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Abstract—This paper presents two Kalman filter approaches
for correcting air data systems providing relative velocity mea-
surements with an additive constant or slowly time-varying bias
for fixed-wing unmanned aerial vehicles (UAVs). In addition to
the air data system, both estimators rely on a standard sensor
suite consisting of a GNSS receiver, an IMU, and a heading
reference. Furthermore, the estimators are based on kinematics
and do not require a model of the UAV. The two estimators
are in the noise-free case proven to have globally exponentially
stable (GES) equilibrium points of the error dynamics if provided
with persistence-of-excitation (PE) of the angular velocity of the
UAV. The estimators are verified through simulation and using
experimental flight data. The relative velocity measurements in
the experimental flight results are provided by an array of
pressure sensors embedded in the surface of the UAV combined
with a neural network algorithm. The results indicate that a
certain amount of PE is needed in order to have converging bias
estimates for turbulent wind conditions.

Index Terms—Unmanned Aerial Vehicle, UAV, Air Data System
Bias Correction, Air Data Estimation, Relative Velocity, Wind
Velocity, Virtual Sensor, Airspeed, Angle of Attack, Sideslip
Angle, Air Data Parameters, Fixed-Wing Aircraft, Flight Tests.

I. INTRODUCTION

Knowledge of the wind is very important in fixed-wing
UAV control and operation. The relative velocity of the UAV
with respect to the wind contains information from which the
airspeed, angle of attack (AOA), and sideslip angle (SSA)
are directly computable. The airspeed, AOA, and SSA are
commonly referred to as the air data1 and their values during
flight are directly related to the performance and safety of the
UAV. For beyond visual line of sight (BVLOS) operations, it
is difficult for the pilots operating the UAV to reliably assess
the wind on the aircraft, and it is therefore essential to have
either a sensor system to measure the air data or algorithms
to provide accurate estimates of them for these types of
operations. The low speed and light weight of small to
medium-sized UAVs make them susceptible to strong winds
and the influence of the wind on the ground speed is not
negligible. In order to have optimal path planning and UAV
range estimates, it is necessary to have air data information
[10, 24]. In addition, having air data knowledge, can open
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1Often the similarity parameters, the Mach number and Reynolds number,
are also included.

up for more complex maneuvers such as high precision
deep-stall landings [20], precision object delivery [19, 21], or
for detecting critical performance degradation caused by ice
accretion on the UAV due to atmospheric icing conditions [32].

The commercially available air data measurement solutions,
commonly referred to as air data systems, are all based on
a pneumatic multi-hole probe protruding from the UAV that
is connected to a pressure scanner inside the UAV through
rubber tubes. For example, the Aeroprobe Corporation
solution, the Micro Air Data System [1], uses a 5-port air
data probe connected to a pressure scanner. The pressure
scanner contains a microcomputer that runs an algorithm
to calculate air data parameters from the direct pressure
measurements from the ports on the probe. The pressure
scanner and the air data probes combined with the necessary
wind tunnel tests needed to calibrate the system, result in a
significant price compared to low-cost UAVs. The expensive
components and the need for expensive calibration therefore
limits the use of the air data systems in low-cost UAVs.

Several papers has been published on air data estimation
for UAVs using a standard sensor suite consisting of an
IMU, a GNSS receiver, a heading or attitude reference, and
a Pitot-static probe providing airspeed measurements. Long
and Song [18] used sensor fusion in a modular architecture
where both an aerodynamic and kinematic model was used
to estimate the AOA and airspeed. A Newton-Raphson solver
on an aerodynamic model combined with an EKF, was
proposed by Ramprasadh and Arya [26] to obtain AOA and
SSA estimates. Lie and Gebre-Egziabher [17] presented a
cascaded EKF structure and an aircraft dynamics model for
estimating the air data without the Pitot-static probe airspeed
measurement. Cho et al. [8] proposed an EKF method that
assumes a scaled measurement of the airspeed combined
with an aerodynamic model of the system to estimate the
AOA, the SSA, and the airspeed sensor scaling factor.
Wenz et al. [34] used a simplified aerodynamic model for
the lift force combined with the Dryden wind model (as
described in [9]) in an EKF structure. Wenz and Johansen
[33] built on this result with a moving horizon estimator
and improved the accuracy. A common denominator for the
preceding methods is the use of an aerodynamic model of
the forces on the UAV. Aerodynamic forces are complex and
a potential disadvantage of this approach is that model errors
due to simplifications or parameter inaccuracies may result in
estimation error. Johansen et al. [13] proposed a model-free
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kinematic approach for estimating the wind velocity and a
Pitot-static tube scaling factor. The system was linear and
Johansen et al. was able to show global exponential stability
of the error dynamics equilibrium points under persistence
of excitation of the aircraft. Rhudy et al. [28] presented a
model-free nonlinear Kalman filter approach for estimating
the airspeed without a Pitot-static probe by using wind vanes
providing AOA and SSA measurements.

Research has also been conducted into employing an array
of pressure sensors to estimate the air data parameters for
fixed-wing aircraft. An extensive amount of research in flush
air data sensing (FADS) systems originates from NASA in
response to the problems associated with protruding Pitot
probes. The FADS systems utilize pneumatic pressure orifices
that are flush with the surface, placed in a symmetric and
circular pattern on the nose of an aircraft combined with a
aerodynamic pressure model. Larson et al. [15] demonstrated
a FADS system in wind tunnels for subsonic airspeeds.
Larson et al. extended this to transonic airspeeds [16], and
Whitmore et al. [35] demonstrated the system in-flight. Using
the FADS system in combination with neural networks (NNs)
was proposed and demonstrated by Rohloff et al. [29, 30].
This approach was proposed for a soaring UAV by Quindlend
and Langelaan [25]. Instead of pneumatic pressure sensors,
Callegari et al. [6], showed that by combining a maximum
likelihood estimator with strips of capacitive pressure sensors
applied to the wings of a UAV, it was possible in simulation
to estimate the airspeed and AOA. Samy et al. [31] developed
a FADS system for a mini air vehicle where a matrix of
pressure orifices was placed on the leading edge of the
wing and a neural network was used to estimate the air data
parameters. Borup et al. [5] proposed and demonstrated an
air data system consisting of low-cost MEMS-based pressure
sensors embedded in the surface of a UAV combined with
machine learning algorithms. This system was used for the
experimental flight test results in Section VII. However, the
methods presented in this paper could be used for any air
data system with a constant or slowly time-varying bias and
the system presented [5] system was simply one example of
such a system.

A. Contributions of this paper

The contributions of this paper are two distinct Kalman
filter approaches for correcting an air data system or air data
estimator with low-frequency drift or a constant error bias. If
not mitigated, this drift or error bias can result in inaccurate
measurements that potentially renders the system useless or
even worse provides dangerous input to a control system.
The low-frequency drift or constant bias errors could be due
to sensor performance degradation, structural changes on the
UAV or sensors, or from operating outside of the ambient
conditions for which the system was calibrated for. Both
presented estimators use only a standard sensor suite consist-
ing of a GNSS receiver, an IMU, and a heading reference,
combined with an air data system that is assumed to provide

biased relative velocity measurements. Provided with PE of
the angular velocity of the UAV, the two linear time-varying
systems are proven to be uniform completely observable
(UCO) and uniform completely controllable (UCC), implying
GES for the deterministic case and boundedness in the mean
square sense for the stochastic case. Having two different
estimators provides freedom in choosing the estimator that
relies on the highest quality sensors. Furthermore, using both
estimators in parallel potentially opens up for a fault detection
and isolation structure such as presented by Ray and Luck [27]

B. Notation and preliminaries

For a vector or matrix X , X> denotes its transpose. The
operator ‖·‖ denotes the Euclidean norm. For a vector x ∈ R3,
S(x) denotes the skew-symmetric matrix

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


The n × n identity matrix is denoted by In and the m × n
zero element matrix by 0m×n. For the estimators presented
in this paper, two different coordinate frames are considered,
namely the body-fixed (BODY) frame and the North-East-
Down (NED) frame. Vectors decomposed in the BODY and
NED coordinate frames are denoted by the superscripts b and
n, respectively. Consequently, the relation between a vector
xb decomposed in the BODY frame and its corresponding de-
composition in the NED frame xn, is governed by xn = Rn

b x
b

where Rn
b ∈ SO(3) is the rotation matrix from BODY to NED.

Furthermore, we have the corresponding rotation matrix from
NED to BODY as Rb

n = (Rn
b )>.

II. PROBLEM FORMULATION

The velocity over ground of a UAV can be expressed as the
sum of the relative velocity and the wind velocity according
to

vng = Rn
b v

b
r + vnw (1)

where vng = [vn, ve, vd]> is the velocity over ground of the
UAV decomposed in the NED frame, vbr = [ur, vr, wr]> is
the relative velocity of the UAV with respect to the wind
decomposed in the BODY frame and vnw = [wn, we, wd]>

is the wind velocity decomposed in the NED frame. The goal
is to estimate either vnw or vbr, since knowledge of one allows
computing the other using only known measurements. From
the relative velocity the airspeed, AOA and SSA are found by

Va =
√
u2r + v2r + w2

r (2)

α = tan−1
(
wr

ur

)
(3)

β = sin−1
(
vr
Va

)
(4)
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A. Models and assumptions
For the two presented estimators, it is assumed that the

UAV is equipped with a standard sensor suite consisting of
an inertial measurement unit (IMU), a GNSS receiver, and
a heading reference such as a magnetometer. Furthermore, it
is assumed that a biased relative velocity sensor is available.
Such a sensor could be obtained by using the output of the
pressure sensor-array approach presented in Borup et al. [5]
treated as a virtual sensor. The measurements assumed are:
• An attitude estimate from an attitude estimator, typically

in either Euler angles or quaternions, used to compute the
rotation matrix Rn

b (t). This estimate is assumed free of
noise in the estimator design, but studied in simulation
and experiments with added noise.

• A GNSS receiver velocity over ground measurement
modeled by

vng,m(t) = vng (t) + εvg (5)

where εvg
∼ N (0, Σvg ) is a noise term.

• An IMU specific force measurement modeled by

f bm(t) = f b(t) + εf (6)

where εf ∼ N (0, Σf ) is a noise term.
• An IMU angular rate measurement, compensated for bias

and drift, modeled by

ωb,m(t) = ωb(t) + εω (7)

where ωb(t) = [p(t), q(t), r(t)]> is the angular velocity
of the BODY frame relative to the NED frame, decom-
posed in the BODY frame, and εω ∼ N (0, Σω) is a noise
term.

• A biased relative velocity measurement such as the low-
cost system [5] modeled by

vbr,m(t) = vbr + bb + εvr (8)

where bb = [bu, bv, bw]> is a sensor bias and
εvr ∼ N (0, Σvr ) is a noise term.

Note that the argument for time-varying signals have for the
remainder of the article been omitted for notational simplicity,
except when deemed essential for clarity. An example of a
GES attitude and gyro bias observer is found in Grip et al. [11].
The bias-compensated IMU measurements of angular rate and
specific force are only used in the relative velocity estimator.
Similarly, the GNSS velocity measurement is only used in the
relative velocity estimator, and only if wind velocity estimates
are also desired.

For both estimators, it is assumed that the wind velocity
vector field is slowly time-varying and uniform over the area
of flight, i.e.

v̇nw = εvw (9)

where εvw ∼ N (0, Σvw) is the wind model noise term, and
that the relative velocity sensor bias is slowly time-varying

ḃb = εb (10)

where εb ∼ N (0, Σb) is the bias model noise term. These
two model assumptions will be used in both the estimators
and the states will be estimated using Kalman filters.

III. WIND VELOCITY ESTIMATOR

The wind velocity estimators presented in this section is
inspired by the estimator presented in [13]. It estimates the
wind velocity and the bias of the relative velocity sensor.
Using the assumed measurements, it is possible from the
wind velocity to estimate the relative velocity, and in turn the
airspeed, AOA, and SSA. The structure of the wind velocity
estimator is shown in Fig. 1.

V̂a, α̂, β̂

v̂nw

vng,m

vbr,m

Rn
b

Fig. 1: Block diagram showing the cascaded structure of the wind
velocity estimator.

By inserting the GNSS velocity over ground measurement
and the relative velocity sensor measurement into Eq. 1, we
get

vng,m −Rn
b v

b
r,m = vnw +Rn

b b
b +Rn

b εvr + εvg (11)

Consider the state vector

xw =

[
vnw
bb

]
and the composed measurement

yw = vng,m −Rn
b v

b
r,m

The linear system can be stated as

ẋw = Gwεxw
(12)

yw = Cw(t)xn + Cw(t)εyw
(13)

where

Gw = I6, εxw
=

[
εvw
εb

]
Cw(t) =

[
I3 Rn

b (t)
]
, εyw

=

[
εvg
εvr

]
Also, notice that the system matrix is Aw = 06×6.

A. Wind velocity estimator design

Consider the estimator

˙̂xw = Kw(yw − Cwx̂w) (14)

where Kw is the Kalman filter gain matrix. The process noise
covariance matrix is

Qw = E[εxw
ε>xw

] = Qxw
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where Qxw
= diag(Σvw ,Σb). The measurement covariance

matrix is found to be

Rw(t) = E[Cw(t)εyw
ε>yw

Cw(t)>] = Cw(t)E[εyw
ε>yw

]Cw(t)>

= Cw(t)RywCw(t)>

where Ryw = diag(Σvg ,Σvr ).

Proposition 1: Assume the angular velocity and angular
acceleration of the UAV satisfies ‖ωb × ω̇b‖ > 0 for all
t ≥ 0, then the LTV system described by Eq. 12 and
13 is uniform completely observable (UCO) and uniform
completely controllable (UCC).

Proof: First, we show UCO of the pair (Aw, Cw(t)). Theorem
6.O12 in Chen [7], states that the continuously differen-
tiable pair (A(t), C(t)) is UCO at t, if there exists a finite
t1 > t such that the observability codistribution dOw =
[N0(t1); ...;Nn−1(t1)] has full rank, where

N0(t) = C(t)

Nm+1(t) = Nm(t)A(t) +
d

dt
Nm(t), m = 0, 1, ..., n− 1

where n is the dimension of the state matrix. For the pair
(Aw, Cw(t)), we have

dOw =

Cw(t)

Ċw(t)

C̈w(t)


=

 I3 Rn
b (t)

03×3 Rn
b (t)S(ωb(t))

03×3 Rn
b (t)S(ωb(t))2 +Rn

b (t)S(ω̇b(t))


Given the form of dOw, to verify that it has full rank, it suffices
to show that the submatrix

Ow,1 =
[
Rn

b (t)S(ωb(t))2 +Rn
b (t)S(ω̇b(t))

]
is full rank, as proven by Meyer [22]. Since Rn

b (t) is non-
singular, the conditions for which the codistribution dOw is
full rank corresponds to the conditions for which[

S(ωb)2 + S(ω̇b)
]
ζ 6= 0 ∀ ‖ζ‖ 6= 0 (15)

where ζ ∈ R3. Thus, the codistribution dOw is not full rank
if there exists ζ 6= 0 such that

S(ωb)2ζ = −S(ω̇b)ζ (16)

The skew-symmetric matrix functions as the cross product
operator when post multiplied with a 3-dimensional vector,
i.e. S(x)y = x × y for y, x ∈ R3. The two resulting vectors
from S(ωb)2ζ and −S(ω̇b)ζ belong to two different subspaces
of the vector space R3 that are both spanned by a line crossing
through Origo, and the only common element of the two
subspaces is the zero vector. The only solution to Eq. 16 is
therefore

S(ωb)2ζ = −S(ω̇b)ζ = 0 (17)

To see this, consider the following

S(ω̇b)ζ ∈ (spanω̇b + spanζ)⊥ =: A (18)

(ωb)2ζ ∈ (spanωb +
(
spanωb + span)⊥

)⊥
=: B (19)

Since S(ωb)2ζ = −S(ω̇b)ζ, it implies that both S(ωb)2ζ and
S(ω̇b)ζ belong to the same subspace C = A ∩ B. Then,
observe that

C =
(
A⊥ + B⊥

)⊥
=
(
spanω̇b + spanζ + spanωb + (spanωb + spanζ)⊥

)⊥
= {0} (20)

since spanζ + spanωb + (spanωb + spanζ)⊥ = R3.
Eq. 16 is easily seen to be true for ωb = ω̇b = 0.

Furthermore, if either ωb or ω̇b is equal to zero, then choosing
ζ to be collinear with the non-zero vector will result in both
sides of the equality being zero. Moreover, for ωb 6= 0 and
ω̇b 6= 0, Eq. 16 is true when the vectors ζ, ωb, and ω̇b are all
collinear. Thus, the codistribution dOw is full rank if ω̇b and
ωb are non-zero, noncollinear vectors, which corresponds to
the requirement ‖ωb × ω̇b‖ > 0.

Lastly, it is easy to verify that the pair (Aw, Gw) is UCC.

The UCO and UCC properties of the system implies that
the equilibrium points of the Kalman filter error dynamics,
ṽnw = vnw − v̂nw and b̃b = bb − b̂b, are GES in the deterministic
case, as proven by Anderson [3] and bounded in the mean-
square sense in the stochastic case [12]. The definition of the
estimator in Eq. 14 and the observability analysis is done
in continuous time for convenience. However, the Kalman
filter should be implemented using a discrete-time algorithm.
The conducted analysis shows that in order for the system
to be UCO, the requirement ‖ωb × ω̇b‖ > 0 has to be
fulfilled. This correspond to a PE requirement on the angular
rate, which needs to vary over time. The implications of this
PE requirement is discussed in Section V and the estimator
performances are investigated through a simulation study in
Section VI and using experimental flight data in Section VII.

IV. RELATIVE VELOCITY ESTIMATOR

The relative velocity estimator is distinct from the wind
velocity estimator. The estimator does not require velocity
over ground measurements, but angular rate and specific
force measurements. The relative velocity estimator structure
is shown in Fig. 2.

The dynamics of the velocity over ground and attitude is
described by

v̇ng = Rn
b f

b + gn (21)

Ṙn
b = Rn

b S(ωb) (22)

where f b is the specific force decomposed in the BODY frame
and gn is the gravity vector decomposed in the NED frame.
Differentiating Eq. 1 results in

v̇ng = Rn
b S(ωb)vbr +Rn

b v̇
b
r + εvw (23)

Inserting Eq. 21 into Eq. 23 and rearranging gives

v̇br = f b +Rb
ng

n − S(ωb)vbr −Rb
nεvw (24)
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V̂a, α̂, β̂

v̂br

f bm, ω
b
m

vbr,m

Rn
b

Fig. 2: Block diagram showing the cascaded structure of the relative
velocity estimator.

Replacing the specific force and angular rate with the bias-
compensated IMU measurements, we have that

v̇br = f bm +Rb
ng

n − S(ωb
m)vbr − εf − S(vbr)εω −Rb

nεvw (25)

Consider the state vector

xr =

[
vbr
bb

]
(26)

and the input and measurement vector

ur =

[
f bm
gn

]
, yr = vbr,m (27)

Then the linear time-varying system can be stated as

ẋr = Ar(t)xr +Br(t)ur +Gr(t, xr)εxr
(28)

yr = Crxr + εyr
(29)

where

Ar(t) =

[
−S(ωb

m(t)) 03×3
03×3 03×3

]
, Br(t) =

[
I3 (Rn

b (t))>

03×3 03×3

]
Gr(t, xr) =

[
−I3 −S(vbr(t)) −(Rn

b (t))> 03×3
03×3 03×3 03×3 I3

]

εxr
=


εf
εω
εvw
εb

 , Cr =
[
I3 I3

]
, εyr

= εvr

A. Relative velocity estimator design

Consider the estimator

˙̂xr = Arẋr +Brur +Kr(yr − Crx̂r) (30)

where Kr is a time-varying Kalman gain. The process noise
covariance matrix is

Qr = E[Gr(t, x̂)εxr
ε>xr

Gr(t, x̂)>]

= Gr(t, x̂)E[εxr
ε>xr

]Gr(t, x̂)>

= Gr(t, x̂)Qxr
Gr(t, x̂)>

where Qxr = diag(Σf ,Σω,Σvw ,Σb). The measurement co-
variance matrix is

Rr = E[εyr
ε>yr

] = Ryr
(31)

where Ryr = Σvr .

Proposition 2: Given the angular velocity and angular
acceleration of the UAV satisfies ‖ωb× ω̇b‖ > 0 for all t ≥ 0,
then the LTV system described by Eq. 28 and 29 is UCO
and UCC.

Proof: We start by showing UCO of the pair (Ar(t), Cr) as
defined for the LTV system described by Eq. 28 and 29. Once
again employing Theorem 6.O12 of Chen [7], we have

dOr =

 Cr

CrAr(t)

CrAr(t)2 + CrȦr(t)


=

 I3 I3
−S(ωb(t)) 03×3

S(ωb(t))2 − S(ω̇b(t)) 03×3


By the same argumentation used in the proof for Proposition
1, full rank of the observability codistribution dOr is obtained
if ω̇b and ωb are non-zero, noncollinear vectors, which corre-
sponds to the requirement ‖ωb × ω̇b‖ > 0.

Lastly, we show that the pair (Ar(t), Gr) is UCC. The-
orem 6.12 of Chen [7], states that the continously differen-
tiable pair (A(t), G(t)) is UCC at t0 if there exists a finite
t1 > t0 such that the controllability codistribution dCr =
[M0(t), ...,Mn−1(t)] has full rank, where

Mo(t) = G(t)

Mm+1(t) = −A(t)Mm(t) +
d

dt
Mm(t)

Applying the theorem it is sufficient to examine the first set
of columns of controllability codistribution Cr = M0 = Gr(t),
where it is easy to see that this has full rank.

The UCO and UCC properties of the system implies that
the equilibrium points of the Kalman filter error dynamics,
ṽbr = vbr − v̂br = 0 and b̃b = bb − b̂b = 0, are GES in the
deterministic case, as proven by Anderson [3] and bounded in
the mean-square sense in the stochastic case [12]. Similar to
wind velocity estimator, the definition of the relative velocity
estimator in Eq. 30 and the observability analysis is done in
continuous time for convenience.

V. PERSISTENCE OF EXCITATION REQUIREMENT

The presented wind velocity and relative velocity estimators
have been proven to have favorable estimation properties if the
requirement ‖ωb × ω̇b‖ > 0 is fulfilled for t ≥ 0. As stated
previously, this corresponds to the angular rate and angular
acceleration vectors, ωb and ω̇b, being non-zero and linearly
independent. The requirement on the angular acceleration
means that a constant rotation around any axis of the UAV,
does not provide PE. Similarly, an angular acceleration around
a single axis of the BODY frame with no angular velocity
around a different axis, will results in a zero-valued cross
product between the two vectors. To achieve PE, the UAV will
therefore have to engage in a flight pattern that causes at least
two of the angular rate vector components to be non-zero and
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one of those components to vary over time. As an example,
this could be accomplished by flying in a sinusoidal or figure-
eight course pattern, where both roll, pitch, and yaw angles
of the UAV are continuously changing. The PE requirement
could appear to be a disadvantage to the presented method,
since imposing requirements on the operational behavior of
the UAV could oppose the interests of the UAV operator.
However, the presented estimators could be augmented with
a simple module that determines whether the level of PE
is sufficient to update the estimates combined with a take-
off trajectory that ensures a long enough period with proper
PE to have converged bias estimates, before continuing with
the operation flight trajectory. Lastly, it should also be noted
that PE is a theoretical concept, and the requirements on the
level of excitation needed for convergence will in practice be
governed by many different factors such as noise levels on
sensors, validity of the system model, along with other error
sources.

VI. SIMULATION STUDY

This section presents simulation results for the wind
velocity estimator and the relative velocity estimator. The
results are obtained using the UAV model presented in
Beard and McLain [4] with the Aerosonde UAV model
parameters. Since both estimators are based on kinematics,
the aerodynamic model of the UAV does not influence the
estimation properties of the estimators.

The wind is modeled as a uniform constant wind field with
added turbulence. The turbulence is generated as white noise
filtered through a Dryden model, with the transfer functions

Hu(s) = σu

√
2Va
Lu

1

s+ Va/Lu
(32)

Hv(s) = σv

√
3Va
Lv

(
s+ Va/(

√
3Lv)

)
(s+ Va/Lu)2

(33)

Hw(s) = σw

√
3Va
Lw

(
s+ Va/(

√
3Lw)

)
(s+ Va/Lw)2

(34)

where σu, σv , σw and Lu, Lv , Lw are the turbulence
intensities and spatial wavelengths along the vehicle frame
axes as defined in [23]. The simulation assumes low altitudes
and moderate gusts. Suitable Dryden model parameter values
for these conditions was presented by Langelaan et al. [14]
and the Dryden model has been implemented with those
given parameters values and a constant nominal airspeed
Va = Va0

. The parameter values are listed in Table I.

altitude 50 m
Lu,Lv 200 m
Lw 50 m
σu,σv 2.12 m/s
σw 1.4 m/s
Va0 26 m/s

TABLE I: Dryden gust model parameters used in simulation.

The simulated trajectory has been chosen to provide insight
into the behavior of the two estimators with respect to PE
requirements. The simulation is initiated with trim conditions
at an altitude of 50 m and an airspeed of 26 m/s. After 50
seconds, the course control command objective is chosen
as a sinusoidal signal with amplitude of 50 degrees and a
frequency of 0.04 Hz. This course control command pattern
is continued for 100 seconds, corresponding to four periods.
At time 225 s to 325 s, the altitude objective was similarly
chosen as a sinusoidal signal with an amplitude of 10 m and
a frequency of 0.04 Hz. It is worth noticing that the wind
influence on the UAV, will result in a non-perfect tracking
of control objectives. Plots of the position, angular rates,
and Euler angles obtained through simulations are shown
in figures 3 - 5. The angular rates indicate that the PE
assumption of ‖ωb × ω̇b‖ > 0 only holds between time 50 s
to time 150 s, i.e. when the course control signal command
is varied.
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Fig. 3: The trajectory described by the UAV in simulation.
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Fig. 4: The Euler angles obtained from simulations.

For both estimators, the sensors were assumed corrupted
by additive, uncorrelated, zero-mean white noise and sampled
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Fig. 5: The angular rates obtained from simulation.

at 100Hz. For the biased relative velocity measurement, a
standard deviation of 0.05 m/s was applied and an arbitrarily
chosen constant bias b = [2.0,−1.5, 1.3] was added. The
rotation matrix was parametrized by Euler angles with a white
noise term with standard deviation 1.0 deg. For the wind ve-
locity estimator, the GNSS velocity over ground measurement
white noise term was assumed to have a standard deviation of
0.05 m/s, and for the relative velocity estimator, the specific
force measurements and the angular rate measurements were
assumed to have white noise terms with standard deviations
of 2.5×10−3 deg/s and 2.5×10−3m/s2.

A. Wind velocity estimator simulation results

For the wind velocity estimator, the wind model noise stan-
dard deviations were chosen by tuning as Σvw

= 1× 10−2I3,
and the bias model noise standard deviations were chosen by
tuning as Σb = 1 × 10−4I3, and the error covariance matrix
was initialized as Pw,0 = 1× 10−2I6. The tuning was chosen
with a prioritization of steady state performance over fast
convergence. The simulation results are shown in Fig. 6 - 8.
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Fig. 6: The wind velocity obtained from simulation using the Dryden
wind model and the corresponding wind velocity estimator estimates.
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Fig. 7: The relative velocity sensor bias and the wind velocity
estimator bias estimates.
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Fig. 8: The air data obtained from simulation and the air data
estimates computed from the wind velocity estimator.

The results show that during the first 50 seconds of trim
flight conditions, the wind velocity estimator is not provided
with sufficient PE and the estimates do not converge. Once
the UAV engages in a sinusoidal course pattern, the estimates
converge to the true values. After convergence, there is no
divergence even in periods without PE. RMSE results from
the period after t = 100 seconds is shown in table II.

ṽn 0.07 m/s
ṽe 0.09 m/s
ṽd 0.10 m/s
b̃u 0.07 m/s
b̃v 0.08 m/s
b̃u 0.09 m/s

TABLE II: The RMSE obtained from simulation for the wind
velocity estimator after t = 100 seconds.
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B. Relative velocity estimator simulation results

For the relative velocity estimator, the wind model noise
standard deviations, the bias model noise standard deviations,
and the initial error covariance matrix were chosen as the same
values as used in the wind velocity estimator simulation. The
simulation results are shown in Fig. 9 - 11.

0 50 100 150 200 250 300 350

25

30

0 50 100 150 200 250 300 350

-1

0

1

2

0 50 100 150 200 250 300 350
0

2

4

Fig. 9: The relative velocity obtained from simulation and the
corresponding relative velocity estimator estimates.
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Fig. 10: The relative velocity sensor bias and the relative velocity
estimator bias estimates in simulation.

Similarly to the wind velocity estimator, the relative velocity
estimator does not show convergence of estimates for the
first 50 seconds. After the UAV initiates the sinusoidal course
pattern, the estimates starts converging towards the true values
and does not diverge in the following periods without PE.
RMSE results from the simulation period after 100 seconds
are shown in table III.

VII. EXPERIMENTAL FLIGHT TEST RESULTS

This section contains results from testing the air data
system bias correction estimators on experimental flight data.
The flight data was obtained on the 30th of January, 2017,
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Fig. 11: The air data obtained from simulation and the air data
estimates computed from the relative velocity estimator.

ũr 0.07 m/s
ṽr 0.08 m/s
w̃r 0.09 m/s
b̃u 0.06 m/s
b̃v 0.07 m/s
b̃u 0.08 m/s

TABLE III: The RMSE obtained from simulation for the relative
velocity estimator after t = 100 seconds.

outside of Agdenes in Norway using a Skywalker X8 Flying
Wing UAV. The Skywalker X8 is a consumer grade UAV
with a wingspan of 2.12 m that is usually flown in airspeeds
ranging from 15-25 m/s. A picture of the Skywalker X8 UAV
in flight is shown in Fig. 12.

Fig. 12: A Skywalker X8 in flight. Copyright: João Fortuna, NTNU.

A STIM300 IMU was used to provide angular rate and
specific force measurements at 500 Hz. The pressure sensor-
array approach presented in Borup et al. [5] has been used
as a virtual relative velocity sensor. The approach revolves
around combining an array of Bosch BMP280 sensors
embedded in the surface of the airframe of the UAV with
either neural network or linear regression algorithms. For
these results, three neural networks were trained to provide
each of the three components of the relative velocity virtual
sensor measurements at 20 Hz. Given the use of low-cost
off-the-shelf components, the system in [5] is inexpensive
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compared to commercially available solutions. However, the
estimators presented in this article are not limited to using
this system, but instead to any air data system providing
relative velocity measurements that has a constant or slowly
time-varying bias. As a ground truth reference, the Micro
Air Data System by the Aeroprobe Corporation has been
used to provide relative velocity measurements at 100 Hz.
The sensor measurements has been logged with an accurate
timing of less than 10 ns using the SyncBoard [2]. In
addition, a Pixhawk PX4 Autopilot was used to provide
EKF attitude and velocity over ground estimations. The
estimators are tested on a flight segment that is 10 minutes
long. The relative velocity virtual sensor measurements and
the ground truth values are shown in Fig. 13 and 14. It is
evident that the virtual sensor does not output a perfectly
biased relative velocity measurement, but it does appear to
capture the high-frequency dynamics. The bias errors in the
neural network outputs are assumed to be attributed to one
of two things. The BMP280 sensors are subjects to a slowly
time-varying drift that a pre-flight calibration process is used
to compensate for. This calibration uses the mean of the
BMP280 sensor measurements for a shorter period and noise
from wind during this process will negatively influence the
results. In addition, [5] assumes that the pressure distribution,
given enough data, is invariant to ambient conditions, and
the amount of data used to train the NNs may not be sufficient.
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Fig. 13: The relative velocity virtual sensor measurements and the
Micro Air Data System ground truth values. It appears that there are
biases between the two sets of signals and that these biases are slowly
time-varying.

The flight is spent loitering in a circle with an approximate
radius of 100 m, where better PE conditions probably could
have been achieved with sinusoidal patterns or figure-eight
flying. However, the yaw rate appears to behave in a sinusoidal
fashion which corresponds to a non-zero angular acceleration
component and both the pitch and yaw rates also appears
to deviate from zero at times. The position, angular rates,
and Euler angles are shown in Fig. 15 - 17. Also, note that
the mounting of the Micro Air Data System probe on the
Skywalker UAV is a potential error source, since an error in
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Fig. 14: A closer look at the virtual sensor relative velocity measure-
ments and the ground truth values.

the alignment of the probe with respect to the definitions of the
virtual relative velocity sensor axes will result in estimation
errors.
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Fig. 15: The trajectory described by the UAV during the experimental
flight.

A. Wind velocity estimator flight results

For the experimental flight data, the wind velocity estimator
was tuned as Σvw = diag(3× 10−2, 3× 10−2, 8× 10−2), and
Σb = 9× 10−6I3. The error covariance matrix was initialized
as Pw,0 = diag(3 × 10−5, 3 × 10−6, 3 × 10−4, 3 × 10−4).
The sensor noise covariance matrices were chosen by tuning
as Σvg = diag(1 × 10−2, 1 × 10−2, 2 × 10−2) and Σvr =
diag(6×10−3, 6×10−3, 3×10−3). The tuning was conducted
with a prioritization of steady state performance over fast
convergence. The experimental flight test results are shown
in Fig. 18 - 20. The wind velocity estimator RMSE results
from the flight after the initial 100 seconds have passed are
listed in table IV.
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Fig. 16: The Euler angles obtained from the Pixhawk PX4 Autopilot
during the experimental flight test.
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Fig. 17: The angular rates obtained from the STIM300 IMU during
the experimental flight test. It is not obvious whether the angular
rates and angular acceleration from this test flight provides sufficient
PE for the estimators to have UCO properties.
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Fig. 18: The wind velocity computed from from the Micro Air Data
System using the relations in Eq. 1 and the wind velocity estimates
from the wind velocity estimator.
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Fig. 19: The relative velocity sensor bias estimates from the wind
velocity estimator.
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Fig. 20: The air data obtained from experimental flight and the air
data estimates computed from the wind velocity estimator estimates.

Ṽa 0.69 m/s
α̃ 1.14 deg
β̃r 2.24 deg
ṽn 0.73 m/s
ṽe 0.68 m/s
ṽd 0.44 m/s

TABLE IV: The RMSE obtained from flight data for the wind
velocity estimator after t = 100 seconds.

B. Relative velocity estimator flight results

For the experimental flight data, the relative velocity es-
timator was initialised with the same values for the wind
model noise, the bias model noise, the error covariance matrix,
and the velocity sensor error covariance as the wind velocity
estimator was. The sensor noise covariance matrices were
chosen by tuning as Σf = 1×10−2I3, and Σω = 1×10−3I3.
The tuning was conducted with a prioritization of steady state
performance over fast convergence. The experimental flight
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test results are shown in Fig. 21 - 23. The wind velocity
estimator RMSE results from the flight after the initial 100
seconds have passed are listed in table V.
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Fig. 21: The relative velocity obtained from the Micro Air Data
System and the relative velocity estimator estimates.
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Fig. 22: The relative velocity sensor bias estimates from the relative
velocity estimator.

Ṽa 0.71 m/s
α̃ 1.23 deg
β̃r 1.25 deg
ũr 0.70 m/s
ṽr 0.43 m/s
w̃r 0.41 m/s

TABLE V: The RMSE obtained from flight data for the relative
velocity estimator after t = 100 seconds.

C. Discussion

The experimental results show that the estimates of both
the wind velocity and relative velocity estimators convergence
toward the ground truth values. However, the convergence

0 100 200 300 400 500 600
10

20

30

0 100 200 300 400 500 600
0

10

20

0 100 200 300 400 500 600

-5

0

5

10

Fig. 23: The air data obtained from experimental flight and the
air data estimates computed from the relative velocity estimator
estimates.

appears to be slow and with a limit on the level of obtainable
estimation accuracy. The limited accuracy is assumed to be
caused by several factors. As previously noted, the level of
PE could have been higher, e.g. if the aircraft had engaged
in figure-eight flying patterns where the pitch and roll rates
would have been further excited. Obviously, a PE requirement
is a theoretical concept and for the experimental flight data,
the level of PE may be relatively low when compared to the
influences from other error sources. The simulation results
presented in Section VI showed a higher accuracy of the
two estimators and the error sources from implementing the
estimators in practice appear to reduce the estimation accuracy.

An important error source to consider, is the influence of at-
titude estimation errors on the results. Both estimators assume
to be provided with an attitude estimate as described in Section
VI. This attitude estimate is used in converting between the
BODY and NED frames for signals and noise propagation.
Errors in the attitude estimates therefore results in errors in
the state estimation of the two estimators. Furthermore, for
the wind velocity estimator, the attitude estimate is also used
to provide the wind velocity ground truth signal. Comparing
this wind velocity ground truth signal to the Dryden wind
model signal used in simulation, the wind speed variance
is found to be more than 70 times higher. This significant
increase in wind speed variance will have a negative effect
on the estimation accuracy since the wind is assumed to
be slowly time-varying. The high variance is assumed to be
caused by windy conditions during the experiments, but errors
in the attitude estimates and ground truth sensor noise are also
assumed to have a significant influence.

Neither estimator has air data parameters as states and
the results shown in Fig. 20 and 23 have been calculated
based on the the estimators respective states. Comparing the
numeric results of the two estimators can be misleading since
the Kalman filter tuning will influence the output of the
estimators. However, the results presented in Table IV and V,
indicates no significant advantage of one estimator over the
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other with respect estimation accuracy for airspeed and AOA,
with the wind velocity estimator having higher accuracy in
SSA estimation. For high-performance flight, the knowledge
of AOA is critical to avoid unsafe conditions and to operate as
close to the margins as possible. An AOA estimation accuracy
of 1.2-1.3 degrees can be argued to be sufficient for this
purpose, since stall-preventive safety margins are typically
larger.

Besides the biased relative velocity measurements and atti-
tude estimates, the wind velocity estimator relies on position
measurements from a GNSS receiver, where the relative ve-
locity estimator instead uses specific force and angular rate
measurements from an IMU. The accuracy of the payload
sensors will influence the results of the estimators and could
result in one estimator providing higher accuracy estimates
than the other, e.g. if the aircraft payload contains an expen-
sive, high-precision IMU, then there is a possibility that the
relative velocity estimator could outperform the wind velocity
estimator. It is also possible to use both estimators in parallel.
This structure would open up for a fault detection and isolation
structure and this could be used to increase robustness of the
UAV.

VIII. CONCLUSION

In this paper, two different Kalman filter approaches for cor-
recting air data systems for a constant or slowly time-varying
error bias were presented. The estimators are designed for
fixed-wing unmanned aerial vehicles and use a standard sensor
suite consisting of a GNSS receiver, an IMU, and a heading
reference, combined with an air data system that is assumed
to provide measurements with an unknown additive slowly
time-varying bias. The proposed estimators are not aircraft
model-dependent and are in the absence of noise proven to
have globally exponentially stable equilibrium points for the
error dynamics if provided with persistence of excitation of
the angular rates of the unmanned aircraft. The estimators are
verified through simulation and using experimental flight data.
The experimental data indicates that a certain amount of PE is
necessary to provide converging estimates for turbulent wind
conditions.
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