank edge

63 56 48 40 32 24 16 8 7 0

flow start (milliseconds since January 1st 1970 0:00:00 GMT)

Figure 7.4: Data type of a SpreadRank vertex value

63 56 48 40 32 24 16 8 7 0

reach spreading

7.3.1 Filtering

Before calculation, all flows that do not represent a TCP or UDP connection are
removed, as well as every flow not between a contact port and an ephemeral port.
Since the di�erence between a contact port and an ephemeral port may be vague, a
contact port is assumed to be a well-known port, which is any port number below
1024 [20]. Any port from 1024 and up is assumed to be an ephemeral port. Di�erent
operating systems use di�erent port numbers as ephemeral ports, but no operating
system uses ports under 1024 as ephemeral ports (section 4.1.1).

Additionally, all double flows are removed, which means that there are always
zero, one or two flows between two edges (no flows, one-directional, bi-directional).

26 7. SPREADRANK

For every vertex-pair, for every direction, the oldest edge is retained. Since each edge
has a timestamp as value, the edge with the lowest value is retained and edges with
higher values are removed.

7.3.2 Loop protection

The removal of redundant edges is to provide a loop protection mechanism. In a
graph system, it is di�cult to detect loops; During calculation, only information
about the vertex itself is known (outgoing edges, vertex id, vertex value, incoming
messages). It is not viable to include a trail of previous edges to the messages that
are exchanged after the calculation; this would be expensive in terms of memory.

In the specific case of SpreadRank, this problem can be solved by only considering
the first time a flow has been observed, and to ignore all subsequent occurrences
(figure 7.5). If a host initiated a type of connection before it ever received it, it
certainly did not initiate these connections because of the connection it received, and
it is not a case of spreading (figure 7.6). Multiple hosts can initiate a connection before
spreading occurs, in which case it is assumed that both are responsible (figure 7.7
and 7.8). It is possible that spreading is incorrectly assumed due to the log not
observing a previous connection (figure 7.9). This can for example happen when
logging started after the second host initiated a connection, but before the first host
did.

Figure 7.5: Removal of duplicate flows

Figure 7.6: Spreading can only occur in sequence

7.4. IMPLEMENTATION 27

Figure 7.7: Spreading with two clients and one server

Figure 7.8: Spreading with two clients and two servers

Figure 7.9: False positive spreading

��
�
�
��
���	

�
��
�
�

����

��

S = TfirstReceived < TfirstSent (7.3)

7.4 Implementation

In Giraph, it is not possible for a vertex to enumerate its incoming vertices, only
outgoing vertices are available. For this reason, all direction edges are reversed in
the model, so that they point towards the initiator of the tra�c, not to the receiver.
During the first superstep, all vertices will send a message over all outgoing edges
(this message goes in the opposite direction of the original flow). The message
consists of the value of the edge, which is the time that the connection was attempted

28 7. SPREADRANK

(section 7.3). During all subsequent supersteps, all vertices that receive at least one
message, will send one message over every outging edge that has a lower value than
the highest value of any message received. The reason for this is that spreading must
happen sequentally; when a host X sends to Y and then receives from Z, it is not a
case of spreading. it is a case of spreading when host X receives from Z and then
sends to Y.

Algorithm 7.1 SpreadRank
if superstep = 0 then

removeDoubleEdges();
for edge : outgoingEdges
do

edge.send(edge.value);
end

end
else
begin

lastMessage = max(messages);
for edge : outgoingEdges
do

if edge.value < lastMessage
then
begin

edge.send(edge.value);
end

end
end
vertex.voteToHalt();

7.5 Expected results

7.5.1 Depth

The amount of supersteps is expected to be relatively low, except for protocols that
naturally exhibit spreading. A high amount of supersteps indicates that the host has
generated a type of network tra�c that is also generated by the hosts it has sent this
tra�c to, and that this process has repeated itself over several unique hosts, forming
a path.

7.5.2 Spreading

A high amount of incoming messages indicates that this host has initiated many
connections. This is typical behaviour for a client, and for protocols that have natural

7.5. EXPECTED RESULTS 29

spreading (for example DNS resolvers and BGP). Hosts that show high depth (large
amount of supersteps) but have a relatively small spreading, may be part of some
internal group, where information spreads between members of the group, but not
outwards.

7.5.3 Clients

The amount of clients is simply a count of the incoming edges, similar to DOSRank.
Since all edges are reversed (section 7.4), the amount of clients can simply be
calculated by counting a vertex’s outgoing edges in Giraph. In the SpreadRank
implementation written for this thesis, the amount is not calculated during a superstep,
but simply included in the output while the results are written to disk.

A typical case where this value is useful, is for finding DNS resolvers. Users
(clients) of the DNS resolvers will typically have a higher depth than the resolver
itself, since the client initiated the connection (figure 7.10). These clients themselves
should have zero incoming connections, otherwise they are resolvers.

Figure 7.10: Illustration of how a single DNS resolver will have many incoming
and outgoing connections.

dns server

no
 in

co
m

in
g

flo
w

s

m
or

e
sp

re
ad

in
g…

By having the possibility to exclude vertices with few clients from the end results,
it is trivial to limit the results to vertices with the second-longest path. This will
make it easier to focus on hosts that forward tra�c, and not on hosts that only
initiate tra�c.

Chapter8Results

UNINETT has provided NetFlow data from one of their core routers, with flows from
December 2013, in the NetFlow file format. To simplify implementation, nfdump
was used to convert the flows to CSV files. SpreadRank was run on the flows logged
by one router over one day, one week, two weeks and one month. Calculation of
SpreadRank scores only took some minutes to complete, but the conversion to CSV
took a few hours to complete. This was likely due to the fact that nfdump had to
read the compressed NetFlow files from the Hadoop File System (HDFS), and then
write uncompressed CSV files to the same HDFS volume.

After calculation, Giraph writes output files containing all vertex IDs as values.
The vertex value (figure 7.4) consists of the depth and the spreading from the
vertex. A Giraph OutputFormat was implemented in order to make the output files
better parseable. The OutputFormat writes tab separated lines, containing vertex
ID, number of outgoing edges (clients) and the vertex value (reach and spreading).

8.1 Longest path

Most services on the internet do not exhibit spreading. Figure 8.1 shows a plot of
spreading per vertex, calculated over NetFlow information from one router over one
day and over one month. Most vertices have a spreading of zero, one or two. A
spreading of zero typically indicates that the host is a server, a spreading of one
typically indicates that the host is a client (its tra�c reaches the servers) and a
spreading of two often indicates a hybrid, though it can also indicate a proxy server.
Higher spreading indicates hosts that do participate in spreading. This is typical for
DNS servers, SMTP servers and BGP routers.

31

32 8. RESULTS

Figure 8.1: Spreading per vertex

Depth over one month

5 %

23 %

44 %

28 %

0 1 2 rest

Depth over one day
0 %

9 %

56 %

34 %

0 1 2 rest
Spreading over 7 days

2 %

20 %

51 %

27 %

0 1 2 rest

Spreading over 14 days

3 %

22 %

49 %

26 %

0 1 2 rest

�1

8.2 Protocols

After filtering tra�c such that only services with a spreading of one or higher, and
a depth of two or higher remain, only a few protocols show up (figure 8.2). This
confirms the assumptions stated in section 7.5.1 and chapter 5, which is that only
certain protocols exhibit spreading.

BGP, Domain Name System (DNS) and Simple Mail Transfer Protocol (SMTP)
are expected to spread, due to the way the protocols work. BGP is used between
routers to calculate shortest paths; routers need to keep each other updated and will
therefore initiate connections to each other at regular intervals. DNS and SMTP are
both protocols where clients send their request to a server that is close to them, and

8.2. PROTOCOLS 33

the server will handle the request itself, or forward to the request to another server.
In the case of DNS, this means that the server will answer with information from its
cache, or look the requested record up itself. In the case of SMTP, this means that
the server will forward e-mail to the mail server of the recipient. These services yield
high depths, as virtually any server providing these services will eventually forward
requests it receives.

Figure 8.2: Distribution of protocols that exhibit spreading

Observed services with spreading ≥ 1 and depth ≥ 2 over one day
14 %

3 %

46 %

27 %

10 %

HTTP(S) DNS BGP Unknown (666) SSH SMTP

Observed services with spreading ≥ 1 and depth ≥ 2 over one month
11 %

2 %
0 %

3 %

14 %

69 %

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

Observed services with spreading ≥ 1 and depth ≥ 2 over two weeks

14 %

2 %
0 %

5 %

18 %

62 %

HTTP(S) DNS BGP Unknown (666) SSH SMTP

Observed services with spreading ≥ 1 and depth ≥ 2 over one week

18 %

2 %
0 %

8 %

21 %

50 %

HTTP(S) DNS BGP Unknown (666) SSH SMTP

The Secure Shell (SSH) and HyperText Transfer Protocol (HTTP) protocols also
exhibit higher spreading. The reason for this may be that home servers often serve
web pages, and Linux-based home servers will typically also accept SSH connections
for remote management. HTTP spreading is discussed in more detail in section 5.5.

Spreading is also observed on ports 666 and 445. Port 666 is o�cially allocated
as the port for both the Multiple Device Queueing System, and computer game

34 8. RESULTS

Doom [20], but in practice it is also used by viruses. Only one instance of spreading
over port 666 was observed over one month, but due to the ambiguity of the port, it
is not clear what kind of tra�c this was. Port 445 is used by Microsoft Windows for
sharing files, but it is also abused for denial of service attacks [12]. Because of this,
it is unknown whether this spreading was due to an attack, or simply some users
that had used Microsoft Windows File Sharing.

8.3 Diagram

Individual observed services with a reach of one or higher are plotted in figure 8.3.
It is based on one month’s worth of NetFlow.

• The X axis shows spreading – the amount of hosts reached via spreading – the
amount of messages received in total.

• The Y axis shows depth – the longest path.

• The size of the dot shows the amount of observed clients – the amount of
incoming connections to the host.

Figure 8.3: End-hosts scored with SpreadRank over one month

R
ea
ch

0

15

30

45

60

75

Spreading
1 10 100 1000 10000 100000 1000000

Spreading over one month (logarithmic)

1

1000

1000000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Spreading over one month (linear)

0

400000

800000

1200000

1600000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

0 1 2 rest

Observed services with spreading ≥ 1 and depth ≥ 2 over one month

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

�1

8.4 Observed anomalies

Figure 8.3 shows all observed IP-address + port number pairs with a depth of 2 or
higher, during one month. Similar diagrams from di�erent timespans can be found
in appendix B. The best way to observe anomalies in this diagram, is by Multi-class
Anomaly Detection. Multi-class classification assumes that the data set contains
di�erent distinct types of data [3]. In the case of SpreadRank, these types of data
are the port numbers. Di�erent ports are indicated with di�erent colours in the
diagram, and it is apparent that there is a pattern (figure 8.4). It apparent that
there are some outliers, but there is no clear border between normal observations

8.4. OBSERVED ANOMALIES 35

and anomalous observations; however, a simple visual observation of the diagram
does give some interesting results.

Figure 8.4: SpreadRank pattern over one month

HTTP

Various

DNS (small or external)

DNS

(authoritative)

BGP

SMTP

(small or external)

SMTP
(internal MX)

8.4.1 Botnet

Figure 8.5: HTTP and SSH tra�c in SpreadRank over one month

R
ea

ch

0

5

10

15

20

25

30

Spreading
100 1000 10000 100000 1000000

Spreading over one month (logarithmic)

1

1000

1000000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Spreading over one month (linear)

0

400000

800000

1200000

1600000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

0 1 2 rest

Observed services with spreading ≥ 1 and depth ≥ 2 over one month

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

�1

participated!
in botnet

SSH scanner

connected!
to botnetconnected!

to botnet

Figure 8.5 shows HTTP and SSH services. Dots marked with a solid line are
linked to hosts that were reported to CERT. The tiny red SSH node at the right
hand side has been involved in SSH scanning, where it connects to many IP addresses
in the hope to find an SSH server with a password it can guess.

The large HTTP node at the right hand side is a host at NTNU, and was
confirmed participating in a botnet during December 2013, but was not discovered
until January. The host had many incoming and outgoing connections over port 80
in December. After analysing the logs with more detail, it became apparent that
it was contacted very often by servers hosting questionable content. These servers
were contacted by various other clients at NTNU at a regular interval, but starting
the 24th of December, some of these servers started contacting the host at NTNU.

36 8. RESULTS

On January 1st, 2014, UNINETT CERT received a report stating that the machine
participated in a botnet.

By matching the IP addresses that this botnet host had contact with, two
additional hosts (marked with dotted lines) were discovered participating in the
botnet. Apparently this botnet does not make use of stealth technologies as outlined
in section 5.8.1. A possible reason for this, is that port 80 is a relatively “safe” port
to communicate over; due to the high usage of HTTP ports for many di�erent types
of tra�c (chapter 5), system administrators may be inclined not to consider HTTP
tra�c when looking for anomalies. SpreadRank has therefore proven to be a useful
tool for finding these kinds of anomalies.

The two hosts (marked with dotted lines) were not reported to CERT, and were
therefore never investigated. According to information from DNS, the host that got
reported to CERT is a machine at a faculty at NTNU. The two hosts that were
found using SpreadRank are computers at two di�erent student villages at NTNU.
More precise information is available at UNINETT, but cannot be published in this
thesis for privacy reasons.

8.4.2 DNS

Figure 8.6: DNS tra�c in SpreadRank over one month

R
ea

ch

0

15

30

45

60

75

Spreading
1 000 10 000 100 000

Spreading over one month (logarithmic)

1

1000

1000000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Spreading over one month (linear)

0

400000

800000

1200000

1600000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

0 1 2 rest

Observed services with spreading ≥ 1 and depth ≥ 2 over one month

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

�1

NTNU"
resolvers

NTNU"
authoritative

HiNT"
authoritative

NTNU NT"
faculty auth.

NTNU IDI"
faculty auth.

UiT"
authoritative

UNINETT"
authoritative

Figure 8.6 shows DNS services, marked by which institution manages them. DNS
resolvers are used to look up DNS records for hosts inside the network. These
resolvers cannot be used from the outside, which is why the dots are small; the clients
are inside the institution, and are therefore not logged by UNINETT’s core routers
(figure 2.1).

Authoritative DNS servers that cause spreading may seem like an anomaly;
such authoritative DNS servers answer queries from clients and do not send queries
themselves; however, there is an explanation for this spreading: In order to keep
DNS zones available, most domains use multiple DNS servers. These DNS servers

8.5. PERFORMANCE 37

must keep their records information synchronised, and will therefore periodically
contact a master server if it is not itself the master for the DNS zone.

8.4.3 SMTP

SMTP is the protocol used for mail delivery, where sometimes an e-mail is forwarded
a couple of times before it reaches a mailbox. This causes spreading, which can be
seen in figure 8.3. There are some SMTP servers that exhibit very high spreading,
but these are simply hosts that handle large amounts of mail. The diagram with
SMTP servers would give a very comprehensive overview of e-mail usage at NTNU,
but for privacy reasons this diagram is not included. Such a diagram would give
information about which parties NTNU communicates with most, which includes
companies that recruit at NTNU.

8.5 Performance

UNINETT made a server cluster available for the analysis. This cluster is installed
with Apache Hadoop [2], and consists of 15 worker machines with 4 CPUs and 16 GB
RAM each. In addition, there are two HDFS name-nodes and one YARN manager,
which have 4 CPUs and 10 GB RAM each.

Figure 8.7 shows how SpreadRank performs on this cluster, by NetFlow logs
over one day, one week, two weeks and one month. The logs are cumulative, so
the one week log also contains the information from the one day log, etc. Since
every task is divided over multiple workers, of which multiple can run on one worker
machine, the calculation times may fluctuate. The figure shows one measurement
where SpreadRank is run four times, for di�erent NetFlow log sizes. An interesting
result is that the calculation of one week takes slightly longer than the calculation of
two weeks. This is probably by accident, the job may have been scheduled in such a
way that multiple workers were located on the same physical machine.

8.6 Comparison to other systems

Software already exists to handle NetFlow logs. The goal of most of this software is
to make NetFlow logs more easily readable. UNINETT currently uses NFSEN1 for
analysis of NetFlow information. NFSEN provides a web interface from which the
NetFlow logs are easy accessible as text or aggregated in a diagram (figure 8.8). The
aggregated data from NFSEN can also be generated using MapReduce [15].

SpreadRank, as implemented in this thesis, does not provide any database storage,
diagram generation or user interfaces. The plots shown in this thesis were created

1
http://nfsen.sourceforge.net

http://nfsen.sourceforge.net

38 8. RESULTS

Figure 8.7: Time used to calculate SpreadRank

C
al

cu
la

tio
n

tim
e

(s
ec

on
ds

)

0 m 0 s

0 m 30 s

1 m 0 s

1 m 30 s

2 m 0 s

2 m 30 s

3 m 0 s

NetFlow data
0 days 10 days 20 days 30 days 40 days

using modeling tools and spreadsheet software. SpreadRank, instead, aggregates
flows in a more recursive way, which gives additional metrics about hosts. These
metrics would be useful to integrate in NFSEN, but NFSEN in its current form does
not support plugins. Software similar to NFSEN is FlowViewer2 and SiLK 3.

2
http://sourceforge.net/projects/flowviewer/

3
https://tools.netsa.cert.org/silk/

http://sourceforge.net/projects/flowviewer/
https://tools.netsa.cert.org/silk/

8.6. COMPARISON TO OTHER SYSTEMS 39

Figure 8.8: Screenshot of NFSEN (http://nfsen.sourceforge.net/details-graphs.png)

Chapter9Conclusion

This thesis has stated the current practices in tra�c anomaly detection. Current
tra�c anomaly detection is based on aggregating flows, or by identifying high-intensity
tra�c. The thesis defines the concept of spreading, which describes the phenomenon
of a host initiating the same kind of connections it receives, where same-kind refers
to usage of the same TCP/UDP ports. It is argued that spreading is uncommon for
most protocols on the internet today, which makes it an anomaly.

The usage of graph systems is proposed as a means to measure spreading. Multiple
graph systems are available today, this thesis uses the Giraph system. Using Giraph,
NetFlow information provided by UNINETT is converted to a graph, where spreading
is calculated using SpreadRank, an algorithm introduced in this thesis.

SpreadRank works by making a graph of flow data. In this graph, vertices
represent IP address and port number pairs (services), and edges represent flows,
and have the flow start time as value. Every service is scored on its longest path
towards another service (depth), and on how far it spreads its tra�c (spreading).

An analysis of the results shows that only five percent of all services participate
in spreading, and that for many hosts, their role can be determined by simply looking
at their spreading. A spreading of zero typically indicates a server, one typically
indicates a client (its tra�c reaches to the servers) and a spreading of two often
indicates a combination of both, though it can also indicate a simple proxy server.

Some protocols have natural spreading, for example BGP, DNS and SMTP;
implementations of these protocols behave often both as server and client. SSH and
HTTP are popular protocols which do not have natural spreading; however, these
protocols exhibit spreading nevertheless. HTTP has a high spreading due to it being
a protocol that is used for multiple purposes. An HTTP service may itself use HTTP
to connect to another service. SSH allows users to “hop” from one SSH server to
another.

41

42 9. CONCLUSION

SpreadRank has been successful in identifying spreading, and in doing so can
be successfully used to find DNS resolvers, BGP routers and mail servers on the
network. It has also been successful in finding hosts that participated in a botnet.
It does so based on NetFlow data from core routers, without sending data into the
network itself.

9.1 Future work

9.1.1 Automation

The current implementation of SpreadRank requires the analyst to execute many
manual steps. A better EdgeInputFormat would reduce the amount of conversions
needed, and speed up the overall process. The output could then be parsed to
automatically find outliers.

9.1.2 Test-data

It was not known beforehand which attacks were present in the test-data. The
experiment should be repeated with test-data with known attacks. The best time to
do this, is most likely after a large worm outbreak.

9.1.3 Real-time monitoring

The experiment was conducted on static test data. For a real-life application, real-
time monitoring is required, as this makes it possible to set automatic alarms when
something is amiss. In order to work with real-time data, a sliding window is required,
in which flows are added to the graph as they are observed, and old flows are removed.
Giraph does not currently support this; however, systems that support this do exist,
for example GraphX.

9.1.4 IPv6

The NetFlow data provided by UNINETT contains only flows between IPv4 hosts.
The SpreadRank algorithm may need some modifications to be able to be used on
IPv6. The two most important di�erences between IPv4 and IPv6 for SpreadRank
are that IPv6 addresses are a lot longer and will therefore not fit in the current data
types. Additionally, another tra�c pattern will be observed regarding home servers.
Where many home servers currently share their public IPv4 address with clients due
to the use of technologies such as NAT, IPv6 makes it possible to run the server and
client on di�erent IPv6 addresses.

Additionally, the use of privacy extensions in IPv6 (a technology that lets clients
randomise their IP address for anonymity) will prove to be both a challenge and an

9.1. FUTURE WORK 43

advantage for SpreadRank. It is a challenge because it will lead to more vertices;
in the current model, every observed IP address + port number pair is a vertex,
which means that a new vertex is created every time a client switches IP address.
Randomised IP addresses are also an advantage, because it is not feasible to run a
server on a randomised IP address. This may make it easier to designate vertices as
clients at a very early stage, which reduces computation time.

References

[1] Ching Avery. Giraph: Large-scale graph processing infrastruction on hadoop.
Proceedings of Hadoop Summit. Santa Clara, USA:[sn], 2011.

[2] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkarup-
pan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov,
Aravind Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer. Apache
hadoop goes realtime at facebook. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’11, pages 1071–1080,
New York, NY, USA, 2011. ACM.

[3] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[4] A Ching. Scaling apache giraph to a trillion edges. Facebook Engineering blog,
2013.

[5] Inc Cisco Systems. Understanding the netflow collector data file format. Cisco
NetFlow Collector User Guide.

[6] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[7] Zhiqiang Gao and Nirwan Ansari. Di�erentiating malicious ddos attack tra�c from
normal tcp flows by proactive tests. Communications Letters, IEEE, 10(11):793–
795, 2006.

[8] Wolfgang John and Tomas Olovsson. Detection of malicious tra�c on back-bone
links via packet header analysis. Campus-Wide Information Systems, 25(5):342–
358, 2008.

[9] S. Krahmer. SSH/HTTP(S) multiplexer. Available online https://github.com/
stealth/sshttp, 2014.

[10] Christian Kreibich, Andrew Warfield, Jon Crowcroft, Steven Hand, and Ian Pratt.
Using packet symmetry to curtail malicious tra�c. ACM Hotnets-IV, 200, 2005.

[11] Kun-chan Lan, Alefiya Hussain, and Debojyoti Dutta. E�ect of malicious tra�c
on the network. In Proc. of PAM. Citeseer, 2003.

45

https://github.com/stealth/sshttp
https://github.com/stealth/sshttp

46 REFERENCES

[12] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep
Srivastava. A comparative study of anomaly detection schemes in network
intrusion detection. Proc. SIAM, 2003.

[13] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M Hellerstein. Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1006.4990, 2010.

[14] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages 135–146, New York,
NY, USA, 2010. ACM.

[15] Jan Tore Morken. Distributed netflow processing using the map-reduce model,
2010.

[16] Maziar Nekovee, Yamir Moreno, G Bianconi, and M Marsili. Theory of rumour
spreading in complex social networks. Physica A: Statistical Mechanics and its
Applications, 374(1):457–470, 2007.

[17] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. 1999.

[18] Janak J Parekh, Ke Wang, and Salvatore J Stolfo. Privacy-preserving payload-
based correlation for accurate malicious tra�c detection. In Proceedings of the
2006 SIGCOMM workshop on Large-scale attack defense, pages 99–106. ACM,
2006.

[19] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in
scale-free networks. Physical review letters, 86(14):3200, 2001.

[20] J. Reynolds and J. Postel. Assigned Numbers. RFC 1700 (Historic), October
1994. Obsoleted by RFC 3232.

[21] Sherif Sakr. Processing large-scale graph data: A guide to current technology.
IBM Developerworks, page 15, jun 2013.

[22] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990.

[23] J. Vasudevan. How to configure the rras based vpn server to accept sstp connec-
tions. Available online http://blogs.technet.com/b/rrasblog/archive/2007/02/02/
configuring-the-vpn-server-to-accept-sstp-connections.aspx, 2007.

[24] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. Graphx:
A resilient distributed graph system on spark. In First International Workshop
on Graph Data Management Experiences and Systems, page 2. ACM, 2013.

http://blogs.technet.com/b/rrasblog/archive/2007/02/02/configuring-the-vpn-server-to-accept-sstp-connections.aspx
http://blogs.technet.com/b/rrasblog/archive/2007/02/02/configuring-the-vpn-server-to-accept-sstp-connections.aspx

REFERENCES 47

[25] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, pages 10–10, 2010.

[26] Hubert Zimmermann. Osi reference model–the iso model of architecture for open
systems interconnection. Communications, IEEE Transactions on, 28(4):425–432,
1980.

AppendixACommands

During this study, SpreadRank was run on YARN, and results were written to text files. This appendix will show the commands
used to convert NetFlow to CSV, start SpreaRank with these CSV files, and filter the results.

49

50
A

.C
O

M
M

A
N

D
S

A.1 Convert NetFlow to CSV

NetFlow can be converted to a CSV file, with non-UDP and non-TCP flows filtered out, as well as flows between port numbers
that are both over 1024. This conversion is done using FlowConvert.sh, though in order to generate separate CSV files,
FlowConvert must be run for each time frame that a CSV file should span. This snippet of Bash code will run FlowConvert.sh
31 times, for every day of the month. The end result will be a directory named trd_gw1_12_filtered.csv with 31 files.

seq 1 9 | while read nr
do

sh FlowConvert.sh -R trd_gw1/12/0$nr | cat > trd_gw1_12_filtered.csv/part-0000$nr &
done
seq 10 31 | while read nr
do

sh FlowConvert.sh -R trd_gw1/12/$nr | cat > trd_gw1_12_filtered.csv/part-000$nr &
done

A
.2.

EX
EC

U
T

E
SPR

EA
D

R
A

N
K

51

A.2 Execute SpreadRank

In order to execute SpreadRank on YARN, the application must be submitted to the YARN manager, so that it can deploy the
SpreadRank jar file to all workers. The command takes as arguments the path of the jar file, and the fully qualified class-name
of both Giraph. Giraph takes the fully qualified class-name of the SpreadRank computation class. Additionally, a format for
reading the graph at the start, and writing the graph at the end must be provided. In this case, we use a directory to store the
graph data. The directory contains chunks of the full graph.

yarn \
jar giraph-rank-1.1.0-SNAPSHOT-for-hadoop-2.3.0-cdh5.0.1-jar-with-dependencies.jar \
org.apache.giraph.GiraphRunner no.uninett.yorn.giraph.computation.SpreadRank \
-eif no.uninett.yorn.giraph.format.io.NetflowCSVEdgeInputFormat \
-eip /user/hdfs/trd_gw1_12_filtered.csv \
-vof no.uninett.yorn.giraph.format.io.RankVertexOutputFormat \
-op /user/hdfs/rank-out/IPSpreadRank_gw1_12 \
-wc org.apache.giraph.worker.DefaultWorkerContext \
-w 16 \
-yj giraph-rank-1.1.0-SNAPSHOT-for-hadoop-2.3.0-cdh5.0.1-jar-with-dependencies.jar

52
A

.C
O

M
M

A
N

D
S

A.3 Filter results

The raw results from SpreadRank, even though outputted by a custom OutputFormat, contain a lot of information that is not
relevant. This simple Bash script will remove all vertices with a depth of 1 or less, and all vertices with no spreading or no
clients. The program is built using these components:

• cat: concatenate all parts of the output

• grep: filter out all values equal to 0 or 1

• sort: make sure that the highest spreading is returned first

• sed: anonymize the results by removing IP addresses though keeping port numbers

• less: easier reading of the results in a terminal

Components can taken out if desired, to change the results. Total execution time of this command on one month worth of
NetFlow data took about 101̃5 seconds on UNINETT’s server cluster.

cat rank-out/IPSpreadRank_gw1_12/part-m-* | egrep -vw ’[01]’ | sort -hrk 3 | sed ’s/^.*://’ | less

A
.4.

A
G

G
R

EG
AT

E
53

A.4 Aggregate

This Bash script can be used to determine how often a protocol engages in spreading. It will output two numbers per line, the
second being the protocol number, the first being the amount of services observed. The program is built using these components:

• cat: concatenate all parts of the output

• grep: filter out all values equal to 0 or 1

• sed: remove IP addresses, otherwise the list would show all IP addresses with count 1

• cut: remove all but the first value (port number)

• sort: set the port numbers in order, required for uniq.

• uniq: aggregate the port numbers, and show count

Total execution time of this command on one month worth of NetFlow data took about 101̃5 seconds on UNINETT’s server
cluster.

cat rank-out/IPSpreadRank_gw1_12/part-m-* | egrep -vw ’[01]’ | sed ’s/^.*://’ | cut -f1 | sort | uniq -c

AppendixBSpreadRank results

This appendix contains diagrams of SpreadRank being executed on NetFlow logs from one of UNINETT’s core routers. These
diagrams are made using di�erent periods of NetFlow logs from the same core router.

55

56
B

.SPR
EA

D
R

A
N

K
R

ESU
LT

S
Figure B.1: Vertices scored with SpreadRank using one day of flows

R
ea
ch

0

15

30

45

60

75

Spreading
1 10 100 1000 10000 100000 1000000

Spreading over one month (logarithmic)

1

1000

1000000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Spreading over one month (linear)

0

400000

800000

1200000

1600000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

0 1 2 rest

Observed services with spreading ≥ 1 and depth ≥ 2 over one month

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

�1

Figure B.2: Vertices scored with SpreadRank using one week of flows

R
ea
ch

0

15

30

45

60

75

Spreading
1 10 100 1000 10000 100000 1000000

Spreading over one month (logarithmic)

1

1000

1000000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Spreading over one month (linear)

0

400000

800000

1200000

1600000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

0 1 2 rest

Observed services with spreading ≥ 1 and depth ≥ 2 over one month

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

�1

57

Figure B.3: Vertices scored with SpreadRank using two weeks of flows

R
ea
ch

0

15

30

45

60

75

Spreading
1 10 100 1000 10000 100000 1000000

Spreading over one month (logarithmic)

1

1000

1000000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Spreading over one month (linear)

0

400000

800000

1200000

1600000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

0 1 2 rest

Observed services with spreading ≥ 1 and depth ≥ 2 over one month

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

�1

Figure B.4: Vertices scored with SpreadRank using one month of flows

R
ea
ch

0

15

30

45

60

75

Spreading
1 10 100 1000 10000 100000 1000000

Spreading over one month (logarithmic)

1

1000

1000000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Spreading over one month (linear)

0

400000

800000

1200000

1600000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

0 1 2 rest

Observed services with spreading ≥ 1 and depth ≥ 2 over one month

HTTP(S) DNS BGP Unknown (666) & 445 SSH SMTP

�1

	List of Figures
	List of Algorithms
	List of Terms
	List of Acronyms
	Introduction
	Anomaly detection
	Graph processing
	Privacy

	NetFlow
	Format
	Available information
	Direction

	Graph processing
	Bulk Synchronous Parallel model
	Giraph
	Design choices
	Optimisations

	Traffic in a graph
	Model optimisation
	Data conversion

	Spreading

	Anomalies
	Servers undergoing maintenance
	Home connections which run a personal server
	VPN servers
	Protocols with natural spreading
	BGP
	DNS
	SMTP

	HTTP/HTTPS
	Combination
	Worm infection
	Peer to peer traffic
	Stealth worm

	DOSRank
	Expected results
	Purpose

	SpreadRank
	Overview of algorithm
	OSI model
	Data types
	Filtering
	Loop protection

	Implementation
	Expected results
	Depth
	Spreading
	Clients

	Results
	Longest path
	Protocols
	Diagram
	Observed anomalies
	Botnet
	DNS
	SMTP

	Performance
	Comparison to other systems

	Conclusion
	Future work
	Automation
	Test-data
	Real-time monitoring
	IPv6

	References
	Commands
	Convert NetFlow to CSV
	Execute SpreadRank
	Filter results
	Aggregate

	SpreadRank results

