
Cloud Security without Trust

Ole Rasmus Gilberg

Master of Science in Communication Technology

Supervisor: Colin Alexander Boyd, ITEM

Department of Telematics

Submission date: June 2014

Norwegian University of Science and Technology

Title: Cloud Security without Trust
Student: Ole Rasmus Gilberg

Problem description:

Businesses and individuals are increasingly storing important and private data
on servers in the cloud outside their control. This has compelling benefits in terms
of convenience and cost but introduces security issues which do not exist for local
storage. Some of these issues arise because customers may be unwilling or unable to
trust cloud providers. This project will focus on the issue of ensuring that data is
stored in the manner agreed between the cloud server and the client.

In the last few years there has been considerable research effort in developing
cryptographic schemes to allow users to efficiently check that data is stored correctly
in a remote server. Schemes also exist for more exotic forms of checking, for example
to show that data is stored redundantly on more than one disk, to show that data is
stored in a specific geographical area, or to show that data is stored in encrypted
form. Some of these schemes have been tested empirically but others have not. Some
have restrictions on applicability, for example whether they apply to dynamic data
or whether they allow data to be processed by the server. This project will examine
what has been achieved in the research literature so far with focus on dynamic
schemes. After that the project will continue with a theoretical and possibly a
practical investigation where we will consider useful ways of extending the schemes
and compare them using real-world cloud services.

Responsible professor: Colin Boyd, ITEM
Supervisor: Colin Boyd, ITEM

Abstract

The usage of cloud services is increasing for each day. This applies to
private persons which store pictures and documents, as well as bigger
corporations whom outsource parts of, or all, handling of their ICT
infrastructure to cloud providers. Despite the continuous increase in
application, there are still substantial security concerns among current and
potential cloud users. Much of the concerns are due to lack of transparency
to how the cloud providers maintain and process the user data. Motivated
by this, multiple cryptographic schemes has been proposed to provide
users with confidence that their data are maintained as agreed upon,
without the necessity of changing the architecture of the cloud provider.

In this master thesis we have studied some of these cryptographic
schemes, and performed a practical and economical analysis on one of
them, the hourglass scheme. The hourglass scheme utilizes economical
incentives to provide the cloud provider with reasons to act as agreed
upon. Through implementation of hourglass functionality we identified
that the validity of the scheme is dependent on resource pricing by the
cloud provider, together with the actual implementation.

Based on the hourglass scheme and observations while studying the
different schemes, we propose a new cryptographic scheme applying to
deletion of data in the cloud. Remote deletion is a challenging task to
prove, but we argue that our approach will deliver the user of a cloud
service comfort that the actual data in the cloud has been deleted by the
cloud provider.

Sammendrag

Bruken av skytjenester øker for hver dag. Dette gjelder alt fra privat-
personer som lagrer bilder og dokumenter, til større organisasjoner som
outsourcer deler av eller hele håndtering av IKT infrastruktur til en
skyleverandør. På tross av en stadig økning i anvendelse, er det fortsatt
vesentlige sikkerhetsbekymringer blandt både eksisterende og potensielle
brukere. Bekymringene grunner mye i mangel på innsikt i hvordan levrna-
dørene av skytjenester oppbevarer og behandler brukerenes data. Med
dette som motivasjon, har flere kryptografiske systemer blitt foreslått for
å gi brukere trygghet i at deres data blir oppbevart i henhold til avtale,
uten å måtte forandre på skytjenestetilbyderenes struktur og arkitektur.

I denne masteroppgaven har vi utforsket noen av disse systemene, og
utført en praktisk og økonomisk analyse av et av dem, kalt for timeglass-
løsningen. Timeglassløsningen benytter seg av økonomiske incentiver for å
gi skytilbyderen grunn til å opptre som avtalt. Gjennom en implementajon
av timeglassfunksjonalitet fant vi ut at dette systemets anvendelsesgrad er
avhengig av resursprising hos skytilbyderen, samt selve implementasjonen.

Basert på timeglasssystemet og observasjoner gjort under studie av
forskjellige kryptografiske systemer, foreslår vi et nytt kryptografisk sys-
tem som henvender seg mot sletting av data i skyen. Avstandsbasert
sletting av data er en utfordrende oppgave å begi seg ut på, men vi mener
likevel at vi har klart å foreslå en metode som kan gi brukeren av en
skytjenste tiltro til at det faktisk er ønsket data som er blitt slettet hos
skytilbyderen.

Preface

This paper serves as a master thesis in the 10th semester of my
Master of Science degree in Communication Technology at the Norwegian
University of Science and Technology.

I would like to thank my professor Colin Boyd for much valued
guidance and discussions throughout the work. I would also like to thank
postdoc George Petrides for his helpful inputs and ideas.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Outcome . 1
1.2 Report outline . 2

2 Background 3
2.1 Cloud Computing . 3
2.2 Cryptographic schemes related to cloud computing 5

2.2.1 Data possession and retrievability 6
2.2.2 Proving distributed storage 10
2.2.3 Deletion . 11

2.3 Hourglass scheme . 13
2.3.1 Challenges and solution . 14
2.3.2 Hourglass functions . 18
2.3.3 Security analysis . 21
2.3.4 Comparison of hourglass functions 23
2.3.5 Economic incentives and arguments 25

3 Practical analysis 27
3.1 Implementation . 27

3.1.1 Original Hourglass paper implementation 27
3.1.2 Our implementation . 28

3.2 Comparison of paper results and practical work 29
3.3 Economical perspective . 32

4 Proposed Scheme 37
4.1 Encoding and integrity checks . 37

4.1.1 Encoding - Random number generator 38
4.1.2 Integrity checks . 39

4.2 The protocol . 41

vii

4.2.1 Executing the overwrite - encoding (phase 1) 41
4.2.2 Encapsulate overwrite - hourglass (phase 2) 42
4.2.3 Prove the overwrite - challenge-response (phase 3) 43

4.3 Choice of hourglass function . 44
4.4 Alternative to providing a seed to the cloud provider 44
4.5 Economic arguments . 45

5 Practical challenges 47
5.1 Hardware issues . 47

5.1.1 Acquiring hardware information 47
5.1.2 How will SSDs affect the hourglass function? 48

5.2 Storage allocation . 48
5.3 Alternative deletion approach . 49
5.4 The price development of cloud storage and processing 50

6 Conclusion 53
6.1 Future work . 54

References 55

Appendices
A Performance results 59

B Source code 61
B.1 Butterfly source code . 61

B.1.1 Butterfly encapsulation . 61
B.1.2 Butterfly decapsulation . 63

B.2 Permutation source code . 65
B.2.1 Permutations encapsulation and decapsulation 65

List of Figures

2.1 Protocol for provable data possession, as presented in [1] 7
2.2 File transformation in POR before transfer to server 9
2.3 Generic hourglass protocol as presented in [2] 15
2.4 Naive approach . 18
2.5 Butterfly algorithm as presented in [2] 19
2.6 Permutation function, inspired by [3] . 20
2.7 RSA function, inspired by [3] . 21
2.8 Overhead data s′ for butterfly function 24
2.9 Overhead data s′ permutation function 24

3.1 Operation w, mixing of two blocks . 29
3.2 Performance results from hourglass paper (taken from [2]) 30
3.3 Performance results of our butterfly implementation 31
3.4 Performance results of our permutation implementation 32

4.1 Merkle tree structure . 41
4.2 Deletion protocol . 42

5.1 Double pass overwrite . 50

ix

List of Tables

2.1 Comparison of hourglass functions . 25

3.1 Amazon EC2 instance prices . 33
3.2 Hourglass performance and storage cost as presented in [2] 34
3.3 Updated hourglass performance and storage cost with current prices . . 35
3.4 Calculated hourglass performance and storage cost for the implementation

in this thesis in Amazon environments 36

xi

Chapter1Introduction

Adoption to and usage of cloud services are constantly increasing. If it is by private
individuals, corporations or public services, increasing amounts of information are
stored and processed in the cloud.

When transforming old systems to function in cloud environments, new security
and trust issues arise. Compared with traditional systems, where individuals control
their own hardware, the cloud provider often has sole control over the components
when in cloud environment. Providing little transparency to the tenant about what
is going on under the hood, tenants must simply rely on the cloud provider to keep
the information maintained as agreed upon.

This lack of transparency makes the transition to the cloud, for many large
corporations especially, challenging as decision makers are reluctant to put their trust
in the hands of the cloud provider. Also privacy regulations, in terms of laws could
constrain business from legally adopting to cloud environments. Thus, the transition
from old systems are held back. This works as motivation for research communities
in finding new methods of gaining the trust of current and potential cloud users. A
lot of focus has been directed towards approaching the transparency issue, without
being forced to invoke or change too much of infrastructure and implementations of
the cloud architecture.

Through the research, new cryptographic schemes arise, under different categories.
Some of them still on a theoretical level, while others are tested in real world
environments. The aim of this thesis is to study and analyse some of these schemes.

1.1 Outcome

In this thesis we present some of the cryptographic schemes for cloud environments,
with the purpose they serve, and what they accomplish. We also look deeper into
one particular scheme, the hourglass scheme. First presented by Juels et al. [2], the

1

2 1. INTRODUCTION

scheme provides tenants with proof of correct data encoding at the cloud provider
for data at rest. The presented hourglass scheme is dependent on economical aspects,
such as pricing of storage and computation by the cloud provider. Based on the
hourglass scheme, we conduct an implementation and practical analysis on some of
the functionality that they present. We compare our achieved implementation results
up against results from the original paper. Based on pricing from Amazon cloud
services, we update computation costs and results, validating the hourglass function
with current costs.

Through the study of the cryptographic schemes we identified a possibility for
improvement in the deletion category. This together with a thought of using the
hourglass scheme, motivated us to propose a new scheme in the deletion category.
Previously proposed schemes for deletion, rely on removal of encryption keys to do
the job. We propose a way of proving deletion, through overwriting of data and using
functionality of the hourglass scheme. We argue our solution to have advantages
over the previously proposed schemes.

1.2 Report outline

Chapter 2 presents research already conducted within cryptography communities
on different research areas. It also introduces the preliminaries needed for the
development of the new scheme.

Chapter 3 presents the practical work of this thesis, and an analysis of it compared
with the conducted work in the original hourglass scheme.

Chapter 4 presents the proposed scheme for this thesis

Chapter 5 highlights some challenges related to the original hourglass applications
and proposed scheme in context of real world deployment.

Chapter 6 concludes with the findings in this thesis, and presents options for
further research.

Chapter2Background

In this chapter we present the necessary background information related to this
thesis. First we clarify the term cloud computing, and discuss how it is evolving and
why many still are reluctant to take advantage of its benefits. Second we look into
proposed cryptographic schemes which are relevant to this thesis. Third we present
in more detail the hourglass paper by Juels et al. [2].

2.1 Cloud Computing

Much attention in security research communities has been directed to different areas
within cloud computing and cryptography. The term cloud computing embraces
very much, and is often used in a vague context. We first clarify the term cloud
computing by looking into the definition from the National Institute of Standards
and Technology (NIST) [4]:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or
service provider interaction. This cloud model is composed of five essential
characteristics, three service models, and four deployment models.

A compressed description, based on the NIST definition, of the characteristics,
service models and deployment models:

The five characteristics:
• On demand self service The tenant can scale computation capabilities such as

processing time and storage, without interactions with humans.
• Broad network access The services are available over a network on standard

devices such as laptops, mobile phones, tablets and workstations.

3

4 2. BACKGROUND

• Resource pooling The resources of the cloud provider are shared, where re-
sources are dynamically assigned tenants on demand. Resources are location
independent, but can be limited to geographically locations such as country,
state or data center.

• Rapid elasticity Capabilities can be added and released on demand or automat-
ically, for efficient and simple scaling of services.

• Measured services The cloud system monitor usage for optimizing resources.

The three service models:
• Software as a service (SaaS) The model provides the tenant with applications

running on cloud infrastructure, while the tenant itself does not manage or
control the cloud infrastructure. The application could be a web-based email
service available on various devices.

• Platform as a Service (PaaS) The tenant controls a deployment environment
for its application using supported programming language and libraries of the
provider, but has not control over underlying cloud infrastructure such as
network, servers, storage or operating system.

• Infrastructure as a Service (IaaS) The tenant does not have sole control
over underlying cloud infrastructure, but control processing, storage, operating
system, deployed applications and possibly limited selected network components
such as firewalls.

The four deployment models:

• Private cloud The cloud infrastructure is dedicated for use by a single organ-
isation, and may be owned by them or third parties, and located on or off
premises of the organisation.

• Community cloud The cloud infrastructure is dedicated to a spesific community.
May be owned by the community or third party, and located on or off the
premises of one of the community participants.

• Public cloud The cloud infrastructure is for public use, not limited to a commu-
nity or organisation. Infrastructure is located on the cloud provider premises.

• Hybrid cloud The cloud infrastructure is a combination of two of the tree
mentioned deployment models.

The hourglass scheme which we take a better look at in section 2.3, is among
others, dependent on how the cloud provider handles with resource pooling and rapid
elasticity.

2.2. CRYPTOGRAPHIC SCHEMES RELATED TO CLOUD COMPUTING 5

Cloud computing is and has been increasing in its use the last years/for some time
now. It is estimated that it will surge with 25% in 2014 becoming a 100 billion dollar
industry [5]. More and more individuals and corporations rely on cloud computing
providers to handle their data. Compared with old systems, this gives rise to a new
security questions and challenges. As the data is now handled by third party service
providers, much of the risk and "security breach consequences" relies on trust between
tenant and provider. By security breach consequences, we mean the responsibility
the tenant has over the data if it should be leaked, compromised or in any way be
handled in an undesirable manner.

As a survey conducted by Unisys and IDG Connect in 2013 indicates, one of the
biggest concerns with thought to deploying businesses to cloud computing platforms is
security. Over 70 percent categorized security as their biggest barrier to implementing
cloud based solutions in their organisation [6]. Nevertheless, the same survey reveal
that the willingness to deploy to the cloud, is increasing, despite significant security
worries amongst the business decision makers [7]. Also, the survey reveals that
businesses are more willing to take use of private cloud solutions over a hybrid or
public cloud solution [8]. With a private cloud solution, the tenant has a higher
degree of control over their infrastructure, thus it has better insight to how the data
is actually managed.

Additionally, in light of last years events, referring to the disclosures made by
Edward Snowden, the trust in outsourcing data to larger data handling corporations
would naturally not be reinforced. Snowden revealed NSA’s influence over large
security companies and organisations such as RSA, NIST and telecom providers,
allegedly providing back doors into standard crypto algorithms and hardware [9, 10,
11].

2.2 Cryptographic schemes related to cloud computing

As we have pointed out, research within cloud computing security is important, and
has been for some years now. As the survey briefly discussed above indicates, this
research area is important for the users of cloud services, to be able to put trust in
the services offered.

Different types of cryptography schemes have been proposed in research com-
munities, which propose methods of giving the tenants, or the “weak party” of the
agreement, some proof or insurance that their data are being handled correctly and
as agreed upon.

We have identified some of these schemes, and present briefly what purpose they
serve and techniques they use to accomplish their goals. The schemes are categorised

6 2. BACKGROUND

in four different categories, namely provable data possession, proofs of retrieveability,
redundancy and deletion.

2.2.1 Data possession and retrievability

Provable data possession

Ateniese et al. [1] present a type of scheme called Provable Data Possession
(PDP). They propose a new PDP scheme, which gives the tenants a means to verify
that their data, stored at an untrusted storage is intact and has not been tampered
with, without requiring the tenant to download the actual data. The scheme takes
advantage of a challenge response protocol, to achieve verification.

Tenants store only a minimum of metadata, which they use to verify responses
from the storage provider. Figure 2.1 illustrates the protocol of provable data
possession. The upper part regards the creation of metadata and exchange of the
file for storage. Prior to uploading the file F to the storage provider, the tenant
calculates metadata called homomorphic verifiable tags to each file block using its
private/public key pair. It also calculates metadata M on the file for its own storage.
The tags are sent to the server for storage, together with the file (denoted as F ′
in figure 2.1) and the tenants public key, and is what the storage provider uses to
generate correct responses to challenges. The tags are of considerably smaller size
than the file blocks themselves, leaving the overhead for the storage provider to a
minimum. The tenant discards the file and its tags after they are delivered to the
storage provider, and only keeps a public/private pair of keys and the metadata M .
The storage provider simply stores the received data F ′, and the tenants public key.

The lower part of figure 2.1 illustrates the process of challenging the storage
provider for prof of data possession. On producing the challenge C, the tenant
selects random block indexes which it challenges the storage provider on. The storage
provider uses the tags for the challenged blocks, the tenants public key, the challenge
and the challenged blocks as input to a method for generating the correct response
P . To check the response, the tenant inputs the response, the challenge and the
public/private key pair to a verification method.

The PDP scheme proposed applies to static data, with the ability to append data.
Meaning, if one wishes to insert, modify or delete parts of the data at the storage
provider, this would be infeasible, as it would be necessary to set up the PDP scheme
again from scratch. Erway et al. [12] propose a dynamic PDP (DPDP) scheme which
builds upon the proposed scheme by Ateniese et al., and extends the functionality of
it to support deletion, modification and insertion of data.

2.2. CRYPTOGRAPHIC SCHEMES RELATED TO CLOUD COMPUTING 7

Figure 2.1: Protocol for provable data possession, as presented in [1]

Proofs of retrievability

A bit similar to the provable data possession schemes by Erway et al. and Ateniese
et al., is the the proof of retrievability (POR) scheme by Juels et al. [13]. This
scheme focus on means for the tenant of a cloud service to retrieve proofs of their
data being stored without corruption and with the possibility of retrieval of the
entire file even with small file corruptions. The scheme is focused on static storage
for archival data, meaning data which are seldom updated.

In short the scheme encrypts the file F and applies blocks called sentinels within
the encrypted file. The sentinels are random check blocks indistinguishable from

8 2. BACKGROUND

the other encrypted blocks of the file, which the tenant inserts before transferring
the file. The tenant challenges the provider on these sentinels. If the provider has
altered or deleted ε fraction of the file, then ε fraction of the sentinels are likely to
also been altered or deleted. Error-correcting codes are also applied to the file before
transfer. This is for revealing small corruptions to the file which could slip between
sentinels. To clarify, the sentinels are there to verify that large portions of the file
are not corrupted, however, if small parts of the file are corrupted(e.g. few bits) the
sentinels might not reveal this. Then the error-correcting code, can still restore the
original file. This implies that if large portions of the file are corrupted, sentinels
will reveal it, but one would not be able to repair the file.

The embedded sentinels in the file and the error-correcting codes, will add some
computational overhead and larger storage requirements at the cloud provider. Figure
2.2 illustrates the process preparing the file F to be transferred to the server. F is
illustrated in a block wise representation, F1 . . . Fn, where Fi represents the ith block
in the file. First the error-correct code is applied on each block, and the file takes
the form F ′, F ′1 . . . F ′n. Then the file is encrypted through a block cipher, taking
the form F ′′, F ′′1 . . . F ′′n . The final phase generates the sentinels, and appends them
to the encrypted file, and permutes the blocks to distribute the sentinels over the
result file F ∗, F ∗1 . . . F ∗n . The sentinels are indicated in figure 2.2 with a blue color.
This process is executed on the client side, before the result F ∗ is transferred to the
server.

2.2. CRYPTOGRAPHIC SCHEMES RELATED TO CLOUD COMPUTING 9

Figure 2.2: File transformation in POR before transfer to server

A drawback in the proposed POR scheme by Juels et al. [13] is that the sentinels
can only be used for verification once, meaning that the number of embedded sentinels
in the file puts a restriction on the lifetime of the scheme.

The scheme by Bowers et al. [14] is a new variant of the POR scheme by Juels
et al. They use the proposed POR scheme by Juels et al. as a starting point, and
improve it in terms of a higher acceptance for error rate ε, on the server while
still being able to retrieve the original file. They also achieving lower overhead
data on the uploaded file. As error-correcting method, they use an inner and outer
error-correcting code. An outer error-correction code is embedded to the whole file
before uploading to the server. On challenges from the client, the server computes
an inner error-correction code on the response to the client. This implies that if any
altering of bits occurred in transaction between server and client, the block sent from
the server could be restored at the client. If the original blocks were altered at the
server, the outer error-correcting code, could retrieve the original file block again.

The papers which presents the PDP and POR schemes, criticize each other. It is

10 2. BACKGROUND

highlighted by Bowers et al. that the PDP scheme provide means for the tenant to
verify that the storage provider possesses the file, but gives no guarantee that the
tenant can retrieve the file. On the other side, the PDP schemes by Atenise et al.
and Erway et al. criticize the POR of Juels et al. for the limited appliance with only
encrypted files and the limited number of challenges which can be executed on a file.

The mentioned schemes will in some manner provide the sufficient proof to the
tenants that their data is intact or at least reveal if it is corrupted. But, they provide
no insight into the encoded format in which the data is stored (proving correct
encoding) or if they are stored with redundancy. The POR scheme by Juels et al. is
static requiring encryption of the data. This sets some restrictions on the schemes,
leaving the usage limited.

2.2.2 Proving distributed storage

Redundancy
Bowers et al. [15] present a scheme for verifying that your files can resist hard drive
crashes in the cloud. This means, that your files should be stored in such a manner
that if a drive crashes, it should be possible to retrieve the file again. For example
Amazon claims to have stored copies of files in their S3 storage service, over three
separate instances. But lack of transparency to the tenants, give them little comfort
other than trusting the cloud providers to keep files in a crash resistant manner.

The presented scheme is called remote assessment of fault tolerance (RAFT). It
is a timing based challenge-response protocol used to prove that blocks of files are
stored over separate hard drives, and that the original file can be retrieved in face of
a number t hard drive crashes. To be able to ensure recoverability of a hard drive
crash, the files are stored with redundancy. This is realized by applying an erasure
code on the file, before distributing the blocks to different drives. An agreement
between the tenant and cloud provider maps the file blocks, well balanced, over the
number of drives.

The idea is that the tenant challenges the provider for an amount of blocks of the
file F . The number of hard drives which the file is distributed over, will determine
how fast the provider is able to respond to the challenge. For example for a 100 block
challenge which takes one second to respond to for storage on one hard drive, should
be able to produce the correct response in a half second, if it stores the blocks on
two hard drives. The time based protocol is dependent on the operation times of
hard drives (i.e. seek time) which vary substantially from seek to seek on random
reads. By requiring each drive to fetch a number of random blocks, this variation
is smoothed out over the drives. Thus, similar to the hourglass scheme by Juels et
al. [2], which we shall look into later, the RAFT scheme is dependent on resource
performances at the cloud provider, mainly the performance of rotational hard drives.

2.2. CRYPTOGRAPHIC SCHEMES RELATED TO CLOUD COMPUTING 11

Related to the RAFT scheme is the scheme presented by Wang et al. [16].
They propose what they call a “layout free” scheme, which removes the mapping
agreements of block to hard drive between the tenant and provider in the RAFT
scheme. They claim this mapping of blocks to physical hard drive addresses to be a
difficult operation to execute, as cloud providers are reluctant to giving out storage
layout information and implementation details. To overcome this challenge, and
realize their “layout free” scheme, they take advantage of an evenness index, realized
by the Shannon-Wiener Index, to measure the distribution of blocks over the different
hard drives. An honest provider, which stores equal amount of file blocks on each
drive, would get an evenness index of one. The dishonest provider would get a lower
score, dependent on the degree of unbalance between drives.

2.2.3 Deletion

Deletion by key removal
A scheme which considers deletion assurance is presented by Tang et al. [17]. They
present the file assured deletion scheme, FADE. The scheme operates with a definition
of deletion as, if the encryption keys to the actual data is permanently removed or
inaccessible, the data will be permanently unavailable - permanently encrypted.

Each file is associated with a policy for file access, where each policy is associated
with a control key. Control keys are handled by a trusted third party, and are used
for encryption of data keys. So when deletion is requested by the data owner, the
policy for that file is revoked and the corresponding control key is discarded. Policies
can be created for specific users, groups or scenarios. To access the files at the cloud
provider, the data owner first needs to authenticate itself to the third party key
manager, to prove that it satisfies the policies for the files. With the correct policy
the data owner will be presented with a control key in which it can use to generate
the correct data key.

Perlman [18] take a similar approach as Tang et al. with the FADE scheme, using
a trusted third party key manager to handle control keys. But instead of binding the
control key to a policy, the keys are time-based. This implies that, on creation of the
keys, an expiration time is associated with the key. When the time expires, the key
manager removes the key from storage, leaving encrypted data inaccessible.

The scheme presented by Geambasu et al. [19] called Vanish, address deletion of
data without any particular user interaction. It is similar as Perlman in the manner
that the keys has an expiration date, but the keys themselves are handled differently.
They focus on sensitive data, e.g. data related to emails with sensitive information,
which no longer serves a purpose after having been read. Thus, they present a
self destruction deletion technique, which delete or makes all data unavailable after
execution. The technique splits the data encryption key into multiple parts, and

12 2. BACKGROUND

distributes the parts over a peer-to-peer network, mapped with a distributed hash
table. The nodes in the network, remove their part of the key, after 8 hours. (If one
wish to have an expiration time exceeding 8 hours, the peer-to-peer network nodes
must be updated.) In this manner, the data will be unavailable, even if it is not
deleted by the storage provider. With their approach they avoid relying all trust
in one single third party key manager, which they argue is in their favour. A third
party key manager could be untrustworthy, or even if trustworthy, clients can be
reluctant to trusting them.

All identified deletion schemes rely on encryption of the data and the corresponding
keys to fulfil their purpose. This automatically removes the possibility of processing
the data, unless the cloud provider is given the keys. Also the timing-based key
schemes limit their application in terms of expiration dates on the keys.

Deletion in general In chapter 4 we present a new thought of a cryptographic
scheme which will provide the tenants with proof of deletion by an economical rational
cloud provider. As we shall see, the new scheme will take advantage of an hourglass
function similar to the ones we present in section 2.3. We briefly introduce some
thoughts around the deletion methods presented above and what one might have to
consider when handling deletion in general.

The term deletion has been interpreted and defined in many different ways,
however, Reardon et al. [20] define it as:

"data is securely deleted from a system if an adversary that is given
some manner of access to the system is not able to recover the deleted
data from the system"

The identified schemes for cloud environments previously discussed, are not
focused on the deletion of the actual data, rather the insurance that if the encryption
keys are unavailable (deleted) the data will be irretrievable. At the present, for
sufficient choice of encryption method, this is true - also according to the mentioned
definition. However, as criticized before [21], this approach is only as strong as the
underlying encryption method, and the future could develop into ways of undermine
these encryption methods. The everyday increasing development in computation
power, and presently unknown loopholes in encryption methods, leaves these schemes
vulnerable for the future, thus one can argue them not safe.

In addition, as we mentioned the revealing of Snowden, the encrypted data may
not even at current time be secured from organisations having knowledge about
backdoors into standardized crypto algorithms. Thus, leaving data encrypted after a
deletion, would not be preferable.

2.3. HOURGLASS SCHEME 13

Also, one might consider the scenario where one does not wish to encrypt the
data before outsourcing it to a cloud provider for storage. This could be the case,
when the data is required to undergo processing in the cloud. To ensure deletion of
this data, there are no encryption key to dispose of. This implies that these schemes
are limited by the intended usage of the data.

As we shall see, the proposed scheme in chapter 4 applies overwriting of the
intended data for deletion, instead of encryption key removal.

In most normal file systems, a deletion of a file will not actually remove the data.
When executing a deletion, a reference to the actual file is removed from the register,
and a bit in the file header is flipped [22]. The flipped bit indicates that the space
which the file occupies on the disk, is now available for new data. This can potentially
lead to that the intended data is never overwritten by new data, and will forever be
available to retrieve for users with some degree of computer skills. A known way of
ensuring that the data is no longer retrievable is to overwrite the data with random
generated data. This by far makes the probability of a malicious user being able to
recover the deleted data smaller.

It is discussed that to completely ensure no chance of recoverability, a certain
number of overwrites must be executed (35 overwrites are advised by Gutmann [23]).
This, however, has been criticised not to have as much importance as first thought.
Wright and Kleiman [24] reveal that by a single overwrite, one would have only
slightly better than 1/2 chance of predicting the original bit, which is close to simply
guessing it. The best result measured was a 56% success ratio. This implies that to
guess a character (one byte, 8-bit) correctly, there is a 9% (0, 568) chance of success.
The probability for successfully restoring the original data at bit level, decreases
as the number of sequential bit guesses increases. Based on these observations, we
propose a scheme which takes advantage of a single overwrite of the intended data,
to ensure the data unavailable for the future.

2.3 Hourglass scheme

In this section, we present in detail, the hourglass scheme proposed by Juels et al.
[2].

The proposed cryptographic scheme is designed for providing the user of some
cloud storage service an assurance that the stored data is kept as agreed upon, and
to strongly motivate the cloud providers to fulfil its part of the agreement. This
means that if the client and cloud provider have an agreement about storing data in
an encoded form, the scheme provides measures for the client to challenge the cloud
provider for proof of correct encoding. The scheme presented applies to solutions

14 2. BACKGROUND

where the cloud provider has access to the raw data of the client for processing
purposes, meaning the encoding of the data is handled by the cloud provider itself.
In cases where the cloud provider has such access, a cheating cloud provider can store
the raw data instead or in addition to save resources by not having to decode data
when raw data is needed. The proposed scheme however presents strong economical
incentives for the economical rational cloud provider to actually store the clients
data encoded, when the data is at rest. An economical rational cloud provider would
not misbehave if the consequence of doing so inflicts a certain cost. The framework
of the hourglass scheme contains the necessary means so the client can ensure such
compliance.

The term at rest is used when we talk about data stored at the cloud provider,
when the data is not needed for processing. In the case of the hourglass scheme, data
should be under a defined encoding when at rest.

The encoding can be of the clients’ choice, e.g. encrypted, watermarking or file
binding, and is more or less independent of the actual hourglass transformation.
Encryption encoding is the form they focus on in the original hourglass paper [2].

2.3.1 Challenges and solution

Imagine the client wants to store the file F in an encrypted form at the cloud provider,
where F represents the file in a raw format. When encrypting F , the file takes the
format G. Transformation from F to G is referred to as the encoding phase. Figure
2.3 displays the generic hourglass protocol as it is presented in the original paper,
with the functions and interactions involved between the tenant and cloud provider
when executing the hourglass scheme. This is constituted by three phases. Encoding
phase is the first phase.

Sending challenges on parts of, or the entire encoding G, will not be sufficient proof
that the cloud provider actually is storing the data encrypted. As symmetric key-
encryption is fast, the encryption could be done on-the-fly by the cloud provider, when
receiving the challenge. The encoding phase consists of the methods keygen− enc
and encode, which respectively generates a secret encoding key and encodes the raw
data provided by the client, using the secret key.

To solve the challenge of encrypting on-the-fly, an additional transformation of
the clients data is required, applied on the encrypted file G. This transformation,
referred to as the hourglass encapsulation phase (Phase 2 in figure 2.3), encapsulates
all blocks of G in a new format through use of the hourglass function, and results
in the hourglass format H. The idea is that the hourglass function has some timing
bound with an upper limit T , which means the cloud provider will not be able to
execute the hourglass encapsulation in less than T time. The timing bound for

2.3. HOURGLASS SCHEME 15

Client Cloud Provider
Phase 1: Generate file encoding
input: file F = F1...Fn

F−→ κ← keygen− enc
G = encode(κ, F)

G,π←−− π ← Proof of correct encoding

Phase 2: Hourglass encapsulation
H ← hourglass(G) [H = hourglass(G)]
Generate integrity checks IH on H IH [,H]−−−−→
Phase 3: Format checking
{ci ← challenge}ti=1

Start timer ci
t
i=1−−−→

{ri = respond(H, ci)}ti=1
ri

t
i=1←−−−

Stop timer τ : elapsed time
Accept iff {verify(H, ci, ri) = true}ti=1

(using IH)[and τ ≤ T]

Figure 2.3: Generic hourglass protocol as presented in [2]

hourglass functions, are associated with a resource bound at the cloud provider.
Such resource bound could be on storage, computation or networking. For example
a storage resource bound is the delay which is experienced by rotational hard drives
when seeking for and reading data blocks. With knowledge about the characteristics
of the resource bounds, one can take advantage of these to implement hourglass
functions.

A challenge with the hourglass function is that the cloud provider could store
the file or parts of it in the hourglass format, but additionally keep a raw copy of
the file, which it use when processing is necessary, referred to as the double storage
problem. However, this is where the economical incentives of the hourglass scheme
take effect. In the work with the original paper, they show that the cost of storing
the extra data, will exceed the cost of executing the hourglass function. In section
2.3.5 we go more into detail about this.

The original file F is constituted by n blocks of size l bits, where Fi denotes the
ith block of F . For the encoded file G and the hourglass encapsulated file H, similar
notation applies, n is the number of blocks in the file, with a block length of l bits.
Gi and Hi represents the ith block of G and H, respectively.

16 2. BACKGROUND

Once the file is encapsulated in the hourglass format H, the client can challenge
the cloud provider for proof of correct encoding. This phase is referred to as the
format checking phase (Phase 3 in figure 2.3). The client selects a random block
index i (ci) and challenges the cloud provider to respond with the correct response,
based on block Hi from H. Challenges can also be sent on multiple random selected
blocks of H. An honest cloud provider simply looks up block Hi of H and responds
with ri. This is a quick operation including only a seek and read for a sequentially
stored H. While, the cheating cloud provider which stores only the raw file F ,
must do the entire encoding (G) and encapsulation (H) of the file to be able to
produce the correct response. The hourglass encapsulation alone is a process which
on average takes T time. Upon verification, the client can check that the challenge is
provided the correct response by applying the challenge ci, response ri and hourglass
encapsulation H to the verify function. If the elapsed response time τ is less then
time bound T , the client can conclude that the cloud provider did store the data in
an hourglass encapsulated format.

The three phases mentioned, namely file encoding, hourglass encapsulation and
format checking, constitute the generic hourglass protocol.

In the original hourglass paper they assume, for simplicity, that the tenant has
knowledge about the entire hourglass encapsulated file H. This basically implies that
the tenant stores its own copy of H, and upon verification of responses, it checks H
together with the response and challenge. This is impractical, and removes much of
the incentives of outsourcing the data. However, they state that a simple MAC or
Merkle tree method could be applied in a real world implementation, to reduce the
storage of the tenant. In chapter 4 we will look into verification methods that can be
applied.

Naive approach

In the original hourglass paper [2] a naive approach to achieve an hourglass
function is presented to illustrate some challenges.

The suggested function mixes all blocks of the encoded file G in such a manner
that any block Hi will be dependent on all blocks in G. This would be a time
consuming process which a cheating server, storing only raw file, will not be able to
perform in less then T time. Figure 2.4 illustrates the process.

To achieve this dependency the approach would use a pseudorandom permutation
(PRP) of G by applying a block cipher in cipher block chaining (CBC) mode in
two directions over the intended file. Running a CBC over a series of blocks, makes
each block in the chain dependent on all preceding blocks in the chain [25]. In the

2.3. HOURGLASS SCHEME 17

naive approach the block cipher is indicated by the notation enck, where k is the
key. The key is known to the server, for reversal reasons. It first applies the CBC
over every block in G, and stores the result for every round as an intermediate value
Ai, where i is the ith round. The initial round takes an IV as input, denoted by
IVf , where f indicates it is for the forward round. Equation 2.1 defines the forward
round. After the forward round every intermediate block Ai will be dependent on the
previous intermediate block Ai−1. Then it applies the CBC one more time, in the
reverse order with the intermediate blocks Ai and Hi+1 as input for each round. This
time the initial round takes IVb (backward direction) and An as input. Equation
2.2 defines the backward round. The output of each round produces the hourglass
encapsulated blocks, Hi. This makes every single block in H dependent on all blocks
in G.

A1 = enck(G1 ⊕ IVf), Ai = enck(Gi ⊕Ai−1) (2.1)

Hn = enck(An ⊕ IVb), Hi = enck(Ai ⊕Hi+1) (2.2)

The problem with this solution is the possibility to store chosen values of the
computation to be able to produce a response on-the-fly.

Lets say the server stores the raw file F , and additionally every 10th interme-
diate block of A and encapsulated block H. When challenged on e.g. H14, the
cloud provider could on-the-fly encode F to G. Then, as it is in possession of the
intermediate blocks it can compute the forward chain A10 . . . A19 and retrieve H20,
and then compute the backward chain, using the computed blocks in the forward
chain as input, until it reaches H14 (H20, H19 . . . H14). As this only requires a partial
computation of the chain, it would be less time consuming, and could be executed
on-the-fly in less then T time.

18 2. BACKGROUND

Figure 2.4: Naive approach

To solve the problem in the naive approach, three hourglass functions are proposed,
namely the butterfly function, permutations function and RSA function.

2.3.2 Hourglass functions

Butterfly function

The butterfly functions resource bound relies on an upper bound on the number of
storage accesses which can be executed within a time bound. The function applies
a cryptographic operation w on blocks two by two in a number of rounds d, a bit
similar to the naive approach but with different permutation method. For each round,
each block is combined with a new block, given by the butterfly hourglass algorithm,
right side of figure 2.5. Each cryptographic operation makes the two output blocks
dependent on both of the input blocks. By switching the index of input blocks for
each round, a dependency between all original file blocks and each single hourglass
encapsulated block will exist. The number of rounds d in the butterfly function is
dependent on the number of blocks n in the file, d = log2 n. Gj [i] represents the ith
block at the jth level in the butterfly, where 1 ≤ j ≤ d and 1 ≤ i ≤ n. Left side of

2.3. HOURGLASS SCHEME 19

figure 2.5 shows an execution of the butterfly function on a file with n = 8 blocks.

In practice the cryptographic operation is typically a known key pseudo-random
permutation (PRP), such as a block cipher. The operation is involved in a butterfly
encapsulation n log2 n times.

The butterfly function solves the problem from the naive approach through
permuting the intermediate nodes instead of chaining them. This limits the possibility
to use intermediate nodes on the computation from G to H, to deliver a large fraction
of the encapsulated format H. We look more into this in section 2.3.3 and 2.3.4.

Figure 2.5: Butterfly algorithm as presented in [2]

Permutation function

The permutation-based hourglass function provides good security without cryptog-
raphy, making it extremely fast and simple. Its security and resource bound relies on
the characteristics of random accessing data on rotational hard drives. Rotational
hard drives are optimized for sequential file accesses and perform poorly on random
data access. This method is taking advantage of these characteristics, by permuting
the content of the encoded file G widely across H.

This implies that if an adversary cloud provider is challenged on a block Hi, but
stores no or only partial information about H, it must collect elements of Hi which
are widely spread over G, to produce the satisfying response to Hi. This would
require a number of random accesses, since the elements of Hi is not located in a
sequential order. As random access is a time consuming process it slows down the
cloud providers response time.

The encoded file consists of n blocks. The permutation is executed on symbols,
where m symbols constitute a block. Symbol are represented as a sequence of z
bits. The notation Gi[j] represents the jth symbol of the ith block of G. Thus, a
file is divided into n ∗m symbols, where G[k] represents the kth symbol in a symbol

20 2. BACKGROUND

wise representation of G, where k is defined within 0 ≤ k ≤ n ∗m − 1. Figure 2.6
illustrates the symbol wise permutation of a file. In the first step the file is encoded
in the chosen format. Second, the file is permuted following a defined permutation
pattern.

The permutation pattern used has the property that, for the m symbols of
the encoded block Gi, the symbols are uniformly distributed over the hourglass
encapsulation H. The following permutation pattern were used in the original paper:

H[i] = G[ih mod nm] and G[i] = H[ig mod nm]

with gcd(hg, nm) = 1.

This gives H[i] = G[ih mod nm] = H[igh mod nm], thus gh = 1 mod nm.
The parameters h and g are inverse of each other and gh = 1 mod nm has a solution
only if gcd(gh, nm) = 1. The parameter g is defined as g = dτs/τrem+ a for some
0 ≤ a < m, where τs and τr are the average seek and read time for rotational hard
drives, respectively. Through this, all parameters needed to execute the hourglass
function on a file can be calculated.

Example parametrization of the permutation function is provided in section 2.3.4.

Figure 2.6: Permutation function, inspired by [3]

RSA function

The RSA-based hourglass function uses an RSA signing of G to encapsulate the
encoded format to the hourglass format H. The protocol uses a function f with

2.3. HOURGLASS SCHEME 21

the property of it being hard to invert. The function f has the requirement of
being a trapdoor one way permutation, where the client has knowledge about the
trapdoor K and the cloud provider has not. When performing the encapsulation, each
block Gi is inverted through the trapdoor function f to produce the corresponding
hourglass block Hi, Hi = f−1(Gi). Figure 2.7 illustrates the process. The hourglass
encapsulation phase is executed at the tenant, and later H is sent over to the
cloud provider for storage. The resource bound on the RSA function is solely on
computation, rather than storage. In the original hourglass paper, the RSA scheme
is presented, but no implementation or experiments was done with it, because of the
strengths of RSA and its way of working is well documented.

Figure 2.7: RSA function, inspired by [3]

2.3.3 Security analysis

The security analysis in the original paper provides a security theorem for the different
hourglass functions. The analysis discusses how the adversary can store intermediate
blocks of encoded and large fractions of raw data, to successfully respond to challenges
from the clients, while omitting to store the file in an hourglass encapsulated format.
The theorems provides a formula which gives a value to the extra storage the adversary
cloud provider needs to produce the correct responses. We will here focus on the
butterfly and permutations functions as these are the ones they implement in their
experiments.

Butterfly function

The analysis under the butterfly function experiments with the thought of the

22 2. BACKGROUND

adversary sitting on intermediate values in the butterfly graph (blocks in the trans-
formation from G to H) and blocks of the raw data, called black pebbles and red
pebbles respectively. The adversaries storage H ′ starts with an initial configuration
of red and black pebbles. Given a pair of black pebbles in storage H ′, the adversary
can input these to the operation w, where the output will be two new black pebbles
on the next level in the butterfly graph. The goal of the adversary is to have the
best possible pebble configuration, so that it can successfully respond to challenges
from a client, while still keeping a large number of red pebbles in its storage.

As the butterfly function is time-based, it is dependent on some time bound in
the challenge response protocol which sets the limit of time the server can use to
respond with the correct response. The time bound is denoted as T , and translates
into an upper bound determined by a parameter ε < 1 and n. εn sets an upper limit
for the number of storage accesses the server can do.

Through their security analysis they prove the following theorem for the butterfly
function:

Theorem 1 Suppose A can successfully respond to t challenges on randomly
selected blocks of size l bits of H with a probability α, using extra storage of size s’
and up to εn timely block accesses. Then:

s′ = min{α1/t · nl · (1− ε, nl · (1− ε) + log2 α
1/t} (2.3)

We interpret the meaning of the theorem in section 2.3.4.

Permutation function

The security analysis for the permutation function relies on parameters in a timing
model for rotational drives. Rotational drives are designed for optimal performance
on sequential read of data. When blocks are scattered over a disk, a seek process
must be performed for each block read which are not sequentially placed together.
This is a time consuming process as the read head must be moved to correct location
on the platter for each block. The seek time is dependent on the rotational speed and
the time the read head needs to move to the correct track of the hard drive [26]. In
the drive model for the rotational drives, a constant seek time is assumed, τs. Also,
constant read time for a block is assumed to be τr. A sequential read of e blocks are
thus defined as, τs + (e− 1)τr. A timing bound for an adversary server A is defined
as T , which is the time bound for responses to a challenge block from a client.

2.3. HOURGLASS SCHEME 23

In reality a server will likely store files in parallel, i.e. on multiple drives, making
symbol lookup d times faster for d parallel storage units. However, this will not
reduce the adversaries overhead storage s′ with a factor of d. The read of a response
block for an honest server to a challenge on Hi, will still be faster then collecting m
symbols from d drives for the adversary, for d < m. Also, if the client can estimate
the degree of parallelism d for the adversary, it could challenge for d number of
blocks.

Through their security analysis they prove the following theorem for a challenge
on a single block of H:

Theorem 2 [2, Theorem 3] Let T, τs, τr,m, l and n be defined as above satisfying
2m ≤ l(m− T/τr). Suppose A can successfully respond to a challenge on a randomly
selected block of H with probability α ≥ 3/4. Then the following bound holds for the
extra storage used by A, where k = min{bτs/τrc, 1 + bn/(2m2 + fl/3)c}

s′ ≥ (2α− 1) · nl · m− T/(k · τr)
m− 1 (2.4)

2.3.4 Comparison of hourglass functions

Figure 2.8 and 2.9 display graphs for the overhead relationship for an adversary
provider, with different values of α ranging from 0 < α < 1 with a 0.1 interval,
for theorems 1 and 2, respectively. We used the same parameters for block and
symbol size as they did in the original paper with their example parametrisation.
The parameters used are t = 1 challenge (no other option with theorem 2), block size
128 bit and 4 KB for the butterfly and permutation function, respectively. We used
a 64 bit symbol size, τs = 6ms, τr = 0.03125ms and T = 6ms for the permutation
function. For the butterfly function the parameter ε was set to 0.05.

We experienced that the file size had no impact on the overhead relationship.
The overhead relationship is defined as the overhead bit amount s′, divided by the
original file size. We observe that the overhead is linear, dependent on the success
probability α.

As an example, the adversary for the butterfly function must store an additional
0.94n blocks in addition to the raw file F to successfully respond with 99% certainty
on a challenge from the tenant. The adversary in the permutation case must store
0.89n additional blocks for the same requirement.

24 2. BACKGROUND

Figure 2.8: Overhead data s′ for butterfly function

Figure 2.9: Overhead data s′ permutation function

Table 2.1 summarize and compares the characteristics of the three hourglass
functions presented in the original scheme. As we shall see in section 3.3, the functions
depart in usage based on the characteristics of computation cost. The RSA function
stand out from the other two, by not providing the server with the ability to compute
the hourglass encapsulation and on resource bound. The permutation function is the
simplest one, not relying on any cryptography to achieve its purpose.

2.3. HOURGLASS SCHEME 25

Butterfly Permutation RSA
Resource bound Storage Storage Computation
Computation cost Medium Low High
Cryptography Yes No Yes
Server compute H Yes Yes No
Timing based Yes Yes No

Table 2.1: Comparison of hourglass functions

2.3.5 Economic incentives and arguments

As previously mentioned, the hourglass scheme gives the cloud provider economical
incentives to store the tenants data as agreed upon. In this section we elaborate on
how the use of the scheme would impose the providers with these incentives.

The obvious reason for the cloud provider to act as agreed upon would be that if
caught cheating, this could impose great economical losses, for example in terms of
reputation, loss of clients, law suits and so on.

However, the hourglass scheme presents a more sophisticated method to motivate
the cloud providers to do as agreed upon. It is of such character that it is not
economical reasonable for the cloud provider to store a raw copy of the data, in
addition to the encapsulated format. This is realized by the fact that extra storage
implies extra costs for the cloud provider, while the extra cost of executing the
hourglass encapsulation is substantially lower. Dependent on how often the raw
data needs to be accessed for processing, the cost will vary. To elaborate - as each
execution of the hourglass function adds a certain cost, the sum of these costs must
be lower then e.g. a monthly cost of storing the extra data. From the experiments
in the original paper, they identify that the butterfly function is well suited for
storage where access to the raw data is rarely needed, while the permutation function
is better suited in cases with more frequent raw data access (in the hundreds per
month). The numbers related to cost and storage are presented in section 3.3.

Chapter3Practical analysis

In this chapter the practical work conducted in the thesis is presented. We wanted
to do an implementation of the experiments done in the original hourglass paper,
to compare the results and get an insight in how different implementations and
hardware specifications would affect the performance and economical arguments.
The first section presents the implementation conducted in the original hourglass
paper and the choices and details we did with our implementation. Second the results
are compared and discussed up against each other. Third, an economic analysis will
look into the pricing and performance to evaluate the economical arguments, also
with current cloud provider prices.

3.1 Implementation

3.1.1 Original Hourglass paper implementation

In the work with the original hourglass paper, experiments with the butterfly and
permutation hourglass function where conducted, both in an Amazon EC2 [27] cloud
environment and on local hardware. The local machine had an i7 980X processor
running 6 cores at 4 GHz, and hardware support for AES encryption.

The butterfly function was implemented in two versions, one single threaded
and one multi-threaded version. Running the hourglass function as a single thread
implies that only one core of the CPU is exploited at the same time, and parallelism
is not available. This of course affects the time required for the encapsulation to
finish. The cryptographic operation (w) used in the butterfly function was a AES
block cipher, and thus the block size for the file was set to 128 bit, as this is the
block size in which AES operates on. As mentioned their local machine has hardware
support for AES, which is a benefit for the butterfly implementation, performance
wise.

27

28 3. PRACTICAL ANALYSIS

For the permutation function they used the construction mentioned in section
2.3.2 to permute the file and scatter the symbols widely over H. As parameters
they defined the block size as 4KB, and the symbol size z as 64 bits. This gives the
number of symbols in a block, m = l/z = 512. They implemented the permutation
function in a stream lined fashion. This means, as soon as a block has been read from
the hard drive into memory, the symbols of the block are permuted to their respective
placement in the hourglass result H. This will give performance advantages compared
to reading the whole file into memory, before applying the permutation operation.

3.1.2 Our implementation

Like for the experiments conducted in the original paper, we also implemented the
butterfly and permutation hourglass function, but we only did a local implementation.
Not much detail about their implementation was reviled in the paper, with thought
to pseudo code or type of programming language used. This caused us to make some
assumptions and guesses along the way, resulting in code which probably could be
done more efficient by a more experienced programmer.

Our machine ran an Intel Core i7 860 processor with four cores running at 2.80
GHz. With thought to the butterfly function implementation, the processor did
not have hardware support for AES, so a software implementation was used instead.
Python was used as programming language, and the choice was based on previous
experience and simplicity of the language. The AES software implementation used
was the one provided by the PyCrypto library for Python [28]. Based on this platform,
we had a weaker basis for achieving efficient performance results.

From the original hourglass paper we used the information about their experi-
ments as best as we could to produce our implementation. Thus, for the butterfly
function we also chose an AES block cipher in the operation w and a 128 bit block
length (l), and used the butterfly algorithm specified in section 2.3.3 to define the
butterfly permutation. We used an electronic codebook (ECB) [29] mode for the
AES encryption. For simplicity we chose to do a single thread implementation of the
butterfly function.

The specified butterfly algorithm does not specify, on block level, how parts of
two blocks are mixed to produce the sufficient dependency between them, i.e. for
each invocation of the operation w, some mixing of the two input blocks must be
performed before they are delivered to the AES encryption within w. Remember,
the goal of the butterfly function is to make every single encapsulated block Hi,
dependent on all encoded blocks in G. Figure 3.1 shows how our implementation of
the w operation realized the mixing of two blocks. It takes two blocks of size 128 bit
as input, and switches 64 bits of each block to the other. In this manner the output
blocks will be dependent on both input blocks. Following the butterfly algorithm

3.2. COMPARISON OF PAPER RESULTS AND PRACTICAL WORK 29

which mixes the indexes of input blocks for each round, we achieve the necessary
dependency. With this approach there is two invocations of the AES block cipher for
each invocation of w, giving a total of n log2 n invocations of AES for a n block file.

Our implementation of the permutation function used the same block and symbol
size as the experiments conducted in the original paper, l = 4KB and z = 64 bit,
thus m = l/z = 512 symbols in each block. First the function reads the whole file
into memory. Then the symbols of the file are places one by one in its correct location
in the hourglass file H, according to the permutation pattern in section 2.3.2.

Figure 3.1: Operation w, mixing of two blocks

The source code for our implementation is provided in appendix B.

3.2 Comparison of paper results and practical work

In this section we present the results of our implementation and make comparisons
with the result from the original hourglass paper. As mentioned, they implemented
their solution both locally and on an Amazon EC2 instance for the butterfly and
permutation function. The butterfly function they implemented both as a single-
thread version and a multi-thread version.

30 3. PRACTICAL ANALYSIS

With our work we have confirmed that an implementation of the hourglass
functions can be achieved. The implementation provides a relative cost comparison
of the butterfly and permutation functions.

Comparison of performance results between the original paper and our imple-
mentation, shows a more efficient implementation in their favour. Much because of
hardware advantages (AES support and processor clock rate), but also likely because
of software decisions and implementation details resulting in more efficient code.
Figure 3.2 shows the performance results of their implementations, both on the local
machine (left side of figure) and on the EC2 instance (right side of figure). All their
tests were executed 5 times, and the figures display an average of these runs.

Figure 3.2: Performance results from hourglass paper (taken from [2])

Comparing their result shows that the multi-threaded butterfly implementation,
used on large files, is a factor of 5 times faster then the single threaded, both locally
and on the EC2 instance.

Comparing the timing results between the local and EC2 butterfly implementation
(both single and multi-threaded), shows that the local version is a factor of 4 times
faster then the EC2 version. This is mainly due to the hardware support for AES on
the local machine.

The permutation implementation is a factor of 8 times faster then the multi-
threaded implementation on the EC2 instance, and 4 times faster locally. Much
because, the permutation function does not include any encryption operation.

Figure 3.3 and 3.4 shows our performance results for the butterfly and permutation
function, respectively. As with the experiments in the original hourglass paper, the
figures display an average over five runs with the hourglass functions. One quickly
observes that our implementation is more time consuming. For the butterfly function,
a 256 MB file requires a processing time of 1276 seconds on average. All timing

3.2. COMPARISON OF PAPER RESULTS AND PRACTICAL WORK 31

results are summarized in appendix A. To comparison, the same file would require
about 14 seconds with the implementation done in the original paper.

The above estimate is made from the left side of figure 3.3, which indicates
that the single thread implementation uses 60 seconds on a 1 GB file. As the
performance is linear, we calculate a throughput of about 18 MB per second for
their implementation, resulting in a 14 second execution time on the 256 MB file.

If we compare the achieved results of the implementation in this thesis up against
each other, we find that our permutation function is a factor of 25 times faster than
our single-thread butterfly implementation. This is comparable with the difference
in the original implementation. They experience a performance difference between
the same implementations, with a factor of about 20 locally. This shows that even
though our performance times are weaker, the results relate in computational cost
when times are compared internally.

Running the inverse hourglass function, i.e. decapsulation, we experienced the
computation cost to be relatively close to the computation cost of the hourglass
encapsulation for the same file. For example, the average cost of 5 runs over a 128
MB file for the permutation encapsulation takes 22.73 seconds, opposed to 21.32
seconds for inverse. Same comparison for the butterfly function gives a 613.25 second
encapsulation time and 619.46 second inverse time (see appendix A).

Figure 3.3: Performance results of our butterfly implementation

32 3. PRACTICAL ANALYSIS

Figure 3.4: Performance results of our permutation implementation

3.3 Economical perspective

In this section we will look into the economical numbers which are presented in
the original hourglass paper. As the incentives for the hourglass function to hold
are much based on the economical arguments, we will discuss and update the price
tables used in the paper with current prices, and also evaluate how the economical
incentives would relate to our hourglass implementation.

As mentioned, the cloud instance used in the implementation of the original
hourglass schemes was an Amazon instance of Elastic Compute Cloud (Amazon EC2)
[27]. This is a cloud service which allows the tenant to scale up or down dependent
on performance and storage needs for its service. Amazon provides the infrastructure
and hardware, and the tenants rent virtual machines and resources which can run
operating systems and software of the tenants choice. This is an IaaS deployment
model, as presented in section 2.1. The pay plans for the tenants are dynamic,
meaning they will only be charged for the resources that are used. As tenants have
different needs, different pay plans exist and the best suited can be chosen [30].

The pay plan for an Amazon instance of the EC2 service platform depends on
different aspects. One can choose instance after what requirements are needed for
your service. One can choose to pay nothing up front and be charged by the hour for
as long as the instance is up and running, so called on-demand instances, or one can
pay a fee up front, and get discounts on the hourly prices, reserved instances.

3.3. ECONOMICAL PERSPECTIVE 33

It is not mentioned which pay plan is used for the EC2 instance in the experiments
with the original paper, other than the hourly fee that was 68 cent per hour. It is
reasonable to assume that they used a pay plan which there was no upfront payment,
thus they were only charged by hourly use. For such services the current prices range
from 7 cent and goes up to $4.60 per hour dependent on the instance of choice.

The different EC2 instances are categorized in different types, with different
advantages depending on its usage. Namely, the types vary in focus on CPU, memory,
storage and network capacity. In the original paper it is mentioned that they used a
quadruple-extra-large high-memory (m2.4xlarge) instance [31] and an EBS storage.
Table 3.1 displays the specification of this instance together with the options for
current memory optimised instances [30].

Model vCPU ECU Memory (GB) Storage(GB) Price
Instance used in [2] m2.4xlarge 8 26 68.4 1690(HDD) 68

Current instances

r3.large 2 6.5 15 32 (SSD) 17.5
r3.xlarge 4 13 30.5 80(SSD) 35
r3.2xlarge 8 26 61 160(SSD) 70
r3.4xlarge 16 52 122 320(SSD) 140
r3.8xlarge 32 104 244 2x320(SSD) 280

Table 3.1: Spesification for memory optimized Amazon EC2 instances. The price
(in cents) is per hour.

The concrete performance data for EC2 instances are difficult to identify. The
performance of different instances is dependent on the underlying commodity hard-
ware, and computational power is shared among users subscribing to virtual CPU
cores. However, Amazon measures the CPU performance in what they call ECU
(EC2 Compute Unit). One ECU is defined as 1.0-1.2 GHz on a 2007 server processor
[32]. Different EC2 instances are provided with an ECU calculation based on the
underlying hardware.

Comparing the specifications for EC2 instance used in the original hourglass
paper, with current EC2 instances indicate that the r3.xlarge instance model is the
one closest to what they used (m2.4xlarge). It has the same number of vCPU (virtual
CPU) and ECUs, and roughly the same amount of memory. This instance is priced
at 70 cent per hour usage.

For storage and price references, they use the Elastic Block Store (EBS) from
Amazon. EBS is a storage type designed to operate with an EC2 instance. It is
basically storage volumes that can be directly attached to an EC2 instance, when
needed. It allows for easy and quick scaling of storage.

34 3. PRACTICAL ANALYSIS

At the time of their experiments, the price for EBS storage was 10 cent per GB
per month. As of now, the price for a standard EBS volume is 5 cents per GB.

We observe that the provided storage capacity for the new EC2 instances are SSD
drives, opposed to HDD drives for the old instance. If the hourglass encapsulation
was to be stored and executed on a SSD drive, the performance parameters would
have changed (discussed in chapter 5). However, we assume a persistent EBS storage
connected to the EC2 instance, where encapsulated files and execution of hourglass
function is done. HDD drives are still the standard storage hardware for Amazon
EBS. We argue this to be a fair assumption, as the storage provided with the EC2
instance is non-persistent. This implies that the stored data will be removed as soon
as the instance is taken down, as opposed to a persistent storage like EBS storage
[33]. Thus, EBS storage is preferable to use when storage is to be obtained for the
unseen future, as with the use of an hourglass function.

Table 3.2 shows the cost of executing the butterfly and permutation function, on
the Amazon EC2 instance for different files at the time of the experiments in the
original hourglass paper. The rightmost column shows the monthly cost of the EBS
storage, for the same files. Comparing the cost of performing the hourglass functions
(0.96 or 0.03 cent for 1 GB file) and storing a raw copy of the same file (10 cents
per month for 1 GB file), shows that it would not be economical rational by a cloud
provider to store an additional raw copy on a monthly basis. The butterfly function
could roughly be executed 10 times per month (to retrieve the original data), before
the computation cost exceeds the cost of extra storage. For the permutation function,
this factor increases to roughly 270 executions per month.

File size Butterfly Permutation EBS storage
Time Cost Time Cost Cost (monthly)

1 GB 50.91 0.96 1.64 0.03 10
2 GB 103.96 1.96 3.24 0.06 20
4 GB 213.07 4.02 6.45 0.12 40
8 GB 432.91 8.17 12.73 0.24 80

Table 3.2: Performance (in seconds) and cost (in cents) for butterfly and permutation
function, as presented in [2], from F to H. To the right, is the monthly cost (in
cents) for storage of the same file on an EBS instance.

Table 3.3 displays performance results compared with current prices for an EC2
instance and EBS storage.

As we assume the same computation performance for the identified EC2 instance
in table 3.1 and the instance used in the original paper (same number of ECUs),
the timing of the functions are the same. This implies that the 2 cents increase in

3.3. ECONOMICAL PERSPECTIVE 35

the hourly fee of an EC2 instance (from 68 cent to 70 cents), affect computation
cost minimally. However, as the EBS storage cost is halved per GB, this implies a
noticeable decrease in the number of executions for the economical argument to hold.
Still, one could execute the butterfly function roughly 5 times and the permutation
function 135 times on a monthly basis. This illustrates that the hourglass functions
are strongly dependent on the pricing at cloud providers.

File size Butterfly Permutation EBS storage
Time Cost Time Cost Cost (monthly)

1 GB 50.91 0.99 1.64 0.03 5
2 GB 103.96 2.02 3.24 0.06 10
4 GB 213.07 4.14 6.45 0.13 20
8 GB 432.91 8.42 12.73 0.25 40

Table 3.3: Performance (in seconds) and cost (in cents) for butterfly and permutation
function with current Amazon pricing. The right column is the monthly EBS price
(in cent)

We wanted to do a price estimate for deployment of our implementation in an
Amazon EC2 environment.

The performance difference between the local machine we used and the EC2
instance they used are quite noticeable. So a cost comparison based on the prices
which are charged for their EC2 instance and our results would be misleading.
To make this comparison more realistic, we identified an EC2 instance with more
matching performance specifications to the hardware we had available. Recall, our
machine runs an Intel Core i7 processor running at 2.8Ghz and a 4 GB memory.
This specifications are closest comparable with the m3.medium EC2 instance model
[30]. This instance has a 3.75 GB memory, 1 vCPU and is classified with 3 ECU
performance. The cost of this instance is 7 cent per hour.

Table 3.4 shows the expected cost, if the implementation done in the work with
this thesis was to be applied with the EC2 instance identified above.

For the butterfly implementation we identify that the cost of executing the function
exceeds the monthly cost of storing a raw copy in addition to an encapsulated format.
Thus, despite the affordable EC2 instance, the performance is too weak, and the
double storage problem is not solved with our butterfly implementation.

However, the permutation function seems to hold. Here the hourglass encapsula-
tion could be executed roughly 14 times for the monthly cost of the same amount of
storage.

36 3. PRACTICAL ANALYSIS

File size Butterfly Permutation EBS storage
Time Cost Time Cost Cost (monthly)

4 MB 14.95 0.029 0.69 0.0013 0.02
32 MB 139.63 0.272 5.54 0.011 0.16
64 MB 292.31 0.568 11.42 0.022 0.31
128 MB 613.25 1.192 22.74 0.044 0.63
256 MB 1276.80 2.483 44.87 0.087 1.25

Table 3.4: Performance (in seconds) and cost (in cents) for butterfly and permutation
function for the experiments conducted in this thesis on an Amazon EC2 instance.
To the right, is the monthly cost (in cents) for storage of the same file on an EBS
instance.

As this is a comparison of the results on our local machine and a suggested
matching EC2 instance, we realise that the outcome could be somewhat different in
a real world scenario. It is difficult to compare the performance of local hardware
and the EC2 instances, even with the measurement of ECUs. The number of users
sharing the underlying hardware could also affect the performance results of your
instance, and vary between the different types of instances. If one rents a high
performance instance, the probability of sharing the underlying hardware is reduced
compared to a smaller instance [32]. Also, the price per ECU is reduced for high
performance instances. In our case, this implies that the cost per ECU increases
compared with the price paid in the original work, and the number of users sharing
the underlying hardware could also have been increased, affecting the performance if
one would have implemented the solution on this EC2 instance.

Chapter4Proposed Scheme

In this chapter we propose a new scheme which provides means for a tenant of a cloud
provider to verify proper deletion of data. First section defines a new encoding to be
applied for the deletion scheme. We also propose methods for the tenant to generate
sufficient integrity checks, releasing it from storing the encapsulated data as assumed
in the original hourglass paper. The second section presents the deletion protocol,
and interactions between tenant and cloud provider, taking advantage of the new
encoding, integrity checks and an hourglass function. Last, we discuss alternative
approaches and validity of the proposed scheme.

As discussed in section 2.2, the identified cryptographic schemes for deletion
in cloud computing applies to scenarios where the data is encrypted and keys are
handled by a trusted third party. Their definition of deletion also relies on that
removal of the encryption keys are sufficient method. We argued that removal of
encryption keys is risky as the unforeseen future could break today’s encryption
standards. Also, one may not wish to encrypt the intended data. We propose the
solution with our method, where the intended data is overwritten when deletion is
executed, and proof of this overwriting is provided to the tenant. It is independent
of the original encoding of the data. 1

As for the presented hourglass scheme in chapter 2, the proposed scheme will
consist of the same three phases. Namely, encoding phase, encapsulation phase and
format checking phase.

4.1 Encoding and integrity checks

For our scheme, a new encoding is defined. We also propose a way of generating
sufficient integrity checks, as this is not provided in the original hourglass paper.

1The approach in this thesis proofs that a single overwrite of the data has occurred, as the
discussion in section 2.2.3 concludes that it is sufficient. An extension of our scheme, could however
handle multiple overwrites.

37

38 4. PROPOSED SCHEME

4.1.1 Encoding - Random number generator

The encoding phase will consist of an overwrite of the data intended for deletion. We
here present the proposed method of creating the overwrite data.

Before overwriting, the actual data applied to the overwrite has to be produced.
This data must be known to the tenant, so he can verify upon receiving responses. A
random number generator (RNG) can be taken advantage of in this case. As we shall
discuss later, the data is preferable to be random, as opposed to just overwriting
with 0’s or any other predetermined string of data.

A deterministic or pseudorandom number generator (PRNG) is suitable for
our use. In contrast to a non-deterministic RNG which is based on randomness
of the physical environments/surroundings, the PRNG bases its randomness on
cryptographic algorithms and associated keying material [34]. The cryptographic
algorithms used for PRNG can be of different choices. In the NIST recommendation
in [35], they discuss four different approaches to PRNG, namely based on Hash,
HMAC, block ciphers and number theoretic problems.

Independent on choice of method for the PRNG, all PRNGs shall have a seed.
The seed is used to initiate the PRNG and should be based on a entropy source with
entropy equal to or greater than the security requirements of the intended application
[35]. The entropy source in software implementations are often based on system date
and time or other processor values.

The choice of method for the PRNG depends on its usage and security require-
ments of the intended application.

Why random

One could think that the data to use for the overwriting could just as simply have
been all 0’s or 1’s, as it often is when overwriting is applied with deletion. However,
in the case of proving that the overwriting has occurred, one quickly realise that this
would not apply. First of all, the data that will be written over the original data
cannot be predetermined. If this was the case, the prover could simply pre-compute
the correct responses for the format checking phase. In addition, for the permutation
function especially, if the data applied to the function is all 0’s or 1’s, the result of
executing the permutation function would inflict no difference on the result. It would
still all be a number of 0’s or 1’s, as it is only a permutation of the symbols. The
same, more or less, applies to the butterfly function if a block cipher in ECB mode
is used as the encryption method. The result would not be all 0’s or 1’s, but each
block of the encapsulation would result in the same output, as the same key is used
for the cipher.

4.1. ENCODING AND INTEGRITY CHECKS 39

4.1.2 Integrity checks

As mentioned in chapter 2, the original hourglass paper omits, for simplicity, to
specify an integrity check method on blocks of H, and assumes tenants knowledge
about the entire encapsulated file for verification on responses. We explain two
methods which take advantage of HMAC and Merkle tree to free the tenant from
storing entire H.

MACs

Message authentication codes (MAC) are used for integrity and authenticity checks
of data. The usage of hash MACs generate a compact output based on the input
of a secret key and an arbitrary length data. HMAC is one such way of generating
integrity checks.

The HMAC definition is presented in equation 4.1, as described in the RFC [36].

HMAC(K,m) = h((K ⊕ opad)|h((K ⊕ ipad)|m)) (4.1)

• h is the underlying cryptographic hash function
• K is a secret key
• m is the message to hash
• opad is an outer padding of the key
• ipad is an inner padding of the key
• ⊕ is an exclusive or operation
• | is a concatenation

The output length of the HMAC is of the same length as the underlying hash
function, h. h could be any approved hash function. Thus, in case of SHA-1 usage,
the output will be of length 160 bit. In our presentation we refer to the message m
as a block of the file intended for verification. The HMAC is applied to each block
m of the file, consisting of n blocks. The integrity checks would require a storage of
160 ∗ n bit, in case of SHA-1 usage. One could use a truncated version of HMAC
to reduce the storage cost of the verification blocks. This simply implies that the t
leftmost bits of the computed output is stored as the HMAC result [36]. One should
however not truncate the output more than to a 32 bit output [37]. The degree of
truncating is dependent on the security requirements of the intended application.

Upon verifying the original data, the verifier must be in possession of the secret
key K, the original block m and the corresponding HMAC computation.

40 4. PROPOSED SCHEME

Merkle tree

We propose the use of a Merkle tree to create integrity checks for the encapsulated
file H. Figure 4.1 shows the structure of a Merkle tree on a file with 8 blocks.
The blocks in the file to be verified are denoted by H1 . . . H8. The leaf nodes in
the Merkle tree is an execution of the hash function h for each of the file block,
denoted by h(H1) . . . h(H8). The next steps are executed with the same function h,
where two sibling nodes are concatenated and hashed forming the parent node, i.e.
h(H1−4) = h(h(H1−2)|h(H3−4)). Upon completion of the Merkle tree, the root node
is the result of multiple hashes, with ancestry in the original file blocks.

Upon verification of one of the file blocks, the root node and the Merkle tree nodes
associated with the file block to be verified must be available. The associated Merkle
tree nodes are used to compute a "copy" of the root node. For example, on a request
for verification of block H2, the H2 block itself and h(H1), h(H3−4), and h(H5−8)
nodes must be provided to the verifier. Using function h and the intermediate Merkle
tree nodes, the verifier can compute the copy root block:

h(H1−8) = h(h(h(h(H1)|h(H2))|h(H3−4))|h(H5−8))

The copy and the originally computed root node should be identical for the verification
to be successful.

The cost of computing the verification of a block in a Merkle tree is dependent
on the number of leaf nodes. One invocation of h is executed on the challenged block
itself. If N is the number of leaf nodes, h must additionally be applied log2N times
using the associated nodes of the block to be verified.

4.2. THE PROTOCOL 41

Figure 4.1: Merkle tree structure

4.2 The protocol

In this section we elaborate on the interactions between the tenant and cloud provider
in execution of the deletion scheme. The three phases, namely encoding, encapsulation
and verification, are presented in their respective order. Figure 4.2 shows the phases
and the interaction between tenant and cloud provider.

4.2.1 Executing the overwrite - encoding (phase 1)

The encoding phase will consist of an overwrite of the data intended for deletion.
We here present the usage of a PRNG, as presented in section 4.1.1, to produce and
exchange the overwrite data between the tenant and cloud provider.

The necessary seed S to initiate the PRNG is obtained by the tenant. Further,
the tenant transfers the seed together with a file indication Fid about which file
to overwrite. Upon reception, the cloud provider initiates a PRNG using S and
Fid as input, generating the pseudorandom data, PRN . The length of the PRN
is decided by the length of the indicated file. The overwrite function executes the
actual overwriting, resulting in the encoding G. It takes as input the PRN and the
file indication Fid. The same data is generated on the tenant side, preparing for the
hourglass encapsulation in the next phase.

By sending the seed for the PRNG, communication cost is greatly reduced
compared to generating the random data at the tenant and sending it to the provider.

42 4. PROPOSED SCHEME

Client Cloud Provider
Phase 1
S ← generateSeed(entropy source) S,Fid−−−→
PRN = PRNG(S, Fid) PRN = PRNG(S, Fid)

G = overwrite(PRN,Fid)
Phase 2
H ← hourglass(PRN) H ← hourglass(G)
M ← merkle(H) M−→
Keep root Mr, discard H and M
Phase 3
{ci ← challenge}ti=1

Start timer ci
t
i=1−−−→

{Mi = retreiveNodes(M, ci)}ti=1

{ri = respond(H, ci)}ti=1
{ri,Mi}t

i=1←−−−−−−−
Stop timer

{rootCopyi = calculateMerkle(ri,Mi)}ti=1

Accept iff{verify(rootCopyi,Mr) = true}ti=1,
and τ ≤ T

Figure 4.2: Deletion protocol

Use of an hourglass function ensures the provider does not calculate responses on-
the-fly. However, in section 4.4 we look at the implications of actually sending the
random data to the provider.

4.2.2 Encapsulate overwrite - hourglass (phase 2)

As the overwrite encoding G is executed at the cloud provider, the encapsulation
phase is initiated. The tenant also generates the random data from the seed, for
the reason that to compute the integrity checks, it must also possess the hourglass
encapsulated data H at some point.

The hourglass function is executed on the encoded format G, for both the tenant
(uses the pseudorandom number which is the same as G) and the cloud provider. As
with the original hourglass scheme discussed in chapter 2, the hourglass function is
applied which is a block-by-block or symbol-by-symbol encapsulation of encoding G.
This results in the hourglass encapsulation H with n blocks, H1 . . . Hn.

4.2. THE PROTOCOL 43

After this the integrity checks can be calculated on the tenant side. Figure 4.2
illustrates the scenario where a Merkle tree is used. The tenant calculates the Merkle
tree M on the blocks of H, using the merkle function. The root Mr of M is kept
in the tenants storage, and M is sent to the cloud provider. Now the tenant can
discard H and M .

If one uses the HMAC mentioned in section 4.1.2 for verification method, the
tenant must calculate the HMAC for each of the n blocks of H. The calculated
results could then be transferred to the cloud provider for storage. As with the
Merkle tree method, the tenant is now free of storing H, and can discard it and the
HMAC calculations, while keeping the secret key, K. The cloud provider is not able
to forge HMAC calculations, as it is not in possession of K.

4.2.3 Prove the overwrite - challenge-response (phase 3)

After G has been encapsulated, taking the form H, and integrity checks on H has
been generated and exchanged, the tenant can start challenging the cloud provider
for proof of overwriting. This is a process which can be executed multiple and at
random times, opposed to the previous phases, which in the normal case are executed
only once.

As the hourglass encapsulation H should be stored at the cloud provider, the
tenant should expect to see acceptable responses within T time, as explained in
chapter 2.

In figure 4.2 we see the tenant produces t challenges c, which could be random
selected block indexes of H, thus c ∈ {1 . . . n} [2]. As the t challenges are sent to the
cloud provider, a timer is initiated. On the cloud provider side, the retreiveNodes
function is invoked for each challenge taking the challenge and Merkle tree M as
input. Remember, M was provided to the cloud provider in the encapsulation phase.
This produces Mi which is a list of the nodes in M associated with the challenged
block of H. In addition, the respond method is applied in the same manner as
the original hourglass scheme. Based on ci it retrieves the challenged block from
H, resulting in the response block ri. So for the single challenge ci, a response is
constituted by Mi and ri which is the challenged block of H. This is sent back to
the tenant.

Upon retrieval, the tenant stops the timer, and checks the elapsed time τ . It also
applies the calculateMerkle function for each of the t responses, which takes the
provided challenged block ri and Merkle nodes Mi as input. The nodes of Mi and
block from ri are used to compute a Merkle tree root M ′i . Each computed M ′i is
passed to the verify function, where it is compared with the original Merkle tree
root Mr. If all invocations of verify are accepted and τ ≤ T , the challenge-response

44 4. PROPOSED SCHEME

is accepted, and the tenant can rely on that the cloud provider has overwritten the
intended data.

In usage of a HMAC for verification, the challenge sent to the cloud provider
would be on the same format, thus c ∈ {1 . . . n}. However, the calculated response
from the cloud provider would instead of the Merkle tree nodes Mi, consist of the
corresponding HMAC calculation for the challenged block in ci. Remember, the
cloud provider was provided with all the calculated HMACs for the encapsulated
file H in the encapsulation phase, while the tenant is in possession of the secret
key K. In addition to the HMAC block for each challenge, the encapsulated block
is provided to the tenant within ri. Upon receiving the responses from the cloud
provider, the tenant calculates the HMAC on the received response blocks ri using
K. Each calculated HMAC is compared with the original HMAC provided in the
response. If they are equal and τ ≤ T , the challenge-response is accepted.

4.3 Choice of hourglass function

On the question about which hourglass function to take advantage of in the deletion
scenario, one must consider a few things. In the original work conducted with
the hourglass schemes, arguments are presented through economic analysis related
to the performance of the hourglass functions and the needs of the tenant, when
choosing hourglass function. They state that the butterfly function is better suited
for scenarios where the tenant wishes to store data for archival purposes. This is
related to the cost of computing the butterfly function when access to the plain
plain text is necessary. This cost is high compared to the cost of computing the
permutation based function. With a high computation cost, the number of executed
hourglass functions while the economical argument still holds, are decreased.

Relating this analysis to the deletion scheme, we can assume that as soon as the
encapsulation of the overwritten data is executed, one would never apply the reverse
hourglass function to retrieve the overwritten data again. Thus, both the butterfly
and permutation function could be applied with no clear advantage in terms of the
above arguments. However, using the characteristics identified in table 2.1, one could
argue the permutation function better suited, based on its simplicity with no need
for cryptography and the low computation cost.

4.4 Alternative to providing a seed to the cloud provider

Providing the cloud provider with the seed for generation of random data in the
proposed scheme, saves the participating parts for significant communication costs.
The alternative is to leave the random data generation to the tenant, and transfer
the data to the cloud provider. Thus, the extra communication cost would be

4.5. ECONOMIC ARGUMENTS 45

proportional with the size of the intended data for deletion. However, with such an
approach, we identify that the need for an hourglass function might not be necessary.

The point of applying the hourglass function is that the cloud provider should not
be able to calculate the correct response on-the-fly when challenged. This imposes
that in the case of providing the seed to the cloud provider, the hourglass function is
needed, as it could generate the random number on the fly when in possession of the
seed. However, providing the cloud provider with the actual random data intended
for overwriting, gives the cloud provider no means of generating the random data.
For this reason, the hourglass function could be redundant. Also random data can
not be compressed [38], leading to that the cloud provider must store the data as it
is, to be able to respond to challenges.

4.5 Economic arguments

Opposed to the scenario where data is to be stored for the unseen future, as is the case
for the original hourglass scheme, when deletion is the scenario, the occupied hard
drive space of the cloud provider is to be free as soon as possible. This reduces the
economical arguments to depend solely on the cost of an additional copy in storage,
rather than looking at the computation cost of the hourglass function compared with
the storage cost.

If the tenants would no longer be obligated to pay storage cost after the hourglass
encapsulation and challenge-response had taken place, the cloud provider would be
the one that would be inflicted with additional costs if it stores a copy and does
not release the storage space. However, one can inflict the cloud provider to keep
the encapsulated data for some period of time, giving the tenant the opportunity to
challenge the provider for at random for some time. The cost in this time period
could be paid by the tenant, but at least it imposes a minimum cost on the cheating
cloud provider, as it additionally must keep the copy for the time period, which gives
no income.

Chapter5Practical challenges

As we in the above analyses have assumed some simplifications, we here highlight
these and try to discuss implications this could have on real world implementation in
a cloud environment. These implications apply to the original hourglass applications
and our new proposal for deletion in chapter 4. We also discuss a different approach
to how one could execute the proposed deletion scheme.

5.1 Hardware issues

We identify that the hourglass functions are dependent on the underlying hardware
which they are executed on, in terms of computation capacity, type of storage medium
and cloud pricing for the hardware resources. We spilt the hardware issues in two -
acquiring information about the underlying hardware, and how the development in
storage hardware can affect the validity of the hourglass function.

5.1.1 Acquiring hardware information

The permutation and butterfly hourglass functions are both time based functions
with a resource bound on storage. To be able to determine the timing bound T ,
specifications on read and seek time must be obtained for the permutation function
and the upper limit on ε (see section 2.3.3) for the butterfly function. To obtain such
information, ideally some knowledge about the underlying storage hardware used
by cloud providers is preferable. The process of obtaining such information seems
difficult.

As far as we have identified, cloud providers are reluctant to reveal to much
about their infrastructure. Again, this illustrates the lack of transparency by cloud
providers, making it difficult to obtain trust relationships to tenants. In addition, if
one manages to identify some of the underlying hardware, the same type of instance
can run on different hardware, while achieving much the same performance results
and purpose to tenants.

47

48 5. PRACTICAL CHALLENGES

For the hourglass function however, the necessary parameters to apply could be
obtained by approximating the necessary values. By using average read and seek
values for enterprise storage hardware, one can assume sufficient parametrization, as
done in the original paper. By applying multiple challenges on the encapsulated file
H, one could smooth out the approximation variance. This would also smooth out
the variation in network latencies.

5.1.2 How will SSDs affect the hourglass function?

As pointed out in section 2.3.3, the resource bound on the permutation function is
strongly dependent of the inefficiency of random reads on ordinary rotational hard
drives. As solid state drives (SSD) are increasing in usage, this could inflict new
challenges to the usage of the hourglass function. SSDs are designed in a manner
which among others makes them less dependent on reading data in a sequential order,
with thought to performance. Input/output per second (IOPS) is a measurement of
the number of operations a hard drive can achieve per second, such as random accesses.
According to [39], the random read advantages of SSDs are in the magnitude of 100
over normal rotating hard drives (HDD: 100 IOPS, SSD 10,000 IOPS). However,
experiments conducted with different SSDs[40] illustrate that a random read still
exposes the SSD for some extra read time compared to a sequential read.

Adjusting for the performance difference with SSDs, we believe the hourglass
function with resource bound on storage still would apply. The RSA function would
not have been affected by SSD storage, as the resource bound is on computation.

5.2 Storage allocation

There is also a challenge in how the cloud provider allocates its storage resources to
tenants. When storage is allocated, the question is if the tenants are assigned their
own storage or partition on a hard drive, or if their data simply stored where it is
best suitable for the cloud provider with no dedicated storage for the tenant. As with
information about the underlying hardware, this is information that is challenging to
get clear insight on.

Allocation of storage, could affect the performance of the hourglass function. Both
when it comes to computing the actual encapsulation and on responding to challenges.
In the extreme scenario, one could imagine that every block of the intended file is
scattered out over different disk locations, or even disks. On producing the hourglass
encapsulation, each of the scattered blocks must be gathered and processed to be
able to execute the encapsulation. This implies, a seek and read operation for each
block. This clearly inflicts a time and resource consuming process compared with
the assumed scenario, where the data is stored in a sequential order.

5.3. ALTERNATIVE DELETION APPROACH 49

As for when the file is in an encapsulated format, and the above scenario is applied,
the response time on challenges and work of the cloud provider would increase.

The above scenario is not likely to occur in real world cloud services, as it would
be inefficient for the cloud provider itself to manage storage like this. But even
with a smaller degree of file scattering, some extra costs must be counted for. We
can assume that larger files are more affected by such problems, as they necessarily
require more storage allocation. With the lack of insight in how storage is given to
tenants, it is worth to mention.

5.3 Alternative deletion approach

Double pass overwrite

The proposed scheme in chapter 4 inflicts the cloud provider with the work of
executing the hourglass function on the overwritten data to provide proof to the
tenant. The economical arguments would apply for the cloud provider with a single
invocation of the function. However, one could require the cloud provider to do a
double pass with the hourglass function, only partially overwriting the data in the
first round.

In this manner, a cheating cloud provider would be inflicted an additional cost.
In addition, the tenant would be provided with stronger assurance that the intended
data is overwritten.

Figure 5.1 illustrates the double pass overwrite on a file, including interactions
with the tenant. The data is first partially overwritten. This is illustrated with the
blocks F2, F4 and F6 taking the form O2, O4 and O6 in the figure, respectively. Then
an hourglass encapsulation is executed on this first overwrite. Challenges on the
hourglass encapsulation are sent out by the tenant, and responses produced by the
cloud provider. The responses will include data from both the overwriting and the
original file.

On acceptance from the tenant, the next round is initiated. Here, the remaining
data is overwritten (F1 → O1, F3 → O3, F5 → O5 and F7 → O7), and a new hour-
glass encapsulation is executed. The tenant challenges again on this encapsulation,
which now solely holds information about the overwrite data.

The intermediate challenge-response exchange provides the tenant with an indica-
tion that the intended data, is the data that is actually being overwritten. The only
way for the cloud provider to deliver sufficient proof, is to locate the intended data for
overwriting and then executing it. As opposed to the single overwrite scenario, where

50 5. PRACTICAL CHALLENGES

a cheating or "lazy" cloud provider, could execute the overwrite on any disk space
best suited (e.g. the closest available free space on the time of being challenged). In
addition to the extra cost the economical arguments still apply for the double pass
overwrite approach.

The proof of the double overwrite could be an execution of the hourglass function
on a copy of the original data, in the case of an adversary cloud provider. This
however, inflicts the adversary with additional cost of copying and writing the data
to a separate location, before overwriting the data.

Figure 5.1: Double pass overwrite

5.4 The price development of cloud storage and processing

As the hourglass functions are dependent on pricing from the cloud providers, the
price development is important for the sustainability of the hourglass based schemes.
From the time of writing the original paper, we observed that the storage on cost
is halved, while the cost of computation has changed little. We identified that this
impacts the economical arguments in the original paper for using the hourglass
function, in a negative manner (halved the number of hourglass function executions,

5.4. THE PRICE DEVELOPMENT OF CLOUD STORAGE AND PROCESSING 51

for the economical argument to still hold). Analyses reveal, that in general, the price
reductions are accelerating on all services in cloud computing. With increasingly
number of cloud providers, the competition provides better prices for the tenants. The
storage and computation pricing are both decreasing, however, the price reduction
on computation over all services (computation, storage, DB, bandwidth and others)
for the strongest providers in the market, constituted 42% of the reductions in 2013.
Storage constituted 23% [5] of the reductions. For the year 2012 the scenario was
opposite, storage constituted 36%, while computation was on 23%. For the hourglass
function, a balance between computation cost and storage cost is preferable. As
long as the reduction does not accelerate too much on storage, the sustainability is
promising.

Chapter6Conclusion

In this thesis we have looked at existing cryptographic schemes intended for cloud
environments, and particularly directed focus on the hourglass scheme. We argue
the necessity for cryptographic research within cloud computing, as businesses are
reluctant to convert to cloud technology. This scepticism we believe, among others,
are due to lack of transparency by the providers, leaving the cloud tenants with little
knowledge of how their data is actually handled. The existing schemes apply to
different categories and area of use.

We did a practical and economical analysis of the hourglass scheme, identifying
that implementation details such as used hardware and software choices can drastically
affect its validity, together with price development of cloud services. We used achieved
implementation results to estimate performance cost in a cloud environment, and
observed that the cost ratio between storage and execution would reduce the validity
for our implementation, compared with achieved results in the original paper. Also
the development in storage cost for Amazon, implied that the current validity of
the hourglass functions were halved compared with the time of writing the original
paper.

Through research of different cryptographic schemes, we identified deletion as
a category with potential for improvements. This, together with the idea of using
the hourglass functionality, was the motivation for proposing a new deletion scheme.
Taking advantage of the economical arguments in the original hourglass paper, the
proposed scheme takes a different approach on deletion then the identified existing
schemes. Arguing that key removal might not be secure for the unseen future,
we approach deletion by overwriting the intended data. Requiring an hourglass
encapsulation on the overwritten data, the tenant applies a challenge response
protocol to receive proof of overwriting through the encapsulated file.

53

54 6. CONCLUSION

6.1 Future work

In the work with this thesis we did not conduct practical work specifically devoted
to the proposed scheme. An interesting task for future work could be to make
an implementation of the proposed scheme in a cloud environment, to evaluate its
validity in practice. At the same time, one could get better insight into the practical
challenges related to transparency obstacles from the cloud providers. Documenting
these challenges, based on real world observations could be valuable, not only for the
purpose of the hourglass functions and proposed scheme, but for research regarding
cloud computing in general.

As we mentioned in section 4.4, the alternative approach by transferring the
random data to the cloud provider, could make the hourglass function redundant in
the deletion scenario. An interesting study could be to identify other approaches to
realize hourglass like capabilities, e.g. by usage of puzzles (proof-of-work functions).

References

[1] Ateniese Giuseppe, Burns Randal, Curtmola Reza, et al. Provable data possession
at untrusted stores. Proceedings of CCS, 10:598–609, 2007.

[2] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L Rivest, Emil Stefanov, and
Nikos Triandopoulos. Hourglass schemes: How to prove that cloud files are
encrypted. 2012.

[3] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L Rivest, Emil Stefanov,
and Nikos Triandopoulos. Hourglass schemes: How to prove that cloud files
are encrypted, slides. http://www.arijuels.com/wp-content/uploads/2013/09/
vDJOR+12slides.pptx, 2012.

[4] Peter Mell and Timothy Grance. The NIST definition of cloud computing (draft).
NIST special publication, 800(145):7, 2011.

[5] Bret Clement. Cloud Price Reductions: A Definitive Analysis of
2013 Trends. http://www.rightscale.com/blog/cloud-industry-insights/
cloud-price-reductions-definitive-analysis-2013-trends, March 2014.

[6] Unisys. Cio unisys 2014 benchmark tool refresh. Powerpoint received on mail by
Jim Carr, Media contact at Unisys, 2014.

[7] Unisys. CIOs Are Moving More Organizational Information into the Cloud Even
as Security Concerns Persist, Unisys Research Reveals. http://www.unisys.com/
unisys/news/detail.jsp?id=1120000970028410151, March 2014.

[8] Larry Barrett. When it comes to the cloud, CIOs,
CEOs prefer to keep it private. http://www.zdnet.com/
when-it-comes-to-the-cloud-cios-ceos-prefer-to-keep-it-private-7000024943/,
January 2014.

[9] Matthew Green. On the NSA. http://blog.cryptographyengineering.com/2013/
09/on-nsa.html, September 2013.

[10] Matthew Green. A note on the NSA, the future and fix-
ing mistakes. http://blog.cryptographyengineering.com/2013/09/
a-note-on-nsa-future-and-fixing-mistakes.html, September 2013.

55

http://www.arijuels.com/wp-content/uploads/2013/09/vDJOR+12slides.pptx
http://www.arijuels.com/wp-content/uploads/2013/09/vDJOR+12slides.pptx
http://www.rightscale.com/blog/cloud-industry-insights/cloud-price-reductions-definitive-analysis-2013-trends
http://www.rightscale.com/blog/cloud-industry-insights/cloud-price-reductions-definitive-analysis-2013-trends
http://www.unisys.com/unisys/news/detail.jsp?id=1120000970028410151
http://www.unisys.com/unisys/news/detail.jsp?id=1120000970028410151
http://www.zdnet.com/when-it-comes-to-the-cloud-cios-ceos-prefer-to-keep-it-private-7000024943/
http://www.zdnet.com/when-it-comes-to-the-cloud-cios-ceos-prefer-to-keep-it-private-7000024943/
http://blog.cryptographyengineering.com/2013/09/on-nsa.html
http://blog.cryptographyengineering.com/2013/09/on-nsa.html
http://blog.cryptographyengineering.com/2013/09/a-note-on-nsa-future-and-fixing-mistakes.html
http://blog.cryptographyengineering.com/2013/09/a-note-on-nsa-future-and-fixing-mistakes.html

56 REFERENCES

[11] Joseph Menn. On the NSA. http://www.reuters.com/article/2013/12/20/
us-usa-security-rsa-idUSBRE9BJ1C220131220, December 2013.

[12] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia.
Dynamic provable data possession. In Proceedings of the 16th ACM conference
on Computer and communications security, pages 213–222. ACM, 2009.

[13] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files.
In Proceedings of the 14th ACM conference on Computer and communications
security, pages 584–597. ACM, 2007.

[14] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and
implementation. In Proceedings of the 2009 ACM workshop on Cloud computing
security, pages 43–54. ACM, 2009.

[15] Kevin D Bowers, Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L Rivest.
How to tell if your cloud files are vulnerable to drive crashes. In Proceedings
of the 18th ACM conference on Computer and communications security, pages
501–514. ACM, 2011.

[16] Zhan Wang, Kun Sun, Jiwu Jing, and Sushil Jajodia. Verification of data
redundancy in cloud storage. In Proceedings of the 2013 international workshop
on Security in cloud computing, pages 11–18. ACM, 2013.

[17] Yang Tang, Patrick PC Lee, John CS Lui, and Radia Perlman. Fade: Secure
overlay cloud storage with file assured deletion. In Security and Privacy in
Communication Networks, pages 380–397. Springer, 2010.

[18] Radia Perlman. File system design with assured delete. In Security in Storage
Workshop, 2005. SISW’05. Third IEEE International, pages 6–pp. IEEE, 2005.

[19] Roxana Geambasu, Tadayoshi Kohno, Amit A Levy, and Henry M Levy. Van-
ish: Increasing data privacy with self-destructing data. In USENIX Security
Symposium, pages 299–316, 2009.

[20] Joel Reardon, David Basin, and Srdjan Capkun. Sok: Secure data deletion. In
Security and Privacy (SP), 2013 IEEE Symposium on, pages 301–315. IEEE,
2013.

[21] Sarah M Diesburg and An-I Andy Wang. A survey of confidential data storage
and deletion methods. ACM Computing Surveys (CSUR), 43(1):2, 2010.

[22] Bill Nelson, Amelia Phillips, and Christopher Steuart. Guide to computer forensics
and investigations, chapter Working with Windows and DOS systems. Cengage
Learning, 2010.

[23] Peter Gutmann. Secure deletion of data from magnetic and solid-state memory. In
Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, volume 14,
1996.

http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220

REFERENCES 57

[24] Craig Wright and Dave Kleiman. Overwriting hard drive data: The great wiping
controversy. In Information Systems Security, pages 243–257. Springer, 2008.

[25] Wikipedia. Block cipher mode operation - Cipher-block chaining
(CBC). http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#
Cipher-block_chaining_.28CBC.29.

[26] Ian Atkin. Getting the hang of IOPS. http://www.symantec.com/connect/
articles/getting-hang-iops, March 2011.

[27] Amazon. Amazon ec2. http://aws.amazon.com/ec2/, 2014.

[28] Andrew Kuchling and Dwayne C. Litzenberger. Pycrypto - the python cryptogra-
phy toolkit. https://www.dlitz.net/software/pycrypto/, 2014.

[29] Wikipedia.org. Aes electronic codebook. http://en.wikipedia.org/wiki/Block_
cipher_mode_of_operation#Electronic_codebook_.28ECB.29, 2014.

[30] Amazon. Amazon instances and princing. http://aws.amazon.com/ec2/pricing/,
2014.

[31] Amazon. Amazon announcement. http://aws.amazon.com/about-aws/
whats-new/2009/10/27/announcing-amazon-ec2-high-memory-instances/, 2009.

[32] Alexis Lê-Quôc. Are all AWS ECUs created equal? https://www.datadoghq.
com/2013/08/are-all-aws-ecu-created-equal/, August 2013.

[33] Naor Weissmann. Amazon AWS EC2 storage types. http://unixsystems.blogspot.
no/2012/02/amazon-aws-ec2-storage-types.html, February 2012.

[34] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Recommendation for key management-part 1: General (revision 3). In NIST
special publication. Citeseer, 2012.

[35] Elaine B Barker and John Michael Kelsey. Recommendation for random number
generation using deterministic random bit generators (revised). US Department
of Commerce, Technology Administration, National Institute of Standards and
Technology, Computer Security Division, Information Technology Laboratory,
2012.

[36] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. RFC 2104: HMAC: Keyed-
hashing for message authentication, February 1997. Status: INFORMATIONAL,
2006.

[37] Quynh Dang. Recommendation for applications using approved hash algorithms.
US Department of Commerce, National Institute of Standards and Technology,
2008.

[38] Matt Mahoney. Data compression explained. mattmahoney. net, updated May, 7,
2012.

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher-block_chaining_.28CBC.29
http://www.symantec.com/connect/articles/getting-hang-iops
http://www.symantec.com/connect/articles/getting-hang-iops
http://aws.amazon.com/ec2/
https://www.dlitz.net/software/pycrypto/
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_.28ECB.29
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_.28ECB.29
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/about-aws/whats-new/2009/10/27/announcing-amazon-ec2-high-memory-instances/
http://aws.amazon.com/about-aws/whats-new/2009/10/27/announcing-amazon-ec2-high-memory-instances/
https://www.datadoghq.com/2013/08/are-all-aws-ecu-created-equal/
https://www.datadoghq.com/2013/08/are-all-aws-ecu-created-equal/
http://unixsystems.blogspot.no/2012/02/amazon-aws-ec2-storage-types.html
http://unixsystems.blogspot.no/2012/02/amazon-aws-ec2-storage-types.html

58 REFERENCES

[39] buildcomputers.net. SSD vs HDD - Sould You Buy A Solid State Drive or Hard
Disk Drive. http://www.buildcomputers.net/ssd-vs-hdd.html.

[40] Anand Lal Shimpi. The Seagate 600 & 600 Pro SSD review. http://www.
anandtech.com/show/6935/seagate-600-ssd-review/5, May 2013.

http://www.buildcomputers.net/ssd-vs-hdd.html
http://www.anandtech.com/show/6935/seagate-600-ssd-review/5
http://www.anandtech.com/show/6935/seagate-600-ssd-review/5

AppendixAPerformance results

The performance results (in seconds) over five executions of the permutation and
butterfly hourglass functions for different file sizes.

59

AppendixBSource code

B.1 Butterfly source code

B.1.1 Butterfly encapsulation
1 ’ ’ ’
2 Created␣on␣ 18 . ␣mars␣2014
3
4 @author : ␣ olerasmu
5 ’ ’ ’
6
7 import math
8 import os
9 import t ime i t

10 import sys
11 from Crypto . Cipher import AES
12 from _hashl ib import new
13
14
15
16 # Works w i t h f i l e s which have a number o f b l o c k s n t h a t i s a

power o f 2
17 c l a s s But t e r f l y (object) :
18
19 def __init__(s e l f , f i l e p a t h=None) :
20 s e l f . f i l e p a t h = f i l e p a t h
21
22 f i l eTab = []
23 butter f lyTab = []
24
25 #Return t h e s i z e o f f i l e i n b y t e s
26 def f i l e S i z e (s e l f) :
27 tempFile = open(s e l f . f i l e p a th , ’ r ’)
28 tempFile . seek (0 , 2)
29 s i z e = tempFile . t e l l ()
30 tempFile . seek (0 , 0)
31 tempFile . c l o s e ()
32 return s i z e
33
34 #S l i t t h e f i l e i n t o b l o c k s o f 128 b i t (16∗8 b y t e s)
35 def b l o c k i f yF i l e (s e l f) :
36 with open(s e l f . f i l e p a th , ’ rb ’) as n ew f i l e :
37 byte = new f i l e . read (16)
38 while byte :
39 s e l f . f i l eTab . append (byte)
40 byte = new f i l e . read (16)
41
42
43
44 f i l eTabTes t = []

61

62 B. SOURCE CODE

45
46 def f i l e i f y B l o c k s (s e l f , f i l e p a th , butter f lyTab) :
47 with open(f i l e p a th , ’ ab ’) as h ou r g l a s s_ f i l e :
48 for byte in butter f lyTab :
49 hou r g l a s s_ f i l e . wr i t e (byte)
50
51 # I n i t i a l i z e t h e b u t t e r f l y f u n c t i o n . V a r i a b l e j i s

c o n t r o l l e d from h e r e
52 def i n i t i a t e B u t t e r f l y (s e l f , d , n) :
53 s e l f . butter f lyTab = [None] ∗ n
54 #p r i n t (" i n i t i a t e ")
55 for j in range (1 , d+1) :
56 #p r i n t " t h i s i s j : " , j
57 s e l f . e x e cu t eBut t e r f l y (j , n)
58
59 #E x e c u t e t h e b u t t e r f l y a l g o r i t h m
60 def exe cu t eBut t e r f l y (s e l f , j , n) :
61 for k in range (0 , int ((n/math .pow(2 , j))−1)+1) :
62 i f j == 1 :
63 for i in range (1 , int (math .pow(2 , j −1))+1) :
64 indexOne = int (i+k∗math .pow(2 , j))−1
65 indexTwo = int (i+k∗math .pow(2 , j)+math .pow

(2 , j −1))−1
66 #s e l f . count += 1
67 s e l f .w(s e l f . f i l eTab [indexOne] , s e l f . f i l eTab

[indexTwo] , indexOne , indexTwo)
68
69 e l s e :
70 for i in range (1 , int (math .pow(2 , j −1))+1) :
71 indexOne = int (i+k∗math .pow(2 , j))−1
72 indexTwo = int (i+k∗math .pow(2 , j)+math .pow

(2 , j −1))−1
73 s e l f .w(s e l f . butter f lyTab [indexOne] , s e l f .

butter f lyTab [indexTwo] , indexOne ,
indexTwo)

74
75
76 #D e f i n e s t h e c i p h e r which s h o u l d be used i n t h e

c r y p t o g r a p h i c o p e r a t i o n
77 cipher_machine = AES. new(b ’ This ␣ i s ␣a␣key123 ’ , AES.MODE_ECB)
78
79 #C r y p t o g r a p h i c o p e r a t i o n w
80 def w(s e l f , block_one , block_two , indexOne , indexTwo) :
81
82 #This p a r t i s f o r s p l i t t i n g and combining b l o c k s (

a l t e r n a t i v e t o i n t e r l e a v i n g)
83 new_block_one = block_one [len (block_one) / 2 :] +

block_two [len (block_two) / 2 :]
84 new_block_two = block_one [: len (block_one) /2] +

block_two [: len (block_two) /2]
85
86 new_block_one = s e l f . cipher_machine . encrypt (

new_block_one)
87 new_block_two = s e l f . cipher_machine . encrypt (

new_block_two)
88
89 s e l f . butter f lyTab [indexOne] = new_block_two
90 s e l f . butter f lyTab [indexTwo] = new_block_one
91
92 #S t a r t t h e h o u r g l a s s e n c a p s u l a t i o n b a s e d on t h e v a l i d f i l e

p a t h i n p u t
93 def s t a r t (s e l f , i nput_f i l epa th) :
94 bf = But t e r f l y (f i l e p a t h=input_f i l epa th)
95
96 #S t a r t t h e t i m e r
97 s t a r t = t ime i t . de fau l t_t imer ()
98 bf . b l o c k i f yF i l e ()
99 #D e f i n e s t h e p a r a m e t e r s b a s e d on t h e f i l e

i n t e n d e d f o r e x e c u t i o n
100 n = len (bf . f i l eTab)
101 d = int (math . l og (n , 2))

B.1. BUTTERFLY SOURCE CODE 63

102 bf . i n i t i a t e B u t t e r f l y (d , n)
103
104 #Uncomment t h i s t o w r i t e t h e b f t a b l e t o f i l e .
105 bf . f i l e i f y B l o c k s (’ b f_hourg lass . txt ’ , bf . butter f lyTab)
106
107 #Stop t h e t i m e r
108 stop = t ime i t . de fau l t_t imer ()
109
110 #Write r e s u l t s t o ’ r e s u l t f i l e . t x t ’
111 wr i t eab l e = " F i l e : ␣ " + str (s e l f . f i l e p a t h) + " ␣ s i z e : ␣ " +

str (s e l f . f i l e S i z e ()) + " ␣ time : ␣ " , str (stop−s t a r t)
112 wr i t eab l e = str (wr i t eab l e)+"\n"
113 with open(’ r e s u l t f i l e . txt ’ , ’ a ’) as r e s u l t f i l e :
114 r e s u l t f i l e . wr i t e (wr i t eab l e)
115
116 #Read t h e i n p u t from c o n s o l e (f i l e p a t h) . Checks i f i n p u t i s

a v a l i d f i l e p a t h .
117 def input (s e l f , i nput_f i l epa th) :
118 try_again = ’ ’
119 i f os . path . i s f i l e (input_f i l epa th) :
120 bf . f i l e p a t h = input_f i l epa th
121 bf . s t a r t (input_f i l epa th)
122 e l i f not os . path . i s f i l e (input_f i l epa th) :
123 try_again = raw_input(" Provided␣ f i l e p a t h ␣did ␣not␣

ex i s t , ␣ t ry ␣ again ␣ or ␣wr i t e ␣ qu i t ␣ to ␣ e x i t . . . ")
124 i f try_again == ’ qu i t ’ :
125 sys . e x i t (’You␣ choose ␣ to ␣ qu i t ’)
126 e l s e :
127 s e l f . input (try_again)
128
129
130
131 bf = But t e r f l y ()
132
133 input_f i l epa th = raw_input(" Provide ␣ f i l e p a t h . . . ")
134
135 bf . input (input_f i l epa th)

B.1.2 Butterfly decapsulation
1 ’ ’ ’
2 Created␣on␣ 25 . ␣mars␣2014
3
4 @author : ␣ olerasmu
5 ’ ’ ’
6 import math
7 import os
8 import t ime i t
9 from Crypto . Cipher import AES

10 c l a s s Bf_reverse (object) :
11
12 def __init__(s e l f , f i l e p a t h = None) :
13 s e l f . f i l e p a t h = f i l e p a t h
14
15
16 f i l eTab = []
17 butter f lyTab = []
18
19
20 def f i l e S i z e (s e l f) :
21 tempFile = open(s e l f . f i l e p a th , ’ r ’)
22 tempFile . seek (0 , 2)
23 s i z e = tempFile . t e l l ()
24 tempFile . seek (0 , 0)
25 tempFile . c l o s e ()
26 return s i z e
27
28 #S p l i t t h e f i l e i n t o b l o c k s o f 128 b i t (16∗8 b y t e s)
29 def b l o c k i f yF i l e (s e l f) :
30

64 B. SOURCE CODE

31 with open(s e l f . f i l e p a th , ’ rb ’) as n ew f i l e :
32
33 bytes = str (n ew f i l e . read (16))
34
35 while bytes :
36 s e l f . butter f lyTab . append (bytes)
37
38 bytes = str (n ew f i l e . read (16))
39
40
41
42 def f i l e i f y B l o c k s (s e l f) :
43 with open(’ rev_hourglass2 . txt ’ , ’ ab ’) as

r ev_hourg l a s s_ f i l e :
44 for byte in s e l f . f i l eTab :
45 r ev_hourg l a s s_ f i l e . wr i t e (byte)
46
47 #Save b l o c k s from f i l e T a b t o a s t r i n g
48 def s t r i n g i f yB l o c k s (s e l f) :
49 p la in_text_st r ing = " "
50
51 for byte in s e l f . f i l eTab :
52 p la in_text_st r ing = pla in_text_st r ing + byte
53
54 return pla in_text_st r ing
55
56
57
58 # I n i t i a l i z e t h e b u t t e r f l y f u n c t i o n . V a r i a b l e j i s

c o n t r o l l e d from h e r e
59 def i n i t i a t e B u t t e r f l y (s e l f , d , n) :
60
61 s e l f . f i l eTab = [None] ∗ n
62
63 for j in range (d , 0 , −1) :
64 s e l f . e x e cu t eBut t e r f l y (j , n , d)
65
66 #E x e c u t e t h e b u t t e r f l y a l g o r i t h m
67 def exe cu t eBut t e r f l y (s e l f , j , n , d) :
68
69 for k in range (int ((n/math .pow(2 , j))−1) , −1, −1) :
70 i f j == d :
71 for i in range (int (math .pow(2 , j −1)) , 0 , −1) :
72 indexOne = int (i+k∗math .pow(2 , j))−1
73 indexTwo = int (i+k∗math .pow(2 , j)+math .pow

(2 , j −1))−1
74
75 s e l f .w(s e l f . butter f lyTab [indexOne] , s e l f .

butter f lyTab [indexTwo] , indexOne ,
indexTwo)

76 e l s e :
77 for i in range (int (math .pow(2 , j −1)) , 0 , −1) :
78 indexOne = int (i+k∗math .pow(2 , j))−1
79 indexTwo = int (i+k∗math .pow(2 , j)+math .pow

(2 , j −1))−1
80
81 s e l f .w(s e l f . f i l eTab [indexOne] , s e l f . f i l eTab

[indexTwo] , indexOne , indexTwo)
82
83 cipher_machine = AES. new(b ’ This ␣ i s ␣a␣key123 ’ , AES.MODE_ECB)
84 def w(s e l f , blockOne , blockTwo , indexOne , indexTwo) :
85
86 blockOne2 = s e l f . cipher_machine . decrypt (blockOne)
87 blockTwo2 = s e l f . cipher_machine . decrypt (blockTwo)
88
89 #This i s f o r when e n c a p s u l a t i o n i s done t h r o u g h s p l i t

and combine
90 new_block_one = blockOne2 [len (blockOne2) / 2 :] +

blockTwo2 [len (blockTwo2) / 2 :]
91 new_block_two = blockOne2 [: len (blockOne2) /2] +

blockTwo2 [: len (blockTwo2) /2]

B.2. PERMUTATION SOURCE CODE 65

92
93
94 s e l f . f i l eTab [indexOne] = new_block_two
95 s e l f . f i l eTab [indexTwo] = new_block_one
96
97
98 bf_rev = Bf_reverse (f i l e p a t h = ’C:\\ Users \\ olerasmu\\Documents

\\workspace\\ But t e r f l y \\ s r c \\ root \\ nested \\ bf_hourg lass .
txt ’)

99 s t a r t = t ime i t . de fau l t_t imer ()
100
101 bf_rev . b l o c k i f yF i l e ()
102
103 n = len (bf_rev . butter f lyTab)
104
105 d = int (math . l og (n , 2))
106
107 bf_rev . i n i t i a t e B u t t e r f l y (d , n)
108
109 bf_rev . f i l e i f y B l o c k s ()
110
111 stop = t ime i t . de fau l t_t imer ()
112
113
114
115 wr i t e ab l e = " S i z e : " + str (bf_rev . f i l e S i z e ()) + " ␣ time : " + str (

stop−s t a r t)
116 wr i t e ab l e = str (wr i t eab l e) + "\n"
117
118 with open(’ r e s u l t f i l e . txt ’ , ’ a ’) as r e s u l t f i l e :
119 r e s u l t f i l e . wr i t e (wr i t eab l e)

B.2 Permutation source code

B.2.1 Permutations encapsulation and decapsulation
1 ’ ’ ’
2 Created␣on␣ 4 . ␣apr . ␣2014
3
4 @author : ␣ olerasmu
5 ’ ’ ’
6
7 import math
8 import t ime i t
9 from macpath import j o i n

10 c l a s s Permutation (object) :
11
12 def __init__(s e l f , w=None , b lock_s ize=None , t s=None , t r=

None , a=None , f i l e p a t h=None) :
13 s e l f .w = w
14 s e l f . f i l e p a t h = f i l e p a t h
15 s e l f . t s = t s
16 s e l f . t r = t r
17 s e l f . a = a
18 s e l f . b lock_s ize = block_s ize
19
20 n = 0
21 m = 0
22 g = 0
23 h = 0
24 b lock_s ize = 0
25 memory_read = 0
26 hg_tab = []
27 block_tab = []
28 symbol_tab = []
29 hourglass_tab = []
30 or i g ina l_tab = []
31

66 B. SOURCE CODE

32
33
34 def symbo l i f yF i l e (s e l f) :
35 s t a r t = t ime i t . de fau l t_t imer ()
36 with open(s e l f . f i l e p a th , ’ rb ’) as n ew f i l e :
37 symbol = new f i l e . read (s e l f .w)
38 while symbol :
39 s e l f . symbol_tab . append (symbol)
40 symbol = new f i l e . read (s e l f .w)
41
42 stop = t ime i t . de fau l t_t imer ()
43 s e l f . memory_read = stop − s t a r t
44 print " time␣ f o r ␣ read ing ␣ f i l e ␣ in to ␣memory : " , s e l f .

memory_read
45
46 s e l f .m = s e l f . b lock_s ize / s e l f .w
47 s e l f . n = len (s e l f . symbol_tab) / s e l f .m
48 return s e l f . symbol_tab
49
50
51 def egcd (s e l f , a , b) :
52 i f a == 0 :
53 return (b , 0 , 1)
54 e l s e :
55 g , y , x = s e l f . egcd (b % a , a)
56 return (g , x − (b // a) ∗ y , y)
57
58 def modinv (s e l f , a , m) :
59 g , x , y = s e l f . egcd (a , m)
60 i f g != 1 :
61 ra is e Exception (’ modular␣ i nv e r s e ␣does ␣not␣ e x i s t ’)
62 e l s e :
63 return x % m
64
65 def computeGandH(s e l f , a) :
66 s e l f . g = math . c e i l (s e l f . t s / s e l f . t r) ∗ s e l f .m + a
67
68 s e l f . h = s e l f . modinv (s e l f . g , s e l f . n∗ s e l f .m) #g % s e l f . n

∗ s e l f .m
69
70
71 def hourg la s s (s e l f , i , h , n , m) :
72 h_i = s e l f . symbol_tab [int ((i ∗h) % (n∗m))]
73 s e l f . hourglass_tab . append (h_i)
74
75 return h_i
76
77
78 def revHourg lass (s e l f , i , g , n , m) :
79 g_i = s e l f . hourglass_tab [int ((i ∗g) % (n∗m))]
80 s e l f . o r i g ina l_tab . append (g_i)
81 return g_i
82
83 def encapsu late (s e l f) :
84 for i in range (0 , len (s e l f . symbol_tab)) :
85 s e l f . hourg la s s (i , s e l f . h , s e l f . n , s e l f .m)
86
87
88 def decapsu late (s e l f) :
89 for i in range (0 , len (s e l f . hourglass_tab)) :
90 s e l f . r evHourg lass (i , s e l f . g , s e l f . n , s e l f .m)
91
92
93 per = Permutation (w = 8 , f i l e p a t h = "C:\ Users \olerasmu\

Documents\\256mb_file . txt " , b lock_s ize =4∗1024 , t r
=0.0003125 , t s =0.06)

94 per . s ymbo l i f yF i l e ()
95
96 per . computeGandH (3)
97
98 s t a r t 1 = t ime i t . de fau l t_t imer ()

B.2. PERMUTATION SOURCE CODE 67

99
100 per . encapsu la te ()
101
102 stop1 = t ime i t . de fau l t_t imer ()
103
104 with open(’ encapsu lated . txt ’ , ’wb ’) as n ew f i l e :
105 for byte in per . hourglass_tab :
106 new f i l e . wr i t e (byte)
107
108 s t a r t 2 = t ime i t . de fau l t_t imer ()
109
110 per . decapsu la te ()
111
112 stop2 = t ime i t . de fau l t_t imer ()
113
114
115 with open(’ decapsu lated . txt ’ , ’wb ’) as n ew f i l e :
116 for byte in per . o r i g ina l_tab :
117 new f i l e . wr i t e (byte)
118
119
120 with open(" r e s u l t f i l e . txt " , ’ a ’) as n ew f i l e :
121 to_write = " F i l e : ␣ " + per . f i l e p a t h , " ␣Memory␣ read : ␣ " + str

(per . memory_read) , " ␣Enc␣ time : " + str (stop1−s t a r t 1) ,
" ␣Dec␣ time : " + str (stop2−s t a r t 2) + "\n"

122 to_write = ’ ; ’ . j o i n (to_write)
123 print to_write
124 new f i l e . wr i t e (to_write)

	List of Figures
	List of Tables
	Introduction
	Outcome
	Report outline

	Background
	Cloud Computing
	Cryptographic schemes related to cloud computing
	Data possession and retrievability
	Proving distributed storage
	Deletion

	Hourglass scheme
	Challenges and solution
	Hourglass functions
	Security analysis
	Comparison of hourglass functions
	Economic incentives and arguments

	Practical analysis
	Implementation
	Original Hourglass paper implementation
	Our implementation

	Comparison of paper results and practical work
	Economical perspective

	Proposed Scheme
	Encoding and integrity checks
	Encoding - Random number generator
	Integrity checks

	The protocol
	Executing the overwrite - encoding (phase 1)
	Encapsulate overwrite - hourglass (phase 2)
	Prove the overwrite - challenge-response (phase 3)

	Choice of hourglass function
	Alternative to providing a seed to the cloud provider
	Economic arguments

	Practical challenges
	Hardware issues
	Acquiring hardware information
	How will SSDs affect the hourglass function?

	Storage allocation
	Alternative deletion approach
	The price development of cloud storage and processing

	Conclusion
	Future work

	References
	Performance results
	Source code
	Butterfly source code
	Butterfly encapsulation
	Butterfly decapsulation

	Permutation source code
	Permutations encapsulation and decapsulation

