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Abstract— Exploiting the physical limitations on the ma-
neuverability of a fixed-wing Unmanned Aerial Vehicle (UAV)
and simultaneously respecting its flight envelope and actuator
constraints is a demanding task, for which Nonlinear Model
Predictive Control (NMPC) is well-suited. This paper presents
an NMPC for attitude control of a fixed-wing UAV, which is
based on the vehicle model in the wind-frame formulation and
includes critical flight variables such as relative speed and angle
of attack in its control objective and constraint formulation.
The proposed controller is evaluated in a simulation study and
compared against a set of conventional PID controllers.

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is based on
repetitively solving open-loop optimal control problems to
obtain a sequence of control inputs that, when applied, makes
the plant converge to the desired state. The obtained solution
is optimal in the ideal scenario in which the the mathematical
model of the process is a perfect description of its physical
reality. Employing NMPC for attitude control is established
in spacecraft applications, see for example [1], [2], [3]. A
more recent development uses a geometric formulation and
designs the attitude controller directly on SO(3) [4].

Regarding NMPC for attitude control on Unmanned Aerial
Vehicles (UAVs), most work is done on multicopters. In [5]
the authors propose a cascaded controller with a low-level
NMPC for attitude control on a multicopter. Employing
geometrically exact integration (cf. [6]) they design the
controller on SO(3) and in experiments show computation
times averaging to 1 millisecond, using a rather powerful
hardware setup. More recently, [7] designed an NMPC for
attitude controller on an embedded system with limited com-
putational resources on a multicopter. The authors employ a
partially tightened real-time iteration scheme [8] to achieve
10 ms control intervals on an 800 MHz processor.

Looking at fixed-wing UAVs however, most NMPC pub-
lications focus on high-level control strategies while relying
on attitude references to be tracked by low-level attitude
control loops as part of an off-the-shelf autopilot. Early
work on fixed-wing UAV attitude control using NMPC is
presented in [9]. The authors design an NMPC that takes the
general nonlinear dynamics equations of an aircraft which
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are non-affine in the control inputs. They expand output and
control variables in a truncated Taylor series to obtain a
closed-form solution for the control inputs. This makes it
applicable to real-time embedded systems, given that most
of the gain matrices may be computed offline. However,
actuator usage and trajectory errors are penalized through
the cost function, but actuator and state constraints are not
included in this formulation, which means that we can not
include the operational envelope in the form of inequality
constraints in the Optimal Control Problem (OCP).

In [10] the authors present an NMPC for path-following
control that assumes a low-level attitude control system
and requires longitudinal velocity, turn rate and desired
altitude as input signals. Using a desired trajectory, they
define cross track error and yaw angle error to transform
the path-following problem into a regulation problem. They
show closed-loop stability based on conditions formulated
via linear matrix inequalities. In simulation convergence to
a desired direction has been achieved as long as the initial
direction is within 90 degrees.

A recent work is presented by [11] where the authors
achieve 3D path-following. With a low-level attitude control
system in place, they identify second order models that are
then being used by the NMPC to design attitude references.
Docile maneuvers are assumed to yield tractable references
for the attitude controller. However, the controller is later
challenged with curved paths that exceed the physical limit
of the UAV (30 degree roll angles), which are shown to be
followed within 0.5 meter and 2 meter error in longitudi-
nal and lateral direction, respectively. In [12] the authors
focus on waypoint and path-planning to achieve collision
avoidance of a system of multiple cooperating UAVs in an
environment that is subject to atmospheric disturbances and
physical obstacles. Work in [13] uses NMPC for guidance
of a fixed-wing UAV in deep stall landing maneuvers which
expose the UAV to high angles of attack. Trajectory tracking
via fast NMPC is done in [14].

Through the OCP formulation, NMPCs are very recon-
figurable, which can be made use of in the design of fault-
tolerant aircraft systems, as in e.g. [15].

In the remainder of this section we will motivate the use
of NMPC for the attitude control problem over conventional
methods before discussing some mathematical preliminaries.
Based on these, in Sec. II we will look at the six degrees
of freedom dynamic models of the UAV in both body-fixed
and wind axes.



The purpose of the first model is to use it in simulations
whereas the latter is directly entering the NMPC together
with the attitude error function introduced in Sec. III which
will be included in the the OCP and the derived Nonlinear
Program (NLP). In order to evaluate the controller design, we
will discuss a simulation study in Sec. IV and Sec. V where
we compare the NMPC against convential PID controllers,
before finishing with some concluding remarks in Sec. VI.

A suitable formulation of the NMPC scheme to enforce
constraints on the relative velocity vector, specifically the
angle of attack and relative airspeed, through the state vector
of the vehicle together with a decoupled weighting of the roll
dynamics using quaternions as attitude representation is the
original contribution of this paper.

A. Motivation

Conventional attitude control methods that can be found
in the literature usually assume decoupled dynamics that are
being controlled separately in lateral and longitudinal direc-
tion (cf. [16], [17]). In the decoupled approach, airspeed and
pitch angle are controlled via a longitudinal control system
and roll and yaw angle through a lateral control system.
These are usually based on the successive loop-closure of
PID control loops that are tuned based on desired damping
ratio and bandwidth of canonical transfer functions of first or
second order. This procedure typically limits the bandwidth
of each loop to a maximum of 10%-20% of the preceding
lower-level loop. Moreover, they are usually tuned for a
limited set of trim conditions, which poses restrictions on the
flight-envelope that the UAV is capable of operating in. A
turn maneuver in the horizontal plane is then conducted in a
coordinated turn for slip compensation, in which the turning-
rate is controlled through the roll channel dynamics (bank-
to-turn). This makes for a computationally efficient and well
studied control system in which performance and robustness
can be directly related to the design process. However, it
comes at the price of conservative maneuverability and does
not explicitly take actuator saturation into account.

In contrast, an NMPC may use the full nonlinear dynamics
in order to achieve a higher-level control objective without
bandwidth limitations imposed through the design process.
In fact, using an NMPC scheme, the UAV may be operated
at its physical limits and thus exploit the full flight-envelope.
In UAVs with redundant actuators, the control allocation
problem is solved as a by-product. One simple example
would be to increase the relative airspeed to obtain a higher
control authority of the ailerons, which results in an increased
roll rate and at the end a faster convergence to the desired
attitude in a turn maneuver. However, this comes at the cost
of a significantly higher demand for computational resources
which results in the controller not being usable in real-
time applications. This justifies the dominant use of PID
controllers in state of the art autopilots where high update
rates are required. Attitude NMPCs can however be suitable
as an offline tool to explore a range of feasible attitude
maneuvers under actuator and state constraints, and thus to

assess performance of other nonlinear controllers that are
less computationally expensive but yield suboptimal results.

The idea of the proposed work is to design an NMPC
to control the relative speed together with yaw and pitch
angle, which is often an intermediate step to a higher-level
control objective such as path-following, shown in Fig. 1.
The current estimate of the static component of the wind
will be taken into account as a disturbance which can
be compensated for through the model formulation. Other
path-following algorithms use a reference velocity vector
represented by ground speed, course angle and flight-path
angle. With knowledge of the wind-velocity vector in the
inertial frame these can be converted to the desired airspeed,
yaw and pitch angle (cf. [17]), which then enter the OCP.

The controller model will be formulated in the wind frame
and thus includes angle of attack, side-slip and relative speed.
Therefore hard constraints may be imposed to prevent stall
while simultaneously optimize performance that is subject
to actuator constraints (limits on aileron, elevator, rudder
and throttle). In the same manner, we can penalize side-slip.
As stated earlier, controlling the roll angle is often used as
an intermediate step to control turn-rate or yaw angle to a
desired reference generated by a higher-level path-following
controller. The formulation of the NMPC allows for defining
the desired yaw angle in the control objective directly, thus
incorporating the control of the needed roll angle into the
optimization problem. As we include the side-slip angle in
the state vector, it is controlled by the controller and high
side-slip angles can be penalized through the definition of
the OCP. This makes it possible to drop the enforcement of
the coordinated turn kinematics.

B. Notation and Preliminaries

Throughout this paper, vectors will be denoted by bold
letters. The Euclidean norm on Rn is given by ‖x‖ :=√
x>x. The identity matrix of dimension n × n will be

denoted by In×n. For any x = [x1, x2, x3]
>, the skew-

symmetric matrix-valued function S : R3 7→ R3×3 is given
by

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (1)

The vector cross product for two vectors x,y ∈ R3 can be
written in matrix form x×y = S(x)y, where × denotes the
cross product operator. For brevity, the time argument may
be dropped where it is clear from context.

We represent attitude with a unit quaternion

q =
[
η ε>

]> ∈ S3 , (2)

which is decomposed into its scalar part η and vector part ε ∈
R3. The quaternion space is the three-sphere. The general n-
sphere is given by

Sn = {x ∈ Rn+1 : x>x = 1} . (3)
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Fig. 1. Block diagram of the guidance, navigation and control system of
a UAV. Input to the Attitude and Speed controller are references on relative
speed, pitch and yaw angle from the path-following controller to achieve
a higher-order control objective, which may include values ahead in time.
In addition to the estimated states the controller uses this information to
determine control surface deflections and throttle position.

The inverse of a unit quaternion is given by its conjugate
q̄ divided by its Euclidean norm

q−1 =
q̄

‖q‖
, q̄ =

[
η −ε>

]>
. (4)

The special orthogonal group SO(3) denotes the set of
rotation matrizes with dimension 3× 3 and is given by

SO(3) = {R ∈ R3×3 : R>R = RR> = I3×3, detR = 1} .
(5)

A parametrization of an element of SO(3) by a unit
quaternion R : S3 7→ SO(3) is given by [18]

R(q) = (η2 − ‖ε‖2)I3×3 + 2ηS(ε) + 2εε> (6)

which can also be expressed as the product of two matrices

R(q) = Ξ(q)
>
Ψ(q) (7)

where Ξ(q) and Ψ(q) are 4× 3 matrizes given by

Ξ(q) =

[
−ε>

ηI3×3 − S(ε)

]
, Ψ(q) =

[
−ε>

ηI3×3 + S(ε)

]
.

(8)
The product of two quaternions q1 = [η1, ε1]

>, q2 =
[η2, ε2]

> is defined as

q1 ⊗ q2 ,

[
η1η2 − ε1

>ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
=
[
q1 Ψ(q1)

]
q2 .

(9)
Given the angular velocity vector ω ∈ R3, a kinematic
equation of the quaternion can be given by

q̇ =
1

2
Ψ(q)ω . (10)

II. DYNAMIC MODEL

The aim of this section is to describe the dynamic and
kinematic equations of the vehicle. First the model in body-
fixed frame will be presented which will be used in the
forward-propagation in the simulation study. Then a formu-
lation based in the wind frame will be presented which will
be part of the OCP.

A. Vehicle Model

We model position, velocity and attitude (PVA) in the
North-East-Down (NED) frame {n}. The state x ∈ R13 and
input vector u ∈ R4 of the complete model in the body-fixed
frame are given by

x =
[
pnnb
> qnb

> vnnb
> ωbnb

>
]>

(11a)

u =
[
δa δe δr δt

]>
, (11b)

where pnnb,v
n
nb ∈ R3 are the position and linear velocity

of the vehicle’s body-fixed frame {b} relative to {n} de-
composed in NED. The quaternion qnb ∈ S3 represents the
orientation of the body-fixed frame relative to NED, and
ωbnb ∈ R3 is the angular velocity vector decomposed in the
body-fixed frame that describes the angular velocity of the
body-fixed frame relative to the NED frame. The input vector
includes the deflections of the ailerons δa ∈ [δa,min, δa,max],
elevators δe ∈ [δe,min, δe,max], rudder δr ∈ [δr,min, δr,max]
and the throttle position δt ∈ [0, 1].

We assume the NED frame to be inertial which yields the
following kinematic and dynamic equations for the vehicle
model:

ṗnnb = R(qnb )vbnb (12a)

q̇nb =
1

2
Ψ(qnb )ωbnb (12b)

v̇bnb =
1

m
(F bA + F bT ) +R(qnb )

>
gn − S(ωbnb)v

b
nb (12c)

ω̇bnb= I−1
b (−S(ωbnb)Ibω

n
nb +M b

A) . (12d)

The model includes the mass of the vehicle m ∈ R, the
gravity vector in NED gn = [0, 0, g]

> ∈ R3 and the matrix
of inertia in the body-fixed frame Ib ∈ R3×3 given by

Ib =

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz

 . (13)

The aerodynamic and thrust forces are represented by
F bA,F

b
T ∈ R3 and the aerodynamic moments are given by

M b
A ∈ R3, which are functions of the velocity of the UAV

relative to the surrounding air mass, its angular velocity,
control surface deflections and throttle position. To compute
them, the relative velocity needs to be expressed in terms
of its magnitude Vr ∈ R, angle of attack α ∈ [−π2 ,

π
2 ] and

side-slip angle β ∈ [−π, π], which are given by the equations

vr =
[
ur vr wr

]>
= vbnb −R(qnb )

>
wn (14a)

Vr = ‖vr‖2 (14b)
α = arctan(wr/ur) (14c)
β = arcsin(vr/Vr) (14d)

with wn = [wn, we, wd]
> ∈ R3 as the wind velocity vector

in NED.
The transformation from the body-fixed frame to the

stability frame {s} is a rotation in the body-fixed frame



around the y-axis by the angle of attack

Rs
b(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 , (15)

and the transformation from the stability frame to the wind
frame {w} is a rotation around the z-axis of the stability
frame by the side-slip angle

Rw
s (β) =

 cosβ sinβ 0
− sinβ cosβ 0

0 0 1

 . (16)

The transformation from the body-fixed frame to the wind
frame is then given by Rw

b (α, β) = Rw
s (β)Rs

b(α).
With these transformations we can use Vr, α and β to

express the relative velocity vector in terms of its direction
and magntitude as vr = Rw

b (α, β)
>

[Vr, 0, 0]
>.

We model the moment vector in body-fixed components
M b

A as

M b
A =

1

2
ρV 2

r S

bCl(Vr, α, β, p, r, δa, δr)cCm(Vr, α, q, δe)
bCn(Vr, α, β, p, r, δa, δr)

 (17)

where ρ ∈ R is the air density and b, c, S ∈ R are the span,
chord and surface area of the wings, respectively.

The model for the thrust force vector is given as a function
of relative speed Vr and throttle position δt acting along the
body-fixed x-axis

F bT =

T (Vr, δt)
0
0

 (18)

with the thrust model

T (Vr, δt) =
1

2
ρSpropCpropVdis(Vdis − Vr) (19a)

Vdis = Vr + δt(kmotor − Vr) . (19b)

The parameters in the model are the washout area and the
chord of the propeller Sprop, Cprop ∈ R together with a
motor-specific constant kmotor ∈ R.

The model of the aerodynamic force vector in the wind
frame is given by

FwA =

−DY
−L

 =
1

2
ρV 2

r S

 CD(Vr, α, β, q, δe)
CY (Vr, β, p, r, δa, δr)
CL(Vr, α, q, δe)

 (20)

and needs to be transformed to the body-fixed frame by using
the equation F bA = Rw

b (α, β)
>
FwA .

B. Vehicle Model in Stability and Wind axes

While we use the previous model for simulation, we will
formulate the OCP based on the model expressed in the
stability frame with different dynamic equations. The state
vector x ∈ R10 of this model is

x =
[
qnb
> Vr α β ωsnb

>]> (21)

where qnnb ∈ S3 again represents the attitude. In this
model we represent velocity in the wind frame using the

xb

yb

zb

xw
Vr

yw
β

−β
α

Fig. 2. Drawing of the Skywalker X8 including body-fixed axes
{xb, yb, zb} and wind axes {xw, yw, zw}, as well as the angle of attack
α and side-slip angle β. The relative velocity vector vr is aligned with xw .
With courtesy of [19].

relative speed, angle of attack and side-slip angle as defined
in Sec. II-A. Note that the angular velocity vector is rotated
to the stability frame, i.e ωsnb = Rs

b(α)ωbnb = [ps, q, rs].
The state vector dues not include the position of the vehicle
since it is not needed in the attitude and speed controller.
The input vector u is the same as in the body-fixed frame
given in (11). The kinematic and dynamic equations follow
from the derivations in [16], which yield

q̇nb =
1

2
Ψ(qnb )Rs

b(α, β)
>
ωsnb (22a)

V̇r =
T cosα cosβ −D + mg1

m
(22b)

β̇ =
T cosα sinβ + Y + mg2

mVr
− rs (22c)

α̇ =
−T sinα− L+ mg3

m cosβVr
− ps tanβ + q (22d)

ω̇snb= (Is)−1(−S(ωsnb)I
sωsnb +Rs

b(α)M b) (22e)
−S(ωsbs)ω

s
nb

where gw denotes the gravity vector in the wind frame and
is given by

gw =
[
g1, g2, g3

]>
= Rb

w(α, β)R(qnb )
>
gn . (22)

The inertia matrix Is is given by a similarity transformation
applied to Ib resulting in

Is = Rs
b(α)IbRs

b(α)
>

=

 Isx 0 −Isxz
0 Isy 0
−Isxz 0 Isz

 (23)

and with the individual components given by

Isx = Ix cos2 α+ Iz sin2 α− Ixz sin 2α (24a)
Isy = Iy (24b)

Isz = Ix sin2 α+ Iz cos2 α+ Ixz sin 2α (24c)

Isxz=
1

2
(Ix − Iz) sin 2α+ Ixz cos 2α . (24d)



III. SPEED/ATTITUDE CONTROLLER

In this section, we will first look at the design of the
attitude error function which will be included in the cost
function of the OCP from which we will then derive the
NLP.

The control objective is to steer the attitude towards a
desired yaw and pitch angle given by ψd and θd while
simultaneously controlling the relative speed to a desired
reference Vr,d. In order to weigh errors in pitch and yaw
direction independently from the roll angle, we need to
represent the attitude error in a reduced attitude form which
is invariant to changes in the roll angle. By doing this, we
can treat reduction of yaw and pitch errors as a primary
objective and the roll angle reduction as an intermediate
secondary objective. Physically, this means that we assign a
higher priority to controlling the direction of the longitudinal
axis of the vehicle while treating the rotation around this axis
separately. We will look at the reduced attitude representation
in the following before we discuss inequality constraints and
the OCP.

A. Reduced Attitude Control

Given a unit vector b ∈ R3 which represents an arbitrary
axis in NED, we define a reduced attitude in the body-fixed
frame [20] through a projection Γ : S3×R3 → S2 given by

Γ(q , b) = R(q)
>
b . (25)

The reduced attitude is invariant to rotations about b which
we make use of when composing the cost function. Now we
use the reduced attitude to compose an attitude error function
between the desired reduced attitude and the reduced attitude
of the vehicle. We assume a desired attitude represented by
a quaternion qd which is parametrized using ψd, θd and an
arbitrary roll angle. The first part of the attitude error function
Φ1 : S3 × S3 × R3 → R is defined by the equation

Φ1(q , qd, b) = 1− Γ(qd, b)
>

Γ(q , b) (26)

This equation is equivalent to Φ1(q , qd, b) = 1 − cosϑ
where ϑ is the angle between Γ(qd, b) and Γ(q , b) using the
fact that ‖Γ(qd, b)‖ = ‖Γ(q , b)‖ = 1. We see that that the
there exists a global minimum at ϑ = 0, where the desired
reduced attitude coincides with the reduced attitude of the
vehicle.

In the definition of the OCP in the next section, we will use
the weighted squared norm of the output of the attitude error
function. With only Φ1 as attitude error function, this would
lead to small gradients close to the minimum and may result
in a slow convergence to the solution to the NLP when the
attitude is close to its reference. In order to overcome this
issue, we extend the attitude error function with the cross
product term between the reduced attitudes

Φ2(q , qd, b) = S(Γ(qd, b))Γ(q , b) (27)

and concatenate as Φ = [Φ1,Φ2
>]
>

.
To show the increased magnitude of the gradient around

the minimum, we introduce n as a unit vector that is

−π π/2
0 π/2

π

π/2

0

π/2

0

2

4

ψd [−π, π]θd [−π/2, π/2]

J
Φ̃

(q
I
,ψ

d
,θ
d
)

Fig. 3. The cost function JΦ̃(qI , ψd, θd) evaluated at the identity
quaternion qI and QΦ̃ = I4×4.

orthogonal to Γ(qd, b) and Γ(q , b). By the definition of the
cross product it then follows that an equivalent expression of
(27) is given by Φ2(q , qd, b) = sin(ϑ)n. For the extended
attitude error function Φ and the attude error function Φ1,
their squared magnitudes are Φ>Φ = −2 cosϑ and Φ1 =
(1− cosϑ)2. The resulting inequality

dΦ>Φ

dϑ
= 2 sinϑ ≥ 2 sinϑ(1− cosϑ) =

dΦ2
1

dϑ
(28)

is true for ϑ ∈ [−π2 ,
π
2 ] which shows steeper gradient for

Φ>Φ around the minimum.
When we use desired pitch angle θd and yaw angle ψd

to parametrize the desired direction of the vehicle x-axis xnb
given by

xnd (θd, ψd) = [cos θd cosψd, cos θd sinψd,− sin θd]
>
,
(29)

then as a result the desired reduced attitude simplfies to
Γ(qd,x

n
d ) = xbb =

[
1, 0, 0

]>
. Injecting this result into (26)

and (27), we see that they reduce to

Φ̃1(q , ψd, θd) = 1−
[
1, 0, 0

]
Γ(q ,xnd ) (30)

and
Φ̃2(q , ψd, θd) = S(Γ(qd,x

n
d ))Γ(q ,xnd )

= S(
[
1, 0, 0

]>
)Γ(q ,xnd ) .

(31)

The attitude error function will be part of the quadratic
cost of the OCP which we use to design the NMPC.
It is therefore worth looking at the quadratic cost in-
troduced by the attitude error function JΦ̃(q , ψd, θd) =

Φ̃(q , ψd, θd)
>
QΦ̃Φ̃(q , ψd, θd), where QΦ̃ ∈ R4×4 is a

positive definite and diagonal weighting matrix. A plot over
the desired yaw and pitch angle is given in Fig. 3, which
shows that a quadratic cost on the derived attitude error
function has a well-defined minimum where the yaw and
pitch angle coincide with their desired values.



B. Inequality constraints

Inequality constraints are imposed by the flight envelope
which defines limits on the allowable relative airspeed and
angle of attack in order to prevent the UAV from stalling
and to ensure a sufficient lift force. With given lower bounds
Vr,min and αmin as well as upper bounds Vr,max and αmax,
we have the inequalities

Vr,min≤ Vr ≤ Vr,max (32a)
αmin ≤ α ≤ αmax (32b)

which we can represent as the vector inequality

h(x,u) ,


−Vr
Vr
−α
α

 ≤

−Vr,min

Vr,max

−αmin

αmax

 , hmax . (33)

To guarantee the feasibility of the solution under pertur-
bations we follow the approach in [14] and introduce slack
variables Si ∈ R and constant back-off parameters εi to
apply the following constraint relaxation:

hi(x,u)

(1− εi)hmax,i
− Si ≤ 1, Si ≥ 0 . (34)

The slack variables will be zero in most cases and become
positive as soon as hi(x,u) > (1− εi)hmax,i. The back-off
parameter can be used to introduce a safety margin to the
actual constraints, which will be used to operate the UAV in
a near-stall situation with turbulent wind conditions.

C. Optimal Control Problem & Discretization

The OCP over a given time horizon T can now be stated
as

J = min
x,u

∫ t+T

t

x̃>Qxx̃+ u>Quudτ (35a)

+x̃>(T )P x̃(T ) +W>S

s.t. x(t) = x̂(t) (35b)
ẋ = f(x,u) (35c)

hi(x,u)

(1− εi)hmax,i
− Si ≤ 1, Si ≥ 0 (35d)

umin ≤ u ≤ umax (35e)

where the time-varying error state x̃(t) ∈ Rnx is given by

x̃(t) =


Φ̃(q , ψd, θd)
Vr − Vr,d
β − βd
φ− φd
ωs − ωs,d

 . (36)

The first two elements of this vector drive the reduced at-
titude and relative speed to their desired references, whereas
the other terms serve to penalize high roll and side-slip
angles and to avoid fast attitude transitions. Note that when
the desired attitude reference is constant, we set βd = ϕd =
ωs,d = 0.

The vector u(t) is the time-varying control input with
lower and upper bounds umin and umax, respectively. The

matrices Q,P ∈ Rnx×nx and Qu ∈ Rnu×nu are sym-
metric and positive definite weighting matrices. The vectors
S,W ∈ RnS contain the slack variables and the corre-
sponding weights, respectively. The vector function f(x,u)
represents the system dynamics of the model (22) and (35)
- (35) are the known state and actuator constraints.

In order to discretize the OCP we use multiple shoot-
ing [21] which means that we split up the time horizon T
into N control intervals. The result is a uniform time grid
t ∈ {t0, t1, . . . , tN} with piecewise constant control inputs
u ∈ {u0, u1, . . . , uN−1}. To integrate the system dynamics
an explicit fourth order Runge-Kutta integrator is used which
defines xk+1 = F (xk,uk). The resulting NLP has the form

min
χ

φ(χ)′ (37a)

s.t. x0 = x̂(t0) (37b)
u0 = u(t0) (37c)
xk+1 − F (xk,uk) = 0 (37d)
hi(xk,uk)

(1− εi)hmax,i
− Si ≤ 1 (37e)

Si ≥ 0, i = [1, nS ] (37f)
umin ≤ uk ≤ umax (37g)

where the optimization variable χ ∈ Rnw is given by

χ =
[
x>0 u>0 . . . x>N−1 u>N−1 x>N S>

]>
. (38)

The resulting dimension of the optimization variable is nw =
N · (nx + nu) + nx + nS . The cost of the NLP in (37) is
given by

φ(χ)′ =

N−1∑
k=0

(x̃>kQxx̃k + uk
>Quuk)

+ xN
>PxN +W>S .

(39)

Equations (37) - (37) are the initial conditions for the
current timestep and (37) is the shooting gap constraint. It is
desirable to add a cost to the dynamics of the control input in
order to avoid fast changes in the actuators which would lead
to increased energy consumption and wear and tear. Since
the system dynamics do not include actuator dynamics it was
not possible to include fast dynamics of the control inputs
in the OCP. We can, however, add an additional cost to the
NLP based on the difference of the control input between
the shooting intervals, which yields the cost function

φ(χ) = φ(χ)′ +
N2

T 2

N−2∑
k=0

∆uk
>Q∆u∆uk (40)

with ∆uk = uk+1 − uk and the weighting matrix Q∆u ∈
Rnu×nu is symmetric, diagonal and positive.

D. Implementation & Limitations

We implement the OCP and multiple shooting algo-
rithm in MATLAB using the algorithmic differentiation tool
CasADi [22]. In order to find a numerical solution to the
NLP, an interior-point optimization method implemented



in the open-source software package IPOPT [23] is used
together with the linear solver ma97 from the HSL pack-
age [24]. The implementation does not include upper bounds
on the time allowed for solving the underlying NLPs, which
means that hard guarantees on algorithm convergence time
can not be given. The current setup therefore does not allow
for a real-time implementation. Furtheremore, the algorithm
in the current form does not take into account the problem
of model inaccuracies which is one of the major challenges
of model-based controllers. Development towards a real-time
applicable solution in which model inaccuracies will be taken
into acount will be part of future work. A a real-time iteration
scheme together with a sequential quadratic programming
approach (see e.g. [25]) will be the most likely modifications
to the presented algorithm.

IV. RESULTS

In this section we will discuss implementation of the
designed controller and compare its performance to that of
a set of conventional PID controllers in a simulation study.

A. Implementation

The vehicle model for the simulation study is the Sky-
walker X8 shown previously in Fig. 2. The structure of the
model matches the structure of the aerodynamic equations
discussed in Sec. II and the parameters of the aerodynamic
model are given in [19]. The parameters for the thrust
model are taken from [26]. Both the NMPC and the forward
simulation are based on the same set of parameters. The
dynamic equations are integrated at 100 Hertz using an
explicit fourth-order Runge-Kutta integrator.

For the NMPC, the time horizon T = 10 s is chosen which
is divided into N = 40 control intervals. In order to prioritize
attitude control over actuator usage we use larger weights on
Qx compared to Qu. After tuning, the weighting matrices

Qx = diag([1 102 3.2 3.2 3.2 1 1 1 1 1])

Qu = diag(
[
10−3 10−3 10−3

]
)

Q∆u = diag(
[
0.16 0.16 0.16

]
)

P = Qx

W = [10 10 104 104]
>

(41)

were found to result in a desriable behaviour of the UAV. The
back-off parameter is the same for all inequality constraints,
εi = 0.3, i ∈ [1, nS ] and the update rate of the NMPC is set
to 20 Hertz.

B. PID controllers

For comparison, we run the simulation with a set of PID
controllers. The roll and pitch angle are controlled via PID
controllers for aileron and elevator deflection, respectively.
The desired roll angle is generated by a PI controller which
seeks to reduce the error in the yaw angle. The relative
speed is controlled through the throttle position, which is

TABLE I
PID CONTROLLER GAINS.

Parameter Value
kpφ, kpθ , kpψ , kpV r 0.78, -0.78, 1.08, 0.69
kiφ, kiθ , kiψ , kiV r 0.01, -0.30, 0.36, 10.00

kdφ, kdθ -0.11, -0.16
Imax,φ,Imax,θ ,Imax,ψ ,Imax,V , 0.09, 0.09, 0.09, 1.00,

ωnφ,ωnθ ,ωnψ ,ωnV , 9.54, 17.49, 0.48, 19.88,
ζφ,ζθ ,ζψ ,ζV , 0.71, 0.71, 0.71, 0.71
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Fig. 4. Gust component of the wind velocity vector in the body-fixed
frame with longitudinal (red), lateral (green) and along the z-axis of the
UAV (blue).

determined by another PI controller. The outputs of the
controllers are thus given by

δa= kpφ(φd − φ) + kiφ

∫ t

0

(φd − φ)dτ + kdφp (42a)

φd= kpψ(ψd − ψ) + kiψ

∫ t

0

(ψd − ψ)dτ (42b)

δe = kpθ(θd − θ) + kiθ

∫ t

0

(θd − θ)dτ + kdθq (42c)

δt = kpVr,d
(Vr,d − Vr) + kiV r

∫ t

0

(Vr,d − Vr)dτ. (42d)

The PID controllers are tuned to the resulting gains
summarized in Table I together with the bandwidth and
damping ratio of the canonical second-order transfer func-
tions. See [17] for details on the design process. The trim
values for the controller design are obtained from a flight at
the initial references for attitude and relative speed. A simple
anti-windup strategy is used in which the integrator gain is
constrained to the interval [−Imax,, Imax,] and the update rate
of the PID controllers is set to 100 Hertz. The limits for the
states and actuators are summarized in Table II.

C. Flight Scenario

In the simulation study we test the capabilities of the
controller to recover from extreme attitude deviations with
high angular velocities. We therefore set the initial roll angle



TABLE II
STATE AND ACTUATOR CONSTRAINTS.

Parameter Value Unit
Vr,min, Vr,max 10, 30 m/s
αmin, αmax −12, 12 deg
δa,min, δa,max −35, 35 deg
δe,min, δe,max −35, 35 deg
δt,min, δt,max 0, 1 -

to 140 degrees and the initial pitch angle to −40 degrees
while keeping the initial yaw angle at zero. The initial linear
and angular velocity vector in the body-fixed frame are set
to vbnb,0 = [18, 0, 0]

> and ωbnb,0 = [50, 50, −50]
> with

units meter per second and degree per second, respectively.
The wind velocity vector in the body-fixed frame is

modelled as the sum of a static component wn
s and a gust

component wb
g by the equation

wb = R(qnb )
>
wn

s +wb
g (43)

with wn
s = [−5, −3, 0]

> in meter peter second. The model
for the gust component is the Dryden gust model which is
used to generate a moderate turbulence [17], [27]. A plot of
the gust component is shown in Fig. 4.

This results in the initial states in the wind frame given
by

qnb,0 =
[
0.32 0.88 −0.12 0.32

]>
Vr,0 = 22.27

α0 = 1.40

β0 = −11.30

ωsnb,0 =
[
48.76 50.00 −51.21

]>
,

(44)

with α0, β0 and ωsnb,0 in degree and degree per second,
respectively.

The attitude reference is initially set to φd = θd = ψd = 0.
After 15 seconds, we command an aggressive climb and turn
maneuver and set the desired yaw and pitch angle to -135
degrees and 45 degrees, respectively. An FIR low-pass filter
with 0.1 Hertz cutoff frequency and a 2 seconds Chebyshev
window is applied to keep the reference step tractable. The
reference for the relative airspeed is set to 15 meter per
second and remains constant throughout the simulation. The
aim of the maneuver is to create a situation in which a sudden
change in pitch may lead to an angle of attack above the
stall angle. This way, the NMPC is tested for following a
desired attitude reference while keeping the angle of attack
within the given bounds for a safe operation. Note that this
maneuver may lead to load factors that can not be tolerated
by a small fixed-wing UAV in real flight.

V. DISCUSSION

The attitude response in Fig. 7 and angular velocities in
Fig. 8 show that both controllers are able to recover from the
initial attitude and angular velocities. The PID controllers
show a faster convergence to the attitude reference than
the NMPC. The main reason for this is that the NMPC
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Fig. 5. The relative velocity represented by the relative speed (Speed),
the angle of attack (AOA) and the side-slip angle (SSA). Results are shown
for the NMPC (blue) and the PID controllers (red). The plots include the
reference for the relative speed (dotted), limits on the angle of attack (solid,
black) and the reduced limit using the back-off parameter ε (dashed, black).
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Fig. 6. UAV control inputs as output of the NMPC (blue) and the PID
controllers (red). Surface deflection of the aileron δa and elevator δe with
their limits (black, solid). The throttle position δt is in the interval [0,1].

simultaneously drives the relative speed to its reference (cf.
Fig. 5), which it does by increasing the pitch angle and
using the elevators close to their limits (cf. Fig. 6). It thus
mediates between the objective to fly close to the attitude
reference and the reference for the relative speed, which
results in a faster exponential decrease of the objective value
compared to the PID controllers as shown Fig. 9. Though
PID control loops in which ground speed or relative speed are
controlled by generating pitch angle references are common,
the PID controllers here control the relative speed only
through the throttle position, which in consequence is driven
to its lower limit until the desired relative speed is reached,
as shown in Fig. 6. The stall angle is exceeded by both
controllers during the recovery phase. The PID controllers
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Fig. 7. Attitude response of the UAV given in Euler angles when using
the NMPC (blue) and the PID controllers (red) given the attitude reference
(dotted, black).
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Fig. 8. Angular rates given by roll rate p, pitch rate q and yaw rate r.
Results are shown for the NMPC (blue) and the PID controllers (red).
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Fig. 9. Objective value for the NMPC (blue) and the PID controllers (red).

do not include angle of attack constraints and therefore do
not account for them. The NMPC violates the upper bound
due to the constraint relaxation and prioritizes the decrease
of the attitude error and the error in the relative speed over
the constraint violation. A higher weighting of the slack
variables associated to the angle of attack can be used to
prevent this.

The following climb and turn maneuver starts at 15
seconds. The NMPC starts the attitude change at about 14
seconds, which is a trade-off in the deviation from the current
and future reference. Information about the future reference
enables the NMPC to keep the attitude closer to it, which can
be seen for all three axes (cf. Fig. 7). The PID controllers,
on the other hand, are purely reactive and start to act as soon
as there is a difference between the current attitude and its
reference.

The transient behaviour of both controllers is notably dif-
ferent. The PID controllers show a faster transient reponse in
both the lateral and longitudinal channels with significantly
larger angular velocities (cf. Fig. 8). This comes at the cost
of exceeding the maximum angle of attack as shown in and
also larger side-slip angles Fig. 5. The NMPC in constrast
explicitly deals with angle of attack, side-slip angle and
relative speed and clearly lowers the increase in the angle
of attack as soon as it reaches the margin defined by the
back-off parameter. Furthermore, the transient of the NMPC
is more monotonic since it is based on the full nonlinear
dynamics in contrast to the decoupled assumption of the PID
controllers which introduces a disturbance between lateral
and longitudinal channel.

VI. CONCLUSION

In this paper, we presented a design for an NMPC for
attitude control of a fixed-wing UAV and utilized a vehicle
model formulated in the wind frame to include relative
airspeed, angle of attack and side-slip angle as states in
the control objective. A reduced attitude formulation is
employed in order to treat the control of yaw and pitch
angle as primary control objectives and the roll angle as
an intermediate secondary objective. The designed NMPC
shows good performance in a simulation study compared to
conventional PID controllers. This includes its capabilities
to recover the UAV from disturbed initial conditions as well
as flying aggressive attitude maneuvers while keeping the
angle of attack within allowed constraints imposed by the
flight envelope as well as keeping relative speed and side-
slip angle closer to desirable values.

Regarding future work, a more realistic scenario with
mismatch of the used vehicle model including neglected
dynamics will be considered. When looking at the NMPC as
a potential real-time applicable solution, a trade-off between
model complexity and the available computational resources
together with implementation aspects will need to be inves-
tigated.
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