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Abstract— This paper addresses the challenges of making
safe and predictable collision avoidance decisions considering
uncertainties related to maritime radar tracking. When a
maritime radar is used for autonomous collision avoidance,
strategies for handling uncertain obstacle tracks, false tracks,
and track loss become necessary. Robust decisions are needed
in order to achieve clear and predictable actions according to
the international regulations for preventing collisions at sea
(COLREGs). We present robustness considerations and results
of using an Integrated Probabilistic Data Association (IPDA)
tracking method with a collision avoidance method based
on Model Predictive Control. The results are from full-scale
experiments that cover challenging multiple dynamic obstacle
scenarios, including realistic vessel interactions where some
obstacles obey COLREGs, while others do not.

I. INTRODUCTION

Maritime collision avoidance is a challenging task that
has been studied for many years, and the technology for
safe navigation of marine vessels have evolved over the
years. However, most of the existing technology is mainly
intended as an aid to the human operator. The human
operator makes a decision by evaluating the collision risk,
using the information available about obstacles obtained
from different sources, e.g. lookout, radar and nautical chart
plotters, Automatic Identification System (AIS), and Vessel
Traffic Service (VTS). Due to the reliance on a human oper-
ator, the reliability and accuracy of the existing automatic
obstacle detection/tracking systems may not be the most
crucial factors in the decision making process.

The existing “rules of the road” were also developed for
the human operator, and therefore do not generally provide
quantitative criteria for both the assessment of a potential
collision situation and the actions needed to avoid collisions.
Furthermore, COLREGs advocate “good seamanship” (see
e.g. Rules 2 and 8 of [1]), probably due to the uniqueness
of every situation and the characteristics of the maritime
domain that make the collision avoidance task challenging.
Specifically, the decision process needs to consider, among
other factors, a large variety of obstacles, different sea states,
dynamic motion in 2D space, and uncertainty in both sensor
information and (intended) motion of obstacles in different
environmental conditions. In view of the above observations,
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we acknowledge the difficulty of making the decision process
autonomous, especially, based on existing technology and
rules. An autonomous surface vehicle (ASV) must be able to
rely on its sensors and should implement a decision strategy
that is robust to uncertain information available for collision
avoidance.

The maritime radar, which is a primary sensor for safe
maritime navigation is useful in combination with effective
obstacle tracking algorithms for autonomous collision avoid-
ance if it produces accurate estimates of obstacle tracks,
and has a low rate of false tracks and track loss. Different
implementations and experimental validation of maritime
target tracking algorithms are provided in [2], [3], [4]. A
crucial aspect is to find a useful balance between false alarm
rate and track initiation time in order to avoid detecting
targets too late and also to reduce the risk of making wrong
collision avoidance actions [2].

Earlier work that discuss the challenges of using maritime
radar for autonomous collision avoidance include [5], [6].
While both focus on close-range situations, [5] assumes no
track loss occurs, and the reactive method in [6] does not
implement COLREGs compliance. Different methods that
aim at COLREGs compliance are treated in [7], [8], [9],
[10], [11], and some reviews of existing maritime collision
avoidance methods can be found in [12], [13]. As noted in
[8], different limitations in some of the existing collision
avoidance methods motivate the use of ideas from optimiza-
tion based control, which typically lead to a straightforward
approach to specifying constraints and objectives.

In this paper, we explore the potentials of using the esti-
mated maritime radar tracks from an Integrated Probabilistic
Data Association (IPDA) tracking method in a Scenario-
based Model Predictive Control (SB-MPC) decision frame-
work. The main contributions include robustness consider-
ations in the IPDA method, and the treatment of different
uncertainties associated with maritime radar tracking in SB-
MPC without using uncertainty estimates from the tracking
method. The work in [8] and [14] is extended by introducing
uncertainty adapted predictions of obstacle motion and a
strategy for reducing the adverse effect of false/lost tracks.
The overall collision avoidance system is suitable for both
long-range and close-range encounters. Our approach leads
to collision avoidance decisions that comply with COLREGs,
by prioritizing deliberate early, clear, predictable actions.
We also present full-scale experiments covering different
dynamic multi-obstacle scenarios, using an ASV that im-
plements the architectural components shown in Fig. 1.

The remainder of this paper is structured as follows:
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Fig. 1: ASV functional interface setup. The white boxes are
existing functions, and the gray boxes are tracking, obstacle man-
agement, and collision avoidance functions presented in this paper.

Sections II–III describe the radar tracking method, the col-
lision avoidance method, the uncertainties, and the related
robustness considerations made in this work. Presentation
and discussion of the experimental results follow in Section
IV, and concluding remarks are given in Section V.

II. MARITIME RADAR TRACKING

A. Radar tracking method

The backbone of the radar tracking system is described
in [2], which implements a single-target tracking method.
Through a parallel implementation of filters the tracking
method is capable of tracking multiple targets when the
targets are sufficiently separated in the state space. The
tracking system uses one target motion model, a nearly
constant velocity (NCV) model [15], which assumes that the
target moves according to the linear Gaussian model

p(xj+1|xj) = N (Fjxj , Qj), (1)

where N is the probability density function of the normal
distribution, xj = (pN , vN , pE , vE) is the state of the target
at time j, consisting of, respectively, the North and East
positions and velocities in a stationary North East Down
(NED) reference frame. The state transition matrix Fj and
the process noise covariance matrix Qj in (1) are defined as
follows:
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Tr is the sampling time (i.e. the time between two radar
scans), q is the process noise covariance parameter, and 022
is a 2× 2 zero matrix. The observation model used is

p(zj |xj) = N (Hxj , Rj), (2)

where the matrix H extracts zj = (pN , pE) from xj , and
Rj is the measurement noise covariance matrix. The above
model captures the typical straight-line motion of marine
vessels.

The Integrated Probabilistic Data Association (IPDA)
method presented in [16] is used for track initiation and
track maintenance. The fundamental principle of the IPDA
[17] is to calculate an existence probability for each track,
based on the innovations of the measurements in the vicinity

of the track, i.e. the difference between the measurements
and their expected value based on the prior state estimate.
Initially, tracks are categorized as preliminary tracks, which
is only used internally in the tracking system. When the
existence probability exceeds a given threshold PC , the track
is confirmed as a valid target. Tracks are terminated if the
existence probability falls below another threshold PT .

The output of the radar tracking system consists of a list
of confirmed targets, each with an ID and estimates of the
target’s position (pN , pE), speed u, and course χ. The speed
and course are, respectively, the magnitude and direction
(angle) of the velocity vector (vN , vE). The estimates from
the tracking system are considered as obstacle measurements
used in the COLREGs-compliant decision method described
in Section III. Every new track is given a new ID, which
means that after a track is terminated, a new track that
appears on the same target gets a new ID.

In this paper, we focus on the consequences of the
assumptions made in the tracking system and the related
uncertainties that a collision avoidance method needs to
consider in its decision process. By not using uncertainty es-
timates computed by the tracking method in the COLREGs-
compliant decision method, we obtain a collision avoidance
system that does not depend on uncertainty representations
specific to the implemented tracking method. We also avoid
COLREGs-compliant method-specific representations in the
tracking method that may lead to a more complicated
(tightly-coupled) tuning procedure. For instance, prolonging
the life of tracks in the tracking system based on their
impact on collision avoidance decisions requires conservative
tuning that produces many false tracks. Further details of the
tracking system can be found in [2] and [16].

B. Radar track uncertainty

Radar tracking of obstacles introduces both data associa-
tion uncertainty and state estimation uncertainty, i.e. position
and velocity estimation errors, into a collision avoidance
decision process.

The accuracy of data association in the tracking method is
evident in the absence/presence of false tracks and the rate
of track loss. In the IPDA tracking method used, premature
track termination can be delayed by choosing a high value
for the survival probability of the IPDA. This means that the
existence probability will not be reduced below the threshold
until several misdetections have occurred. This also increases
the expected lifetime of any false track that appears. In
practice, a useful balance is determined through tuning, and
the collision avoidance decisions must be robust to both false
tracks and track loss.

Due to the NCV model used in the tracking method, track
loss may occur when the target is maneuvering. By choosing
the process noise parameter q of the motion model process
noise covariance properly, most of the typical maneuvers are
captured by the NCV model. Additionally, the fast track
initiation/establishment capabilities of the IPDA (see [16])
implies that the duration of track loss may not be significant
in this case, since new tracks may appear, and may be used to



trace the maneuvering path of the target. If the maneuvers are
not sufficiently followed by the NCV model, an interacting
multiple model (IMM) approach can be used [18]. Note that
using an IMM does not necessarily avoid this issue entirely
since one needs to deal with a more complex procedure
that switches between models, and handling of cases where
different models attain similar likelihoods (in a probabilistic
framework) may not be a trivial task (see e.g. [5]).

The tracking system also influences the collision avoidance
through fluctuations in the state estimate. In particular, the
speed and course estimation errors can have a large impact
on long-range collision prediction, as a small change of
course may lead to a large change of position at the end of
the prediction interval. This is remedied by representing the
range-dependent measurement noise in the tracking system
on a polar form, which is transformed into a Cartesian frame
[18], instead of working directly with the uncertainty in the
Cartesian frame as done in [2]. This provides less fluctuating
estimates of the target course and speed when it is tracked
from a long range.

III. COLREGS-COMPLIANT DECISION

In this section, we briefly describe our COLREGs-
compliant decision method, and we propose different im-
plementation strategies that enhance robustness to the radar
tracking uncertainties discussed in Section II-B.

A. COLREGs-compliant decision method

The scenario-based MPC (SB-MPC) COLREGs-
compliant decision method in [8] and the implementation
of [14] is used in this work, with some extensions. The
method solves the following optimization problem

k∗(t0) = arg min
k
Hk(t0), (3)

where

Hk(t0) = max
i
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using the set D(t0) = {t0, t0 + Ts, . . . , t0 + T}, where Ts
is the sampling time and T is the prediction horizon. We
provide a brief description of the cost function components
li, ci, µi, τi, f, g in this section, and we refer to [8] and [14]
for their detailed specifications.

The cost function Hk(t0) expresses the hazard associated
with selecting a control behavior with index k and defined by
course (χkm) and speed (ukm) modifications that are applied
to corresponding desired reference values, χd, ud, for the
course (χ) and speed (u), respectively. We use the following
set of alternative control behaviors, which we assume to be
fixed on the prediction horizon:
• course offset in degrees: χkm ∈
{-90, -75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 90}

• speed factor: ukm ∈ {1, 0.5, 0}, which translates to
‘keep speed’, ‘slow down’, or ‘stop’.

The function ci denotes the cost of colliding with obstacle
i, considering a collision risk that depends on the time and
distance to the closest point of approach (CPA) and scales
with the relative velocity of the obstacle and ASV. The
allowed CPA is defined by a safety distance parameter dsafe
and the obstacle’s length (Li). Specifically, dsafe + Li/2 is
used to define the radius of a circular safety region, which
encloses obstacle i.

We introduce the track-loss factor li(tlost), which reduces
the relevance of the collision cost of obstacle i when its track
is terminated by the tracking system. The track-loss factor
becomes smaller, the longer the track-loss duration (tlost) is,
as specified in Section III-E. The cost of violating COLREGs
is expressed by the function µi, and τi is a transitional cost
that penalizes the termination of COLREGs-compliant ma-
neuvers, in order to avoid unnecessary switching of control
behaviors. The cost of maneuvering effort is specified by the
function f , and g is a grounding cost that penalizes control
behaviors that will result in collision with land or defined
no-go zones.

The cost for each control behavior k at time t ∈ D(t0) is
calculated based on the predicted state of the ASV and each
obstacle i, obtained from the simulation of their trajectories.
We simulate the trajectory of obstacle i using a kinematic
model:

η̇i = R(χi)vi, ηi = (xi, yi, χi), vi = (vxi
, vyi , ri),

and a 3-degrees of freedom (DOF) model for the ASV:

η̇ = R(ψ)v,

Mv̇ + C(v)v +D(v)v = τu,

where η= (x, y, ψ) denotes the position and heading in the
earth-fixed frame, v = (vx, vy, r) represents the velocities
in surge, sway, and yaw specified in the body-fixed frame.
The matrices M , C(v), D(v) are the vessel inertia matrix,
Coriolis, and damping, respectively. R(ψ) is a rotation matrix
from body-fixed to earth-fixed frame, and τu is the vector
of control forces from an autopilot (a control law), which
accepts the commanded reference, χc=χd+χ

k∗

m , uc=ud·uk
∗

m .
If estimates of environmental disturbances such as wind

and current are available, it is recommended to include
their effect in the 3-DOF model as shown in [8]. In our
experiments, we use a feedback-linearization controller for
speed control and a proportional-derivative controller for
course control. Both controllers are included in the prediction
model to provide the control forces τu, which are used in the
prediction of the ASV’s trajectory for each scenario k.

B. Inherent properties and robustness

An important property of the above hazard evaluation
criterion is that it seeks the least conservative solution
according to the given constraints, by prioritizing solutions
that result in tangential maneuvers w.r.t. the boundary of the
defined circular safety region. This implies that the collision
avoidance decisions inherently lead to straight-line motion,
which is considered as predictable behavior in a maritime
environment.



Due to the implementation of a COLREGs-transitional
cost τi(·), it is straightforward to prioritize COLREGs-
compliant maneuvers in long-range encounters. Moreover,
using a collision cost ci(·) that scales with the collision
time, range, and relative velocity, ensures that the SB-
MPC strategy will choose an evasive maneuver if collision
becomes imminent.

The main advantage of the SB-MPC strategy in terms of
robustness to noise/uncertainty is the fact that the effect of all
potentially uncertain variables that affect the collision avoid-
ance decisions are evaluated in the cost function Hk(t0) over
a long prediction horizon T . In combination with an adequate
choice of sampling time Ts and a scenario grid of alternative
control behaviors, the cost function provides a filtering effect
that ensures that changes in each variable must be significant
enough to produce a change in the decisions. Moreover, the
collision cost ci(·) prioritizes avoiding collision hazards that
are close in time over those that are more distant and usually
more uncertain [8].

C. ASV guidance uncertainty

We assume that the ASV state is accurately known and
the ASV’s motion controllers are capable of achieving the
desired references for course and speed, by compensating
for disturbances (i.e. environmental forces). This assumption
leads to a simple SB-MPC implementation, which relies on
the hazard Hk(t0) evaluation criterion in (3) in order to
achieve safe decisions.

D. Obstacle motion uncertainty

In the nominal case where the obstacle state is accurately
known, using a constant velocity model for predicting ob-
stacle motion is sufficient to avoid collision in many cases
(see e.g. [8],[14]). However, some cases may be difficult
to capture with a constant velocity model, and collision
avoidance decisions may become highly reactive.

We propose a few extra scenarios that branch on the
nominal scenario, by defining the following uncertainty-
adapted sets that are used to predict the region occupied by
the obstacle in the future:

Ui = {ûi − ūbr1 − ũ, ûi, ûi + ūbr2 + ũ},
Ψi = {χ̂i − χ̄br1 − χ̃, χ̂i, χ̂i + χ̄br2 + χ̃},

where ũ = min(σui
, σ̄u) and χ̃ = min(σχi

, σ̄χ) are limits
for specifying the extent of uncertainty adjustment allowed
for the estimated speed ûi and course χ̂i, respectively. We
consider obstacle speeds and course within one standard
deviation (σui

, σχi
) around the mean, and we enforce the

limits (σ̄u, σ̄χ) to ensure that initial estimates are within
acceptable limits. The estimated speed, course, and their
associated variances are obtained through an obstacle man-
agement interface (cf. Fig. 1) discussed in Section III-E.

The parameters ūbr1, ūbr2, χ̄br1, χ̄br2 specify asymmetric
branching offsets in speed and course, which account for
a possible change in speed and course at the beginning
of the prediction horizon. Therefore, the predicted region
possibly occupied by the obstacle becomes larger further

into the prediction horizon. This does not pose feasibility
issues in complex scenarios since the sets do not introduce
hard constraints into the optimization problem (3). Moreover,
branching the nominal (straight-line) predicted trajectory at
the beginning of the horizon is still useful if the actual
maneuver occurs later in the horizon since the predicted (con-
servative) region may still be valid. We choose asymmetric
parameters, typically ūbr1 = 1 m/s, ūbr2 = 0.1 m/s, χ̄br1 =
1 ◦, χ̄br2 = 5 ◦, because we expect obstacles that intend to
follow COLREGs in dangerous situations to prefer starboard
maneuvers over port, and may reduce speed, instead of
increasing speed.

E. Track loss and false tracks

We implement an obstacle management interface (see
Fig. 1), which maintains a list of obstacles that have been
previously used in the SB-MPC, and we manage this list
separately from the obstacle list obtained from the tracking
system. The intention is to be able to determine the impact
of a track on the current collision avoidance decision based
on its influence on previous decisions. The impact of a
track depends on how long the track has been alive. This
means that an obstacle that has been tracked for a while and
suddenly terminated by the tracking system should not cause
a (dangerous) abrupt change in behavior of the ASV.

Using a standard Kalman filter with relatively high mea-
surement covariance values allows the SB-MPC algorithm to
obtain position, speed, and course estimates that are close to
the tracks received from the radar tracking system. The filter
provides useful (open-loop) short-term predictions in case
of track loss, without the need of keeping a long history
of past states. If the track has been alive for less than a
minimum tracking time ttrackmin , it is immediately discarded
when terminated by the radar tracking system. Tracks that
are used for at least ttrackmin are still considered in the hazard
evaluation criterion Hk(t0) and the corresponding collision
cost is reduced using the track-loss factor (cf. (3)):

li(tlost) =
Ts

(tlost)ql
, tlost ≥ Ts, (4)

where tlost is the track loss duration and ql ≥ 1 is a tuning
parameter. After a short duration t̄lost, or if the Kalman
filter’s error covariance estimates grow beyond a defined
threshold, the track is discarded. This decision is based on
the observation that real tracks that are (falsely) terminated
will be regained quickly with a new ID (within t̄lost), while
false tracks or tracks that leave the radar sensing range may
not return.

At close range to an obstacle, it is important that tlost is
kept as short as possible since a lost target may return with
a new track that deviates significantly from the lost track
(e.g. due to a sharp turn). However, the track-loss penalty
ensures that the effect of a lost track diminishes quickly,
giving priority to any new track that may pose a greater
danger to the ASV. The above strategy also influences the
effect of false tracks in the collision avoidance decisions.



(a) Telemetron (ASV) (b) Munkholmen II (c) Ocean Space Drone I

Fig. 2: Vessels involved in the experiments.

TABLE I: Vessel data: Ocean Space Drone I (OSD. I)

ASV obstacles

Parameter Telemetron Munkholmen II OSD. I

Length [m] 8.0 14.0 12.0
Width [m] 3.0 6.0 3.0
Max. speed [kn] ∼ 34 ∼ 10 ∼ 8

IV. FIELD EXPERIMENTS

Experiments using the SB-MPC and the IPDA-based radar
tracking system were performed in the Trondheimsfjord
in order to evaluate the performance in both long-range
and close-quarter scenarios. The test setup and results are
presented and discussed in this section.

A. Test setup

The ASV used is called Telemetron, which is a Po-
lar Circle 845 Sport vessel owned by Maritime Robotics.
Telemetron is a stable and highly maneuverable Rigid Buoy-
ancy Boat (RBB). The obstacle vessels are the Trondheim
Port Authority’s Munkholmen II tugboat and Kongsberg’s
Ocean Space Drone I. An overview of relevant vessel
specifications are provided in Table I. The vessels were
equipped with the Automatic Identification System (AIS),
which transmitted their position, course, and speed infor-
mation. However, the AIS data was not always accurate
in our tests, possibly due to significant AIS signal delays,
especially when the obstacles were maneuvering. Therefore,
we do not consider the AIS measurements as ground truth
in our discussions.

The ASV Telemetron is equipped with the Kongsberg
Seapath 330+ navigation system, which has an accuracy
of 0.1◦ RMS in roll/pitch/yaw estimates, and 0.1 m RMS
accuracy in position estimates. This makes accurate naviga-
tion, guidance, and control of Telemetron possible. Using
the existing mission/path planning, Line-Of-Sight (LOS)
guidance, and low-level vessel control software installed on
Telemetron (cf. Fig. 1), we are able to achieve desired high-
performance motion control according to our assumptions
in Section III-C. A C++ implementation of the SB-MPC
collision avoidance method was installed as part of the on-
board control system (OBS), which runs on an embedded
computer in the Telemetron vessel. For obstacle tracking,
we use the Simrad Broadband 4GTM Radar, the Seapath
330+ navigation system, and the real-time Global Navigation
Satellite System (GNSS) corrections for positioning (known
as CPOS) from the Norwegian mapping authority (Kartver-

TABLE II: Radar tracking system parameters

Sampling time (Tr) 2.8 s
Process noise covariance parameter (q) (0.05 m s−2)2I2
Measurement noise covariance (range) (Rr) (20m)2

Measurement noise covariance (bearing) (Rθ) (2.3◦)2

Confirmation probability threshold (PC) 0.95
Termination probability threshold (PT ) 0.1

TABLE III: COLREGs-compliant decision parameters

Sampling time (Ts) 5 s
Prediction horizon (T ) 300 s
Obstacle considered close (dclose) 1000 m
Safety distance to obstacle (dsafe) 185.2 m
Action initialization range (dinit) 1852 m

ket) [19]. The IPDA tracking algorithm is implemented in
the Robot Operating System (ROS) installed on a separate
computer, which has an Intel R© i7 3.4 GHz CPU, running
Ubuntu 16.04 Linux.

The main parameters used for both radar tracking and
COLREGs-compliant decisions are shown in Table II and
III, respectively. The SB-MPC method is tuned to prioritize
changes in course over speed in order to produce ASV
behaviors that are clear to observing operators/vessels.

B. Scenarios and Results

The scenarios cover both cooperating and non-cooperating
obstacle situations, where the ASV is required to be proac-
tive, but is allowed to choose reactive actions if necessary.
We consider collision avoidance decisions that are made
1 nautical mile (NM) away from the target as long-range
decisions, which must be COLREGs-compliant. We focus
on the case where no communication exists between the
ASV and the obstacles, meaning that the ASV uses only
the IPDA radar tracking system installed for its collision
avoidance decisions. Results from different scenarios are
shown in figures 3–5.

In Fig. 3, a combined crossing and head-on situation is
shown, where Fig. 3a shows the trajectories of the vessels
involved, using the position estimates from the radar tracking
system. The Ocean Space Drone I is well tracked from North
to South, while the track of Munkholmen II is highly uncer-
tain in the beginning. Both false tracks and track loss were
experienced in this test run, with two ‘competing’ tracks (the
long yellow track and the short black track) appearing for the
same Munkholmen II vessel. For the COLREGs-compliant
decision system, the radar tracks of Munkholmen II describe
the motion of two different obstacles, and the COLREGs-
compliant strategy must be robust to the uncertain motion of
the obstacles.

We will use the snapshot of the vehicle control station
(VCS) in Fig. 3b to discuss our observations. The VCS figure
shows the planned waypoints and paths used throughout
the experiments. Note that Ocean Space Drone I deviates



(a) Trajectories showing the ASV’s measured position and position
estimates from the radar tracking system. The end of a trajectory is
indicated by the symbol

⊙
for the ASV and � for the obstacle vessels.

The position of each obstacle is enclosed by a relatively large circular
safety region (cf. dsafe in Table III).

(b) Vehicle control station (VCS) snapshot at position p1 in Fig.
3a, showing planned waypoints, paths, and vessel trajectories
obtained from both radar tracking (◦) and AIS values (B).

Fig. 3: Obstacle vessels Head-on and crossing from starboard.

significantly from its planned path from North to South. This
is due to the waves and eastward currents experienced during
the experiments. For Munkholmen II, it is easy to compare
the radar tracks (cf. Fig. 3a) with the AIS track, which is
a straight line in the West-East direction. The course and
track status at p1 are also shown in the VCS figure, where
the symbol ��© indicates that the short track is terminated
at p1. Before the short track was terminated it represented a
significant hazard on the ASV’s path, while the long track
made a large deviation from the path. However, the large
deviations did not lead to large reactive maneuvers by the
ASV. The most critical event occurs at position p1 when
the short track is terminated. The long (surviving) track has
an estimated course which suggests that Munkholmen II is
crossing the path of the ASV. This drastic change in situation
means a significant change in collision hazard, but this leads
to only a slight reaction in the ASV’s behavior due to the
robustness considerations in the SB-MPC strategy.

The next scenario shown in Fig. 4 describes a situation
with two obstacles that do not cooperate according to COL-
REGs. Munkholmen II was traveling with an average speed
of 6 kn (∼3 m/s), while the Ocean Space drone’s speed was
about 5 kn (∼2.5 m/s). The reference speed (10 kn) of the

Fig. 4: Non-cooperating obstacles head-on and crossing from port.
The end of a trajectory is indicated by the symbol

⊙
for the ASV

and � for the obstacles. The position of each obstacle is enclosed
by a relatively large circular safety region (cf. dsafe in Table III).

ASV allows it to make an early and clear starboard maneuver,
which is adapted into a nearly straight path. The ASV’s
path is predictable according to COLREGs, and the ASV
stays well clear of both obstacles, before heading towards
its original path from position p1. Note that both obstacles
are well tracked by the IPDA tracking method, and the noise
in the radar tracks does not have any significant effect on the
behavior of the ASV.

We take a closer look at the course and speed estimates
from the radar tracking method in the experimental results
shown in Fig. 5. In Fig. 5, we test a situation where the
ASV’s path (from West to East) crosses the paths of both
Munkholmen II and Ocean Space Drone I. An aerial photo
taken during this test run is shown in Fig. 5a. Munkholmen II
travels towards South, and after a while, it makes a starboard
maneuver with the intention of taking partial responsibility
in the head-on and crossing situation. Ocean Space Drone I
on the other hand chooses a passive strategy by maintaining
its course and speed. The ASV’s challenging task is to
understand the intentions of both obstacles based on their
uncertain state estimates. The scenario is such that a wrong
reaction of the ASV to Munkholmen II’s starboard maneuver
could easily lead to a close-quarter collision situation when
Munkholmen II returns to its original (intended) course.

In Fig. 5c–5d, significant variations can be seen in the
ASV’s own course and speed measurements (partly due to
the effect of waves) and estimates from the radar tracking
system. The control modifications by the SB-MPC strategy
show that the observed behavior of the ASV is not due to the
noise in the estimates, but mainly the result of the changes in
the actual collision situation and the corresponding assess-
ment of collision hazard in the SB-MPC (cf. Section III-B).

V. CONCLUSIONS

An autonomous collision avoidance system that uses an
IPDA radar tracking method and SB-MPC was presented
in this paper. The discussions focused on the robustness
considerations made when using the SB-MPC and IPDA
methods, and in particular, the case where no uncertainty
estimates of obstacle tracks are obtained from the IPDA



(a) Crossing situation, showing the planned ( ) and actual ( )
paths of the ASV, and the actual paths of Munkholmen II ( ) and
Ocean Space Drone I ( ).

(b) Trajectories showing the ASV’s measured position and position
estimates from the radar tracking system. The end of a trajectory is
indicated by the symbol

⊙
for the ASV and � for the obstacle vessels.

The position of each obstacle is enclosed by a relatively large circular
safety region (cf. dsafe in Table III).

(c) Desired value from LOS guidance ( ), SB-MPC modification ( ),
and measured value ( ). Compare SB-MPC modifications with desired
values from LOS guidance. The points represent p1 in Fig. 5b.

(d) Obstacle course and speed values from IPDA radar tracking. The colors
correspond to the trajectories in Fig. 5b, and the points represent p1.

Fig. 5: Obstacle vessels crossing from both port and starboard.

tracking method for making collision avoidance decisions.
Results from full-scale experiments were discussed, and the
results show that the IPDA radar tracking method produces
obstacle track estimates suitable for collision avoidance, and
the SB-MPC method is capable of handling uncertain tracks
in its decision process in both close-quarter and long-range
scenarios.
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