NTNU - Trondheim
Norwegian University of

Science and Technology

Benchmarking Cloud Storage Systems

Xing Wang

Master in Security and Mobile Computing
Submission date: July 2014
Supervisor: Yuming Jiang, ITEM
Co-supervisor: Julien Beaudaux, ITEM
Markus Hidell, KTH Royal Institute of Technology

Norwegian University of Science and Technology
Department of Telematics






Title: Benchmarking Cloud Storage Systems
Student: Xing Wang

Problem description:

Over the years, electronic components became smaller and cheaper. As a consequence,
in the close future, connected devices will not only take the form of traditional
terminals (e.g. computers, tablets, smartphones), but also of any everyday-life
objects. This is what the Internet of things (or IoT) paradigm is about, a wide range
of connected objects able to monitor our life space, and interact with it accordingly.
Driven by the emergence of this new paradigm, the number of connected things is
expected to be multiplied by 3 in the next few decades. This rapid growth will most
probably be followed by an increased amount of retrieved data (e.g. sensor readings,
status updates). While such data will have to be stored as they are collected, it is
yet unknown whether or not current personal cloud storage systems are able to cope
with it. This Master thesis should aim at providing a complete study of personal
storage systems in the specific context of loT deployments. The contributions to be
displayed are manyfold, and include:

- An analysis of relevant storage systems: It should provide a complete analysis
of the capabilities implemented by each personal cloud storage system, and how
they can be put to good use to improve the overall performance of the system when
coupled with an IoT application.

- A thorough evaluation based on a realistic IoT context: An experimental IoT
house-monitoring testbed has to be deployed, in order to provide a realistic dataset.
A thorough evaluation should then be conducted to evaluate several relevant cloud
storage systems in this context.

- A comparative study of each system: In the light of the results, we should
explore to what extent present cloud storage systems can cope with data generated by
TIoT applications. In parallel, the security and privacy guarantees proposed by each
system should be investigated and put in perspective with the experimental results.
As a result, we should detail which solutions are best suited for IoT applications, and
provide future directions for further developement of IoT-integrated storage systems.

Responsible professor: Yuming Jiang, ITEM; Markus Hidell, KTH

Supervisor: Julien Beaudaux, ITEM






Abstract

With the rise of cloud computing, many cloud storage systems like
Dropbox, Google Drive and Mega have been built to provide decentralized
and reliable file storage. It is thus of prime importance to know their
features, performance, and the best way to make use of them. In this
context, we introduce BenchCloud, a tool designed as part of this thesis
to conveniently and efficiently benchmark any cloud storage system.

First, we provide a study of six commonly-used cloud storage systems
to identify different types of their features. Then existing benchmarking
tools for cloud systems are presented, and the requirements, design goals
and internal architecture of BenchCloud are studied. Finally, we show
how to use BenchCloud to analysis cloud storage systems and take a
series of experiments on Dropbox to show how BenchCloud can be used to
benchmark and inspect various kinds of features of cloud storage systems.



Acknowledgements

This thesis is written as a part of the Erasmus Mundus NordSecMob
(Nordic Security and Mobile Computing) Master’s Program. I am glad
to have taken up the challenging project. The thesis work has been a
great learning experience.

I would like to thank my thesis instructor, Dr. Julien Beaudaux,
and supervisor, Professor Yuming Jiang, for their invaluable guidance
throughout the thesis work. I am also thankful to Professor Markus
Hidell from KTH Royal Institute of Technology for supervising the thesis
remotely. Finally, I am very grateful to my friends and family for their
support and encouragement.



Contents

List of Figures vi
List of Tables vii
1 Introduction 1
1.1 Problem Description . . . . . . . . . ... ... o 1
1.2 Motivation . . . . . .. .. 2
1.3 Thesis Organization . . . . .. ... ... ... ... ... ... 3
2 An Analysis of Cloud Storage Systems 5
2.1 OVerview . . . ... 5
2.2 Security and Privacy . . . . . . ... L o o 7
2.2.1 Aspects of security and privacy . . . . ... ... 7
2.2.2  Security and privacy of the systems . . . ... .. ... ... 8
2.3 Resiliency . . . . .. . . 10
2.4 Other System Features . . . . . . ... ... ... ... ... 11
24.1 Chunking . . ... ... L 11
242 Bundling . ... ... .. 12
2.4.3 Compression . . . . . ... 12
2.4.4 Deduplication . . . . . . .. ... 12
2.4.5 Delta-encoding . . . . . .. ... oo 13
24.6 Filesharing . . . . ... ..o oL 13
247 Opensource. . . . . . . o . i i e 14
2.4.8 Summary . . ... e 14
3 BenchCloud - a benchmarking tool for cloud storage systems 15
3.1 Background . . . .. ... 15
3.1.1 The requirements for a cloud storage system benchmarking tool 15

3.1.2 Existing studies and tools for benchmarking cloud storage
systems . ... 17
3.2 Software Requirements . . . . . . . .. .. ... .. .. ... ..., 17
3.3 Design Goals . . . . . .. . 18

iii



3.3.1 Flexibility . . . . .. .. . o
3.3.2 Usablity . . . .. ...
3.4 System Architecture . . . . . .. .. oo
3.4.1 The API Driver Layer . . . . . ... .. ... ... ....
3.4.2 The Operators Layer . . . . . ... ... .. ... .......
3.4.3 The Benchmarking Runner Layer . . . . . . .. .. ... ...
3.5 Cooperation with other tools . . . .. .. ... .. ... .......
3.5.1 Wireshark . . . . . . ...
3.5.2 tepdump ... oL
3.6 Open Source . . . . . ...
3.7 Possible Improvements . . . . . . .. ... ...

4 TUse BenchCloud to Analysis Cloud Storage Systems

4.1 Benchmarking Process . . . . . . ... .. ... ... ... ...
4.2 Benchmarking Results and Analysis . . . . ... ... ... ... ..
4.2.1 Environment of benchmarking . . ... ... ... ... ...
4.2.2 The impact of concurrency on the performance of file upload-
ing/downloading . . . . ... ... L L

4.2.3 The impact of file size on the performance of file uploading/-
downloading . . . . . .. ... o

4.2.4  Study the feasibility of using cloud storage system as a storage
backend for IoT systems . . . . . . .. .. ... ... .....

4.2.5 Study the readiness time for uploaded files . . . ... .. ..
4.2.6  Study the features of synchronization clients . . . .. .. ..
4.2.7 Summary . ... ..

5 Conclusion and future work
5.1 Summary . . .. ...
5.2 Future work . . . . . . . ...

References

Appendices

A Sample configuration files and scripts

A.1 Sample configuration to upload 50 files of 100KB each from Dropbox
with 25 concurrent threads . . . ... ... ... ... . ......

A.2 Sample configuration to download files from Dropbox with 25 con-
current threads . . . . . . .. .. oL Lo

A.3 Sample configuration file to upload 10 files of 10 MB each . . . . .

A.4 Sample configuration file to simulate IoT system with 50 sensors and
10 seconds of interval . . . . . . . ... L oo oL

25
25
27
27

28

31

31
36
37
41

43
43
44

45

49

49

a0
50



A5

A6
A7

A8

A9

Sample benchmark configuration file simulating 100 sensors sending
1000 files in total to Dropbox with an interval of 5 seconds . . . . .
Script to try downloading a file from Dropbox repeatedly . . . . .
Sample configuration file to test if file compression is supported in
Dropbox synchronizaiton client . . . . . .. .. ... ... .. ...
Sample configuration file to test if delta encoding is supported in
Dropbox synchronizaiton client . . . . . . ... ... ... .....
Sample configuration file to test if file deduplication is supported in
Dropbox synchronizaiton client . . . . . .. ... .. ... .. ...

52
53

54

54

95



3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9
4.10

vi

List of Figures

System Architecture of BenchCloud . . . .. ... ... .........
Two styles of test architecture . . . . . . . . ... ... ... ... ...

Time spent for uploading 50 files of 100 KB each with different number
of threads . . . . . . . . . . . .
Time spent for uploading 50 files of 1 MB each with different number of
threads . . . . . . ..
Time spent for downloading 50 files of 100 KB each with different number
of threads . . . . . . . . . . L
Time spent for downloading 50 files of 1 MB each with different number
of threads . . . . . . . . . . .
Time spent for uploading files of different sizes to Dropbox . . . . . ..
Time spent for downloading files of different sizes to Dropbox . . . . . .
Overview of a temperature data collection system . . . . . . . ... ...
The amount of traffic generated while synchronizing sparse files . . . . .
Content structure of five files with 50% of identical part . . . . . .. ..
Theoretical and actual amount of traffic generated for uploading delta-
encoded files with different percentage of identical part . . . . . . . . ..

29

29

30

31
32
32
34
39
40



2.1
2.2

4.1
4.2
4.3

4.4
4.5
4.6

4.7

List of Tables

Summarization of system security features . . . . . . . .. .. ... ... 11
Summarization of other system features . . . . . .. ... .. ... ... 14
Environment of benchmarking . . . . . ... ... ... ... ... 28
Benchmarking results for simulated sensor data collection system . . . . 35
Benchmarking results for simulated sensor data collection system (worst

CASE) « v v e e e e e e e 35
Hardware and software details of downloader node . . . . . ... .. .. 36
Readiness time of files with different size . . . . . . . . .. ... ... 37
Hardware and software details of the machine for testing synchronization

client. . . . .. 38
Amount of traffic generated while uploading files with exactly the same

content . . ... L 41

vii



Introduction

1.1 Problem Description

Over the years, cloud computing has become one of the most influential topics in
IT industry. It introduces revolutionary innovation with respect to IT resource
management and utilization. Based on distributed computing, virtualization and
many other technologies, cloud computing offer us extensible and highly reliable
on-demand services to reduce infrastructure cost, installation cost, and management
cost.

As a part of cloud computing, various (personal) cloud storage systems keep
coming to the market, providing a way to store files on the cloud instead of on
a user’s local file system. Such cloud storage systems free us from building and
maintaining file storage systems ourselves, providing a convenient way to store and
access our files, as well as other useful functions like file synchronization! and sharing.
In addition, cloud storage systems can provide resilient and secure file storage, which
is one of the main advantages when compared to local storage.

However, there are many cloud storage systems and choosing the right one among
them is the first thing to take into consideration before start using it. Average users
may need to pick the one with the best performance in file uploading and downloading.
Industry and academic users may need to evaluate different cloud storage systems in
terms of various features. Thus systematic way should be proposed and convenient
tools should be developed to benchmark these systems both conveniently and efficiency,
minimizing the effort for performing benchmarks.

In this thesis, we provide a study of benchmarking cloud storage systems. The
contributions displayed in the present thesis are manifold, and include:

1File synchronization is the process to ensure that files stored in two or more computers are
updated when changes have been made to the files.



2 1. INTRODUCTION

— An analysis of relevant cloud storage systems: It provides an analysis
of the capabilities implemented by each cloud storage system. Basic features as
well as advanced features of the systems are studied like file chunking, bundling,
deduplication, and delta encoding. Security and privacy features and resiliency
features are also taken into consideration because they play an important role
in ensuring the safety of users’ data.

— An introduction to BenchCloud, a tool for benchmarking cloud stor-
age systems: BenchCloud is a benchmarking tool developed for this thesis to
provide a convenient, efficiency, and flexible way to benchmark cloud storage
systems. The background and requirements of benchmarking tools are analyzed,
and the design and architecture of BenchCloud are described.

— A description of the process to benchmark cloud storage systems
with BenchCloud: Several experiments were conducted to study a wide
range of features of cloud storage systems, and experiment process as well as
the analysis of the results are described.

1.2 Motivation

Over the last decade, a wide range of personal cloud storage systems emerged. These
solutions became more and more popular both for individual and industries, as they
provide remote access to large storage capacities at low cost, together with robustness
guarantees (as the storage company is held responsible for the data it stores).

Following the success of pioneers such as Dropbox [11], many companies developed
their own cloud storage system (e.g. Microsoft Azure [20], Google Drive [14], LaCie
Wuala [2]). Several experimental studies were conducted, quantifying the performance
of each solution depending of the selected usage pattern (e.g. datasets size, access
frequency). In [9], five popular storage system offers (managed by companies) are
benchmarked.

However, no mature solution has yet been developed and provided to the large
public to benchmark cloud storage systems with convenience, efficiency, and flexibility.
Many benchmarks have to be performed manually, which are quite time-consuming
and hard to be reproduced. Automatic benchmarks always require testers to have
programming skills, and programs/scripts have to be made for different types of
benchmarks. An automatic benchmark tool should be made to minimize the effort of
benchmarking, and that is why we developed BenchCloud. Different kinds of users
can benefit from BenchCloud, for example:

1. Average users can find the fastest cloud storage system for daily use.
2. Industry users like mobile and web application developers can find out the best
way to make use of cloud storage systems for data storage of their applications.



1.3. THESIS ORGANIZATION 3

3. Academic users can inspect different features of cloud storage systems, and
may evaluate the feasibility to use one as a backend storage system for a larger
system, etc.

1.3 Thesis Organization
The organization of the rest of the thesis are as follows.

Chapter 2 gives a study of six cloud storage systems. Various features are studied
and detailed to give a deep view into the systems.

Chapter 3 introduces BenchCloud, a tool for benchmarking cloud storage systems
developed for this thesis. The background, requirements, design goal, and internal
architecture of BenchCloud are presented.

Chapter 4 presents the process and results of several experiments to benchmark
cloud storage systems using BenchCloud. Each of the experiments are designed
to study a specific feature of cloud storage systems, and their results are analyzed
providing an insight how BenchCloud can be used to benchmark and analyze various
kinds of features of the systems.

Chapter 5 makes a summary of the whole thesis and provides some possible work
for the future.

Appendix A provides sample configuration files for performing benchmarks de-
scribed in Chapter 4.






An Analysis of Cloud Storage
Systems

In this chapter, we will make an analysis of six (personal) cloud storage storage
systems and study their features as advertised. First we will give a brief introduction
to the six systems. Then we will describe the security and privacy features, the
resiliency features and other features of the systems like file bundling, file compression
and so on. Note that the conclusions from this chapter should not be taken for
granted and should be confirmed by experiments later on.

2.1 Overview

Dropbox

Founded in 2008, Dropbox has now been one of the most popular file hosting services
in the world. It is operated by Dropbox, Inc, which is headquartered in San Francisco,
USA. It offers cloud storage, file sharing, file synchronization over different devices
and it provides clients on both desktop platforms and mobile devices. Dropbox
provides comprehensive features to make it very efficient and easy to use, while it
may not be suitable for users which are very sensitive to the security and privacy of
their data, as explained in 2.2.2.

MEGA

MEGA! is hosted by Mega, Ltd. which is headquartered in New Zealand. It is
founded in 2013 after its predecessor, Megaupload?, was shut down by the United
States Department of Justice in 2012 3. MEGA has some features that shared by
many other cloud storage systems, such as file synchronization and file sharing, but
its most notable feature is so called “end-to-end encryption”, which means the data
uploaded by a user are encrypted on client side before transmitted to any storage

Thttps://mega.co.nz/
2http://en.wikipedia.org/wiki/Megaupload
3http://www.bbc.com/news/technology- 16642369


https://mega.co.nz/
http://en.wikipedia.org/wiki/Megaupload
http://www.bbc.com/news/technology-16642369

6 2. AN ANALYSIS OF CLOUD STORAGE SYSTEMS

server managed by MEGA. Because of this, users sensitive to their data security and
privacy may like to choose MEGA, although client-side encryption and decryption
will lead to low performance in file uploading and downloading. It can also share
files without needing to create an account.

Wuala

Wuala is hosted by LaCie AG headquartered in Switzerland. It is a cloud storage
service targeted at security. Apart from providing services like file synchronization,
file sharing, and file versioning, Wuala provides extra security enhancements like
encrypting data before uploading them to servers. Besides that, Wuala claims that
no passwords will be transmitted to the server [33] and there is no way for them
to get the decrypted content of users. Like MEGA, Wuala is also suitable for users
sensitive to data security and privacy.

Google Drive

Operated by Google, Google Drive is released in 2012 and provides common cloud
storage services like file hosting, file sharing, file synchronization, etc. It also offers
collaborative editing on documents, spreadsheets, presentations, and more, which
are very suitable for users with requirement of document making and collaborative
editing. Based on the large user base of Google services, it is convenient to share
documents with other people with Google Drive.

Tahoe-LAFS

Tahoe-LAFS* is a free and open source secure cloud storage system. It is featured
by its provider-independent security, which means that users do not rely on storage
servers to provide confidentiality or integrity for their data; instead, data are encrypted
by a Tahoe-LAFS gateway before uploaded to the server. Tahoe provides redundancy
so that even if some of the servers fail, the entire file system still functions correctly.
A big advantage of Tahoe-LAFS is that it is open sourced, which means the internals
of it can be checked by the public, and people can build their own secure cloud
storage systems based on Tahoe-LAFS.

Tamias

5 is a free and open source secure cloud storage built upon Tahoe-LAFS that

Tamias
has some important features including full encryption of every object and redundancy
in storage. It provides a user identification and authentication system that are not

included in Tahoe-LAFS. Besides that, Tamias implements capability signing and

4https://tahoe-lafs.org
Shttps://tamias.iijlab.net/


https://tahoe-lafs.org
https://tamias.iijlab.net/

2.2. SECURITY AND PRIVACY 7

encryption, and a user-centric repository for in-band exchange of URIs. This provides
decentralized multi-user management.

2.2 Security and Privacy

We have special interest in security and privacy, because we consider it a very
important part of cloud storage systems. Some users need to store credential and
sensitive data into the systems and they need to know that their data is secure and
privacy can be guaranteed, and what level of security and privacy the systems can
provide. The six cloud storage services we studied in this thesis have different levels
of security and privacy implemented by different mechanisms and in this section we
try to describe the security and privacy features of the systems.

2.2.1 Aspects of security and privacy

By security, we mean “information security”, and it has three attributes: Confiden-
tiality, integrity and availability. Confidentiality means the sensitive information
can not be reached by wrong people. Integrity maintains the consistency, accuracy,
and trustworthiness of data over its entire life cycle. Availability ensures that the
information is available when you need it.

By privacy we mean that personally identifiable information is protected. Privacy
concerns exist wherever personally identifiable information is collected and stored,
and can be a major concern when choosing a personal cloud storage system.

For the security and privacy of personal cloud storage systems, we are especially
interested in the following aspects:

— Is Transport Layer Security [8], or TLS, is used when transmitting
and downloading files? TLS is a protocol ensuring privacy of communica-
tions on the Internet. When a server and client communicate, TLS ensures
that no third party may eavesdrop or tamper with any message.

— Are the data saved on the server encrypted or not? If it is encrypted,
where is the encryption made? Is it made in the client side or the server side?
Is if possible for the system operator to get the content of users’ files?

— Is file metadata encrypted on the server? Is a system operator able to
get file metadata? We care about this because sometimes we want to make
sure not only the file content but also file metadata like file names are not
accessible to others.

— Does the server keeps users’ account information? Are the passwords
of users saved on server?

— What information the system operator can get from users? System
operators often claims that they will not do something, for example, to claim



8 2. AN ANALYSIS OF CLOUD STORAGE SYSTEMS

they will not view the files uploaded. But we would like to know whether it
is trustable. Or, are the system operators have the ability to get sensitive
information?

2.2.2 Security and privacy of the systems
Dropbox

Dropbox uses TLS when transmitting and downloading files between clients and
servers. It claims that they encrypt files on the server side using AES-256 [5].
However, because the clients have no control over encryption/decryption, even if
files are encrypted on the server, we can conclude that the system operator is able
to decrypt the files and get their content. For the file metadata, we do not know
and cannot know whether it is encrypted or not, but we can conclude that Dropbox
is able to get them, because according to their privacy policy, they are “permitted
to view file metadata” [10]. Besides, the users’ passwords are saved on the server
side, and we can not know if they are encrypted or not, or how they are encrypted,
although nowadays it is a common practice to encrypt passwords saved on server.
So basically, when using Dropbox, the content of files, the file metadata, and the
users’ account information are all accessible by the system operator.

MEGA

MEGA claims that they use AES-128 for bulk transfers, but it is to be verified.
MEGA takes client-side encryption, which means the file content is encrypted before
sent to the server and files we downloaded are encrypted and we will decrypt them
after they are downloaded to the client side. This forms the so called “end-to-end
encryption”. According to MEGA’s official website [18], the file names and folder
structures are not encrypted. They claims that no usable encryption keys, with
the exception of RSA [1] public keys, ever leave the client computers, but it is to
be verified. The client machines are responsible for generating, exchanging and
managing the encryption keys. The corresponding part for this, User Controlled
Encryption (UCE), is open sourced, meaning we can know exactly how the client-side
encryption/decryption works. As they claimed [19], the only key that MEGA requires
to be stored on the user side is the login password, in the user’s brain. This password
unlocks the master key, which in turn unlocks the file/folder/share/private keys. So
basically, MEGA cannot get the content of files and users’ passwords, but is capable
of getting file metadata.

Wuala

Data are encrypted before being sent to the server. As they claimed [35], they “can
only see how many files you have stored and how much storage space you occupy.



2.2. SECURITY AND PRIVACY 9

The files themselves, as well as all metadata (folder names, file names, comments,
preview images, etc.), are encrypted.” But still, we need to find out whether we can
verify that. For the algorithms, they claim [34] that they use AES-256 for encryption,
RSA 2048 for signatures and for key exchange when sharing folders, and SHA-256
[28] for integrity checks. It is worthy to point that, although they claim that they will
not store any encryption key from users, there is one circumstance that when a user
makes a file public or share it by secret weblink, “the encryption key is temporarily

sent to web server as part of the URL for the purpose of serving the requested data
[32].

Google Drive

TLS is performed when using Google Drive. We do not know whether files are
encrypted, and we do not have the ability to verify whether Google Drive does
server-side encryption. We do have the ability to check whether it does client-side
encryption and it is to be done by future experiments. We do not know and have no
way to check whether file metadata are encrypted or not. The users’ passwords are
not saved on the client side so they must be kept on the server side.

Tahoe-LAFS

Tahoe uses the capability access control model [7] to manage access to files and
directories. A capability is a series of bits that uniquely identify a file or a directory,
and can be used to gain access to the file or directory. In Tahoe, there are two kinds
of files, i.e. mutable and immutable files. Mutable files have three capabilities, the
read-write-cap, the read-only-cap and the verify cap. [31] A read-write-cap allows a
user to read and write a mutable file, while a read-only-cap only allows reads to the
file but no modification to it. While a verify-cap only allows the file to be checked for
integrity. For immutable files, there are read-only-cap and verify-cap. One interesting
part of capabilities is capability diminishing, which means a verify-cap can be derived
from a read-only-cap, and a read-only-cap can be derived from a read-write-cap. The
capability of a file is derived from two pieces of information: the content of the file
and the upload client’s “convergence secret”. By default, the convergence secret is
randomly generated by the client when it first starts up and re-used after that. So
the same file content uploaded from the same client will always have the same cap.
The convergence secret is saved in the user’s own computer and is not uploaded to
the server.

TLS is used when transmitting files between clients and servers. In Tahoe-LAF'S,
users do not rely on the server for security; all data are encrypted in a Tahoe-LAFS
gateway which is typically deployed on the user’s own machine, which means Tahoe-
LAFS uses client-side encryption instead of server-side encryption. Besides, because
the key to encrypt files is stored on the user’s own machine and is not uploaded to



10 2. AN ANALYSIS OF CLOUD STORAGE SYSTEMS

the server, the system operator is not able to decrypt the user’s files. Every object
stored in Tahoe-LAFS is encrypted so the file metadata is encrypted, too.

Tamias

The capability-based storage solution will introduce some problems when sharing files.
Because of the lack of user identity, all the sharing is based on passing the capability
from one user to another. If the capability is passed on and on, from user to user, the
original owner of the file cannot control who has access to the file. Tamias overcomes
this disadvantage of capability-based system by associating an identity to every user,
to make itself capable of providing fine-grained sharing features, delegation and
revocation. Identity is at the core of Tamias. Tamias implements identity based on
public-key cryptography.

Based upon Tahoe-LAFS, TLS is also used in communications between clients and
servers. Tamias takes client-side encryption as well, and system operator cannot get
the content of a file without knowing the private key of its owner. Like Tahoe-LAF'S,
Tamias also encrypts files’ metadata. Besides, the users information is not kept on
the server.

Summary

We can summarize the security and privacy features of the systems described above
into Table 2.1.

2.3 Resiliency

By resiliency, we mean the ability of a cloud storage system to continue operating
and keep the data stored safe even when there has been an node failure. We care
about resiliency because we need our cloud storage system to be dependable, and we
want to make sure our data stored in the cloud will not lost due to system failures.

The resiliency of Dropbox, MEGA, Wuala and Google Drive is not clear because
the system is not open-sourced and therefore we do not know how they store their
data internally. However, experiments can be conducted and to infer some aspects
about how the systems work. This is out of the scope of this thesis and could be put
in future work.

Tahoe-LAFS and Tamias uses erasure coding [30]. Erasure code is a forward
error correction (FEC) code that transfers information, e.g. a file, into a series of
file chunks with redundant information and thus the original file can be recovered
from a subset of the encoded chunks. The ciphertext is erasure-coded into N shares
distributed across at least H distinct storage servers so that it can be recovered from



2.4. OTHER SYSTEM FEATURES 11

Table 2.1: Summarization of system security features

Dropbox | MEGA Whuala Google Tahoe- Tamias
Drive LAFS
TLS Yes To be | To be | Yes Yes Yes
studied studied
File encryp- || Server- Client- Client- To be | Client- Client-
tion side side side studied side side
File meta data || Cannot Yes Yes Not Yes. File | To be
encrypted? know known meta- studied
data are
saved
in direc-
tories,
which
are  en-
crypted
User account || Yes No (tobe | No (tobe | Yes No No
credentials verified) | verified)
saved on
server?
System opera- || Yes No (tobe | No (tobe | Yes No No
tor able to ac- verified) | verified)
cess the con-
tent of users’
files?

any K of these servers. Therefore only the failure of H — K + 1 servers can make
the data unavailable. The parameters N, H, K can be set according to the number
of the servers and the level of resiliency.

2.4 Other System Features

In this section, we propose some other features of cloud storage systems that are
also considered to be important, and describe whether the six storage cloud storage
systems have these features and how they behave on the features if applicable.

2.4.1 Chunking

When a user is uploading a large file to the server, some systems will not upload the
file as a whole, instead the large file will be split into smaller pieces and uploaded to
the server separately. This feature is called file chunking.

According to [9], Dropbox uses file chunking with a fixed size of chunk, which is
4 MB. Google Drive also performs a fixed size of chunking which is 8 MB. Wuala



12 2. AN ANALYSIS OF CLOUD STORAGE SYSTEMS

use variable-sized chunking as well. According to the source code, Tahoe-LAFS and
Tamias uses file chunking. Whether MEGA implements file chunking is to be studied
and can be done in future work.

2.4.2 Bundling

When uploading many files together, some systems will combine the files into larger
bundles before uploading them to the server. This feature is called file bundling
and is a way to avoid the overhead of making large amounts of connections between
clients and servers, so that transmission latency can be reduced.

According to [9], Wuala, Google Drive do not perform file bundling. Google Drive
will open a separate connection for each file uploading. Wuala reuse TCP connection
and transmits file sequentially, so each file uploading will wait for the previous file
to be uploaded. Dropbox performs file bundling. According to the source code,
Tahoe-LAFS and Tamias do not perform bundling. Whether MEGA implements file
bundling is to be studied by future experiments.

2.4.3 Compression

Before a file is transmitted to the server, it can be compressed. This is called data
compression. Although data compression will take extra processing time, it is a way
to reduce traffic and storage requirements.

According to [9], Dropbox and Google Drive performs data compression. Wuala,
Tahoe-LAFS and Tamias does not perform data compression. Whether MEGA
performs data compression is to be studied. 4.2.6 gives an example of testing file
compression with BenchCloud.

2.4.4 Deduplication

A file uploaded to a cloud storage system can be deduplicated, meaning that if an
exactly same file uploaded by the user or another user in the system, only a link is
kept to avoid transmitting the same file to the server again, thus network traffic and
storage requirements can be reduced. Deduplication can happen in chunk level, if
the system’s storage unit is a file chunk, instead of a file.

Among the six systems, only Google Drive does not perform deduplication
[9]. Dropbox performs file deduplication among all users, which is considered to be
vulnerable to “Confirmation-of-a-File Attack” and “Learn-the-Remaining-Information
Attack”. [29] MEGA uses deduplication, but it claims deduplication only performs
on the same key encrypted with the same random 128-bit key. Or, if a file is copied
between folders or user accounts through the file manager or the API, all copies point



2.4. OTHER SYSTEM FEATURES 13

to the same physical file. Similar to MEGA, Wuala only performs deduplication on
the same file under the user’s personal cloud with the same decryption key. Tamias
and Tahoe-LAFS perform deduplication only among clients who have the same
convergence secret. To enable deduplication between different clients, a user should
securely copy the convergence secret file from to all the others. 4.2.6 gives an example
of testing file deduplication with BenchCloud.

2.4.5 Delta-encoding

Delta encoding is to compress the file to be uploaded by calculating and uploading
only the difference between its previous version if this file is not a new file but a
revision of another file stored in the server.

According to [9], Dropbox performs delta encoding while Wuala and Google Drive
do not. According to the source code, Tahoe-LAFS and Tamias do not use delta-
encoding. Whether MEGA uses delta-encoding or not is still to be studied by future
experiments. 4.2.6 gives an example of testing delta-encoding with BenchCloud.

2.4.6 File sharing

File sharing is the ability to share files to other users. When talking about file
sharing, we are interested in the following questions:

— Whether or not file sharing is supported?

— If you share a file to another user, are you able to modify the file? Is he able
to modify the file?

— Can the sharing be revoked?

All the six systems support file sharing. For Dropbox, MEGA and Google Drive,
the user who are shared a file to can have read-only, read-write or full access to the
file. In Wuala, only full access is supported for shared files. In Tahoe-LAFS, file
sharing is enabled by passing the capability to other users. In Tamias, file sharing is
based on user identities.

Dropbox, Google Drive, Tamias supports privilege revocation. In MEGA, files
and folders can be shared using a URL with a decryption key, and if files and folders
are shared in this way, there is currently no way to revoke it. Folders in MEGA can
be shared in another way, by assigning a contact for the folder to be shared with,
and in this way, the sharing can be revoked. In Wuala, only folders can be shared.
Revocation is possible in Wuala. In Tahoe-LAFS, sharing is achieved by sending
the capability and thus cannot be revoked because it is not possible to change a
capability of an encrypted file.



14 2. AN ANALYSIS OF CLOUD STORAGE SYSTEMS

Table 2.2: Summarization of other system features

Dropbox | MEGA Whuala Google Tahoe- Tamias
Drive LAFS
Chunking Yes To be | Yes Yes Yes Yes
studied
Bundling Yes To be | No No No No
studied
Compression Yes To be | No Yes No No
studied
Deduplication Yes, Yes, Yes. No Yes, but | Yes
among must be | Under only with
all users same user’s clients
file  en- | personal who have
crypted cloud; by the same
with recogniz- conver-
same key | ing the gence
same de- secret
cryption
key
Delta-encoding || Yes To be | No No To be | To be
studied studied studied
File sharing Yes Yes Yes. Yes Yes Yes
Only
folders
can be
shared
Open source No UCE No No Yes Yes
is open
sourced

2.4.7 Open source

Open source means the source code of the system is accessible to public. We care

about it because if a system is open-sourced, we can know exactly how the internal

of the system works, and we can verify whether what they claimed is true or not.
Among the six systems, only Tahoe-LAFS and Tamias are open-sourced. They use
the licence GNU General Public License, version 2 [17].

2.4.8 Summary

We can summarize the above features of the six systems described above into Table 2.2:




BenchCloud - a benchmarking tool
for cloud storage systems

In this chapter we will introduce BenchCloud, which is a tool developed for this
Master thesis and is aimed at providing a convenient and flexible way to benchmark
cloud storage systems.

3.1 Background

3.1.1 The requirements for a cloud storage system
benchmarking tool

As we mentioned in Chapter 2, there are many cloud storage systems nowadays,
and new players keep coming to the market. Therefore we need some guidance to
choose the appropriate system that satisfies our requirements best. Since many cloud
storage systems share similar functions, the performance of the systems is a big issue
we need to take into consideration, and that is why we need to benchmark them.
Some possible scenarios are listed below where a benchmark is considered helpful.

— Choose the fastest cloud storage system for daily use. Suppose a user
is going to have a try with some cloud storage system to store his files in the
cloud and synchronize the files between the laptops in his home and office,
and his main concern is that the service should upload/download files as fast
as possible. Since different cloud systems have different network bandwidth
and different locations for their data centers, a benchmarking has to be made
to determine which system has the best performance in file uploading and
downloading.

— Find out the best way to make use of a cloud storage system as a
backend storage system for web and mobile applications. With the
development of SaaS [4] and mobile computing [13], many web applications we
use nowadays store their user data in the user’s own personal cloud system,
instead of storing in a dedicated server maintained by the developer himself.
There are some advantages of this kind of cloud-based web applications. First,

15



16 3. BENCHCLOUD - A BENCHMARKING TOOL FOR CLOUD STORAGE
SYSTEMS

the developer of the application does not need to maintain any dedicated
storage servers, so the cost can be reduced greatly. Second, because the data
is saved in the users’ own cloud space maintained by a trusted cloud storage
service provider, the user can feel safe about their data, which will make the
application more attractive to the users who care much about the safety of
their data. Third, the data stored in the cloud enjoy some extra functions
provided by the cloud such as file synchronizing and sharing. One example
of such application is site44!, which is a dropbox-based web application that
can turn Dropbox folders into publicly accessible websites. As a developer of
a cloud-storage-service-based application, he may need to know the best way
to use the service. For example, can multithreading be used when uploading
files to the cloud? And if the answer is yes, how many threads should be used
to achieve the best performance? And if we need to get the best performance
when uploading a large data, should the data be split into smaller files before
uploaded? To answer such questions, a benchmark is often considered helpful
for comparing the performance of different strategies of using the cloud storage
service.

Study the performance of cloud storage systems for a special use
case. Most of the cloud storage systems we have today are designed for normal
daily uses like storing photos, music tracks, and documents in a casual way.
However, as a general purpose cloud storage system, it may be used in some
scenarios other than daily casual usage. For example, it is possible to use
a cloud storage service as a backend storage system of a Internet of Things
project with many sensors keep capturing data from environment and sending
to the backend concurrently. Such use case differ from others with its special
character of generating large amounts of small files and uploading concurrently.
To study whether a cloud storage system can be used in such scenario and the
performance, a benchmark is always needed.

In a word, benchmarking cloud storage systems is helpful in many ways. In reality,
we can make ad-hoc benchmarking manually, but it will be very time consuming and

it is not easy to reproduce the benchmarking process. Besides, writing scripts and

programming is usually not avoidable if one needs to perform complex benchmarking,
like multithreaded uploading with random file generation. Because these shortcomings
of manual benchmarking, an automatic benchmarking tool is the key to improve the
efficiency of benchmarking tasks, and that is why BenchCloud is made.

Thttp://www.sited4.com/


http://www.site44.com/

3.2. SOFTWARE REQUIREMENTS 17

3.1.2 Existing studies and tools for benchmarking cloud storage
systems

[3] discussed the requirements for a good benchmark on cloud services in general.
[9] presented the methodology to study cloud stogare systems and studied various
features of five popular cloud storage systems. [16] presented CloudCmp, a system-
atic comparator of the performance and cost of cloud providers. [26] conducted
comprehensive experiments on several representative cloud-based data management
systems like HBase? and Cassandra® to explore relative performance of different
approaches. [24] provides benchmarks on Amazon Elastic Computing (EC2)* services
in terms of CPU performance, memory performance and so on. [27] presents a load
tester for Web 2.0 applications on a variety of Amazon EC2 configurations.

[6] presents Yahoo! Cloud Serving Benchmark (YCSB), a benchmarking tool /frame-
work for cloud storage systems. However, the target of YCSB is to benchmark the
read/write performance of large-scale distributed database systems like BigTable,
HBase and Cassandra, and can not be used directly for benchmarking the personal
cloud storage systems like Dropbox and Google Drive.

[36] presents a benchmarking tool for cloud storage developed by Intel, however
the target of it is cloud object storage systems like Amazon S3 [25] and OpenStack
Swift [23], which are different from the systems that are under discussion in this
thesis.

Apache Benchmark®, or “ab” for short, is a popular tool for benchmarking HTTP
server, and in theory it can be used to benchmark anything that is accessible from a
HTTP(S) server. However, it lacks important features if it is used as a benchmarking
tool for cloud storage systems, like service authentication, API wrapper and file
generation.

Until the time this thesis is written, we have not found a mature tool aimed at
benchmarking cloud storage systems like Dropbox with convenience and flexibility,
which does not require testers to have knowledge of programming. Because of this,
we consider the development of BenchCloud is a nice-to-have try in this area.

3.2 Software Requirements

From a software engineering perspective, it is a good practise to think clearly about
the requirements of a product before trying to design and implement it. The functional

2https://hbase.apache.org/
3http://cassandra.apache.org/
4https://aws.amazon.com/ec2/
Shttp://httpd.apache.org/docs/2.2/programs/ab.html


https://hbase.apache.org/
http://cassandra.apache.org/
https://aws.amazon.com/ec2/
http://httpd.apache.org/docs/2.2/programs/ab.html

18 3. BENCHCLOUD - A BENCHMARKING TOOL FOR CLOUD STORAGE
SYSTEMS

requirements of BenchCloud are listed as follows:

1. Cloud service authentication and authorization.

2. Support different cloud storage service providers/products.

3. Support different kinds of file operation, including uploading, downloading,
and sharing.

Support different file generators to generate files with different patterns.
Support for multithreaded operations.

Make statistics of benchmarking results.

Log and save benchmarking results automatically.

Capture network packets during the process of benchmarking.

Be able to test on both web APIs and native clients of cloud storage systems.

© PN o

3.3 Design Goals

3.3.1 Flexibility

By flexibility we mean BenchCloud can be used for different purposes. The require-
ment for flexibility is derived from the fact that different benchmarking tasks have
different target and purpose, and a general benchmarking tool should be able to sup-
port as many kinds of benchmarking tasks as possible. To achieve this, BenchCloud
should be highly configurable and extensible.

Highly configurable means that a user is able to customize the settings of a
benchmarking task in details. Such settings can include for example the cloud storage
system he would like to benchmark, the type of operations to be performed (download
or upload, etc.), the number of operations to be performed, the number of threads
used to perform the operations, and so on.

Besides, BenchCloud should be extensible, which means it should be easy to
extend the different parts of BenchCloud. As we mentioned, the purposes for
different benchmarking tasks can be very different, and it is possible that even a
highly configurable task cannot satisfy the needs of the user. For example, if a user
needs to test a new cloud storage system which is not supported by BenchCloud,
he should be able to extend BenchCloud easily to make it support the new service,
without having to modify the existing parts of BenchCloud.

3.3.2 Usablity

By usability we mean BenchCloud should provide an easy way to use for most users.
Although BenchCloud is written in Python, a user should not be forced to have
knowledge of programming in Python before using BenchCloud. To achieve that,
BenchCloud was designed to support configuration file, and almost every settings



3.4. SYSTEM ARCHITECTURE 19

Cloud Storage Services

API Drivers Drapbox G[fr?f;e Local FS
Operators Downloaders Uploaders

. Threads Conf Traffic File
Benchmarking Runners E Loader Capturer Logger Generators

Figure 3.1: System Architecture of BenchCloud

of a benchmark can be set in the configuration file, which is a plain text file that is
quite easy to understand and produce.

3.4 System Architecture

BenchCloud takes a layered architecture. As is shown in Figure 3.1, it has three
main layers.

3.4.1 The API Driver Layer

The API Driver layer provides communication end points to cloud storage services.
It has cloud service wrappers to be invoked by the Operators layer. A cloud
service wrapper communicates with cloud storage services via RESTful APIs [12],
and provides functions like service authentication and authorization, file metadata
acquiring, file upload and download, file sharing, etc.

Local FS driver is a special driver for “uploading”/”downloading” files to/from
the tester’s local file system. Unlike other drivers that make use of web APIs opened
from cloud storage systems, Local FS driver just perform normal file copy operations
in the scope of local file system. Local FS driver is used in the scenario when you do
not want to test against web APIs but to the native clients of some cloud storage
systems. Such systems provide synchronization client running on users’ computers
and synchronizes local files (usually in a specific synchronized folder) to the cloud.



20 3. BENCHCLOUD - A BENCHMARKING TOOL FOR CLOUD STORAGE

SYSTEMS
Cloud Storage Service Cloud Storage Service
A A
P P
I I
[ [

Tester's computer Tester's computer \

L r

Sync Client

BenchCloud
o | o Sync
BenchCloud - Folder
(a) Test via web APIs (b) Test via synchronization
client

Figure 3.2: Two styles of test architecture

Such client may have interesting features that can not be found by testing against
web APIs directly, and by “uploading” files to the synchronized folders and let the
synchronization client does the processing and real uploading operation, we can study
in some way how the client works and what kinds of optimization it performs.

Based on whether web API or client is to be tested, the high level testing
architecture can be divided into two styles, shown in Figure 3.2.

3.4.2 The Operators Layer

The Operators layer provides a higher abstraction based on the functions provided
by the API Drivers layer. It provides generic downloaders and uploaders which are
not bound to any specific API drivers.

3.4.3 The Benchmarking Runner Layer

The Benchmarking Runner Layer is responsible for parsing and loading configura-
tion files and executing the benchmark based on the configuration. The logger is
responsible for logging the exact steps and time consumed in detail when performing
benchmarks. A file generator is a utility used by benchmarking runners to generator
files based on given configuration and is often used when performing benchmarks for
uploading files.

There are four types of file generators providing different kinds of file content
patterns:



3.5. COOPERATION WITH OTHER TOOLS 21

1. RandomFileGenerator. It generates files with random content, which are
hard to be compressed efficiently and are highly impossible to have the same
content with other generated files.

2. IdenticalFileGenerator. An IdenticalFileGenerator generates a series of
files with exactly the same content. It plays a key role in testing the file
deduplication feature of a cloud storage system, described in 4.2.6.

3. SparseFileGenerator. It generates files with sparse content. Sparse content
is content with repeated strings. Files generated by a SparseFileGenerator can
be effectively compressed with a high compression rate. SparseFileGenerator
plays a key role in testing the file compression feature of a synchronization
client, descirbed in 4.2.6.

4. DeltaFileGenerator. A DeltaFileGenerator generates a series of files with
the same size and a certain amount of identical content. The other parts of the
files are random content and are not identical. DeltaFileGenerator plays a key
role in testing the delta encoding feature of a synchronization client, described
in 4.2.6.

A traffic capturer is provided in the Benchmarking Layer to capture and dump
network packets during a benchmark. The data format of the resulting dump file is
PCAP®, which is a very common format for recording network packets and it can
be read and analyzed by many packet capturing and analysis tools, like Wireshark”.
The PCAP format record the packets generated in detail, and thus can be used in
post-analysis to study the characters of the network traffic.

3.5 Cooperation with other tools

As described in the previous section, BenchCloud provides a way to benchmark
cloud storage systems easily and can log the time consumed in each steps during
the benchmark process. However, users may need more information apart from time
consumption and they may use some other tools to study the packets captured to get
more insights. BenchCloud does not provide a detailed packet analysis tool, because
there are mature tools for this purposes. In this section we introduce some packet
analysis tools that can be used along with BenchCloud.

3.5.1 Wireshark

Wireshark [21] is an open-source network packet analyser. It is a powerful tool for
troubleshooting and analysing network communications. It is cross-platform, which
means it can be installed on GNU/Linux, Mac OS X, Solaris, Microsoft Windows,
etc. Wireshark has both a graphics user interface and a command line tool. Some
important features of Wireshark includes:

Shttp://en.wikipedia.org/wiki/Pcap
"http://www.wireshark.org/


http://en.wikipedia.org/wiki/Pcap
http://www.wireshark.org/

22 3. BENCHCLOUD - A BENCHMARKING TOOL FOR CLOUD STORAGE
SYSTEMS

Capture live packets from a network interface
Import/Export packets

Show packet data in a detailed and structured way
Show the protocol-specific information of packets
Filter packets according to various rules

Make various kinds of statistics

A i

3.5.2 tcpdump

tepdump [15] is a packet analysis tool similar to Wireshark. But unlike wireshark,
tcpdump has only a command line tool and lacks graphics front-end. tcpdump can
run on most Unix-like systems and is often distributed along with these systems.
There is also a Microsoft Windows port of tcpdump called WinPcap®.

3.6 Open Source

The best thing we can do to BenchCloud is to make it contribute it to the open
source community. The source code® of BenchCloud is hosted at GitHub and it is
open sourced under the Apache License Version 2.0'C.

3.7 Possible Improvements

While BenchCloud can be used for many purposes, some useful functions can also be
built into BenchCloud to make it more convenient and efficient, such as:

1. More types of file generators can be made, for example, a JPEG file generator
to generate JPEG image files. The right type of file generator can be the key
to study some special features of a system.

2. Drivers for more cloud storage systems. So far Dropbox, Google Drive and
Mega are supported and we would like to see more.

3. More realistic ways to simulate the sequence of events. So far, a fixed sleeping
time can be assigned between consecutive operations. This can simulate
events that occur in a fixed interval. However, in real scenarios the time
between consecutive operations can be variant, and may follow some statistical
distribution. Thus it is useful to make BenchCloud support variant time
intervals.

Besides, so far BenchCloud can not be used directly to test security and privacy
features of cloud storage systems, although it may be used as a tool to help with

8http://www.winpcap.org/

9The source code of BenchCloud can be found at https://github.com/zenja/
benchmarking-cloud-storage-systems.

Ohttp: //www.apache.org/licenses/ LICENSE-2.0.html


http://www.winpcap.org/
https://github.com/zenja/benchmarking-cloud-storage-systems
https://github.com/zenja/benchmarking-cloud-storage-systems
http://www.apache.org/licenses/LICENSE-2.0.html

3.7. POSSIBLE IMPROVEMENTS 23

the process. Considering the importance of security and privacy, it would be nice to
support the testing for it.






Use BenchCloud to Analysis Cloud
Storage Systems

In this chapter, we introduce the basic steps to benchmark cloud storage systems
with BenchCloud, and give case studies of using BenchCloud in different kinds of

scenarios.

4.1 Benchmarking Process

Assuming BenchCloud is already installed correctly, the typical steps to benchmark

a cloud storage system with BenchCloud are:

Step 1

a)

Make the configuration file for the benchmark.

Choose the service driver for the system to be benchmarked. If
BenchCloud does not have a driver for the system, a new one
should be made before you can start benchmarking.

Choose the operation to be performed (uploading, downloading,
etc.).

Select the appropriate benchmark runner for the operation. Cur-
rently there are two runners support by BenchCloud, Upload-
TaskRunner and DownloadTaskRunner, to run benchmarks for
uploading operations and downloading operations separately. If
you choose UploadTaskRunner, you also need to specify the file
generator to be used to generate files, and some attributes like
the size of generated files, the prefix/suffix of file names, the
remote directory, etc.

Choose the location where the logging file will be saved to.

Set the configuration for concurrency by setting the number of
threads to be used.

Write the above configuration into a configuration file, along
with some other settings such as the name of the benchmark, the
number of operations, whether to sleep between operations, etc.

25



26 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

Step 2 Execute BenchCloud via command line. You may need to autho-
rize BenchCloud to access your data in the cloud first.

Step 3 Wait for the benchmark to finish, and check the statistics, logs,
and possibly captured packet data.

In BenchCloud, most of the settings of a benchmark are specified by a configuration
file. And because a configuration file defines a benchmark, it is very easy to reproduce
a benchmark. An example of configuration file for an uploading benchmark is shown
in Source code 4.1. It is a benchmark for uploading 10 binary files of size 102400 bytes
for each with random data to the remote directory “/benchmark-test” of dropbox,
using 3 threads to upload concurrently.

Source code 4.1 Sample configuration file for a benchmark uploading files to
Dropbox

[test]

description = Upload random binary files to dropbox
times = 10

sleep = False

#sleep_seconds = 1

[logging]
enabled = True
log_file = /tmp/benchmarking.log

[driver]
class = benchcloud.drivers.dropbox_driver.DropboxDriver

[operator]
class = benchcloud.operators.uploader.Uploader
operation_method = upload
operation_method_params = {
"local_filename": "<generated_file.name>", "remote_dir": "/benchmark-test"}

[file_generator]

class = benchcloud.file_generators.random_file_generator.RandomFileGenerator
#directory =

prefix = benchmarking-

#suffix = .test

delete = True

size = 102400

[concurrent]
threads = 3




4.2. BENCHMARKING RESULTS AND ANALYSIS 27

A typical configuration file for a downloading task is shown in Source code 4.2.

Source code 4.2 Sample configuration file for a benchmark downloading files to
Dropbox

[test]

description = Download all files (not recursively)
in a remote directory to a local directory

sleep = False

#sleep_seconds = 1

remote_dir = /CV_CL

local_dir = /tmp/CV_CL_test

[logging]
enabled = True
log_file = /tmp/benchmarking-dropbox-download.log

[driver]
class = benchcloud.drivers.dropbox_driver.DropboxDriver

[concurrent]
threads = 3

Example commands to start benchmarking based on a configuration file and to
ask for authorization before benchmarking is shown in Source code 4.3.

Source code 4.3 Commands for running a benchmark and asking authorization for
cloud service

cd <BENCHCLOUD_HOME>
python -m benchcloud.benchcloud <RUNNER> -f <CONFIGURATION_FILE> -a

4.2 Benchmarking Results and Analysis

In this section, we provide several examples of benchmark and analysis of Dropbox
with BenchCloud. Although the experimental target is Dropbox, the same process
should be easily made on other cloud storage systems.

4.2.1 Environment of benchmarking

The environment for running a benchmark should be specified beforehand, for
it will greatly affect the experienced performance of cloud storage systems. The
most important environment for benchmarking cloud storage systems includes the



28 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

Table 4.1: Environment of benchmarking

Location United States, California, San Francisco

Public TP Address 198.199.97.195
Operation System Ubuntu 12.10

CPU 1 Core, 2 GHz

RAM 512 MB

Disk 20GB SSD Disk

Network bandwidth? 3;‘1722?&?61174%3\55[&13?/ °
Python Version 2.7.3

location of the client, the hardware and operating system of the client machine, and
the network bandwidth of the client machine. By client we mean the machine to
send API requests to cloud storage services. Table 4.1 specifies our benchmarking
environment. The client is a VPS! from DigitalOcean?. The server is dedicated to
run the benchmarking and is not used for any other network communications during
the benchmarks.

4.2.2 The impact of concurrency on the performance of file
uploading/downloading

As a software developer, one may need to build applications for file uploading/down-
loading with some cloud storage system like Dropbox. Choosing a proper number of
threads to be used may increase the performance of file operations and thus optimize
the user experience of the application. In this section we will study the impact of
concurrency on the performance of file uploading and downloading for Dropbox. The
benchmarks divides into two groups. In the first group, 50 files of size 100 KB for
each will be uploaded to and downloaded from Dropbox, with different number of
threads, i.e. 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 threads for each benchmark.
The second group is the same as the first group except that the size of each file is
1 MB instead of 100 KB. The reason of benchmarking on both 100 KB and 1 MB
files is that smaller files will be influenced more by the cloud system’s latency than
throughput, and larger files will be influenced more by throughput than latency, and
we would like to check the performance in both scenarios to try to get a general
conclusion.

Thttp://en.wikipedia.org/wiki/VPS

2https://www.digitalocean.com/

3The network bandwidth is tested via speedtest.net, against a server located in San Jose, CA,
USA, which is near to the location of the testing client.


http://en.wikipedia.org/wiki/VPS
https://www.digitalocean.com/

4.2. BENCHMARKING RESULTS AND ANALYSIS 29

B Avg. Time [l Total Time

2500 60000
. 2000 45000
E
E 1500 30000
500 SUUun
&
[H]
E
= 1000 15000
[
500 0
10 20 30 40 50
#Threads

Figure 4.1: Time spent for uploading 50 files of 100 KB each with different number
of threads

B Ava. Time [ Total Time

3800 ¢ 90000
3100 70000

W

E

E 2400 FO000
24010 aluul

F

@

E

= 4700 30000
1000 *—+% *&=——=0 {7000

10 20 30 40 50
#Threads

Figure 4.2: Time spent for uploading 50 files of 1 MB each with different number of
threads

A sample configuration file for the benchmarks is A.1. The performance of
uploading for Group 1 and Group 2 is plotted in Figure 4.1 and Figure 4.2: The blue
line plots the average time spent in milliseconds for each upload/download operation,
and the red line plots the total time spent for all the 50 operations.

From Figure 4.1 and Figure 4.2 we can get some interesting results:

1. The average time for each file operation increases with the number of threads



30 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

M Ava. Time M Total Time

1200 |000

1050 6000

a00 4000

Time spent (ms)

10 20 30 40

w
=

#Threads

Figure 4.3: Time spent for downloading 50 files of 100 KB each with different number
of threads

used. This is possibly due to the fact that waiting time for thread scheduler to
wake up a certain blocked thread increases with the number of threads.

2. The total time spent decreases significantly once multithreading is used, even
when the number of threads is just five. This tells us that the use of multi-
threading will generally decrease the total time spent significantly, compared
to single-threaded uploading.

3. For Group 1 with 100 KB files, the total time spent did not decrease much after
around 25 threads; for Group 2 with 1 MB files, the total time spent did not
decrease much after around 10 threads. And we can tell from the graph that
there was diminishing marginal utility of increasing the number of threads.

Figure 4.3 and Figure 4.4 are corresponding results for file downloading. A sample
configuration file for the benchmarks is A.2. From the figures we can get similar
conclusions. Note that there are some jitters in the graph data, and it may be caused
by network congestion.

For application developers, one may be more interested in the total time than the
average time, and the suggestion based on the observed results is to use multithread-
ing. Although we can tell from the above results that the more threads used the
shorter time we will get, the effect of diminishing marginal utility cannot be ignored,
because threads are system resources that will introduce overhead for creation and
maintenance, and moreover many operating systems have limits on the maximum
number of threads that can exist at the same time.



4.2. BENCHMARKING RESULTS AND ANALYSIS 31

M Ava. Time M Total Time

2600 |0000

2000 40000

Time spent

1700 20000

1400 0
10 20 30 40 50

#Threads

Figure 4.4: Time spent for downloading 50 files of 1 MB each with different number
of threads

4.2.3 The impact of file size on the performance of file
uploading/downloading

Sometimes we may want to know if a certain cloud storage system can handle both
small files and large files well. In this sections we present the results of uploading
and downloading files of different sizes in Dropbox, and by doing so we can find if
Dropbox cannot handle certain size of files well.

A sample configuration file for the benchmarks is A.3. We uploaded/downloaded
10 files of different sizes (1 KB, 10 KB, 100 KB, 1 MB, 5 MB, 10 MB, 15 MB, 20
MB) with only one thread for each benchmark. Figure 4.5 shows the time spent for
uploading files of different sizes to Dropbox, and Figure 4.6 shows the time spent for
downloading.

From the graphs we can see that there were no circumstances that files of certain
sizes took much more time or much less time than files of other sizes. So basically
we can say Dropbox is able to handle files of different sizes (from 1 KB to 20 MB)
reasonably.

4.2.4 Study the feasibility of using cloud storage system as a
storage backend for IoT systems

Engineers and scientists from various backgrounds may make use of cloud computing
to built more efficient and reliable systems and solutions. Cloud storage systems



32 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

M Ava. Time [ Total Time

8000 100000
6000 75000
w
£
g .
=1 4000 50000
@
g
[
2000 25000
0
1000 000 4000 13000 17000
File size (KB)

Figure 4.5: Time spent for uploading files of different sizes to Dropbox

W Avg. Time [ Total Time

4500 40000

30000

w 3000

£

g

a 20000

g

= 1500
10000
0

1000 5000 9000 13000 17000
File size (KB)

Figure 4.6: Time spent for downloading files of different sizes to Dropbox



4.2. BENCHMARKING RESULTS AND ANALYSIS 33

provide such a possibility to relive engineers and scientists from building and main-
taining backend storage systems of their own. For example, some Internet of Things
(IoT) systems may need to consistently and concurrently store information gathered
from many sensors. The storage servers for such IoT systems should at least satisfy
the following requirements:

1. The free disk space is big enough to store incoming data
2. The number of files stored will not exceed the limit of the storage system
3. The storage server can handle concurrent uploads and will not reject connections

Building such systems may not be an easy task, depending on the scale of the
ToT system. Because of this, migrating the storage system to the cloud may be a
cost-saving choice. However, before migration we have to find out whether a cloud
storage system satisfies the above requirements or not.

We now assume that we have an IoT system consisting of many sensors keeping
collecting temperature data from various locations at certain fixed interval and
sending each data in the form of small files to the storage system to be stored for
future analysis. Such system is shown in Figure 4.7. We want to test the feasibility
of using Dropbox as the storage system. We first check if Dropbox satisfies the
requirements described before:

1. Does Dropbox has enough space for storing data? Yes, Dropbox has different
pricing plans for different size of storage. *

2. Does Dropbox has limit on the maximum number of files that can be stored?
No, there are no such limit if there is any free space. °

3. Is Dropbox able to handle the concurrency generated by the sensors? We do
not know, and it depends on different parameters of the system: the size of
generated data, the interval between every data transmission for each sensor,

and the number of sensors of the system.

We use BenchCloud to simulate benchmarks for the temperature data collection
system. Each uploading thread simulates an individual sensor. The interval between
consecutive uploads is simulated by telling the thread to sleep a while between
uploads. We assume the size of each file storing temperature data is 5 KB. A sample
benchmark configuration file simulating 100 sensors sending 1000 files in total to
Dropbox with an interval of 5 seconds between each operations is shown in A.5.

We tried benchmarking with different number of simulated sensors and different
simulated intervals. Table 4.2 shows the benchmarking results. Note that the results
were for the worst case, because in all these benchmarks, the concurrent threads
would start uploading files simultaneously. And because the size of files uploaded was
the same, the time spent for each file upload would take the same amount of time

4https://www.dropbox.com/plans
Shttps://www.dropbox.com/help/5/en


https://www.dropbox.com/plans
https://www.dropbox.com/help/5/en

34 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

@
T ki ’//
Lr
Sensor #2 =
— g -

=
/

-—
Data Flow

Figure 4.7: Overview of a temperature data collection system

approximately, the next round of file uploads would happen almost simultaneously,
so and forth till the end of the benchmark. So Table 4.2 actually represents the worst
case when the maximum concurrency was achieved, i.e. almost all the simulated
sensors would send data to Dropbox at the same time. The column “#lost files”
represents the number of files failed to be saved in Dropbox during the benchmark.
The loss of files was caused by rejection from the Dropbox server due to the request
rate exceeding maximum limit.

We can see from the result that the loss rate increased when the number of sensors
increased and when the interval decreased. In this worst case, heavy loss rate was
experienced in many benchmarks.

To simulate the average case where each sensor would not try to send data at the
same time, we made another series of benchmarks based on the previous benchmarks.
We introduced a random amount of sleep time for each thread before uploading the
first file. Table 4.3 shows the result. The column “Thread sleep time (s)” represents
the range of random sleep time for every thread. The column “Loss rate decrease”
represents the amount of decrease of file loss rate comparing to the the loss rate in

Table 4.2.

We can see from Table 4.3 that the loss rate decreased significantly for the
benchmarks with interval of 10 seconds and 60 seconds. The random sleep time does
not affect the loss rate much for the benchmarks with interval of 1 second.



4.2. BENCHMARKING RESULTS AND ANALYSIS 35

Table 4.2: Benchmarking results for simulated sensor data collection system

#Files in total | #Sensors/threads | #Interval (s) | #Lost files | Loss rate
100 10 1 0 0.00 %
100 10 10 5 5.00 %
100 10 60 5 5.00 %
300 30 1 166 55.33 %
300 30 10 52 17.33 %
300 30 60 57 19.00 %
500 50 1 386 77.20 %
500 50 10 195 39.00 %
500 50 60 166 33.20 %
800 80 1 748 93.50 %
800 80 10 656 82.00 %
800 80 60 493 61.63 %
1000 100 1 967 96.70 %
1000 100 10 795 79.50 %
1000 100 60 678 67.80 %

Table 4.3: Benchmarking results for simulated sensor data collection system (worst

case)
#Files in | #Sensors/| #Interval (s) | Thread #Lost files | Loss rate | Loss rate
total threads sleep decrease

time (s)

100 10 1 0~5 0 0.00 % | NA
100 10 10 0~ 10 0 0.00 % | 100 %
100 10 60 0~ 60 0 0.00 % | 100 %
300 30 1 0~5 157 52.33% | 5%
300 30 10 0~ 10 1 0.33% | 98 %
300 30 60 0 ~ 60 0 0.00 % | 100 %
500 50 1 0~5 366 7320% | 5%
500 50 10 0~ 10 19 3.80 % | 90 %
500 50 60 0~ 60 0 0.00 % | 100 %
800 80 1 0~5 734 91.75 % | 2 %
800 80 10 0~ 10 194 24.25 % | 70 %
800 80 60 0~ 60 0 0.00 % | 100 %
1000 100 1 0~5 955 95.50 % | 1%
1000 100 10 0~ 10 355 35.50 % | 55 %
1000 100 60 0 ~ 60 0 0.00 % | 100 %




36 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

Table 4.4: Hardware and software details of downloader node

Location Amsterdam
Public TP Address 188.226.158.203
Operation System Ubuntu 12.10
CPU 1 Core, 2 GHz
RAM 512 MB
Disk 20GB SSD Disk
Network bandwidth® gg‘lzzldo:agé.zgoﬁéigzm/ °
Python Version 2.7.3

Table 4.2 and Table 4.3 represents the benchmarking results for the worst case and
average case of the simulated weather data collection system. Based on the results,
the scale and parameters of the system, and the requirements for the reliability of
storage server, engineers and scientists can make a decision about whether or not
Dropbox shall be used as the storage backend for such an IoT system.

4.2.5 Study the readiness time for uploaded files

Readiness time is normally defined as the length of time required to obtain a stabilized
system ready to perform its intended function [22]. In the context of this thesis,
we define the readiness time of a file as the length of time from the end of the
file uploading to the time the file is ready for downloading. Based on the internal
architecture and implementation of a cloud storage system, readiness time may
be different depending on the size of the file and the location of upload/download
requests. Short average readiness time is a good feature of a cloud storage system
because users will not have to wait a long time before their files are ready to be
downloaded. Experiments to study the readiness time of dropbox are described in
details in this section.

The node described in 3.4.3 was used as the uploader to upload files to Dropbox.
Another node was introduced in the experiments to act as the downloader to download
the same files from Dropbox. The details of the downloader node is described in
Table 4.4.

The steps performed to test the readiness time are listed as follows:

Step 1 The time of uploader node and downloader node was synchronized
so that the time difference of the two nodes was within one second.

6The network bandwidth is tested via speedtest.net, against a server located in Dronten,
Amsterdam, which is near to the location of the testing client.



Step 2

Step 3

Step 4
Step 5

Step 6

4.2. BENCHMARKING RESULTS AND ANALYSIS

Table 4.5: Readiness time of files with different size

File size | Readiness time (ms)
200 MB 255
100 MB 21

50 MB -125

10 MB 102

1 MB -83
100 KB 412

10 KB 285

1 KB -198

A script was made based on BenchCloud to try downloading
a target file from Dropbox repeatedly with a time interval of
0.5 second, until the file was ready and downloaded to local file
system. Timestamps of each operation were recorded during the
process. See A.6 for the script.

The downloader node started running the script described in
Step 2.

The uploader node started to upload the target file to Dropbox.
After the target file was downloaded in the downloader node, the
readiness time of the file, i.e. the time between the file being
ready to be downloaded and the file being uploaded successfully,
was calculated.

Step 1 and Step 3 to Step 5 were repeated, using files of different
sizes.

37

The results of experiments are shown in Table 4.5. All the readiness time records
were within 0.5 second, which was less than the time difference of the uploader node
and downloader node. This means the files were instantly ready to be downloaded

once they were uploaded to the server. Note there were some negative readiness time

records, and this might be caused by the time difference between the two nodes.

4.2.6 Study the features of synchronization clients

As described in 3.4.1, BenchCloud can be tested against not only the web APIs
but also the synchronization client of a cloud storage system. Synchronization
clients may have some interesting features that are not provided by public web APIs.
In this section, we describe the results of experiments for studying whether the
synchronization client of Dropbox has the following features described in 2.4: file
compression, delta encoding, and file deduplication.



38 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

Table 4.6: Hardware and software details of the machine for testing synchronization
client

Machine type MacBook Air 13’, 2013 Mid
Location Lianyungang, Jiangsu, China
Operation System Mac OS X 10.9.2 (13C1021)
CPU 1.7 GHz, Intel Core i7
RAM 8 GB, 1600 MHz, DDR3
Disk 251 GB, SSD Disk
Network bandwidth” ggﬁgliagi 31171.\:/))Iil)i1tvs[})slt8/ °
Python Version 2.7.5

A computer running a desktop operating system was used. The details of it were
described in Table 4.6. The version of Dropbox synchronization client used was
v2.6.33.

To test against synchronization client, the local file system driver is used instead
of real Dropbox driver to “upload”/“download” generated files to/from the local
synchronization folder. Once Dropbox detects file changes in the folder, it will
synchronize the changes between local folder and the cloud.

File compression

To test whether Dropbox client uses file compression, the following logical steps were
performed:

Step 1 A file of certain size was generated using SparseFileGenerator
(see 3.4.3).

Step 2 The network packet sniffer was launched to record network traffic.

Step 3 The generated file was “uploaded” to the synchronization folder.

Step 4 After the file was synchronized by the client, the network packet
sniffer was stopped.

Step 5 Step 1 to Step 4 were repeated with different file sizes (1 MB, 10
MB, 100 MB, 300 MB, 500 MB).

All the above steps can be done with the help of BenchCloud by writing bench-
marking configuration files. A sample configuration file for the benchmarks is A.7.
The size of traffic is analysed using Wireshark. The results of experiments are shown
in Figure 4.8. The traffic size (Y-axis) records the sum of sizes of all packets sent
to Dropbox servers in the process of file uploading. From the result we can see the

7"The network bandwidth is tested via speedtest.net, against a server located in Wuxi, China,
which is near to the location of the testing client.



Traffic size (KB)

Figure 4.8: The amount of traffic generated while synchronizing sparse files

4.2. BENCHMARKING RESULTS AND ANALYSIS

30

.

100 200 300 400 500

[ =]

File size (MB)

39

traffic size was greatly smaller than the file size, which means the files were definitely
compressed before uploaded to the cloud. Besides, because the amount of information
stored in the files were the same, the resulting amount of traffic was also almost
the same. The difference between the maximum and the minimum traffic size is 3.6
KB. This may be caused by unstable network (packet re-transmission) and can be

ignored.

Delta encoding

To test whether Dropbox client uses delta encoding, the following logical steps were

performed:

Step 1

Step 2
Step 3

Step 4

Step 5

Five files of 10 MB were generated by a DeltaFileGenerator, with
a certain percentage of identical content (see 3.4.3).

The network packet sniffer was launched to record network traffic.
The files were put into synchronization folder one by one, with
enough sleeping time in between to make sure a file was synchro-
nized to the cloud before the next file was put into the folder.
The files were put into the same location/folder with the same
file name, so a file will be over-written by the next file.

After the last file was synchronized by the client, the network
packet sniffer was stopped.

Step 1 to Step 4 were repeated with different percentage of
identical part.



40 4. USE BENCHCLOUD TO ANALYSIS CLOUD STORAGE SYSTEMS

Figure 4.9: Content structure of five files with 50% of identical part

60 M Theoretical

W Actual

45

30

Amount of traific (MB)

10% 30% 50% 70% 90%

Percent of identical part (%)

Figure 4.10: Theoretical and actual amount of traffic generated for uploading delta-
encoded files with different percentage of identical part

Again, all the steps can be done with the help of BenchCloud, and the size of
traffic is analysed using Wireshark. A sample configuration file for the benchmarks
is A.8.

Take the group of files with 50% identical content as an example. The structure of
the files are shown in Figure 4.9. Part A to F are file blocks of 10M B x 50% = 5M B
. All the five files have the same file block, i.e. block A, while the other parts are
different from each other. Assume delta encoding is used, the amount of traffic sent
to Dropbox server for all the five files should be:

(10M B x 50%) + 4 x (10M B x (1 — 50%)) = 30M B



4.2. BENCHMARKING RESULTS AND ANALYSIS 41

Table 4.7: Amount of traffic generated while uploading files with exactly the same
content

File size | #Files | Traffic size (MB)
20 MB 3 25.58

File deduplication

To test whether Dropbox supports file deduplication, the following logical steps were
performed:

Step 1 Three files of 20 MB with identical content were generated with
an IdenticalFileGenerator (see 3.4.3).

Step 2 The network packet sniffer was launched to record network traffic.

Step 3 The three files were put to synchronization folder one by one,
with enough sleeping time in between to make sure a file was
synchronized to the cloud before the next file was put into the
folder.

Step 4 After the last file was synchronized by the client, the network
packet sniffer was stopped.

Again, all the steps can be done with the help of BenchCloud, and the size of
traffic is analysed using Wireshark. A sample configuration file for the benchmarks
is A.9. The amount of traffic sent to Dropbox servers was analysed with Wireshark.
Table 4.7 shows the results. If file deduplication was performed, the amount of traffic
should be at least 20M B x 3 = 60M B. However, we can see from Table 4.7 that
the amount of traffic was around 26 MB, which was much smaller than 60 MB. So
we can conclude that file deduplication was supported in Dropbox synchronization
client.

4.2.7 Summary

In this chapter we described the basic steps to benchmark cloud storage systems with
BenchCloud. Several experiments/benchmarks were conducted to analysis different
features of Dropbox by testing against both the web APIs and the synchronization
client. With the help of BenchCloud, most of the experiments did not require
knowledge of programming and benchmarks were designed by configuration files.
The results of the experiments proved that BenchCloud was capable of analysing a
wide range of features for cloud storage systems.






Conclusion and future work

5.1 Summary

In this thesis, we focused on benchmarking cloud storage systems, and provide a solu-
tion to make its process convenient, efficient and flexible by developing BenchCloud.

Firstly, we briefly introduced the background of cloud computing and the rise
of cloud storage systems, and why benchmarking is important in choosing the right
system for our requirements.

Secondly, we made a study on the features of six cloud storage systems. Security
and privacy features were studied in detail due to the important role they plays in
ensuring data privacy. Resiliency features were studied briefly and some of them are
still to be studied in the future. Other features such as file chunking, file bundling,
file compression, delta encoding, file deduplication, file sharing, are also studied.

Thirdly, we presented BenchCloud, a tool for benchmarking cloud storage systems.
We first studied existing benchmarking tools for cloud systems and found that no
mature tool was developed for benchmarking cloud storage systems like Dropbox,
Google Drive, etc. We then studied the requirements of such a benchmarking tool
and described the design goal and internal architecture of BenchCloud.

Finally, we presented how to use BenchCloud to analysis cloud storage systems
and took a series of experiments on Dropbox to show how BenchCloud can be used
to inspect various kinds of features. Interesting results and analysis were shown
about how concurrency and file size can affect the performance of file uploading and
downloading. An experiment was conducted to study the feasibility to use Dropbox
as a backend storage system for an IoT system. Another series of experiments were
conducted to study three internal features of the synchronization client of Dropbox,
namely file compression, delta encoding, and file deduplication.

43



44 5. CONCLUSION AND FUTURE WORK

5.2 Future work

Future work can be done to give a more thorough analysis to the six cloud storage
systems. Some security and resiliency features are still to be studied by experiments.
Because some of the systems are black-boxes without public accessible source code,
it is not an easy (or even possible) task to study some system features, like how user
credentials are saved and managed inside the cloud.

Besides, in Chapter 4 the experiments were conducted for Dropbox, and it will
be interesting to conduct these experiments on other cloud storage systems tool and
make an analysis on the difference of the results.

Finally, BenchCloud can be extended to study a broader range of system features.
So far testing for security and privacy features is not directly supported by BenchCloud
(although it may be studied by analyzing captured packets) and it would be nice
to have it supported. Some other functions are also considered good to have, like
testing the distribution of the servers (IPs, locations, etc.) of cloud storage systems.



[10]

[11]
[12]

[13]

[14]

References

Leonard M Adleman, Ronald L Rivest, and Adi Shamir. Cryptographic commu-
nications system and method, September 20 1983. US Patent 4,405,829.

LaCie AG. Lacie wuala. https://www.wuala.com/. Accessed: 2014-03-08.

Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is the
weather tomorrow?: towards a benchmark for the cloud. In Proceedings of the
Second International Workshop on Testing Database Systems, page 9. ACM, 20009.

Peter Buxmann, Thomas Hess, and Sonja Lehmann. Software as a service.
Wirtschaftsinformatik, 50(6):500-503, 2008.

Eric Conrad. Advanced encryption standard. White Paper, 1997.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143-154. ACM, 2010.

Jack B Dennis and Earl C Van Horn. Programming semantics for multipro-
grammed computations. Communications of the ACM, 9(3):143-155, 1966.

Tim Dierks. The transport layer security (tls) protocol version 1.2. 2008.

Idilio Drago, Enrico Bocchi, Marco Mellia, Herman Slatman, and Aiko Pras.
Benchmarking personal cloud storage. In Proceedings of the 2013 conference on
Internet measurement conference, pages 205-212. ACM, 2013.

Dropbox. Privacy policy. https://www.dropbox.com/security#security. Accessed:
2014-03-08.

Inc. Dropbox. Dropbox. https://www.dropbox.com/. Accessed: 2014-03-08.

Roy Fielding. Representational state transfer. Architectural Styles and the Design
of Netowork-based Software Architecture, pages 76-85, 2000.

George H. Forman and John Zahorjan. The challenges of mobile computing.
Computer, 27(4):38-47, 1994.

Inc. Google. Google drive. https://drive.google.com/. Accessed: 2014-03-08.

45


https://www.wuala.com/
https://www.dropbox.com/security#security
https://www.dropbox.com/
https://drive.google.com/

46 REFERENCES

[15] Van Jacobson, Craig Leres, and S McCanne. The tcpdump manual page. Lawrence
Berkeley Laboratory, Berkeley, CA, 1989.

[16] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: comparing
public cloud providers. In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pages 1-14. ACM, 2010.

[17) GNU General Public License. Version 2. URL http://www. gnu. org/licenses/gpl-
2.0. html, 1991.

[18] MEGA. Help centre - security & privacy. https://mega.co.nz/#help_ security.
Accessed: 2014-03-08.

[19] MEGA. A word on cryptography. https://mega.co.nz/#blog 3. Accessed:
2014-03-08.

[20] Microsoft. Microsoft azure. https://www.windowsazure.com/. Accessed: 2014-
03-08.

[21] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark €& Ethereal network
protocol analyzer toolkit. Syngress, 2006.

[22] Sybil P Parker. Mcgraw-hill dictionary of scientific and technical terms. 1989.
[23] Ken Pepple. Deploying OpenStack. O'Reilly Media, Inc., 2011.

[24] Jorg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements
in the cloud: observing, analyzing, and reducing variance. Proceedings of the
VLDB Endowment, 3(1-2):460-471, 2010.

[25] Amazon Web Services. Amazon s3. http://aws.amazon.com/s3/. Accessed:
2014-05-18.

[26] Yingjie Shi, Xiaofeng Meng, Jing Zhao, Xiangmei Hu, Bingbing Liu, and Haiping
Wang. Benchmarking cloud-based data management systems. In Proceedings

of the second international workshop on Cloud data management, pages 47-54.
ACM, 2010.

[27] WIill Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert
Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patterson.
Cloudstone: Multi-platform, multi-language benchmark and measurement tools
for web 2.0. In Proc. of CCA, volume 8, 2008.

[28] Secure Hash Standard. Federal information processing standard publication 180-2.
us department of commerce, national institute of standards and technology (nist),
2002. csre. nist. gov/publications/fips/fips180-2/fips180-2withchangenotice. pdf.

[29] Tahoe. Tahoe-lafs: Convergence secret. https://tahoe-lafs.org/trac/tahoe-lafs/
browser /trunk/docs/convergence-secret.rst. Accessed: 2014-03-08.


https://mega.co.nz/#help_security
https://mega.co.nz/#blog_3
https://www.windowsazure.com/
http://aws.amazon.com/s3/
https://tahoe-lafs.org/trac/tahoe-lafs/browser/trunk/docs/convergence-secret.rst
https://tahoe-lafs.org/trac/tahoe-lafs/browser/trunk/docs/convergence-secret.rst

[30]

REFERENCES 47

Hakim Weatherspoon and John D Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In Peer-to-Peer Systems, pages 328-337. Springer,
2002.

Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: the least-authority filesystem.
In Proceedings of the 4th ACM international workshop on Storage security and
survivability, pages 21-26. ACM, 2008.

Wuala. Privacy policy. http://www.wuala.com/%20/about/privacy. Accessed:
2014-03-08.

Wuala.  Recent security scandals.  https://support.wuala.com/2013/08/
recent-security-scandals/. Accessed: 2014-03-08.

Wuala. Security: Frequently asked questions. http://support2.wuala.com/faq/
security/. Accessed: 2014-03-08.

Wuala. What is the local (client side) encryption? http://support2.wuala.com/
faq/security /what-is-client-side-encryption/. Accessed: 2014-03-08.

Qing Zheng, Haopeng Chen, Yaguang Wang, Jiangang Duan, and Zhiteng Huang.
Cosbench: A benchmark tool for cloud object storage services. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pages 998-999. IEEE,
2012.


http://www.wuala.com/%20/about/privacy
https://support.wuala.com/2013/08/recent-security-scandals/
https://support.wuala.com/2013/08/recent-security-scandals/
http://support2.wuala.com/faq/security/
http://support2.wuala.com/faq/security/
http://support2.wuala.com/faq/security/what-is-client-side-encryption/
http://support2.wuala.com/faq/security/what-is-client-side-encryption/




© 00 O Ut k=W N

R NN RN DNDNDRN & — e e
T O TR W = OO0 O U W= O

Sample configuration files and
scripts

A.1 Sample configuration to upload 50 files of 100KB each
from Dropbox with 25 concurrent threads

[test]

description = Upload random binary files to dropbox
times = 50

sleep = False

#sleep_seconds = 1

[logging]

enabled = True

log_file =
/tmp/dropbox_upload_random_binary_50f_100KB_25threads.log

[driver]

class = benchcloud.drivers.dropbox_driver.DropboxDriver
[operator]

class = benchcloud.operators.uploader.Uploader
operation_method = upload

operation_method_params = {"local_filename":

"<generated_file.name>",
"remote_dir": "/benchmark-test"}

[file_generator]

class = benchcloud.file_generators.random_file_generator
.RandomFileGenerator

#directory =

prefix = benchmarking-

#suffix = .test

49



28
29
30
31
32

© 00 N O U = W N

el e e e e el
N O U W= O

© 00 O U = W N~

— = =
N = O

50 A. SAMPLE CONFIGURATION FILES AND SCRIPTS

delete = True
size = 102400

[concurrent]
threads = 25

A.2 Sample configuration to download files from Dropbox
with 25 concurrent threads

[test]

description = Download all files (not recursively)
in a remote directory to a local directory

sleep = False

#sleep_seconds = 1

remote_dir = /benchmark-test

local_dir = /tmp/benchcloud-junk

[logging]
enabled = True

log_file = /tmp/benchmarking-dropbox-download-25threads.log

[driver]
class = benchcloud.drivers.dropbox_driver.DropboxDriver

[concurrent]
threads = 25

A.3 Sample configuration file to upload 10 files of 10 MB
each

[test]

description = Upload random binary files to dropbox
times = 10

sleep = False

#sleep_seconds = 1

[logging]
enabled = True
log_file = /tmp/dropbox_upload_random_binary_10f_10MB.log

[driver]
class = benchcloud.drivers.dropbox_driver.DropboxDriver



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 00 O U k=W N

NN DN = = = s = s e e
N O © 0 O Ui W N+~ O

A.4. SAMPLE CONFIGURATION FILE TO SIMULATE IOT SYSTEM WITH 50
SENSORS AND 10 SECONDS OF INTERVAL 51

[operator]

class = benchcloud.operators.uploader.Uploader
operation_method = upload
operation_method_params = {"local_filename":

"<generated_file.name>",
"remote_dir": "/benchmark-test"}

[file_generator]

class = benchcloud.file_generators.random_file_generator
.RandomFileGenerator

#directory =

prefix = benchmarking-

#suffix = .test

delete = True

size = 10485760

A.4 Sample configuration file to simulate IoT system with
50 sensors and 10 seconds of interval

[test]

description = IoT Benchmarking
times = 500

sleep = True

sleep_seconds = 10

[logging]
enabled = True

log_file = /tmp/benchmark-iot/dropbox_iot_50t_10s.log

[driver]
class = benchcloud.drivers.dropbox_driver.DropboxDriver

[operator]

class = benchcloud.operators.uploader.Uploader
operation_method = upload
operation_method_params = {"local_filename":

"<generated_file.name>",
"remote_dir": "/benchmark-test"}

[file_generator]
class = benchcloud.file_generators



23
24
25
26
27
28
29

© 0 J O U W N

D DN NN DNNDNDDNDNDNDNDN - = = == = = = =
© 00 J O UL WIN O ©O0o O Ut Wi~ o

52 A. SAMPLE CONFIGURATION FILES AND SCRIPTS

.random_file_generator.RandomFileGenerator
prefix = benchmarking-iot-
delete = True
size = 5120

[concurrent]
threads = 50

A.5 Sample benchmark configuration file simulating 100
sensors sending 1000 files in total to Dropbox with an
interval of 5 seconds

[test]

description = 100 sensors sending 1000 files in total
to Dropbox with an interval of 5 seconds

times = 1000

sleep = True

sleep_seconds = 5

[logging]
enabled = True

log_file = /tmp/iot-benchmark-1000f-100t-5s.1log

[driver]
class = benchcloud.drivers.dropbox_driver.DropboxDriver

[operator]

class = benchcloud.operators.uploader.Uploader
operation_method = upload
operation_method_params = {
"local_filename": "<generated_file.name>",
"remote_dir": "/benchmark-test"}

[file_generator]

class = benchcloud.file_generators
.random_file_generator.RandomFileGenerator

prefix = iot-benchmark-

delete = True

size = 5120

[concurrent]



30

© 00 O U k= W N

QO W W W W W W W N NDNDNIDNDDNDNDDNDNDDN - /) = e
N O UL WO ©O00 O Utk WO OO Utk W~ O

A.6. SCRIPT TO TRY DOWNLOADING A FILE FROM DROPBOX REPEATEDLY
53

threads = 100

A.6 Script to try downloading a file from Dropbox
repeatedly

import os
import argparse
from time import time, localtime, strftime, sleep

from benchcloud.drivers.dropbox_driver import DropboxDriver

def log(msg):
millis = int(round(time() * 1000))

timestamp = "[{H] o {}ul".format(millis,
strftime ("%dyu%buhYLhH:%M:%S", localtime ()))
whole_message = "{}_, {}".format(timestamp, msg)

print whole_message

if __name__ == ’_ _main__"’:
arg_parser = argparse.ArgumentParser (
description=’Testyif a, fileyexistsin, Dropbox’)
arg_parser.add_argument (’-rf’, action=’store’,
dest=’remote_filename’,
default=’/target_file’,
help=’Local file’, required=False)

results = arg_parser.parse_args ()
remote_filename = results.remote_filename
local_filename = ’./downloaded_target_file’

# delete old target file
if os.path.isfile(local_filename):
os.remove (local_filename)

# Test 1f file exzists

dropbox = DropboxDriver ()

dropbox.connect ()

while True:
log(’Startto download file’)
dropbox.download (remote_filename=remote_filename,

local_filename=local_filename)

log(’0Operation, finished!’)



38
39
40
41

© 00 N O U k=W N

N NNNNNDDNDNDNDDNDFE = = = === ===
© 00 O Ui WO OWOWwW==O U W+~ O

1

54 A. SAMPLE CONFIGURATION FILES AND SCRIPTS

if os.path.isfile(local_filename):
break
sleep (0.5)
log(’File downloaded successfully!’)

A.7 Sample configuration file to test if file compression is
supported in Dropbox synchronizaiton client

[test]

description = Upload a sparse file to Dropbox via sync client
to test if client-side compression is used

times = 1

sleep = False

#sleep_seconds = 1

[logging]
enabled = True

log_file = /tmp/benchmarking.log

[driver]
class = benchcloud.drivers.localfs_driver.LocalFSDriver

[operator]

class = benchcloud.operators.uploader.Uploader
operation_method = upload
operation_method_params = {"local_filename":

"<generated_file.name>",
"remote_dir": "/Users/wangxing/Dropbox"}

[file_generator]

class = benchcloud.file_generators
.sparse_file_generator.SparseFileGenerator

#directory =

prefix = benchmarking-sparse-

suffix = .jpg

delete = True

size = 104857600

A.8 Sample configuration file to test if delta encoding is
supported in Dropbox synchronizaiton client

[test]



© 00 N O Uk W N

O W W W N DNDNDNDDNDNDDNDNNNRFRE P P PR B B2 /2 = 2=
W N H OO0 O Uik WN RFE O ©OWwWO Utk Wi —=O

SO W N

A.9. SAMPLE CONFIGURATION FILE TO TEST IF FILE DEDUPLICATION IS
SUPPORTED IN DROPBOX SYNCHRONIZAITON CLIENT 55

description = Upload random binary files with common part
(i.e. delta files) to dropbox

times = 5

sleep = True

# The sleep time should long enough to make sure
# the last file is fully synchronized to the cloud
sleep_seconds = 120

[logging]
enabled = True

log_file = /tmp/benchmarking.log

[driver]
class = benchcloud.drivers.localfs_driver.LocalFSDriver

[operator]

class = benchcloud.operators.uploader.Uploader
operation_method = upload
operation_method_params = {"local_filename":

"<generated_file.name>",
"remote_filename": "/Users/wangxing/Dropbox/delta-file"}

[file_generator]

class = benchcloud.file_generators
.delta_file_generator.DeltaFileGenerator

#directory =

prefix = benchmarking-delta-
#suffix = .test
delete = True

size = 10485760
# the ’percent’ param is unique to DeltaFileGenerator
percent = 0.9

A.9 Sample configuration file to test if file deduplication is
supported in Dropbox synchronizaiton client

[test]

description = Upload binary files
with identical content to dropbox
times = 3

sleep = True

sleep_seconds = 3



© o

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

56 A. SAMPLE CONFIGURATION FILES AND SCRIPTS

[logging]
enabled = True
log_file = /tmp/benchmarking.log

[driver]

class = benchcloud.drivers.localfs_driver.LocalFSDriver

[operator]

class = benchcloud.operators.uploader.Uploader
operation_method = upload
operation_method_params = {"local_filename":

"<generated_file.name>",
"remote_dir": "/Users/wangxing/Dropbox"}

[file_generator]

class = benchcloud.file_generators
.identical_file_generator.IdenticalFileGenerator

#directory =

prefix = benchmarking-
#suffix = .test
delete = True

size = 20971520



	List of Figures
	List of Tables
	Introduction
	Problem Description
	Motivation
	Thesis Organization

	An Analysis of Cloud Storage Systems
	Overview
	Security and Privacy
	Aspects of security and privacy
	Security and privacy of the systems

	Resiliency
	Other System Features
	Chunking
	Bundling
	Compression
	Deduplication
	Delta-encoding
	File sharing
	Open source
	Summary


	BenchCloud - a benchmarking tool for cloud storage systems
	Background
	The requirements for a cloud storage system benchmarking tool
	Existing studies and tools for benchmarking cloud storage systems

	Software Requirements
	Design Goals
	Flexibility
	Usablity

	System Architecture
	The API Driver Layer
	The Operators Layer
	The Benchmarking Runner Layer

	Cooperation with other tools
	Wireshark
	tcpdump

	Open Source
	Possible Improvements

	Use BenchCloud to Analysis Cloud Storage Systems
	Benchmarking Process
	Benchmarking Results and Analysis
	Environment of benchmarking
	The impact of concurrency on the performance of file uploading/downloading
	The impact of file size on the performance of file uploading/downloading
	Study the feasibility of using cloud storage system as a storage backend for IoT systems
	Study the readiness time for uploaded files
	Study the features of synchronization clients
	Summary


	Conclusion and future work
	Summary
	Future work

	References
	Sample configuration files and scripts
	Sample configuration to upload 50 files of 100KB each from Dropbox with 25 concurrent threads
	Sample configuration to download files from Dropbox with 25 concurrent threads
	Sample configuration file to upload 10 files of 10 MB each
	Sample configuration file to simulate IoT system with 50 sensors and 10 seconds of interval
	Sample benchmark configuration file simulating 100 sensors sending 1000 files in total to Dropbox with an interval of 5 seconds
	Script to try downloading a file from Dropbox repeatedly
	Sample configuration file to test if file compression is supported in Dropbox synchronizaiton client
	Sample configuration file to test if delta encoding is supported in Dropbox synchronizaiton client
	Sample configuration file to test if file deduplication is supported in Dropbox synchronizaiton client


