
M
agnus P

oppe W
ang

Evolving K
now

ledge A
nd Structure Through Evolution-based N

eural A
rchitecture Search

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Magnus Poppe Wang

Evolving Knowledge And Structure
Through Evolution-based Neural
Architecture Search

Master’s thesis in Artificial Intelligence
Supervisor: Massimiliano Ruocco, Stefano Nichele

June 2019

Magnus Poppe Wang

Evolving Knowledge And Structure
Through Evolution-based Neural
Architecture Search

Master’s thesis in Artificial Intelligence
Supervisor: Massimiliano Ruocco, Stefano Nichele
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

i

Abstract

Meta learning is a step towards an artificial general intelligence, where neural ar-
chitecture search is at the forefront. The methods dominating the field of neural
architecture search are recurrent neural networks and evolutionary algorithms.
The state-of-the-art evolution-based neural architecture search algorithms evolves
only the structure of the neural networks. This thesis proposes an evolution
based neural architecture search method focused on transferring both structure
and knowledge together through the generations. Experiments are conducted to
review multi-objective optimization for evaluating neural networks through both
their knowledge and structure. A trade-o↵ when transferring knowledge is also
transferring bad traits such as overfitting. An alternative pattern-based repre-
sentation is tested to explore how much of the knowledge should be transferred.
A comparison between local search hill climb and evolution is also conducted to
find the e↵ects of having a population by it self. The proposed system finds a top
performing architecture in short time. Transfer learning proves to increase the
both the stability and speed of the evolution-based neural architecture search.
Optimizing neural networks through multi-objective optimization proves to work
well given good objectives. Optimizing on structure yields a much more diverse
population than optimizing on knowledge. The population is important to have
as the choices taken by the search are crucial for its success.

ii

Preface

This thesis was written starting the fall of 2018 until spring of 2019 at the Norwe-
gian Institute of Science and Technology, Faculty of Information Technology and
Electrical Engineering, Department of Computer Science under the Norwegian
Artificial Intelligence lab.

A special thanks goes to my supervisors, Massimiliano Ruocco and Stefano
Nichele for their guidance, insightful tips and discussions. Their advice made
this thesis possible.

Magnus Poppe Wang

Trondheim, June 18, 2019

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Goals and Research Questions . 3

1.3 Research Method . 5

1.4 Contributions . 6

1.5 Thesis Structure . 6

2 Background Theory and Motivation 9

2.1 Background Theory . 9

2.1.1 Evolutionary Algorithms . 9

2.1.2 Deep Learning and Deep Neural Networks 12

2.1.3 Convolutional Neural Networks 17

2.1.4 Data Augmentation . 18

2.2 Structured Literature Review Method 18

2.3 Literature Review . 19

2.3.1 Neuroevolution, The Inspiration For NAS 19

2.3.2 Evolution Based Approaches 20

2.3.3 Reinforcement Learning Based Approaches 22

2.3.4 Other Approaches . 25

iii

iv CONTENTS

3 Architecture 27

3.1 Training Loop . 27

3.1.1 Choice of Machine Learning Framework 27

3.1.2 Spawn Worker . 29

3.1.3 Converting Genotype To Phenotype 30

3.1.4 Transferring Knowledge . 31

3.1.5 Load Dataset . 31

3.1.6 Train . 32

3.1.7 Evaluate . 33

3.1.8 Format And Store Results 33

3.2 EA-NAS . 33

3.2.1 Genotype Representation 34

3.2.2 Initialize . 36

3.2.3 Selection, Mutation and Crossover 38

3.2.4 Calculating Fitness . 40

3.2.5 Sorting and Elitism . 41

3.3 Local-NAS . 42

3.3.1 Selection . 44

3.3.2 Elitism . 44

3.4 Pattern-NAS . 44

3.4.1 Representation . 46

3.4.2 Initialization . 46

3.4.3 Joining Patterns . 46

3.4.4 Mutation . 47

3.4.5 Crossover . 49

3.4.6 Fitness Calculation, Evaluation and Elitism 49

3.5 NAS front-end . 49

CONTENTS v

4 Experimental Plans and Setups 53

4.1 Why Evolve Neural Network Architectures 53

4.2 Experimental Plans . 54

4.2.1 Experiment 1: Evaluating and Comparing Neural Networks 55

4.2.2 Experiment 2: Evaluate Performance Di↵erence In Hill
Climb vs Evolution . 57

4.2.3 Experiment 3: Importance of Transfer Learning 58

4.2.4 Experiment 4: Test Performance Di↵erences With Repre-
sentation . 58

4.3 Experimental Setups . 59

4.3.1 Experiment 1: Elistism Sorting 61

4.3.2 Experiment 2: Hill Climb vs. Evolution 61

4.3.3 Experiment 3: Turning O↵ Transfer Learning 61

4.3.4 Experiment 4: Using The Pattern Representation 62

5 Results and Discussion 63

5.1 About The Experimental Results 63

5.2 Experimental Results . 67

5.3 Evaluation . 70

5.3.1 Experiment 1: Evaluating Sorting Techniques 70

5.3.2 Experiment 2: Hill Climb Local Search Compared To Evo-
lution . 72

5.3.3 Experiment 3: Turning O↵ Transfer Learning 77

5.3.4 Experiment 4: Using An Alternative Representation With
Patterns . 77

5.4 Discussion . 80

5.4.1 Evaluating Neural Networks Based On Learning Tasks . . . 80

5.4.2 The Structural Multi-Objective Optimization Objectives . . 81

5.4.3 The Search Space . 82

vi CONTENTS

5.4.4 Achieving Higher Performance 82

5.4.5 Transfer Learning And The Lottery Ticket Hypothesis . . . 82

5.4.6 Crossover . 83

6 Conclusion 85

6.1 Contributions . 87

6.2 Future Work . 88

Bibliography 91

Appendix 95

List of Figures

1.1 Research process steps . 5

2.1 The perceptron model using the step activation function. Y =
f(
P

(x ·w) + b) The formula is another way to denote this model,
where the function f is the activation function, in this case step. . 13

2.2 Plotted functions Sigmod, Tanh and ReLU. 14

2.3 Image of the convolution operation [2]. The source matrix is to the
left and is multiplied by the convolutional filter giving the output
value to the right. This 2 dimensional convolutional filter will shift
all values of the matrix down by one. 18

2.4 A pathway through PathNet [15] 20

2.5 Networks assembled using hierarchies [24] 21

2.6 NASNet performance compared to multiple human designed state-
of-the-art neural networks. 23

3.1 UML diagram of the training loop. 28

3.2 The model to the left is the genotype directional-acyclic graph
while the model to the right is the Keras Model. The Keras model
is generated using the built in tool for visualizing network models.
This example also have 100% regualizers used. The regularizers
here are dropout only. Convolutional layers may also use batch
normalization. 35

3.3 UML diagram of the EA-NAS experiment. 37

3.4 UML diagram of the Local-NAS experiment. 43

vii

viii LIST OF FIGURES

3.5 UML diagram of the Pattern-NAS experiment. 45

3.6 Pattern combination method. The three patterns shown in a are
joined together in a sequential manner depicted in b. Whole arrows
show connections while in-going striped arrows shows input nodes
and striped out-going arrows show output nodes. The green arrows
in b represent the new connection made between the patterns. . . 48

3.7 Screenshot of NAS Front-end showing detail view of one of the
individuals in the population. The website can be accessed at
https://ea-nas.firebaseapp.com 50

5.1 Overall accuracies on the CIFAR-10 test set displayed in two formats. 68

5.2 Comparing the minimum, average and maximum accuracies reached
on the test set over hours of runtime 69

5.3 These two plots show how the population changes in stucture in
terms of size and node types over time. 71

5.4 Branches within each neural network appear when the computa-
tional graph is forked. Here, maximum branching, the widest point
in the network is measured for the single most branching individ-
ual in the population per generation. Blue line indicates number
of branches while orange line indicates the number of nodes held
by the same individual. 73

5.5 This figure shows di↵erence in accuracies within each class for
the classifer tasks in CIFAR-10. For each of the plots, blue is
minimum accuracy and green is maximum accuracy. The orange
line is average accuracy contained at 0. Each line of dots represents
a single generation. 74

5.6 The performance of Local compared with Baseline. 75

5.7 Comparing the baseline to the baseline without transfer learning.
This plot shows the percentage of the population that is replaced
per generation. The X-axis is set to hours for comparability. 76

5.8 This plot shows the lifetime of the best individual seen. Blue line is
training set accuracy and green markers are test set accuracy. The
black striped lines represent each mutation added to the genotype. 78

5.9 . 79

https://ea-nas.firebaseapp.com

LIST OF FIGURES ix

6.1 The final architecture of the Baseline experiment 1.1 96

6.2 The final architecture of the Knowledge sort experiment 1.2 97

6.3 The final architecture of the Structure sort experiment 1.3 98

6.4 The final architecture of the Local experiment 2. 99

6.5 The final architecture of the Baseline w/o TL experiment 3. 100

6.6 The final architecture of the Pattern experiment 4. 101

x LIST OF FIGURES

List of Tables

4.1 Parameters used for all experiments. The table headers are exper-
iment numbers. 60

5.1 The naming scheme of the individual experiments for the results. . 65

5.2 Comparison table between the experiments, baseline and state of
the art neural architecture search algorithms. The di↵erent cate-
gories are separated with a horizontal line, where the first category
is the results from these experiments, the second category is base-
line scores from CIFAR-10 website [Cif] and the third category is
state-of-the-art neural architecture search algorithms. 66

xi

xii LIST OF TABLES

List of Acronyms

EA: Evolutionary Algorithms

NAS: Neural Architecture Search

NN: Neural Network

CNN: Convolutional Neural Network

RNN: Recurrent Neural Network

NEAT: Neuroevolution of Augmented Topologies

RL: Reinforcement Learning

DAG: Directed Acyclic Graph

ML: Machine Learning

AutoML: Automatic Machine Learning

AGI: Artificial General Intelligence

CPU: Central Processing Unit

GPU: Graphical Processing Unit

vRAM: Video Random Access Memory

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

This chapter is an introduction to the to this thesis, beginning with describing the
motivation behind doing this research in section 1.1. Section 1.2 elaborates on
what goals this thesis aims to achieve and what research questions needs answer-
ing. These research questions are addressed using the research methods found
in section 1.3. A short list of contributions are listed in section 1.4 but further
elaborated on in chapter 6. Finally, the thesis structure is described in section
1.5.

1.1 Background and Motivation

In recent years there has been a growth in the field of AutoML research both
in universities and industry. The focus of these studies are building deep neural
networks perfectly designed for one or more specific datasets [26; 8; 23; 39; 5; 30;
24]. The goal of these studies is beating the human expert designed deep neural
networks (DNN).

As described in [22], there are two forms of automatic machine learning (Au-
toML), narrow AutoML and generalized AutoML. The narrow AutoML is an
algorithm where automatic machine learning is achieved with some expert knowl-
edge required by a user. This expert knowledge is mainly used for configuring
the algorithm and optimizing the datasets. The algorithm will do the rest. Gen-
eralized AutoML requires no expert knowledge and may be configured by any
user.

1

2 CHAPTER 1. INTRODUCTION

Generalized AutoML can be seen as a big step towards an Artificial General
intelligence (AGI) [22]. Such a system can explore by it self and interpret the data
collected from exploration. When able to interpret the collected data, learning
algorithms can learn from the experiences creating a better AutoML algorithm.
For such a system to be a true AGI, the system will have to learn by doing then
improve upon it self on a higher level than the reinforcement learning algorithms
of today. This can be seen as a reinforcement learning algorithm where the reward
function is learned. The system may be configured by an expert human initially.

Whether such a system will ever be discovered is a disputed topic among the
top AI researchers [37]. While some believe that this technology will be discovered
and usable within 50-100 years, others believe it might never be discovered. Such
a system is not possible today due to a lack of compute power. By comparison,
simulating the neurons in of a human brain will require about 1017 floating point
operations per second (FLOPS), which is about the same amount of power as
the Sunway TaihuLight supercomputer. This computer was the worlds fastest in
2016 [37].

Some of the biggest advancements of learning algorithms in recent years has
come through Deep Learning (DL) [21]. DL is behind advancements in natural
language processing (NLP), image classification, recommendation systems and
more. Many of the top companies has already started using this technology in
their products. Google has based made huge progress in their machine translation
software Google Translate using recurrent neural networks. Many of the top
car manufacturers are using the technology to make their cars safer and more
automated. Amazon is basing their product recommendations on Deep learning
recommendation systems. This is just a few examples.

Deep learning has some problems that has become huge research fields within
AI. The main problem is that DL is seen as a black box operation. Industry
hesitates to adopt deep learning for this reason. This has resulted in the field of
explainable AI. Designing a Neural network that performs well is also hard. The
process of designing them is more art than science [18]. This spawned the field
of neural architecture search (NAS).

Deep neural network performance is heavily dependant on their design. The
best man-made DNNs are made by trial and error. Many of the top DNN designs
are also re-used and re-trained for new tasks [14; 39]. The most recent advances
in DNN architecture and design is however made by algorithms [39; 24]. Evolu-
tionary algorithms has seen great success in this field.

The state-of-the-art evolution-based neural architecture search algorithms are
only focused on evolving the structure or architecture of a neural network. This
is inline with reproduction in nature, where genes are joined from both parents

1.2. GOALS AND RESEARCH QUESTIONS 3

to make the child. The genes is in this case the architecture. For humans and
some animal species like the orangutan, the child also learns from the parents
after birth - passing on knowledge. This is an aspect that the current neural
architecture search algorithms have mostly overlooked so far.

A meta learning algorithm which can adapt to multiple learning tasks has to
be discovered before we achieve generalized AutoML [22]. Neural architecture
search is a step in the right direction. The bleeding edge NAS algorithms search
for neural networks that specializes in learning a single [26; 8; 23; 39; 5; 30; 24]
or a handful of tasks [15].

The problem with these algorithms is that they’re slow to find good archi-
tectures. Many of the algorithms are however scalable, opening the possibility
of massively parallelizing the workloads over distributed compute systems. Some
search algorthms use up to 500 graphics processing units to achieve better than
human performance [39; 24]. These GPUs runs for days. This kind of compute
power requires cloud computing systems or large data centers.

The NAS component in AutoML can be seen as the learning to learn compo-
nent in this process. Interpreting explored data not in the scope of NAS, since
the algorithm learns the structure of the agent model but does not automate
how the data is structured and interpreted. Only one part of AutoML is then
automated, meaning expert knowledge is still required to use these algorithms.

1.2 Goals and Research Questions

There are many di↵erent methods for discovering neural network architectures.
Progress has been made by reinforcement learning [8; 5; 23; 39; 30], evolutionary
algorithms [24; 15; 26; 31] and many other methods such as proxyless tasks [6]
and monte-carlo treesearch [27]. All of these algorithms shows immense promise
in the field and all of them beat the top human expert designed neural networks
in terms of performance.

Evolutionary algorithms have the advantage of being easily parallelized. There
are also a lot of freedom both in how the algorithm is implemented and how the
neural networks are represented. A good representation makes changes fast and
easy to apply. Transfer learning has also been tested in creative ways, like to
learn multiple tasks [15]. This showed a huge speedup can be achieved by first
training the neural networks on a simple structure before training on a more
advanced one.

Goal 1 Explore and compare what e↵ects diversity has on a traditional explo-

4 CHAPTER 1. INTRODUCTION

ration based evolutionary algorithm evolving neural architectures.

Research Question 1.1 What objectives can be used to maintain diversity in
a population of neural networks when using multi-objective optimization?

Research Question 1.2 How does an evolutionary algorithm compare to hill
climbing where no population is maintained?

The state-of-the-art neural architecture search algorithms include implementa-
tions based on evolutionary algorithms. These implementations uses immense
computing power to parallelize the learning tasks which is not viable for many
use cases. There are many ways to optimize evolution based search. One can try
di↵erent measures of performance in the elitism step or use local search within
the evolutionary algorithm to enhance the choices made when mutating or per-
forming crossover. These optimization may speed up the search process.

Maintaining diversity in a population is a challenging aspect of evolutionary
algorithms. What constitutes diversity for neural network classifiers? Di↵erences
can be both found in the topology of the networks and in the weights used with
the topology. These research questions aims to answer whether good diversity
measures can speed up neural architecture search or if diversity yields any positive
e↵ects at all?

Goal 2 Explore transfer learning as a method to speed up the evaluation step of
the evolutionary algorithm.

Research question 2.1 What e↵ects does transfer learning have on the evalu-
ation step?

Evolutionary algorithms are based on transferring good features of full solutions
down through generations of solutions. Mutation and crossover is used to improve
upon existing solutions. For improvements, good features of the predecessor
solution needs to be transferred over to the successor.

When augmenting the topology of a neural network, some of these features are
the components of which the topology is built. Other features include the weight
configuration each component holds. This research question will experiment with
transferring weights as well as topological features down through generations.

For neural networks, evaluation requires training which is a compute intensive
tasks that runs for a long time. Evaluation is what slows down evolution based
neural architecture search. Can transfer learning from a predecessor to a successor
with only small changes to its architecture yield a speedup in the evaluation step?

1.3. RESEARCH METHOD 5

Figure 1.1: Research process steps

Research question 2.2 What is the e↵ects of transferring fewer weights trained
with di↵erent networks?

Combining knowledge from di↵erent neural networks would be a very good crossover
operator. When both changing the structure of the neural network and it’s knowl-
edge, a neural network is truly evolved. Transfer learning is however not always
positive as it might transfer bad features such as overfit. Using an alternative
representation with a fewer transferable weights gathered from di↵erent, will
transfer learning avoid transferring memorized data-feature links? Can weights
from di↵erent networks be joined together?

1.3 Research Method

This is an experiment based thesis as described by [Oates] where experiments is
used as a strategy to connect cause-e↵ect relationships. When connected, these
relationships should either try to prove or disprove the hypothesis.

To address Goal 1, a system was created that evolves neural architectures
using a traditional evolutionary algorithm combined with stochastic gradient de-
cent. The elitism step has di↵erent modes for regular- or multi-objective sorting.
To answer research question 1.1, two di↵erent sets of objectives will be evaluated.
The first with a focus on diversity in how the neural networks are structured and
the other focusing on diversifying the knowledge of a neural network. These
objective-sets with both be evaluated against the baseline which uses a weighted
sum of test accuracy and overfitting described in 3.2.5.

Modifications to the core evolutionary algorithm was made to answer research

6 CHAPTER 1. INTRODUCTION

question 1.2. The modifications adapted the system to use a hill climbing local
search method instead of evolution. This aims to answer whether a population
is useful at all. Only iterating upon a single solution may be faster at finding a
good architecture than when iterating on multiple solutions.s

For Goal 2, transfer learning was added into the systems. Addressing Re-
search question 2.1, two simulations of the baseline will be tested. One with and
one without transfer learning enabled. Research question 2.2 needed a new repre-
sentation for testing what weights should be kept. The genotype representation
changed from being closely modelled after a neural network to being only a subset
of the neural network in the form of a pattern. Within the pattern, weights are
saved, but between each pattern, weights are set randomly. These two di↵erent
transfer learning techniques will be compared to see whether transfer learning is
best suited if all possible weights are transferred or not.

1.4 Contributions

The main contributions of this thesis are:

1. The evolution based neural architecture search system described in chapter
3. An evolutionary algorithm that evolves neural network architectures and
trains them using stochastic gradient decent.

2. A scalable training system for use with the TensorFlow machine learning
framework that can be used either through SSH or MPI.

3. Two di↵erent representations to use with the NAS system, one being closely
modelled after a neural network, described in chapter 3.2.1 and one pattern
based, described in chapter 3.4.1.

4. Three di↵erent sorting techniques, one based on weighted sum and the
others based on multi-objective optimization. This is described in chapter
3.2.5

5. A hill climbing local search variant of of the neural architecture search
system as described in chapter 3.3

1.5 Thesis Structure

Chapter 2 contains the background theory required to read and understand this
thesis. This includes Evolutionary algorithms and it’s various characteristics, Hill

1.5. THESIS STRUCTURE 7

climbing local search, deep learning and neural networks. Chapter 2.2 contains a
summary of some of the most promising the state-of-the-art neural architecture
search algorithms reviewed for this thesis.

Chapter 3 goes into detail about the architecture of the proposed system(s).
EA-NAS is the main evolutionary algorithm tested here, with a indirect repre-
sentation used as a genotype. This genotype is very similar to the structure of a
neural network. Pattern-NAS changes this representation by abstracting it the
neural network-like genotype representation into patterns. Local-NAS is based
on the same system as EA-NAS but using a hill climbing local search instead of
evolution.

Chapter 4 discusses the plans and details for the experiments of this thesis
and why the experiments are done. Details like parameters used, what sorting
objectives have been included and everything else needed to recreate the results
of the experiments.

Chapter 5 is about results. Starting with a comparison with state-of-the-
art and baseline before going through the results in more detail. What kinds of
networks are created and what are the e↵ects of diversity and transfer learning?
A discussion on these subjects is found in the last section of chapter 5.

Chapter 6 concludes by connecting the experiments with the research ques-
tions stated in section 1.2, goes through the contribution of this thesis and what
further work can be done on this subject.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background Theory and
Motivation

This chapter will cover the theory behind this thesis. Starting with the background
theory surrounding evolutionary algorithms and neural networks, section 2.1. A
short description of how the literature review was conducted follows in section
2.2. The literature review follows in section 2.3, reviewing the state-of-the-art
neural architecture search and its origins.

2.1 Background Theory

This section provides an overview of what the basic theory needed to understand
this thesis. Starting with evolutionary algorithms and how they work. EA is
followed by artificial neural networks, deep learning, transfer learning and details
about the architectural components used with this thesis. The section serves as
a theoretical component the reader can fall back on if needed.

2.1.1 Evolutionary Algorithms

Evolutionary algorithms are a set of optimization algorithms for optimizing in
an unknown environment. These algorithms are inspired by biological evolution,
with its search operators being natural selection, mutations and reproduction.
This algorithm is based on making small changes to each gene and testing their

9

10 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

fitness. For this algorithm to work properly, these changes needs to be com-
putationally inexpensive so that the time wasted on bad changes are minimal.
All individuals in a population used by evolution is always complete solutions.
Evolutionary algorithms are very loosely defined because each optimization prob-
lem is di↵erent. This implies that the implementation also is very di↵erent for
each problem. The following is the theory behind the most common operations
without any implementation specific details. All information is gotten from [12].

Algorithm outline

population initializeRandom()
fitness calculateF itness(population)
while generation  generations do

selection tournamentSelection(population)
for individ 2 selection do

if chance then
offspring crossover(individ, selection.next())

else
offspring mutate(individ)

end if
population offspring

end for
fitness calculateF itness(population)
population elitism(population)

end while

Representation

Since an evolutionary algorithm is a form of local search, the representation is
always complete solutions. How the population is represented depends on the
implementation. There is often a genotype representation and a phenotype rep-
resentation. The genotype is an abstract model of the phenotype. The phenotype
is the real model that is being optimized and is required for calculating the fit-
ness. When using the genotype, the representation is called indirect. Using only
the phenotype representation is allowed and is called a direct representation.

The genotype representation describes the genes that are changed by the mu-
tation and crossover operators. The way the genotype is represented is up to the
implementation, but some forms of evolutionary algorithms holds a special repre-
sentation for the genotype. For genetic algorithms, the genotype is often a binary
string where each number holds a special meaning for the phenotype. A change
in the genotype will cause a change in the phenotype. Creative representations

2.1. BACKGROUND THEORY 11

are then beneficial to the performance of the evolutionary algorithm as changes
made to the genotype will decide the form and performance of the phenotype.

The process of converting the genotype to the phenotype is called decoding.
Depending on the implementation, this might be a one-way conversion. Some
representations allow for encoding the phenotype into a genotype, although it
might be un necessary due to the flow of the algorithm.

Selection

There are two stages within the traditional evolutionary algorithm where selection
occurs. The first is selecting what individuals in the population is to be mutated
and the second is selecting which individuals survive.

• Roulette selection, also often referred to as fitness proportionate selection
is a stochastic selection operator. Each individual in the population gets
assigned a probability for being selected where probability is their fitness
value proportionate the fitness of the rest of the population. A probability
distribution is created by normalizing the individual fitness value on the
fitness of the entire population.

• Tournament selection selects two or more randomly selected individuals
and pits them against each other. The one with the best objective fitness
value is selected. This makes the selection method stochastic as the prob-
ability of each individual is equal for being selected, but the probability of
being the best in the tournament is not.

• Truncation selection is a form of selection where all individuals in the
population is sorted on the objective fitness value. The individuals with the
best fitness are selected. This operator is common to use with elitism and
often used in combination with multi-objective optimization algorithms.

Mutation

Mutations are based on making a small change to a single individual in the
population. The type of change is problem dependant. Changing a number in
sudoku or changeing what city comes next in a traveling salesman problem are
examples of mutations. These changes do not need to be legal for the solution
as illegal solutions can be filtered out on the elitism stage. An example of this is
for optimizing a solution to a sudoku board. A mutation might mean changing a
the value of a cell on the board. Changing a cell to 9 when there already exists a

12 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

9 on the same row would be illegal for the final solution. These sort of mutations
might be dealt with using a punishment in the fitness operator.

Crossover

The crossover operator is inspired by the sexual reproduction found in nature.
This operator is used to join two solutions into a single new solution. unlike
mutations, there are some commonly used ways of doing crossover:

• Striped crossover uses every other gene from each of the parent genomes.
If the first gene is selected from parent1, the second gene will always be
selected from parent2

• K-Point crossover is based on selecting K = 1 or more points. These
points determine which of the parent genomes is copied over to the o↵spring
genome. For each point, one of the two parents are selected. Genome
information for the next point is always gotten from the other parent. For
K = 1, a single point is selected in the genome. If this point is in the middle
of the genome, half of each parent will be used in the o↵spring genome.

Fitness

The fitness operator in evolutionary algorithms scores each individual in the pop-
ulation. This score is used to rank each individual in the selection and elitism
stages. This is of course heavily dependant on each implementation. Like men-
tioned in the mutation section above, punishments can be applied here for in-
complete or illegal solutions.

Elitism

Elitism is inspired by Darwinian evolution, survival of the fittest. Here, the best
individuals in the population survives while the worst dies. By doing this, the
algorithm can ensure that the population is improving.

2.1.2 Deep Learning and Deep Neural Networks

This section contains a brief overview of the theory needed to understand the
phenotype of the proposed evolutionary algorithm for neural architecture search.
The phenotype is a neural network. Deep learning [17] in the field of machine

2.1. BACKGROUND THEORY 13

Figure 2.1: The perceptron model using the step activation function. Y = f(
P

(x·
w) + b) The formula is another way to denote this model, where the function f
is the activation function, in this case step.

learning is based on deep neural networks. Neural networks, also referred to as
multilayer perceptrons are statistical models. The goal of a neural network is
to approximate some function f⇤. For a classifier, y = f ⇤ (x) means mapping
the input x to a class y. The f⇤ function described here only contains a single
function. Deep neural networks contains multiple functions chained up. The
order these functions are chained describes the topology of the network. The
name ”Deep learning” stems from having many of these functions chained. The
number of functions chained describes the depth of a neural network.

Neural networks are loosely based on the biological neural networks found in
brains. A neural network consists of neurons or nodes connected together in an
acyclic directed manner. The neurons are also often grouped together in ”layers”.
Before going into layers, lets start by understanding the perceptron model.

The neuron, also referred to as the perceptron, visualized in figure 2.1. The
perceptron takes some inputs xi that are weighted by weight wi into the linear
combiner. The inputs and weights are vectors, so the process of weighting the
input is vector multiplication. The linear combiner then sums up the weighted
input and adds in the bias. The activation function adjusts the values according
to the function used before delivering the output.

Activation Functions

There are many activation functions to choose from. The most commonly used
are Sigmoid, Tanh and ReLU. These three activation functions are plotted in
figure 2.2. Sigmoid and tanh are both non-linear functions which functions very
similarly. They can be seen as a non-linear version of the step function. Both of

14 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.2: Plotted functions Sigmod, Tanh and ReLU.

these have the problem of vanishing gradients which occurs when the input value
to the activation function outside the [�6, 6] interval for sigmoid and outside the
[�3, 3] interval for tanh. Tanh has much steeper gradients than sigmoid, and the
usage of these are determined by how steep gradients is needed.

ReLU is also a non-linear function. It has the advantage of giving sparsity to
the output due to its horizontal line. Sparsity is desired in a deep neural network
due to a speedup when not all neurons are activating. Sigmoid and tanh both
activates in an analog way, meaning almost all input gives an output value. For
ReLU, only inputs above 0 will activate giving less values to compute. The ReLU
function in it self is also less compute intensive to calculate.

ReLU is not without faults. The Dying ReLU problem is a problem that
occurs when the activations of a neuron is 0. The neuron weights will never
update because the gradient calculated from 0 is 0. This occurs for all negative
inputs to the ReLU function. Variations of ReLU combat this problem, like Leaky
ReLU.

Bias

Bias is a very important feature of a neural network which allows for using 0
value inputs to the perceptron model. The bias is learnable which is critical to
the success of a neural network as it helps the network converge.

Layers

A layer in a neural network consists of many perceptrons grouped together. Each
perceptron is a model like described above with its own activation function and
weighted inputs. In a layer topology, the inputs to each individual perceptron is

2.1. BACKGROUND THEORY 15

the outputs of the entire previous layer. The naming convention for the di↵erent
layers are inputs, describing the data vector, hidden layers and output layers
giving the output features.

Loss

The loss function - also referred to as the cost function - is used to calculate the
error of predictions made by the neural network. The loss function used for the
system proposed in this thesis and for most classifier tasks is maximum likelihood.
This function is described as the cross-entropy between the training data and the
model distribution. The function is given by:

b̀(✓ ;x) = 1

n

nX

i=1

ln f(xi | ✓),

When the maximum likelihood is calculated, the di↵erence between its output
and the real features are used as loss for the neural network.

Optimizer

The optimizer’s role in a neural network is to update the weight and bias pa-
rameters so that the loss function is minimized. To picture how this works,
imagine a terrain where you want to find the lowest point. The optimizer acts
as a guide that points to lower terrain. Note lower not lowest. Gradient decent
is the most commonly used optimizer. It calculates the partial derivatives that
points towards the steepest hill in the terrain.

Since gradient decent always points down hill, local minimas and plateaus are
problem areas. Local minimas can trick gradient decent away from the global
minima. plateaus are also di�cult as these areas are flat, making the calculation
of the gradient flat. Momentum is a way to avoid such problem areas, where the
momentum found from previous gradients are used to decide how far to move.
Momentum can often push through local minimas and plateaus.

Training Neural Networks

When training neural networks, data is fed through the input layer and predic-
tions are gotten from the output layer. The loss of the predictions is calculated
using the truth of the prediction as described in 2.1.2. The loss the propagated

16 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

backwards through the network in a process called backpropagation, where the
optimizer updates each of the weights and biases. Thus, the network trains.

When the network has trained on the entire training set a single time, an epoch
as been completed. A neural network needs to train on the training set for many
epochs for the training to converge on to a good set of weights. How the data is
fed to the network is also important. Using a single sample of data, calculating
the loss and updating the weights is not the most e�cient or e↵ective way to
train a neural network. Mini-batches are batches of multiple samples of data
being fed through the network. For each mini-batch, the loss is only calculated
once, using the average error of predictions on the mini-batch of data. This also
means the weights are updated once per mini-batch. This both helps the neural
network converge smoother on a good set of weights and is faster to calculate.
The ensure the training doesn’t overfit the network on single mini-batches, the
data is shu✏ed for each epoch of training.

Dividing Up The Data

There are three common categories of data used with neural networks, training
set, validation set and test set. These are often split from the same pool of data
which contains both input and the corresponding output. This is at least true
for supervised learning.

• Training Set: The training set is used during the training procedure. This
dataset is the largest of the three categories.

• Validation Set: Validating progress in the training procedure is important
to discover errors early. The validation set is used to validate the training
progress. This data remains unseen to the neural neural network meaning
it’s not trained on using backpropogation. If no validation is needed for
the training procedure, this set can be skipped giving more features to the
training set.

• Test Set: The test set is a portion of the dataset used for testing the pre-
diction of the neural network. This data is used after training is completed
and will tell whether the neural network has managed to generalize the
knowledge gained from the training step.

Regularizers

A common problem when training neural networks is overfitting. Overfitting
occurs when the neural network memorizes the training set. There are very

2.1. BACKGROUND THEORY 17

common clues to see whether the neural network is overfitted, mainly looking at
the di↵erence in training set prediction accuracy and validation set prediction
accuracy. If the accuracy is very high on the training set and the validation set
accuracy is low, the neural network is overfitted. Regularizers exist to combat
overfitting. There are two regularizers used in this thesis:

• Dropout is a simple method that can be used to avoid overfitting. Dropout
turns on/o↵ neurons in a layer by a probability p meaning the output value
of the neuron is set to 0. The probability for this to happen is often user
defined.

• Batch normalization was developed to handle internal covariate shift.
Internal covariate shift describes the change in the distribution of network
activations due to the change in network parameters during training [3].
Batch normalization layers handles this problem by shifting its to zero mean
and unit variance for every mini-batch. This results in a normalized input.

2.1.3 Convolutional Neural Networks

Only feed forward neural networks has been described up to this point. The focus
will now shift over to convolutional layers. For describing convolutional layers, the
basic convolution theory needs to be described. Convolution is commonly found
in image manipulation techniques such as filtering, smoothing, edge detection
and more and is useful for finding features in an image.

Convolution uses a filter to calculate a new value out of a matrix. This
process can be seen in figure 2.3. A source index is used as the center where
the convolutional filter is applied. The filter is then matrix multiplied with the
source matrix that is covered by the filter. For a 3x3 filter, the source index and
all the surrounding indexes will be filtered over. The output of this is a single
convoluted output value.

A convolutional layer works exactly like this. A layer contains multiple filters,
where the value of the filter is learned and can be seen as the weights described for
the perceptron. The convolutional layer also has activation function and biases.

Pooling layers are also an important part of convolutional neural networks.
Pooling layers also use filters and common operators are max/min pooling, taking
the maximum or minimum value from the source image overlapping the filter of
the source matrix accordingly. Average pooling works the same way and takes the
average of all values from the source image overlapping the filter. Pooling layers
are not trained and does not have activation functions. The e↵ect of using pooling

18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.3: Image of the convolution operation [2]. The source matrix is to the
left and is multiplied by the convolutional filter giving the output value to the
right. This 2 dimensional convolutional filter will shift all values of the matrix
down by one.

is that the representation becomes approximately invariant to small translations
of the input.

2.1.4 Data Augmentation

With data augmentation, the training set is expanded using the existing data.
This is one way to enhance a dataset. Not all datasets allow this, but for image
classifiers, augmentations are quite common. Augmenting images would mean
for example flipping the images 180, rotating the images just a bit, filtering
the images with contrast-, saturation-, smoothing-, sharpening and brightness
filters. Doing this would expand the training dataset exponentially with each
filter applied. This may allow the neural network to easier generalize due to
more data.

2.2 Structured Literature Review Method

The snowballing technique described in [38] was used to gather the literature.
The start set contained articles handed out by my supervisors on evolutionary
algorithms combined with deep learning for various purposes. The corpus was
gathered using backwards snowballing from the start set combined with a few key
word searches on specific subjects through the Google Scholar service. The arti-
cles was connected using forwards snowballing, finding what articles referenced
other articles in the corpus. There was a huge overlap due to the narrow research
field of neural architecture search.

2.3. LITERATURE REVIEW 19

2.3 Literature Review

Neuroevolution both searches for the optimal weights of a neural network and
it’s optimal structure. Neural Architecture Search started as a bi-product of
neuroevolution. Finding architectures for neural networks is both an expert task
and not an exact science [18]. Some of the best human crafted neural network
architectures have already been outperformed by architectures crafted by algo-
rithms. These architectures require immense compute power to make and may
use up to 48,000 GPU hours (roughly 2000 days on a single Nvidia Telsa P100)
[39]. This massive compute usage is due to retraining neural networks hundreds
of times. There is room for improvement. A recent publication from MIT has
reached human expert level performance in just 200 GPU hours [6].

2.3.1 Neuroevolution, The Inspiration For NAS

Neuroevolution is a viable alternative to stochastic gradient decent for training
neural networks [34]. When training, Neuroevolution comes in many di↵erent
variants, and classic neuroevolution uses an evolutionary algorithm to evolve
the weights of the neural network as well as the architecture. This is especially
promising since the parallelization potential of an evolutionary algorithm is much
greater than for parallelizing stochastic gradient decent. The method has proven
especially e↵ective on reinforcement learning tasks.

For neural architecture search, the inspiration comes in through the life cycle
of a synapse (weight connection between two nodes in the network architecture).
A synapse lives as long as its it has activations, and if it activates too seldom its
removed. New synapses and neurons are added through evolution.

Using neuroevolution in tandem with deep learning is rapidly gaining pop-
ularity as a field of research. This is especially apparent within the sub field
of neural architecture search where evolution and stochastic gradient decent are
both used to evolve the neural networks. The evolutionary component is often
the architect of the neural networks while stochastic gradient decent trains them
[26; 32; 24; 31]. Neural Architecture search using evolution can be seen as a
hybrid between neuroevolution and deep learning [34]. The following section will
describe these hybrid methods.

20 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.4: A pathway through PathNet [15]

2.3.2 Evolution Based Approaches

Evolutionary algorithms has been proved viable for finding neural architectures
[26; 24; 32; 15]. Creative genotype representations described in section 2.1.1 are
one of the benefits of using evolutionary algorithms for NAS. [24] uses a hierarchy
of neural network operation to build their neural networks.

[15] uses a deep neural network consisting of many deep neural networks and
evolves paths through it, making multitask learning possible. Here, evolution is
used to evolve what path is taken through the network for each learning task.
The network as a whole is trained on a multitude of tasks asynchronously, sharing
the knowledge across di↵erent learning tasks when possible.

In this study, the evolutionary agents representing the pathways through the
network can be chosen using a multitude of di↵erent approaches, for example a
complex reinforcement learning algorithm. Their genetic algorithm generates the
paths used for a specific learning task and is evaluated through training a few
timesteps on the selected path using reinforcement learning. The results of these
timesteps of learning is used as the fitness function for the given path. Learning

2.3. LITERATURE REVIEW 21

Figure 2.5: Networks assembled using hierarchies [24]

occurs in conjunction with evolution. The giant neural network consists of a set
of layers, each containing a set of modules. Each module in this case is its own
neural network. A path is selected by choosing one module per layer through to
the end of the network. This is illustrated in figure 2.4.

An hierarchical representation was studied in [24]. The representation used is
based on flat sets of primitive convolutional neural network operations as shown
in figure 2.5. Each of these operations are connected together in an acyclic graph.
Each of the primitive operations are assembled in a hierarchy consisting of l levels
to create a bigger convolutional neural network. The hierarchical representation
evolutionary algorithm uses only a single mutation operator with many e↵ects.
The mutation operator is based on replacing everything between two selectedx
and selectedy nodes with a single new node. The replacement node replacement
is constrained have l � 2 levels of nodes in the hierarchy. The side-e↵ects of this
mutation operator is:

• May add new edge to the directed graph if only one of selectedx = none
and selectedy 6= none.

• May alter an existing edge if selectedx = selectedy.

• May remove an existing edge selectedx 6= none and selectedy = none.

Training the models required a distributed system as the workload is extreme.
The asynchronous implementation contains a receiver that takes the genotype,
converts it into a neural network and then trains and evaluates it. The results

22 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

are returned to the main process. This distributed system used 450 GPUs to
achieve the state-of-the-art results.

CoDeepNEAT [26] uses evolution to iterativly grow a graph based genotype.
The graph represents individual layers in the neural network. Here, the evolution-
ary algorithm starts with the least complex graph possible. For each mutation,
an egde is added to the graph. CoDeepNeat uses the traditional genetic algo-
rithm which is in the familiy of evolutionary algorithms. The representation of a
genetic algorithm is unique, and is always a bit-string. Each bit-string represents
a neural network layer where the bits describe both the type of neural network
operator, the hyperparameters it will use and other properties such as number of
neurons in a given layer.

Due to repeated patterns being used in some of the most successful neural
networks, CoDeepNeat uses ”blueprints” which is pre-built patterns of neural
network operations to build larger neural networks. During fitness evaluation,
the blueprints are combined into larger neural networks and then trained for a
while.

Neural architecture search using evolutionary algorihtms manages to discover
architectures that beat state-of-the-art human designed architectures [24]. The
natural parallelization of the algorithms allows for massive distributed jobs utiliz-
ing cloud compute for scaling these workloads. Unfortunatly, compute hours for
these algorithms makes these techniques unavailable for the majority of usecases.

2.3.3 Reinforcement Learning Based Approaches

Reinforcement learning for Neural architecture search is a form of meta-learning.
Here a learning algorithm will learn how to structure a neural network such that it
performs well on the designated learning task. This section will go through some
reinforcement learning techniques which has seen success in neural architecture
search.

Hidden Markov Models are considered one of the most basic techniques one
can use for reinforcement learning. [5] uses a Markov decision based Q-learning
model to build sequential neural networks with the hypothesis that what works
for one dataset will work for another. The policy of the Q-learning model is
created using experience replay, where exploration and exploitation is done in
two di↵erent steps. First step, exploration creates neural network architectures
and evaluates them. This particular implementation uses the validation accuracy
as a reward. Both the architectures and the validation accuracies are stored in
the experience replay module. In the exploitation step, the Q-learning model

2.3. LITERATURE REVIEW 23

Figure 2.6: NASNet performance compared to multiple human designed state-
of-the-art neural networks.

learns from the networks created. These steps are repeated multiple times to
create a good model. The neural networks will be created at random for the
first few steps, but after a while the Q-learning model will start to make better
decisions.

Recurrent neural networks (RNN) have also seen a trend recently [30; 39].
In the study by [39], a RNN designs a neural network based image classifier
known as NASNet. NASNet achieves lower error rates on both the ImageNet[14]
and cifar-10[20] datasets. NASNet also outperforms top human expert designed
neural networks such as ResNet [19], MobileNet v2 [33], inception v2/v3 [35] and
VGG-16 [25], see figure 2.6.

To build the successful NASNet, a RNN controller was used as the architect.
The algorithm works by letting the RNN design networks by selecting what neu-
ral network operation should be used in what order. The action space that the
controller uses is very restricted, containing only a few neural network operations.
The designed networks are trained until convergence and evaluated. The perfor-
mance achieved in the evaluation step is then used as a policy gradient to train the
RNN on. The RNN will then improve over time, creating better architectures for
the given learning task. NASNet is included as a template architecture in some
of the most used machine learning tools including Keras [7] and TensorFlow [4].
The architecture can be trained for other image classification tasks than it was
originally intended for.

24 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Search Space

Running any of the state-of-the-art algorithms found in sections 2.3.2 and 2.3.3
requires immense compute power. [30] proposes the algorithm E�cient Neu-
ral Architecture Search (ENAS) that reduces training time by letting all pro-
duced architectures share their weights. The architectures discovered by ENAS
have comparable performance to NASnet [39] while claiming 1000x less expensive
search.

ENAS lets all generated architectures share their weights. It does this by first
producing a directed acyclic-graph (DAG) of computations. All neural networks
designed by ENAS will be sub-graphs of the aforementioned DAG. The process
of selecting what operations the architecture should consist of uses a recurrent
neural network. The RNN selects nodes from the DAG that will be made into a
neural network consisting of the computations selected in order. The RNN can
only select successors of the previously selected node.

Each node in the DAG has its own parameters that are trained each time
its included in a selected sub-graph. This way, all shared parameters are reused,
creating a good base that can be used for the next architecture sub-graph selected
by the RNN. The training of the DAG parameters happens for each created sub-
graph.

The use of a DAG also vastly reduces the search space. Not only does this re-
strict what types of operations that can be explored but also in what order. ENAS
allows for manually controlling how many operations each sub-graph should con-
sist of, allowing them to manually tune the search space.

The action space for a Q-learning model needs to be limited for it to work. In
[5] the action space is set to only contain convolutional-, fully connected-, pooling-
and softmax layers. [30] uses an action space of only four convolutional operations
and two pooling operations giving an action space of 6 possible operations per
layer. The search space also consists of what activation function each layer should
use.

Search space is also a consideration for the evolutionary algorithm based ap-
proaches. [24] has an action space consisting of 5 predefined compute operations.
The search space for [15] is di↵erent, the giant neural network is predefined, only
a select number of paths can be chosen by the evoluionary algorithm. This gives
a much smaller search space.

2.3. LITERATURE REVIEW 25

2.3.4 Other Approaches

The architectures generated by NAS algorithms are generally not focused on
reducing the parameters of the neural networks. [6] focuses on both finding an
optimal architecture and tailoring the network to the hardware its supposed to
run on. The algorithm has been named ProxylessNAS.

ProxylessNAS starts of with an oversized network and starts pruning away
excess parameters. To do this, they have implemented binary gates which turns
on/o↵ parameters within each network operation. These are called the binary
architecture weights. The training of the neural network being optimized happens
in two stages.

Stage 1: The network weights is trained using stochastic gradient decent. The binary
architecture weights are frozen during this stage.

Stage 2: The binary architecture weights are trained. The network weights are frozen
during this stage.

After both these stages are complete, the parameters belonging to the binary
architecture weights that are o↵ will be pruned away. ProxylessNAS achieves
comparable results to all aforementioned NAS algorithms while containing much
fewer parameters. The only exception to this is ENAS, which also has small
architectures.

26 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Chapter 3

Architecture

The following chapter will explain the architecture behind the experiments. There
are three di↵erent main experiments, EA-NAS, Local-NAS and Pattern-
NAS. EA-NAS and Local-NAS uses two di↵erent algorithms, evolutionary al-
gorithms for EA-NAS and hill climbing search for Local-NAS. They share the
same genotype representation, directed acyclic graphs (DAG) representing a whole
Neural network. Pattern-NAS is also based on evolutionary algorithms but with
a di↵erent representation based on sub-graphs combined into whole DAGs which
represent neural networks. The chapter starts o↵ with the training loop which is
common for all of the architectures, before diving into each experiment’s archi-
tecture in detail following the UML diagrams, figures 3.1, 3.3, 3.4 and 3.5

3.1 Training Loop

The training loop is used by all of the experiments. This program is always runs
asynchronously on a subprocess either locally or in a distributed system. The
training loop converts the genotypes into phenotypes – or Keras models, then
trains and evaluates them. It also stores all phenotype models trained for later
use.

3.1.1 Choice of Machine Learning Framework

The training loop uses Keras [7] as it’s machine learning framework with Ten-
sorFlow [4] as the Keras backend. The machine learning models and training

27

28 CHAPTER 3. ARCHITECTURE

Figure 3.1: UML diagram of the training loop.

3.1. TRAINING LOOP 29

loops are defined in the Keras framework but is converted behind the scenes to
run in Tensorflow. TensorFlow supports both CPU- and GPU based training of
machine learning models. The CPU training is written in C++ with either a
OpenMP based parallelization technique or MPI based for distributed systems.
Tensorflow’s GPU support is restricted to the Nvidia Cuda framework. CUDA
is proprietary software that has limited support for common OSes like macOS.
Cuda only support Nvidia’s own GPUs, leaving AMD and Intel based parallel
hardware as a non-option. This also makes TensorFlow support unavailable on
macOS.

The Keras framework supports multiple backends, meaning the models cre-
ated in keras can be converted to any of the supported machine learning frame-
works. PlaidML [Ng] is one of the supported frameworks. It’s open-source and
aims at supporting all major parallel computing solutions available on the market
meaning this system may run on hardware supported in PlaidML.

3.1.2 Spawn Worker

Parallelization is one of the key advantages of evolutionary algorithms. As such,
multiple parallelization techniques have been tested out for this thesis. This
had to be done as the servers available during the writing period had di↵erent
supported methods for parallelizaiton.

Using SSH For Distributed Processing With The Execnet Framework

Secure Shell (SSH) is a common method for connecting to another computer
on the network through a terminal interface. Through the execnet package,
setting up a connection between two machines on the same network for distributed
processing was simple. This framework allows the algorithm to run on multiple
machines without them being in the same cluster. This was the first configuration
used for testing this system.

File synchronization was a requirement for transfer learning. All of the files
created asynchronously on each server had to be synced back to the server running
the main process. This was a time-consuming task as machine learning models
may take up many gigabytes of storage. To minimize the transfer time overhead,
a system for ensuring minimal transferring of data was implemented. This was
meant to ensure that all machine learning models were trained on same the
machine they had previously been trained on meaning transfer was unnecessary.
This system was later scrapped as an MPI system could be used with a cluster.

30 CHAPTER 3. ARCHITECTURE

Handling TensorFlow GPU Memory Allocation

TensorFlow’s implementation of GPU memory allocation does not allow for de-
allocation during a process lifetime. Forced de-allocation of memory will lead to
unwanted exception being raised during runtime. After allocating memory for the
training session on the GPU, memory was nearly full. When the second training
session was allocated on the GPU, the program would fail or run very slow due to
memory being swapped from the servers main memory and the dedicated GPU
memory. To work around this, a child process has to be spawned for the training
loop.

Using a child process raises serialization concerns. Neither TensorFlow nor
Keras supports serializing the machine learning models. A work around for this
is to save the Keras models to disk and keeping the absolute path available in
memory for later use.

Using Message Passing Interface With Python

The original implementation of Message Passing Interface (MPI) was intended
to use with spawning all of the worker processes with the main process to save
time on the overhead of spawning a new process. As seen in the previous section
3.1.2, each training session process needs to be killed to free GPU memory. The
original implementation is not a good fit for this task.

Newer versions of MPI allows for spawning processes dynamically, while still
being able to use the same communication as with the original implementation.
Further, the package MPI4PY [10; 11; 9] contains functional programming con-
cepts like ”map” for easily distributing the workload over multiple child processes.
Serialization is also automatic using the pickle package for serializing Python
classes.

3.1.3 Converting Genotype To Phenotype

Converting the Genotype over to a Phenotype is done using a recursive loop and
Keras models. This process starts by first creating the Input Keras layer and
then locating the input nodes in the DAG. A recursive process is then started
which goes through the DAG, node for node in a queue-based fashion. Each node
seen in this process, is converted into a corresponding Keras layer and added to
the Keras model. There are some special cases that needs to be handled:

• For ends of branching, a concatenation layer are added concatenating all of

3.1. TRAINING LOOP 31

the nodes previous to the current node.

• A Dense node following a Conv2D or Pooling node needs to have a Keras
flattening layer between it self and the 2-dimensional layers.

Finally, the outputs nodes are discovered, converted and concatenated. A Dense
output layer using the softmax activation function is added to complete the clas-
sifier. A complete Keras model has been created.

3.1.4 Transferring Knowledge

Transfer learning occurs after the phenotype Keras model has been generated
from the genotype. The predecessor of the current phenotype has to be written
to disk in the previous generation for transfer learning to activate. The prede-
cessor phenotype is loaded into memory. Transfer learning goes through every
layer in the newly generated Keras model and finds the matching layer from the
predecessor Keras model. The matching is done by using custom IDs which are
applied during phenotype to genotype conversion.

3.1.5 Load Dataset

As this system needs to be able to use multiple datasets, a generalized way of
importing data had to be made. Using the built-in python module ”importlib”,
python functions can be loaded through an absolute path to the ”.py” file con-
taining the functions. There are three functions needed to import data to the
training algorithm:

1 get training data(): Gets the entire training dataset. The training data
is used both with training the models and with calculating how ”overfitted”
the models are.

2 get validation data(): Gets the entire validation dataset used for calcu-
lating the validation accuracy. The validation accuracy is needed to test if
a neural network has converged. When not training until convergence, this
data can be used as training data instead as its not used for anything else.

3 get test data(): Gets the test data. This data is used in the evaluation of
the model. Accuracy scores on this data is the main way to identify good
models over bad models.

Importing the data in this way also allows for experiments with transfer learn-
ing to learn from multiple datasets.

32 CHAPTER 3. ARCHITECTURE

3.1.6 Train

There are two di↵erent training methods that can be chosen between, ”training”
and ”training until convergence”. ”Training” trains the neural network for a
fixed number of epochs while ”training until convergence” uses a condition for
when to quit training. Otherwise, the training loops are the same. The default
parameters for the training are listed below. All of those parameters may be user
defined and applies to both methods.

Optimizer : Adaptive Momentum (ADAM) with a learning rate of 0.001

Loss : Categorical cross entropy

Dataset order : Shu✏ed every epoch

Batch size : 60

Convergence Condition

The training method ”train until convergence” runs for a set number of epochs.
After this loop has completed, the convergence condition will be checked. The
convergence condition tests whether the training has made any improvement
for this round of training and whether the training has made any improvement
overall. The former uses the 10 last training epochs as a sample and averages
them. This gives the accavg.

converged = (accavg · 0.985)  acci  (accavg · 1.015)

This condition is checked for both the validation accuracy and the training ac-
curacy. Both of the training and validation expressions has to be true for the
condition to be met.

The ladder checks if training has made any improvement overall since it
started. This condition samples the accuracy achieved 30% into the total training
epochs, yielding accearly. This sample is used in a similar fashion as with the
converged condition:

improved = (accearly ⇤ 0.90)  acci  (accearly ⇤ 1.10)

The training will go on until either one or both of the conditions converged
or improved are true.

3.2. EA-NAS 33

3.1.7 Evaluate

The evaluation lets each neural network predict all of the samples found in the
test dataset. These predictions are used to calculate the confusion matrix which
all performance is measured from. From the confusion matrix, a classification
report is created with the following metrics:

Precision The total number of correct predictions out of all predictions.

Recall The number of correct predictions in a certain category.

F1-score Uses both prediction (p) and recall (r) to create a mean between them:
2 · p·r

p+r

3.1.8 Format And Store Results

The results found in the evaluation step is stored into each genotype as fitness.
For EA-NAS and Local-NAS, this means just storing the value directly into the
genotype. For Pattern-NAS each pattern receives the score collectively found in
the training step. Patterns saves results in a list, where a optimal result is used
for comparison. Since each pattern is used multiple times per training loop, there
will be multiple results to choose from.

Limitations With Writing To Disk

This step also saves the Keras models to disk. This is a required step for transfer
learning to work. Since a Keras model may take up many gigabytes of disk space,
storage for a huge simulation may pose a problem. OSErrors have also been
encountered when multiple child processes are writing to the same network drive
concurrently. This is a known issue with Keras. The saving process may therefore
try saving up to 5 times with a 5 second pause between each try. Although the
retry process solves this error in most cases, 1 in 500 models are lost.

3.2 EA-NAS

The EA-NAS experiment is modelled closely after a traditional evolutionary al-
gorithm. The initialization step creates random genotypes representing neural
networks. These genotypes makes up the initial population. The genotypes are
iterativly mutated and crossed over for random changes. Only the best scoring

34 CHAPTER 3. ARCHITECTURE

neural networks are kept and iterated on, while the worst ones are removed. De-
ciding which genotypes to keep or remove is controlled by multi-objective sorting.
Iterating will go on until a goal state is found, the last generation is reached or
the algorithm runs out of time.

3.2.1 Genotype Representation

The representation of genotypes in EA-NAS is a directed acyclic graph. The
graph can contain either sub-graphs consisting of whole genotypes or individual
operations. These DAGs are supposed to have a tight coupling to Keras while still
being an indirect representation. A genotype and its corresponding phenotype
gathered from the preliminary results can be seen in figure 3.2.

Operations/Nodes

The individual operations are nodes containing the properties of the neural net-
work operations they represent. The following operations are used in the geno-
type:

• Fully connected (Dense): The 1-dimensional Dense nodes comes in three
di↵erent sizes, Small with 250 neurons, Medium with 750 neurons and Large
with 1500 neurons. The activation function of these are always rectified
linear units (Relu) as they have proven to be more e�cient when used with
the backpropogation than other activation functions.

• Convolution (Conv2D) Convolutional nodes represents 2 dimentional
convolutional layers. They come in two di↵erent filter sizes, either 3x3
or 5x5. They have 50 filters and ignores edges. Ignoring the edges was
a simple way to enable branching without errors. As with Dense nodes,
Convolutional nodes also use Relu.

• Pooling Pooling layers comes in two types, Maximum Pooling and Average
Pooling.

With this list, the total search space is 7. Each of these nodes have a direct
counterpart in the Keras model phenotype. The sizing of all the operations are
fixed to reduce the search space. The search space grows exponentially with each
type of Node.

Regularizers are also a very important part of a neural network as they help
keep the network from overfitting. Both the Dense and Conv2D nodes have a 80%

3.2. EA-NAS 35

Figure 3.2: The model to the left is the genotype directional-acyclic graph while
the model to the right is the Keras Model. The Keras model is generated using
the built in tool for visualizing network models. This example also have 100%
regualizers used. The regularizers here are dropout only. Convolutional layers
may also use batch normalization.

36 CHAPTER 3. ARCHITECTURE

chance of having a regularizer connected to their outputs. This is chosen during
the initialization of each individual node. The default setting for Dense layers
are Dropout, while convolutional layers have batch normalization as default but
may also use dropout.

Genotypes/Directed-Acyclic Graph

The full DAGs contains at minimum 4 operations or sub-graphs. When building
such a graph, the first 4 nodes added into the DAG must be added with the ap-
pending operator (see section 3.2.3 for appending). After the minimum nodes are
appended, the graph can be extended using any of the other mutation operators.
There are some constraints on how the operators are added. A Dense node may
never come before a Conv2D or Pooling node.

The genotype does not contain nodes for inputs or outputs. All nodes without
any previous nodes in the DAG are seen as ”input” nodes. Similarly output
nodes are all nodes without any next node in the DAG. This genotype allows for
branching as is in the nature of DAGs. This branching will be carried over to
the phenotype upon conversion.

3.2.2 Initialize

The initialization step creates and trains the initial population. Its important
that randomness is maintained in this step to create a diverse population. To
spawn a random new individual, the following process is performed:

1 Generate empty genotype. This is an empty directed acyclic graph.

2 Draw the number changes to be applied to the new genotype. This number
will be between two user defined boundries.

3 Apply the changes using the mutation operator. The mutation operator is
described in the next section ??.

This process is repeated for each individual, resulting in a very random pop-
ulation. Every operator in the mutation operator can be applied with the same
probability as with regular mutations, even the ”remove” operator. After the en-
tire population has been generated, the training loop is launched for evaluating
the fitness of the new population.

3.2. EA-NAS 37

Figure 3.3: UML diagram of the EA-NAS experiment.

38 CHAPTER 3. ARCHITECTURE

3.2.3 Selection, Mutation and Crossover

Selection is used to select the individuals that are to be either mutated or crossed
over. The selection will select 50% of the population. The operator used is Tour-
nament selection. Tournament selection is based on having 2 or more individuals
of the population compete against each other. The operator will always select
the best of the tournament. Which individuals that will be used for tournament
is randomly selected. The tournament size for this implementation is 2. This
means there is a probability of selecting two ”bad” individuals for tournament.
This gives the worst performers in the population a chance to improve. The
whole previous generation will be trained for some more epochs before elitism.
This will ensure that the unselected are not discarded without a second chance
at the evaluation step.

The second chance is important as smaller neural networks perform better
with fewer training epochs than larger ones does. In the long run however, the
smaller neural nets that had the most promising scores might not be large enough
achieve the desired accuracy score on the test set. The bias towards smaller neural
networks is also good as smaller networks will require less compute power to both
train and use for predictions. If a smaller neural network can perform on par with
the larger neural networks, the smaller one is preferred.

Mutation

The mutation operator applies a single change to a given genotype. The mu-
tations are mostly removal or insertion of neural network operators. There are
some placement constraints to adhere to. A dense layer may not come before a
convolutional- or pooling layer as there are no features to extract from a dense
layer. The di↵erent mutations that can be performed are selected using the
probability distribution in listed below with the descriptions:

Append (Probability: 0.0303) Creates a new neural network operator and appends
it at the end of the genotype.

Insert (Probability: 0.0303) Inserts a new neural network operator between two
nodes in the network. Note that this insertion does not replace the con-
nections between the two nodes, but rather adds a new one. An insertion
can happen to any two nodes in the genotype as long as the placement
constraints applies.

Insert between (Probability: 0.4545) Similar to the Insert operator, this operator selects
two nodes with direct connections to each other and replaces their con-

3.2. EA-NAS 39

nection with a new neural network operator between them. Placement
constraints applies here too.

Skip-connection (Probability: 0.0303) Creates a connection between two nodes in the geno-
type. No new network operator is created or insterted for the new con-
nection. This method is based on the ”skip-connection” method in ResNet
[19].

Remove (Probability: 0.4545) Removes a selected node from the genotype and re-
connects each of the nodes connected to the removed node. This is the
exact opposite of ”insert-between”.

To keep everything random, nodes selected for mutations within the genotype
is always random. For the insert and insert-between operators, the two nodes
used for insertion points are also selected randomly. These also use the probability
distribution below for selecting each type of layer:

0.3947 : Dense layer (of various sizes)

0.2631 : Convolutional layer (3x3)

0.1842 : Convolutional layer (5x5)

0.0789 : Max Pooling layer

0.0789 : Average Pooling layer

Crossover

The crossover operator combines two genotypes into a new genotype as described
in chapter 2.1.1. For this particular implementation, deciding on a crossover
operator proved di↵cult. One cannot simply join two directed acyclic graphs
together as they may have very di↵erent structures. There is also transfer learning
to consider. If doing a striped crossover, all of the trained weights from the
predecessors will be lost. Two solutions to this problem was tested:

Crossover operator 1: Inserting a full genotype into another genotype.
This method would allow for the weights to be almost entirely kept the same
for both genotypes. For this method however, all possible insertion-positions
has to be tested, selecting the best overall performing position. This step was
time consuming. There are also constraints that needs considering, these are the
same as for the mutation operator. This method proved to perform poorly as

40 CHAPTER 3. ARCHITECTURE

the successor of the two genotypes was very large. There also seemed to be little
improvement in any of the experiments with this method.

Crossover operator 2: Placing two genotypes ”side-by-side”. In this crossover
operator, both genotypes share the same inputs and are concatenated on their
individual outputs using a softmax layer. This means there are no physical con-
nections between the two genotypes. They can do their predictions individually.
The softmax layer joining their outputs will create a probability distribution of
the outputs for each model. The one with the best guess will hopefully be selected.
The best configuration for this crossover operator would be two networks which
perform well on di↵erent classes in the classifier task. Is has however proven to be
a di�cult task as most networks performs quite similar on the same classification
tasks, with only minor variations as seen in the results 4. This operator also have
the same model size problem as with the former crossover operator.

Both of the crossover operators were disabled due to their problems. This
leaves the algorithm without any crossover operator. All selected individuals
that were bound for crossover are mutated instead.

Initializing New Random Individuals

Each generation, there is also a probability of 0.01 of a new single individual being
added into the population. This functionality exists to increase exploration. This
is useful in cases where there is no genotype in the population which can learn
the dataset properly.

3.2.4 Calculating Fitness

For calculating fitness, the training-loop is launched using MPI. First, all param-
eters are packed into zipped pickled binary strings. Then, MPI distributes the
workload to each server. Once on the servers, each genotype is converted into
its corresponding phenotype which is represented by a Keras model. The phe-
notype of the predecessor is also loaded into memory for transfer learning. The
networks are either trained for a fixed number of epochs each or the training is
scaled based on size of the network. There is no empirical evidence so far that
the scaling makes the results more fair, thus EA-NAS uses the fixed number of
epochs favoring the smaller networks.

3.2. EA-NAS 41

3.2.5 Sorting and Elitism

There is two sorting functions available to use, the first is based on weighted sum
and the second is based on the multi-objective optimization algorithm NSGA-II
[13]. These two sorting functions serve the same purpose but have very di↵erent
goals. For the weighted sum, the best of the population needs to be chosen in
terms of raw performance, where each goal is optimized and the strictly best
solutions are selected while for the multi-objective optimization algorithm, the
goal is not only to select the best solution but also to maintain diversity within
the population.

Weighted Sum

For this sorting algorithm, the weighted sum of the overfit penalty and the test
accuracy is calculated. The overfit penalty is calculated by:

overfit = |acctraining � acctest|

The weights are set to 30% overfit penalty and 70% test accuracy, giving the
formula:

score = overfit · 0.30 + (1� acctest) · 0.70
The compliment is taken of the test accuracy. The score is sorted ascending. The
best individuals have lower scores. When only using the test accuracy as a sorting
metric, the best individuals were the most overfitted in the population. This was
not desirable as individuals with lower test accuracy but a much more balanced
training accuracy may need some more epochs of training time to get better. With
overfit penalty included in the weighted sum, di↵erences in overfitting helps the
algorithm select more desirable solutions.

Multi-Objective Optimizaiton Using NSGA-II

The multi-objective sorting algorithm NSGA-II [13] is implemented for this neural
architecture search algorithm. Multi-objective sort is often used with evolution-
ary algorithms to maintain diversity in the population. Maintaining the diversity
means keeping solutions that may be worse than the others in raw performance,
but have some major di↵erences that are worth keeping. For algorithms like Evo-
lutionary algorithms, diversity is key to avoid local maximas and plateaus. This
is important to keep the population from becoming entirely the same solution.

NSGA-II sorts by first creating frontiers of solutions, then sorting each fron-
tier using the crowding distance assignment algorithm. Each frontier contains

42 CHAPTER 3. ARCHITECTURE

solutions in which the condition ”no worse” is held between all solutions. No
worse means no one solution is dominated by another by being either equally
good or better in all objectives of the multi-objective optimization. The frontiers
are ranked with all solutions in frontieri dominating all solutions in frontieri+1.
We can then say that a solution in frontieri are strictly better than solutions
frontieri+1. Within each frontier, all solutions are seen as equal because no
solution is worse than another in all objectives.

For every objective that uses floating point numbers, the ”no worse” condition
can be hard to measure. All floating point objectives is therefore rounded to use
at most 3 decimals. This is especially important in the classification accuracy
objectives, as two networks where net0 = 0.900000000 and net1 = 0.900000001,
should be measured as equals.

In comes crowding distance assignment (CDA) which sorts each frontier
based on score in all objectives. CDA tries to prioritize each frontier based on
di↵erences between each solution. The most polarizing solutions, i.e. the worst
and the best are given max score while everyone in the middle is given the score
based on the cuboid di↵erence between the solutions closest to them [13].

Si.distance = Si.distance+ (si+1.measure� si�1.measure)

Where S is a list of all solutions, measure is the solution’s score on a given
objective and distance’ is the crowding distance factor. The objectives sorted on
can be read about in chapter 4.2.1.

Elitism

Elitism removes the part of the population which is deemed the least likely to
succeed. The population size has to be maintained before starting each genera-
tion. For weighted sum described above, this means the worst performers in the
population are removed. For multi-objective optimization, both the worst and
the most similar solutions are removed. The best of the most similar are kept.

3.3 Local-NAS

Local-NAS builds upon EA-NAS. Instead of using an evolutionary algorithm for
evolving the best architecture, Local-NAS uses the local search algorithm hill
climb. Only the single best individual in the population is kept for the next
generation. This causes the most changes in initialization, selection and elitism.
The only main di↵erence in initialization is that only the best of the tested initial

3.3. LOCAL-NAS 43

Figure 3.4: UML diagram of the Local-NAS experiment.

44 CHAPTER 3. ARCHITECTURE

population is kept. This means the rest of the algorithm remains the same as
EA-NAS. The list contains the steps within Local-NAS that are identical to EA-
NAS:

• Representation, section 3.2.1

• Generate random genotypes, section 3.2.2

• Mutation and Crossover, section 3.2.3. Crossover is not used in Local-NAS.

• Calculating fitness, section 3.2.4

• Sorting, section 3.2.5. For Local-NAS, the weighted sum is always used.

3.3.1 Selection

As only the single best individual from the population is kept each generation,
the selection for mutation is very di↵erent from EA-NAS. Here, the single best is
mutated numerous times before each of the new mutated solutions are evaluated
for fitness. Both the mutation operator and the evaluation is exactly the same
as for EA-NAS.

3.3.2 Elitism

The multi-objective sorting is not usable with Hill-climbing as there is no diversity
to maintain. The weighted sum sorting with overfit penalty described in section
3.2.5 is always used here. The single best performer revield from the sort is kept
for the next generation.

3.4 Pattern-NAS

Pattern-NAS is vastly di↵erent from the two aforementioned experiments found
in sections 3.2 and 3.3. This is largely due to the di↵erence in representation.
EA-NAS and Local-NAS uses a very direct representation similar to the pheno-
type as described in section 3.2.1. Pattern-NAS on the other hand uses a meta
representation of the EA-NAS/Local-NAS representation. This new represen-
tation, described in section 3.4.1 causes many changes to the core evolutionary
algorithm.

3.4. PATTERN-NAS 45

Figure 3.5: UML diagram of the Pattern-NAS experiment.

46 CHAPTER 3. ARCHITECTURE

3.4.1 Representation

The representation of Pattern-NAS consists of many smaller patterns represented
by graphs. A pattern is a DAG in the same way that the EA-NAS and Local-NAS
representation are DAGs. There is a few key di↵erences:

1 The Pattern DAGs may contain at most 4 operations.

2 All operations within a Pattern DAG have to be either 1-dimensional or
2-Dimensional operations. Cannot consist of both.

3 No sub-graph can be inserted into a Pattern.

4 Patterns may have disconnected nodes as seen in Pattern 2 and 3 of figure
3.6

3.4.2 Initialization

Each pattern is initialized by first selection what proportion of the population will
be 2D patterns (i.e. Conv2D or Pooling operations). The rest of the population
will become 1D patterns (Dense). Then, the patterns will be randomly assigned
operations. The operations are connected together with a random number of
connections in the range 0-4. All though these connections are set randomly, too
much randomness can cause the graphs to be cyclic. Constraints has been added
to prevent this.

3.4.3 Joining Patterns

Although the Pattern representation supports training by it self, any pattern
would be too small to learn a complex dataset. The patterns therefore have to
be combined into a larger EA-NAS genotype before training commences. There
are two methods of joining patterns, one which tries to place each pattern to
their optimal position and one based on randomness. Before training, one net-
work is joined using the optimal position technique and the rest is joined using
randomness.

For joining optimally, the EA-NAS genotype is build using only the best per-
forming patterns in the population. When the best performing of the population
has been selected, each pattern must also know where it’s commonly used and
where it fits best within a neural network. This is important for the weights not
to be too badly fitted.

3.4. PATTERN-NAS 47

The placement is measured by a normalized distance metric. This metric
is a number between 0 - 1 which describes the distance from the input node
to the start of the pattern normalized on the critical path through the neural
network. This metric is stored along side the result for each training session.
Since each training session will result in its own neural network weights, one can
use the distance metric in combination with a pretrained set of weights. This
configuration is selected upon the joining optimally phase.

Joining randomly starts of by creating an empty EA-NAS genotype. This
genotype is incrementally filled with patterns. A fully joined EA-NAS genotype
is defined as one that has either met the user defined limit in size or contains all
patterns in the population.

After using any of the two mentioned combination methods, the patterns
must be connected together to create the bigger EA-NAS DAG. For joining two
patterns, the output nodes of one patterns are directly connected to the input
nodes of the next pattern. This creates a sequential connection between two
patterns. Since patterns can both have multiple inputs and multiple outputs,
the inputs and outputs of the two patterns are joined randomly. The number of
connections created will match the larger number of either number of inputs or
number of outputs. This process is visualized in figure 3.6.

3.4.4 Mutation

There are four mutation operators for mutating the Pattern-NAS system. As with
EA-NAS and Local-NAS, these are primitive operations for a directed acyclic
graph.

Insert Adds a node to the graph in a random order. A connection may also be
set.

Remove Removes a node in the graph and any connections it may include.

Connect Adds a connection between two nodes, adhering to the positional con-
straints that keeps the graph acylic.

Swap Replaces one op with a new other op. This removes all weights that could
have been transferred with transfer learning.

These mutation operators are only conditionally available. If number of nodes
in a pattern is at minimum, the remove operation is disabled. Similarly, if the
number of nodes in the pattern is at maximum, the insert is disabled. Maximum

48 CHAPTER 3. ARCHITECTURE

(a) Pattern-NAS genotypes

(b) Patterns joined together into a EA-NAS genotype

Figure 3.6: Pattern combination method. The three patterns shown in a are
joined together in a sequential manner depicted in b. Whole arrows show con-
nections while in-going striped arrows shows input nodes and striped out-going
arrows show output nodes. The green arrows in b represent the new connection
made between the patterns.

3.5. NAS FRONT-END 49

number of connections disables the ”Connect” operator. Swap is always allowed.
Note that there is no ”remove connection” operator. This is because ”remove”
operator will clean up connections when removing the node, making the pattern
disconnected. All of the available operators have the same probability of being
selected.

3.4.5 Crossover

The Pattern-NAS crossover operator is based on the common ”striped” crossover
operator described in section 2.1.1. To apply this, one of the two predecessor
patterns selected for cross over is selected as ”main”. The process starts with
taking every other node from each of the patterns and applying them to a new
empty successor pattern. The pattern then gets connected using the connection
pattern found in the ”main” pattern. The size of the main pattern is kept. If
the ”non-main” pattern is larger, the extra nodes will be discarded. Similarly, if
the ”non-main” pattern is smaller, more nodes from the ”main” pattern will be
added into the new successor.

3.4.6 Fitness Calculation, Evaluation and Elitism

The fitness step for Pattern-NAS uses the training loop described in section 3.1.
Before this the training can start, patterns must be joined using the joining
method found in section 3.4.3. When these to steps are complete, the training
loop will run until convergence for all the combined networks.

Since the results achieved from the training loop are for multiple patterns as
a collective, the patterns must also share the results achieved. It’s critical that
all patterns are included in multiple training sessions by being joined in multiple
networks. If not, the evaluation step will fail due to multiple patterns having the
exact same performance. The evaluation method uses the weighted sum function
described in 3.2.5. The fitness can now come from multiple training sessions. The
best performing training session a pattern was included in is used to evaluate it.
When the Pattern-NAS search finishes, the best joined EA-NAS model will be
returned.

3.5 NAS front-end

A view was created to follow the progress of the NAS searches live. This view is
a single-page application for the web browser built using the Vue.js framework in

50 CHAPTER 3. ARCHITECTURE

Figure 3.7: Screenshot of NAS Front-end showing detail view of one of the in-
dividuals in the population. The website can be accessed at https://ea-nas.
firebaseapp.com

https://ea-nas.firebaseapp.com
https://ea-nas.firebaseapp.com

3.5. NAS FRONT-END 51

combination with semantic UI. A Firebase based back-end server was also created
to store the data for use with the view.

The NAS search uploads it’s progress to Firebase on certain checkpoints
within the application. If possible, a generated image of the Keras model is also
uploaded for debugging purposes. What the algorithm creates, what changes it
does and what works is important. The website is updated automatically when
any new data becomes available through the Firebase realtime database.

The view displays overview data on the main page including image of the neu-
ral network, the current validation accuracy, size of the genotype and how many
epochs the phenotype has been trained for. When clicking on one of the indi-
viduals, a detail side panel appears with more information like plots of training-,
validation- and test accuracy, loss and a log of all mutations and crossovers that
have been applied to this genotype.

52 CHAPTER 3. ARCHITECTURE

Chapter 4

Experimental Plans and
Setups

Out of the three systems described in chapter 3, EA-NAS is the main experiment.
Multiple di↵erent sorting algorithms will be tested against the weighted sum sort
described in section 3.2.5. Can a sorting algorithm maintain diversity in the
population of neural network genotypes? Further, is using a population fast at
all? When only optimizing a single architecture, may changes converge faster
than when optimizing a population of architectures? When using transfer learning
with evolution, the weights are evolved with the architecture using both evolution
and gradient decent. Can transfer learning speed up NAS? How much transfer
learning should be applied? Experiments for these questions will be described in
this chapter. First, the plans and purpose for each experiment will be discussed,
then the specifics of each experiment. The results will be evaluated in chapter 5.

4.1 Why Evolve Neural Network Architectures

The idea behind using evolution to generate good neural network architectures
is incrementally manipulating the architecture to improve upon it over time.
Adding a layer to the architecture of a neural network may or may not yield
better predictions from the neural network. Since there is no exact science for
composing the architectures of neural networks [18], an optimization algorithm
like evolution is a good fit.

53

54 CHAPTER 4. EXPERIMENTAL PLANS AND SETUPS

The Lottery Ticket Hypothesis. “A randomly-initialized, dense neural
network contains a subnetwork that is initialized such that - when trained in
isolation - it can match the test accuracy of the original network after training
for at most the same number of iterations.”
- Frankle, J. and Carbin, M. (2019) [16]

Reviewing the lottery ticket hypothesis which was also proven [16]. It’s clear
that pruning is an important step when creating a neural network to keep it from
being over-parameterized or too large. As reviewed in chapter 2.3.4, Proxyless-
NAS [6] gets their exemplary results from taking an over-parameterized neural
network and pruning it, following the lottery ticket hypothesis. They do not
however explore as the over-parameterized network architecture used is static.

Can an evolutionary algorithm find a neural network architecture that is
the subnetwork described in the lottery ticket hypothesis? The evolutionary
algorithm proposed in this thesis may both prune and add to a neural network
architecture, giving it the tools needed to find the subnetwork. Also to note, the
lottery ticket hypothesis is only applied to ”Dense” neural network architectures
and not convolutional which the contribution of this thesis aims to optimize.

4.2 Experimental Plans

The experiment for this thesis is exploring how a traditional evolutionary algo-
rithm fairs when applied to neural architecture search. There are many factors
that can improve upon the performance of EA’s. The representation is key– and
a di↵erent representation for the EA will also be tested with Pattern-NAS. How
these algorithms considers performance is controlled by sorting and elitism com-
ponents. Multiple sorting techniques will be experimented with. There are four
experiments planned. The experimental plan will go through each experiment
and what the experiments aims to answer.

• Experiment 1: Performance of a traditional evolutionary algorithm for
neural architecture search. How does di↵erent sorting algorithms a↵ect
performance? What are the best objectives for a multi-objective sorting
algorithm when applied to NAS? What objectives will maintain diversity
best? Is diversity required at all to achieve top accuracy results?

• Experiment 2: Hill climbing vs evolution, only changing a single genotype
vs changing an entire population. Will hill climbing converge on a better
architecture faster than evolution?

• Experiment 3: To truly find the di↵erences in using or not using transfer

4.2. EXPERIMENTAL PLANS 55

learning can only be found by isolating transfer learning during the search.
Experiment 3 will take the exact baseline experimental setup and turn
o↵ transfer learning. What are the e↵ects of using transfer learning with
evolution-based neural architecture search?

• Experiment 4: Experimenting with another representation and explore
performance di↵erences. This more abstract representation will have less
weights to use for transfer learning. Can knowledge be transferred when
trained in multiple neural networks?

4.2.1 Experiment 1: Evaluating and Comparing Neural
Networks

This experiment is based on testing if a traditional evolutionary algorithm based
on exploration will perform well on neural architecture search. Using a direct
representation means doing mutations on the phenotype. The genotype repre-
sentation used in EA-NAS is not a direct representation. It’s however very similar
in structure to the phenotype. While a clever representation like the one used
in [24] can give a faster search, it can also make the algorithm explore less and
exploit more.

Using local search within evolutionary algorithms is quite common to enhance
performance. Local searching typically hinders exploration while exploiting more
by for example changing how the mutation and crossover operators work. These
types changes might include doing specific optimization to the representation
that is known to give better results. Since there is no exact science for how to
build a neural network architecture optimally [18], local search is left out of all
of the evolution based experiments.

One of the key goals of this experiment is to see if an exploration based
evolutionary algorithm is viable for neural architecture search. A viable NAS
algorithm have to find a well performing architecture in a short amount of time.

How Does Di↵erent Sorting Algorithms A↵ect Performance

For experimenting with sorting algorithms, there are three di↵erent configurations
used in combination with EA-NAS. The first, experiment 1.1 is the weighted sum
scoring described in section 3.2.5. The two others, experiments 1.2 and 1.3 are
based on the multi-objective optimization algorithm NSGA-II [13] described in
section 3.2.5, with a very di↵erent set of objectives.

56 CHAPTER 4. EXPERIMENTAL PLANS AND SETUPS

The usual measure of how well a neural network performs is usually measured
by the validation- or test accuracy. Is prediction accuracy the best measure of
performance for a neural network or are there other factors that also describes the
network? This experiment aims to compare di↵erent measures of performance
for neural networks through multi-objective optimization.

Experiment 1.1: Baseline

This experiment will test sorting based on test-accuracy and overfit of the geno-
type as described in chapter 3.2.5. Here, the test-accuracy is maximized while
the overfitting is minimized. The test or validation accuracy a widely used met-
ric for both evolution-based and reinforcement learning based NAS algorithms
[26; 31; 24; 6; 39; 5] and should therefore be part of the series of experiments
for this thesis. Through the preliminary results, it was apparent that the most
overfitted in the population always prevailed when only sorting on the test accu-
racy. The algorithm got stuck on a local maxima. The overfit score was therefore
added with improved results. This will be compared against the following two
sorting experiments:

Experiment 1.2: Knowledge Sort

The first multi-objective sorting experiment is based on the performance of each
individual classifier task. This means the score of each class airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck of the CIFAR-10 dataset will be
individually scored and maximized. The scores used are the F1-scores gotten
from the classification report, described in chapter 3.1.

The goal here is to see if diversity can be measured in the knowledge held
within a neural network instead of measuring something like structure. Here,
transfer learning becomes even more important as evolution aims to pass good
features through the generations. This is the foundation of any evolutionary
algorithm.

Experiment 1.3: Structure Sort

Sorting based on architectural properties aims to optimize the architecture faster
by focusing on well known layer-patterns. The objectives set here based on
studying the state-of-the-art networks such as [19; 25; 39] and examples listed
on the Keras website [7]. There are some clear patterns that are repeated and
should be considered. The objectives are:

4.2. EXPERIMENTAL PLANS 57

• Test accuracy is a required metric as this is the only real indicator of a
good neural network architecture.

• Max branching A branch is where the outputs of one layer in the Keras
model is used as input for two other layers. At the genotype’s thickest
point, how many branches are there? This objective is minimized.

• Convolution count counts how many convolutional nodes are included in
the genotype. This objective is maximized

• Double pooling, Pooling layers may be placed in sequence. This is un-
desirable and is therefore minimized. What is desired is patterns of con-
volutional layers followed by Pooling layers as it is seen quite a lot in well
performing CIFAR-10 examples.

• Overall size, the overall size of the network should be minimized. This
objective contradicts the ”convolution count” objective. Minimizing the
overall size of the network is important as described for experiment 1.1,
Baseline.

Two more objectives were considered but left out. An objective to control how
many one-dimensional Dense layers are included in the genotype could be a good
objective. There was little evidence of either good results with few dense layers
or good results with many dense layers in the preliminary results. The other ob-
jective considered was based on searching through the genotype for convolution-
pooling sequences. These patterns are desired as they are found in many of the
state-of-the-art neural architectures [19; 25; 39; 35], and with enough exploration,
the evolutionary algorithm will figure that out. The number of objectives should
be minimized as this will make the frontiers easier to form.

Using the double pooling objective may also backfire as diversity is measured
by di↵erences. If the other objectives are the common denominators and double
pooling is the di↵erence, networks with double pooling will be kept to maintain
diversity. This objective might have been better as a constraint on the mutation
operator.

4.2.2 Experiment 2: Evaluate Performance Di↵erence In
Hill Climb vs Evolution

One of the main traits of evolutionary algorithms is that they are based on making
small changes to the genotype that are fast to evaluate. This is not the case with
NAS. Evaluation is slow. Small changes therefore needs to be precise to achieve a

58 CHAPTER 4. EXPERIMENTAL PLANS AND SETUPS

good architecture fast. The Local-NAS experiment, where evolution is replaced
with hill climbing changes only a single genotype multiple times per generation.

Here, each change is a mutation to the best of the previous generation.
Changes will be much more precise. Multiple changes are made and evaluated in
parallel and only the ”best” change is kept. This also means no diversity metric
is required. The weighted sum sorting as described in chapter 3.2.5 will be used
for this experiment. The sorting is exactly the same as used in Experiment 1.1,
Baseline.

Although there may be a speedup in making correct changes to the architec-
ture, Hill climbing local search is well known for getting stuck in local minimas
or plateaus. This is exactly why maintaining diversity in the population is im-
portant for evolutionary algorithms. This experiment will test how stability and
performance of the search is impacted by having a population of networks as
opposed to a single network to optimize.

4.2.3 Experiment 3: Importance of Transfer Learning

The main contributions of this thesis is using transfer learning in neural architec-
ture search. As mentioned earlier in this chapter, passing good features through
the generations and improving upon them is the foundation of evolution. The
survivors of each generation should be as good or better than the previous gen-
eration. For neural networks, the architecture is one of these features. A good
architecture should be passed through the generations.

The architecture of a neural network is worthless without the proper set of
weights. These weights represent the knowledge within each neural network,
a feature that must be passed through the generations as it’s key for a neural
network to perform. This experiment will compare transfer learning baseline de-
scribed above in section 4.2.1 to an identical experiment without transfer learning.

4.2.4 Experiment 4: Test Performance Di↵erences With
Representation

Genotype representation matters. When the fitness calculation per generation
may take hours to complete it does not matter whether the rest of the algorithm
runs in milliseconds or nanoseconds. The representation may however change
how many generations is required to find a good architecture. An alternative
representation is tested which is less similar to the phenotype. The Pattern-NAS
representation described in chapter 3.4.1 will be compared to the EA-NAS repre-

4.3. EXPERIMENTAL SETUPS 59

sentation. The Pattern-NAS representation is quite similar to the representation
used with DeepCoEvolution [26] described in chapter 2.3.2.

The idea behind the representation is to use knowledge from other human
created neural networks [19; 25; 35] which have repeating patterns that is known
to perform well. The algorithm will have the freedom to evolve how these patterns
are designed both in topology and nodetypes. Each pattern will also know their
own preferred position in the network.

There is a clear trade-o↵ in transfer learning when using a less direct repre-
sentation. Because the patterns needs to be joined, only the weights within each
pattern can be used with transfer learning. The rest of the trained weights of the
predecessor will be lost. How much knowledge should be transferred from the
previous generation? What are the e↵ects of joining weights trained in separate
neural networks?

4.3 Experimental Setups

For the experiments to be comparable, they have to have the same amount of
time to find good architectures. Each experiment gets 72 hours to find a good
neural architecture.. Over the course of these 72 hours, each experiment will have
access to 12 GPUs. This gives each experiment 864 GPU hours.

The dataset used for the experiments is the open CIFAR-10 [20] dataset. It’s
is used in many of the experiments found in the state-of-the-art section 2.3. This
dataset was selected as its common to use as a benchmark for image classifiers.
Using the ImageNet dataset[14] was also a possibility but was discarded due
to the immense compute power used for searching in the state-of-the-art NAS
algorithms [6; 24; 39]. That amount of compute was not available while writing
this thesis.

Please note:
All configurations used for the experiment can be found on the github repo for this
thesis: https://github.com/MagnusPoppe/NAS/tree/master/configurations/
cifar-10/experiments

https://github.com/MagnusPoppe/NAS/tree/master/configurations/cifar-10/experiments
https://github.com/MagnusPoppe/NAS/tree/master/configurations/cifar-10/experiments

60 CHAPTER 4. EXPERIMENTAL PLANS AND SETUPS

P
a
ra

m
et
er

1
.1

1
.2

1
.3

2
3

4
D
at
as
et

C
IF
A
R
-1
0

C
IF
A
R
-1
0

C
IF
A
R
-1
0

C
IF
A
R
-1
0

C
IF
A
R
-1
0

C
IF
A
R
-1
0

T
ra
in
in
g
sa
m
p
le
s

50
00
0

50
00
0

50
00
0

50
00
0

50
00
0

50
00
0

V
al
id
at
io
n
sa
m
p
le
s

0
0

0
0

0
0

T
es
t
sa
m
p
le
s

10
00
0

10
00
0

10
00
0

10
00
0

10
00
0

10
00
0

E
p
oc
h
s

10
10

10
50

10
30

B
at
ch

si
ze

90
90

90
90

90
90

L
ea
rn
in
g
ra
te

0.
00
01

0.
00
01

0.
00
01

0.
00
01

0.
00
01

0.
00
01

T
ra
in

u
nt
il
co
nv

er
ge
n
ce

O
F
F

O
F
F

O
F
F

O
F
F

O
F
F

O
F
F

S
ca
le

ep
oc
h
s
by

la
ye
rs

O
F
F

O
F
F

O
F
F

O
F
F

O
F
F

O
F
F

U
se

T
ra
n
sf
er

L
ea
rn
in
g

O
N

O
N

O
N

O
N

O
F
F

O
N

P
op

u
la
ti
on

si
ze

8
16

8
11

8
12

G
en
er
at
io
n
s
ev
ol
ve
d

15
0

15
0

15
0

50
15
0

50
U
se

m
u
lt
i-
ob

je
ct
iv
e
so
rt

O
N

O
N

O
N

O
F
F

O
F
F

O
N

S
or
t
by

ac
cu
ra
cy

O
N

O
F
F

O
F
F

O
F
F

O
F
F

O
N

S
or
t
by

cl
as
si
fi
er

ta
sk
s

O
F
F

O
N

O
F
F

O
F
F

O
F
F

O
F
F

S
or
t
by

ar
ch
it
ec
tu
re

O
F
F

O
F
F

O
N

O
F
F

O
F
F

O
F
F

M
in

m
u
ta
ti
on

s
7

7
7

7
7

3
M
ax

m
u
ta
ti
on

s
14

14
14

14
14

8

T
ab

le
4.
1:

P
ar
am

et
er
s
u
se
d
fo
r
al
l
ex
p
er
im

en
ts
.
T
h
e
ta
b
le

h
ea
d
er
s
ar
e
ex
p
er
im

en
t
nu

m
b
er
s.

4.3. EXPERIMENTAL SETUPS 61

4.3.1 Experiment 1: Elistism Sorting

The first experiment is to test how well a traditional evolutionary algorithm
performs for neural architecture search. Below is a table of all parameters used by
the di↵erent sorting experiments. There are three categories of parameters. First
category describes the dataset used, the second category describes parameters
for training the neural network phenotypes and the third category describes the
parameters set for evolution. Please note that the only di↵erences are within the
“sort by” parameters and the population size.

For EA-NAS, the population size is increased by 50% after mutations are
complete. Its important to keep occupancy of the GPUs at maximum during
the fitness calculation step to run the algorithm as fast as possible. Meaning a
population size of 8 · 3

2 = 12 neural networks training concurrently, maximizing
occupancy. There are variations in the architectures which makes some networks
train faster than others, so perfect occupancy is not possible. The workloads are
sorted so that the biggest loads are queued first. For when the population size is
bigger than the amount of GPUs available, smaller loads will be queued on free
gpus when some other workloads finishes. Some GPUs will then only see one
large workload while others might run multiple smaller workloads in the same
amount of time, maximizing occupancy.

4.3.2 Experiment 2: Hill Climb vs. Evolution

The parameters used with experiment 2 is based on being comparable to base-
line, depicted as accuracy sort in table 4.1. The parameters are mostly the same.
Note that to maximize occupancy, the population size is di↵erent due to how
populations are built in a local search algorithm as compared to evolution. Local
search doesn’t use population and only holds one complete solution at a time.
Population size in this context means the number of mutations being performed
to the current solution held by the local search algorithm. Every mutated solu-
tion will also be evaluated in the fitness step. Occupancy of the GPUs should
therefore be considered with setting the population size. Here, 11 in population
size means 11 mutated predecessors plus the previous best trained on 12 GPUs
simultaneously per generation. This is maximum occupancy.

4.3.3 Experiment 3: Turning O↵ Transfer Learning

This experiment is an exact copy of the Baseline experiment 1.1 described in
section 4.1, only without transfer learning. Continuous training will however

62 CHAPTER 4. EXPERIMENTAL PLANS AND SETUPS

occur meaning for each generation if a neural network survives and is not mutated,
training will continue with the weights from the previous training session. This is
the same behaviour as with Baseline experiment 1.1. If a mutation or crossover
operation occurs, transfer learning will not be used. The weights of the newly
mutated network will have its weights randomly initialized.

4.3.4 Experiment 4: Using The Pattern Representation

Experiment 4 is based on running the Pattern-NAS system. There are a few key
di↵erences for occupancy and population size compared to the EA-NAS experi-
ment. The number of networks trained will always at max occupancy. For a 12
GPU setup, the patterns will be joined into at least 12 networks. The population
size parameter here describes how many patterns are in use at any time. Sim-
ilarly, the Min and Max size replaces the ”initialization min/max mutations”.
Min- and max size represents the number of patterns a phenotype can be joined
by. The largest phenotype for this experiment is 8 ⇤ 4 = 32 layers, excluding
regularizers. Remember from section 3.4.1, a pattern may contain between 2 and
4 nodes.

Chapter 5

Results and Discussion

This chapter evaluates the results achieved by each of the experiments described
in chapter 4. First some remarks about the results to properly understand the
context. Raw results follows with evaluation. The results are discussed in the last
section.

5.1 About The Experimental Results

The number of generations reached for each experiment must be discussed before
diving into the results. Although all simulations runs on the same number of
compute nodes with the same number and models of attached GPUs for the exact
same amount of time, there will be large di↵erences in number of generations
reached by each experiment. There are some factors that will determine the
number of generations reached:

• The size of each neural network makes a huge di↵erence in training time and
evaluation time. This is especially a factor with Pattern-NAS, experiment
2 where the average size of each neural network generated is much larger
than what EA-NAS produces.

• The di↵erent types of layers has vastly di↵erent backpropagation compute
times. A dense layer is much faster to compute backpropagation for than
a convolutional layer.

• The population size is not the same for every experiment. Most of the
experiments will have a population size that equals the number of compute

63

64 CHAPTER 5. RESULTS AND DISCUSSION

nodes available with the exception of Experiment 1.2. Experiment 1.2 has
a population size double that of the other EA-NAS based experiments.
Experiment 4 can with a high probability create a few more jobs than the
compute nodes available.

• Exceeding the GPU memory limit. This occurred in all of the experiments
at least once. Exceeding the GPU memory occurs when the neural network
is so big that it uses more than the 16 GB of vRAM available on the Nvidia
P100 GPUs used for these experiments. GPU Memory has to be dumped
to system memory when this problem occurs.

Also to note, the fitness step, as described in chapter 3.1 has a runtime of the
critical path of all jobs. The critical path known from job-shop scheduling prob-
lems is the longest overall timed job. Measures was taken to prevent this for
experiments where there are more jobs than compute nodes. This is the case
with experiment 1.2 Knowledge sort. For the rest of the job, the measures taken
are irrelevant due to every job always being started at once. The job that takes
the longest time to finish will always be the critical path.

Because the number of generations reached varies, the x-axis on the di↵erent
plots are often depicted in hours making all of the experiments comparable. The
common denominator is 72 hours of runtime.

Please note: All plots of the results were created using a Jupyter notebook
found at: https://github.com/MagnusPoppe/NAS/blob/master/LAB/evaluation.
ipynb. As mentioned before, multiple di↵erent configurations was experimented
with to compare what methods works best. There are therefore multiple experi-
ments to plot. Table 5.1 describes the naming translation.

https://github.com/MagnusPoppe/NAS/blob/master/LAB/evaluation.ipynb
https://github.com/MagnusPoppe/NAS/blob/master/LAB/evaluation.ipynb

5.1. ABOUT THE EXPERIMENTAL RESULTS 65

Baseline Name of experiment 1.1 which All other exper-
iments are compared to. This experiment uses
weighted sum sorting.

Knowledge
Sort

Experiment 1.2, knowledge sort uses Multi-
objective-optimization with knowledge based ob-
jectives as described in section 4.2.1.

Structure
Sort

Experiment 1.2, structure sort uses Multi-
objective-optimization with structure based ob-
jectives for optimizing neural architecture as de-
scribed in section 4.2.1.

Local Experiment 2, the hill climb local search com-
parison found in section 4.2.2

Baseline w/o
TL

Experiment 3 (section 4.2.3), turning transfer
learning o↵ for the baseline experiment.

Patterns Experiment 4 (section 4.2.4), experimenting with
a di↵erent, more abstract representation.

Table 5.1: The naming scheme of the individual experiments for the results.

66 CHAPTER 5. RESULTS AND DISCUSSION

S
y
st
em

%
er

ro
r

#
P
a
ra

m
et
er

s
G
P
U
-T

im
e

A
u
g
m
en

te
d

E
xp

1.
1:

B
as
el
in
e

13
.5
3

2,
05
1,
56
4

86
4h

N
o

E
xp

1.
2:

K
n
ow

le
d
ge

so
rt

14
.2
9

1,
57
3,
25
2

86
4h

N
o

E
xp

1.
3:

S
tr
u
ct
u
re

so
rt

11
.7
5

2,
91
3,
06
6

86
4h

N
o

E
xp

2:
L
oc
al

19
.8
2

23
,9
55
,8
56

86
4h

N
o

E
xp

3:
B
as
el
in
e
w
/o

T
L

16
.8
0

2,
03
3,
25
2

86
4h

N
o

E
xp

4:
P
at
te
rn
s

19
.9
5

77
,3
69
,4
78

86
4h

N
o

cu
d
a-
co
nv

n
et

[C
if
]

18
.0
0

N
ot

D
is
cl
os
ed

N
ot

A
p
p
li
ca
b
le

N
o

D
ee
p
C
oE

vo
lu
ti
on

[2
6]

7.
30

N
ot

D
is
cl
os
ed

N
ot

D
is
cl
os
ed

Y
es

H
ie
ra
rc
h
ic
al

R
ep

[2
4]

3.
75

N
ot

D
is
cl
os
ed

72
00
h

Y
es

N
as
N
et

[3
9]

2.
40

27
,6
00
,0
00

48
00
0h

Y
es

E
N
A
S
[3
0]

2.
89

4,
60
0,
00
0

8h
Y
es

P
ro
xy

le
ss
N
A
S
[6
]

2.
08

5,
70
0,
00
0

N
ot

D
is
cl
os
ed

N
ot

D
is
cl
os
ed

T
ab

le
5.
2:

C
om

p
ar
is
on

ta
b
le

b
et
w
ee
n
th
e
ex
p
er
im

en
ts
,
b
as
el
in
e
an

d
st
at
e
of

th
e
ar
t
n
eu
ra
l
ar
ch
it
ec
tu
re

se
ar
ch

al
go
ri
th
m
s.

T
h
e
d
i↵
er
en
t
ca
te
go
ri
es

ar
e
se
p
ar
at
ed

w
it
h
a
h
or
iz
on

ta
l
li
n
e,

w
h
er
e
th
e
fi
rs
t
ca
te
go
ry

is
th
e
re
su
lt
s

fr
om

th
es
e
ex
p
er
im

en
ts
,
th
e
se
co
n
d
ca
te
go
ry

is
b
as
el
in
e
sc
or
es

fr
om

C
IF
A
R
-1
0
w
eb

si
te

[C
if
]
an

d
th
e
th
ir
d
ca
te
go
ry

is
st
at
e-
of
-t
h
e-
ar
t
n
eu
ra
l
ar
ch
it
ec
tu
re

se
ar
ch

al
go
ri
th
m
s.

5.2. EXPERIMENTAL RESULTS 67

5.2 Experimental Results

The results from figure 5.3 visualizes top prediction accuracy achieved for ev-
ery experiment. Table 5.2 compares these results to both the baseline from the
CIFAR-10 website called cuda-convnet and studies from the literature review.
Looking at the table, the results achieved by the systems proposed in this the-
sis is far from beating the state-of-the-art neural architecture search algorithms.
These are not comparable to the proposed system due to dataset augmenta-
tion which is further discussed in section 5.4.4. Comparable results are however
found in the human expert designed neural network cuda-convnet which is as
mentioned above the CIFAR-10 baseline. Here, all EA-NAS based experiments
(1 and 3) outperforms cuda-convnet, while Pattern-NAS and Local-NAS based
experiments (2 and 4) performs worse. Structure sort is the strongest performer
of the experiments run for this thesis with the top score at 88.25% accuracy on
the test set which is a 6.25% improvement over the CIFAR-10 baseline. A deci-
sive best performer of the experiments cannot be proved before multiple runs of
each experiment has been performed as discussed in section 5.4. From figure 5.1b
we can see that the experiments are fairly stable at the 75% � 85% range. The
pattern experiment scores decreased over time, while the rest of the experiments
improved but only slightly from what the initial population achieved.

The parameters of the phenotype models for EA-NAS is much smaller than
the state-of-the-art neural architecture search algorithms seen in table 5.2. The
all of the EA-NAS top generated networks from experiment 1 and 3 were under
half the size of the smallest state-of-the-art network. This is positive as with
fewer parameters, the networks are both faster to train and run inference on.
These networks may however be too small to truly generalize. This might have
constrained the score. For the experiment 2, Local and experiment 4, Patterns
the model sizes were very di↵erent. The local experiment had exactly the same
parameters as experiment 1 and 3 for network sizes and probability distribution
for selecting di↵erent node/layer types. It still ended up with the giant model.
The Pattern experiment used an entirely di↵erent sizing of each neural network
which led to the truly gigantic size of the top individual through the generations.

72 hours of GPU time is much less than the state-of-the-art. This is with the
exception of ENAS, which only used 8 hours on the same dataset. As discussed
in the state-of-the-art, the search space of ENAS is really restricted - leading
to much less exploration and also less GPU time. When comparing against
Hierarchical representations for E�cient Neural Architecture Search [24], the
Baseline experiment used only 12% of the GPU hours and when comparing to
NasNet [39], only 1.8% of the GPU hours. The scope of these searches is then
much larger than what was possible with the experiments of this thesis.

68 CHAPTER 5. RESULTS AND DISCUSSION

(a) This is the best prediction scores reached for each of the experiments. The score is

measured in prediction accuracy on the test set of CIFAR-10. The text below each bar

describes what experiment and which specific individual holds the score and at what

generation in the evolution this score was achieved.

(b) Timeline of test set accuracies reached for the 72 hours of running for all experiments

Figure 5.1: Overall accuracies on the CIFAR-10 test set displayed in two formats.

5.2. EXPERIMENTAL RESULTS 69

Figure 5.2: Comparing the minimum, average and maximum accuracies reached
on the test set over hours of runtime

70 CHAPTER 5. RESULTS AND DISCUSSION

5.3 Evaluation

This section evaluates each of the experiments in turn, starting with experiment
1, sorting where performance and architectural proprieties are in focus to see
whether the objectives can maintain diversity and a stable performance improve-
ment over time. Further we will look at the significance of diversity through
the local experiment 2 before going through a comparison of baseline with and
without transfer learning. This section ends with an evaluation of the results of
transfer learning using a di↵erent representation through experiment 4.

5.3.1 Experiment 1: Evaluating Sorting Techniques

All three of the sorting techniques tested scored well above the cuda-convnet.
Although all of these experiments performed well, the stability in the search
was somewhat di↵erent between them. From figure 5.3 we can see that for the
Baseline and Knowledge Sort experiments have a more stable increase in both
the minimum, average and maximum test accuracies compared to the Structure
sort experiment 1.3. This is seen through the distance between the lines. For
Baseline and Knowledge sort, the lines grows closer and closer with some spikes.
Structure sort on the other hand hold a much higher distance between them.
This might be a sign of diversity in the population. The minimum of Structure
sort is the same individual from hour 11 to hour 59. This genotype is scoring
high on the architectural objectives but not on the accuracy objectives. Scoring
the worst in the accuracy category also yields a high diversity score which makes
this network desirable.

Architectural Properties

The neural architectures generated by any of the EA-NAS based experiments
starts out small. As seen in figure 5.3b, almost all of the addition done to these
initially small architectures are convolutional nodes. The average convolutional
nodes used grows almost immediatly to above 60% of the nodes in use. This
is common for the three experiments. The algorithm finds by it self that using
convolutional layers gives the best results for the CIFAR-10 dataset. Similarly,
pooling layers are kept at a minimum but are in use for all experiments. Dense
layers however remain completely unused after just a one third of search time.
The dense layers are further discussed in section 5.4.3.

From figure 5.3a we can see the number of nodes each individual genotype
holds per generation. Each dot is the size of one individual genotype. Diversity

5.3. EVALUATION 71

(a) Each single blue dot represents the number of nodes held by a single genotype at

one point in time.

(b) Node type distribution used by the evolutionary algorithm over time. Green is

Structure sort, Orange is Knowledge sort and Blue is Baseline. The hour axis is shared

for all meaning that the sum of a particular hour across all three plots is 1 as each hour

represents the average.

Figure 5.3: These two plots show how the population changes in stucture in terms
of size and node types over time.

72 CHAPTER 5. RESULTS AND DISCUSSION

in sizing for Baseline, Knowledge sort and Baseline w/o TL are fairly similar
with each of them growing over time. There is not much diversity in the sizing
of the genotypes as there is little spread of the blue dots. Structure sort on the
other and has an objective to minimize the size of the genotypes. This objective
is being diversified as the spread of the blue dots grows over time. There is then
high diversity in the sizing of the population. Similarly, the use of pooling nodes
is lower in the Structure sort experiment 1.3 than with any of the other EA-NAS
experiments. This is clearly shown in figure 5.3b. The same figure also shows
that the the usage of convolution nodes is maximized as compared with pooling
and dense node usage. The usage is however not much higher than with the other
sorting algorithms.

Using branches is also favored in all of the EA-NAS based experiments. All of
these experiments have a large factor of branching when compared to the overall
size of the network. The figure 5.4 shows the most branching individual in the
population for each generation along with the size of the same individual. From
the plot, the most branching in the population is very short and wide. At one
point in the ”baseline without transfer learning”, both the lines meet. This means
all of the nodes in the network are in parallel.

Sorting on Knowledge

The di↵erent classification classes was used as objectives in experiment 1.2, knowl-
edge sort. All of the individual classes in the CIFAR-10 dataset are plotted in
figure 5.5 for experiment 1. These plot shows the di↵erence between minimum
and maximum compared to average accuracy achieved per generation. When
comparing Baseline to Knowledge sort, there is a larger di↵erence in spacing be-
tween the minimum, maximum and average. This di↵erence is however minor.
This metric compared to just using test- or validation accuracy is the same in
terms of performance.

5.3.2 Experiment 2: Hill Climb Local Search Compared To
Evolution

This subsection evaluates some of the results connected to the ”Local” experiment
2. By looking at figure 5.6 it’s clear that at around hour 30, a poor decision was
made by the elitism. This decision was choosing a genotype which was less
overfitted, compromising on the test accuracy score. Local search only holds a
single genotype. All later discoveries made by the search was a↵ected by this. The
weighted sum (section 3.2.5) might be the wrong operator for this experiment.

5.3. EVALUATION 73

Figure 5.4: Branches within each neural network appear when the computational
graph is forked. Here, maximum branching, the widest point in the network is
measured for the single most branching individual in the population per gen-
eration. Blue line indicates number of branches while orange line indicates the
number of nodes held by the same individual.

74 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.5: This figure shows di↵erence in accuracies within each class for the
classifer tasks in CIFAR-10. For each of the plots, blue is minimum accuracy and
green is maximum accuracy. The orange line is average accuracy contained at 0.
Each line of dots represents a single generation.

5.3. EVALUATION 75

Figure 5.6: The performance of Local compared with Baseline.

This decision wouldn’t have been destructive if there had been more solutions
to mutate in the later generations. The Bad results that follows hour 30 are a
direct result of this. Comparing this to Baseline which uses the same function for
elitism - weighted sum as described in chapter 3.2.5 - the results of Baseline is
much more stable. These kinds of decisions has much less impact when holding
a population. It’s also apparent from figure 5.6 that baseline has a much more
stable search.

This really shows the value of holding a population when searching through
computationally expensive environments. None of the other experiments su↵ered
from this kind of bad decisions.

From figure 5.8c we can see that the training set accuracy for the best indi-
vidual of the population was much more unstable than what was seen in figure
5.8. This individual was also less overfitted than what has been previously seen
as shown by the distance from green dot representing test set accuracy and the
blue line representing training set accuracy.

76 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.7: Comparing the baseline to the baseline without transfer learning.
This plot shows the percentage of the population that is replaced per generation.
The X-axis is set to hours for comparability.

5.3. EVALUATION 77

5.3.3 Experiment 3: Turning O↵ Transfer Learning

When studying figure 5.7, the population exchange rate which describes how
many individuals in the population dies and are replaced by new o↵springs show
a clear decline when using transfer learning. New o↵springs have a much slimmer
chance of surviving without transfer learning due to the disadvantage of having
less training epochs when spawned. The new o↵spring phenotypes will then
compete with phenotypes that has been trained over many generations. This
might mean that good genotypes are discarded due to bad performance when in
reality they are not finished training. A solution to this is training each phenotype
(Keras model) for more epochs per generation. This would lead to much more
time spent on the fitness step. The transfer learning does in fact yield a speedup
in the fitness step per generation given that under-training is the problem.

Training is also more unstable when not using transfer learning. Figure 5.8a
plots the lifetime of the single best genotype and shows clearly that over time,
the training- and test accuracy stabilizes when using transfer learning. When
not using transfer learning, the training remains unstable throughout the gener-
ations. As seen by the black striped lines representing each mutation performed,
mutations also becomes less frequent over time. With improvements over time,
good mutations becomes harder to achieve. This is only the case when using
transfer learning and may be related to the point above, the non-transfer learn-
ing baseline individuals may be trained to little to prove their performance and
are therefore replaced with a new mutation.

5.3.4 Experiment 4: Using An Alternative Representation
With Patterns

The accuracy achieved by the neural networks generated by joining evolved pat-
terns was steady at 78-80% accuracy on the test set throughout the 72 hours.
The patterns used almost immediately shrunk down to 2 layers for the entire
population. When the patterns are that small, transfer learning will have very
little e↵ect on the training as this is no more e↵ective than randomly initializing
the neural networks.

Figure 5.9b shows how much accuracy is gained for each generation by training
on average. Both the baseline w/o TL experiment 3 and the Pattern experiment 4
has almost no changes in achieved accuracy per training session. For the di↵erent
variations of experiment 1, Knowledge- and Structure sort and baseline on the
other hand, the accuracy gained per session is low. This means less training is
required for the neural network to perform. From figure 5.9a we see that training

78 CHAPTER 5. RESULTS AND DISCUSSION

(a)

(b)

(c)

Figure 5.8: This plot shows the lifetime of the best individual seen. Blue line is
training set accuracy and green markers are test set accuracy. The black striped
lines represent each mutation added to the genotype.

5.3. EVALUATION 79

(a) Accuracies achieved over time on Training set

(b) This figure shows how much accuracy was gained for a training session, averaged

over the population for each generation. Decoding this, each point is the average

di↵erence in prediction accuracy between the first and last epoch of training for the

generation. The training set is used for this particular plot.

Figure 5.9

80 CHAPTER 5. RESULTS AND DISCUSSION

set accuracy is high throughout the training time, with fluctuations in the range
of [80%�100%]. Since we then know that accuracies are high for all experiments,
transfer learning is working. Less accuracy is lost for experiment 1.

Combining knowledge from di↵erent neural networks through patterns did
not work. When also looking at the average size of each pattern, they shrunk
down from an average of 3 nodes in the first generation to all containing the
minimum of 2 nodes after only a few hours of evolution. This has definitely had
an e↵ect on transfer learning as only weights within each pattern is transferred.
This is to few weights to make any di↵erence in transferring knowledge.

5.4 Discussion

The first and most obvious limitation of these experiments is that they are only
ran once. The systems proposed in this thesis are non-deterministic which means
one input may yield multiple outputs. There is a lot of random used in these
experiments, both with mutation operators and when generating the initial neural
network weights which makes the algorithm non-deterministic. Running the same
experiments multiple times would validate the results. As there was limited time
to do these experiments and limited capacity on the compute cluster used, i was
unable to do repeated runs of the same experiments. This means no conclusion
can be drawn by looking at any of these results.

5.4.1 Evaluating Neural Networks Based On Learning Tasks

Using the individual classifier tasks as the performance metric in experiment 1.2,
Knowledge sort gave similar or slightly worse scores than just using accuracies
on the test set. Observing figure 5.5, its apparent that all networks generated
performs quite similar on the di↵erent learning tasks. This might be CIFAR-
10 related as some classes are much harder to learn than others. Specifically,
the Cats, Horses and Dogs classes proves di�cult for the neural networks while
the rest got better scores. Could it be that given some specific data, the neural
networks with somewhat similar structure and similar amounts of training always
gives similar but not identical predictions? If so, this sorting metric is of no more
use than just having the test set accuracy as a single metric for performance.
This should be validated with a di↵erent dataset as the CIFAR-10 dataset gives
very similar results per class for all of the networks generated across all of the
experiments.

5.4. DISCUSSION 81

Scalability

A neural network classifier’s architecture is good if it performs well over all classes.
When using the classifier objectives, the crowding distance give diversity on the
learned knowledge of each neural network. This is what experiment 1.2, Knowl-
edge sort aims to achieve. This is however not a scalable metric. The more
objectives used, the harder domination is to achieve. The number of objectives
should therefore be at a minimum. For the CIFAR-10 dataset, 10 objectives will
work as long as the population size is at least double the number multi-objective
objectives. When evaluating the CIFAR-100 dataset which holds 100 di↵erent
classes, this sorting metric would be useless as the population size needs to be
huge.

Each class will get one network that performs worst and one that performs
best. Both of these will get max score due to the design of NSGA-II. In the worst
case scenario for CIFAR-10, this would mean a population of 20 every network
could get max score making every network equal. This is however very unlikely
to happen. For the CIFAR-10 dataset used in this thesis, this metric works. It
should however not be used with dataset containing more classes.

5.4.2 The Structural Multi-Objective Optimization Objec-
tives

Remembering chapter 4.2.4 there are 5 objectives for the Structure sort to op-
timize, Test Accuracy (Maximized), Max branching (Minimized), Convolution
count (Maximized), Double Pooling (Minimized) and Overall size (maximized).
As stated in section 5.3.1 all of the objectives are diversified and works as ex-
pected. The max branching objective on the other hand is not. Figure 5.4 shows
how the branching in the experiment 1.3, structure sort is in fact higher or the
same as the other experiments. As this is the only experiment which minimizes
branching, the expectation was that branching would be less used with this ex-
periment. Structure sort failed to complete this objective.

After analysis of the max branching function shows that for some genotypes,
branching is calculated wrong, giving many more branches than what actually
exists in the genotype. For any future work this feature should either be removed
or rewritten to get correct branching on each genotype.

82 CHAPTER 5. RESULTS AND DISCUSSION

5.4.3 The Search Space

The baseline architectures generated, as seen in figure 5.3b ends up using zero
dense layers in the final solution, with the exception of the forced output layers
which is a dense layer matching the classes in the classifier task. For reducing
the search space, dense layers can be removed in the future work as they remain
unused anyways. This would shrink the search space from 7 to 4. Reducing the
search space like this would increase the probability of the algorithm making a
good mutation or change to the genotype.

5.4.4 Achieving Higher Performance

It’s quite common to augment the dataset for CIFAR-10. Common augmen-
tations include flipping all images 180 degrees, rotating images + � (3 � 10)%,
applying color and contrast filters to the images. By adding this together, the
images trained on can be increased from the original 50000 up to 200000-300000
images. This will of course increase the generalization of the model in a large
degree. As seen in table 5.2, all but the ProxylessNAS neural architecture search
algorithms use image augmentation to achieve their very high test set accuracy.
It’s not stated in the paper [6] or on any of the review websites studied with this
thesis whether ProxylessNAS uses augmentations or not.

Most of the other state-of-the-art neural architecture search algorithms re-
viewed in the literature review section 2.3 use much more compute power than
what was available while writing this thesis. For comparing scores against NasNet
[39], DeepCoEvolution[26] or Hierarchical representations for neural architecture
search [24], much more compute power is required. More compute power along
with using dataset augmentation is the key to increasing the performance the
system proposed in this thesis.

5.4.5 Transfer Learning And The Lottery Ticket Hypoth-
esis

The lottery ticket hypothesis [16] as described in section 4.1 states that any neural
network contains a subnetwork which yields the same or better performance.
They reason this by stating that initializing a neural network gives a few winning
tickets. The winning ticket is an analogy for a good weight configuration on
a set of neurons which yields good performance. These neurons may by them
self be the only contributor to the prediction results. A network which holds
winning tickets can be pruned to almost only contain the winning tickets while

5.4. DISCUSSION 83

still maintaining the same or better performance and training time.

Pruning these neural networks can be done with up to an 80% reduction in
number of parameters for [25]. The pruning procedure is done by first training the
network to completion. Then - over multiple iterations - prune neurons with low
contribution i.e. fewer activations. The training is then reset using late resetting.
Late resetting is resetting the weights to the previously trained networks weights
on a stage that is very close to the start of the training. This is then iterated on
until a good architecture has been discovered.

The system proposed in this thesis tries to minimize the number of parameters
found in the neural networks generated. If the first neural network in a strain
(genotype family) is initialized such that it contains no winning tickets, it may
never improve. This is due to transfer learning transferring the non-winning
tickets. This is however a rare problem that would likely be discovered and
handled by the elitism step. There is still a possibility of a good architecture being
found by the search process, but because of the initial weights being transferred
from the predecessor, it will never perform as well as it could have.

Transfer learning has yielded good results when it comes to transferring good
features through the generations. Some networks will su↵er the same bad traits
that their predecessor had, like overfitting or low prediction accuracy. This seems
like a good trade-o↵ to make.

Transfer Learning’s E↵ect on Exploration

As knowledge is transferred through the generations, most of the neural networks
starts performing quite similarly as compared to not transferring knowledge. Pre-
dictions in di↵erent classes of the dataset are mostly the same with only minor
variations. Diversity then might be worse when using transfer learning.

5.4.6 Crossover

A major limitation of the evolutionary neural architecture search algorithm pro-
posed in this thesis is the lack of a crossover function. Crossover is a major part
of what makes an evolutionary algorithm perform well. Finding a good crossover
method proved hard for a couple of reasons:

1. How does one simply join two directed acyclic graphs?

2. How much learned knowledge is acceptable to lose?

84 CHAPTER 5. RESULTS AND DISCUSSION

The most important one of these questions is the second one. When crossing over
two genotypes, many of the trained weights will be lost as a result of joining two
genotypes. As this knowledge is one of the key elements that makes EA-NAS
perform, losing knowledge is a hard trade-o↵ to make. This question is closely
related to the first question. The way two genotypes are joined decides how much
knowledge the successor loses. As an example, striped crossover as described in
section 2.1.1 takes every other node from each of the parents and joins them
together in an alternating pattern. A striped crossover would mean 100% loss
in knowledge as no weights are compatible. A K-point crossover implementation
also described in section 2.1.1 would only mean K weights lost, keeping most
of the knowledge. How does one select a point for crossover when two directed
acyclic graphs have very di↵erent shapes?

Although some crossover methods were tested, all of them gave worse per-
formance in the preliminary results for this thesis. All of them were discarded.
The tested methods are described in section 3.2.3. A crossover function should
be researched for EA-NAS.

Chapter 6

Conclusion

This chapter starts with going addressing the goals and research questions stated
in chapter 1.2. There were two main goals for this thesis, each with their own
research questions. These will be reviewed in turn. The contributions of this
thesis are then described in section 6.1 followed by some suggestions for how to
improve upon this work is listed in section 6.2.

The original description of this thesis was to explore the intersection between
evolution and deep learning. There was many themes to choose from and after
reading quite a bit, the focus landed on neural architecture search using evolution.
The goals for this thesis where too see whether an evolutionary algorithm was
viable for neural architecture search. Extending this, transfer learning became
a focus area to speed up evolution as well as exploring how to compare neural
architectures. These themes fits well with evolution as passing on features is a
key function of evolution. Comparing the architectures also comes into play when
performing elitism.

Goal 1: Explore and compare what e↵ects diversity has on a traditional
exploration based evolutionary algorithm evolving neural architectures

RQ 1.1: What objectives can be used to maintain diversity in a popu-
lation of neural networks when using multi-objective optimization? To
summarize, there were two sets of objectives used in the experiments. The first
set (experiment 1.2) was based on seeing whether the diversity in the knowledge
of each neural network could be used as objectives for the elitism stage of the
evolutionary algorithm neural architecture search. There was little diversity in

85

86 CHAPTER 6. CONCLUSION

the knowledge learned by networks generated. Using the knowledge as a diversity
metric was no more e↵ective than just sorting on the test set accuracy. Important
to note, this may be a CIFAR-10 specific result as other datasets might make the
networks behave di↵erently.

The second set (experiment 1.3) of objectives was based on finding diversity
in the architectures of the generated neural networks. The objectives used was
based on common architectural patterns found in literature. Diversity with these
objectives was indeed high throughout the search, keeping architectures that were
very di↵erent in shape, connectivity, node types and performance. The experi-
ment using these objectives was also the best performer of all the experiments.
Structural objectives works well for diversifying neural networks.

RQ 1.2: How does an evolutionary algorithm compare to hill climb-
ing where no diversity is maintained? To start, having a population at all
is a huge advantage. As seen from the ”local” experiment 2, a bad decision can
change the entire trajectory of the search. Stability of the search process is very
important as all decisions made when doing neural architecture search are very
costly. A bad decision has a smaller impact when there is an entire population
of solutions to fall back on. Using any goal, a population based search is better
suited for neural architecture search.

A good objective is key to diversifying neural network architectures. As stated
above, using the correct set of objectives means a diverse population of neural
networks can be discovered. Architectural objectives worked well for this task
while knowledge based objectives performed well but did not maintain diversity
for it’s own objectives.

Goal 2: Explore transfer learning as a method to speed up the evalu-
ation step of the evolutionary algorithm.

RQ 2.1: What e↵ects does transfer learning have on the evaluation
step? There are a few key e↵ects from using transfer learning in neural architec-
ture search that has been discovered through the experiments and result analysis.
Transfer learning does in fact speed up the learning process by giving any o↵-
spring weights that are known to perform well. Very few if any epochs of training
is required to reach the same performance achieved by the predecessor. When
compared to not using transfer learning, evidence pointed to under-training in
the non transfer learning based experiment, showing that more epochs of train-
ing was required to let new mutated o↵springs have a chance of survival. With
the same amount of epochs, the performance comparison between a long-lived
genotype and a new genotype was unfair.

6.1. CONTRIBUTIONS 87

Stability is also improved using transfer learning as the increase in network
performance is steady over generations. Networks are trained for more epochs
without having the unfair comparison stated above. small changes to the archi-
tecture does not mean having a huge loss in knowledge. This stability comes at
a cost. The knowledge of each network is less diverse over time as the networks
has more or less the same knowledge. This is then a trade-o↵.

RQ 2.2: What is the e↵ects of only transferring some of the prede-
cessor weights using an alternative representation? Having a less direct
representation gives a larger loss in knowledge between each generation. This
was known before doing the experiments. Since there is a diversity trade-o↵ to
using transfer learning, how much of the knowledge should be kept through the
generations? More knowledge gives better stability and higher performance. The
pattern experiment had too small patterns for transfer learning to yield any bet-
ter results than random initialization of weights. A more direct representation is
then required.

6.1 Contributions

This thesis makes a few contributions. The first being a evolutionary algorithm
for evolving neural networks using multi-objective optimization. Multi-objective
optimization can be applied to a population of neural network genotypes and does
in fact maintain diversity given the correct objectives. Diversity on the knowl-
edge of each neural network has proven not to be any more e↵ective than using
test- or validation accuracies. Optimizing architectural objectives proves e↵ec-
tive and gives diverse populations of neural networks where shapes, performance,
knowledge and connectivity are diversified.

Multi-objective optimization is used for making decisions on whether or not
a neural network performs well. This decision proves crucial through the Local-
NAS system which only holds a single solution at a time. When not having a
population to fall back on, these decisions can be fatal in the search process,
making the search end up in a local maxima. A population is important for
evolution-based neural architecture search.

The main contribution is using transfer learning for neural architecture search.
This process requires a very direct representation to work. Transfer learning
speeds up the search at the cost of diversity in the knowledge the population
holds. It also provides more stability to the training process over time. All of
these contributions requires more testing as each experiment was only ran once.

88 CHAPTER 6. CONCLUSION

6.2 Future Work

This section will cover the future work discovered through writing this thesis.
Themes include lower level integration with TensorFlow, parameters in the al-
gorithm that needs tuning and steps towards generalized AutoML, starting with
dataset augmentation. As stated in section 5.4.4, using augmentation on the
dataset to obtain a greater larger training dataset is quite common. This should
be applied to the experiments proposed here. This thesis is not comparable to
the state-of-the-art neural architecture search algorithms without data augmen-
tation. This applies for all of the experiments.

Parameter Optimization For EA-NAS

There are many parameters that can be experimented with for EA-NAS. The
most important one is the probability distribution that decides what node types
is chosen during mutation. The distribution is now heavily skewed towards
convolutional- and dense nodes. Since the results clearly shows that dense nodes
are filtered out while convolutional layers are preferred in the generated networks,
all node types should have an equal probability for being selected. This might
impact the speed of the algorithm significantly due to more bad choices being
made which in turn means more neural networks which is known to be no better
than their predecessor being evaluated for fitness. As stated in section 5.4.3, since
the dense nodes are filtered out and remains mainly unused for the final solutions,
experiments with removing them completely should be tried. With almost half
the search space, new types of nodes/layers could be added like separable- and
depth-wise convolutional nodes. These nodes/layers have seen great success in
[24].

Combining Knowledge From Di↵erent Neural Networks

For combining the knowledge of multiple neural networks during evolution of
network architectures, crossover is a requirement. When both trying to maintain
a directed acyclic graph and keeping weights, a good crossover function was hard
to achieve - as stated in chapter 3.2.3. Changing the structure of the genotypes
to sequential graphs without any forks or joins, crossover would be easy to im-
plement. A K-point crossover - as described in section2.1.1 - would be a good
fit for both transferring knowledge and structure. For K-point crossover, one or
more points are selected for crossing over. The knowledge within each sequence
gathered from each parent genotype would have their weights transferred. Since

6.2. FUTURE WORK 89

the patterns tested with experiment 4 in this thesis were too small for trans-
fer learning to have any e↵ect, K-point crossover could help finding the correct
amount of genes from each genotype to combine into the new successor genotype.

An alternative to this is to alter the existing pattern experiment to have
much bigger patterns. This would yield the same results only with a directed
acyclic graph representation. Crossover would however be hard to add in this
representation which was one of the reasons the patterns were so small in the
current experiment. Small patterns allowed for easier crossover in the Pattern-
NAS implementation.

More Exploitation

Local search optimization should be explored as an extension to the EA-NAS
system. Helping the EA algorithm to make smarter decisions may reduce time
spent evaluating significantly. One idea to achieve this is to add a deeper in-
tegration with the TensorFlow [4] library. Deeper integration allows for more
control over what actually happens inside the neural network. Reading out each
layer’s individual contribution to the prediction result might help with network
pruning. If each layer’s contribution can be measured to find the importance for
di↵erent predictions, small contributions may be pruned first. This method is al-
ready tested in [18; 6; 16]. The TensorFlow library also has its own optimization
toolkit that in version 2.0 includes a model pruning tool that prunes the network
automatically [36].

Towards Truly Generalized AutoML

One of the key components to a generalized AutoML algorithm is interpreting
the data. Data is gathered through exploration and is mostly unstructured.
Having automatic interpretation of unstructured data combined with any of the
neural architecture search systems reviewed in the literature review would be a
huge step towards generalizing automatic machine learning. This is however an
entirely di↵erent research field.

90 CHAPTER 6. CONCLUSION

Bibliography

[Cif] Cifar-10 website. https://www.cs.toronto.edu/~kriz/cifar.html. Ac-
cessed: 2019-16-03.

[2] (2019). 8.2. convolution matrix.

[3] (2019). Internal covariate shift - machine learning glossary.

[4] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org.

[5] Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing
neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167.

[6] Cai, H., Zhu, L., and Han, S. (2018). Proxylessnas: Direct neural architecture
search on target task and hardware. CoRR, abs/1812.00332.

[7] Chollet, F. et al. (2015). Keras. https://keras.io.

[8] Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and Yang, S. (2017).
AdaNet: Adaptive structural learning of artificial neural networks. In Precup,
D. and Teh, Y. W., editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 874–883, International Convention Centre, Sydney, Australia. PMLR.

[9] Dalcin, L. D., Paz, R. R., Kler, P. A., and Cosimo, A. (2011). Parallel
distributed computing using python. Advances in Water Resources, 34(9):1124
– 1139. New Computational Methods and Software Tools.

91

https://www.cs.toronto.edu/~kriz/cifar.html
https://keras.io

92 BIBLIOGRAPHY

[10] DalcÃn, L., Paz, R., and Storti, M. (2005). Mpi for python. Journal of
Parallel and Distributed Computing, 65(9):1108 – 1115.

[11] DalcÃn, L., Paz, R., Storti, M., and DâElÃa, J. (2008). Mpi for python:
Performance improvements and mpi-2 extensions. Journal of Parallel and Dis-
tributed Computing, 68(5):655 – 662.

[12] De Jong, K. A. (2016). Evolutionary Computation: A Unified Approach.
MIT Press, Cambridge, MA, USA.

[13] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197.

[14] Deng, J., Dong, W., Socher, R., Li, L., and and (2009). Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255.

[15] Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A., Pritzel,
A., and Wierstra, D. (2017). Pathnet: Evolution channels gradient descent in
super neural networks.

[16] Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In International Conference on Learning
Representations.

[17] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[18] Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., Yang, T.-J., and Choi,
E. (2018). Morphnet: Fast simple resource-constrained structure learning of
deep networks. pages 1586–1595.

[19] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.

[20] Krizhevsky, A. (2012). Learning multiple layers of features from tiny images.
University of Toronto.

[21] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521:436–44.

[22] Liu, B. (2018). A very brief and critical discussion on automl. ArXiv e-prints.

http://www.deeplearningbook.org

BIBLIOGRAPHY 93

[23] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L.,
Yuille, A., Huang, J., and Murphy, K. (2017a). Progressive neural architecture
search. ArXiv e-prints.

[24] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K.
(2017b). Hierarchical representations for e�cient architecture search. arXiv
preprint arXiv:1711.00436.

[25] Liu, S. and Deng, W. (2015). Very deep convolutional neural network based
image classification using small training sample size. In 2015 3rd IAPR Asian
Conference on Pattern Recognition (ACPR), pages 730–734.

[26] Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon,
O., Raju, B., Navruzyan, A., Du↵y, N., and Hodjat, B. (2017). Evolving deep
neural networks.

[27] Negrinho, R. and Gordon, G. J. (2018). Deeparchitect: Automatically de-
signing and training deep architectures. CoRR, abs/1704.08792.

[Ng] Ng, C. Reintroducing PlaidML. https://www.intel.ai/
reintroducing-plaidml/#gs.95l0bq.

[Oates] Oates, B. J. Researching information systems and computing.

[30] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018).
E�cient neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268.

[31] Rawal, A. and Miikkulainen, R. (2016). Evolving deep lstm-based memory
networks using an information maximization objective. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016, GECCO ’16, pages
501–508, New York, NY, USA. ACM.

[32] Real, E., Aggarwal, A., Huang, Y., and V Le, Q. (2018). Regularized evolu-
tion for image classifier architecture search.

[33] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. (2018).
Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4510–4520.

[34] Stanley, K., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing
neural networks through neuroevolution. Nature Machine Intelligence, 1.

[35] Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with
convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9.

https://www.intel.ai/reintroducing-plaidml/#gs.95l0bq
https://www.intel.ai/reintroducing-plaidml/#gs.95l0bq

94 BIBLIOGRAPHY

[36] Team, T. (2019). Tensorflow model optimization toolkitâââpruning api.

[37] Tegmark, M. (2017). Life 3.0: Being Human in the Age of Artificial Intel-
ligence. Knopf Publishing Group.

[38] Wohlin, C. (2014). Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering. ACM International Conference
Proceeding Series.

[39] Zoph, B., Vasudevan, V., Shlens, J., and V. Le, Q. (2017). Learning trans-
ferable architectures for scalable image recognition.

Appendix

This appendix shows the final architectures landed on for each of the experi-
ments conducted for this thesis. The architectures have been printed using the
built-in Keras model.plot function. As these networks are large, details are not
visible on print. The images are uploaded to the thesis GitHub repository for
viewing and zooming on a computer: https://github.com/MagnusPoppe/NAS/
tree/master/experiments/best-found-architectures.

95

https://github.com/MagnusPoppe/NAS/tree/master/experiments/best-found-architectures
https://github.com/MagnusPoppe/NAS/tree/master/experiments/best-found-architectures

96 APPENDIX

Figure 6.1: The final architecture of the Baseline experiment 1.1

97

Figure 6.2: The final architecture of the Knowledge sort experiment 1.2

98 APPENDIX

Figure 6.3: The final architecture of the Structure sort experiment 1.3

99

Figure 6.4: The final architecture of the Local experiment 2.

100 APPENDIX

Figure 6.5: The final architecture of the Baseline w/o TL experiment 3.

101

Figure 6.6: The final architecture of the Pattern experiment 4.

M
agnus P

oppe W
ang

Evolving K
now

ledge A
nd Structure Through Evolution-based N

eural A
rchitecture Search

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Magnus Poppe Wang

Evolving Knowledge And Structure
Through Evolution-based Neural
Architecture Search

Master’s thesis in Artificial Intelligence
Supervisor: Massimiliano Ruocco, Stefano Nichele

June 2019

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory and Motivation
	Background Theory
	Evolutionary Algorithms
	Deep Learning and Deep Neural Networks
	Convolutional Neural Networks
	Data Augmentation

	Structured Literature Review Method
	Literature Review
	Neuroevolution, The Inspiration For NAS
	Evolution Based Approaches
	Reinforcement Learning Based Approaches
	Other Approaches

	Architecture
	Training Loop
	Choice of Machine Learning Framework
	Spawn Worker
	Converting Genotype To Phenotype
	Transferring Knowledge
	Load Dataset
	Train
	Evaluate
	Format And Store Results

	EA-NAS
	Genotype Representation
	Initialize
	Selection, Mutation and Crossover
	Calculating Fitness
	Sorting and Elitism

	Local-NAS
	Selection
	Elitism

	Pattern-NAS
	Representation
	Initialization
	Joining Patterns
	Mutation
	Crossover
	Fitness Calculation, Evaluation and Elitism

	NAS front-end

	Experimental Plans and Setups
	Why Evolve Neural Network Architectures
	Experimental Plans
	Experiment 1: Evaluating and Comparing Neural Networks
	Experiment 2: Evaluate Performance Difference In Hill Climb vs Evolution
	Experiment 3: Importance of Transfer Learning
	Experiment 4: Test Performance Differences With Representation

	Experimental Setups
	Experiment 1: Elistism Sorting
	Experiment 2: Hill Climb vs. Evolution
	Experiment 3: Turning Off Transfer Learning
	Experiment 4: Using The Pattern Representation

	Results and Discussion
	About The Experimental Results
	Experimental Results
	Evaluation
	Experiment 1: Evaluating Sorting Techniques
	Experiment 2: Hill Climb Local Search Compared To Evolution
	Experiment 3: Turning Off Transfer Learning
	Experiment 4: Using An Alternative Representation With Patterns

	Discussion
	Evaluating Neural Networks Based On Learning Tasks
	The Structural Multi-Objective Optimization Objectives
	The Search Space
	Achieving Higher Performance
	Transfer Learning And The Lottery Ticket Hypothesis
	Crossover

	Conclusion
	Contributions
	Future Work

	Bibliography
	Appendix

