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Abstract

When ping was written in 1983, it was seen as a tool for estimating
the distance between the client running the program, and another node in
a network the client was connected to. Since pings inception, the Internet
Engineering Task Force has specified that all hosts in the internet has
to implement functionality for receiving and responding to ping package,
making it widely available. By measuring the time it takes from a client
sends a packet, until it receives the corresponding response, you are given
an indication of the distance between the client and the responder. This,
along with measuring the perceived traffic along the network path by
looking at packet loss, has been the main application of the ping program.
In this thesis we explore additional applications of the ping program.

By gathering measurements and applying our analysis tools in a series
of experiments, we examine pings capabilities to detect small changes in
local networks, and its capacity to classify router types by looking at series
of their ping responses. To analyse our data we have utilised two different
methods, Signal Processing and deep learning. Signal Processing is a
well established field in engineering that focuses on analysing, modifying
and synthesising signals. Deep learning is a type of machine learning,
which is an approach to Artificial Intelligence. In addition to evaluating
the capabilities of ping for our set tasks, this thesis also discusses the
practicality of these two methods.





Sammendrag

Da ping ble skrevet i 1983, ble det hovedsaklig sett på som et verktøy
for å estimere avstanden mellom klienten som kjørte programmet, og
en annen node i nettverket klienten var koblet til. Siden den gang har
Internet Engineering Task Force spesifisert at alle nettverksverter må
implementere funksjonalitet for å motta og svare på ping pakker, som
gjør ping til et meget tilgjengelig verktøy. Ved å måle tiden det tar fra
man sender en pakke til man mottar det korresponderende svaret får man
en indikasjon på hvor langt det er fra klienten og svareren. Sammen med
å måle pakketap for å få et innblikk nettverkstrafikken har dette vært
hovedbruken til ping. I denne oppgaven ser vi på nye bruksområder for
ping.

Ved å samle inn måledata og anvende analyseredskapene våre i en
serie eksperimenter vil vi utforske pings egnethet til å oppdage små
endringer i lokale nettverk, samt ets egnethet til klassifisering av rutere
ved å se på serier av ping-svar. For å analysere dataen vår har vi brukt
signalprosessering og deep learning. Signalprosessering er et veletablert
felt innen ingeniørvitenskap som fokuserer på å analysere, modifisere og
syntetisere signaler. Deep learning er en type maskinlæring, som igjen er
en fremgangsmåte under kunstig intelligens. I tillegg til å vurdere pings
egnethet for våre satte utfordringer vil denne oppgaven også vurdere
egnetheten til de to analysemetodene.
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Chapter1Introduction

This chapter describes the background and motivation for this project. We, in this
chapter, define the primary research questions, illustrate the methodology used and
conclude with an overview of the subsequent chapters.

1.1 Motivation

Leased lines are, with the ever increasing demands for faster and more reliable
network connections, becoming a more popular solution for people and organisations
who want to connect networks across circuits that are free of contenting network
traffic of outside users. Leased lines are dedicated connections between two network
points, and are therefore not subject to the frequent rerouting of regular broadband
connections. Detecting changes due to for example rerouting can, however, be of
interest. Anomalies could be an indicator of malfunctioning routers or attacks such
as prefix highjacking [BFZ07].

Rerouting on the IP-layer can be discovered fairly easily using a well established
tool such as traceroute. Rerouting in the data link and physical layer is, however,
not detectable using this tool. Rerouting on the lower layers in most cases does
change the minimum delay time. This is interesting, because the minimum delay
for a network path will always remain the same where the network path does not
change. This means that determining the minimum delay time between two nodes
in a network and being able to detect when it changes can reveal rerouting. Both
hardware based tools and software based tools can be used to measure delay. Software
tools are less accurate than hardware tools, as they are susceptible to delays linked
to the processor on the system they run on. They are, however, more accessible to
regular users. The most widespread software tool available today is the ping program
[Muu16], and it is this tool we utilise in this project.

There is no way of determining whether a packet achieved minimum delay time by
inspecting it in isolation. Delay measurements are also susceptible to various sources
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2 1. INTRODUCTION

of noise. Multiple delay measurements therefore have to be made to determine a
likely minimum delay time. We want, in this work, to use regular signal processing
and machine learning to analyse the measurement data to determine which is the
best fit for the task. Machine learning methods can require more data to be efficient.
These methods can, however, also find correlations in the data that are not obvious
upon manual inspection. To address this we established RQ1 and RQ2 as given in
section 1.2.

The most obvious use of delay measurements for network packets is to measure
the delay at two end points. The processing required at the end points can also tell us
something about them. We observed, during the initial phases of our study, that the
ping responses we received from different routers varied more than we expected from
the change in travel distance alone. We were curious whether this was consistent
behaviour, and if so, could we identify routers by their ping response? To address
this, we established a 3rd research question, RQ3.

1.2 Research Questions

– RQ1: Can we train a machine learning algorithm to recognise changes in a
local network path with limited nodes, that are undetectable using regular
signal processing?

– RQ2: Given that we can recognise rerouting, what are the minimum changes
we can recognise?

– RQ3: Can we identify a router by looking at the latency pattern when pinging
it?

To answer the first two questions, we first looked at delay measurements on
shorter paths, such as within the NTNU campus, before attempting measurements
on longer paths with more noise. To answer the last question, different routers were
pinged, and the resulting measurement distributions were analysed.

1.3 Outline

This thesis is divided into 5 chapters, including this introduction.

Chapter 2: Theory. This chapter reviews the different components that make up
network delay, and the ways delay can be measured. We describe the measurement
tool we intend to use (ping), before covering the statistical parameters that will be
used in signal processing. The last section describes some machine learning essentials,
before specifying the techniques we intend to use.
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Chapter 3: Experiments. We present in this chapter the experiments that we
conducted in our project. We describe the general setup for all the experiments
before going into more detail on each experiment.

Chapter 4: Analysis/Key Findings. A presentation and analysis of the key
findings of the experiments described in Chapter 3.

Chapter 5: Summary/Conclusion. A summary of the thesis, and suggestions
for future work.





Chapter2Theory

2.1 Network delay

Our project focuses on measuring delay. It is therefore important to know what
contributes to network packet delay, and how we can measure it. We are not aware
of any studies that have utilised delay measurements to recognise changes in and
classify components of normal behaviour in networks. Delay measurements have,
however, been used to uncover specific router behaviour on network paths [LW].

2.1.1 Delay components

A data packet traversing through a packet switched network is affected by various
types of delay on each node along its path. We divide this delay into the four
components described below. Figure 2.1 shows an example of the node delay of
Router A connected to two clients and another router.

– Processing delay, the time used by the router to transmit a packet from the
incoming packet interface to the outgoing packet interface.

– Queuing delay, the time used waiting for other packets to be dispatched to a
transmission link. This will be zero if there are no other packets in the router
when a packet arrives.

– Serialisation delay, the time it takes to push all the bits of the packet onto the
transmission link. Sometimes also called transmission delay.

– Propagation delay, the time required to transmit a bit through a transmission
link. This is not strictly a part of the node, but rather the link between the
nodes. The speed of propagation is 2/3 the speed of light in optical fibre.

It is important, in the context of this study, to keep in mind the different types
of delay, as some will introduce noise to our delay measurements. Propagation delay

5



6 2. THEORY

Figure 2.1: The nodal delay of a router.

and serialisation delay will remain the same for packets of the same size, processing
and queuing delay can vary and queuing delay can vary from packet to packet in the
same node, as it depends on traffic at the node.

Processing delay depends on the operation the node is performing on the packet.
Intermediate nodes mainly perform ‘fast switching’ [LW], meaning that only dedicated
hardware is used to forward the packets. This introduces relatively small amounts of
delay, and minimal noise. The routing processor has to, however, be involved in more
advanced operations that cannot be handled in hardware. This adds considerable
delay and noise compared to simple forwarding.

Involving the routing processor introduces noise because processing takes place
in the router’s software. It may therefore have to wait for other processes within
the router. Noise and delay varies between routers, as these are dependent on the
routers’ processing power. A typical routing architecture is given in figure 2.2

Figure 2.2: Router architecture.

Going forward we can conclude that, even though all four components are part of
the total delay, that queuing and processing delay are the components that introduce
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noise and affect the accuracy of our delay measurements. By denoting the processing,
queuing, serialisation and propagation delay as dproc, dqueue, dtrans and dprop, we
can denote total node delay as follows:

dnode = dproc + dqueue + dserial (2.1)

The delay in a transmission link is simply given by the the remaining component:

dlink = dprop (2.2)

The propagation speed depends on the medium of the transmission link, but will
generally be around 2 ∗ 108m/s [KR13]. This means that the dlink will be close to 5
microsecond per km.

2.1.2 End-to-End delay and Round Trip Time

The previous section discussed the delay components for a single node and trans-
mission link. We will now, in this section, consider the total delay from host to
receiver. Accumulating the total node delay and link delay for every node and
transmission link on the path between the host and the receiver gives the End-to-End
delay (E2E). Figure 2.3 illustrates an example with 3 routers between the packet
host and receiver. Here the E2E delay is given by 3dnode + 4dlink + 2dend, where
dend denotes the processing delay at the end points. Generally we can denote the
E2E delay for a path with N nodes between the end points as follows:

dE2E = Ndnode + (N + 1)dlink + 2dend (2.3)

The E2E delay between two nodes is the best way to represent the delay between
them. It can, however, be difficult to measure. The clocks at both end points must,
however, be synchronised for an E2E measurement to give valid delay times. This is
certainly possible in a controlled environment, but not when measuring the delay
between your client and a server you have no control over. We can overcome this
problem by instead measuring the Round Trip Time (RTT).

RTT measures the time between a message being sent from the host until the
host receives the response message. This is the method used by the ping tool,
which we will look closer at in section 2.2. RTT essentially doubles the E2E delay,
while circumventing the synchronisation problem. The first main disadvantage of
this method is that the packages have to travel twice as far, exposing the delay
measurements to more noise. A second disadvantage is that it renders it impossible
to detect any asymmetry between the delay from the host to the receiver and the
delay from the receiver to the host.
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Figure 2.3: Illustration of E2E delay.

2.1.3 Lucky packets

There will always be a potential minimum delay time, the shortest possible time a
packet can use between two nodes, even though there will be noise when measuring
the delay between two nodes in a network. Minimum delay time occurs where the
data packet does not meet any traffic on it’s path and there is zero queuing delay.
We call these packets lucky packets.

Lucky packets are interesting when measuring delay, because the minimum delay
time will always be the same where the network path remains unchanged. This
means that if the minimum delay time between two nodes in a network changes,
then this indicates that the path between the nodes has changed. So how can we
determine whether a measured delay is the minimum delay time of a lucky packet?

The minimum delay time would be fairly easy to derive if there was no additional
noise to the queuing delay. Every packet without queuing delay would have the
same delay, which means that we most likely would have a minimum value that
would also be the mode. As we do have noise in addition to the queuing delay, we
need to consider the distribution of the lowest measured delays, and use this as an
approximation of the minimum delay time.
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2.2 The ping program

The code[Muu83] for the ping program was written by Mike Muuss in 1983[Muu16],
and is today a widely used and widely available tool for measuring RTT. The tool
was first included in Berkeley UNIX[WCL+88], but has since been ported to other
platforms such as Microsoft Windows and MS-DOS. The tool operates by sending
timed ICMP packets to a target host, and then waiting for the mandatory response
from that host. It is commonly used to test the availability of a host on an IP
network, and to measure the distance to other nodes in a network. Before going
deeper into how the program works, we will first look at the protocol it utilizes,
ICMP.

2.2.1 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol (ICMP) for IPv4[Pos81b] was defined in
RFC 792 [Pos81a] in 1981, and is the protocol utilised by ping. It acts as a support
protocol and is used by network hosts and routers to communicate network layer
information to each other. It is most frequently used in error reporting, for example
when a router is unable to find a path to a packet’s destination IP.

RFC 791[Pos81b] shows ICMP and IP on the same level in its illustration of
protocol hierarchy as shown in figure 2.4, ICMP is in fact above IP, as ICMP packets
are carried within the IP payload, as they also are within TCP and UDP packets.
The demultiplexing of the IP payload for TCP and UDP packets therefore also takes
place for ICMP.

Figure 2.4: Protocol hierarchy.

An ICMP packet consists of an 8 byte header and data of various sizes. The
first four bytes have a fixed format, while the last four bytes are often unused. This,
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however, varies with the type and the code set in the first two bytes. Figure 2.5 shows
the structure of the ICMP ECHO_REQUEST and ICMP ECHO_REPLY messages, which are
the message types ping utilises. A description of the 6 fields used in echo messages is
given below.

Figure 2.5: ICMP Echo message.

– Type is an 8-bit field that identifies the control messages of ICMP. It is set to 8
for ICMP ECHO_REQUEST and 0 for ICMP ECHO_REPLY.

– Code is an 8-bit field that identifies the subtype of the ICMP control messages.
It is set to 0 for both echo messages.

– Checksum is a 16-bit error checking field, calculated from the ICMP header
and data. It uses The Internet Checksum specified in RFC 1071[BBP88].

– Identifier is a field to aid the matching of requests and replies. Ping uses the
UNIX process ID.

– Sequence Number is another field to aid the matching of requests and replies.
For ping, it is an ascending integer starting at 0. As the field is only 16 bits,
ping goes back to 0 after reaching the 216 − 1 = 65535th packet.

– Data in an ICMP packet can be of various lengths. There does not have to
be any data at all in echo messages. However, you need to include at least 16
bytes of data if you want to get the RTT from a ping. This is because ping
uses the first few bytes to hold a UNIX timeval struct, which is necessary for
getting the RTT. RFC 1122[Bra89] specifies that the data received in an echo
request message must be included entirely in a reply message. This is unless
the echo reply requires unimplemented intentional fragmentation, in which case
the data should be shortened to maximum transmission size. The default data
size for ping is 56 bytes, making the whole ICMP message 64 bytes.
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2.2.2 Additional functionality

ICMP does most of the work that is required to link outgoing echo requests to
incoming echo replies. The ping program, however, adds one essential function to
every packet, namely timing the RTT. As mentioned in section 2.2.1, this is added
by including a UNIX timeval struct in the data field of the ICMP packets. The value
of the timeval struct is then subtracted from the current time when the ICMP reply
arrives, giving the RTT. Ping also provides basic statistics for all packages when a
ping call contains multiple packets. These include the minimum delay, maximum
delay, mean, and standard deviation.

The ping options give the user the ability to control other aspects of the packages,
particularly packet size and interval timing. The options we will be using are listed
below.

– [-c <count>], the number of packets sent in a single ping call.

– [-i <interval>], the time between each packet, stated in seconds.

– [-s <size>], the size of the ICMP data field. Must be at least 16 bytes to
include the timestamp used for delay measurement. Default size is 56 bytes.

2.2.3 Delay and noise

Ping introduces a delay at the two end points of a measurement, which is in addition
to the delays mentioned in section 2.1.1. Ping is a software tool. It is therefore
dependent on the process scheduler of the system it is operating on. The process
scheduler’s prioritisation is beyond the user’s control, and can add various amounts
of delay. Varying delay adds an extra source of noise in the measurements. However,
as long as ping is run on the same system, and enough measurements are made in
each measurement series, then the noise profile should remain the same.

he receiver of the ICMP echo request will also have to carry out processing,
regardless of whether it is a router or an end node. In routers, processing will be in
the control plane as shown in figure 2.2, and the noise generated will depend on the
processing power and process scheduler of the router. This can vary substantially
between different network nodes, potentially giving network nodes that are further
away a lower RTT than closer nodes. An example of this can be seen in figure 2.6
below.
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(a) Delay measurement spread

(b) Setup

Figure 2.6: Example of router measurements in a low traffic network.

In this example, two routers were pinged 100 000 times each. The spread of the
resulting delay measurements can be seen in the histogram in figure 2.6a. Outliers
above the distribution have been cut off in both measurement series, as they are most
likely affected by other network traffic. Packets affected by other network traffic are
not of interest to us, as they do not convey any information about the router or the
network path. The interesting aspect to note is that the delay is lower for Router B,
even though it is further away from our client.

2.3 Signal Processing

‘The technical field of Signal Processing encompasses all forms of sampled-data
manipulation where the data (or signal) has a physical origin, or destination.’ This
is the definition of Signal Processing given by Lars E. Thon in his article 50 years
of Signal Processing at ISSCC [Tho03]. We, in our project, use Signal Processing
to analyse the distribution of our measurement series. We want to group every
measurement series made on the same endpoint to see if we can find distinct differences
in their distributions, when comparing two groups of measurement series on different
endpoints. The statistical parameters of the distributions in each group are calculated
to detect any differences. This is then used to find the minimum and maximum
value for each parameter for the group as a whole. This will give us a range for every
parameter in each group. If any of these ranges are disjunct, then we should still be
able to classify every measurement series of the two groups correctly.

2.3.1 Statistical parameters

The statistical parameters we will use for describing our distributions are the mean,
the standard deviation, the skewness and the kurtosis. The mean and standard
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deviation should be familiar to all who have delved into statistics. We therefore will
give a brief introduction to the two other parameters.

Skewness is the measure of asymmetry from the mean in a normal distribution.
It can be negative or positive depending on the way the distribution skews, and
will be zero for a symmetric normal distribution. An example of a negatively and
positively skewed distribution are given in figure 2.7.

Figure 2.7: Negative and positive skewness.

The formula for calculating the skewness is given by equation 2.4.

∑N
i=1(Xi − X̄)3

(N − 1)σ3 (2.4)

Where Xi is the ith element of the distribution, X̄ is the mean, σ is the standard
deviation, and N is the number of values in the distribution.

Kurtosis is the measure of ‘tailedness’. It tells us how heavy the tails of our
distribution are. Kurtosis is often given as excess kurtosis, which is the difference
in kurtosis from the normal distribution. A normal distribution has a kurtosis of 3.
You therefore simply subtract 3 from your calculated kurtosis to get excess kurtosis.
Higher values of kurtosis means that the tail of the distribution is heavier. An
illustration of negative, normal, and positive kurtosis can be seen in figure 2.8.

The formula for calculating the kurtosis is given by equation 2.5.

∑N
i=1(Xi − X̄)4

Nσ4 (2.5)

Where Xi is the ith element of the distribution, X̄ is the mean, σ is the standard
deviation, and N is the number of values in the distribution.

We will also include as parameters for our Signal Processing the minimum delay
and packet loss of every measurement series, and the range of our distribution.
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Figure 2.8: Negative and positive kurtosis.

2.4 Deep learning

Deep learning will be used to analyse our data. Deep learning is a subfield of machine
learning which has seen rapid progress in recent years. We want to use this method
with Signal Processing to see if it can uncover patterns in our data that Signal
Processing alone is unable to detect.

2.4.1 Machine learning basics

We use machine learning to analyse the measurement series obtained from the ping
measurements. Machine learning is a branch of artificial intelligence and is based
around the concept that systems can learn from data by building mathematical
models. The mathematical models can then be applied to solve future tasks that the
system has not been specifically designed to solve. The type of machine learning we
intend to use is called deep learning, which will be covered in section 2.4.2 and 2.4.3.
This section provides some machine learning basics that are relevant to our project.

In his 1997 book Machine Learning, [Mit97] Tom Mitchell provides the following
definition of a computers ability to learn:

"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E."

The tasks in this project are classification tasks, while performance is measured
by accuracy. The measurement data gathered from pinging is the experience that is
used to train the models.

Classification tasks require the computer program to determine which of k
categories an input belongs to. A classification model will usually take an input vector
x and assign it to a category. There are, however, also classification algorithms that
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output probability distributions for the different categories. Handwriting recognition
is an example of a classification task, the input being an image, and the output being
a category corresponding to a letter.

Accuracy is the ability of the model to categorise input correctly. We determine
accuracy by calculating the proportion of examples for which the output is correct.
The goal of the model is to perform as well as possible on unseen data. We therefore
evaluate the accuracy using a test set. The test set is different from the training set.
The training set is the data which was used to generate the model.

Experience refers to the data the algorithm sees when building its model, this
data being the training set. The amount of experience a machine learning model
accumulates is typically measured in epochs. Epochs are the number of times a
model sees the entire training data set. There are no rules for how many epochs
a model should use in training. As many epochs as it takes for the performance
measure to stagnate are normally used.

Machine learning algorithms are categorised into two categories. Which category
algorithms are categorised into depends on the type of experience they are allowed to
accumulate during the training process. The two categories are; supervised learning
and unsupervised learning. Supervised learning links each training data point with
a label or target, while unsupervised does not. The label or target for classification
tasks typically corresponds to one of the categories the computer program sorts input
into. We use labelled data in our project. The learning method we use is therefore
supervised.

It is common to one-hot encode the labels when performing classification tasks.
One-hot encoding is a technique that encodes categorical integer columns to matrices,
and is best explained by an example. Lets say you have a data set that contains a
group of people, the label being their favourite beverage. Machine learning algorithms
deal with numerical data. We therefore need to convert the favourite drink of each
member of the group to numbers the algorithm can accept. We define the following
values: 1 = Water, 2 = Coffee, 3 = Milk, 4 = Soda. The problem with this encoding
is that it implies an increase or decrease in value as the label changes. If our model
was to internally calculate an average of milk and water, that would equal coffee
(3+1/2 = 2). A relation is assumed where there is none, which can cause problems.
To solve this, we expand the categorical columns to the number of categories it
encompasses, and only use the values 1 and zero. Figure 2.9 illustrates how a column
of 4 categories could be one-hot encoded to multiple columns.

There are plenty of options to chose from when choosing a classification algorithm
for a problem [Agg14]. The no free lunch theorem [Wol96] for machine learning states
that every classification algorithm has the same error rate when classifying previously
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... 1

... 4

... 3

... 2

... 4

... 1 0 0 0

... 0 0 0 1

... 0 0 1 0

... 0 1 0 0

... 0 0 0 1

Figure 2.9: Categorical column one-hot encoded to multiple columns.

unobserved points, where averaged over all possible data generating distributions.
This means that no algorithm is universally better than any other. Choosing the
correct type for your task is therefore important. We have chosen, in this project, to
use deep learning, as this is more accurate for larger amounts of data [GBC16], as
illustrated in figure 2.10.

Figure 2.10: Performance of deep learning.

2.4.2 Multilayered perceptrons

Multilayered perceptrons (MLPs), sometimes also called deep feedforward networks
or feedforward neural networks, are the underlying models for deep learning. The
architecture is loosely inspired by the human brain, and is sometimes referred to as
artificial neutral networks ANNs. Neutrons in the cerebral cortex in the biological
brain are connected via axons. A neuron signals other neutrons over these axons
when enough of it’s own input signals are activated. This is simple at the small scale,
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but becomes a complex system when taking into consideration the billions of neurons
in a human brain. MLPs do not try to perfectly model a biological brain. The basic
concepts of the two are, however, similar. As the name suggests, MLPs consist of
multiple layers of perceptrons, each perceptron layer being made up of groups of
activation units. These activation units resemble the neurons in the biological brain
in that they are connected to multiple other activation units, while having their own
individual activation threshold.

Figure 2.11: Example of a small multilayered perceptron.

Figure 2.11 illustrates a small MLP. The edges between the nodes can be weighted
differently. This means that this is a more complex system than simply counting the
input incoming signals from other activation units. For example, assume h1 has an
activation threshold of 0.8, and the edges between it and the activation units are
as follows: (x1, h1) = 0.9, (x2, h1) = 0.5 and (x3, h1) = 0.4. This then means that
a signal from x1 would be enough to activate h1, but for both x2 and x3, another
activation unit would also have to signal h1 for it to activate. As the figure also
shows, the layer between the input and output layer is called the hidden layer. MLPs
often have multiple hidden layers, and they are typically vector-valued. They are
called hidden because their desired output is not shown while training the model.
The number of hidden layers determines the depth of the model.

Deep learning is a subset of machine learning, deep and machine learning therefore
being closely related. There is, however, a key aspect of deep learning that sets it
apart from classic machine learning algorithms. The key aspect is how the features
of the input that the algorithms use to build the model are defined. Classic machine
learning is unable to influence how features are defined. Deep learning, however,
relies on this ability. This is an advantage when it is difficult to know what features
should be extracted from a dataset and can help show correlations that are not
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Figure 2.12: Deep learning compared to classic machine learning. Boxes that are
coloured blue are able to learn from data.

obvious to a data scientist. For example, suppose a person has a rash on their arm,
and we want to use machine learning to determine the cause just by inspecting
it. Classic machine learning methods would require a doctor to inspect the rash,
and then hand-design the features they deemed relevant. This requires more from
the doctor, and could mean that important information is left out. Deep learning,
however, allows an entire image to be passed in, the deep learning algorithm then
determining what the important features are. This is illustrated in figure 2.12. Deep
learning does, however, require more processing power and data to train the model.
Technological advancement is, however, making processing power cheaper every day.

2.4.3 Recurrent neural networks

Recurrent neural networks (RNNs) are a family of neural networks that are closely
related to MLPs. As we mentioned in section 2.4.2, MLPs are sometimes called
feedforward neural networks, or deep feedforward networks. This is because the
signals of the activation units in the network only go one way, forwards, like an asyclic
graph. Adding feedback connections to an MLP gives a recurrent neural network.

A RNN is often considered to be a specialised neural network, whose main purpose
is to process sequential data. Feedback connections enable an RNN to process much
longer sequences than neural networks, which are not specifically designed to handle
sequences.

LSTM

Only the behaviour of the previous time step is fed into the current step when training
an RNN model. This means that the behaviour of more recent time steps affect the
current time step more than the behaviour of earlier time steps. This might not be
a wanted behaviour for some sequences. Hochreiter and Schmidhuber in 1997, and
to combat this, released their paper on long short-term memory (LSTM) [HS97].
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Figure 2.13: Example of recurrent neural network. We can see that an activation
loop with a feedback connection essentially is feeding it’s output to future versions
of itself.

This introduces a cell in the neural network that maintains separate short-term and
long-term states, which helps the network take earlier time steps into account.

2.4.4 Convolutional neural networks

Convolutional neural networks (CNNs) [LBD+89] are, just like the RNNs discussed
in section 2.4.3, a specialised kind of neural network. CNNs specialise in processing
data with a known grid-like topology [GBC16]. They are most frequently used to
analyze visual imagery, as this can be represented as a 2D grid of pixels. It can also
be applied to time-series measured in regular intervals, as they can be seen as 1D
grids.

CNNs are inspired by the animal visual cortex, cortical neurons only responding
to stimuli in a restricted area of the animal’s visual field. CNNs use a technique
called sparse connectivity to replicate this in an artificial neural network. Sparse
connectivity entails fewer connections between each layer of the neural network than
the MLPs and RNNs. MLPs and RNNs use matrix multiplication, which means that
all neurons on each layer are connected to every neuron on the adjacent layers. A
comparison is given in figure 2.14 and figure 2.15 below.

Sparse connectivity allows a neural network to handle larger tasks more efficiently,
as it divides large grids into smaller units. Let us, as an example, consider a 256x256
pixel image in which we want to recognise objects using an input layer, an output
layer and 3 hidden layers. The job of the first hidden layer is to recognise the edges
of any shapes in the image by inspecting the pixels in the input layer. If every pixel
takes all other pixels into consideration when determining whether it contains an edge,
then this would give 65536 parameters taking input from 65535 other parameters. If
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Figure 2.14: Example of the connections in a CNN.

Figure 2.15: Example of the connections in a typical MLP.

we instead divide the picture into squares of e.g. 8x8 pixels, then 1024 parameters
each take input from 64 parameters, so substantially decreasing the complexity. The
next hidden layer can then look at the detected edges and try to recognise shapes
such as corners, circles, etc. by considering detected edges that are in proximity to
each other. The 3rd hidden layer can, finally, look at the recognised shapes, and try
to match them to an object. An illustration of this example is given in figure 2.16.
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Figure 2.16: Object recognition in an image using CNNs.





Chapter3Experiments

This chapter describes the execution of the experiments of the thesis. As we will be
conducting two different types of experiments, the experiments will be split into two
parts. First we will cover experiments concerning the latency distributions mentioned
in RQ3. Then we will cover experiments that concern the discovery of network
changes introduced in RQ1 and RQ2. As is evident by the number of experiments
in each section, we have chosen to focus on the experiments related to RQ3.

3.1 General setup and procedures

This section covers the setup and procedures used by all the experiments. The
specific details of each experiment are provided in section 3.2 and 3.3.

3.1.1 The data gathering phase

An early 2015 13" MacBook Pro running macOS Mojave version 10.14.4 [Inc17]. was
used for data gathering. This computer model does not have an ethernet port. A
Thunderbolt to Gigabit Ethernet Adapter was therefore required to connect to a wired
network. The client computer’s position in relation to the routers was set specifically
for every experiment. A short python script was written to gather the data, and is
given in appendix D. The script extracted the latency values from the ping response,
and saved them to a .csv file. The script set the response time of a packet to 0
when a ping packet did not receive a response or timed out. We chose 0 because
it’s outside the range of the other measurements, and hopefully would therefore be
interpreted as a special case by our deep learning model.

3.1.2 The deep learning phase

The TensorFlow [AAB+15] and Keras [C+15] libraries were used for deep learning.
library which is specifically geared towards deep learning. It is written in Python and
functions as a high-level API for neural network building and configuration. This

23
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makes the process of experimenting with neural networks easier and faster. It is
capable of running on top of multiple lower-level libraries such as TensorFlow, CNTK
[SA16], or Theano [The16]. We chose to use TensorFlow, as it is the most common
library used for deep learning and at the same time provides the functionality we need.
TensorFlow is also an open source software library and was originally developed by
the Google Brain team within Google’s Machine Intelligence Research organization
for machine learning and deep learning research. It is, however, general enough to
be applied in other domains. The release versions we used were Keras 2.2.4 and
TensorFlow 1.14.0. Keras 2.2.4 does not support Python 3.7, so it was run in a
Python 3.6.8 environment.

Our data essentially is groups of time series. We therefore need to use a model
that is efficient at handling time series classification. Karim, Majumdar, Darabi
Chen in 2018 published a paper [KMDC18b] on LSTM-FCN models [KMD], which
can handle this problem well. LSTM-FCN combines RNNs with CNNs, and it has
been demonstrated that the architecture can achieve high time series classification
performance. This is therefore the model architecture we chose for this project.
The code for building our model has mostly been taken from the GitHub-repository
[KMDC18a] referred to in the aforementioned paper, and can be found in appendix
B.

Figure 3.1: LSTM-FCN architecture. [KMDC18b]

We, after setting up the model, have to prepare the data so it has a format our
model can work with. The first step was to add a one-hot encoded label to the data
of every measurement series. Then we split the data into a training and test set, 70%
of the data being assigned to the training set, the remaining 30% to the test set.

We, after gathering the data, labelled every series with their router type by
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adding a final element to every series containing the router type. The labels were
then one-hot encoded and the data was then split into training data and test data.

3.1.3 The signal processing phase

We used the print_and_return_statistics() method found in appendix A to cal-
culate the statistical parameters mentioned in section 2.3 and the packet loss in each se-
ries. 2.3 as well as the packet loss in each series, we used the print_and_return_statistics()
method found in appendix A.

calculate_and_print_statistics() consists of three main steps. In the first,
it goes through all the measurement series in our data set and counts the zeroes. It
then divides the zeroes in each series by the total number of measurements in that
series, to find the packet loss.

We then removed the upper outliers of each series. These are most likely a result
of traffic from other sources, and will not represent the normal ping response of
the pinged node. They are not representative and huge outliers will also distort
the remaining parameters. Most of our data are measurements centred around 1
ms. Outliers above 100ms can therefore have a great impact on the mean, standard
deviation and range of our distribution. The outliers are removed by recursively
calculating the interquartile range (IQR) and mean (X̄), and then removing the
values higher than 1.5∗IQR+ X̄. This is repeated until the mean and IQR stagnates.

Thirdly we calculate the rest of the parameters for every series using SciPy
[JOP+ ]. We keep track of the minimum and maximum value for every parameter
for each group of measurement series, and print them to the console.

3.2 Ping signatures

The purpose of these experiments is to discover whether we can identify routers or
router types by analysing the measurement series we receive when sending a series of
ping packets. We have elected to call this hypothetical identifiable ping response a
ping signature, and will use this term in this thesis. By router types we mean models
such as the Nokia 7750 SR-s, the Huawei NE9000 or the Ericsson Router 6675.

To perform the experiments, we have been given insight into the router types in a
large network. We will be working with 4 different router types, two samples of each
model. For security reasons we will not disclose the router types or their respective
IP addresses in this paper, but use a general denotation. The relation between the
denotation used for different routers and router types is given in table 3.1.
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Type A Router 1
Router 2

Type B Router 3
Router 4

Type C Router 5
Router 6

Type D Router 7
Router 8

Table 3.1: Routers and router types.

Routers 1-7 are all within a 500m radius of the client, while router 8 is approx-
imately 2 km away. This will add between 2 and 10 microseconds of propagation
delay for the different routers.

We will use deep learning (section 2.4) and Signal Processing (section 2.3) to
analyse our measurements. Training and testing deep learning models is computa-
tionally expensive. We therefore want to compare its accuracy with that of regular
signal processing methods, and so evaluate its necessity.

3.2.1 Preliminary experiment: Delay distribution

This experiment was not originally intended to be a part of this paper. It is, however,
included as a result of the impact it had on the direction of the project as inspiration
for RQ3. The approach and procedure is therefore different to the rest of the
experiments in this section.

Purpose

The purpose of this experiment was to get an idea of the distribution of the ping
measurements. We knew that the software in the client and the routers would
introduce differing amounts of processing delay for each ping packet. The goal
was therefore to get an understanding of the magnitude of these processing delays.
We inspected the magnitudes of the processing delays to get an impression of the
accuracy we could expect from the ping measurements. The accuracy would indicate
how large a network change would have to be, for it to be detected using ping. We
pinged two different routers on the same path (i.e. the packets to the second router
went through the first) to see if we were able to distinguish them from each other.
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Setup

The client computer running the ping program was connected to the two routers as
shown in figure 3.2.

Figure 3.2: Setup for preliminary experiment.

Procedure

The experiment was performed by sending 100 000 ping packets to each router,
at 100 packets per second (p/s). Packet size was the standard 56 byte payload +
8 byte header. Outliers were filtered out by finding the router with the highest
minimum delay, and then discarding all values more than twice this value. After the
outliers were filtered out, a histogram was plotted using python’s matplotlib library
[Hun07]. The code for filtering and plotting is given in appendix A, in methods
remove_outliers() and plot_files().

Results

The histogram showing the distribution of the two filtered measurement series is
shown in figure 3.3. We found it interesting that Router B had significantly lower
delay even though Router B was further away from our client than Router A. The
minimum delay for Router A was 0.436 ms, while Router B had 0.196 ms minimum
delay.

The width of the distributions for Router B were also noticeably different. Every
packet to Router B had to go through A. We can therefore see that processing delay
is the biggest factor when sampling routers as close to the client as these. This means
that the distribution shown in figure 3.3 gives us a better picture of the capacity of
the router that handles the ping request than distance between the client and router.
We wanted to explore this further to see whether similar routers behaved similarly,
and how accurately we could classify routers based on a series of ping measurements.
The remainder of the experiments in section 3.2 therefore adress this.
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Figure 3.3: Results of preliminary experiment.

3.2.2 Experiment 1: Separating two routers

Purpose

In this experiment, we compare the measurement series from two different router types,
Model C and Model A, to see how accurately we could classify each measurement
series using both deep learning and signal processing.

Setup

The client computer running the ping program was connected to the two routers as
shown in figure 3.4. The routers denoted with an X are unknown types of routers
between the client and the target router.

Figure 3.4: Setup for experiment 1.
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Procedure

1000 measurement series each of 5000 measurements were gathered for both routers
at a rate of 1000p/s. Each of the 1000 series a 56 bytes (standard) payload. The
data, after being prepared, was passed into our LSTM-FCN model for training as a
3-dimensional array in a (1400, 1, 5000) shape. 5, 2 and 1 epochs were used to train
the model, to determine the necessary epoch count to achieve specific accuracies. The
general setup and procedure described in section 3.1.3 were used for signal processing
analysis.

Results

The accuracy of the epochs are listed in table 3.2. It’s clear that our model was able
to classify our measurement series using relatively low amounts of training.

Epochs 5 2 1
Accuracy 100% 100% 94.17 %

Table 3.2: Results of deep learning classification for experiment 1.

Table 3.3 shows the parameters for signal processing. The deep learning approach
provided 100% accuracy. It is, however, fairly easy to classify the two routers by
looking at the signal processing parameters in 3.3. We would also achieve 100%
accuracy in this experiment if we implemented a rule that classified every series with
a minimum delay lower than 600ms as Router 2, and the rest as Router 5. We can
also observe that the router furthest away from the client had the lower minimum
delay seen in the preliminary experiment.

Looking at the minimum delay is a straightforward way of classifying the routers
in this experiment. This is, however, a parameter that can not be depended upon.
Router processing delay affects minimum delay. However, so do other components in
the network between the network and the client. In our example, Router 2 could
have minimum delay values that were similar to Router 5 if it was positioned further
away from the client. Minimum delay could therefore just be a measurement of the
routers position in relation to the client. We can reject the use of minimum delay
as a parameter in signal processing. We can not, however, affect the parameters
the deep learning model is allowed to use. Consequently we need different data to
determine whether the deep learning model is still able to classify the measurement
series correctly without looking at minimum delay.
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Parameters Router 2 Router 5

Packet loss Min 0.0% 0.0%
Max 0.0% 0.035%

Minimum
delay

Min 0.409ms 0.651ms
Max 0.503ms 0.752ms

Range Min 0.152ms 0.092ms
Max 0.287ms 0.188ms

Skewness Min -0.904 -0.606
Max 0.630 0.204

Kurtosis Min -0.329 -0.288
Max 2.638 3.476

Mean Min 0.589ms 0.800ms
Max 0.630ms 0.814ms

Standard
deviation

Min 0.022ms 0.013ms
Max 0.047ms 0.021ms

Table 3.3: Statistical parameters of the measurement series from both routers for
experiment 1.

3.2.3 Experiment 2: separating two routers with similar
minimum delay

Purpose

The purpose of this experiment is to determine whether we are still able to classify a
measurement series of routers with a similar minimum delay.

Setup

The data gathering setup was similar to experiment 1 (Figure 3.4), as the same
routers were used.

Procedure

This experiment, as in experiment 1, gathered 1000 series of 5000 measurements at
1000p/s. The payload of these measurement series was, however, set to 100 bytes.
The payload size was changed to see if this impacts any of the parameters in a
significant way. We wanted to simulate a situation where the measurement series on
two different router types had similar minimum delay values. No such series was,
however, available to us. We therefore had to manipulate the data we already had.
We found minimum delay for both groups of measurement series and subtracted this
from every measurement, then added 0.100ms. The series were then prepared in the
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way described in section 3.1.2. We trained the model on the training set until we
achieved 100% accuracy on the test set.

Results

The increasing accuracy of the model for each epoch can be seen in table 3.4.
This experiment, however, required 1 epoch more to achieve 100% accuracy than
experiment 1. 3 epochs is light training and did not take more than 15 minutes on
our system.

Epochs 1 2 3
Accuracy 50.67% 99.67% 100%

Table 3.4: Results of deep learning classification for experiment 2.

The two routers cannot be classified based on the minimum delay in table 3.5.
The range of the means and standard deviations, however, still provides ways to
classify every measurement series with perfect accuracy. Every series in our data set
with a mean higher than 0.270ms or a standard deviation higher than 0.021ms will
always be Router 2.

Parameters Router 2 Router 5

Packet loss Min 0.0% 0.0%
Max 0.0% 0.0564%

Minimum
delay

Min 0.100ms 0.100ms
Max 0.204ms 0.201ms

Range Min 0.151ms 0.092ms
Max 0.259ms 0.191ms

Skewness Min -0.913 -0.634
Max 0.334 0.126

Kurtosis Min -0.055 0.079
Max 3.066 3.678

Mean Min 0.288ms 0.250ms
Max 0.301ms 0.266ms

Standard
deviation

Min 0.022ms 0.013ms
Max 0.031ms 0.020ms

Table 3.5: Statistical parameters of the measurement series from both routers for
experiment 2.

It is interesting to note that Router 2 range of means is higher than that of
Router 5, even though the Router 2 range of minimum delay was lower. As shown in
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figure 3.4 Router 2 is further away from the client, but still had a lower minimum
delay. This indicates that even though Router 2 is faster than Router 5, Router 5’s
measurements are more compact, and have a lower spread than those of Router 2. A
reflection of this can be seen in figure 3.5.

Figure 3.5: Distribution of measurement series used in experiment 2.

3.2.4 Experiment 3: classifying unseen routers

Purpose

We have so far only used two routers in our experiments, our training and test data
also being gathered on the same routers. The test data has therefore belonged to a
router that the model has already seen data from. We however wanted to see in this
experiment, if we can classify two unseen routers by examining two different routers
of the same type. The router types chosen were those with most similar histogram
distributions on manual inspection.

Setup

The position of the four routers in relation to the client is shown in figure 3.6. The
routers denoted X.N are unknown router types between the client and the target
routers.

Procedure

We gathered 4000 series of 1000 measurements in this experiment for each router
at 100p/s The series had this time varying payload sizes, 16 bytes, 56 bytes, 500
bytes and 1000 bytes. The data was then rearranged instead into 1000 series of
4000 measurements, each series consisting of 1000 measurements for every payload.
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(a) Router 5 (b) Router 6

(c) Router 7 (d) Router 8

Figure 3.6: Setup for experiment 3.

We used different payloads to see if we could detect router behaviour that deviated
with payload, something that could help us to classify them. We again chose to
manipulate the gathered data in the same way as in experiment 2, to simulate hard
conditions for our analysis tools. We trained the model using the data from router 5
and 7, one of each type.

To determine how well we could classify the routers based on the Signal Processing
parameters we got, we wrote a python script. This script assigned scores to each
router for every series, before classifying the series as the router with the highest score.
The scipt consist of 3 functions: categorize_unseen(), categorize_serie() and
get_index_of_closest_range(), found in appendix A.

Results

The results from deep learning are given in table 3.6. We were not able to achieve
perfect accuracy in this experiment, although we were close at one point. Table 3.6
shows accuracy initially increasing, before dropping to 47.83% and remaining there.
This represents a worse alternative than guessing the same router type for every
measurement series, which is obviously a bad result. The reason for this drop is most
likely overfitting. Overfitting means that our model is not generalising well, and that
it has instead memorised the training data. It will perform well on the training data,
but fail at the test data.

We can see, from the statistical parameters in 3.11, that we are no longer able
to divide the two routers by any one parameter. This means that the classification
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Epochs 10 20 30 40
Accuracy 87.33% 99.50% 47.83% 47.83%

Table 3.6: Results of deep learning classification for experiment 3.

process is no longer as straightforward. We can see a significant difference in the
range of the kurtosis. The ranges, however, still overlap. The classifying script
managed to classify with 52.65% accuracy, which is slightly better than guessing
randomly.

Parameters Router 5 Router 7

Packet loss Min 0.0% 0.0%
Max 0.0% 0.0%

Minimum
delay

Min 0.100ms 0.100ms
Max 0.188ms 0.168ms

Range Min 0.126ms 0.110ms
Max 0.351ms 0.336ms

Skewness Min -0.938 -1.019
Max 0.759 0.831

Kurtosis Min -1.158 -1.313
Max 0.568 0.057

Mean Min 0.218ms 0.204ms
Max 0.318ms 0.287ms

Standard
deviation

Min 0.018ms 0.021ms
Max 0.065ms 0.057ms

Table 3.7: Statistical parameters of the measurement series from both routers for
experiment 3.

Despite getting close to perfect accuracy, this was the first experiment in which
we did not achieve this by deep learning. Manual inspection of the Signal Processing
parameters also could find no distinctive features that could be used to distinguish
the data of the two routers. The next experiment will also try to solve this, but by
using other data to see if we can better our results for these routers.

3.2.5 Experiment 4: Classifying unseen routers using packet loss

Purpose

The purpose of this experiment is to see if we can improve the results from experiment
3 by using different data. The data we used was generated by exposing the routers
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to a heavier load than in previous series, increasing their drop rate.

Setup

The setup was the same as for experiment 3, as shown in figure 3.6.

Procedure

We changed the rate of packets in the data gathering phase to 10 000p/s. The payload
was set to 500. The measurement series was, however, kept to 1000 measurements,
and we collected 1000 series for every router. As in experiment 3, the data from
router 5 and router 7 was used for training, while router 6 and router 8 data was
used for testing. We only calculated packet loss for Signal Processing.

Results

The results of the deep learning training are shown in table 3.8. As we can see, the
packet loss could be used to classify the routers quickly, and we were again able to
achieve perfect accuracy.

Epochs 1 2 3
Accuracy 99.64% 99.64% 100.00%

Table 3.8: Results of deep learning classification for experiment 4.

Table 3.9 shows the packet loss parameter values found by Signal Pro- cessing.
We see that the ranges of packet loss for Router 5 and Router 7 do not overlap. We
should be able to accurately classify an unseen measurement series with a similar
load by manually inspecting the packet loss.

Parameters Router 5 Router 7

Packet loss Min 85.9% 42.5%
Max 92.6% 79.9%

Table 3.9: The packet loss parameter from the measurement series from both
routers in experiment 4.

This experiment yielded 100% accuracy. However, relying on the packet loss
of routers at certain loads is not desirable. The configuration of the routers can
greatly affect packet loss, so making it an unreliable parameter. Most home networks
are, however, likely to use the standard configuration. Packet loss in these cases
can therefore certainly be of help. We did not use this parameter in the remaining
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experiment, as we wanted to explore how accurately we can classify by looking at
the relation between actual delay measurements.

3.2.6 Experiment 5: Classifying 4 different unseen routers

Purpose

Our final ping signature experiment explores how accurately we can classify all 4
router types we have been given access to.

Setup

The setup of the routers not illustrated in previous experiments are given in figure
3.7.

(a) Router 3 (b) Router 4

(c) Router 1

Figure 3.7: Addiditional setup for experiment 5.

Procedure

The data gathering phase of this experiment was similar to that of experiment 3.
The data used in experiment 3 was also used in this experiment for the routers
included in the experiment. Every router was therefore subject to 1000 series of 4000
measurements with 4 different payloads, 16 byte, 56 byte, 500 byte and 1000 byte.
The data was gathered at a rate of 100p/s. We, as in experiment 3 and 4, trained
our model on one of the routers of each router type, before testing the model on the
remaining unseen routers.
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Results

The results of the deep learning training are given in table 3.10. This shows that
accuracy was not perfect, but even so shows that we can identify the router type of
unseen routers to a high degree of accuracy.

Epochs 10 20 30
Accuracy 78.20% 89.12% 96.15%

Table 3.10: Results of deep learning classification for experiment 5.

Table 3.11 shows the statistical parameters for Signal Processing for the standard
payload (56 bytes). The tables for the remaining payloads are given in appendix
C. We note that there are no parameters that can separate Router 1 and Router
3 from the remainder of the routers. The ranges of every parameter overlap as in
experiment 3.

Parameters Router 2 Router 4 Router 6 Router 8
Minimum
delay

Min 0.100ms 0.100ms 0.100ms 0.100ms
Max 0.208ms 0.209ms 0.224ms 0.170ms

Range Min 0.215ms 0.247ms 0.222ms 0.104ms
Max 0.447ms 0.412ms 0.394ms 0.342ms

Skewness Min -0.499 -0.767 -0.822 -0.910
Max 0.502 0.637 0.683 0.789

Kurtosis Min -0.640 -0.599 -1.008 -1.375
Max 0.315 0.568 0.331 0.023

Mean Min 0.293ms 0.277ms 0.296ms 0.203ms
Max 0.372ms 0.360ms 0.355ms 0.296ms

Standard
deviation

Min 0.038ms 0.047ms 0.045ms 0.019ms
Max 0.072ms 0.077ms 0.062ms 0.060ms

Table 3.11: Statistical parameters of the measurement series from all routers for
experiment 5 for payload of 56 bytes.

This was the most challenging experiment we could invent from the data we
had access to. For this reason, we will not attempt any further experiments in this
section. The results of our experiments will be discussed in section 4.1.
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3.3 Detecting network changes

3.3.1 Experiment 6: adding 1 fast switched component to our
network path

Purpose

In this experiment, we want to examine whether we can detect the addition of 1 fast
switched component to the path of our ping packets. This is either a switch or a fast
switched router.

Setup

The setup for experiment 6 is shown in 3.8. Router 9 and Router 10 are less than
200 meters from each other, the additional transmission delay being around 0.001ms.

Figure 3.8: Setup for Experiment 6.

Procedure

There were no fast switched components which we could add to our network path.
We therefore needed to simulate this condition if we were to carry out this experiment.
We therefore used two routers of the same type in series, the added component being
the first of the two routers in series. As seen from experiments 1-5, it is essential that
the routers in series are the same router type. The classification could otherwise end
up separating on the router signature rather than on the difference in the network
path.

Results

Epochs 10 20 30
Accuracy 48.75% 53.24% 52.00%

Table 3.12: Results of deep learning classification for experiment 6.
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As we can see from the results in table 3.12, our deep learning model was able to
classify the changes to a high degree of accuracy. This is also reflected by our Signal
Processing parameters seen in table 3.13. We can see that Router 10 generally has
higher delay, but the ranges are overlapping, and would be difficult to separate.

Parameters Router 9 Router 10
Minimum
delay

Min 0.334 0.363
Max 0.433 0.454

Range Min 0.195 0.236
Max 0.520 0.474

Skewness Min -0.872 -0.796
Max 0.765 0.727

Kurtosis Min -0.662 -0.750
Max 0.797 0.649

Mean Min 0.492 0.525
Max 0.602 0.619

Standard
deviation

Min 0.035 0.047
Max 0.108 0.102

Table 3.13: Statistical parameters of the measurement series from both routers for
experiment 6.

We chose to focus our attention on the ping signature experiments and we therefore
carried out no further experiments on detecting network changes using ping. Our
results will be briefly discussed in section 4.2





Chapter4Results

In this chapter, we present the key findings from chapter 3 and discuss the implications
of these findings. The chapter is divided into two sections, one for each type of
experiment. Section 4.1 covers experiments 1-5, in which we explored our ability to
recognise routers based on the patterns of their ping response. Section 4.2 covers
experiment 6.

4.1 Ping signatures

We immediately observed, from our first experiment, that we were able to separate
two routers based on their ping responses using both deep learning and Signal
Processing. We saw, however, a decrease in accuracy as the perceived difficulty of our
experiments increased. All our experiments, when deep learning was used to analyse
the data, ended up with an accuracy that we considered to be satisfactory. Signal
Processing was sufficient for experiments 1, 2 and 4. However, signal processing
experienced difficulties classifying routers when the range of the statistical parameters
overlapped, as we saw in experiment 3 and 5.

We consider experiment 3 and experiment 5 to be most relevant to the real world
application of our findings. These use our training to identify to a high degree of
accuracy the type of previously unseen routers. This can be used to identify routers
in an unknown network, where you do not have access to the router types. If these
routers have known weaknesses, this could imply an increased security risk, as a
potential attacker could exploit known router weaknesses if they are able to identify
the router type.

Higher accuracy could have been achieved for experiment 3 and 5, if we had more
routers of the same type to train our deep learning model on. More samples of each
router type would help our model identify the patterns of the router types rather
than the properties of a single data set. This would have made our training less
prone to overfitting.
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It is worth noting that the classification task becomes more difficult the more
router models we add, due to more routers with similar ping signatures. However,
even if we cannot classify the specific router correctly, then we should still be able to
narrow down the potential router type to which a ping signature can belong.

To conclude, we find from experiments 1-5 that we were are able to identify
the router types at our disposal to a high degree of accuracy. Our answer to RQ3
therefore is that we are indeed able to identify a router by looking at the latency
pattern when pinging it. We observed, when comparing Signal Processing with deep
learning, that both methods yielded the same results for some of our experiments,
but that deep learning was superior as the challenges became greater.

4.2 Detecting network changes

We were unable, in experiment 6, to achieve a high degree of accuracy in the
measurements of our data. The change in network path was too small for a tool
such as ping to accurately classify the two network paths. A hardware tool for
measuring delay would probably be necessary for us to differentiate between the
two paths. We could have expanded our experiments to see how many network
components we would need to traverse through for ping to provide accurate results
for the changing of network paths. However, as mentioned previously, we chose to
focus on the experiments related to ping response. Our answers to RQ1 and RQ2
are therefore inconclusive.



Chapter5Summary

The identificational capabilities of ping on IP-routers have been examined in this
thesis. The thesis started out as a project that planned to identify the capabilities of
the ping program to detect changes in short network paths. However, the focus of the
project changed after initial experiments yielded interesting results. The processing
delay we initially had considered to be noise in our measurements, became the focal
point of the thesis. The main bulk of our experiments therefore revolved around this.
Ping is an old and widely distributed tool. We were not, however, able to find any
previous work on this subject, and this thesis does therefore not add to any previous
studies.

A python script was written to gather the data we required to perform our
experiments. In total over 100 000 000 ping requests were sent, not all being used
for experiments. We chose, for some of the experiments, to manipulate some of the
measurement series to simulate harder conditions for our analysis methods to operate
in. Two methods were used to analyse our data: Signal Processing and deep learning.

The results of our experiments confirmed that we were able to identify different
types of routers to a high degree of accuracy. We were also able to land on a preferred
method of analysis, that of deep learning. Signal Processing was sufficient for some
task analysis. But it never outperformed deep learning. If this project was to be
repeated, it would be more efficient to use only deep learning for analysis.

5.1 Suggestions for future work

Future work related to this project could proceed in a number of directions. Firstly,
this thesis does not answer RQ1 and RQ2 put forth in the introduction. Evaluating
the capabilities of the ping program with more experiments is therefore an area that
still can be expanded. We suggest that, in this work, the components for which you
want to determine whether they can be detected by the ping program, are attach on
the client side of the path. This approach will ensure the results of you measurements
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are not a result of different ping signatures, but rather the inclusion of the additional
components. Ping is not suited for minimal changes to network paths, and higher
precision tools should be used.

Secondly, more experiments can be conducted on ping signatures. This project
assessed routers in relative proximity to the client. We therefore experienced low
amounts of noise. Examining how increasing the distance between the client and
the target routers affects accuracy would be of interest to this topic, as this adds
unwanted noise from other traffic.

Exploring how different router configurations can affect the ping signature would
also be a valuable contribution. The configuration of the router is able to affect the
packet loss. Examining whether you can make a router completely unrecognisable by
configuring its settings would be interesting. If it were possible to change the router
signature of a router completely, it would negate the negative security implications
of router signatures.

Finally, there is also room for repeating the ping signature experiments in this
thesis with extra routers. Our suggestion would be to group routers that perform the
same functionality (e.g. home routers, core routers, gateway routers), and experiment
on their ping signatures. These routers would most likely be similar in terms of their
processing capabilities, and would therefore be harder to classify.
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AppendixAsignal_processing.py

import matp lo t l i b . pyplot as p l t
from s c ipy . s t a t s import skew , ku r t o s i s
import numpy as np
import random

def remove_out l i e r s ( s e r i e s_w i th_out l i e r s ) :
s e r i e s_w i th_out l i e r s . s o r t ( )

input_max = max( s e r i e s_w i th_out l i e r s )

l i s t_ l e n = len ( s e r i e s_w i th_out l i e r s )
f i r s t_qua r t i l e_ index = int ( l i s t_ l e n / 4)
l a s t_quar t i l e_ index = int ( (3 ∗ l i s t_ l e n ) / 4)

f i r s t_qua r t i l e_va l u e = round ( ( s e r i e s_w i th_out l i e r s
[ f i r s t_qua r t i l e_ index ] ) , 3)

l a s t_quar t i l e_va lue = round ( ( s e r i e s_w i th_out l i e r s
[ l a s t_quar t i l e_ index ] ) , 3)

IQR = las t_quar t i l e_va lue − f i r s t_qua r t i l e_va l u e
upper_threshold = la s t_quar t i l e_va lue + (IQR ∗ 1 . 5 )

s e r i e s_w i thou t_out l i e r s = [ ]

for e in s e r i e s_w i th_out l i e r s :
i f e < upper_threshold :

s e r i e s_w i thou t_out l i e r s . append ( e )
i f max( s e r i e s_w i thou t_out l i e r s ) == input_max :

return s e r i e s_w i thou t_out l i e r s
e l i f max( s e r i e s_w i thou t_out l i e r s ) < input_max :
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return remove_out l i e rs ( s e r i e s_w i thou t_out l i e r s )
else :

print ( " This ␣ should ␣not␣happen " )

def impo r t_ f i l e s ( f i l enames ) :
l i s t _ o f _ f i l e s = [ ]
for f i l ename in f i l enames :

f i l e_ a s_ l i s t = [ ]
with open( f i l ename , " r " ) as f i l e :

for l i n e in f i l e :
s p l i t_ l i n e = l i n e . s p l i t ( " , " )
f l o a t _ l i s t = [ f loat ( i ) for i in s p l i t_ l i n e ]
f i l e_ a s_ l i s t . append ( f l o a t _ l i s t )

l i s t _ o f _ f i l e s . append ( f i l e_ a s_ l i s t )
return l i s t _ o f _ f i l e s

def pr int_and_return_stat i s t i c s ( u n f i l t e r e d_ f i l e s ,
f i l t e r e d_ f i l e s , routernames ) :

s t a t i s t i c s = [ ]

for index in range (0 , len ( routernames ) ) :
print ( routernames [ index ] + " : " )

u n f i l t e r e d_ f i l e = u n f i l t e r e d_ f i l e s [ index ]
f i l t e r e d _ f i l e = f i l t e r e d _ f i l e s [ index ]
min_drop_rate = 100 .0
max_drop_rate = 0 .0
for s e r i e s in u n f i l t e r e d_ f i l e :

len_with_zeroes = len ( s e r i e s )
se r i e s_without_zeroes = l i s t ( f i l t e r (lambda x : x != 0 ,
s e r i e s ) )

dropped_packages = ( len_with_zeroes −
len ( se r i e s_without_zeroes ) )

drop_rate = dropped_packages/ len_with_zeroes
i f drop_rate < min_drop_rate :

min_drop_rate = drop_rate
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i f drop_rate > max_drop_rate :
max_drop_rate = drop_rate

min_drop_rate = min_drop_rate ∗ 100
max_drop_rate = max_drop_rate ∗ 100

print ( " Package␣ l o s s ␣ ra t e ␣ range : ␣ " +
"%.3 f " % min_drop_rate + "%␣−␣ "
+ "%.3 f " % max_drop_rate + "%" )

min_min_delay = 100000.0
max_min_delay = −100000.0
min_range = 100000.0
max_range = −100000.0
min_skew = 100000.0
max_skew = −100000.0
min_kurtosis = 100000.0
max_kurtosis = −100000.0
min_mean = 100000.0
max_mean = −100000.0
min_std = 100000.0
max_std = −100000.0

for f i l t e r e d_ s e r i e s in f i l t e r e d _ f i l e :
min_delay = min( f i l t e r e d_ s e r i e s )
i f min_delay < min_min_delay :

min_min_delay = min_delay
i f min_delay > max_min_delay :

max_min_delay = min_delay

max_delay = max( f i l t e r e d_ s e r i e s )
d i s t r i bu t i on_range = max_delay − min_delay
i f d i s t r i bu t i on_range < min_range :

min_range = d i s t r i bu t i on_range
i f d i s t r i bu t i on_range > max_range :

max_range = d i s t r i bu t i on_range

skewedness = skew ( f i l t e r e d_ s e r i e s )
i f skewedness < min_skew :

min_skew = skewedness
i f skewedness > max_skew :
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max_skew = skewedness

kurt = ku r t o s i s ( f i l t e r e d_ s e r i e s )
i f kurt < min_kurtosis :

min_kurtosis = kurt
i f kurt > max_kurtosis :

max_kurtosis = kurt

mean = np .mean( f i l t e r e d_ s e r i e s )
i f mean < min_mean :

min_mean = mean
i f mean > max_mean :

max_mean = mean

std = np . std ( f i l t e r e d_ s e r i e s )
i f std < min_std :

min_std = std
i f std > max_std :

max_std = std

print ( "Min␣ de lay ␣ range : ␣ " + "%.3 f " % min_min_delay + "ms
␣␣␣␣␣␣␣␣␣␣␣␣−␣ " + "%.3 f " % max_min_delay + "ms" )

print ( "Measurement␣ range ␣ range : ␣ " + "%.3 f " % min_range + "ms
␣␣␣␣␣␣␣␣␣␣␣␣−␣ " + "%.3 f " % max_range + "ms" )

print ( " Skewedness ␣ range : ␣ " + str (min_skew) + "
␣␣␣␣␣␣␣␣␣␣␣␣−␣ " + str (max_skew) + " " )

print ( " Kurtos i s ␣ range : ␣ " + str ( min_kurtosis ) + "
␣␣␣␣␣␣␣␣␣␣␣␣−␣ " + str ( max_kurtosis ) + " " )

print ( "Mean␣ range : ␣ " + "%.3 f " % min_mean + "ms
␣␣␣␣␣␣␣␣␣␣␣␣−␣ " + "%.3 f " % max_mean + "ms" )

print ( "STD␣ range : ␣ " + "%.3 f " % min_std + "ms
␣␣␣␣␣␣␣␣␣␣␣␣−␣ " + "%.3 f " % max_std + "ms" )

s t a t i s t i c s . append ( [ ( min_min_delay , max_min_delay ) ,
(min_range , max_range ) , (min_skew , max_skew) ,
( min_kurtosis , max_kurtosis ) , (min_mean , max_mean) ,
(min_std , max_std ) ] )

return s t a t i s t i c s
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def f i l t e r _ l i s t ( u n f i l t e r e d_ l i s t ) :
f i l t e r e d _ l i s t = [ ]
for s e r i e s in u n f i l t e r e d_ l i s t :

removed_zeroes = l i s t ( f i l t e r (lambda x : x != 0 , s e r i e s ) )
f i l t e r e d_ s e r i e s = remove_out l i e r s ( removed_zeroes )
f i l t e r e d _ l i s t . append ( f i l t e r e d_ s e r i e s )

return f i l t e r e d _ l i s t

def p l o t_ f i l e s ( f i l e _ l i s t , number_of_series_to_be_plotted , routernames ) :
number_of_files_to_be_plotted = len ( f i l e _ l i s t )
for f i l e in f i l e _ l i s t :

ser ies_to_be_plotted = [ ]
i f number_of_series_to_be_plotted == 0 :

ser ies_to_be_plotted = lambda f i l e :
[ measurement for s e r i e s in f i l e for measurement in s e r i e s ]

e l i f number_of_series_to_be_plotted > 0 :
for example in range (0 , number_of_series_to_be_plotted ) :

index = random . rand int (0 , len ( f i l e ) )
ser ies_to_be_plotted . extend ( f i l e [ index ] )

i f number_of_files_to_be_plotted == 1 :
p l t . h i s t ( ser ies_to_be_plotted , 100 , alpha =1.0)

e l i f number_of_files_to_be_plotted > 1 :
p l t . h i s t ( ser ies_to_be_plotted , 100 , alpha =0.7)

p l t . y l ab e l ( "Number␣ o f ␣ packets " )
p l t . x l ab e l ( "Time␣ in ␣ m i l l i s e c ond s " )
p l t . l egend ( routernames , l o c =1, prop={ ’ s i z e ’ : 14})
p l t . show ( )

def get_index_of_closest_range ( l i s t , va lue ) :
c l o s e s t = [ ]
for tuple in l i s t :

c l o s e s t . append (min(abs ( value−tuple [ 0 ] ) , abs ( value−tuple [ 1 ] ) ) )

numpy_array = np . array ( c l o s e s t )

index = (np . abs ( numpy_array−value ) ) . argmin ( )

return index
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def c a t e g o r i z e_ s e r i e ( s e r i e , s t a t s ) :
s c o r e s = [ 0 ] ∗ len ( s t a t s )
for parameter_index in range (0 , len ( s e r i e ) ) :

parameter = s e r i e [ parameter_index ]
routers_in_range = [ ]
for router_index in range (0 , len ( s t a t s ) ) :

router_params = s t a t s [ router_index ] [ parameter_index ]
i f ( router_params [ 0 ] < parameter and parameter <

router_params [ 1 ] ) :

routers_in_range . append ( router_index )

parameter_range_l ist = [ ]

i f len ( routers_in_range ) == 0 :
for route r in s t a t s :

parameter_range_l ist . append ( route r [ parameter_index ] )
index = get_index_of_closest_range ( parameter_range_list ,
parameter )

s c o r e s [ index ] += 5

i f len ( routers_in_range ) == 1 :
s c o r e s [ routers_in_range [ 0 ] ] += 50

i f len ( routers_in_range ) > 1 :
for router_in_range in routers_in_range :

s c o r e s [ router_in_range ] += 1

for idx in range (0 , len ( s t a t s ) ) :
i f idx in routers_in_range :

route r = s t a t s [ idx ]
parameter_range_l ist . append ( route r [ parameter_index ] )

e l i f idx not in routers_in_range :
parameter_range_l ist . append((−1e8 , −1e7 ) )

index = get_index_of_closest_range (
parameter_range_list , parameter )

s c o r e s [ index ] += 2
return s c o r e s
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def categor i ze_unseen ( unseen_f i l e s , s t a t s ) :
c o r r e c t l y_ca t e go r i z ed = 0
wrongly_categor ized = 0

for index in range (0 , len ( un s e en_f i l e s ) ) :

f i l e = unse en_f i l e s [ index ]
for s e r i e s in f i l e :

min_delay = min( s e r i e s )
d i s t r i bu t i on_range = max( s e r i e s ) − min_delay
skewness = skew ( s e r i e s )
kurt = ku r t o s i s ( s e r i e s )
avg = np .mean( s e r i e s )
std = np . std ( s e r i e s )

s e r i e s_ s c o r e s = ca t e g o r i z e_ s e r i e ( [ min_delay ,
d i s t r ibut ion_range , skewness , kurt , avg , std ] , s t a t s )

i f s e r i e s_ s c o r e s . index (max( s e r i e s_ s c o r e s ) ) == index :
c o r r e c t l y_ca t e go r i z ed += 1

else :
wrongly_categor ized += 1

print ( c o r r e c t l y_ca t e go r i z ed /
( c o r r e c t l y_ca t e go r i z ed + wrongly_categor ized ) )

def main ( f i l enames , routernames , un s e en_f i l e s ) :

i f len ( f i l enames ) != len ( routernames ) :
return

else :
u n f i l t e r e d_ f i l e s = impor t_ f i l e s ( f i l enames )
f i l t e r e d _ f i l e s = [ ]
for f i l e in u n f i l t e r e d_ f i l e s :

f i l t e r e d _ f i l e s . append ( f i l t e r _ l i s t ( f i l e ) )

s t a t s = pr int_and_return_stat i s t i c s ( u n f i l t e r e d_ f i l e s ,
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f i l t e r e d_ f i l e s , routernames )

un f i l t e r ed_unseen = impor t_ f i l e s ( un s e en_f i l e s )

f i l t e r e d_un s e e n_ f i l e s = [ ]
for unseen_f i l e in unf i l t e r ed_unseen :

f i l t e r e d_un s e e n_ f i l e s . append ( f i l t e r _ l i s t ( unseen_f i l e ) )
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from keras . l a y e r s import Dense , LSTM, Dropout , Input ,
concatenate , Act ivat ion

from keras . l a y e r s import Conv1D , BatchNormalization ,
GlobalAveragePooling1D , Permute

from keras . models import Model
from keras . c a l l b a ck s import ModelCheckpoint , ReduceLROnPlateau
from keras . op t im i z e r s import Adam
import pandas as pd
import numpy as np
from s k l e a rn . mode l_se lect ion import t r a i n_t e s t_sp l i t

def get_one_hot ( ta rge t s , nb_classes ) :
r e s = np . eye ( nb_classes ) [ np . array ( t a r g e t s ) . reshape (−1)]
return r e s . reshape ( l i s t ( t a r g e t s . shape )+[ nb_classes ] )

def prepare_data ( f i l enames , unseen_fi lenames , l ab e l s ,
s izes_and_labeled , unseen ) :

f i l e _ l i s t = [ ]

#reads in a l l the csv f i l e s needed
for f i l e in f i l enames :

r e a d_ f i l e s_ l i s t = [ ]
l ab e l ed = None
for s i z e in s izes_and_labe led :

r e ad_ f i l e = pd . read_csv ( f i l e + "_" + s i z e +
" . csv " , header=None )

i f ( " l ab e l ed " in s i z e ) :
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l a b e l ed = r ead_ f i l e
else :

r e a d_ f i l e s_ l i s t . append ( r ead_f i l e , ax i s =1, s o r t=False ,
ignore_index=True )

r e a d_ f i l e s_ l i s t . append ( l ab e l ed )
conca t ed_f i l e = pd . concat ( r e a d_ f i l e s_ l i s t )
f i l e _ l i s t . append ( conca t ed_f i l e )

merged_f i l e s = f i l e _ l i s t [ 0 ] . append ( f i l e _ l i s t [ 1 : ] ,
ignore_index=True )

for index in range (0 , len ( l a b e l s ) ) :
merged_f i l e s = merged_f i l e s . r ep l a c e (

to_replace=l a b e l s [ index ] , va lue=index )

i f not unseen :
# i f we are not us ing unseen rou t e r s to t e s t a ga in s t (Ex 3 − 5) , s p l i t our data in t o t r a i n i n g and t e s t s e t s
t ra in , t e s t = t r a i n_t e s t_sp l i t ( merged_f i les , t e s t_ s i z e =0.3)

i f unseen :
un s e en_ f i l e_ l i s t = [ ]

for unseen_f i l e in unseen_fi lenames :
unse en_read_f i l e s_ l i s t = [ ]
unseen_labeled = None
for s i z e in s izes_and_labe led :

unseen_read_f i le = pd . read_csv ( unseen_f i l e
+ "_" + s i z e + " . csv " , header=None )

i f ( " l ab e l ed " in s i z e ) :
unseen_labeled = unseen_read_f i le

else :
un s e en_read_f i l e s_ l i s t . append ( unseen_read_fi le ,

ax i s =1, s o r t=False , ignore_index=True )

unseen_read_f i l e s_ l i s t . append ( unseen_labeled )
unseen_concated_f i le = pd . concat ( unseen_read_f i l e s_ l i s t )
un s e en_ f i l e_ l i s t . append ( unseen_concated_f i le )

unseen_merged_fi les = un s e en_ f i l e_ l i s t [ 0 ] . append (
un s e en_ f i l e_ l i s t [ 1 : ] , ignore_index=True )
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for index in range (0 , len ( l a b e l s ) ) :
unseen_merged_fi les = unseen_merged_fi les . r ep l a c e (

to_rep lace=l a b e l s [ index ] , va lue=index )

t r a i n = merged_f i l e s . sample ( f r a c =1). reset_index ( drop=True )
t e s t = unseen_merged_fi les . sample ( f r a c =1)

. reset_index ( drop=True )

x_train_df = t r a i n . i l o c [ : , :−1]
y_train_df = t r a i n . i l o c [ : , −1]
x_test_df = t e s t . i l o c [ : , :−1]
y_test_df = t e s t . i l o c [ : , −1]

x_train = x_train_df . va lue s
y_train = y_train_df . va lue s
x_test = x_test_df . va lue s
y_test = y_test_df . va lue s

y_train_one_hot = get_one_hot ( y_train , len ( l a b e l s ) )
y_test_one_hot = get_one_hot ( y_test , len ( l a b e l s ) )

tra in_sequence_length = x_train [ 0 ] . s i z e
test_sequence_length = x_test [ 0 ] . s i z e

x_train = np . reshape ( x_train , ( x_train . shape [ 0 ] ,
1 , tra in_sequence_length ) )

x_test = np . reshape ( x_test , ( x_test . shape [ 0 ] , 1 ,
test_sequence_length ) )

return x_train , y_train_one_hot , x_test , y_test_one_hot ,
train_sequence_length , test_sequence_length

def main ( f i l enames , unseen_fi lenames , l ab e l s ,
s izes_and_labeled , unseen , eval ) :
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x_train , y_train , x_test , y_test , train_sequence_length ,
test_sequence_length = prepare_data ( f i l enames ,
unseen_fi lenames , l ab e l s , s izes_and_labeled , unseen )

#s e t t i n g up the LSTM−FCN model
ip = Input ( shape=(1 , tra in_sequence_length ) )

x = LSTM(8 ) ( ip )
x = Dropout ( 0 . 8 ) ( x )

y = Permute ( ( 2 , 1 ) ) ( ip )
y = Conv1D(128 , 8 , padding=’ same ’ ,

k e r n e l _ i n i t i a l i z e r=’ he_uniform ’ ) ( y )
y = BatchNormal izat ion ( ) ( y )
y = Act ivat ion ( ’ r e l u ’ ) ( y )

y = Conv1D(256 , 5 , padding=’ same ’ ,
k e r n e l _ i n i t i a l i z e r=’ he_uniform ’ ) ( y )

y = BatchNormal izat ion ( ) ( y )
y = Act ivat ion ( ’ r e l u ’ ) ( y )

y = Conv1D(128 , 3 , padding=’ same ’ ,
k e r n e l _ i n i t i a l i z e r=’ he_uniform ’ ) ( y )

y = BatchNormal izat ion ( ) ( y )
y = Act ivat ion ( ’ r e l u ’ ) ( y )

y = GlobalAveragePooling1D ( ) ( y )

x = concatenate ( [ x , y ] )

out = Dense (2 , a c t i v a t i o n=’ softmax ’ ) ( x )

model = Model ( ip , out )

#model has been s e t up

print (model . summary ( ) )
l ea rn ing_rate = 1e−3

f a c t o r = 1 . / np . cbrt (2 )
data se t_pre f i x = 5
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model_checkpoint = ModelCheckpoint ( "%s_weights . h5 " %
dataset_pre f ix , verbose=1, monitor=’ va l_ lo s s ’ ,
save_best_only=True , save_weights_only=True )

reduce_lr = ReduceLROnPlateau ( monitor=’ va l_ lo s s ’ ,
pa t i ence =100 , mode=’ auto ’ , f a c t o r=fac to r , cooldown=0,
min_lr=1e−4, verbose=2)

c a l l b a c k_ l i s t = [ model_checkpoint , reduce_lr ]

optm = Adam( l r=lea rn ing_rate )
model . compile ( opt imize r=optm , l o s s=’ ca t ego r i c a l_c ro s s en t r opy ’ ,

met r i c s=[ ’ accuracy ’ ] )

accuracy = np . f l o a t 6 4 (0 )
s c o r e s = [ ]

i f eval :
model . load_weights ( "%s_weights . h5 " % datase t_pre f i x )
s c o r e s = model . eva luate ( x_train , y_train , verbose=0)

accuracy = s c o r e s [ 1 ]

print ( " Accuracy : ␣%.2 f%%" % ( accuracy ∗ 100))
print ( " Loss : ␣ " + str ( s c o r e s [ 0 ] ) )

else :

while True :
#un t i l we abor t t ra in ing , we t r a i n the model and save the b e s t r e s u l t s
model . f i t ( x_train , y_train , v a l i d a t i o n_sp l i t =0.2 ,

c a l l b a ck s=ca l l b a ck_ l i s t , epochs=10, batch_size=64,
verbose=2)
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Parameters Router 2 Router 4 Router 6 Router 8
Minimum
delay

Min 0.100 0.100 0.100 0.100
Max 0.205 0.196 0.228 0.205

Range Min 0.269 0.243 0.183 0.098
Max 0.417 0.433 0.391 0.343

Skewness Min -0.558 -0.855 -0.835 -0.907
Max 0.432 0.587 0.661 0.879

Kurtosis Min -0.666 -0.516 -1.073 -1.431
Max 0.503 0.669 0.350 0.036

Mean Min 0.291 0.262 0.273 0.233
Max 0.361 0.354 0.359 0.320

Standard
deviation

Min 0.051 0.047 0.030 0.016
Max 0.071 0.081 0.067 0.074

Table C.1: Statistical parameters of the measurement series from all routers for
experiment 5 for payload of 16 bytes.
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Parameters Router 2 Router 4 Router 6 Router 8
Minimum
delay

Min 0.100 0.100 0.100 0.100
Max 0.334 0.219 0.216 0.179

Range Min 0.236 0.160 0.135 0.103
Max 1.316 0.415 0.383 0.340

Skewness Min -0.476 -1.169 -0.830 -0.831
Max 0.810 0.814 0.843 0.871

Kurtosis Min -0.577 -0.797 -0.951 -1.188
Max 0.512 2.157 0.530 0.087

Mean Min 0.359 0.240 0.272 0.209
Max 0.746 0.357 0.355 0.310

Standard
deviation

Min 0.042 0.032 0.025 0.017
Max 0.338 0.076 0.077 0.059

Table C.2: Statistical parameters of the measurement series from all routers for
experiment 5 for payload of 500 bytes.

Parameters Router 2 Router 4 Router 6 Router 8
Minimum
delay

Min 0.100 0.100 0.100 0.100
Max 0.212 0.238 0.241 0.178

Range Min 0.269 0.156 0.158 0.105
Max 75.687 0.424 0.398 0.354

Skewness Min -0.573 -1.590 -0.964 -1.006
Max 0.482 0.765 0.784 0.842

Kurtosis Min -1.450 -0.822 -1.030 -1.358
Max 0.521 3.115 0.932 0.407

Mean Min 0.307 0.233 0.278 0.203
Max 36.159 0.354 0.388 0.339

Standard
deviation

Min 0.049 0.032 0.024 0.017
Max 25.755 0.089 0.071 0.067

Table C.3: Statistical parameters of the measurement series from all routers for
experiment 5 for payload of 1000 bytes.
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def ping_and_save ( numberOfDataPoints , ping_adr_l ist , s i z e ,
packet_count ) :
for dataPoint in range ( numberOfDataPoints ) :

for pingAdr in ping_adr_l i s t :
p ingt imes = [ ]
t imeouts = [ ]
ping = os . popen ( ’ sudo␣ping ␣ ’ + pingAdr + ’ ␣−c␣ ’

+ str ( packet_count ) + ’ ␣− i ␣ 0 .01 ␣−s ␣ ’ + str ( s i z e ) )
r e s u l t = ping . r e a d l i n e s ( )
icmp_seq_list = l i s t ( range (0 , packet_count ) )
for i in r e s u l t :

i f ( " t t l=" in i ) :
temp = i . s p l i t ( "=" )
temp2 = temp [ 3 ] . s p l i t ( " ␣ " )
icmp_seq = temp [ 1 ] . s p l i t ( " ␣ " ) [ 0 ]
i f int ( icmp_seq ) in icmp_seq_list :

icmp_seq_list . remove ( int ( icmp_seq ) )
else :

print ( icmp_seq )
p ingt imes . append ( temp2 [ 0 ] )

for missed_icmp_seq in icmp_seq_list :
p ingt imes . i n s e r t (missed_icmp_seq , " 0 " )

f i l e = open( pingAdr . r ep l a c e ( " . " , "_" ) + " _size_ "
+ str ( s i z e ) + " . csv " , " a " )

for i in pingt imes [ : − 1 ] :
f i l e . wr i t e ( i + " , " )

f i l e . wr i t e ( p ingt imes [−1] + " \n " )
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f i l e . c l o s e ( )
i f dataPoint%10 == 0 :

print ( dataPoint )
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