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Abstract

Measured disturbances are often included in model predictive control (MPC) formulations to
obtain better predictions of the future behavior of the controlled system, and thus improve the
control performance. In the prediction model, a measured disturbance is in many ways treated like
a control input to the system. However, while control inputs change only once per sampling interval
as new control inputs are calculated, measured disturbances are typically sampled from continuous
variables. While this di�erence is usually neglected, it is shown in this paper that taking this
di�erence into account may improve the control performance. This is demonstrated through two
simulation studies, including a realistic multivariable control problem from the petroleum industry.
The proposed method requires only a minor modi�cation in the implementation of the prediction
model, and may thus improve the control performance with a minimal e�ort.
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1. Introduction

The very foundation of model predictive control (MPC) is to predict the future behavior of
a system based on a model [1]. In order to improve the control performance, feedforward from
measured disturbances may also be included in this prediction model. This requires that the
prediction model includes the dynamics from the measured disturbance to the output, in addition
to the dynamics from the control input to the output. Predictions of the output response from
measured disturbances may then be made in the same manner as with the inputs [2, 3]. However,
there are two fundamental di�erences between control inputs and measured disturbances in the
MPC framework:

1. While future control inputs are decision variables in the MPC formulation, and thus are known
(predicted), future measured disturbances are unknown to the controller.

2. Control inputs typically change only once per sampling interval (as a new input is calculated
and applied), while disturbances are typically sampled from variables that change continuously
between samples.
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To cope with the �rst di�erence, common practice is to assume that future disturbances will remain
constant at the last available measurement, though other assumptions may be more appropriate
if a better knowledge of the disturbance is available [4]. A practical example of the latter can be
found in [5], where a measured disturbance was extrapolated into the future using an autoregressive
model. In [2], it is described how a model of disturbance dynamics, if available, may be included
in the MPC predictions in a state-space formulation.

The second di�erence is usually ignored both in practical implementations of MPC and in the
theoretical literature. This paper addresses implementation aspects and performance improvements
from feedforward of measured disturbances with focus on this di�erence. We have not found any
previous literature addressing this issue.

MPC arose from the industrial applications IDCOM [6] and DMC [7], where the prediction model
is based on �nite-impulse or step-response models. MPC with state-space models soon dominated
academic research [8, 9]. In [4, p. 115], it is even stated that �There is really no good reason
for working with step (or pulse) response models.� However, step-response models have remained
popular in industrial applications, the main reasons being that step-response models are intuitive,
easy to maintain, and allows for easy and straight-forward system identi�cation [10]. It should be
noted, though, that there are standard algorithms that translate step-response models into state-
space form (or transfer-function form, for that matter). The results in this paper do not rely on
which model representation is used, and both state-space and step-response model representations
are considered in this paper.

To achieve o�set-free tracking of setpoints in MPC, and counteract the e�ect of various uncer-
tainties, a feedback mechanism must be included in the prediction model. The most widely-used
industrial implementations of (step-response) MPC use a constant output step disturbance model
to achieve o�set-free tracking [11]. The current measured output is then compared to the output
of the prediction model, and the error (often denoted bias) is added to the future predictions. For
state-space MPC formulations, there are many alternative methods for o�set-free tracking, see e.g.
[12, 13], and no particular method seems to have become �standard practice�. The purpose in any
case is to estimate and counteract the e�ect of uncertainties in the system, such as plant-model
mismatch and unmeasured disturbances [8, 12]. The method proposed in [14] for systems with full
state measurements is implemented for state-space systems in this paper.

The paper is organized as follows: First, in Section 2, the main issue considered in this paper
(the second di�erence listed above) is discussed, and a method to address this issue is proposed.
In Section 3, a typical MPC formulation for a SISO system with a measured disturbance is given,
considering both state-space and step-response prediction model formulations. The implementation
of both the conventional and the proposed method is described in Section 4, and some of the con-
ceptual di�erences between the two methods are discussed analytically. How the assumption about
future disturbances a�ect the control performance di�erently for the two methods is also discussed
here. In Section 5, closed-loop simulation results for a SISO example system are presented com-
paring the method proposed in this paper to the conventional implementation method. Both the
disturbance dynamics, measurement noise, prediction of the measured disturbance, and tuning of
the controller is considered in this example. In Section 6, the two methods are implemented in sim-
ulations of a realistic industrial example; a petroleum production well with an electric submersible
pump (ESP) installed. Finally, the main conclusions and results in this paper are summarized and
discussed in Section 7.



3

2. Continuous Disturbance in a Discrete-Time System

Consider a linear time-invariant (LTI), continuous-time state-space model of a system with a
measured disturbance:

ẋ(t) = Acx(t) +Bc
uu(t) +Bc

dd(t) (1a)

y(t) = Ccx(t) (1b)

where x(t) is the system state, u(t) is the control input (also known as manipulated variable, MV),
d(t) is the measured disturbance (also known as disturbance variable, DV), y(t) is the measured
system output (also known as controlled variable, CV), and Ac, Bc

u, B
c
d and Cc are the system

matrices, the superscript c denoting that these are for the continuous-time system.
To implement MPC for this system, the continuous-time model must be discretized to obtain a

discrete-time equivalent:

xk+1 = Axk +Buuk +Bddk (2a)

yk = Cxk (2b)

The goal of the discretization is to obtain the discrete-time system matrices A, Bu, Bd and C, so
that the dynamics of the discrete-time system matches the dynamics of the continuous-time system
as closely as possible, as any model discrepancy may reduce the control performance.

2.1. Discretizing Using Zero-Order Hold

The standard approach for MPC implementations based on state-space models is to discretize
the system model using zero-order-hold (ZOH). It is then assumed that all control inputs are
piecewise constant, and only change at the exact time of the samples.

As discussed e.g. in [15, Section 4.1.2], by using ZOH, an exact discretization of the continuous-
time system (1) is obtained, implying that the dynamics of the discrete-time system will coincide
perfectly with the continuous-time (real/original) system at the sampled points in time, given that

the input signals are in fact applied using ZOH.
In MPC, the applied control input is calculated once every sampling interval, and kept constant

between samples, so the control input is in fact implemented using ZOH. Using ZOH in the dis-
cretization will thus provide a near perfect match between the discretized and the continuous-time
system models.

The discretization is typically performed using ZOH also for measured disturbances, basically
treating a measured disturbance just like another control input to the system. However, while
ZOH is very suitable for a control input, an assumption that also a measured disturbance remains
constant between samples is usually inaccurate, as measured disturbances typically are sampled from
variables that change continuously. If ZOH is applied to a measured disturbance when discretizing
the model, a sampled continuous disturbance signal will consequently be interpreted as a piecewise
constant signal by the resulting prediction model, as illustrated in the top plot in Figure 1. As seen
in this illustration, the �ZOH signal� does not match the continuous-time signal very accurately,
but su�ers from what could be considered a �time delay�, as the ZOH signal ignores any change
in the continuous signal between samples, and is only updated when a new sample is taken. The
consequence of introducing this time delay in the prediction model is that the e�ect of the measured
disturbance is in fact predicted to occur later in time. This reduces the accuracy of the prediction
model, and the dynamics of the discrete-time model does not match those of the continuous-time
model, even if the exact same disturbance is applied to both systems. This is demonstrated later,
in the illustrative example in Section 2.4.
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Figure 1: Illustration of di�erent methods to discretize a continuous input variable

2.2. Discretizing Using First-Order Hold

As discretizing using ZOH provides a poor match for a continuous signal, one might instead
consider discretizing the model using �rst-order hold (FOH) for the measured disturbance. This
is equivalent to assuming that the measured disturbance changes linearly between samples, as
illustrated in the second plot in Figure 1. According to [16], �The First-Order Hold (FOH) method
provides an exact match between the continuous- and discrete-time systems in the time domain for
piecewise linear inputs� and �is generally more accurate than ZOH for systems driven by smooth
inputs.� This is quite clear from the illustrations in Figure 1. This implies that discretizing with
FOH would generally provide a more accurate discrete-time model than with ZOH, which is also
demonstrated later, in the example in Section 2.4.

Note that discretizing using ZOH results in the exact same output function as the continuous-
time system, i.e. (2b) with C = Cc (as shown in [15]), so that:

yk = y(t)⇔ xk = x(t) (3)

whereas discretizing using FOH alters the output function, and the above relationship no longer
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holds. In general, a continuous-time system on the form:

ẋ = Ax(t) +Bd(t) (4a)

y(t) = Cx(t) (4b)

discretized using FOH will result in a discrete-time system on the form:

xFk+1 = AFxFk +BF dk (5a)

yFk = CFxFk +DF dk (5b)

with DF 6= 0. (The superscript F denotes that this system is discretized using FOH.) This means
that the output yFk of the system discretized using FOH will have a direct feedthrough from the
measured disturbance (yFk depends directly on dk), even if this is not the case for the continuous-
time system. This complicates the MPC implementation in two ways.

First, most MPC formulations, both in practical implementations and in the literature, assume
that there is no direct feedthrough from the control input or measured disturbance to the output, so
that the prediction model is given in the form (2). Using a model discretized using FOH may thus
in some cases make it di�cult to implement known methods from the literature, such as methods
for o�set-free control. Even if a method can be reformulated to be used with a prediction model in
the form (5), verifying the correctness of the new formulation may not always be straightforward.

Second, the output function takes a di�erent form with FOH and ZOH, implying that the state
vector is also di�erent. Since ZOH should be used for the control input, using FOH for the measured
disturbance entails that the system must be discretized separately for the control input and the
disturbance, and the superposition theorem must be used to combine the resulting sub-systems to
obtain the complete discrete-time prediction model. This results in an augmented state vector,
with twice the number of states as in the original system, with all the implications this has for the
complexity of the resulting MPC optimization problem. There may exist a minimal realization of
the combined system with the same number of states as the original system in some cases, though
it has not been investigated in this study whether it does so in general.

In conclusion, FOH is far more accurate than ZOH for continuous disturbances, but due to these
potential complications, changing the discretization method for the disturbance may in practice
prove to be more complicated than what can be justi�ed from the possible advantage of addressing
this issue in the �rst place. Thus, a much simpler solution that �approximates� FOH discretization
is proposed in this paper, as discussed in the following section.

2.3. Proposed Solution

The basic idea of the proposed solution is not to change the discretization method, but instead
to substitute the sampled disturbance signal dk with another discrete-time disturbance signal d̄k
that provides a better match between the continuous- and discrete-time systems with d(t) and d̄k
as inputs, compared to using d(t) and the sampled dk as inputs. This will not in any way alter the
discrete-time system model or how this is derived.

The question is how to calculate d̄k. Ideally, d̄k should be calculated to minimize the di�erence
between the outputs y(t) and yk of the continuous- and discrete-time systems. In AppendixA, it is
shown how an optimal d̄k (denoted d̄∗k) can be calculated for a �rst-order SISO system in this way,
and that implementing the derived expression for d̄∗k in a system discretized using ZOH is in fact
equivalent to discretizing the system using FOH. Further, it is shown that simply calculating d̄k as
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the average of dk and dk+1 is in fact a good approximation of the optimal d̄∗k, and thus of FOH,
given that the sampling rate is relatively fast compared to the system dynamics. The expression
for d̄k is then simply given by:

d̄k =
dk + dk+1

2
(6)

As the system dynamics are not taken into account, this is slightly less accurate than using the
optimal d̄∗k, but for the same reason, this is a general solution (independent of the speci�c system),
and thus directly applicable to any MPC implementation, even MPC based on step-response models.
Given the results in AppendixA, and the simplicity of this method, it seems like a very appropriate
solution for practical implementations, and is thus the proposed method in this paper. In the sequel,
substituting dk with d̄k from (6) is referred to as method B, while the conventional approach (using
the sampled dk directly) is referred to as method A.

Method A is illustrated in the top plot in Figure 1, and method B is illustrated in the bottom
plot. From this illustration, it should be quite obvious that d̄ZOH(t) in the bottom plot, that results
from applying ZOH to d̄k, is a much closer match to d(t) than dZOH(t) in the top plot, that results
from applying ZOH to dk. As shown in the appendix, method B is in fact a close approximation
to discretizing the system using FOH (illustrated in the second plot). But compared to discretizing
the system using FOH, method B has some major advantages:

• It will not in any way alter the discrete-time system model, or how it is derived, which implies
that it can be applied directly to any existing/conventional discrete-time model, regardless of
how it is obtained.

• It is completely independent of the prediction model representation, and can be applied
directly to both state-space and step-response MPC, as shown in Section 4.

• It is very easy and intuitive to implement. This method could (to some extent) simply
be considered a �lter on the measured disturbance. Filtering measured disturbances using
various �lters is standard industrial practice, and in that sense, this method is similar to what
is already done in industry.

Thus, method B may increase the accuracy of the predictions in the MPC controller, and thus
the control performance, with a minimal e�ort.

It should be noted that with method B, d̄k is not known at time k, as it depends on the
measurement dk+1. The implications of this are discussed in Section 2.5.

2.4. Illustrative Example

The e�ect of the discretization method for a system with a continuous disturbance is now
demonstrated through an illustrative example. Consider the system:

ẋ(t) = −x(t) + d(t) (7a)

y(t) = x(t) (7b)

This is a simple �rst-order SISO system in continuous-time state-space form, with the system
matrices:

Ac = −1, Bc
d = 1, Cc = 1, Dc = 0 (8)

and the continuous disturbance d(t) as the only input. Both a ZOH and a FOH discretization
of this system with sampling time T = 1 is easily obtained in Matlab with the functions ss and
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c2d, where the discretization method is simply speci�ed as a parameter in the c2d function call, as
follows:

1 % Real system

2 A_c = -1; B_c = 1; C_c = 1; D_c = 0;

3 sys = ss(A_c ,B_c ,C_c ,D_c);

4 % ZOH

5 sys_zoh = c2d(sys ,T);

6 A_zoh=sys_zoh.a, B_zoh=sys_zoh.b, C_zoh=sys_zoh.c, D_zoh=sys_zoh.d

7 % FOH

8 sys_foh = c2d(sys ,T,'foh');

9 A_foh=sys_foh.a, B_foh=sys_foh.b, C_foh=sys_foh.c, D_foh=sys_foh.d

This produces the following output from Matlab:

A_zoh = 0.3679 , B_zoh = 0.6321 , C_zoh = 1, D_zoh = 0

A_foh = 0.3679 , B_foh = 0.3996 , C_foh = 1, D_foh = 0.3679

Note how there is no direct feedthrough from the input to the output of the continuous-time system
(7) in this example (Dc = 0), and how this is still the case for the system discretized using ZOH
(D_zoh = 0), but not for the system discretized using FOH (D_foh = 0.3679).

The discrete-time systems can be simulated in Matlab, using both method A and method B for
the ZOH-system, as outlined below:

10 % Initialize x_a , y_a , x_b , y_b , x_f , y_f

11 for k = (1: t_end)+1 % +1 due to 1-based indexing in Matlab

12 % Obtain sampled measurement d(k)

13 % ZOH - Method A

14 x_a(k) = A_zoh * x_a(k-1) + B_zoh * d(k-1);

15 y_a(k) = C_zoh * x_a(k);

16 % ZOH - Method B

17 x_b(k) = A_zoh * x_b(k-1) + B_zoh * (d(k-1) + d(k))/2;

18 y_b(k) = C_zoh * x_b(k);

19 % FOH

20 x_f(k) = A_foh * x_f(k-1) + B_foh * d(k-1);

21 y_f(k) = C_foh * x_f(k) + D_foh * d(k);

22 end

The systems are now simulated with the continuous disturbance d(t) = sin(t/2), and the discrete-
time disturbance dk obtained by sampling the disturbance d(t) with the same sampling interval
T = 1 that was used in the discretization. The result of these simulations are shown in Figure 2.
The �rst plot shows the continuous disturbance d(t), the sampled disturbance dk, the calculated
disturbance d̄k for method B, as well as the continuous-time signal dZOH(t) that is obtained by
applying ZOH to the sampled disturbance dk. The second plot shows �ve di�erent outputs:

y(t) - the output of the continuous-time system with d(t) as input

yZOH(t) - the output of the continuous-time system with dZOH(t) as input

yAk - the output of the ZOH-discretized system with dk as input (method A)
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Figure 2: Example: Applying a continuous disturbance to the discretized systems

yBk - the output of the ZOH-discretized system with d̄k as input (method B)

yFk - the output of the FOH-discretized system with dk as input

Ideally, a discretized system with dk applied as input should at every sample provide exactly
the same output as the continuous-time system with d(t) applied as input. However, as seen in the
plot, yAk is far from identical to y(t) at the samples, but the e�ect of the �time delay� introduced
by the ZOH discretization is quite evident. As expected, yAk is instead identical to yZOH(t) at
every sample. On the other hand, the output yFk of the system discretized using FOH almost
perfectly matches y(t). The output yBk (method B) is not quite as accurate as FOH, but far more
accurate than method A. These �ndings are con�rmed in the last plot, which shows the error for
each discretization method, i.e. the discrepancy between the discrete-time and the continuous-time
output.

2.5. Dependency on Future Disturbance

The detailed implementation of method B for an MPC formulation is presented in Section 4,
but a few observations should be made at this point in the discussion.
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Given the continuous-time model (1), the discrete-time model discretized using ZOH will take the
form (2). Thus, all the information required to calculate the predicted output yk+1 with method A
is available already at time k, whereas with method B, yk+1 cannot be calculated before the mea-
surement dk+1 is available. This is very similar to the system (5) discretized using FOH, where
the output yk depends directly on the current measurement dk. This causes no problem when
simulating the system (as was done in Section 2.4), as all the information required to calculate
the current output yk with method B is indeed available at time k (when dk is available). But
since the discrete-time model is used as a prediction model in the MPC controller, the fact that
yk+1 no longer can be calculated at time k may at �rst seem like an obstacle to implement MPC
with method B. However, due to the fact that MPC is predictive by nature, this does not actually
change the implementation much, as shown in Section 4. The fact that dk+1 is not known at time k
only means that this too must be predicted. This may sound like a big di�erence, but in MPC, the
predictions of the system output will in fact always depend on some kind of prediction or extrapo-
lation of the measured disturbance. The most common prediction is derived from simply assuming
that the measured disturbance will remain constant at the last measured value [2, 4], in which case
the prediction of dk+1 at time k is simply given by the measurement dk:

d̂k+1|k = dk (9)

This is discussed in more detail in Section 4.3.

From a continuous-time perspective, it is obvious that the system output y(t) at time t = (k+1)T
will depend on the disturbance d(t) in the interval kT ≤ t ≤ (k + 1)T . The fact that yk+1 with
method B depends on dk+1 is thus only an indication that the goal to obtain a better match
between the continuous- and discrete-time systems is achieved. As discussed later in Section 4 and
demonstrated in the SISO example in Section 5, this dependency implies that method B will be
able to take full advantage of any knowledge about the disturbance dynamics which can be used
to predict/extrapolate the measured disturbance more accurately. On the other hand, the fact
that yk+1 with method A does not depend on dk+1 implies that any such knowledge can only be
exploited for the prediction of yk+2 onwards, which is in fact a major limitation for the conventional
method A, as discussed in Section 4.4.

2.6. Step-Response Models

The results in this paper are presented with both state-space and step-response model repre-
sentations. A step-response model is usually a sampled recording of the system response from a
step in a control input or measured disturbance. Thus, when using step-response models in the
prediction model, it is inherently assumed that a step occurs in each control input u(t) and mea-
sured disturbance d(t) at every time sample (and that they are constant between the samples), so
that the predicted e�ect is given by the step-response models. In that sense, step-response models
are equivalent to state-space models discretized using ZOH, and the proposed method B may be
implemented for step-response models with the exact same approach as with state-space models,
i.e. by replacing dk with d̄k from (6).
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3. MPC Implementation

3.1. MPC Problem Formulation

A typical MPC formulation for a SISO system is given by the following optimization problem:

min
y,u,∆u

Hp∑
k=1

1

2
qy2

k +

Hu−1∑
k=0

1

2
p∆u2

k (10a)

subject to the constraints:

∆ul ≤ ∆uk ≤ ∆uh (10b)

ul ≤ uk ≤ uh (10c)

yl ≤ yk ≤ yh (10d)

uk = uk−1 + ∆uk (10e)

yk = Prediction model (10f)

where q and p are tuning parameters, Hp denotes the prediction horizon and Hu denotes the control
horizon with 0 ≤ Hu ≤ Hp. For simplicity of presentation, it is assumed that Hu = Hp in the
sequel.

The MPC control law is to solve the above optimization problem once every sampling interval,
and implement the �rst control step ∆uk from the solution. Thus, the control input is updated
each time step as follows:

uk = uk−1 + ∆uk (11)

The control input is then kept constant until the MPC problem is solved for the next time step,
and the applied input is thus changed only once per sampling interval.

3.2. Prediction Model

The system model enters the MPC formulation as the prediction model in (10f). The implemen-
tation of the prediction model depends on which model representation is used. Predictions based
on state-space models are most commonly found in the literature, while many industrial MPC ap-
plications still rely on step-response models. Implementation of the prediction model using each
of these model representations are presented in this section. The following de�nitions are used in
both representations:

∆xk = xk − xk−1 (12)

∆uk = uk − uk−1 (13)

∆dk = dk − dk−1 (14)

Yk =
[
ŷk+1|k ŷk+2|k · · · ŷk+Hp|k

]T
(15)

∆Uk =
[

∆ûk|k ∆ûk+1|k · · · ∆ûk+Hu−1|k
]T

(16)

∆Dk =
[

∆d̂k|k ∆d̂k+1|k · · · ∆d̂k+Hp−1|k

]T
(17)

where ŷk+n|k denotes the predicted system response, ∆ûk+n|k denotes predicted control input steps,

and ∆d̂k+n|k denotes predicted steps in the measured disturbance. (The de�nition of ∆Dk is
discussed further in Section 4.)
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3.2.1. State-Space Prediction Model

As discussed in Section 2.1, in state-space MPC, the predicted response of the output(s) y from
the applied and predicted control input(s) u and the measured disturbance(s) d is calculated using a
discrete-time state-space model on the form (2). In addition, a method to achieve o�set-free tracking
should be implemented. There are many alternative approaches to achieve o�set-free tracking with
MPC, see e.g. [12]. For simplicity, it is assumed in the sequel that all states are measured, and the
method proposed for such systems in [14] is implemented1. Following this method, the state-space
model (2) is augmented by a state disturbance term dxk as follows:

xk+1 = Axk +Buuk +Bddk + dxk (18a)

ŷu,k = Cxk (18b)

The estimated state disturbance is calculated each time step as follows:

dxk = xk − [Axk−1 +Buuk−1 +Bddk−1] (19)

and a constant state disturbance prediction is used:

d̂xk+n|k = dxk, ∀n > 0 (20)

Following the approach shown e.g. in [4], by iterating the state-space model (18), inserting (19)
and using the de�nitions (12)-(17) and (20), the complete prediction model may be written in the
following matrix-vector form:

Yk =


C
C
...
C

xk +


CA

C
(
A2 +A

)
...

C
(∑Hp

i=1A
i
)
∆xk

+


CBu 0 · · · 0

C (A+ I)Bu CBu
. . .

...
...

. . .
. . . 0

C
(∑Hp−1

i=0 Ai
)
Bu · · · CBu

∆Uk

+


CBd 0 · · · 0

C (A+ I)Bd CBd
. . .

...
...

. . .
. . . 0

C
(∑Hp−1

i=0 Ai
)
Bd · · · CBd

∆Dk

(21)

where xk is the current (measured) state, and ∆xk is the di�erence between the two most recent
measurements, as de�ned by (12).

1According to [14], as long as the process outputs are elements of the state vector, or linear combinations of its
elements, this formulation is su�cient to achieve o�set-free control under deterministic constant-type unmeasured
disturbances entering the process at any point, including both �modeling errors and outer step or piecewise-constant
disturbances changing rarely�.
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3.2.2. Step-Response Prediction Model

In step-response MPC, the predicted response of the output y from the control input u is given
by a step-response model as follows:

ŷu,k =

N−1∑
i=1

su,i∆uk−i + su,N uk−N (22)

where su,k denotes the step-response model coe�cients for the model from u to y. It is assumed
here that the step-response model reaches steady-state after at most N samples, so that su,N+n =
su,N , ∀n > 0.

In the same way, assuming that a step-response model sd,k from the disturbance d to the output
y is obtained, the response from the measured disturbance may be included in the predictions by
adding the term:

ŷd,k =

N−1∑
i=1

sd,i∆dk−i + sd,Ndk−N (23)

Following the ideas of [17, 18], the prediction model based on step-response models may be
implemented recursively, as outlined in [19]. A prediction state vector Y p

k is then de�ned as:

Y p
k = [ỹk|k, ỹk+1|k, . . . , ỹk+N−1|k]T (24)

where N ≥ Hp, and ỹk+n|k denotes the open-loop output from the prediction model given the
control inputs and measured disturbances recorded up to time k. Unlike ŷk+n|k in (15), ỹk+n|k only
depends on past inputs and disturbances, and not on any predictions. The recursive prediction
model is initialized as follows:

• Set all elements of the prediction state vector Y p
k equal to the current measurement of the

output, yk

• Set ∆uk−1 = 0 and ∆dk−1 = 0

• Set dk−n = dk, ∀n > 0, where dk is the current measurement of the disturbance

Then, the prediction state vector is updated recursively using:

Y p
k = Ap

NY
p
k−1 +Bp

u∆uk−1 +Bp
d∆dk−1 (25)

where Ap
N , B

p
u and Bp

d are de�ned as follows:

Ap
N =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 1

0 · · · 0 1

 (26)

Bp
u =

[
su(1), · · · , su(N)

]T
(27)

Bp
d =

[
sd(1), · · · , sd(N)

]T
(28)
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The complete prediction model is then given by:

Yk = Θu∆Uk + Θd∆Dk +Ap
Hp
Y p
k + vk (29)

where Yk, ∆Uk and ∆Dk are de�ned by (15)-(17), Ap
Hp

contains the Hp �rst rows of Ap
N , and Θu

and Θd contain the step-response model coe�cients, as follows:

Θu =


su(1) 0 · · · 0

su(2) su(1)
. . .

...
...

. . .
. . . 0

su(Hp) · · · su(1)

 (30)

Θd =


sd(1) 0 · · · 0

sd(2) sd(1)
. . .

...
...

. . .
. . . 0

sd(Hp) · · · sd(1)

 (31)

The last term of the prediction model, vk, is a bias term, included to account for unmeasured
disturbances and model-plant mismatch, introducing both output feedback and integral action in
the MPC controller [4]. The bias is given by the di�erence between the measured output and the
open-loop output from the recursive prediction model as follows:

vk = yk − ỹk|k (32)

where yk is the measured output, and ỹk|k is the �rst element of the prediction state vector Y p
k .

The bias is a cumulative error, as it is not used to update the prediction state vector Y p
k .

The recursive prediction model can easily be extended to the MIMO case using the superposition
principle and block matrices/vectors.

4. Implementing the Proposed Method

The measured disturbance enters the MPC formulation presented in in Section 3 through the
vector of disturbance steps de�ned by (17):

∆Dk =
[

∆d̂k|k ∆d̂k+1|k · · · ∆d̂k+Hp−1|k

]T
where Hp is the prediction horizon. The only di�erence between method A and method B is how

the steps ∆d̂k|k and thus the vector ∆Dk are de�ned. Note that ∆Dk contains a prediction of the
disturbance steps from the current time k to the end of the prediction horizon Hp. To derive an
expression for ∆Dk, a prediction of the measured disturbance in the prediction horizon is required:

d̂k+n|k, 1 ≤ n ≤ Hp (33)

where d̂k+n|k denotes a prediction of the measured variable dk+n based on information available at
time k. Note that all past and current measurements are directly available, so that:

d̂k+n|k = dk+n, ∀n ≤ 0 (34)
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The prediction (33) can either be based on a simple assumption about the future disturbance, e.g.
that the measured disturbance will remain constant at the last measurement, or on a more elaborate
strategy, e.g. extrapolating the measured disturbance from available measurements. This is further
discussed in Section 4.3.

The general idea behind method B is independent of how the measured disturbance is predicted.
In Section 4.1, a general expression for ∆Dk is �rst derived for the conventional method A, and then
the corresponding expression for the proposed method B is derived in Section 4.2. The resulting
general expressions for ∆Dk for each method are applicable to any given prediction of the measured
disturbance on the form (33). Implementing the methods for speci�c disturbance predictions is
discussed in Section 4.3.

4.1. Method A

As the conventional method A uses the measured disturbance directly, the implementation is
quite straightforward. A step in the disturbance for method A is given directly from the de�nition
(14):

∆dAk = ∆dk

= dk − dk−1 (35)

where the superscript A denotes that this only applies to method A. Given a prediction (33) of the
measured disturbance, the predicted disturbance steps in ∆Dk for method A are thus given by:

∆d̂Ak+n|k = ∆d̂k+n|k = d̂k+n|k − d̂k+n−1|k (36)

Inserting (36) and (34) into (17), the general de�nition of ∆Dk for method A is given by:

∆DA
k =



dk−dk−1

d̂k+1|k−dk
d̂k+2|k−d̂k+1|k

...

d̂k+Hp−1|k−d̂k+Hp−2|k


(37)

Note that the �rst element of ∆DA
k , which is used to predict yk+1, is calculated directly from the

available measurements dk and dk−1, while the remaining elements (used to predict yk+2 onwards)
depend on the prediction of the future disturbance.

4.2. Method B

With method B, dk is replaced with d̄k from (6), and the disturbance steps are thus calculated
as follows:

∆dBk = d̄k − d̄k−1 (38)

where the superscript B denotes that this de�nition only applies to method B. By inserting (6),
this is given in terms of the actual measured disturbance:

∆dBk =
1

2
(dk+1 − dk−1) (39)
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The predicted disturbance steps with method B are thus given by:

∆d̂Bk+n|k =
1

2

(
d̂k+n+1|k − d̂k+n−1|k

)
(40)

Inserting (40) and (34) into (17), the general de�nition of ∆Dk for method B is given by:

∆DB
k =



1
2 (d̂k+1|k − dk−1)

1
2 (d̂k+2|k − dk)

1
2 (d̂k+3|k − d̂k+1|k)

...

1
2 (d̂k+Hp|k − d̂k+Hp−2|k)


(41)

Note that, while the �rst element of ∆DA
k is calculated directly from available measurements,

all elements of ∆DB
k , and thus also the prediction of yk+1, depend on the prediction (33) of the

future disturbance.
For the step-response prediction model (29), one additional minor change is needed to implement

method B; in the recursive prediction model update (25), ∆dk−1 must be replaced by ∆dBk−1, which
is calculated using (39).

4.3. Prediction of the Measured Disturbance

Only the general de�nitions of ∆DA
k and ∆DB

k have been derived so far. For both methods,
to implement ∆Dk, a prediction of the measured disturbance in the form (33) is required. Some
possible approaches to derive this prediction are presented in this section. The objective here is
to give examples of how di�erent approaches to predict/extrapolate future disturbances may be
implemented with the two di�erent methods, an exhaustive investigation or a general discussion of
all possible approaches is not attempted in this paper.

4.3.1. Constant Disturbance Assumption

The most common approach to predict/extrapolate the future measured disturbance is simply
to assume that the measured disturbance will remain constant at the last measurement [2, 4]. This
is referred to as the �constant disturbance assumption� in the sequel. Though this is the most
commonly implemented assumption, it is often quite inaccurate, but this naturally depends on the
disturbance dynamics. The constant disturbance assumption might be a suitable assumption if the
measured disturbance is quite random and di�cult to predict. An example of this is demonstrated
in the SISO example in Section 5.

With the constant disturbance assumption, the prediction (33) is simply given by:

d̂k+n|k = dk, ∀n > 0 (42)

Inserting this into (37) and (41), and using the de�nition (14), the speci�c de�nitions of ∆DA
k and

∆DB
k with the constant disturbance assumption are given by:

∆DA
k =


∆dk

0
...
0


Hp

∆DB
k =


1
2∆dk

0
...
0


Hp

(43)
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(Note the factor 1/2 in ∆DB
k .) For both methods, only the �rst element of the vector ∆Dk is

non-zero under this assumption, which simpli�es the prediction model somewhat, though this does
not reduce the complexity of the MPC optimization problem as ∆Dk is not a decision variable in
the MPC formulation.

4.3.2. Linear Change Assumption

The constant disturbance assumption may be suitable for disturbances that change fast and/or
randomly, but by design, the dynamics of the measured disturbance are often quite slow compared
to the sampling frequency of the controller. For a disturbance that varies slowly and smoothly, the
change in the measured disturbance is often quite similar for consecutive samples. Consider for
example the sine plotted in Figure 2. It is quite clear that a linear extrapolation of this signal is a
much better prediction than the constant disturbance assumption, at least for a few steps. It may
thus be more accurate (at least for the �rst few steps in the prediction horizon) to assume that the
measured disturbance steps ∆dk rather than the measured disturbance dk will remain constant in
the future. This assumption is denoted the �linear change assumption� in the sequel.

With the linear change assumption, the measured disturbance is predicted/extrapolated as
follows:

∆d̂k+n|k = ∆d̂k+n−1|k

m
d̂k+n|k = d̂k+n−1|k + ∆d̂k+n−1|k

= dk + n∆dk, ∀n > 0 (44)

Inserting (44) into (37) and (41), the speci�c de�nitions of ∆DA
k and ∆DB

k actually become iden-
tical, and are given by:

∆DA
k = ∆DB

k =


∆dk
∆dk
...

∆dk


Hp

(45)

Although the linear change assumption might be suitable a few time steps into the prediction
horizon, it is only bounded by the length of the prediction horizon, and might be quite inaccurate
after a few steps, but again, this depends on the disturbance dynamics, as well as the sampling
frequency and the length of the prediction horizon.

4.3.3. Extrapolation with an Autoregressive Model

In many cases, some knowledge regarding the dynamics of the measured disturbance is readily
available through historical measurement data. This data can be used to estimate a model for the
disturbance dynamics, e.g. in the form of an autoregressive (AR) model:

A(z)dk = ek (46)

where ek is white noise. An example from the literature implementing disturbance predictions in
MPC with this approach is given in [5]. The coe�cients for the polynomial A(z) are obtained
by minimizing the least-squares error between the model and the historical data. This is quite
easily done e.g. by using the ar function in Matlab. While obtaining an AR model is slightly
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more complicated than simply assuming that the measured disturbance will remain constant, the
implementation is quite straightforward once the model is obtained. The predictions (33) are simply
calculated using (46) with ek = 0, and ∆DA

k and ∆DB
k are then calculated from (37) and (41).

It should also be noted that the computational complexity of the MPC optimization problem is
unaltered by this.

4.4. Implicit Linear Change Assumption of Method A

In this section, one of the most fundamental di�erences between the considered methods is
discussed. First consider the prediction model (21) in the MPC formulation. As the MPC control
action is calculated once every sampling interval and only the �rst input of the predicted input
sequence is actually implemented, and since all predictions further into the prediction horizon
through the prediction model rely on the �rst predicted output yk+1, a prediction error in the �rst
step has a much larger negative e�ect on the control performance than a prediction error later in the
prediction horizon. Looking at the last term of (21), it is clear that only the �rst element of ∆Dk

is used to predict yk+1. The accuracy of the �rst element of ∆Dk may thus have a major impact
on the control performance, and one of the main di�erences between method A and method B is
in fact the �rst element of ∆Dk.

Consider the de�nitions of the vectors ∆DA
k and ∆DB

k given by (37) and (41). With method A,
the �rst element of ∆DA

k is not a�ected by the prediction of the measured disturbance, but is always
given directly from the measured disturbance:

∆d̂Ak|k = dk − dk−1

= ∆dk (47)

Further, this actually corresponds to the �rst element of ∆DB
k with the linear change assumption

(44) implemented. In that sense, considering that the prediction model with method B is much
more accurate, the linear change assumption is always implicitly implemented with method A for
the �rst step in the prediction horizon, whereas the explicitly stated disturbance assumption will
only a�ect the predictions from the second time step in the prediction horizon. With method B,
the �rst element of ∆DB

k depends on the predicted disturbance as follows:

∆d̂Bk|k =
1

2
(d̂k+1|k − dk−1)

=
1

2
(∆dk + ∆d̂k+1|k) (48)

Thus, the disturbance prediction will a�ect the prediction model already from the very important
�rst step of the prediction horizon.

On the one hand, this is a major limitation of method A, as it is inherently restricted to the
linear change assumption (44) for the �rst time step of the prediction horizon, even if a more
precise prediction/extrapolation of the measured disturbance is available. As this is not the case
for method B, which relies on the disturbance prediction also for the �rst time step, this implies that
method B has a much bigger potential to exploit information about the future measured disturbance
to obtain a more accurate prediction of yk+1, and thus improve the control performance. This is
demonstrated quite clearly in the SISO example, in Section 5.2.3.

But on the other hand, the most commonly implemented disturbance assumption is the constant
disturbance assumption (42), even though this assumption is often quite inaccurate. In most
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practical implementations, the sampling rate is intentionally chosen very fast compared to the
disturbance dynamics. For example, a well-known rule of thumb is to choose the sampling rate 5-10
times faster than the fastest time constant in the system. Then, as discussed in 4.3.2, the linear
change assumption is often a much better assumption than the constant disturbance assumption, at
least for the �rst few time steps in the prediction horizon. The fact that method A with the constant
disturbance assumption actually implements the linear change assumption for the quite important
�rst time step of the prediction horizon, however unintentional, might in practice improve the control
performance quite signi�cantly compared to implementing the constant disturbance assumption
with the more precise method B, where also the �rst time step is based on the explicitly stated
assumption. This is also demonstrated in the SISO example, in Section 5.2.1.

4.5. Theoretical Potential

Now consider the prediction of the measured disturbance as a degree of freedom when deriving
the controller, completely independent of the actual disturbance dynamics, while keeping in mind
that the vector ∆Dk is the only di�erence between method A and B. Then consider any given
prediction of the measured disturbance on the form (33), denoted d̂A. If d̂A is used with method A,

there always exists another prediction d̂B so that ∆DB
k with d̂B inserted is identical to ∆DA

k with

d̂A inserted, easily obtained by solving ∆DB
k = ∆DA

k recursively for each element:

1
2 (d̂Bk+1|k − dk−1)

1
2 (d̂Bk+2|k − dk)

1
2 (d̂Bk+3|k − d̂

B
k+1|k)

...

1
2 (d̂Bk+Hp|k − d̂

B
k+Hp−2|k)


=



dk−dk−1

d̂Ak+1|k−dk
d̂Ak+2|k−d̂

A
k+1|k

...

d̂Ak+Hp−1|k−d̂
A
k+Hp−2|k


(49)

But since the �rst element of ∆DA
k does not depend on the predicted disturbance, then for a given

prediction d̂B , the equation (49) can only be solved for d̂A in the special case where the �rst element

of d̂B is given by d̂Bk+1|k = dk + ∆dk, corresponding to the linear change assumption (44). In other
words, for any given disturbance prediction, the performance of method A can always be matched
exactly by method B by using a di�erent disturbance prediction, but not the other way around.

Further, if the disturbance prediction can be chosen freely, then all elements of ∆DB
k can take

any value, while the �rst element of ∆DA
k is restricted to the measured ∆dk. Let the vector

∆Dk that provides the best possible control performance be denoted ∆D∗k. While the equation

∆DB
k = ∆D∗k always has a solution d̂B , the equation ∆DA

k = ∆D∗k only has a solution d̂A if the
�rst element of ∆D∗k is given by ∆dk. This means that only method B can be optimal if the �rst
element of ∆D∗k is not equal to ∆dk.

These results combined imply that, if the prediction of the measured disturbance can be chosen
freely, it is always possible to obtain a performance with method B that is equal to or better than
the best performance achievable with method A.

4.6. Practical Considerations

While method B has a greater theoretical potential than method A, a more interesting question
is which of the methods that performs better in practice, i.e. when the disturbance prediction is
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based on practical considerations such as known disturbance dynamics, and not simply considered
a degree of freedom when deriving the controller. As the prediction model with method B is
more accurate for continuous disturbances (as discussed in Section 2), it may be natural to assume
that method B also will provide a better control performance than method A when a continuous
disturbance is applied. However, there are a number of factors that a�ect the control performance
other than the accuracy of the prediction model formulation, inlcuding:

• The disturbance dynamics and the accuracy of the predicted future disturbance (33)

• The feedback mechanism in the MPC formulation

• The controller con�guration and tuning (prediction horizon, sampling frequency, weights, etc.)

• Uncertainties (unmeasured disturbances, measurement noise, model-plant mismatch, etc.)

Given all these factors, and especially the many possible approaches to derive a prediction/ex-
trapolation of the future measured disturbance, one cannot conclude that method B will perform
better than method A in general, but it should be clear from the discussion so far that method B
is fundamentally more precise than method A, and has a greater potential. This is sought to be
demonstrated through the examples in the following sections.

5. Closed-Loop Simulations of a SISO Example System

In this section, closed-loop simulations are performed with the following �rst-order system in a
continuous-time state-space formulation:

ẋ(t) = −x(t) + u(t) + d(t)

y(t) = x(t)
(50)

The system is simulated with the control input u(t) determined by the MPC controller as formulated
in Section 3, implementing both the conventional method A and the proposed method B as discussed
in Section 4.

Note that the simulations in this section are not intended to illustrate realistic control problems,
but to clearly demonstrate the fundamental characteristics of the two considered methods and the
theoretical results from Section 4.

5.1. Simulation Setup

5.1.1. Model representation

The results presented in this example are based on a state-space prediction model, as described
in Section 3.2.1. Simulations with a step-response formulation show very similar results, and as the
main �ndings are the same with both representations, the results with step-response models are
omitted from this presentation.

5.1.2. Controller Tuning

In the initial simulations in this example, the MPC controller is tuned as an unconstrained dead-
beat controller, i.e. there is only a weight on the output and no weight on the input moves (q = 1,
p = 0 in (10a)), there are no constraints on the input or the output (the constraints (10b)-(10d) are
omitted), and the prediction horizon is just one step (Hp = 1), as the controller will always predict a
zero output error after the �rst step. This is not meant to imitate a practical or realistic controller
tuning. A dead-beat tuning is a very aggressive tuning, and usually a less aggressive tuning is
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required in practical implementations due to uncertainties (such as measurement noise, modeling
errors, unmeasured disturbances, etc.) and other considerations in the system (e.g. limitations on
the actuators, wear and tear, etc.). However, in this simple example, with a perfect system model,
and no unmeasured disturbances, a dead-beat tuning is quite reasonable. Also, with this tuning, the
system output will be equal to the prediction error of the MPC controller, which is very convenient
when discussing the results and comparing the considered methods.

5.2. Smooth Sine Disturbance

First the following measured disturbance is considered:

d(t) = sin (πt)− 1

2
sin (2πt) (51)

simulated with sampling interval T = 0.1 from t = 0 to t = 2 (one period, 20 samples). This
disturbance is denoted the �smooth sine� disturbance in the sequel. This disturbance is very smooth
and slowly varying, and thus relatively easy to extrapolate precisely, which makes it very suitable
for the discussion in this paper.

5.2.1. Constant Disturbance Assumption

First, the SISO system (50) is simulated with the smooth sine disturbance (51) using the com-
monly implemented constant disturbance assumption (42) for disturbance prediction. ∆DA

k and
∆DB

k are then given by (43). These simulation results are shown in Figure 3a. The measured
disturbance is shown in the top plot, the outputs (equal to the prediction error) for each of the two
methods in the second plot, the inputs in the third plot, and the calculated state disturbance dx

de�ned in (19) in the bottom plot.
This simulation shows that, even though method B is based on a more accurate prediction

model, the conventional method A actually provides a better control performance for this scenario.
However, it is quite obvious that the constant disturbance assumption is quite inaccurate for the
smooth sine disturbance, and the linear change assumption discussed in Section 4.3.2 would be a
much better choice. As discussed in Section 4.4, method A actually ignores the explicitly stated
disturbance assumption for the �rst time step of the prediction horizon, and instead implicitly
implements the linear change assumption. As the linear change assumption is more accurate than
the constant disturbance assumption, the result is that the predictions with method A are more
accurate than with method B, even though the underlying prediction model is less accurate. That
the prediction model is more accurate with method B is quite clear in the bottom plot of Figure 3a,
where it is shown that method A operates with a much larger calculated state disturbance dx

(analogous to the plant-model mismatch) than method B.
Taking a closer look at the simulation results in Figure 3a, keeping in mind that the output is

equal to the prediction error with the dead-beat tuning implemented, it can be seen quite clearly
that the output (and thus the prediction error) with method B is directly proportional to the
disturbance steps ∆d. Method B provides very good predictions (output close to zero) when the
disturbance is nearly constant, e.g. at samples 7 and 14, and poor predictions when the disturbance
is changing rapidly, e.g. around sample 11. This is exactly the behavior one would expect from
implementing the constant disturbance assumption. On the other hand, the prediction error with
method A is directly proportional to the change in the disturbance steps. The predictions are most
accurate when the disturbance is changing steadily in one direction, e.g. at samples 5, 11 and 17,
which is exactly the behavior one would expect from implementing the linear change assumption.
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(a) Constant disturbance assumption, noise free (b) Extrapolation based on AR-model, noise free

(c) Constant disturbance assumption, with
measurement noise

(d) Extrapolation based on AR-model, with
measurement noise

Figure 3: Simulation results with the �smooth sine� disturbance
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This con�rms that only method B is actually true to the explicitly stated constant disturbance
assumption, while method A instead implicitly implements the linear change assumption.

It should also be noted that the state disturbance with method A is in fact nearly identical to
the prediction error with method B. This shows that with method A, the mismatch between the
explicitly stated disturbance assumption and the implicit linear change assumption is interpreted
as a plant-model mismatch by the controller. On the other hand, even though the prediction error
with method B in this scenario is larger than with method A, the state disturbance with method B
is nearly negligible. This shows that the prediction error with method B is correctly interpreted as
a mismatch between the predicted and the actual disturbance.

5.2.2. Linear Change Assumption

Given the results in Section 4.3.2, it is to no surprise that simulation results with the linear
change assumption are identical for the two methods, and the same as the results with method A
in Figure 3a.

5.2.3. Accurate Disturbance Prediction

The linear change assumption is clearly more accurate than the constant disturbance assump-
tion for the smooth sine disturbance. But as discussed in Section 4.3.3, an even more accurate
extrapolation of the measured disturbance may be obtained using an identi�ed AR model. An
AR-model for the smooth sine disturbance is now obtained in Matlab using the function ar, based
on the measurement data from one period of the smooth sine disturbance. The resulting AR-model
is given by:

d(k) = 3.5201 · d(k − 1)− 5.0777 · d(k − 2) + 3.5201 · d(k − 3)− 1.0000 · d(k − 4) (52)

The dynamics of this 4th order AR-model nearly perfectly matches the smooth sine disturbance (as
long as at least 4 previous measurements are available). To minimize transient e�ects in the simu-
lation, it is assumed that previous measurements are available, so that the AR model is initialized
correctly. The simulation results are shown in Figure 3b.

These results show that with an accurate prediction of the measured disturbance, method B is
indeed more precise and by far outperforms the conventional method A. Method B now provides
a near perfect control, while method A does not bene�t at all from the precise prediction of the
measured disturbance, which is due to the fact that the �rst element of ∆DA

k does not depend on
the predicted disturbance, in combination with the dead-beat tuning and the one-step prediction
horizon (Hp = 1). This is clearly a major limitation of method A. (It is shown later, in Section 5.4,
that also method A bene�ts from a more precise extrapolation of the measured disturbance with a
less aggressive tuning and Hp > 1, though not as much as method B.)

5.2.4. Measurement Noise

The simulations in Sections 5.2.1 and 5.2.3 are now repeated, but this time measurement noise
in the form of white Gaussian noise is added both to the measured disturbance and the measured
output. In these simulations, the noise on the measured disturbance has standard deviation σd =
0.1, while the noise on the output has standard deviation σy = 0.002. The Matlab function ar

is again used to obtain an AR-model to extrapolate the measured disturbance, but this time the
model is estimated based on noisy measurements from 200 samples (corresponding to 10 periods of
the smooth sine disturbance), and a model order of 10 is chosen to provide better noise �ltering.
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Control error Aggressiveness

(MSE of y, 10−6) (Mean |∆u|)

Scenario AR Noise A B % A B %

Smooth - - 51.8 231.8 +347.4 0.27 0.28 +6.3

Sine ON - 51.8 0.7 -98.7 0.27 0.26 -3.0

- ON 326.2 341.1 +4.6 0.51 0.38 -26.0

ON ON 326.2 84.8 -74.0 0.51 0.31 -39.7

Random - - 767 379 -50.5 0.73 0.44 -40.0

- ON 917 491 -46.5 0.82 0.51 -37.6

Table 1: Measures of performance

The results of the simulations with measurement noise are shown in Figures 3c and 3d. Due to
the noise introduced in the system, the results are not as easily compared in the �gures, but some
measures of performance are shown in Table 1. The column �Control error� shows the Mean Square
Error (MSE) on the output for each of the simulations, and the performance increase/decrease for
method B relative to method A, in percent. The column �Aggressiveness� shows how actively the
control input is used in each simulation, i.e. the mean absolute value of the input steps ∆u.

The results with the constant disturbance assumption (Figure 3c and the third row in Table 1)
show that the performance of the two methods are now quite comparable, with only a 4.6% di�er-
ence. Comparing the control error with and without measurement noise, it is clear that method A
is a�ected a lot more severely by the measurement noise than method B. This may be attributed to
the implicit linear change assumption, as method A will always predict that a change in the mea-
sured disturbance will be repeated in the next time step, and thus overestimate the e�ect of any
measured change that is simply due to measurement noise. The result is a too aggressive controller,
with large steps on the input. As seen in the last column of Table 1, the input in this case is used
26% less actively with method B than method A when measurement noise is added, even though
the control error is relatively similar.

Further, the results show that when the measured disturbance is extrapolated using the identi�ed
AR model, method B by far outperforms method A, with a 74% smaller MSE on the output, while
method A again does not bene�t at all from the more precise extrapolation. The aggressiveness of
the controller with method B is also further reduced, this time by 39.7% compared to method A.

These results indicate that in a realistic scenario with noisy measurements, it may be possible
to achieve a quite decent control performance with method B, even with an inaccurate disturbance
prediction, and a less aggressive controller may be expected with method B than with method A.
Further, as in the noise free case, when the measured disturbance is extrapolated more accurately,
method B may be expected to outperform method A both with respect to control error and aggres-
siveness.

5.3. Random Disturbance

To contrast the smooth and slowly varying smooth sine disturbance, the system is now simulated
with a lot more random disturbance based on �ltered white noise. Due to the highly random
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(a) Noise free (b) With measurement noise

Figure 4: Simulation results with the �random� disturbance

dynamics of this disturbance, the constant disturbance assumption is presumably a very suitable
disturbance prediction, and is thus the only disturbance prediction considered in this scenario. Noise
free simulation results with this disturbance are shown in Figure 6a, while measurement noise is
added in the simulations shown in Figure 6b. (Measurement noise with standard deviation σd = 0.1
is added to the measured disturbance, and measurement noise with standard deviation σy = 0.002
is added to the measured output.) The measures of performance are given in the last two rows of
Table 1.

As this disturbance changes rapidly and randomly, the implicit linear change assumption in
method A does not work well in this scenario, and excessively large spikes are experienced on
the output. Both with and without measurement noise, the control error is about halved with
method B, and the aggressiveness of the controller is reduced by about 40%. These results con�rm
that method B outperforms method A when the disturbance assumption matches well with the real
disturbance dynamics.

5.4. Tuning

So far, only a dead-beat tuning has been considered, i.e. without any move penalty and with
a one-step prediction horizon (p = 0 and Hp = 1 in (10a)). The dead-beat tuning is generally
considered too aggressive for practical implementations, but was convenient when comparing the
two methods. The e�ect of tuning with the two considered methods is now investigated. For this
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purpose, the simulations in Section 5.2 and 5.3 are repeated with a move penalty p ranging from
10−5 to 100. A prediction horizon Hp = 10 is used in these simulations.

5.4.1. Tuning with the Smooth Sine Disturbance

Considering again the smooth sine disturbance from Section 5.2, the control error (MSE of the
output y) and the aggressiveness of the controller (mean |∆u|) with a varying move penalty p are
shown in Figure 5. (Note that a logarithmic scale has been used for all axes.)

The results in Figure 5a and 5c show that with the constant disturbance assumption, method A
performs better than method B regardless of the move penalty. Without measurement noise, the
aggressiveness is quite similar with the two methods, but when measurement noise is introduced,
method A is clearly more aggressive than method B, at least for relatively small move penalties, in
which case the performance of method A is also just slightly better than method B.

The results in Figure 5b and 5d show that while method A does not bene�t from a more
accurate extrapolation of the measured disturbance with a dead-beat tuning, it does bene�t from
this when p > 0. However, the optimal performance of method B is still far better than the optimal
performance of method A. On the other hand, method B only has a better control performance then
method A when the move penalty is relatively small, and method A performs better for large p. But
it should also be noted that when method A performs better, method A is also more aggressive than
method B. Considering the discussion in Section 4.4, this is quite reasonable. Due to the implicit
linear change assumption, method A always overestimates the e�ect of the measured disturbance,
and thus makes more aggressive moves to counteract this. When p is restrictive enough to reduce
the control performance of method B, the increased aggressiveness of method A counteracts some
of the restrictiveness of the move penalty, which results in a reduced control error.

Another quite interesting side e�ect of the increased aggressiveness with method A is seen in
Figure 5d. Here the performance with method A actually improves by increasing the move penalty,
and the optimal performance is achieved with a with a penalty p = 0.0316. This indicates that
method A is inherently too aggressive and thus very sensitive to measurement noise, and actually
bene�ts from being restricted by a move penalty p > 0, even though this is quite counter-intuitive.
Similar tendencies are also seen in Figure 5b and Figure 5c. On the other hand, the results show
that method B (with a couple minor exceptions) consistently shows a better performance with a
smaller move penalty, which is a lot more intuitive. One exception is in Figure 5b, where also
method B shows a better performance with p > 0. This is, however, on a lot smaller scale, with
a control error less than 10−6, which is really negligible in a realistic scenario with measurement
noise, model-plant mismatch, etc. Also in Figure 5d, the optimal performance is achieved with
p > 0 (with p ≈ 10−4), but the performance di�erence compared to p = 0 is negligible.

The control error and aggressiveness of the methods with optimal tuning are shown in Table 2.
These results show that, while the dead-beat tuning is near optimal with method B, method A
bene�ts a lot from an increased move penalty when measurement noise is added. Interestingly, the
aggressiveness of the methods is a lot more similar with the optimal tuning than with the dead-beat
tuning shown in Table 1, which again indicates that method A is inherently too aggressive with
a dead-beat tuning. However, even with an optimal tuning, when measurement noise is added
and the disturbance is extrapolated using the AR model, the control error is still nearly halved
with method B. On the other hand, method B performs 17.8% worse than method A when the
much less accurate constant disturbance assumption is implemented, even with measurement noise.
Once again, this con�rms that method B outperforms method A when an accurate extrapolation
of the disturbance is implemented, while method A may bene�t from the implicit linear change
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(a) Constant disturbance assumption, noise free (b) Prediction based on AR model, noise free

(c) Constant disturbance assumption, with
measurement noise

(d) Prediction based on AR model, with measurement
noise

Figure 5: Control error and aggressiveness versus move penalty with the �smooth sine� disturbance
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Move penalty Control error Aggressiveness

(p, 10−3) (MSE of y, 10−6) (Mean |∆u|)

Sce. AR Noise A B A B % A B %

Sine - - 0 0 51.8 231.8 +347.4 0.27 0.28 +6.2

ON - 0 0.6 51.8 0.4 -99.2 0.27 0.26 -3.3

- ON 1.3 0 289.1 340.5 +17.8 0.40 0.38 -7.1

ON ON 31.6 0.2 165.6 84.4 -49.0 0.28 0.30 +5.2

Rand - - 20.0 0.4 447 374 -16.3 0.35 0.40 +15.6

- ON 15.8 0.5 550 481 -12.6 0.40 0.46 +14.2

Table 2: Measures of performance with optimal tuning

assumption if this is better than the explicitly stated disturbance prediction.

5.4.2. Tuning with the Random Disturbance

With the random disturbance from Section 5.3, the control error and the aggressiveness of the
controller with a varying move penalty are shown in Figure 6, and the measures of performance are
given in the last two rows of Table 2. The main �ndings are:

• Method A is always more aggressive than method B if the same move penalty is used

• The optimal performance with method A is achieved with p > 0, while with method B, the
optimal performance is achieved with p close to 0.

• The optimal performance with method B is better than the optimal performance with method A

• The tuning of the controller is again a lot more intuitive with method B

These results are the same both with and without measurement noise. Again, it may be concluded
that method B performs better than method A when the disturbance assumption matches well with
reality.

It should be noted, though, that in this case, method A with the optimal tuning is actually
less aggressive than method B with optimal tuning. But then again, in the simulations with
measurement noise, with p = 1.633 · 10−3, the aggressiveness with method B is the same as the
aggressiveness of method A with the optimal tuning, while the control error is 497 · 10−3, which is
9.7% better than the optimal performance with method A. The results without measurement noise
are similar. This shows that when the aggressiveness is identical, method B still performs better
than method A in this scenario.

6. MIMO Example

In this section, the considered methods are compared in closed-loop simulations of a realistic
industrial multivariable system. The system and the control problem were thoroughly presented
and discussed in [20] and [21], and only a brief summary is presented here.
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(a) Noise free (b) With measurement noise

Figure 6: Control error and aggressiveness versus move penalty with the �random� disturbance

6.1. System Description

The system considered in this example is an oil production well with an electric submersible
pump (ESP) installed, as shown in Figure 7. The ESP is installed inside the well to create arti�cial
lift, in order to boost the production from the well, and improve recovery from the reservoir. There
are many control challenges related to an ESP installation. Failure of an ESP installation has
a huge economic impact, both due to production loss and the cost of replacing the pump. The
main priority in this system is thus to maintain acceptable operating conditions for the ESP, to
prevent failure or reduced life-time of the pump. There are many variables that a�ect the life-time
of an ESP, but this example focuses on thrust forces acting on the pump shaft, and the power
consumption of the pump motor.

6.2. Control Problem

An outline of the control problem considered in this example is given below. More details
regarding the system, modeling and associated control concerns may be found in [20] and [21].

6.2.1. Control Inputs

The control inputs in the system are the pump frequency (or speed), denoted f , and the pro-
duction choke valve opening, denoted z.

6.2.2. Outputs and Control Objectives

The main control objective is to sustain a given production rate from the well. As the in�ow
into the well (and thus the production rate) is determined by the di�erence between the reservoir
pressure (pr) and the bottomhole pressure inside the well (pbh), this may be achieved by keeping the
bottomhole pressure at a desired setpoint. Under the assumption that a constant pressure at the
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Figure 7: MIMO example: Oil production well with an ESP installed

inlet of the ESP will ensure a constant bottomhole pressure, this is achieved indirectly by keeping
the ESP inlet pressure, denoted pin, at a desired setpoint.

At the same time, thrust forces acting on the ESP shaft (denoted Fthrust in Figure 7) must
be limited to prevent excessive wear and tear on the pump, which could lead to premature failure
of the ESP installation. This may be achieved indirectly by controlling the relative pump �ow q0,
which was de�ned in [20] as:

q0 = q
f0

f
(53)

where f0 is the reference frequency for the pump characteristics assumed to be available. (See [20]
for details.) The relative pump �ow should be kept within certain bounds, and preferably close to
an optimal setpoint.

Finally, the power consumption of the pump must be limited with regard to the life-time of the
ESP motor, and preferably minimized to reduce operation costs. This is achieved by limiting and
minimizing the electric current through the ESP motor, denoted I, which is directly proportional
to the power consumption.

6.2.3. Disturbance

The main disturbance in this example is the manifold pressure, i.e. the pressure at the outlet
of the well (denoted pm in Figure 7), which is a measured disturbance. This pressure may vary
considerably due to other components in the production system, such as booster pumps, separators
and other wells producing to the same manifold, especially when such components are started up
or shut down.

6.2.4. Measurement Noise

Measurement noise (normally distributed white noise with standard deviation 0.1 bar) is added
to the measured disturbance (pm), while perfect measurements of the outputs are used in this
example for an easier comparison of the results.



6.3 Simulator and Prediction Model 30

Variable Unit Low limit Setpoint High limit Weight

Method A Method B

pin bar 40 50 70 1 1

q0 m3/h 40 50 60 0.1 0.1

I A - 0 65 1·10−4 1.8·10−4

∆f Hz -0.5 - 0.5 2 1.85

∆z % -0.5 - 0.5 0.2 0.185

f Hz 35 - 65 - -

z % 0 - 100 - -

Table 3: Controller settings and tuning

6.3. Simulator and Prediction Model

Based on a model of the system derived in [20] and [21], a simulator for the considered system is
implemented in Matlab. An MPC controller based on a step-response prediction model, as described
in Section 3.2.2, is also implemented in Matlab. The step-response models are obtained from the
simulator by applying steps in the inputs with the system at a steady state close to the desired
operating point. The simulator model and the prediction model in this example are thus not the
same.

6.4. Controller Con�guration and Tuning

As shown in Section 5.4, the e�ect of tuning is quite di�erent for the two methods. Speci�cally,
due to the implicit linear change assumption in method A, the controller is usually more aggressive
with method A than with method B. As reducing wear and tear on the installation is vital in this
system, the aggressiveness of the controller is very important when evaluating the performance. To
make the performance of the considered methods as comparable as possible, the controller is tuned
di�erently for the two methods in this example, so that the level of aggressiveness is similar for the
two methods. The di�erence in performance is then seen mainly on the outputs of the system, and
the performance is thus more directly comparable. To achieve this, a tuning that provided a decent
performance2 with respect to the control objectives de�ned above was �rst found for method A,
and then the move penalties p on the control inputs were slightly reduced with method B to
obtain a comparable aggressiveness. In addition, the weight on the output I was increased with
method B to achieve a similar power consumption. The implemented control targets (constraints
and setpoints) and tuning parameters for each method are given in Table 3. The sampling interval
is set to Ts = 1 second, the prediction horizon is set to Hp = 10, and the measured disturbance is
extrapolated using the constant disturbance assumption.

2Tuning of a multivariable MPC con�guration is not a straightforward task, and we do not claim to have found
the best possible tuning for neither method in this example. The main concern was rather to make the performance
of the two methods easily comparable.
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Constant dist. assumption Extrapolated disturbance

A B % A B %

pin (MSE) 36.4·10−3 29.6·10−3 -18.5 32.7·10−3 24.3·10−3 -25.7

q0 (MSE) 0.659 0.671 +1.7 0.661 0.662 +0.1

I (Mean) 24.1 24.1 -0.0 24.1 24.1 +0.0

|∆f | (Mean) 0.111 0.111 -0.1 0.113 0.115 +2.3

|∆z| (Mean) 0.350 0.349 -0.0 0.350 0.351 +0.3

Pred. error, pin (MSE) 16.9·10−3 13.1·10−3 -22.8 15.8·10−3 12.2·10−3 -22.7

Table 4: MIMO simulation results

6.5. Simulation Results

Simulation results with the above controller con�guration are shown in Figure 8a. The top
plot shows the measured disturbance, i.e. the manifold pressure pm. The disturbance is the same
for both methods, the real disturbance is plotted with a solid black line, and the measurements
(including measurement noise) are plotted with red dots. In the remaining plots, method A is
plotted with a solid blue line and method B with a dotted red line. The outputs are shown in the
next three plots, i.e. the ESP inlet pressure pin, the relative pump �ow q0 and the electric current
of the ESP I. The outputs are plotted relative to their setpoints, so that the setpoint is at zero in
the plots. The next two plots show the inputs, i.e. the pump frequency f and the choke opening z.
The bottom plot shows the prediction error for the ESP inlet pressure.

Some measures of performance are given in the column �Constant dist. assumption� in Table 4,
which shows the results for each of the methods, and the di�erence in percent. The �rst row shows
the mean square error (MSE) for tracking of the setpoint for the ESP inlet pressure pin, the second
row shows the MSE for the setpoint for the relative �ow q0, the third row shows the average current
I, the next two rows show the aggressiveness of the controller, i.e. the average step size of the inputs
f and z, and the last row shows the MSE for the prediction error for the ESP inlet pressure pin.

As seen in the table, the aggressiveness of the two methods as well as the power consumption
is nearly identical with this tuning, but tracking of the inlet pressure setpoint (the main control
target) is improved by 18.5% with method B compared to method A, though tracking of the relative
pump �ow is 1.7% less accurate.

6.6. Extrapolated Disturbance

Next, as in the SISO example, a more accurate extrapolation of the measured disturbance is
implemented in the prediction model, based on an AR model derived from logged measurement
data. A 3rd order model is used in this example, given by:

d̂k+1|k = 1.5382 dk − 0.6571 dk−1 + 0.1182 dk−2 (54)

Simulation results with this disturbance extrapolation are shown in Figure 8b, and some measures
of performance are given in the column �Extrapolated disturbance� in Table 4. The results show
that the control performance is improved by this extrapolation with both methods, but method B
bene�ts more from the extrapolation than method A, and tracking of the pressure setpoint is now
25.7% better with method B than with method A. The tracking of q0 has also improved slightly,
but the aggressiveness is also slightly increased.
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(a) Constant disturbance assumption (b) Extrapolated disturbance

Figure 8: Simulation results of the MIMO system
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Original results Extrapolated disturbance

Method A Method B % Method A Method B %

pin (MSE) 6.16·10−3 5.16·10−3 -16.2 5.02·10−3 3.61·10−3 -28.0

q0 (MSE) 0.417 0.450 +7.9 0.410 0.418 +1.8

I (Mean) 24.4 24.3 -0.2 24.3 24.3 -0.2

|∆f | (Mean) 0.0578 0.0579 +0.2 0.0569 0.0586 +3.1

|∆z| (Mean) 0.272 0.272 +0.1 0.287 0.284 -1.1

Pred. error, pin (MSE) 1.86·10−3 1.09·10−3 -41.6 1.71·10−3 1.00·10−3 -41.2

Table 5: MIMO simulation results with increased sampling rate

6.7. Sampling Rate

The performance of MPC is generally increased with a higher control update rate, but the update
rate is often restricted by the computationally demanding MPC algorithm, which usually involves
numerically solving a quadratic programming (QP) problem online (in real-time). Depending on
the application, the sampling rate of the measurements may also be a limitation. For example,
instruments installed inside oil production wells often have a very slow sampling rate.

So far in this paper, the control update rate has been considered �xed, but from the discussion in
Section 2, it is natural to assume that the inaccuracies addressed in this paper might be reduced by
increasing the sampling rate. Considering this, the MIMO system is now simulated with a doubled
sampling rate (Ts = 0.5). A new AR model for extrapolation is found for this sampling rate, given
by:

d̂k+1|k = 1.4006 dk − 0.2607 dk−1 − 0.1402 dk−2 (55)

The simulation results (in numbers) are given in Table 5. Compared to Table 4, these results show
that the control performance is indeed signi�cantly improved by doubling the sampling rate, but
interestingly, the performance improvement from implementing method B compared to method A
is fairly similar for both sampling rates. This indicates that the issues addressed in this paper are
quite independent of the sampling rate, and increasing the sampling rate is thus not a valid reason
to not implement method B.

If the measured disturbance is sampled more often than the control update rate, this could be
exploited for better noise �ltering and/or more accurate extrapolation of the measured disturbance,
without altering the control update rate. Considering the results in this paper, method B would
probably bene�t more from such extra information than method A.

7. Conclusions

The results in this paper show that a system discretized using ZOH is quite inaccurate when
a measured disturbances sampled from a continuous variable is applied as an input. This is nev-
ertheless the standard method for MPC implementations based on state-space models, and the
equivalent to step-response models. It was shown that discretizing the system using FOH would
be more precise, but quite impractical in the MPC framework. Thus a much simpler approach
that approximates FOH discretization, and is very easy to implement in the MPC framework, was
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proposed, denoted method B. It was shown that method B is much more precise for continuous
inputs than the conventional method, denoted method A.

In MPC, future values of the measured disturbance must also be predicted. This is often done
simply by assuming that the measured disturbance remains constant in the future, denoted the
�constant disturbance assumption�, though more accurate extrapolations may be more appropriate.
It was shown through an analytical comparison of the methods that method B has a greater theoret-
ical potential than method A, but simulation results show that the performance in practice depends
on how accurately the measured disturbance is predicted. The comparison also revealed that due
to the inaccuracy of method A, it does not actually implement the explicitly stated prediction of
the measured disturbance in the �rst step of the prediction horizon, but instead implicitly predicts
that a change in the measured disturbance always will be repeated in the �rst step, denoted the
�implicit linear change assumption�. The proposed method B, on the other hand, implements the
explicitly stated disturbance prediction correctly.

It was shown in the SISO example that the implicit linear change assumption embedded in
method A can in some cases actually be a bene�t, if the implicit linear change assumption is a
better match with the actual disturbance dynamics than the explicitly stated disturbance predic-
tion. For example, the implicit linear change assumption is often much better than the constant
disturbance assumption for smooth and slowly varying disturbances. But it was also shown that
the linear change assumption may also be implemented with method B, if stated explicitly, and
the performance of the two methods will then be identical. And further, it was shown that if the
explicitly stated disturbance assumption is better than the linear change assumption, the more
precise method B provides a much better control performance than the conventional method A,
which bene�ts very little from a more accurate prediction. These results con�rm that method B
is conceptually more precise than method A, and that method B has a greater potential than
method A.

The simulation results also indicate that due to the implicit linear change assumption in method A,
method A will usually result in a controller that is more aggressive than method B with the same
tuning, and also more sensitive to measurement noise. Due to this, method A relies on a more
restrictive controller tuning than method B to achieve optimal performance, while the controller
tuning with method B is a lot more intuitive. The performance of the two methods is thus not
directly comparable with the same tuning.

Very promising results for method B were shown also in the more realistic MIMO example. The
control error for the main control objective was reduced signi�cantly by implementing method B,
even when the standard constant disturbance assumption was implemented, and even more when
a more accurate extrapolation was considered, though the controller with method A also bene�ted
some from the extrapolation.

Extrapolating the measured disturbance does not increase the complexity of the MPC optimiza-
tion problem that is solved online, and very little e�ort is often required to obtain a more accurate
extrapolation of a measured disturbance than the constant disturbance assumption. But as shown
in this paper, due to the fact that the conventional method A to some extent ignores the explicitly
stated disturbance prediction, the e�ort to derive and implement a more accurate extrapolation is
barely rewarded in a conventional MPC implementation. This might be one of the main reasons
that the constant disturbance assumption has remained so popular, while a more accurate extrapo-
lation of the measured disturbance is rarely implemented in practice, and very few examples of this
exist in the literature. On the other hand, with method B, the MPC controller bene�ts a lot from
a more accurate prediction of the measured disturbance, as it should. Implementing method B
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may thus enable signi�cant improvements of the control performance through better disturbance
predictions.

Implementing the proposed method B only requires a minor modi�cation in the prediction
model, comparable to �ltering the measured disturbance, and does not rely on which model rep-
resentation is implemented in the prediction model. Both state-space models and step-response
models were considered in this paper, with very similar results. Method B may thus improve the
control performance signi�cantly with a minimal e�ort.
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AppendixA. Deriving Method B for a First-Order System

In this appendix, it is shown how d̄k which is used in the proposed method B is derived. First, in
AppendixA.1, an expression for an optimal d̄k (denoted d̄

∗
k) is found that under certain assumptions

provides an accurate match between the continuous system with d(t) as input and the discrete-time
system with d̄∗k as input. Then, in AppendixA.2, it is shown that this is in fact equivalent to
FOH-discretization, but leads to a system on a di�erent form. In AppendixA.3, it is shown that the
simple average of dk and dk+1, which is the proposed solution in this paper, is a good approximation
of the optimal d̄∗k if the sampling rate is relatively fast compared to the system dynamics.

For pedagogical reasons, the discussion in this appendix is based on a �rst-order system, as this
produces simple analytical expressions.

AppendixA.1. Optimal Constant Input

Consider a �rst-order SISO system on the form:

ẋ = Ax(t) +Bd(t) (A.1a)

y(t) = Cx(t) (A.1b)

Given a sampling time T and an initial state x(0) = xk, the solution yk+1 of this system at time T
is given by:

xk+1 = eATxk +B

∫ T

0

eA(T−t)d(t) dt (A.2a)

yk = Cxk (A.2b)

From [15, eq. (4.17)], the system (A.1) discretized using ZOH for the disturbance, and with d̄k as
input (equivalent to inserting d(t) = d̄k, 0 ≤ t ≤ T in (A.2)) is given by:

xZk+1 = eATxZk +
B

A
(eAT − 1)d̄k (A.3a)

yZk = CxZk (A.3b)
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The optimal d̄k is the one that minimizes the di�erence between the outputs of the continuous-
and discrete-time systems, and may thus be found by solving yZk+1 = yk+1 for d̄k. From (A.2) and

(A.3), and with xZk = xk, the optimal d̄k is given by:

d̄∗k =

∫ T

0
eA(T−t)d(t) dt
1
A (eAT − 1)

(A.4)

Given that only the sampled measurements dk are available, the continuous-time disturbance d(t)
is not known, and this equation cannot be solved exactly. Without any knowledge about the
disturbance dynamics, the best possible approximation of d(t) is presumably a linear interpolation
between dk and dk+1:

d(t) = dk + (dk+1 − dk)
t

T
, 0 ≤ t ≤ T (A.5)

By solving the integral: ∫ T

0

eA(T−t)
(
dk + (dk+1 − dk)

t

T

)
dt

=
1

A2T

(
(AT − 1)eAT + 1) dk + (eAT −AT − 1)dk+1

)
(A.6)

and inserting this into (A.4), the solution for d̄∗k is given by:

d̄∗k =
(AT − 1)eAT + 1

AT (eAT − 1)
dk +

eAT −AT − 1

AT (eAT − 1)
dk+1 (A.7)

Under the assumption that the linear interpolation (A.5) is indeed the best possible approximation
of d(t), this is the optimal d̄k for the �rst-order SISO system (A.1).

AppendixA.2. Comparing Method B and FOH

Since (A.7) is derived from inserting the linear interpolation (A.5), applying d̄∗k from (A.7) as
input to the system (A.3) discretized using ZOH will result in an exact match with the continuous
system (A.1) with a piecewise linear input. Thus, using ZOH and substituting dk with d̄∗k is in fact
equivalent to discretizing the system (A.1) using FOH. However, inserting d̄∗k into the system (A.3)
results in a system on the form:

xk+1 = AZxk +BZdk +DZdk+1 (A.8a)

yk = Cxk (A.8b)

whereas the system obtained in Section 2.4 using FOH-discretization in Matlab was on the form:

xFk+1 = AFxFk +BF dk (A.9a)

yFk = CFxFk +DF dk (A.9b)

But an equivalent system on the form (A.9) may in fact be derived from the system on the form
(A.8) as follows.
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Inserting d̄∗k into the system (A.3) results in the following discrete-time system:

xk+1 = eATxk +
B

A2T

(
(AT − 1)eAT + 1

)
dk +

B

A2T

(
eAT −AT − 1

)
dk+1 (A.10a)

yk = Cxk (A.10b)

This may be rewritten without the state x as follows:

yk+1 = eAT yk +
BC

A2T

(
(AT − 1)eAT + 1

)
dk +

BC

A2T

(
eAT −AT − 1

)
dk+1 (A.11)

The Z-transform of this system produces the discrete-time transfer function:

y

d
(z) =

BC

A2T

(eAT −AT − 1)z + (AT − 1)eAT + 1

z − eAT
(A.12)

Using polynomial division, this becomes:

y

d
(z) =

BC

A2T

(eAT − 1)2

z − eAT
+
BC

A2T
(eAT −AT − 1) (A.13)

A new state variable xF may now be de�ned from the �rst term of this transfer function:

xF (z) =
BC

A2T

(eAT − 1)2

z − eAT
d(z) (A.14)

so that:

y(z) = xF (z) +
BC

A2T
(eAT −AT − 1) d(z) (A.15)

The Z−1-transform of (A.14) and (A.15) leads to the system:

xFk+1 = eATxFk +
BC(eAT − 1)2

A2T
dk (A.16a)

yk = xFk +
BC

A2T
(eAT −AT − 1) dk (A.16b)

which is on the form (A.9). That (A.16) is indeed identical to the system obtained using FOH-
discretization in Matlab is easily con�rmed for particular values of A and T e.g. using the Matlab
function tf.

Note that the change of state variable from x to xF implies that (3) no longer holds for the
system (A.16), which may complicate the implementation as discussed in Section 2.2.

AppendixA.3. Approximation of the Optimal Constant Input

The proposed solution in this paper, denoted method B, is not to replace dk with the optimal
d̄∗k from (A.7), but with d̄k from (6), which is simply the average of dk and dk+1. It is shown in
this section that this is in fact a good approximation of the optimal d∗k.

The optimal d̄∗k depends on only two variables; the system parameter A and the sampling time
T . By calculating the limit limT→0 d̄

∗
k, it can be shown that d̄∗k actually converges to the average
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of dk and dk+1 when T → 0:

lim
T→0

d̄∗k = lim
T→0

(
(AT − 1)eAT + 1

AT (eAT − 1)
dk +

eAT −AT − 1

AT (eAT − 1)
dk+1

)
= lim

T→0

(
A2TeAT

(A2T +A)eAT −A
dk +

A(eAT − 1)

(A2T +A)eAT −A
dk+1

)
= lim

T→0

(
(A3T +A2)eAT

(A3T + 2A2)eAT
dk +

A2eAT

(A3T + 2A2)eAT
dk+1

)
=

A2e0

2A2e0
dk +

A2e0

2A2e0
dk+1

=
1

2
(dk + dk+1) (A.17)

(This limit was calculated using L'Hôpital's rule twice.)
Now obviously, the sampling rate cannot be chosen in�nitely fast, but a well-known rule of

thumb is to choose a sampling rate that is 5-10 times faster than the fastest time constant in the
system. Consider for example the following �rst-order SISO system with time constant τ :

τ ẋ(t) = −x(t) + d(t) (A.18a)

y(t) = x(t) (A.18b)

If the sampling rate is chosen to be 10 times faster than the time constant τ , the sampling time is
given by T = τ/10. Inserting this and A = −1/τ = −1/(10T ) into (A.7), d̄∗k for this system is then
given by:

d̄∗k =

(
− 1

10 − 1
)
e−

1
10 + 1

− 1
10

(
e−

1
10 − 1

) dk +
e−

1
10 + 1

10 − 1

− 1
10 (e−

1
10 − 1)

dk+1 (A.19)

≈ 0.4917 dk + 0.5083 dk+1

This shows that method B (d̄k = 0.5 dk + 0.5 dk+1) is a very good approximation of the optimal
d̄∗k (and thus FOH discretization) if the sampling rate is su�ciently fast compared to the system
dynamics.

However, due to e.g. limited computational capacity in embedded implementations, or instru-
ments with a slow measurement update rate, the sampling rate cannot always be chosen �su�ciently
fast�. Now consider that the sampling rate for the system (A.18) for some reason cannot be faster
than the time constant τ , so that T = τ , then d̄∗k is given by:

d̄∗k =
1− 2e−1

1− e−1
dk +

e−1

1− e−1
dk+1 (A.20)

≈ 0.4180 dk + 0.5820 dk+1

From this, it is clear that even with this slow sampling rate, method B (d̄ = 0.5 dk +0.5 dk+1) is still
a quite decent approximation of d̄∗k, and obviously a much better approximation than method A
(which is equivalent to d̄k = 1 dk + 0 dk+1). But if the issue addressed in this paper is vital for
the control performance, the performance might be improved slightly by using the optimal d̄∗k,
compared to simply using the average from method B, if the sampling rate is relatively slow. While



AppendixA.3 Approximation of the Optimal Constant Input 39

deriving the optimal d̄∗k may seem complicated, once it is derived, it is just as easy to implement
as method B, at least for a �rst-order SISO system as considered in this appendix.

For higher-order/MIMO systems, deriving and implementing an optimal d̄k may not be quite as
straightforward, as the optimal expression for d̄k might be di�erent for each disturbance/output pair.
Given the simplicity of method B, and the improvement already achieved compared to method A,
it is hard to imagine a scenario where the e�ort required to derive and implement the optimal d̄k in
a complex system may be justi�ed by the marginal improvement that can be expected from doing
so, compared to simply implementing method B.
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