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Abstract— This paper considers aided inertial navigation of
unmanned aerial vehicles aided with position measurements
from one or more global navigation satellite system antennas,
where the exact positions of the antennas are assumed unknown.
This reflects that the antennas’ location relative to the inertial
sensor, i.e. the lever arms, might be difficult to measure
accurately in the coordinate frame of the inertial sensor. Using
inaccurate lever arm values will deteriorate both the position
and attitude estimates of the vehicle. It is easier to manually
and accurately measure the distances from each antenna to
the inertial sensor and between antennas, and this information
can be used constructively to estimate the lever arms online.
In this paper, the distance information is used to reduce the
representation of one or more lever arms to two or three
states, respectively. An error-state extended Kalman filter is
derived and compared to two other similar filters in simulations:
one filter in which the lever arms are known and one which
represents all lever arms as body-fixed positions. The suggested
filter is shown to perform as well as the latter, but with a
significantly smaller state space representation.

I. INTRODUCTION

Navigation of unmanned aerial vehicles (UAVs) usually
involves the fusion of global navigation satellite system
(GNSS) and inertial measurement unit (IMU) measurements,
i.e, from an accelerometer and angular rate sensor (ARS).
The accuracy of estimation depends largely on the magnitude
of sensor noise and the calibration of the sensors. Calibration
relates to biases, misalignments, and scale factors in the
accelerometer and ARS that causes estimates to drift; lever
arm from center of gravity (CG) to the IMU that produces
centrifugal accelerations; and lever arm from the IMU to
GNSS antennas. The misalignments and scale factors of
the IMU are often calibrated pre-flight, while biases are
often estimated online. The lever arm from CG to the
IMU can often be made small and therefore negligible. For
position estimation, failing to compensate for the lever arm
from the IMU to the GNSS antennas yields an attitude
dependent error. In the case of multiple GNSS antennas on
the UAV, position measurements will give valuable attitude
information which further necessitates precise knowledge of
the GNSS antennas’ body-fixed position. If GNSS velocity
measurements are used, angular rates will give an additional
velocity term proportional to the length of the lever arm,
which is important to account for.

The lever arms, from now on meaning the GNSS antennas’
position relative to the IMU, are hard to measure accurately
in the IMU’s coordinate frame, and an offline calibration
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or online estimation scheme is therefore useful. Hong et al.
[1] analytically examined the observability of the position,
velocity, attitude, accelerometer and ARS biases, and the
lever arm of a single GNSS antenna, where the lever arm was
represented as a three-parameter position vector. Hong et al.
[2] conducted an experimental analysis on the same problem.
Lee et al. [3] and Hong et al. [4] examined the observability
of the same problem with multiple GNSS antennas analyti-
cally and with experiments, respectively. There, a minimum
of three antennas were required. One of the antennas was
defined as the origin of an antenna coordinate frame in
which the positions of the other antennas are measured.
This resulted in all the lever arms being represented by
six variables: three translations and three rotations from the
body-fixed frame to the antenna coordinate frame. It was
found that angular velocity was required to observe the lever
arms both with a single and two GNSS antennas. For one
antenna, the angular velocity about an axis only helped in
observing the components of the lever arms off, but not
along, the axis of rotation. Therefore, the axis of rotation
needs to change over time.

In Seo et al. [5], a GNSS lever arm is estimated in
integration with IMU and odometer measuring the distance
traveled in a car wheel. Zhong et al. [6] and Cao, Zhong,
and Zhao [7] considers estimation of a dynamic lever arm
between a GNSS antenna and an IMU on a gimballed
platform also carrying an optical sensor. Estimation of the
spatial relationship between sensors is often encountered in
systems with IMUs and cameras. This entails estimation of
three translations and three rotations in the general case,
similarly as in the multiple GNSS antenna case in Lee et al.
[3] and Hong et al. [4]. Examples of this include Chiang et al.
[8] and Lobo and Dias [9]. Montalbano and Humphreys [10]
compared lever-arm compensation by an extended Kalman
filter (EKF) to multiple-model Kalman filters and a neu-
ral network, finding that the EKF outperformed the other
methods. Wu, Wang, and Hu [11] posed the estimation of
attitude, acceleration and ARS biases, and GNSS lever arm
as an optimization problem and solved it using a recursive
Lagrange-Newton method.

It is not straightforward to measure the lever arms manu-
ally since the IMU’s coordinate frame is not known exactly.
However, the lengths of the lever arms are often straightfor-
ward to manually measure with high accuracy. This is also
true for the distances between antennas. This motivates the
development of a lever arm formulation using the known dis-
tances to yield a minimal lever arm representation. Inspired
by Lee et al. [3] and Hong et al. [4], an antenna coordinate



frame is found, in which the GNSS antennas positions are
known. In this paper, however, the IMU is used as the origin
of the antenna coordinate frame. This relieves the need for
estimating a translation between the IMU and the antenna
frame, since the origins coincide. Also, only two antennas
are now required to define the antenna frame. This means that
for two or more antennas, the lever arms can be represented
by three rotations only.

Aided inertial navigation of UAVs without the lever arm
compensation is a thoroughly studied field of which there
exists a multitude of estimators, e.g., EKFs, see Farrell [12]
and George and Sukkarieh [13], and nonlinear observers,
see Vik and Fossen [14], Hua [15], Grip et al. [16], and
Hansen, Johansen, and Fossen [17]. In this paper, the po-
sition, velocity, attitude, ARS and accelerometer biases, and
lever arm are estimated by an error-state EKF. The lever arm
representations for a single and multiple GNSS antennas are
developed in Section III, before the error-state EKF is derived
in Section IV. It is shown that the EKF using the novel
minimal representation of the lever arm performs equally
well, and with a smaller state space representation than, the
EKF in which lever arms are represented as three-parameter
positions and the measured distances are used as pseudo-
measurements.

II. PRELIMINARIES AND MODELS

A. Notation

Denote by xabc the position, velocity, or acceleration x of
point c relative to point b decomposed in the coordinate frame
{a}. In the case of angular velocity, ωabc denotes angular rate
of the coordinate frame {c} relative to coordinate frame {b}
decomposed in the coordinate frame {a}. Let Rde denote the
rotation matrix expressing the rotation from coordinate frame
{e} to coordinate frame {d}.

3 × 3 and 4 × 4 skew-symmetric matrices are useful to
define for any vector ω = [ω1, ω2, ω3]>

S(ω) ,

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

Ω(ω) ,

[
0 −ω>
ω −S(ω)

]

A stochastic variable ε ∈ RN that is Gaussian with
mean m ∈ RN and covariance C ∈ RN×N is denoted
ε ∼ N (m,C).

03 and I3 denote 3 × 3 zero and identity matrices,
respectively.

B. Representations of Rotation

Rotations are in this paper either represented by the
quaternion qde = [ηde , ε

d
e
>]>, the rotation matrix Rde = R(qde ),

or by four times the modified Rodrigues parameter (MRP)
ude = u(qde ), where

R(qde ) =I3 + 2ηdeS(εde) + 2S(εde)
2 (1)

u(qde ) =4
εde

1 + ηde
(2)

The quaternion is found from the MRP by

q(ude) =
1

16 + ‖ude‖22

[
16− ‖ude‖22

8ude

]
(3)

The attitude error in the EKF’s error state is best represented
by a three-parameter variable. The choice of attitude error
representation falls on the MRP due to its less inhibiting
singularity at 360◦ compared to the Gibbs vector’s 180◦ and
the Euler angle’s 90◦, Markley and Crassidis [18]. The MRP
is scaled with a factor of four in order to be able to use the
results in Markley [19].

C. States and Coordinate Frames

The north-east-down (NED) coordinate frame {n} is a
local tangent frame which is used as the global reference
frame in this paper, while the body-fixed frame {b} is defined
as the IMU’s coordinate frame. For two or more GNSS
antennas, the antenna frame {a} is defined. The estimated
body-fixed and antenna frames are denoted {b̂} and {â},
respectively.

The states that are estimated by the EKF are the position
of the UAV in the NED frame, pnnb, the velocity vnnb,
accelerometer bias bbacc, attitude qnb , ARS bias bbars, and the
lever arm angles qba in the case of multiple antennas or the
inclination and azimuth angles ζ and ξ, respectively, in the
case of one antenna, see Figure 1.

D. Measurements

1) GNSS Position Measurements: The GNSS position
measurement of GNSS antenna i provides position measure-
ments

pnnai,m = pnnb +Rnb p
b
bai + εp,i (4)

where pbbai denotes the position of antenna i relative to the
body-fixed frame decomposed in the body-fixed frame and
εp,i ∈ N (0,Ri). It is emphasized that pbbai is not known. Its
representation is covered in detail in Section III.

2) IMU Measurements: The IMU contains a 3-axis ac-
celerometer and an ARS that measure

f bnb,m =Rnb
>(annb − gn) + bbacc + εacc (5a)

ωbnb,m =ωbnb + bbars + εars (5b)

respectively, where annb is the acceleration of the vehicle,
gn = [0, 0, 9.81]> is the acceleration of gravity, bbacc and
bbars are bias terms that are assumed to be constant or slowly
varying, i.e.

ḃbacc = εbacc
(6)

ḃbars = εbars
(7)

and

εacc ∼ N (0, Qacc), εars ∼ N (0, Qars) (8)
εbacc ∼ N (0, Qbacc), εbars ∼ N (0, Qbars) (9)

Note that (5b) does not include Earth’s rotation, implicitly
assuming that NED is inertial.
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Fig. 1: This figure shows the IMU (box), its body-fixed frame
{b} (blue), and how the inclination and azimuth angles ζ and
ξ, respectively, are defined in the case of one GNSS antenna.

E. Kinematics

The kinematics of position, velocity, and attitude are

ṗnnb =vnnb (10)

v̇nnb =annb = Rnb (f bnb,m − bbacc − εacc) + gn (11)

q̇nb =
1

2
Ω(ωbnb)q

n
b =

1

2
Ω(ωbnb,m − bbars − εars)qnb (12)

III. LEVER-ARM REPRESENTATIONS

Assume that the aircraft is equipped with M GNSS
antennas whose distance to the IMU and each other are
measured accurately. Denote by Li = ‖pbbai‖2 the distance
between antenna i and the IMU and by Lij = ‖pbbai−p

b
baj
‖2

the distance between antennas i and j, where i, j ∈ (1,M).

A. One antenna

Spherical coordinates represents a point in space by the
distance to that point and by inclination and azimuth angles.
Since the distance between the IMU and the single antenna
on the UAV is assumed to be measured accurately, using
spherical coordinates to represent its position reduces the
state space dimension by one, i.e.

pbba1 =

L1 cos(ζ) cos(ξ)
L1 cos(ζ) sin(ξ)
−L1 sin(ζ)

 (13)

where L1 is known and ζ and ξ are the inclination and
azimuth angles, respectively. The spherical representation of
the lever arm is shown in Figure 1. The unknown inclination
and azimuth angles are assumed to be constant, i.e.

ζ̇ = 0 (14)

ξ̇ = 0 (15)

B. Multiple antennas

For multiple antennas, the idea is to define a common
GNSS antenna coordinate frame, denoted {a}, in which the
position of all GNSS antennas are described. The origin of
the antenna frame coincides with the origin of the body-fixed

frame, and rotation from the antenna frame to the body-fixed
frame is the goal of estimation. By doing this, we utilize the
information we can know with relatively high accuracy, i.e.
the distances between sensors, while reducing the state space
augmentation to three variables for an arbitrary number of
antennas M ≥ 2.

Figure 2 shows how the antenna frame is defined and its
relationship with the body-fixed frame. The x-axis of the
antenna-frame is defined to point from the IMU towards
antenna 1, meaning that it must take the form paba1 ,
[x1, 0, 0]>. Furthermore, it is obvious that x1 ≡ L1. The
y-axis is now defined by the perpendicular projection of
the vector from the IMU to antenna 2 onto the x-axis.
Thus, the position of the second antenna takes the form
paba2 , [x2, y2, 0]>. Pythagorean trigonometry now reveals

L2
2 =x22 + y22 , L

2
12 = (L1 − x2)2 + y22 (16)

L2
12 =L2

1 − 2L1x2 + x22 + y22 = L2
1 − 2L1x2 + L2

2 (17)

x2 =
L2
1 + L2

2 − L2
12

2L1
, y2 =

√
L2
2 − x22 (18)

Having defined the x- and y-axes, the z-axis is defined to
make a right-handed coordinate system.

For any antenna i ≥ 3, pabai = [xi, yi, zi]
> can be

calculated explicitly or found by formulating a least squares
optimization problem. The explicit calculations of xi, yi, and
zi for i ≥ 3 follows4. Firstly, xi can be calculated by

L2
1i − L2

1 − L2
i =− 2paba1

>pabai = −2x1xi

xi =
L2
1 + L2

i − L2
1i

2x1
(19)

Secondly, yi is calculated in a similar fashion:

L2
2i − L2

2 − L2
i =− 2paba2

>pabai = −2(x2xi + y2yi) (20)

yi =
L2
2 + L2

i − L2
2i − x2xi

2y2
(21)

Finally, zi is calculated by

zi = si

√
L2
3 − x2i − z2i (22)

where si contains the sign, i.e., whether pabai lies on the
positive or negative side of the x-y-plane of the antenna
frame. The sign parameters si has to be input manually. The
GNSS lever-arms are now expressed as pbbai = R(qba)pabai .
Since the antennas are assumed to be fixed in the body-fixed
frame, we have that

q̇ba = 0 (23)

The rotation from {a} to {b} represented by qba is now the
only unknown lever arm parameter.

IV. THE ERROR-STATE EKF

In this section, the estimator is derived, which is an error-
state EKF.
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Fig. 2: This figure shows the IMU (box), its body-fixed frame
{b} (blue), and how the antenna frame {a} (green) is defined
in the presence of multiple antennas.

A. Error Kinematics Model
The error-state EKF updates the estimates of position p̂nnb,

velocity v̂nnb, acceleration bias b̂b̂acc, attitude qn
b̂

, ARS bias
b̂b̂ars, and the rotation from the body-fixed frame to the
antenna frame qbâ. The vector of estimates is denoted

x̂ =



p̂nnb
v̂nnb
b̂b̂acc
qn
b̂

b̂b̂ars
qbâ


The estimates are propagated according to

˙̂pnnb =v̂nnb (24)
˙̂vnnb =Rn

b̂
(f bnb,m − b̂b̂acc) + gn (25)

˙̂
bb̂acc =0 (26)

q̇n
b̂

=
1

2
Ω(ωbnb,m − b̂b̂ars)qnb̂ (27)

˙̂
bb̂ars =0 (28)

along with
˙̂
ζ =0 (29)
˙̂
ξ =0 (30)

for one antenna and

q̇bâ =0 (31)

for multiple antennas.
The attitude error estimates are represented by four times

the MRPs, which is computed from the quaternion by (2).
Now, we are ready to define the error-states

δp , pnnb − p̂nnb, δv , vnnb − v̂nnb (32)

δbacc , bbacc − b̂b̂acc δbars , bbars − b̂b̂ars (33)

δub , u(qb̂b), δua , u(qâa) (34)

δζ , ζ − ζ̂, δξ , ξ − ξ̂ (35)

with initial covariance matrices Pp,0, Pv,0, Pbacc,0, Pub,0,
Pbars,0, Pζ,0, Pξ,0, and Pua,0, respectively. In the following,
the error-state kinematics are found. The position error
kinematics is found as

fp(t, x̂, δx) , δṗ = δv (36)

The velocity error kinematics is found to be

fv(t, x̂, δx) , δv̇ =Rnb (f bnb,m − bbacc − εacc)

−Rn
b̂
(f bnb,m − b̂b̂acc)

=Rn
b̂
Rb̂b(f

b
nb,m − δbacc − b̂b̂acc − εacc)

−Rn
b̂
(f bnb,m − b̂b̂acc)

≈Rn
b̂
S(δub)(f

b
nb,m − b̂b̂acc) (37)

−Rn
b̂
(I + S(δub))(δbacc + εacc)

where the small-angle approximation

R(ub) ≈ I3 + S(ub) (38)

is used. The acceleration bias error kinematics is

fbacc
(t, x̂, δx) , δḃacc = εbacc

(39)

The attitude error kinematics can be derived from equation
(3.47) in Markley and Crassidis [18]:

δu̇b =ωbnb,m − bbars −Rb̂b>(ωbnb,m − b̂b̂ars) (40)

fu(t, δx, x̂) , δu̇b ≈ −δbars − S(ωbnb,m − b̂b̂ars)δub (41)

The ARS bias error kinematics is

fbars(t, x̂, δx) , δḃars = εbars (42)

The lever-arm angles error kinematics is

fζ(t, x̂, δx) , δζ̇ =εζ (43)

fξ(t, x̂, δx) , δξ̇ =εξ (44)

for one antenna and

fua
(t, x̂, δx) , δu̇a = εa (45)

for multiple antennas, where εζ ∼ N (0, Qζ), εξ ∼
N (0, Qξ), and εa ∼ N (0, Qa) are noise terms that are
added to drive estimation. The error kinematics for multiple
antennas is concatenated into

f(t, δx, x̂) =


fp(t, δx, x̂)
fv(t, δx, x̂)
fbacc

(t, δx, x̂)
fub

(t, δx, x̂)
fbars(t, δx, x̂)
fua(t, δx, x̂)

 (46)



Now we can find the first-order linearized kinematics

F (t, δx, x̂) =
df(t, δx, x̂)

dδx

∣∣∣∣
δx=0

(47)

=


03 Fpv 03 03 03 03
03 03 Fvbacc

Fvub
03 03

03 03 03 03 03 03
03 03 03 Fubub

Fubbars
03

03 03 03 03 03 03
03 03 03 03 03 03


where

Fcd =
dfc(t, δx, x̂)

dδd
,

c and d are placeholder symbols, and

Fpv = I3, Fvbacc = −Rn
b̂
, Fvub

= −Rn
b̂
S(f bnb,m − b̂b̂acc)

Fubub
= −S(ωbnb,m − b̂b̂ars), Fubbars

= −I3

For one antenna, f and F are identical except they are one
row and one row and column smaller, respectively.

B. Measurement Error Model

For multiple antennas, let the predicted measurement be
given by

ŷi = p̂nnb +Rn
b̂
Rbâp

a
bai (48)

and define δyi , yi − ŷi. Now, the model for GNSS
measurement errors can be found as

hi(t, δx, x̂) =δyi = pnnai,m − (p̂nnb +Rn
b̂
Rbâp

a
bai)

=pnnb +RnbR
b
ap
a
bai + εp,i − (p̂nnb +Rn

b̂
Rbâp

a
bai)

=δp+ (Rn
b̂
Rb̂bR

b
âR

â
a −Rnb̂R

b
â)pabai + εp,i

≈δp−Rn
b̂
S(Rbâp

a
bai)δub −R

n
b̂
RbâS(pabai)δua

+Rn
b̂
S(δub)R

b
âS(δua)pabai + εp,i (49)

where (38) was used and

Rn
b̂
Rb̂bR

b
âR

â
a ≈Rnb̂ (I + S(δub))R

b
â(I + S(δua))

=Rn
b̂
Rbâ +Rn

b̂
S(δub)R

b
â

+Rn
b̂
RbâS(δua) +Rn

b̂
S(δub)R

b
âS(δua)

Now, we can find the measurement matrix as

Hi =
dhi
dδx

∣∣∣∣
δx=0

=
[
Hp,i 03 03 Hub,i 03 Hua,i

]
(50)

where

Hc,i =
dhi(t, δx, x̂)

dδc

∣∣∣∣
δx=0

,

c is a placeholder symbol, and

Hp,i =I3, Hub,i = −Rn
b̂
S(Rbâp

a
bai)

Hua,i =−Rn
b̂
RbâS(pabai)

The derivations for one antenna is similar, and it is trivial
to find

H1 =
dhi
dδx

∣∣∣∣
δx=0

=
[
Hp,i 03 03 Hub,i 03 Hζ,i Hξ,i

]
(51)

where

[Hζ,i, Hξ,i] = L1

− sin(ζ) cos(ξ) − cos(ζ) sin(ξ)
− sin(ζ) sin(ξ) cos(ζ) cos(ξ)
− cos(ζ) 0


V. RESULTS

The suggested filter developed in Section IV, denoted
EKF1 from now on, is compared with two other filters:
• EKF2: error-state EKF in which each lever arm is

represented as a three-parameter position variable. In
order to use the information about the known GNSS
lever arm distances, they are here used as pseudo-
measurements

yLi
=Li + εLi

(52a)
yLij

=Lij + εLij
(52b)

where εLi
∼ N (0, RLi

) and εLi
∼ N (0, RLij

) are
noise terms. The noise terms are added only to ensure
non-singularity of the measurement covariance matrix R
and no noise is in practice added to the measurement.

• EKF3: error-state EKF in which the lever arms are
exactly known.

As shown by Hong et al. [1, 2, 4] and Lee et al. [3],
the estimation of lever arms depend on excitation of the
vehicle’s angular velocities. Therefore, a persistently excited
flight pattern is used, generated by

φ(t) =
π

12
sin

2πt

15
+

π

10
sin

2πt

120
(53)

θ(t) =
π

9
sin

2πt

15
, ψ̇(t) =

‖gn‖2
‖vnnb‖2

φ(t) (54)

vbnb =
[
30 0 0

]> m
s

(55)

where φ, θ, and ψ are the roll, pitch, and yaw angles,
respectively. The simulated flight lasts 1800 seconds. 50
simulations are conducted for one, two, and three antennas
on board the UAV with different sensor noises and initial
errors, all drawn from random processes and different in each
simulation.

The accelerometer and ARS biases in the simula-
tions are bbacc = [0.1,−0.2, 0.15]m/s2 and bbars =
[0.08,−0.06,−0.1]rad/s. The lever arms are pbba1 =
[0.5, 0,−0.3]m, pbba2 = [−0.25, 0.9,−0.2]m, and pbba3 =
[−0.25,−0.9,−0.2]. The true sensor noises are

Qacc = 10−6I3 Qars = 10−6I3 Ri = 5 · 10−4I3 (56)

The IMU measurements are gathered at 100 Hz while the
GNSS measurements are gathered at 1 Hz.

The initial position, velocity, and attitude estimates of
the EKFs are drawn from Gaussian processes with standard



deviation of 10m, 1m/s, and 0.2rad, respectively. The
initial bias estimates are both drawn from Gaussian processes
with standard deviation 5 · 10−3m/s2 and 5 · 10−3rad/s,
respectively. The initial lever arm angle estimates in Euler
angles is drawn uniformly between 0 and 0.2rad for both
one and more receivers. EKF2’s initial lever arm estimates
are found using the initial lever arm angle estimates.

The filters are tuned identically for their common states,
but some different tuning are used for single and for multiple
antennas. The true measurement error covariances in (56)
are used in the filters. The ARS bias error covariance is
chosen as Qbars

= 10−8I3, whereas the accelerometer error
covariances are chosen as Qbacc

= 10−6I3 with one antenna
and Qbacc

= 10−7I3 for two and three antennas. The error
covariances for lever arm angles are Qζ = Qξ = 5 · 10−5

and Qa = 10θ−6. The initial covariance estimates are for
multiple antennas

Pp,0 = 20I3 Pv,0 = 2I3 Pbacc,0 = 10−3I3

Pub,0 = 0.5I3 Pua,0 = 10−6I3 Pbars,0 = 10−3I3

The same values are used for one antenna, except Pbacc,0 =
10−4I3, Pbars,0 = 10−4I3, and Pζ,0 = Pξ,0 = 10−3I2.

For EKF2, the model ṗbbai = εba,i is used where εba,i ∼
(0, Qba,i) with the initialization error covariance Pba,i0. For
one antennas, Qba,1 = 4L2

1QζI3 and Pba,10 = 4L2
1Pζ,0I3

are chosen. For multiple antennas, Qba,i = 4L2
iQa and

Pba,i0 = 4L2
iPua,0. The scaling of L2

i accounts for the
increase in uncertainty with the length of the lever arm.
The measurement noise for each of the pseudo-measurements
(52) is chosen as RLi

= RLij
= 10−8.

The results of the simulations are collected in Tables I–III.
They show the mean absolute errors (MAEs) produced by the
filters averaged over the 50 simulations. With one antenna,
the filters EKF1, EKF2, and EKF3 failed to converge 8, 12,
and 14 times, respectively. Therefore, the results of Table
I are averaged over the 32 successful simulations, and the
18 unsuccessful are discarded. The reason for the failure of
convergence is assumed to be due to insufficient measure-
ments, unfortunate initialization errors, and tuning that was
not conservative enough. With two and three antennas, the
three filters converged successfully in all simulations.

Comparing EKF1 and EKF2, we see that EKF2 has a
slightly lower transient MAE, while the EKF1 a slightly
lower steady state MAE. The differences are small enough
to be explained by slight differences in tuning, and the
two filters must be said to yield similar performance. This
means that the suggested filter yields a lower computational
complexity than the straight-forward approach of EKF2
without any loss in performance.

Figure 3 shows the absolute estimation error of the x-axis
component of GNSS antenna 1 for one, two, and three anten-
nas, respectively. The y- and z-components display similar
behaviors. It confirms that EKF2 converges slightly faster
at the expense of steady-state performance. Furthermore,
the differences in convergence time for one, two, and three
antennas are evident. Clearly, the observability of the lever

TABLE I: MAEs with one antenna

Transient Steady State
EKF1 EKF2 EKF3 EKF1 EKF2 EKF3

North [mm] 237.6 210.9 122.3 16.2 16.3 11.8
East [mm] 234.9 229.1 122.2 17.6 17.4 11.6
Down [mm] 185.9 168.1 96.1 12.7 14.3 7.8
Roll [deg] 2.57 2.69 1.85 0.04 0.04 0.04
Pitch [deg] 2.33 2.33 1.65 0.04 0.04 0.04
Yaw [deg] 12.40 12.94 8.76 0.08 0.08 0.08
‖pbba1

‖ [mm] 210.5 161.9 - 19.8 21.1 -

TABLE II: MAEs with two antennas

Transient Steady State
EKF1 EKF2 EKF3 EKF1 EKF2 EKF3

North [mm] 22.1 21.5 13.6 9.2 9.4 8.8
East [mm] 21.9 20.8 12.8 9.2 9.4 8.7
Down [mm] 29.7 27.9 13.6 6.7 7.6 5.1
Roll [deg] 0.43 0.42 0.24 0.03 0.03 0.04
Pitch [deg] 0.18 0.19 0.12 0.04 0.04 0.04
Yaw [deg] 0.42 0.44 0.21 0.10 0.09 0.12
‖pbba1

‖ [mm] 27.1 24.2 - 5.5 7.2 -
‖pbba2

‖ [mm] 29.0 27.0 - 5.8 7.7 -

arms increase with the number of lever arms which has a
dramatic effect on the transient behavior.

Compared to the EKF3 with perfectly known lever arms,
we see that EKF1 and EKF2 have slightly larger position
errors with one and two antennas in steady state, and no
significant difference with three antennas. No significant
difference is noticed in attitude errors for any number of
antennas.

VI. CONCLUSION

The position of GNSS antennas relative to the IMU is
difficult to measure with high accuracy. However, the dis-
tances from GNSS antennas to the IMU and between GNSS
antennas are trivial to measure with high accuracy. In this
paper, this distance information was used constructively in a
novel lever-arm formulation. For one antenna, the lever-arm
was expressed in spherical coordinates, yielding two extra
states. For multiple antennas, it was shown that all lever-arms
could be represented by three rotations from the body-fixed
frame to an antenna coordinate frame, thus yielding only
three extra states. It was shown in simulations that novel
formulation used in an EKF has similar performance as an
EKF expressing all lever arms as three-parameter position
vectors, yielding a significantly larger state space dimension.

TABLE III: MAEs with three antennas

Transient Steady State
EKF1 EKF2 EKF3 EKF1 EKF2 EKF3

North [mm] 11.7 11.4 8.5 7.5 7.5 7.4
East [mm] 10.2 10.0 8.2 7.4 7.4 7.4
Down [mm] 7.0 7.0 5.2 4.4 4.4 4.4
Roll [deg] 0.16 0.14 0.04 0.03 0.03 0.04
Pitch [deg] 0.10 0.09 0.04 0.03 0.03 0.03
Yaw [deg] 0.23 0.21 0.11 0.09 0.09 0.10
‖pbba1

‖ [mm] 5.1 4.3 - 1.6 2.0 -
‖pbba2

‖ [mm] 7.0 6.1 - 2.0 2.4 -
‖pbba3

‖ [mm] 4.7 4.8 - 2.0 2.4 -
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Fig. 3: The absolute estimation error of x-component of
GNSS antenna 1 position averaged over all successful sim-
ulations for one, two, and three antennas, respectively.

Furthermore, it was shown that the novel EKF performed
almost as well as an EKF with perfect knowledge of the
lever-arms in the body-fixed frame.
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