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Abstract

This article considers real-time georeferencing using a fixed-wing unmanned aerial vehicle (UAV) with a thermal camera.
A flexible system for direct georeferencing is proposed without the need for ground reference points. Moreover, as the
system is tailored for highly maneuverable and agile fixed-wing UAVs, no restrictions on the motion are assumed. The
system is designed with a solution for accurate time synchronization between sensors. This feature enables tracking of
objects with low uncertainty. Sensors for navigation, permitting estimation of the UAV pose with a nonlinear observer,
are employed in addition to a thermal camera. The estimated UAV pose is utilized in georeferencing to acquire Earth-
fixed coordinates of objects. The main examples studied in this research are georeferencing of a static object and of
a moving marine vessel. To obtain the desired accuracy, thermal camera calibration and compensation of mounting
misalignment errors are discussed. The entire system is validated in two independent field experiments with a thorough
analysis of the results. Georeferencing of a static object is conducted with centimeter accuracy when the average position
of all measurements is used. The position of a moving marine vessel is obtained with mean accuracy of two meters.
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1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are used in various
remote sensing applications (Pajares, 2015; Colomina and
Molina, 2014; Toth and Jóźków, 2016), such as inspec-
tion (Deng et al., 2014; Nikolic et al., 2013), disaster man-
agement (Yahyanejad and Rinner, 2015) and tracking of
vessels and icebergs (Helgesen et al., 2017a,b; Sakamaki
et al., 2017; Leira et al., 2017), because of their flexibil-
ity. Fixed-wing UAVs have the additional benefit of being
able to carry numerous sensors, while covering larger areas.
Therefore, UAVs are ideal for mapping and monitoring of
marine areas, such as coastlines and the sea surface.

Optical sensors are suitable for mapping and surveil-
lance of unknown territories to obtain situational aware-
ness. Images can be used to detect undiscovered objects
or gather information about the proximity of the sensor.
A vital part of mapping and surveillance is the ability to
relate findings in the optical sensor frame to Earth-fixed
coordinates. This is called georeferencing and is a funda-
mental part of any mapping and surveillance system using
a monocular optical sensor (Leira et al., 2015b; Hemerly,
2014). This research concerns real-time georeferencing us-
ing a fixed-wing UAV with a thermal camera. Conceptu-
ally, there is no difference in georeferencing of thermal and
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visual spectrum imagery. Thus, the algorithms presented
in this work are relevant also for visual spectrum images.

Georeferencing is particularly useful when the optical
sensor is mounted on a moving platform because pixel
coordinates are less informative when the camera moves.
In addition, the motion of the camera (UAV) affects the
target pixel position more than the target motion itself
in many applications. Georeferencing using a monocular
camera is challenging since range information are missing.
Consequently, it is hard to accurately reconstruct three
unknown Earth-fixed coordinates from two pixel coordi-
nates. Moreover, it is desirable to conduct georeferencing
in real-time on a small embedded computer without need-
ing to process data on a ground station.

The foremost challenge in real-time georeferencing is to
obtain accurate coordinates from a single image without
using ground reference points. Georeferencing rely on the
camera pose (position and attitude) at the exact time
when the image is captured. Small deviations from the
true pose give large errors in the georeferenced position.
Hence, conducting real-time georeferencing of thermal im-
ages on-board a UAV with significant roll and pitch mo-
tions is more difficult than georeferencing from a station-
ary or slowly-moving platform. Accurate time synchro-
nization among the sensors is critical. In addition, thermal
images have lower resolution than visual spectrum images
and is consequently more fragile for pixel and sub-pixel
errors that occur in object detection.

The most accurate existing solutions for real-time geo-

Preprint submitted to ISPRS Journal of Photogrammetry and Remote Sensing May 21, 2019



referencing are based on utilizing reference points on the
ground at known locations (Zhou et al., 2005; Xiang and
Tian, 2011; Harwin and Lucieer, 2012; Hartmann et al.,
2012), but is not feasible in unknown territories. The so-
lution presented in (Choi and Lee, 2013) requires common
features in consecutive images, which is hard to obtain in
thermal imagery of marine areas.

A few systems for direct real-time georeferencing with-
out the use of reference points exist. However, these solu-
tions lack the desired accuracy, are not suitable for fixed-
wing UAVs or are not validated experimentally with a sig-
nificant amount of data. A georeferencing system for fixed-
wing UAVs with a thermal camera is presented in (Leira
et al., 2015b), but the variance in the results is large when
considering the altitude of the UAV, which is below 100
meters. Capable accuracy is shown in georeferencing of
the length and width of a runway (Hemerly, 2014) at an
altitude exceeding 300 meters, but the results are based
on a single image so the amount of data is limited. More-
over, reconstructing Earth-fixed coordinates is a different
task because calibration errors in the principal point do
not affect the size of an object. Challenges related to syn-
chronization between the sensors and mounting misalign-
ments are not addressed thoroughly in the aforementioned
works. Time synchronization and camera calibration are
addressed in (Rehak et al., 2013; Daakir et al., 2017), but
these solutions are tailored towards multi-copters so it is
arguably hard to verify how they apply to the fast dynam-
ics and operating envelope of fixed-wing UAVs.

This research presents a novel complete solution for
real-time georeferencing of thermal images captured with
a fixed-wing UAV, and the system is not depending on
ground reference points. The georeferencing system is fully
integrated on the UAV and can be executed in real-time.
The most common challenges and pitfalls are addressed,
and state of the art methodology is utilized. The research
focuses on a particular use case, namely georeferencing of
floating objects where it is utilized that the sea forms a
planar surface. Thermal cameras are ideal for detection
of marine vessels and floating objects on the sea surface,
but can be replaced by a visual spectrum camera if other
objects are of interest. Georeferencing is used to track ob-
jects in (Helgesen et al., 2017a), so this work is relevant
also for target tracking.

Since georeferencing requires precise knowledge about
the camera pose, a state of the art nonlinear observer is
designed and used to estimate the pose of the UAV. The
navigation states are estimated without a magnetic com-
pass, which is beneficial because magnetic sensors are sen-
sitive to electromagnetic disturbances on-board the UAV.
A significant part of this research concerns methods for
handling the most dominant error sources in georeferenc-
ing. This includes calibration of thermal cameras and how
to detect mounting misalignment errors. The final contri-
bution is a thorough experimental validation consisting of
more than 4000 images in two independent flight experi-
ments, and a comprehensive analysis of the results.

Outline of Article

Real-time georeferencing is described in Section 2 and
the navigation system used to estimate the UAV pose is
described in Section 3. Section 4 describes thermal camera
calibration as well as data synchronization and calibration
of mounting misalignment errors. Section 5 presents the
experimental validation of the system before the paper is
concluded in Section 6. The final part are two appendices
that describe the navigation system in detail and how er-
rors in the UAV pose affect georeferencing, respectively.

2. Real-time Georeferencing

Georeferencing is used as a term for finding the north-
east-down (NED) coordinates of a single pixel in the rest
of this work, and covered in e.g. (Leira et al., 2015b;
Hemerly, 2014). The method presented here is concep-
tually similar, but reviewed here for understanding chal-
lenges in real-time georeferencing that are addressed later.

Figure 1 illustrates the most important coordinate
frames. A pixel in the image plane is denoted (u, v) where
u is the horizontal coordinate and v is the vertical coordi-
nate. The camera-fixed coordinate frame moves with the
UAV and is denoted {c}. The x axis of {c} points in the
direction of u, the y axis in the direction of v and the z axis
straight out the camera lens. The body-fixed frame of the
UAV, denoted {b}, moves with the UAV and is defined in
(Beard and McLain, 2012). The x axis of {b} points out
the nose of the airframe, the y axis points sideways out the
right wing and the z axis points out the belly. The NED
frame is denoted {n} and is defined locally as a tangent
plane at the location of the experiment. The x axis points
north, the y axis east and the z axis down.

Pixel coordinates have two degrees of freedom and NED
coordinates have three. Hence, finding NED coordinates
of a single pixel is an ill-posed problem. A common way to
avoid this issue (in direct georeferencing) is to assume that
all pixels within an image are located in the same plane.
This is known as the flat-earth assumption and necessary
for obtaining NED coordinates of a single pixel unless an
elevation map exists. It is reasonable for an image showing
the sea surface, but not in an area with mountains.

The pixel coordinates (u, v) are related to {c} through
the pinhole camera model (Hutchinson et al., 1996):uv
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Figure 1: Illustration of coordinate frames.

where A is the camera intrinsic matrix. fx and fy are the
focal lengths (expressed in pixels) in the horizontal and
vertical direction, respectively. cx and cy are the principle
points (center of lens) and should theoretically be in the
image center. Note that the origin of the pixel coordinates
(u, v) is assumed to be in the top-left corner of the image
in (2). Decomposing pc in {n} is achieved by utilizing
a transformation Gc

n between {c} and {n} (Leira et al.,
2015b)

zc
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npn (3)

where pn is the homogeneous coordinate vector of the pixel
decomposed in {n}. Gc

n is the homogeneous transforma-
tion

Gc
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where Rc
n is the rotation matrix that transforms a vector

in {n} to {c}. The same notation is used for all rotation
matrices in this paper (Ra

b transforms a vector decomposed
in a frame {b} to a frame {a}). The column vectors in Rc

n

are denoted r1, r2 and r3, and rnnc is the position of the
origin of {c} relative to {n} decomposed in {n}.

Without loss of generality, Rc
n is split into three consec-

utive rotations and expressed as
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where Rn
b is the rotation matrix between {n} and {b},

defined according to the zyx convention and specified in
terms of the Euler angles (roll (φ), pitch (θ), yaw (ψ))
(Fossen, 2011):

Rn
b =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ
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where cψ = cos(ψ) and sψ = sin(ψ). The reference frame
{m} is referred to as the gimbal frame, and is used if the
camera is mounted in a gimbal and not strapped on the
airframe. Rm

b relates the body frame to the gimbal frame
and is parametrized by the gimbal angles. If the camera is
strapped directly to the airframe, Rm

b is simply chosen as
the identity matrix. The second rotation, Rc

m, relates the
camera-fixed frame to the gimbal frame and used to align
the image plane with the gimbal frame in a specific way.

Rm
b depends on the gimbal. In this research, it is as-

sumed that the gimbal has two degrees of freedom, namely
pan and tilt angles. It is further assumed that the gimbal
is mounted so that {b} is aligned with {m} when the gim-
bal has zero pan (ψgb) and tilt (θgb). In {b}, pan and tilt
movements correspond to a rotation along the body z and
y axes, respectively. Hence, the rotation is defined as

Rm
b = (Rz(ψgb)Ry(θgb))

> = R>y (θgb)R
>
z (ψgb)

=

cosψgb cos θgb sinψgb cos θgb − sin θgb
− sinψgb cosψgb 0

cosψgb sin θgb sinψgb sin θgb cos θgb

 (6)

where Rz(·) and Ry(·) are principle rotations about the
z and y axes, respectively (Fossen, 2011). The pinhole
camera model (1) is defined so that the x axis of {c} is
aligned with the horizontal direction in the image plane
(u) and not the body-fixed x axis. Therefore, Rc

m is a
rotation of -90 degrees about the camera z axis:

Rc
m = Rz(−90o) =

 0 1 0
−1 0 0
0 0 1

 (7)

In general, Rc
m depends on how the camera and gimbal

are mounted with respect to the body of the UAV, and
how the pinhole camera model is defined.

Only two coordinates in NED can be recovered by a sin-
gle pixel (u, v) as explained in the beginning of this section.
However, since objects at the sea surface are of interest,
the down position of pixels is close to zero as long as the
origin of {n} is placed at the mean sea level. Consequently,
one can identify the north-east (NE) coordinates using a
single pixel and set the down position to zero. The NE
coordinates (pnt ) of the pixel (u, v) are given by (3) aspnt,Npnt,E

1

 = zcG−1NEA−1

uv
1

 (8)

where GNE is defined as

GNE :=
[
r1, r2, −Rc

nrnnc
]

(9)

The depth zc is left out of the calculation by normaliz-
ing the coordinates on the left side so that the down-
component gets a value of 1. This concludes the direct
georeferencing algorithm, which is summarized by the fol-
lowing steps that are applied whenever a new image is
received:
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1. Detect object(s) and find the pixel position (u, v), e.g.
through image processing.

2. Get UAV pose and gimbal angles from the navigation
system.

3. Calculate Rc
n with equation (4)-(7) and find GNE

with (9).

4. Use (8) to calculate NE coordinates.

The georeferencing equations can be executed in real-time
on a small embedded computer, but the overall compu-
tation time is obviously limited by the complexity of the
object detection algorithm in step 1.

3. Navigation System

Real-time georeferencing rely on accurate information
about the UAV pose as outlined in Section 2. Therefore,
it is necessary to design a real-time navigation system that
accurately estimates the navigation states. The attitude
dynamics are in general nonlinear and all degrees of free-
dom need to be considered. Navigation filters can be prob-
abilistic, such as the extended Kalman filter (EKF) or the
Multiplicative EKF (MEKF) (Sola, 2017), or determinis-
tic such as nonlinear observers (Hosen et al., 2016; Fusini
et al., 2018; Mahony et al., 2008; Euston et al., 2008; Grip
et al., 2013). The main advantages with nonlinear ob-
servers are reduced computational complexity, easy imple-
mentation, and the possibility of proving global stability
for the error dynamics through Lyapunov analysis since
linearization is avoided in contrast to EKF-based tech-
niques. The main advantage with EKF-based designs is
that the state uncertainties are available directly through
the covariance matrix.

In this research, a state of the art nonlinear observer
is used because of the aforementioned properties of non-
linear observers. The observer design is described in Ap-
pendix A. The structure of the observer is originally pre-
sented in (Grip et al., 2013). The translational motion
observer is based on measurements from an accelerometer
and RTK-GNSS receivers. The attitude observer utilizes
angular rate measurements and reference vectors that are
extracted from an accelerometer, and pitch and yaw mea-
surements from two RTK-GNSS receivers with separate
antennas (Sollie et al., 2019).

The nonlinear observer represents position in the Earth-
Centered-Earth-Fixed (ECEF) coordinate frame since
GPS measurements are given in ECEF. The georeferenc-
ing equations are represented in {n} so a transformation
between ECEF and {n} is needed. ECEF coordinates are
transformed into longitude (l), latitude(µ) and height (h)
(Vermeille, 2004) by using the WGS-84 reference ellipsoid.
Local NED coordinates are acquired from l, µ and h (Fos-
sen, 2011; Farrell, 2008). The origin of {n} is placed at
a user-defined (l0, µ0, h0). Note that a local flat earth as-
sumption is present when using NED coordinates and is
only valid in proximity of (l0, µ0, h0) because a tangent
plane is used when defining {n}.

4. Sensor Calibration and Synchronization

The core of the georeferencing system is the thermal
camera used to detect objects. A thermal camera is pre-
ferred because of the distinct thermal signature of marine
vessels and other floating objects compared to the sea sur-
face. More specifically, the sea surface emits less infrared
radiation than a typical floating object. Consequently, it
is (in most cases) easier to detect floating objects in ther-
mal images than in visual spectrum images. Algorithms
for detection of floating objects is not within the scope of
this work, but described in several articles (Helgesen et al.,
2017b; Deng et al., 2018; Rodin and Johansen, 2018).

4.1. Calibration of a Thermal Camera

Georeferencing depends on the camera intrinsic matrix,
which can be extracted from the camera and lens spec-
ification. However, in practice, the true camera model
often deviates from the theoretical model and calibration
is necessary. Calibration of visual spectrum cameras is ad-
dressed extensively in the literature and most methods are
based on (Zhang, 2000).

Calibration is of similar importance for thermal cam-
eras. However, because the image sensor is sensitive to
a different spectrum than the visual, the standard chess-
board calibration surface is not clearly visible in thermal
images. Therefore, another calibration surface is needed.
Thermal camera calibration is addressed before (Leira
et al., 2015b; Yahyanejad et al., 2011; Hartmann et al.,
2012), but a common calibration surface has not been ac-
cepted for thermal cameras. This research uses a new sur-
face to conduct the calibration.

Most calibration patterns for thermal cameras use some
sort of heat source to generate a visible structure. The
pattern proposed here is based on heating a circle grid,
which is detected during calibration. The circle grid is a
3D-printed square plastic plate. The plate is mounted on
a wooden surface, which is covered with a conductive (re-
sistive) coating that is heated when electric current flows
through. By connecting a power source to the coating,
the wooden surface is warmed up quickly. When the circle
grid is attached to the wood, the heat escapes through the
circles and they seem warmer than the rest of the plastic
plate. The main advantage with this surface is that the
circle pattern is visible rapidly. The heating time is just
about a minute and the power source keeps the wood at
a high temperature throughout the duration of the cali-
bration. In addition, the temperature difference between
the circles and the rest of the plastic plate is large be-
cause the plate conducts (or transfers) heat poorly, giving
a high signal to noise ratio. Therefore, the calibration sur-
face proposed here is advantageous compared to surfaces
that are heated by lamps or cooled down passively because
the temperature difference remains large for a longer pe-
riod. An example of an image captured during calibration
is displayed in Figure 2.

4



Figure 2: A thermal image used for camera calibration.

4.2. Synchronization of data

The UAV pose must be known accurately when an im-
age is captured. Therefore, robust time stamping of the
capture time and a navigation system with sufficiently high
update rate are needed. Furthermore, accurate synchro-
nization between the time frames of the camera and the
navigation system is required. Errors in the magnitude
of fractions of a second are troublesome, and especially
vital during fast maneuvers where the attitude is chang-
ing quickly. The solution developed in this work uses
SyncBoard (Albrektsen and Johansen, 2017) (renamed to
SenTiBoard more recently). The precision of the time
stamping using SyncBoard is tested to be 1 µs for navi-
gation sensors, such as IMUs and GNSS receivers.

SyncBoard has two main tasks in this work. It is used
to synchronize the sensors in the navigation system inter-
nally, namely an IMU and two RTK-GPS receivers. In ad-
dition, it is used to synchronize the camera frame captures
with the navigation system. An alternative is to use the
on-board computer time for when an image is stored, but
this solution is not accurate since there may be a signifi-
cant bias between the on-board computer time and GPS
time. Moreover, the on-board computer clock may drift
during the duration of the experiment, and can be busy
with other tasks when images are received.

The thermal camera used in this research is a FLIR
Tau2. The internal frame rate of the camera is 30 Hz, but
the output rate of images is reduced to 7.5 Hz because of
export regulations. External triggering of image capture
is not possible. Therefore, to obtain the desired accuracy,
SyncBoard synchronizes the internal camera clock with
GPS every second and thereby the camera and the nav-
igation system. A potential drift in the camera clock is
removed with this approach. Note that this solution ne-
glects the delay between exposure of the pixels and when
the image is ready on the camera output bus, but this
must be accepted when external triggering is infeasible.
Nevertheless, the delay is only minor because the internal
time between consecutive images is 33.3 ms so any poten-
tial camera latency is significantly smaller than that.

4.3. Calibration of misalignment errors

Camera calibration and time synchronization are key in
georeferencing. Another error source is mounting misalign-
ment errors, which can be even more critical. Remember
from Section 2 that it is assumed that the gimbal frame
{m} coincides with {b} when the gimbal has zero pan and
tilt angles. In practice, it is hard to align these frames
perfectly, which results in significant georeferencing errors
as shown in Appendix B. This section derives a method
for estimating the mounting misalignment. More specifi-
cally, the goal is to identify the rotation matrix between
the body-fixed frame and the camera when the pan and
tilt angles are zero. The procedure utilizes the georefer-
encing algorithm from Section 2 and is conducted after the
gimbal and camera are mounted in the airframe.

The main requirement is to use a motion-capture system
that provides information about the attitude and position
of an object, relative to a fixed frame with high precision.
For example OptiTrack (OptiTrack Motion Capture Sys-
tems, 2018) is a motion-capture system based on several
cameras, and is able to give the attitude and position for
a set of markers that form a rigid-body. Four markers are
needed to define the body-fixed frame of the UAV (one on
each wing, one in the front and one in the back). More-
over, a set of four markers is also mounted on a second
object (the thermal camera calibration surface).

The intention behind the procedure is to use the thermal
camera to capture images of the second object. When the
position and attitude of the camera are known (given by
motion-capture system), it is possible to calculate where
the object theoretically should be located by the georefer-
encing equations. This is compared with where the object
is located according to the motion-capture system. More-
over, by using several images, an optimization problem is
solved so that the rotation matrix between {b} and {c} is
calculated based on where the object is and should be lo-
cated. Note that the body frame the gimbal is aligned with
through this method is given directly by the markers. The
precision of the calibration is, therefore, limited by how
accurate the markers are aligned with the true geometric
body of the UAV.

The gimbal has two degrees of freedom (pan and tilt).
In addition, it is beneficial to add a roll rotation because
there can be mounting misalignment errors in all degrees
of freedom. The theoretical NED positions for the second
object (based on the pixel coordinates that are selected
manually from the images) are calculated as

1

zc
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uv
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 (10)

The theoretical values [pnt,N , p
n
t,E ]> are compared with the

values measured by the motion-capture system, and is for-
mulated as an optimization problem with several known
points in multiple images where the position and attitude
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of the camera and/or the objects vary. The optimization
problem is stated as

J = minimize
ψgb,θgb,φgb

nimages∑
i=1

npoints∑
k=1

f(i, k) (11)

where ψgb, θgb and φgb are misalignments in pan, tilt and
roll, respectively. The objective function is defined as

f(i, k) = ||pnt (i, k)− pnm(i, k)|| (12)

and the subscript m and t are the measured (based on the
motion-capture system) and theoretical (based on the posi-
tion in the image) coordinates, respectively. Moreover, the
subscripts i and k correspond to point k in image i. Three
points in every image are needed because the optimiza-
tion problem is formulated with respect to three unknown
parameters. Optimization is conducted for several images
to reduce the uncertainty a single image provides and as-
sumed to mitigate the influence of noise. The problem is
solved with the nonlinear least squares algorithm. Since
misalignment errors are generally small, initialization is
straightforward.

5. Experimental Validation and Results

This section presents the experimental results of this re-
search and is divided in five parts. The first part describes
the sensor suite used to collect data. The results of the op-
tical camera calibration are presented in the second part,
and the third part describes calibration of misalignment
errors. The fourth and fifth parts present georeferencing
results from two independent flight experiments.

5.1. Sensor Suite

Figure 3 shows the fixed-wing UAV used in the exper-
iments. A payload tailored for small fixed-wing UAVs
driven by an electrical engine was developed. All of
the sensors in the navigation system, except the GPS
antennas, were placed in one small stack together with
SyncBoard and the on-board computer. The camera was
mounted in a retractable pan/tilt gimbal. The following
sensors and systems were a part of the payload:

• FLIR Tau2 thermal camera with resolution of 640 ×
512 pixels. The focal length is 19 mm, giving a field
of view of 32o × 26o.

• A ThermalGrabber (ThermalCapture Grabber USB
640 - TEAX Technology, 2018) for extracting the dig-
ital image.

• Analog Devices ADIS 16490 IMU measuring linear
acceleration and angular rate at a frequency of 250 Hz.

• 2x RTK-GPS based on uBlox NEO-M8T receivers
measuring position velocity, pitch and heading at a
rate of 5 Hz.

Figure 3: The NTNU Cruiser-Mini fixed-wing UAV with the thermal
camera visible near the front.

• SyncBoard (Albrektsen and Johansen, 2017).

• Odroid-XU4 on-board computer.

The measurements of the pitch and heading were acquired
by measuring the baseline between the antennas of the two
receivers on the UAV and the base station, and compar-
ing this vector to the baseline in the body frame. The
on-board computer stored images from the camera, and
measurements from the GPS receivers and IMU with time
stamping from SyncBoard. Figure 4 shows the structure
of the system, and a thermal image captured during the
flight experiments is shown in Figure 5.

SyncBoard On-board 
Computer

IMU

Thermal 
camera

GPS 
receivers

Georeferencing

Figure 4: Structure of Georeferencing system.

5.2. Camera Calibration Results

Camera calibration was conducted with a set of 30 im-
ages and the following intrinsic matrix was obtained:

ATau2 =

1159.2 0 313
0 1167.8 265
0 0 1


The values are close to the theoretical matrix for the cam-
era, which is (based on the camera and lens specification)

ATheoretical =

1117.7 0 320
0 1117.7 256
0 0 1


The principal point of the camera was estimated to be 7
and 9 pixels from the theoretical center in the horizontal
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Figure 5: A thermal image captured during the experiments. The
dark area is the sea surface.

and vertical direction, respectively. Moreover, the focal
lengths are close to the theoretical values. Distortion co-
efficients were also estimated, but are not included here
because they affected the results only marginally.

5.3. Calibration of Misalignment Errors

The mounting misalignment of the gimbal was calcu-
lated to be (based on the method in Section 4.3)

φgb = −1.7o, θgb = 3.9o, ψgb = 1.9o

Challenges related to sensor synchronization were avoided
in the calibration process since the camera was stationary
during image capture.

The calibration process was verified by projecting the
calibration points from the image plane back into NED
and comparing that with the true position. The mean re-
projection error was 0.0229 m and the calibration was con-
ducted at a range of approximately 1.2 m. The remaining
error is a combination of errors in the marked pixel posi-
tion, the camera intrinsic matrix and the camera pose (the
motion-capture system is not perfect).

If it is assumed that the remaining reprojection error
is caused by errors in the orientation of the camera, the
error grows to 6.6 m when the range is increased to 350 m,
which is the operating altitude in the first experiment.
The expected error is 3.8 m when the altitude is 200 m as
in the second experiment. This is only a rough indication
for the error one can expect in the experimental data as
the error is caused by other sources as well, which are
not proportional to the altitude. Moreover, the range is
greater than the altitude in turns.

Although the gimbal misalignment has been identified,
a misalignment between the body frame as defined by the
IMU, and the body frame defined by the geometry of the
UAV (which is the body frame used in the gimbal calibra-
tion) can be present. IMU misalignment was detected by

comparing the Euler angles computed by the navigation
system with zero when the UAV was leveled by a leveler.
IMU calibration was also conducted, giving an offset in
roll, pitch and yaw of 1.1o, −5.7o and 0.25o, respectively.
These angles are obviously equally important for the ac-
curacy of georeferencing. Note that gyro bias is estimated
in the navigation system, but not a potential accelerome-
ter bias. However, as the IMU calibration was conducted
when the accelerometer was warm, accelerometer bias vari-
ations is likely not affecting the results significantly. More-
over, the run bias stability of the accelerometer is small
according to the manufacturer.

5.4. Flight Experiment 1 - Georeferencing of base station
GPS Antenna

The first flight experiment was carried out near Agdenes,
in the outer Trondheim fjord in Norway. The goal was
to collect data for georeferencing of a stationary base sta-
tion GPS-antenna located two meters above sea level. The
GPS receiver connected to the antenna had RTK capabil-
ity, which means that the true position of the antenna was
known with centimeter accuracy. The antenna was chosen
as target to have a static object with known ground truth
position. Nearly 8000 images were captured, and the flight
experiment lasted for approximately 25 min. The GPS an-
tenna was in the field of view and marked manually in 552
images. An uncertainty of a few pixels was potentially
added during this process, but the mean error should be
close to zero. The data have been processed after the flight,
but georeferencing has also been conducted in real-time on
the on-board computer more recently.

The marked pixel positions were used together with the
UAV pose from the nonlinear observer to acquire NED
positions of the antenna. The UAV was equipped with
a Pixhawk autopilot running Arduplane software and us-
ing its own set of sensors (Pixhawk 4 - By Dronecode,
2018), and navigation data from the autopilot were also
used in georeferencing for comparison. Note that the au-
topilot was calibrated for misalignment errors in the same
way as the nonlinear observer so the difference experienced
later is mainly caused by the difference in sampling rate
(250 Hz for the observer and 10 Hz for the autopilot) and
the quality of the sensors. Moreover, the autopilot was
synchronized with the camera through SyncBoard. The
timing error for the images without using SyncBoard (off-
set between GPS-time and the on-board computer clock)
was 0.44 s during this experiment.

The path of the UAV is displayed in Figure 6, and the
local NED frame is placed so that the target position is
in the origin. The antenna was only in the field of view
in a fixed part of the loiter motion near the origin so it
was observed from approximately the same attitude and
altitude for each set of measurements. The UAV oper-
ated at an altitude of 350 m above sea level. Operating at
greater altitudes increases the ground coverage of a single
pixel and reduces the precision of georeferencing. A single
pixel covers a square with sides equal to approximately
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(8.95× 10−4 × altitude) m for the lens used in the exper-
iments. Moreover, because the georeferencing error, as a
consequence of errors in the camera orientation, is propor-
tional to the altitude of the UAV, larger errors must be
expected when increasing the altitude in general.
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Figure 6: The UAV path estimated by the observer.

Figure 7 shows the UAV attitude estimated by the non-
linear observer compared with the estimates from the au-
topilot. Only the time span where detections occurred is
shown. There are only minor differences between the au-
topilot and the observer, which indicate that both provide
accurate estimates. Figure 8 shows the NED velocities,
which are also similar. A true reference is not available for
the velocity and attitude. Nevertheless, since the observer
and autopilot used different GPS-receivers and IMUs, the
estimates from both the autopilot and the observer are
more credible when they are comparable.

Figure 9 shows the georeferenced positions of the an-
tenna using the observer, while Figure 10 shows the georef-
erenced positions using the autopilot. The measurements
are centered around the true position, and distributed in a
way which is reminiscent of a Gaussian distribution with-
out a bias. This is useful in target tracking where several
measurements are used to estimate the target states.

Table 1 summarizes the main results using the observer
and autopilot navigation data. The performance is compa-
rable, but the standard deviation of the measurements is
4.10 m and 6.47 m for the observer, and 4.83 m and 7.84 m
for the autopilot. The mean georeferenced position for all
images using the observer is −0.18 m and −0.12 m in north
and east, respectively. Since the true position is in the ori-
gin, the exact location (with centimeter accuracy) of the
GPS antenna is known when all measurements are used.
The mean north and east positions using the autopilot are
0.29 m and 0.09 m, respectively. The small difference in
mean position indicates that both the observer and autopi-
lot are competitive. Moreover, it shows that the quality
of the sensors is less important than proper misalignment
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Figure 7: The UAV attitude estimated by the nonlinear observer
(blue) and autopilot (red).
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Figure 8: The NED velocities estimated by the nonlinear observer
(blue) and the autopilot (red).

calibration and time synchronization.

The mean error for the georeferenced position using a
single image is 6.40 m with the observer (7.70 m for the
autopilot) at an operating altitude of 350 m. This is a
significant result as the accuracy is comparable to previous
work achieved at lower altitudes (Leira et al., 2015b). In
fact, the error is also slightly lower than what was expected
from the remaining reprojection error after the calibration
process (6.6 m). Nevertheless, the assumption behind this
value was that the error was solely caused by inaccuracies
in the camera orientation, which is a simplification. A
part of the error is related to factors such as errors in
the UAV pose and in the detection process. Moreover,
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Table 1: Main results of experiment 1. SD = standard deviation

Observer Pixhawk
Autopilot

Reference

Mean north
position

−0.18 m 0.29 m 0 m

Mean east po-
sition

−0.12 m 0.09 m 0 m

SD north posi-
tion

4.10 m 4.83 m -

SD east posi-
tion

6.47 m 7.84 m -

Mean ab-
solute error
(single image)

6.40 m 7.70 m -
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Figure 9: The georeferenced antenna position together with the true
position with UAV pose from the nonlinear observer.

the calibration process identified the misalignment error
for the gimbal, but the attitude of the UAV was assumed
known through the motion-capture system. However, in a
field experiment, the UAV pose is also uncertain and that
can both increase and decrease the error.

Figure 11 and 12 show the corresponding georeferencing
results without time synchronization of the camera (the
image timestamps are assigned directly by the on-board
computer) and without IMU misalignment calibration, re-
spectively. Moreover, these results are summarized in Ta-
ble 2. The mean error in a single image is 11.10 m with-
out time synchronization compared to 6.40 m with time
synchronization. The results without IMU misalignment
calibration are dreadful in comparison. The mean error in
a single image is 40.89 m which is explained by the mean
position being −38.16 m and 9.28 m from the true position
in north and east, respectively. Moreover, the distribution
does not resemble a normally distributed variable. The ba-
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Figure 10: The georeferenced antenna position together with the true
position with UAV pose from the Pixhawk/ArduPlane autopilot.

nana shape of the georeferenced points indicates that an
error in the attitude is present since this is the expected
shape during a turn if there is a bias in roll or pitch. This is
clearly a significant reduction in performance even though
the misalignment of the IMU was only 1.1◦ in roll, −5.7◦ in
pitch and 0.25◦ in yaw. These results support the need for
a proper and reliable misalignment calibration and time
synchronization.

-40 -30 -20 -10 0 10 20 30 40

East [m]

-40

-30

-20

-10

0

10

20

30

N
o
rt

h
 [
m

]

Georeferenced Positions - NLO without time synchronization

Detected Position

Measured Position (GPS)

Figure 11: The georeferenced antenna position using the nonlinear
observer without time synchronization.

Figure 13 shows the measurement and estimation error
when the georeferenced measurements (using the observer)
are filtered in a Kalman filter with a motion model cor-
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Figure 12: The georeferenced antenna position using the nonlinear
observer without IMU misalignment calibration.

responding to an object at rest (zero velocity). The esti-
mation error is less than a meter after the first batch of
measurements. Moreover, the estimation error in the end
is less than 0.5 m. In practice, this confirms that it is pos-
sible to track slowly moving objects accurately with geo-
referencing. The largest measurement error occurs in the
end where a single measurement has an error just surpass-
ing 30 m. The overall best measurement has an absolute
error below 0.3 m.
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Figure 13: Measurement and estimation error when a Kalman filter
is used to filter the georeferenced measurements of the antenna.

Figure 14 shows the estimated autocorrelation for the
innovation process in the north and east positions. The
innovation process is defined as the difference between the

Table 2: Main results of experiment 1 with and without time syn-
chronization and IMU misalignment calibration. SD = standard de-
viation

Observer Observer
with-
out time
sync.

Observer
without
misalign-
ment cali-
bration

Mean north
position

−0.18 m −6.67 m −38.16 m

Mean east
position

−0.12 m 2.04 m 9.28 m

SD north
position

4.10 m 5.64 m 5.40 m

SD east po-
sition

6.47 m 8.96 m 10.63 m

Mean abso-
lute error
(single
image)

6.40 m 11.10 m 40.89 m

received measurement and the predicted measurement in
the Kalman filter. The autocorrelation shows that the
innovation process is correlated in both north and east,
which means that the innovation in the previous measure-
ment is correlated with the innovation in the current mea-
surement. From a practical point of view, this is expected
because consecutive images are captured from almost the
same pose. Therefore, a systematic error in the camera
orientation in one image is most likely present at the time
when the next image is captured, and thus the georefer-
encing error is correlated for consecutive images.

In field experiments, it is not realistic to expect that the
innovations are white. Moreover, since navigation errors
are the most significant challenge, the errors in georefer-
encing depend on the output of a navigation filter. The
estimation error in the navigation filter is often correlated
for two consecutive estimates and propagates colored noise
into the georeferencing algorithm. Nevertheless, the re-
sults show that it is beneficial to observe the target for a
longer period so that errors in the navigation states are
averaged as the target is observed from new poses and
over a longer time period. Furthermore, the innovations
illustrate that a Markov (or other colored noise model)
augmentation could be beneficial when georeferenced mea-
surements captured from a moving platform are used in a
tracking system. Additionally, the spread of the points in
Figure 9 indicates that the measurements can be approxi-
mated as a normally distributed variable for a large batch
of measurements, even though consecutive innovations are
correlated. It should also be emphasized that from an ap-
plication point of view, the resulting georeferencing error
in terms of root-mean-square error is often more important
than fulfilling the theoretical requirements for optimality.
This is especially relevant when tracking few targets as
consistency is more important in multiple target tracking
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or with a sensor where clutter is expected.
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Figure 14: Autocorrelation for the innovations in the north and east
georeferenced positions.

There is a difference in the autocorrelation for the north
and east innovation processes. The acceleration is larger
in east than north during antenna detections. Moreover,
the antenna is observed from the same part of the loi-
ter motion for every set of measurements, which gives the
same variations in velocity and attitude. The attitude is
not varying significantly during a coordinated-turn so the
acceleration in east is the parameter that varies the most.
This most likely explains why the correlation is smaller in
the east innovation process since larger variations usually
lead to better observability conditions in the correspond-
ing degree of freedom. If the antenna was observed during
other maneuvers or from another location on the loiter
motion, a different behavior is expected.

5.5. Flight Experiment 2 - Georeferencing of small marine
vessel

A second independent experiment was carried out to
study the accuracy of the georeferencing system in a rel-
evant remote sensing application. The motivation behind
this experiment was to measure the position of the marine
vessel displayed in Figure 15. The motion of the vessel was
mostly caused by drift in the sea water. However, a few
short maneuvers were conducted during the experiment.
The position of the vessel was measured with a single-
frequency GPS receiver with a rate of 0.5 Hz for reference
(ground truth). Consequently, the reference is more un-
certain than for the base station because it does not have
RTK capability or a high update rate. Nevertheless, the
GPS position is used as a measure for the true position,
but the error in the reference is potentially a few meters.

The position of the vessel in the image was detected
automatically with the method presented in (Leira et al.,

Figure 15: The small marine vessel used in the second experiment.

2015a; Helgesen et al., 2017b), which returns the center of
the detected object. Several detections have been investi-
gated manually to ensure that issues like false and inaccu-
rate detections are limited. Nevertheless, the exact pixel
position is not detected perfectly in every image, but the
detection error is normally minor and most often at a level
corresponding to a single pixel. The experiment lasted for
almost 50 min and more than 22000 images were captured.
The vessel was detected in 3635 images and georeferenc-
ing was conducted for each detection. The exact same
system parameters (with respect to IMU and gimbal mis-
alignments) as in the first experiment were used in this ex-
periment. Thus, the second experiment was independent,
but used the same calibration and can, therefore, verify
the results from the previous experiment. In addition, the
amount of data is larger and increases the credibility of
the system. The timing error for the images without us-
ing SyncBoard was 0.29 s in this experiment compared to
0.44 s in the previous experiment.

Figure 16 shows the path of the UAV. The UAV op-
erated at an altitude of approximately 200 m during the
periods where the vessel was recorded. The vessel was in
the field of view of the camera in many different periods
and the variation in UAV poses during detection is much
greater in this experiment.

Figure 17 shows the distribution of georeferenced po-
sitions for a subset of 1250 images using the nonlinear
observer. Figure 18 shows the distribution using the au-
topilot. A subset of 1250 images is shown in Figures 17
and 18 to enlarge the level of details. Figure 19 shows
the distribution of georeferenced points in the entire flight
using the nonlinear observer and verifies that the system
works well on all images. The segment of 1250 images can
be recognized in the upper left corner of Figure 19. The
distributions in Figure 17 and 18 fit well with the GPS
reference. The distribution from the nonlinear observer
is perhaps following the trajectory of the reference better
than the distribution from the autopilot for the subset of
1250 images, but the difference is minor.
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Figure 16: The UAV path estimated by the nonlinear observer in the
second experiment.

Table 3: Main results of experiment 2. SD = standard deviation

Observer Pixhawk
Autopilot

Mean north error 1.98 m 0.37 m
Mean east error −0.76 m 3.38 m
SD north error 7.77 m 7.83 m
SD east error 7.96 m 7.50 m
Mean absolute error
(single image)

10.25 m 9.37 m

Table 3 summarizes the accuracy of the georeferenced
positions for both the nonlinear observer and the autopi-
lot for the entire flight. Table 4 shows the same metrics
using the subset of 1250 images. The mean error for the
entire flight using the observer is 1.98 m and −0.76 m in
north and east, respectively. The standard deviation of
the error is comparable for the observer and autopilot.
The mean error of a single image is 10.25 m and 9.31 m for
the observer and autopilot, respectively. Thus, the perfor-
mance is comparable and in line with what was observed
in the first experiment. The observer has the best perfor-
mance for the reduced set of images, but the difference is
still minor.

Table 4: Main results of experiment 2 for the subset of 1250 images
used in Figures 17 and 18. SD = standard deviation

Observer Pixhawk
Autopilot

Mean north error −0.68 m −3.53 m
Mean east error −0.37 m 2.89 m
SD north error 4.88 m 6.37 m
SD east error 6.09 m 4.99 m
Mean absolute error
(single image)

7.29 m 7.40 m
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Figure 17: The distribution of georeferenced positions using the non-
linear observer for a subset of 1250 images.
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Figure 18: The distribution of georeferenced positions using the au-
topilot for the subset of 1250 images.

The mean absolute error in a single image is larger than
in the first experiment (10.25 m compared to 6.40 m), even
though the altitude of the UAV was lower. This is ex-
plained by the reference, which is more uncertain. In ad-
dition, the vessel obviously moves more than the station-
ary GPS base station antenna and the GPS receiver used
as reference was not located exactly in the center of the
vessel as assumed in the object detection algorithm. Since
the images are captured from a larger set of different UAV
poses and maneuvers than in the first experiment, the ac-
curacy in this experiment is reasonable. The mean position
has an overall accuracy just surpassing 2 m, which means
that the target position is located in a trustworthy manner
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Figure 19: The distribution of georeferenced positions using the non-
linear observer for all images.

and that the true position can be estimated from a small
set of images.

Figure 20 shows the measurement and estimation er-
ror when a Kalman filter with a constant velocity motion
model is used to track the vessel for the subset of 1250
images. Figure 21 shows the tracking results for the entire
flight. The initial error is larger for the entire flight since
the vessel had a larger velocity in the beginning and thus
the Kalman filter is struggling initially (the filter is initial-
ized with zero speed). It is possible to tune the Kalman
filter in a better way to reduce the initial error, but is not
necessary since the intention of these figures is to show
the achievable estimation error and the magnitude of the
error in the measurements. The largest measurement er-
ror for the entire flight is almost 40 m, but the majority
of the measurements have an error below 20 m. The mea-
surement error grows somewhat at the end as displayed
in Figure 21, but the estimation error is still small and
within a few meters. The better part of the measurements
are between five and ten meters from the reference.

6. CONCLUSIONS

A system for real-time georeferencing of detected ob-
jects using a thermal camera in fixed-wing UAVs has been
proposed and validated experimentally in this work. A
camera calibration surface for thermal cameras has been
described and calibration of misalignment errors has also
been covered. To ensure operational flexibility, direct geo-
referencing was used without the need for ground refer-
ence points. The need for a time-synchronized and accu-
rate navigation system is demanding for fixed-wing UAVs.
This work has confirmed that it is necessary to calibrate
for misalignment errors and handle synchronization among
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Figure 20: The georeferencing error and the estimation error when
a Kalman filter is used to track the target. This shows the tracking
results for the subset of 1250 images.
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Figure 21: The georeferencing error and the estimation error when
a Kalman filter is used to track the target. This shows the tracking
results for the entire flight.

the sensors in an accurate manner. The results also indi-
cate that these considerations are more important than the
quality of the sensors in the navigation system. Moreover,
thermal cameras have limited spatial resolution compared
to visual spectrum imagery. Therefore, georeferencing us-
ing thermal images is more sensitive to noise during object
detection because a single pixel covers a larger geographi-
cal area.

The effect of IMU misalignment calibration and time
synchronization depends on the path. On straight-line
segments, the attitude is constant and time synchroniza-
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tion is less vital. This is because synchronization errors
in level flight only lead to an error in the UAV position.
The attitude on the other hand is correct and Appendix B
shows that attitude errors are more severe. However, dur-
ing turns or when the attitude is changing quickly, proper
synchronization is key as synchronization errors give inac-
curacies in the attitude. Misalignment errors are devastat-
ing during all maneuvers, but is especially troublesome at
high altitudes. Therefore, proper mounting of the sensors
is perhaps the most important consideration.

Appendix A. Observer Design

This appendix describes the nonlinear observer used as
navigation system (Section 3) in detail. The observer de-
sign is based on a kinematic model that is assumed to
represent the true relationship between the states.

Appendix A.1. Strapdown Equations

The states of interest in the navigation system are
the position (p), linear velocity (v) and attitude of the
body frame, denoted {b}, relative the Earth-fixed-Earth-
Centered (ECEF) coordinate frame, denoted {e}. The two
former are decomposed in {e}. A review of methods for
attitude estimation is presented in (Crassidis et al., 2007).
In this research, attitude is parametrized as a unit quater-
nion (qeb) and a rotation matrix between ECEF and the
body-fixed frame of the UAV, denoted Re

b.
The kinematics (strapdown equations) are used to de-

sign the observer equations, and described mathematically
as

ṗeeb = veeb (A.1)

v̇eeb = −2S(ωeie)v
e
eb +Re

bf
b
ib + geb (A.2)

q̇eb =
1

2
qeb ⊗

(
0
ωbib

)
− 1

2

(
0
ωeie

)
⊗ qeb (A.3)

with

ωeie =

0
0
1

ωie, (A.4)

where ωie is the Earth’s rotation rate. The nonlinear ob-
server is structurally the same as in (Grip et al., 2013).

Appendix A.2. Attitude Observer

The nonlinear observer for estimating the attitude be-
tween {b} and {e} is given similar to (Grip et al., 2013),

Σ1 :


˙̂qeb =

1

2
q̂eb ⊗

(
0

ω̂bib

)
− 1

2

(
0
ωeie

)
⊗ q̂eb, (A.5a)

ω̂bib = ωbIMU − b̂bars + σ̂bib, (A.5b)

˙̂
bbars = Proj

(
b̂
b

ars,−kI σ̂
b
ib

)
, (A.5c)

where b̂
b

ars is the estimate of the angular rate sensor (ARS)
bias. Proj(?, ?) denotes the ARS bias projection algorithm

ensuring that ‖b̂
b

ars‖2 ≤ Mb̂ars
for Mb̂ars

> Mbars (Grip
et al., 2012), and kI is the gain associated with the ARS
bias estimation. Moreover, the nonlinear injection term,
σ̂bib, is given as

σ̂bib =k1v
b
1 ×R

ᵀ(q̂eb)v
e
1 + k2v

b
2 ×R

ᵀ(q̂eb)v
e
2, (A.6)

where the measurement vectors vb1,2 and reference vectors
ve1,2 are calculated using

vb1 = f b, ve1 = fe, (A.7)

vb2 = f b × pb, ve2 = fe × pe. (A.8)

Furthermore, the measurement and corresponding refer-
ence vector pairs in (A.7)–(A.8) are constructed as

f b =
f bIMU

‖f bIMU‖2
, fe =

satMf
(f̂

e

ib)

‖satMf
(f̂

e

ib)‖2
, (A.9)

pb =
pbba1,1 − p

b
ba1,0

‖pbba1,1 − p
b
ba1,0
‖2

pe =
peRTK,1 − pbRTK,0

‖peRTK,1 − pbRTK,0‖2
,

(A.10)

where pbbak,k is the relative vector between the two an-

tenna positions given in body. f̂
e

ib is the estimated specific
force, provided by the TMO, presented next. pbRTK,0 and

pbRTK,1 are the position of the GPS antennas given in {b}.

Appendix A.3. Translational Motion Observer

The translational motion observer (TMO) is similar to
that of (Grip et al., 2013), and given as follows:

Σ2 :



˙̂peeb = v̂eeb + ϑK0
ppỹ

e
eb (A.11a)

˙̂veeb = −2S(ωeie)v
e
eb + f̂eib+

geb(p̂
e
eb) + ϑ2K0

vpỹ
e
eb

(A.11b)

ξ̇
e

ib = −R(q̂eb)S(σ̂bib)f
b
IMU + ϑ3K0

ξpỹ
e
eb(A.11c)

f̂eib = R(q̂eb)f
b
IMU + ξeib, (A.11d)

where
ỹeeb = peRTK,k − p̂

e
eb (A.12)

, where k ∈ [0, 1], and K? are gains associated with the
RTK position measurement. ξeib is an auxiliary state used
to estimate feib. ϑ is a high-gain like parameter used
to guarantee stability. Furthermore, by noting the linear
time-varying (LTV) structure of (A.11) and defining

x :=
(
peeb; veeb; ξeib

)
, (A.13)

the TMO can be written on LTV form as

˙̂x = Ax̂+B(t)u+D(t, x̂) +K(t)(y −Cx̂), (A.14)

with the system matrices,

A =

03×3 I3 03×3
03×3 03×3 I3
03×3 03×3 03×3

 ,B(t) =

 03×3 03×3
R(q̂eb) 03×3
03×3 R(q̂eb)

 ,

(A.15)
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the measurement matrix,

C =
(
I3 03×3 03×3

)
, (A.16)

the vector,

D(t, x̂) =
(
03×1; −2S(ωeie)v̂

e
eb + geb(p̂

e
eb); 03×1

)
,

(A.17)
and the gain matrix,

K(t) =

Kpp

Kvp

Kξp

 =

 ϑK0
pp

ϑ2K0
vp

ϑ3K0
ξp

 , (A.18)

where

K0(t) =
(
(K0

pp)
ᵀ (K0

vp)
ᵀ (K0

ξp)
ᵀ
)ᵀ

(A.19)

is given as K0(t) = P (t)CᵀR−1(t), with P (t) = P ᵀ(t) >
0 being the solution of the time-scaled Riccati equation

1

ϑ
Ṗ (t) = AP (t) + P (t)Aᵀ − PCᵀR−1(t)CᵀP (t)

+B(q̂eb)Q(t)Bᵀ(q̂eb).

(A.20)

Finally, the input is given as

u =
(
f bIMU;−S(σ̂bib)f

b
IMU

)
. (A.21)

This results in the origin of the error dynamics being
semi-globally exponentially stable. See (Grip et al., 2013)
for details on the stability analysis. In addition, a given
lever arm from the IMU to any of the GPS antennas may
be incorporated into the TMO by replacing (A.12) with

ỹeeb,k = peRTK,k − p̂
e
eb −R(qeb)r

b
b, (A.22)

where rbb represents the lever arm and k ∈ [0, 1] is the index
of the RTK position solution.

Appendix B. Analysis of how the UAV pose in-
fluences the georeferencing

This appendix seeks to analyze how an error in the UAV
navigation system (and thus the camera pose) influences
georeferencing. This is achieved with three simplified cases
that are meant to illustrate level flight (zero roll, pitch and
yaw), turn (roll angle of 25 degrees) and ascent (pitch an-
gle of 20 degrees). All cases are simulated at an altitude
of 100 and 400 meters. Moreover, the UAV has north and
east positions of zero and the camera parameters are equal
to the ones used in the flight experiments. The object is
assumed to be in the middle of the image. Note that the
magnitude of the georeferencing error also depends on the
position in the image so larger errors must be expected
closer to the boundaries. Therefore, the values shown here
can be interpreted as the best-case scenario for different
navigation errors since the georeferencing error increases

Table B.5: Error in georeferencing when there exist a bias in the
UAV attitude and position for level flight.

Offset Error with al-
titude 100m

Error with al-
titude 400m

Roll offset 3◦ 5.3 m 21 m
Pitch offset 3◦ 5.3 m 21.2 m
Yaw offset 3◦ 0.5 m 1.7 m
North offset 10 m 10 m 10 m
East offset 10 m 10 m 10 m
Down offset 10 m 0.8 m 0.8 m m
Roll and pitch
offset 3◦

7.5 m 30 m

Table B.6: Error in georeferencing when there exist a bias in the
UAV attitude and position during a turn (roll angle of 25 degrees).

Offset Error with al-
titude 100m

Error with al-
titude 400m

Roll offset 3◦ 6.8 m 27 m
Pitch offset 3◦ 5.3 m 21.2 m
Yaw offset 3◦ 2.7 m 10.7 m
North offset 10 m 10 m 10 m
East offset 10 m 10 m 10 m
Down offset 10 m 5.1 m 5.1 m
Roll and pitch
offset 3◦

9 m 36 m

further away from the image center. Table B.5 shows the
error in the georeferenced position if a small bias is added
to the UAV navigation states in level flight. Table B.6 and
Table B.7 show the error during turn and ascent, respec-
tively.

A factor worth noticing is that an error in the down
position (altitude) leads to the same error at both 100 and
400 meters, but that the error is larger during a turn and
ascent compared to level flight. This is expected as the
ray from the camera center points straight towards the
ground in level flight, but a longer distance during a turn
or ascent. In addition to these factors, it is important to
notice that the error is proportional to the altitude of the
UAV when offsets in the attitude are considered. Notice
also the magnitude of the error at an altitude of 400 meters
with a small bias in both roll and pitch (30 m to 36 m).
This illustrates the necessity of synchronizing the sensors
and conduct a proper calibration since even small biases
give large errors in georeferencing.
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Table B.7: Error in georeferencing when there exist a bias in the
UAV attitude and position during ascent (pitch angle of 20 degrees).

Offset Error with al-
titude 100m

Error with al-
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Yaw offset 3◦ 2.4 m 9.5 m
North offset 10 m 10 m 10 m
East offset 10 m 10 m 10 m
Down offset 10 m 4.5 m 4.5 m
Roll and pitch
offset 3◦

8.9 m 35.4 m
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