
Engineering device pairing with fuzzy 
cryptography

Sinisa Matetic

Master in Security and Mobile Computing

Supervisor: Colin Alexander Boyd, ITEM
Co-supervisor: Tuomas Aura, Aalto University

Department of Telematics

Submission date: June 2014

Norwegian University of Science and Technology



 



Title: Engineering device pairing with fuzzy cryptography
Student: Sinisa Matetic

Problem description:

The goal of the thesis project is to analyze di�erent kinds of device pairing
methods that are based on unconventional methods. Additionally, the goal is to
investigate a novel type of device pairing using the contextual information given from
synchronized drawing with two fingers on two di�erent devices. This device pairing
procedure is to be analyzed in terms of potential metrics for drawing comparison
and furthermore incorporating the idea into a new protocol design based on fuzzy
cryptography.

Responsible professor:
Tuomas Aura, AALTO
University

Tuomas Aura, AALTO University,

Supervisor: Colin Boyd,
ITEM, NTNU

Colin Boyd, ITEM, NTNU





Abstract

Device pairing protocols are a subset of secure communication proto-
cols used to bootstrap a secure channel over an insecure communication
link between two or more devices. Example protocols use technologies
such as Bluetooth or infrared light and are mostly based on user-entered
secret keys or secrets directly verified and authenticated manually by
users. However, in this thesis we focus on four di�erent areas that com-
plement the existing protocols. Firstly, we overview protocols that are
based on fuzzy secrets and that utilize contextual information to pair
device. Secondly, we analyze a particular method that uses contextual
information, synchronized drawing with two fingers of the same hand
on two touch screens or surfaces, to derive a shared secret by applying
various metrics and conducting measurements and comparisons. The
main results from this parts are new, improved metrics for comparing
fuzzy secrets that consist of a drawing or movement path Thirdly, we
overview the mathematical constructions that support fuzzy cryptogra-
phy schemes and describe our own system architecture based on these.
Fourthly, we develop a secure device pairing protocol based on synchro-
nized drawing that uses fuzzy cryptography and error-correction codes in
order to derive a shared secret between devices that share similar, but not
exactly the same, secret noisy inputs. While the protocol is based on an
information-theoretically secure construction, we find that the security of
the practical implementations is harder to prove because of uncertainty
about the amounts of entropy in the shared noisy inputs. The protocol
nevertheless has the characteristics of practical security. Additionally,
we describe information-theoretically secure alternatives derived from
available theorems in the literature.





Preface

This Master Thesis is carried out as a joint project between Aalto Uni-
versity, Espoo, Finland as the main university and Norwegian University
of Science and Technology, Trondheim, Norway as host university. The
author would like to thank his main supervisor, prof. Tuomas Aura,
for his direct guidance, help and support during work on this project.
Additionally, the author would like to thank his co-supervisor, prof. Colin
Boyd for his assistance and advice given in the host university.

"Neka ti uvijek bude na umu da samo stvaralacki rad stvara fizionomiju
licnosti". A.B.





Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

List of Acronyms xiii

1 Introduction 1
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Taxonomy of device pairing methods . . . . . . . . . . . . . . . . . . 4

2.1.1 Out-of-band channels . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Commitment-based protocols . . . . . . . . . . . . . . . . . . 8

2.2 Fuzzy contextual data for key establishment . . . . . . . . . . . . . . 13

3 Metrics for synchronous drawing 17
3.1 User data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Location metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Movement metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 String distance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Levenshtein distance . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 ANGLE metric . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 LURD metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.4 LURD xy metric . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.5 LURD binary metric . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Metric evaluation and analysis . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Optimal angle number and distance for the ANGLE metric . 32
3.5.2 Optimal grid size values for the LURD metric . . . . . . . . . 35
3.5.3 Comparison of metrics . . . . . . . . . . . . . . . . . . . . . . 38

v



4 Introduction to fuzzy cryptography and component constructions 41
4.1 Mathematical definitions and terms . . . . . . . . . . . . . . . . . . . 42

4.1.1 Metrics used in fuzzy commitment protocol scheme . . . . . . 42
4.1.2 Codes and correcting mechanisms . . . . . . . . . . . . . . . 43
4.1.3 Entropy calculations . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Defining sketches and extractors for fuzzy input handling . . . . . . 46
4.2.1 Formal definition of a secure sketch . . . . . . . . . . . . . . . 47
4.2.2 Formal definition of a fuzzy extractor . . . . . . . . . . . . . 48

4.3 Exemplar constructions for di�erent metric spaces and distance func-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Hamming distance metric . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Edit distance metric . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Set di�erence metric . . . . . . . . . . . . . . . . . . . . . . . 51

5 Protocol design 53
5.1 Protocol components and notation . . . . . . . . . . . . . . . . . . . 54

5.1.1 First protocol stage . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Second protocol stage . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 Simplifying second protocol stage . . . . . . . . . . . . . . . . 60

5.2 Construction of the code and error-correction mechanism . . . . . . 60
5.2.1 Setting the parameters for the RS code . . . . . . . . . . . . 62
5.2.2 Evaluating protocol and security properties . . . . . . . . . . 64
5.2.3 Using constructions for edit distance . . . . . . . . . . . . . . 65
5.2.4 Determining the shingle set size . . . . . . . . . . . . . . . . . 66

6 Conclusion 67

References 69

Appendices

A Abbreviations, functions and variables of the fuzzy device pair-
ing protocol 77



List of Figures

2.1 Taxonomy of di�erent device pairing methods (follows loosely [SAA13]) 5
2.2 Out-of-band channel and technologies used for transfer . . . . . . . . . . 6
2.3 Taxonomy of authentication methods . . . . . . . . . . . . . . . . . . . 11

3.1 Synchronized drawing for device pairing . . . . . . . . . . . . . . . . . . 18
3.2 Location metric for comparing the drawings . . . . . . . . . . . . . . . . 20
3.3 Comparison of distance metrics for drawings [SAA13] . . . . . . . . . . 22
3.4 ANGLE string encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Scaling properties for the ANGLE metric . . . . . . . . . . . . . . . . . 27
3.6 LURD-string encoding [SAA13] . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Comparison of FPRs in regards to di�erent angle values and FNRs . . 33
3.8 Comparison of FPRs and Thresholds in regards to changing distance d

(NOT scaled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Comparison of FPRs and Thresholds in regards to changing distance d

(scaled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10 ANGLE metric original+encoded drawings over di�erent distance values 36
3.11 ANGLE metric distribution over di�erent distance values . . . . . . . . 37
3.12 Comparison of FPRs in regards to the number of angles M . . . . . . . 38
3.13 Comparison of FPRs achieved with LURD and ANGLE metric . . . . . 39
3.14 Comparison of all metric distribution graphs . . . . . . . . . . . . . . . 40

5.1 First protocol stage on the side of device
1

. . . . . . . . . . . . . . . . . 55
5.2 First protocol stage on the side of device

2

. . . . . . . . . . . . . . . . . 56
5.3 Second protocol stage on the side of device

2

. . . . . . . . . . . . . . . . 57
5.4 Second protocol stage on the side of device

1

. . . . . . . . . . . . . . . . 58
5.5 Complete design of the fuzzy device pairing protocol . . . . . . . . . . . 59
5.6 Comparison of metric distances for threshold evaluation . . . . . . . . . 63

vii





List of Tables

3.1 Comparison of metric results (FNR=1%) . . . . . . . . . . . . . . . . . 39

ix





List of Algorithms

3.1 Encoding process for ANGLE metric . . . . . . . . . . . . . . . . . . 28

xi





List of Acronyms

2PCP Two Phase Commit Protocol.

CDF Cumulative distribution function.

DH Di�e-Helman.

ECD error-correcting distance.

FNR False negative rates.

FPR False positive rates.

ICDF Inverse cumulative distribution function.

IR infrared.

IRC Infrared communication.

IT Information Technology.

LED Light-emitting diode.

MDS Maximum distance separable.

MitM Man-in-the-Middle.

OOB Out-of-band.

OS Operating System.

PKI Public key infrastructure.

RS Reed-Solomon.

xiii



SSL Secure socket layer.

TCOT Transaction Commit On Timeout.

WiFi Wireless fidelity.



Chapter1Introduction

Today we are faced with the fast emerging of various electronic devices and tech-
nologies used for communication between people and devices. In order to satisfy
the needs of the user population in situations where they want to communicate and
share information we need to find a suitable way for their devices to pair. In this
thesis we focus our work towards investigating properties and designing secure device
pairing protocols. These protocols may be seen as a subset of secure communication
protocols in general which are used to create a secure channel over an insecure
network (mostly wireless) between two or more device that want to a�liate with each
other. General motivation related to this topic is based on the need of defining more
secure protocols for various device pairing since the number of electronic devices is
exponentially growing, especially in the form of personal electronics (mobile phones,
tablets, laptops, various accessories). The second influential factor is the need to
create pairing protocol that benefit from ease-of-use characteristics since the currently
used protocols are not quite simple and mostly require several manually performed
procedures. Some novel ideas where tried and implemented on the lower usage level
to test their feasibility. Specifically, this work continues on the work of Sethi et al.
[SAA13] who firstly introduced the idea of a commitment based protocol based on
synchronous drawing on two di�erent devices.

1.1 Goals

The starting point was to survey the existing literature on the topic and summarize
the findings in a concise and easily-understandable taxonomy. Throughout the
analysis we focused naturally more on the ideas based on fuzzy cryptography since
their implications were still underused and provide an interesting approach to the
problem. The idea and hence the main research question in this thesis was to analyze
the possibility of designing a secure device pairing protocol that bases its secrets on
contextual information available to the devices, in specific, synchronized drawings on
touch-sensitive surfaces. This implies the need of defining several more secondary

1



2 1. INTRODUCTION

research questions: i) implications related to encoding the drawings captured from
di�erent devices, ii) metric that allow e�ective comparison of di�erent drawings
made by the same or di�erent users, iii) mathematical background that supports the
implications of fuzzy cryptography, and lastly iv) feasibility of creating a protocol
under given circumstances defined by the protocol characteristics.

These questions were answered throughout the thesis and are mostly oriented to
specific chapters of the thesis. The methodology we used in conducting the research
was carefully planned and systematical organized.

1.2 Outline

The thesis is structured and formatted in the following way:
1. Firstly, we focus on investigating various approaches, used previously, and

related to device pairing protocols in a form of a literature overview presented
in Chapter 2, Background,

2. We continue to shift our focus to a specific protocol type based on synchronous
drawing and we analyze its implications along with di�erent encoding option
and comparison metrics that could be use to bootstrap secure communication
(Chapter 3, Metrics for synchronous drawing),

3. Naturally, the research continues on the mathematical implications related to
the protocol design which are mainly focused on various construction that allow
usage of contextual fuzzy inputs, and fuzzy cryptography in general (Chapter
4, Introduction to fuzzy cryptography and component constructions),

4. The last main chapter involves the actual construction of the device pairing
protocol and the analysis of its characteristics, both theoretical and practical
(Chapter 5, Protocol design), and

5. We conclude our work and summarize the findings in the last chapter (Chapter
6) where we also present the ideas for future work on the topic).



Chapter2Background

Device pairing protocols are a subset of secure communication protocols used to
bootstrap a secure channel over an insecure communication line between two (or
more) devices that were previously una�liated [KSTU09]. These protocols are
characterized by the lack of well accepted certification or trust infrastructure which
implies specific user involvement in the pairing process. In this thesis we use the
term pairing to emphasize the initiation process of establishing the needed secure
communication over a wireless channel. While the number of di�erent methods to
perform and establish a security association vary in regards to the human-perceptible
channels, they all have the same characteristic - vulnerability (or at least openness)
to Man-in-the-Middle (MitM) attacks.

The increasing and rapid dissemination of personal mobile electronic devices that
use wireless communication is making the problem of secure device pairing even more
important and urgent [UKA07]. Short-range wireless communication technologies
such as Bluetooth, ZigBee, Wireless fidelity (WiFi) are and will remain popular in
the future evolution of new services o�ered by various personal devices. The most
common usage scenarios are connecting two di�erent phones to exchange data or
cooperate through some service, connecting wireless headphones with mobile phones
or maybe accessing wireless printer from a range of devices.

As mentioned before, the diversity of devices makes it extremely di�cult to
standardize certain protocols that would fit a wide range of equipment. Thus,
forming a global infrastructure may not be feasible in the current development
stage. This issue regarding secure key exchange has drawn a lot of attention both
by researchers and experts [KFR09]. Bluetooth protocol for device pairing has
been identified with security weaknesses [JW01] and new protocol propositions are
emerging [CCH06][LN06a][NR06][Vau05]. Currently available and applied protocols
provide reasonable security but are subject to explicit user interaction relatively
unnatural and uncommon for non-Information Technology (IT) persons. Hence, in
the past several years the focus has turned to pervasive computing research in search

3



4 2. BACKGROUND

for more natural approach of pairing various devices [SAA13].

This thesis focuses exactly on extending research on device pairing protocols
in the environment of ubiquitous computing. We focus our research on protocols
that use contextual information available by monitoring sensors of aimed electronic
devices. The bootstrapping of the secure channel is based on a fuzzy secret that
di�erent devices acquire separately by observing the same environment. However, the
term fuzzy implicates that those inputs from di�erent devices are not identical, yet
approximately similar. The fuzzy secret or the shared sensory input may be extracted
from various contextual information, such as shaking of devices with a gyroscope
and accelerometer [May07][MG07][GM12][KSW07][BSHL07], ambient audio signals
and radio frequencies [STU08][SS13][MMV+11][NSHY12][NSHJ12][SJ12] or making
usage of the device’s camera for authentication [MPR05][MW07][SEKA06].

In this chapter we provide a survey of existing methods for bootstrapping secure
channels between two devices while focusing on authenticated key-establishment
methods based on fuzzy inputs and approximate verification. Alike [SAA13] we
consider protocols that are able to tolerate errors on the bit level data used between
two devices to extract the shared secret.

2.1 Taxonomy of device pairing methods

The taxonomy of di�erent device pairing methods that we describe follows the one
proposed in [SAA13] while we add/remove some of the methods, and some are
more closely granulated. Figure 2.1 illustrates the proposed taxonomy where we
concentrate more on the device pairing methods bound to fuzzy data.

2.1.1 Out-of-band channels

As commented by [KSTU09], a popular research direction regarding device pairing
method is the utilization of Out-of-band (OOB) channels (category 1 on Figure
2.1). OOB channels are perceivable by human users that initiate the pairing of
devices and thus provide a method to use human-sensory capabilities in order to
authenticate human-imperceptible information transferred through other channels,
such as a wireless link used for almost all device pairing protocols. OOB channels are
in general secure, since an active/passive attacker will be detected upon interfering
with the bootstrapping process [KFR09]. However, the level of security greatly
depends on the users which should perform critical tasks, related to protocol design,
correctly. The simplest example of the OOB channel may be perceived as direct
human communication which directly implies an establishment of a certain level of
trust.



2.1. TAXONOMY OF DEVICE PAIRING METHODS 5

Figure 2.1: Taxonomy of di�erent device pairing methods (follows loosely [SAA13])

Figure 2.2 illustrates the usage of an OOB channel. Symbols situated on the
top line represent camera, infrared, audio and light, respectively, as methods for
transferring messages through an OOB channel. As mentioned before, authentication
and integrity are the key values of the OOB channel, while secrecy depends on
the exact environment. Hence, humans (or devices) interacting over the channel
may be assured that the communication link is not modified or tampered with
(under the assumption that the environment is under control of the users). However,
eavesdropping may not be completely disregarded since the environment in which
the pairing takes place almost always has more participants that may act as potential
attackers. Yet, they can only listen to the information exchange and not block or
modify it without directly being detected. This way of communication makes the
OOB channel an excellent candidate for authentication and integrity verification of
messages exchanged over a normal (e.g. wireless) channel.

From the explanation above we may easily di�erentiate two main types of usage
of the OOB channel. Firstly, the OOB channel itself may be used for direct key
distribution over a noisy channel, and secondly, the OOB channel is only used for
authentication. An example of the first solution is presented in [STU08] where the
user monitors an audio channel used to send an encryption key with error correction.
The second solution for verifying result of a key exchange is more common.
For example, if we presume the existence of a public key infrastructure (PKI) in
device pairing protocols, two devices could exchange their public RSA keys along with
other information over a wireless channel, compute some individual cryptographic



6 2. BACKGROUND

Figure 2.2: Out-of-band channel and technologies used for transfer

hashes (or digests [KFR09]) that would be verifiable through the OOB channel and
some human interaction. The verification itself may take several forms; two device
display information (e.g. short strings) that a human user can compare, or one device
shows a string and the human user enters that exact string to another device. Upon
successful authentication over OOB channel, the public keys are authenticated alike.
Thus, device can bootstrap a secure communication channel (e.g. Secure socket layer
(SSL) connection) for subsequent message exchange.
These methods for using OOB channels for device pairing have received a lot of
attention in the research community. Hence, several proposal have been developed
and we summarize the most important ones here by loosely following the list from
[KSTU09]:

1. "Talking to strangers" was an early method developed by Balfanz et al. [BSSW02]
that uses Infrared communication (IRC) as the OOB channel. Even though
the method has been significantly tested, there are some drawbacks regarding
usage of infrared (IR) channels. Firstly, the method requires alignment of two
devices, more specifically, alignment of IR sensors, which might not be so trivial
for non-technical users, and a direct line of sight between device. Additionally,
infrared (IR) channels are vulnerable to MitM attacks which makes the protocol
design vulnerable as well. Nowadays, there are only few devices equipped with
IR communication capabilities since they are replaced with more sophisticated
technologies (e.g. Bluetooth),

2. "Resurrecting Duckling" represents the initial attempt of creating a device
pairing protocol that would completely mitigate the MitM attack [SA02]. The
protocol truly does its purpose but it requires physical interfaces and a cable
connection between devices. Hence, the sole purpose of wireless pairing is
defeated and the pairing itself is troublesome and therefore it it archaic today.



2.1. TAXONOMY OF DEVICE PAIRING METHODS 7

However, in the early 90s it was appropriate.
3. Image comparison is also a popular method that has been present from the

beginning. The data received through OOB channels is encoded and the users
are asked to compare the images (this however implies more involvement of the
users). Some appropriate examples surveyed in [KSTU09] include creation of a
25 bit-per-color flag used for subsequent comparison [ED03], hash visualization
and comparison [PS99], "Snowflake" [Gol96]. However, such protocol version
implies the need of high resolution displays (which today does not pose a serious
problem since we are experiencing a drastic evolution of display technologies
over the last decade),

4. Recent protocol proposals include the usage of a camera. While this poses
more restrictions on device innovation and requires more high-end products,
the diversity of options to exploit various OOB channels grows. For example,
"Seeing-is-believing" [MPR05] combines two di�erent approaches which requires
a display on one device and an unidirectional visual OOB channel (camera)
on another device. The first device encodes OOB data into a two-dimensional
bar code that is then displayed on the screen while the second device’s camera
is then used to record the picture and process it. Another protocol involves
usage of only one camera or light detector (i.e. visual receiver), while the other
device has to have a Light-emitting diode (LED) to transmit OOB data by
blinking [SEKA06]. The receiver stores the pattern, extracts the information
from the inter-blinking gaps and lastly decides about the successfulness of the
protocol session.

5. Extensive research has been conducted towards using audio signals as well. An
example is HAPADEP [STU08] that is solely based on the audio communication
between two devices. Both devices need to be equipped with a microphone
and a speaker. All crypthographic messages are exchanged over audio, and the
user’s responsibility is to only strictly monitor "interaction for any extraneous
interference" [KSTU09] (example of a category 1A protocol in Figure 2.1).
Some variations of the protocol have been made where the audio channel is
backed up with the wireless channel (lacks in HAPADEP). Thus, audio is only
perceived as an OOB channel. Another method relevant to mention is the
"Loud and Clear" [GSS+06] audio pairing mechanism. It may be perceived
in two di�erent settings where its either pure audio-audio (speaker-speaker)
or a combination of audio and visualization (speaker-display). Namely, the
first setting implies that a user compares two vocalized sentences while in the
second setting user is bound to compare a sentence from a display with the
sentence heard from the speaker.

Many of the previously mentioned protocols and device pairing methods are
based on the idea of S. Vaudenay [Vau05]. The basic idea is to establish peer-to-peer
communication over an insecure channel that is authenticated. To succeed, an



8 2. BACKGROUND

extra channel is used that may authenticate short strings (10-15 bits) that exerts
the "weak notion of authentication" ([Vau05]) to eliminate the possibility of string
forging/modification, but on the expense of possible denial-of-service and replication
attacks. The proposed protocol itself mainly relies on the commitment scheme
methods which we discuss in the next subsection.

2.1.2 Commitment-based protocols

Commitment-based protocols are a subset of device pairing protocol that combine
widely known and adopted key establishment methods with separate authentication
of the latter. Most commonly used protocols for unauthenticated key-exchange are
Di�e-Helman (DH)[DH76] or public-key encryption schemes without certificates
(and in that sense without certified Public key infrastructure (PKI)1) [SAA13]. Thus,
the resulting key shared between devices is strong but not yet authenticated which
makes the protocol layout open to various spoofing methods and the MitM attacks.

According to Balfanz et al. [BSSW02] and Vaudenay [Vau05] the solution for
securing communication over insecure channels may go to two opposite directions: i)
remove the confidential channel (eliminates the need for explicit key generation with
the usage of public keys), or ii) use short passwords rather than long secret keys.
However, the best possible solution lies in the combination of the two previously
mentioned directions where an extra channel is used only for authentication (and
is able to transmit only short bitstrings of data). Hence, a regular key agreement
protocol (such as DH) may be strengthened by authenticating all of the exchanged
messages.

One of the initial protocols that used commitment-based bootstrapping and aimed
to protect against MitM attacks was the interlock protocol by Rivest and Shamir
[RSA78][RS84]. The principal of that old protocol is much like what we may see today
with the exception of focusing on encryption rather than using collision-resistant
hash functions2 that are common today.

The next several subsections introduce the principles of the commitment scheme,
survey the distinct authentication methods for the key agreement and lastly show
some examples of the usage of commitment scheme in computer and information
systems.

1Ad-hoc networks are not able to assume the existence of a centralized third party to vouch for
setting up a secure network among users [Vau05]

2A cryptographic hash function is a hash function that takes an arbitrary block of data and
returns a fixed-size bit string, the cryptographic hash value, such that any (accidental or intentional)
change to the data will (with very high probability) change the hash value [online source: wiki].
"The property required from the hash function h is that for a given value x it is computationally
hard to find a y such that h(y) = h(z) and y ”= x" [NY89].



2.1. TAXONOMY OF DEVICE PAIRING METHODS 9

Principles of the commitment scheme

The commitment scheme can easily be explained through its four phases:
1. As mentioned previously, most of the protocols based on commitment schemes

start with the unauthenticated key exchange. Let us presume now the existence
of a strong shared key k that can be used for encrypting communication. This
fact is the result of the first protocol phase,

2. The second phase begins by exchange/distribution of another shared secret w
(usually short, ranging from 4-6 digits) delivered over an out-of-band channel,
and we call this commitment phase. This phase is carried through the users’
mutual commitment to a certain value. Each of the users generates/picks a
random number x that has the purposes of masquerading the original secret, and
upon that computes a cryptographic hash H(k, w, x) called the commitment,

3. In the third phase the users exchange the calculated commitments and the
next and final phase of the protocol may begin, and

4. The fourth phase is called the opening phase where both of the parties reveal to
each other the chosen random numbers (x). Now both of them may recompute
hashes to verify the trustworthiness of the opposite party [Nao91].

If we take a closer look at the design of the commitment scheme we may observe
that its security is highly time-dependent. Namely, the critical moment that opens
a possible attack for the adversary is between the commitment phase and opening
phase. Both of the parties in the protocol have to receive commitments before they
reveal their generated random number x. If this schedule is not followed a MitM
attacker may find the value of the short shared secret within reasonable time to take
advantage of the protocol run (simply by brute-forcing through all the combinations).

The research community proposes several di�erent ways to overcome this issue
which are all relevant and case specific:

– The most easiest and logical way to impose the time order is to entrust users
to oversee the protocol phases and manually confirm the completion of the
commitment phase (on both of the device) before starting the opening phase
(category 2, subcategory C in Figure 2.1). However, users tend to be impatient
and not trained accordingly to perform the protocol run. In that sense, they
might accept the commitment phase on one device before it is done on the
second device (not yet even able to confirm the completion). The first device
immediately starts the opening phase and reveals it random generated number
x. As discussed by Sethi et al. [SAA13] it might be di�cult to design a
proper user interface where the users could not confirm the completion of the
commitment phase without actually checking on both devices that it is done3.

3One possibility is to display a warning message before the user is given the opportunity to
confirm the phase, but as discussed, general users without technical backgrounds tend to skip the
boring instructions and continue with the quickest path to their goal



10 2. BACKGROUND

– The second way of imposing the time order it to automatize the process of
secret revealment. Hence, this can also be done in two ways. Firstly, the
protocol can predict the time needed for both commitments to be received up
to a certain level of certainty (e.g. 500 ms). However, the protocol designers
should be careful when choosing this solution since the decision about the time
frame might be di�cult to realize. In one way, a short period of time might
make the protocol vulnerable if some problems in the communication arise,
and in another, if the period is too long, the users have to wait more which
lowers the user experience level. Both of these solutions and the proposed
user involvement fall in the category 2, subcategory A in the Figure 2.1. A
second solution (category 2, subcategory B) is to divide the second and third
phase of the commitment protocol into subphases by gradually revealing the
shared secret receive through the OOB channel. In that sense, the shared secret
w is presented as w = w

1

w
2

w
3

...w
n

where n is the number of the protocol
subphases. For each of the subphase a separate commitment is calculated and
the relevant part of the secret is revealed subsequently. A MitM adversary may
try to spoof one of the subcommitments H

i

and thereby learn and replay a
part of the shared secret w

i

. Yet, the attacker is blocked after continuing to
the next phase if the spoofed commitment proves to be incorrect. In this way,
users can detect the misuse of the protocol, abort the session and re-initiate
the key exchange/authentication [GN01][UKA07][SVA07].

Taxonomy of key-establishment authentication schemes

As discussed previously, the key establishment/agreement may be based either
on asymmetric or symmetric cryptography. In both cases after the key has been
distributed or derived we may proceed to the authentication process. However,
there are protocol versions that are unauthenticated and those are vulnerable to
active attacks (e.g. MitM) in case of asymmetric crypto or to passive (e.g. plain
eavesdropping) and active attacks in case of symmetric crypto.

Distinct authentication procedures have been surveyed by Suomalainen et al.
[SVA07]. Figure 2.3 illustrates the possible authentication options depending on the
protocol design. Authentication in the asymmetric key agreement protocols may be
divided into three di�erent categories [SVA07]:

1. Authentication based on shared secrets implies usage of short pre-shared
secret passkey P that is known to both devices. The secret passkey distribution
might be done in several ways, such as actively using human users to choose and
enter the same key to both devices, or one device might generate a code that
needs to be manually entered to another device (see Bluetooth characteristics).
Another option is the usage of OOB channels for passkey delivery (this option



2.1. TAXONOMY OF DEVICE PAIRING METHODS 11

Figure 2.3: Taxonomy of authentication methods

is widely used and studied in the research community and we have already
discussed it in Subsection 2.1.1).
After choosing the right method of passkey distribution there are several
methods available for the actual authentication. A good example is the time-
based commitments described previously which was originally proposed by
Gehrmann et al. [GMN04]. Gehrmann propose three di�erent schemes, MANA
I (MAN-ual authentication), MANA II and MANA III where the latter one
presents a time-based commitment. The idea is in the separation of the secret
passkey P into k parts where the secret is then gradually revealed4. From there,
many di�erent MANA III-alike protocols have been proposed and developed
[BM92][VSLDL07].

2. Authentication through integrity control may be divided into two sep-
arate methods: i) authentication based on key commitments [BSSW02], and
ii) authentication based on integrity checksums. The former implies usage of
OOB channels to deliver commitment which might be either public keys of
users (devices) or their hashes5.
The latter method implicates computation of short checksums from the preced-

4This was described earlier when we discussed various commitment based alternatives
5Note that these commitments need to be of enough size to resist a possible search of a second

pre-image by the adversary.



12 2. BACKGROUND

ing messages exchange of the key agreement protocol. The comparison of the
checksums results in the authentication decision. This method of authentication
has been discussed and proposed by several researchers [LN06b][PV06][CCH06],
but may be formally referred ([SVA07]) as short authenticated string originally
proposed by Vaudenay [Vau05]. One simple example of this protocol is that
the public keys are exchanged and a cryptographic hash function f() is created
in order to map the short output of the hash into human-readable strings that
are then compared by users directly. Involving users to do the comparison of
checksums is one way of the last protocol step, while the alternative may be to
use a physical OOB channel.

3. Hybrid authentication implies authentication protocols that achieve the
means of mutual authentication when the channel and/or devices are limited
in their capabilities. More specifically, the method is used when a one-way
OOB channel is available. This channel is used to transmit some secret value
and a public key hash from one device to another. The receiving device
easily authenticates the first device based on the public key hash, while the
sending device conducts authentication by checking that the receiving device
has knowledge about the shared secret key.

Regarding authentication in the symmetric key agreement the most usual method
is by using a su�ciently long pre-shared secret so the o�ine/online computation are
not feasible in reasonable time-frames for the protocol to be securely bootstrapped.

Examples of commitment scheme protocols

The usage and application of commitment schemes is more broader than just device
pairing protocols. Berger et al. [BH03] focuses studies on the extended asynchronous
versions of the pi-calculus for distributed computing representation. The aim was
to examine "their descriptive power to the description and correctness proof of an
important distributed algorithm" [BH03], the Two Phase Commit Protocol (2PCP)6,
as they call it. Another example involves the development of transaction protocols,
more specifically a timeout-based mobile transaction commitment protocol called
Transaction Commit On Timeout (TCOT) [KPDS02]. The idea focuses on the
timeout approach (highly relevant to pairing protocols) that is used to reach a "final
transaction termination decision in any-message oriented systems". This approach
solves issue often experienced in wireless environments where the link might be slow
and/or unreliable. Chopra et al. [CS06] claims that the commitment protocols and
their preferences are to be contextualized so that in di�erent settings they are able
to transform themselves accordingly7.

6The 2PCP is a distributed protocol which consists out of several process, possibly faulty, that
interact via possibly faulty channels [GR93][BH03]

7Even thought the contextualization and transformation is not bound to device pairing protocols,
the idea is relevant to the commitment scheme design since we use contextual information in



2.2. FUZZY CONTEXTUAL DATA FOR KEY ESTABLISHMENT 13

However, the idea of bit commitment protocol presented by Naor [Nao91] might
be recognized as the predecessor of the commitment schemes that we discuss here.
As shown in the original paper, a pseudorandom generator may be used to provide a
bit-commitment protocol where two users choose a bit b and put it "into a locked
box" by each of the users. The boxes are exchange and opened afterwards to prove
trustworthiness and authentication. These kind of schemes were historically used in
zero-knowledge protocols [GMW86], multiparty protocols [GMW87][CDVdG88] and
identification schemes8 [FS87].

2.2 Fuzzy contextual data for key establishment

Cryptography applications naturally rely on uniformly distributed and random vectors
to be the secrets with the properties of precise reproduction. However, in some cases
it may be di�cult to create, store and retrieve such vectors. In applications related
to fuzzy cryptography the vectors are often neither uniformly random nor reliably
reproducible. One of the examples where fuzzy cryptography is naturally used, and
which proves the point, is a random person’s fingerprint or iris scan that is clearly not
a uniform random vector and it does not reproduce precisely each time it is measured.
Additional applications consider long password phrases, answers to many security
questions ([FJ01]) or even lists of favorite objects from a certain set ([JS06]) that
share the properties of biometric measurements as well with the addition that even
though they are human friendly it may be di�cult for a human user to remember
them.

Biometric measurements in general seem to contain more entropy than human
memorizable passwords. However, due to its characteristics, two readings are almost
never the same, yet they are likely to be close and similar. In the same fashion,
humans are unlikely to remember answers to all of their security questions and
some of the answers may be presented in similar forms. Thus, fuzzy cryptography
mechanisms introduce the ability to tolerate a specified number of errors in the
security vector while retaining security remains crucial if we are to increase and
achieve better security properties than the most common and typical user-chosen
passwords.

Two of the most applicable constructions for fuzzy cryptography schemes may
be viewed as secure sketches and fuzzy extractors (our protocol design is based on
the combination of those and they are discussed in detail further on in the thesis) as
introduced coherently by Dodis et al. [DRS04]. More specifics about those can be
found in Chapter 4 about mathematical background for constructing fuzzy device

bootstrapping the secure channel over the OOB channel
8Note that the original paper of the bit-commitment dates to 1991 which makes these protocols

outdated and old. Yet, the proof of a concept is present



14 2. BACKGROUND

pairing protocols, while some real applications may be found as a web source by
Harmon et al. [Har60]. In short, secure sketches and extractors may be viewed as
fuzzy key storage functions where they allow the recovery of a shared secret (in
the case of secure sketches we acquire the original fuzzy input Ê from a device or
human measurement, while in the case of fuzzy extractors we first use the fuzzy
input on one side to create a secret key R and then on the other side using a
generated helper vector retrieve that secret with the help of the second fuzzy input
ÊÕ). Additionally, in the standard setting of error-correction, when used in case of
binary communication channels, the error tolerance is more higher when the errors are
random and independent than when the errors are determined adversarially. Thus,
it is important that fuzzy constructions meet the Shannon’s bound ([SGB67]) for
correcting random errors and also be able to fix the errors even if they are adversarial.
Further reading on example constructions and the coding literature that supports it
may be found in [HB01][MPSW05][Lip94][Zad97][Lan04][BBR88].

A concrete example for utilizing fuzzy cryptography and extractors in the case of
password authentication involves a server, that stores the helper vector P and f(R),
where f is a one-way collision resistant function (e.g. hash). When the user inputs
a similar ÊÕ that is close to the original Ê, the server can reproduce the original R
using P and check if f(R) matches the stored one. Since we assume that the random
number R is ‘≠close to uniform, the adversary only has the option to revert f(R) by
the additive amount of ‘. Thus, R may be used in various cryptographic applications
such as symmetric encryption or generation of public-secret key pairs.

Another important example is the fuzzy commitment scheme protocol introduced
by Jules at al. [JW99]. This article is the first one that introduces the "fuzzy"
interpretation that may be used to derive secrets from noisy environments and then
further on recover those secrets with vectors not completely the same as originals but
ones that are close enough. The paper covers the mathematical constructions and
tests for the error-correction mechanisms but the real world applicability is left out
since it can be used in numerous areas. Juels et al. continues the research on fuzzy
cryptography by publishing a paper under the title "Fuzzy vault scheme" [JS06]. At
that time they introduce a simple and novel cryptographic construction that involves
a player Alice that places a secret value x in a fuzzy vault and "locks" it using a
set A of elements that are a part of some bigger public universe U . If a player Bob
tries to "unlock" the vault using a similar length set B, he will obtain the secret
value x if and only if A and B are close, more specifically in set di�erence metrics,
if A and B overlap substantially. The authors prove that the fuzzy vault scheme is
provably secure against a computationally unbounded attacker with the application
to problems related to protecting data in numerous real world and error-coexistent
environments. Such applications include user authentication systems, password
recovery, biometric systems where readings are prone to be noisy due to the nature



2.2. FUZZY CONTEXTUAL DATA FOR KEY ESTABLISHMENT 15

of their scanning/recording procedure.

Background relations to other work

As mentioned before, error tolerance in biometrics was formally studied by Juels et al
[JW99]. Less formal solutions that cover simple ways for error tolerance in uniformly
distributed passwords were studied at the same time by Davida et al. [DFMP99] and
Ellison et al. [EHMS00]. Moreover, extended solutions to these introduce entropy
analysis which becomes relevant in error-correction systems [FJ01]. However, it is
worth mentioning that similar approaches to error tolerance have been explored
earlier in the cryptographic information reconciliation literature in the context of
quantum cryptography where Alice and Bob try to acquire a secret key from secrets
with small Hamming distances [BBR88][BBCS92].

In general, the need to deal with non-uniform passwords with low entropy has
been realized long time ago in the security community with a range of di�erent
approaches. To increase the security of password authentication scenarios, Kelsey
et al. [KSHW98] proposed usage of f(Ê, r) instead of only password Ê where r is a
public random salt that makes it di�cult for the adversary to perform a brute-force
attack. However, this approach did not add any entropy to the password and as
well did not imply the needed properties for the function f . A more applicable
and realistic approach encompasses adding biometric features to passwords, where
biometric information may be acquire through, for example, asking users to answer
series of n personalized questions and thus using those answers to encrypt the actual
secret [EHMS00]. A similar approach proposed by Monrose et al. [MRW02] uses the
user’s keyboard dynamics (and further one, voice [MRLW01]). Both of the mentioned
examples require designing a secure fuzzy encryption and propose using heuristic
designs (various forms of Shamir’s "How to share a secret" [Sha79]) but do not address
formal analysis and extensive research in the properties of error tolerance.

Some other approaches for guaranteeing the privacy have been considered. These
are mostly related to the privacy of noisy data. Quantization for correcting errors
via random physical functions was considered by Frey et al. [Fre01] while Barral
et al. [BCN04] introduces systems for fingerprint comparison in o�ine and private
mode. Privacy amplification research along with the research on derandomization
and hardness amplification ([BBCM95] [HILL99]) addressed issues related to the
extraction of uniform randomness from a random variable under the assumption that
some information might have leaked. Along with these research topics, a major focus
has also been put in the development of ordinary extractors (not fuzzy that we use
in this thesis) with short seeds [Sha02].

With this section we finish the Chapter related to the background of commitment
based and fuzzy device pairing techniques. Following-up is the metrics chapter that



16 2. BACKGROUND

explains the usage of synchronized drawing and its implications related to drawing
comparison.



Chapter3Metrics for synchronous drawing

To create a novel type of a device pairing protocol that encompasses synchronized
drawing on two separate device we need to define a specific metric for the inputs
that can be used in the protocol design. The basic idea of the device pairing protocol
is that the user wants to pair two devices that are equipped with a touch screen or
another touch sensitive surface that can record movements. The user then aligns two
drawing surfaces next to each other and draws the same picture synchronously on
both devices with two fingers of the same hand. In this way the extent of similarity
between two pictures is assumed to be high in comparison to drawing pictures with
two di�erent hands1. Typically, users choose to use the thumb and index finger,
as illustrated in Figure 3.1, but some use the thumb with the middle finger as
well. While drawing, the users can also see the lines on devices that have a screen
(observable in the same Figure 3.1).

After the recording is done both of the devices have the input data in the form of
a set of coordinates in the Cartesian coordinate system. The systems starting point
(0,0) is in the lower left corner of touch surface (first pixel of the touchscreen). The
coordinates of one captured event are accompanied with timing of when the event
was recorded by the device’s operating system (OS). We can call this information
raw data. Hence, raw data of one drawing consists of a certain number of recorded
events that depend on the duration2 and movement speed3.

This shared input is consequently used as the fuzzy shared secret data for secure
key establishment. The method for device pairing proposed in the next chapters

1Note that for the best results the fingers are to be fixed, e.g. the distance between two fingers
does not change while drawing the pictures. Moreover, the test have shown that drawing pictures
with two di�erent hands (at the same time, without lagging) does not yield in any usable results;
the device will never pair since the two pictures are too di�erent.

2Longer drawings usually have more recorded events.
3The Operating System (OS) of a specific device captures events in its own schedule; when the

thread assigned for that gets its rights to run. Thus, the timing of the events and the duration
between two consecutive recordings are not the same.

17



18 3. METRICS FOR SYNCHRONOUS DRAWING

Figure 3.1: Synchronized drawing for device pairing

may be applied to smart phones, laptop touchpads, touch-sensitive control panels,
drawing pads and certain types of mice. Pairing can occur between any two device
types. However, due to the di�erences of the event recordings which are both device
and vendor specific and due to the characteristics of recorded raw data the inputs
must be processed to allow the use of a certain metric to compare the drawings.

This chapter focuses on finding a suitable metric for drawing comparisons and
explains the collection of test data. The structure of the chapter is as follows. The first
section explains the collection of the test data, devices used for collecting drawings
and the user groups that participated in the research. The second section explains
the implementation of the most forward metric based on Euclidean distance4. The
third section includes the usage of Euclidean location metric along with its first
derivative, time. The fourth section introduces angle metric and LURD metric as a
good approximative metric for string encoding. The fifth section explains the results
for all metrics and discusses viable solutions for the protocol.

3.1 User data collection

For the purpose of data collection we5 have developed a smartphone, tablet and
laptop touchpad applications that record finger strokes. These applications collect
the user input and save it in the previously explained form. All subsequent encoding
and calculations are performed o�-line in Matlab.

4"In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" distance between
two points that one would measure with a ruler, and is given by the Pythagorean formula"[DD09]

5The original code for android phones was taken from Sethi et al.[SAA13]



3.2. LOCATION METRIC 19

Our user database consist of 24 test users. The users’ field of occupation ranges
from technical to non-technical users. To conduct a small user study, the participants
were first told just to draw to synchronized pictures on two device that were chosen
without any explanations or instructions given. This proved to be a failure since
over 70% of the test drawings were too small pictures (quick drawing between 1-3
seconds) which are not enough for the protocol design6. Additionally, the users are
not allowed to lift fingers after the drawing has started on both device. However,
in more than 50% of the test drawings users tried to draw, for them, some known
shape which included lifting fingers. These test drawings were considered incomplete
and discarded accordingly.

Due to these disappointing results we decided to instruct users on how to use the
application (and how they would use the real pairing mechanism when implemented7).
The instructions were given orally and the process of users drawing was supervised to
immediately eliminate sessions that do not fit the protocol design (more on these may
be found in Chapter 5 about the security analysis of this device pairing protocol).

To conduct analysis on the appropriate metric we have gathered, on average,
15 test drawings per user. This number of individual test may give us a complete
understanding about the similarities and di�erence among one user’s drawings as
well as the similarities and di�erences between drawings made by di�erent users.
In this way we can distinguish a metric that excerpts the biggest distance between
positives (two matching drawings whose distance is less than some threshold) and
negatives (distance is above threshold).

The scenarios used for analyzing di�erent metrics are chosen randomly by taking
6-8 users with their measurements from the user database. In this way we overcome
the possible lack of diversity when conducting tests since users have their own
preferences and di�erent device may have di�erent specifications regarding touch
sensitivity and screen resolution.

3.2 Location metric

In order to compare the drawings, we need to define a distance metric and a threshold
value for accepting the drawings as the same (and in that sense end up with successful
pairing). The same metric and threshold should work for all devices and users, so that
the authentication can be used without a training period or setting any parameters.
Our experiments (on di�erent metrics) showed that such metrics and threshold can

6Shorter pictures imply less data which then limits the overall entropy. Thus, the security of
the protocol is endangered.

7One possible way of giving instructions might in form of a pop-up banner that appears before
the drawing process starts



20 3. METRICS FOR SYNCHRONOUS DRAWING

−4 −3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Device 1
Device 2

Distance = 0.006822
Overlap = 5537 ms
Offset = 57 ms

X coordinate

Y
 c

o
o
rd

in
a
te

(a) Centered and scaled drawings

0 1000 2000 3000 4000 5000 6000
−4

−3

−2

−1

0

1

2

3

Device 1 x
Device 2 x
Device 1 y
Device 2 y

C
o
o
rd

in
a
te

s

Time (ms)

(b) x and y coordinates as function of time

Figure 3.2: Location metric for comparing the drawings

be found easily and that the comparison is not sensitive to minor changes in the
parameters of the algorithms.

The first and most obvious metric that we use is based on location as a function
of time. Figure 3.2a) shows two matching drawings recovered from their raw data
using Matlab. Due to the fact that di�erent touch surfaces di�er in their dimensions,
pixel density (resolution), aspect ratio and frequency of the sensed movements, we
need to perform pre-processing to raw data in order to be able to use specific distance
measuring functions. The set of needed actions is consisted of:

1. Centering. The drawings are centered so that the mean value of the x and
y coordinates is zero. This is done by subtracting the mean value of x from
every x coordinates, and for the y coordinate respectively,

x = x ≠ mean(x), y = y ≠ mean(y), (3.1)

2. Scaling. Due to di�erent sizes and pixel densities of touch surface scaling of
the drawings is necessary so that the mean distance from the center along each
axis is one unit. This is done by dividing each x coordinate with the absolute
mean value of x set of coordinates, and as well doing the same for y coordinate
respectively,

x = x/mean(abs(x)), y = y/mean(abs(y)), (3.2)

3. Interpolating. Due to the di�erent frequency of event recordings controlled by
inner OS threads we needed to interpolate the location data to one-millisecond



3.2. LOCATION METRIC 21

frequency. We interpolate the data set (x and y coordinates) in respect to time
(t as the third variable of the set),

x
i

= x
k

+ (t
i

≠ t
k

) ú (x
k+1

≠ x
k

)
(t

k+1

≠ t
k

) ,

y
i

= y
k

+ (t
i

≠ t
k

) ú (y
k+1

≠ y
k

)
(t

k+1

≠ t
k

) ;
(3.3)

We also experimented with rotating the drawings, in case the two drawings are
at an angle, but that proved unnecessary in practice, except for 90 ¶ and 180 ¶ turns.
The 90 ¶ turn was explicitly needed in cases of using laptop touchpads since their
aspect ratio is opposite of a tablet or phone aspect ration in natural standing position.
The 180 ¶ turn might have been needed if the two phones or tablets were rotated on
di�erent sides but then the status bar of the apps would be opposite (hence, it is
easily observable and natural to fix it immediately before starting to draw).

Figure 3.2b) represents the same drawings as function of time. We may observe
one more step of processing the original raw data here. The graphs have been aligned
on the time axis to minimize their distance by the chosen metric, which is very close
to the time shift that also gives the highest cross-correlation. Basically, the value of
the maximum o�set is taken to be 500 ms and the distance between two drawings is
calculated in a +- 500 ms frame to choose the value of the o�set which minimizes
the distance. In this particular case, the o�set between the drawings is 57 ms from
the start of the drawings, which is quite a typical value. Figure 3.2a) also indicates
the start and end of the overlapping time period, over 5 seconds in this case.

The location-based distance metric is computed from the centered, scaled and
interpolated data as the Euclidean norm of the di�erence between the x and y
coordinate vectors using this formula:

D(drawing
A

, drawing
B

) =

1
n

! nÿ

i=1

((x
A,i

≠ x
B,i

)2 + (y
A,i

≠ y
B,i

)2)
"

1/2

.
(3.4)

Above, the norm is is divided by the length of the drawing to avoid bias towards
shorter drawings. The length of the drawings was taken into account separately by
setting a minimum drawing length (4 seconds) and a maximum di�erence for the
lengths of the drawings (500 ms).



22 3. METRICS FOR SYNCHRONOUS DRAWING

3.3 Movement metric

Another idea worth mentioning is the expansion of location metric into movement
metric. Basically, the distance metric could also be based on the movement, i.e.
speed and direction of drawing as a function of time. In some applications, such as
handwriting recognition, good results have been achieved by comparing the direction
of strokes. We experimented with metrics based on the first and second derivatives
of the location, i.e. velocity and acceleration. However, from the results we were
not able to derive useful metrics. The positives and negatives of all measurement
are all meshed up together without a clear gap that separates them. Therefore, it is
impossible to set a threshold that has the characteristic of 0% false positives with a
reasonably small percentage of false negatives that could be allowed(see Figure 3.3
under movement metric). The main reason is that the event-based API touchscreen
APIs on the smart phones (e.g. MOTION_EVENT on Android and touchesMoved
on iOS) do not give frequent enough readings for accurate calculation of the speed
or acceleration of the finger.

3.4 String distance metrics

This and the next several subsections entail a di�erent approach for calculating the
distances between two drawings. Namely, the idea is to find a way to encode raw
data into a form (i.e. string) that can be used for subsequent comparison and/or

Figure 3.3: Comparison of distance metrics for drawings [SAA13]



3.4. STRING DISTANCE METRICS 23

for fuzzy extraction of the key. These forms use specific alphabets of symbols that
a particular metric needs. After the two strings are created (each string represents
an encoded drawing from one device) the distance between them is calculated using
some well known function. However, most of the distance functions work with binary
symbols (e.g. Hamming distance8) and have several constraints such as:

– mostly based on substitution of symbols,
– insertion and deletions of symbols are not considered,
– the length of both strings that are being compared has to be the same,
– a shift of only one character can have a major e�ect on results.

3.4.1 Levenshtein distance

By definition in the field of information theory, the Levenshtein distance (also known
as edit distance) is a string comparison metric for measuring the di�erence between
two strings. Particularly, a distance between two strings equals the smallest number
of substitutions, insertions and deletions needed to change one string to another
[Bla08]. The idea of edit distance originates from 1966. by V. Levenshtein where he
had the goal of finding binary codes capable of correcting insertions, deletions and
reversals (substitutions) [Lev66][Lev65].

In this thesis we firstly used the original Levenshtein distance to compare our
matching and non-matching strings which yielded in fairly good result. By closely
observing the implications of our metrics (except the location metric) we came to
a conclusion that a specific sub-version of Levenshtein distance, called Weighted
Levenshtein distance, applies better. Specifically, the di�erence cost between two
symbols should not be the same for all combinations since it is not the same error
extent if the original drawing deflects for 10 ¶ rather than, for example, 50 ¶. Therefore,
here we will examine some properties and implication of Weighted Levenshtein’s
distance to furthermore implement and apply it to our metrics.

According to Tanaka et al. [TK76], let A and B be two finite arbitrary size
sequences of symbols from a specified alphabet. If sequence A can be transformed to
B by applying insertion to n symbols, deletion to d symbols and substitution to s
symbols then the weighted distance might be defined as:

W
LD

(A æ B) = min
i

(pn
i

+ qd
i

+ rs
i

), (3.5)

8In information theory, "the Hamming distance between two strings of equal length is the
number of positions at which the corresponding symbols are di�erent. In another way, it measures
the minimum number of substitutions required to change one string into the other, or the minimum
number of errors that could have transformed one string into the other."[Ham50]



24 3. METRICS FOR SYNCHRONOUS DRAWING

where p, q, and r are positive floating points representing weights for insertion,
deletion and substitution respectively. However, if W

LD

(A æ B) is written in the
form as above, then W

LD

(A Ω B) has a slightly di�erent form defined as:

W
LD

(A Ω B) = min
i

(pd
i

+ qn
i

+ rs
i

). (3.6)

From these two equations it follows that if p ”= q then the values of W
LD

(A æ B)
and W

LD

(A Ω B) may not always be equal. Yet, the metric itself holds some usual
properties:

1. If p and q equal Œ, r = 1, and | A |=| B | where | A | means the length of the
sequence A, then W

LD

(A Ω B) is the Hamming distance between two strings,
2. If W

LD

(A Ω B) = W
LD

(A æ B), then p = q. The weighted metric is then
called true metric, and it can be specified as:

W
LD

(A, B) = min
i

(p(d
i

+ n
i

) + rs
i

), and (3.7)

3. If p = q = r = 1 then the weighted Lensnhtein metric is obviously equal to the
original Levenhstein distance.

The di�erence that characterizes the Levenshtein distance from others (i.e. in this
case Hamming distance) is that the space of sequence includes all lengths incuding
zero-length sequence and is defined as S(= fi

i

S
i

) where as the space of the Hamming
distance is defined in a fixed length space sequence S

k

, where k denotes its length.

The computation of the Levenhstein distance (W
LD

(A, B)) can be performed in
several ways, yet the two most popular are via recursions or the matrix approach.
Due to the preferences and setup of our testbed solutions we currently use the matrix
approach (quick computations in Matlab). The method was originally proposed by
Sankof [San72], while the closest algorithm for calculation that we use is of Wagner
et al. [WF74]. Computation of the edit distance is therefore based on the fact that if
we can create a matrix that can contain edit distances between all prefixes of the first
and second string (respectively), then we can use techniques of applied (bottom-up)
dynamic programming [BD62] to compute the matrix values. Hence, the last value
that is computed (two full sized strings) represent the distance between our two
sequences. A mathematical representation of the method is as follows [TK76]:

– Let A = x
11

x
12

· · · x
1k

and B = x
21

x
22

· · · x
2l

, where x
ij

is a symbol. We can
construct a recursive relation as:

W
LDij

= min(W
LD

i≠1,j≠1 + r
i≠1,j≠1

, W
LD

i≠1,j

+ p
i≠1,j

,

W
LD

i,j≠1 + q
i,j≠1

), if i, j Ø 2, and p == q,
(3.8)



3.4. STRING DISTANCE METRICS 25

where r
ij

= 0 when x
1j

= x
2i

and r
ij

= r when x
1j

”= x
2i

. The coe�cients for
p == q depend on the actual values of (x

1j

, x
2i

) and are calculated via separate
function as:

N = M/2,

cost = N ≠ abs(N ≠ abs(symbol1 ≠ symbol2)),
cost = 2/N ú cost,

(3.9)

where the M is the size of the alphabet and we suppose that the symbols are
pure integers (so they can be subtracted accordingly). The end value of the distance
W

LD

k+1,l+1 is furthermore calculated under these conditions:
1. i Æ k + 1, j Æ l + 1,
2. W

LD1,1 = 0,
3. W

LD

i,1 = (i ≠ 1) ú p,
4. W

LD1,j

= (j ≠ 1) ú q.
Thus, the final value W

LD

(A, B) = W
LD

k+1,l+1 .

3.4.2 ANGLE metric

The idea behind the ANGLE metric is to try to encode the original drawing to be
as precise as possible, yet enough robust so the distances between strings of two
drawings are reasonable for matching drawings and large for non-matching drawings.
Both ideas are based on the fact that the encoding starts from the first recorded point
(x and y coordinate) and then we move forward a certain distance d in the direction
(characterized by angle) of the second point until we reach it. Upon reaching the
second point, the encoding continues in the direction of the next point and so forth.
There were two initial ideas how to encode those angles and distances:

1. The metric is based on two variables ” and –. Variable ” represents the distance
traveled in pixels while – is the angle that is characterized by the number of
degrees that the encoded line can travel either to the left or to the right of
the original drawing (i.e. line between two consecutive points).Namely, the
alphabet of the metric is simply binary where 0 represents the movement to the
left and 1 represent movement to the right of the original line. Every movement
for a distance ” is then recorded with one of the symbols, ending the string
upon reaching the last point of the original drawing.

2. The second idea also consist an angle and distance d, yet is much di�erent.
In contrast to the binary alphabet of the first angle metric, here we have an
alphabet of 0...M symbols that depends on the number of possible angles in
which the encoded line can travel. Distance d is the minimum number of pixels
to move from one point to another. Moreover, the way of encoding the string



26 3. METRICS FOR SYNCHRONOUS DRAWING

Figure 3.4: ANGLE string encoding

for comparison includes not only the angle but the number of distances traveled
in each direction. Figure 3.4) shows the idea for encoding the line as described
above.

The first metric design was tested with di�erent angles and distances and did not
yield very good results. The threshold for accepting the drawings as matching could
not be set in a way that the rate of false positives is 0 while keeping a reasonably
small rate of false negatives. Therefore we have decided to drop the metric and focus
more on the second idea.

However, initial tests of the second idea have proved to be good. Therefore, we
continued to develop the second idea and find the most appropriate solution for our
device pairing protocol.

The encoding algorithm is divided into several steps. The first important step is
to center and scale the drawings in the same way that it was done for the location
metric. In this way we eliminate the problem of di�erent touch surface sizes and
their resolutions. Figure 3.5 shows how the drawings with and without scaling
and centering look like. It is easily observable that even though the pictures look
extremely similar it is impossible to compare them (i.e. encode them in a way that
they are comparable). The second step is to find the mean values of all 4 vectors
that represent x and y coordinates of both drawings. The final value that we
seek is the minimum of those calculations called ratio. The purpose of it
is to divided the pixel distance variable d for movement between points.
In this way the encoding of each angle is scaled properly as well.

The last step of the encoding process is shown by Algorithm 3.1. The procedure
takes x and y vector coordinates, pixel distance, number of maximum angles and
ratio as arguments. To be able to calculate angles via arctan function we need the
length of all triangle cathetus between adjacent points. Hence, we calculate those



3.4. STRING DISTANCE METRICS 27

(a) Original drawing without modification (b) Centered and scaled drawings

Figure 3.5: Scaling properties for the ANGLE metric

in vector form as dx dy for the x and y coordinates separately in respective order.
These values are then used for each step to calculate the angle of the original drawing
between two points. Afterwards, that angle is rounded to the closest of the available
angles allowed by the metric alphabet9 (10th row). Now we calculate how many
steps of length d (scaled) we may move between those two adjacent point (11th
row). However, the calculated number of steps is in the real direction of the original
line and not in the direction of the rounded up angle so we need to calculate the
di�erence errors from the point given by moving towards the encoded angle and the
point of the original drawing (12th and 13th row). This is taken into concern when
calculating the next angle, and each error is then fixed propagating the value to the
last point (14th and 15th row). The calculated angle and the number of distance
steps are then saved into two variables (16th and 17th row).

The last part of the Algorithm actually forms the string from the calculated
values that is going to be used for drawing comparison (20th-27th row). For each
angle stored as angles(i) we fill the variable str with that exact angle for distances(i)
times. For example, if angles = [10, 22, 15, 43] and distances = [1, 2, 0, 2], the string
for comparison will result in str = [10, 22, 22, 43, 43].

The actual value of variables M and d are discussed in the results section of this
chapter where we compare results of di�erent metrics, test variations of good ones,
and choose variables based on the values of False positive rates (FPR) and False
negative rates (FNR). Note that the solution for the metric described above has a
good mathematical standpoint and is fairly understandable. Yet, due to large number
of calculations the method is rather computationally expensive. In the next several

9For example, if M = 64 the minimum angle step is – = 360 ¶
/64 = 5, 625 ¶. So, possible angles

are 0...M ú 5, 625 ¶



28 3. METRICS FOR SYNCHRONOUS DRAWING

Algorithm 3.1 Encoding process for ANGLE metric
1: angles = [] Û Instantiating default variables
2: distances = []
3:
4: procedure encodeAngle(x, y, d, M . ratio)
5: D Ω d/ratio
6: dx Ω x(2 : end) ≠ x(1 : end ≠ 1)
7: dy Ω y(2 : end) ≠ y(1 : end ≠ 1)
8: for i Ω 1 : (length(x) ≠ 2) do

Û angle encoded as 0..M-1
9: degree Ω arctan(dy(i), dx(i))/(2 ú pi)

10: angle Ω mod (round(M ú degree), M)
Û distance in steps of length D

11: distSteps Ω round(


dx(i) ú dx(i) + dy(i) ú dy(i)/D)
Û Take the rounding error into account in the next step

12: errX Ω dist ú D ú cos(2 ú pi ú angle/M) ≠ dx(i)
13: errY Ω dist ú D ú sin(2 ú pi ú angle/M) ≠ dy(i)
14: dx(i + 1) Ω dx(i + 1) ≠ errX
15: dy(i + 1) Ω dy(i + 1) ≠ errY

Û Save the calculated angle and numberOfMovements for step i
16: angles(i) Ω angle
17: distances(i) Ω distSteps
18: end for
19:

Û Combine results from angles and distances into an encoded string
20: k Ω 0
21: str = []
22: for i Ω 1 : length(angles) do
23: for j Ω 0 : distances(i) do
24: str(k) Ω angles(i)
25: k Ω k + 1
26: end for
27: end for
28:
29: return str
30: end procedure



3.4. STRING DISTANCE METRICS 29

subsections we present an approximate metric which requires much less computation.

3.4.3 LURD metric

While the location-based metric and the angle metric are otherwise excellent for
our purposes, they are fairly expensive to compute on a mobile device. The main
cost in location-based metric is to find the exact time o�set that best aligns the two
drawings and in the angle metric it is the calculation of the encoding drawing. For
this reason, we wanted a distance metric for the drawings that takes little computing
power, does not require accurate time synchronization, computation of the exact
time o�set between the drawings or numerous angle calculations, and nevertheless
accurately compares noisy drawings. Shape recognition algorithms that are based
on approximate string matching are known to have these properties [KB02][Mae91].
Like the angle metric that we proposed, these algorithms encode the drawings into a
string, which can be then compared using approximate string comparison algorithms
(here we will also use Levenshtein’s distance).

The approximate metric suggested for the pairing protocol is called LURD
(originates from Sethi et al. [SAA13]) string distance. The basic idea is to record
the movement of the finger in four di�erent directions and encode it into string of
letters where: L=left, U=up, R=right, D=down, and then compute a string distance
between the two drawings.

The algorithm for encoding the drawing into a string is done as follows. Firstly,
we have a parameter that is subject to change, more precisely the metric needs
to be analyzed in order for us to decide which value is to be set. Namely, we are
talking about dividing the covered area of the touch surface into a grid of G ◊ G
squares. Each movement of the finger that crosses at least one grid line is mapped
to a string that has one character for each crossed grid line. The characters indicate
the direction of the crossings. The first step is to interpolate the vectors (x and y
coordinates) in a similar way done with the location metric, yet here we interpolate
based on the grid size G:

x1min = min(x1),
x1max = max(x1),

x1 = floor(((x1 ≠ x1min)/(x1max ≠ x1min)) ú G),
(3.10)

After that, two temporary strings are created that incorporate distances between
adjacent coordinate points of the original drawing. These strings are used in a later
stage for comparing their adjacent values and based on these we form the final
string with letter l, u, r, d (e.g. if tempX(i) Æ tempX(i + 1) then str

i

Ω=Õ rÕ).



30 3. METRICS FOR SYNCHRONOUS DRAWING

R R RR

R R R D

D

D LLLLL
L

D

D

Finger trajectory
R

L
L

Figure 3.6: LURD-string encoding [SAA13]

For example, if the movement crosses one vertical grid line towards right and then
one horizontal grid line in the downward direction, the string will be ”RD” (see
Figure 3.6 that illustrates the encoding). In the very rare cases where the crossing
happens exactly at (or within the rounding error from) the junction of two grid lines,
the crossing of the vertical line is recorded first. The substrings from the recorded
movement events are concatenated to represent each drawing. The two drawings are
then compared using a weighted string distance metric (Levenshtein distance). The
function is specific for this metric and gives weight 1 to each deletion or insertion of
characters, and for the substitution we have weight of 1 for 90 ¶ angle turns (e.g. d
to l or r, r to u or d) and weigh of 2 to for 180 ¶ turns (e.g. u to d, l to r). However,
the actual encoding and the comparison of the strings is not done using the LURD
alphabet. We have come to a conclusion that the computations operate more faster
with numbers rather than ASCII characters (due to constant conversions). Hence,
the letters from L-U-R-D are transferred to number 0-1-2-3 respectively.

As we will see in the discussion (next section), this approximate string distance
metric satisfactorily separates the synchronized drawings from pairs of unrelated
drawings. Moreover, it automatically synchronizes the two drawings by inserting
characters to the beginning of the one that starts later. There are simple and e�cient
algorithms for computing such string distances [YB07], and these proved to work
well on the mobile devices.

3.4.4 LURD xy metric

LURDxy metric is a sub-version of the LURD metric intended to improve the outcome
of the string distance comparison. The idea is to overcome and reduce the number
of insertion, deletions and substitutions by splitting the complete movement into
two separate string. Particularly, the movements are viewed as separates strokes
made on x ≠ axis and y ≠ axis. The algorithm of encoding is the same as in the
LURD string distance except the last part where the string for comparison is created.
After interpolating the coordinates into the grid we form two additional temporary
substrings. The first one contains movement only on the x ≠ axis (L-R) and the



3.5. METRIC EVALUATION AND ANALYSIS 31

second one movements on y ≠ axis (U-D). Lastly, these strings are concatenated to
form a final string for calculating the distance between drawings. Hence, the total
amount of symbols (and number per each symbol) are the same but the order is
rather di�erent. The idea came to life by analyzing the structure of LURD strings
where we have noticed that long movements in one direction can be interrupted
(shaky hands) by a slight movement in an 90 ¶ angle and this may be a�ected by the
precision of the touch surface. Therefore, by separating opposite-axis movements
we measure strokes on each axis separately and avoid useless errors in the string.
However, as we may see, the results, presented in the discussion chapter, did not
bring reasonably well improvement.

3.4.5 LURD binary metric

LURD binary string metric is another sub-version of the original LURD metric.
The need for this metric stems from the characteristics of error correction codes.
Specifically, our design of a fuzzy device pairing protocol comprises the usage of error
correction codes to successfully derive a shared secret between two di�erent devices.
The characteristics of the protocol, its sub-parts and the mathematical background
that supports its creation are explained in detail through the next several chapters.
However, preparing the raw data and encoding it to be correspondent to the protocol
design is of utmost importance. Most error correction codes and formulations work
on binary code words. Therefore we need to find a metric that can either be originally
in that form or be transformed to it.

The LURD binary string metric does not di�er from the original LURD metric
in its algorithm for encoding, yet only the last part including the formation of
the comparison string is changed. Particularly, the lastly formed LURD string is
transformed in binary form by encoding each symbol of the LURD metric alphabet:
L≠00, U ≠01, R ≠11, and D ≠10. The drawback of this encoding is that the strings
used for comparison are now twice the size of the original LURD but since we are
only working with the binary alphabet, the Levenshtein distance function operates
much faster. Another drawback that we encountered is a slight impairment of the
overall results, where the LURD binary metric has a shorter gap distance between
matching and non-matching results. However, this does not e�ect the feasibility of
the protocol since the test results show (see the discussion section) that it brings
more benefit when used in the fuzzy device pairing protocol.

3.5 Metric evaluation and analysis

In this section we will first evaluate the metrics separately with the goal of finding
parameters for them which give the best results. After that the metrics are compared
all together to choose the best suitable metric for our device pairing protocol. The



32 3. METRICS FOR SYNCHRONOUS DRAWING

evaluation of each metric is based on fitting the test results to a normal distribution
and then calculating false positives rates (FPR) when given the value of the false
negative rate (FNR). Formula of the Normal distribution that is used is:

f ≥ N (x, µ, ‡2) = 1
‡

Ô
2fi

ú e≠ (x≠µ)2
2‡

2 (3.11)

The idea is to first find a threshold on the x-axis using the Inverse cumulative
distribution function (ICDF) with the input of 1 ≠ FNR, mean value and standard
deviation of test data that is supposed to be accepted by the protocol. That threshold
is then used as an input variable to the original Cumulative distribution function
(CDF), along with the mean value and standard deviation of the test data that is
supposed to be rejected by the protocol, in order to calculate the false positive rate.
Formula used for the CDF is as follows:

f ≥ CDFN (x, µ, ‡2) = 1
2 ú (1 + erf(x ≠ µÔ

2‡2

)) (3.12)

Obviously, we want to minimize the FPR since if any of the false positive occurs,
the protocol is not sustainable. On the other hand, we want to minimize the FNR as
well since the protocol has to be user friendly with minimum of false negatives (users
could get discouraged if many of the pairing attempts results in a failure). For many
analysis purposes, we took that the FNR is equal to 1% and then tested the value of
FPRs while changing parameters of the metrics.

3.5.1 Optimal angle number and distance for the ANGLE metric

As explained in the previous sections, the ANGLE metric is characterized by two
variables: the number of angles M and the distance d. First tests of the metric
were performed with the distance d = 20 and M = 32. Keep in mind that the
distance d is presented here as a number of pixels while in the actual
implementation it is scaled in compliance to the scaled drawings. Hence,
these number can be used to compare the correctness of the metric since
they linearly suit the used ones. Our observation and initial conclusion was
that the encoding will be more similar to the original drawing if we have more angle
values that we can move our points to. The decision was to double the number of
angles to M = 64. So we ran a test that checks the value of FPRs while the FNR
changes gradually by 1%. Results are shown in Figure 3.7 where we may observe
that two lines characterizing 32 and 64 as the number of angles follow each other
perfectly. Reasons for that lie in the use of modified weighted Levenshtein distance.
Even though the original drawing may not be followed perfectly, due to the small



3.5. METRIC EVALUATION AND ANALYSIS 33

Figure 3.7: Comparison of FPRs in regards to di�erent angle values and FNRs

distance d = 20 and the weighted distance calculation, the results do not change
at all. Additionally, it is worth mentioning that the computation costs also do not
increase even though the alphabet has more symbols (when M = 64). In conclusion,
related to the angle value, we have decided that the value of 32 angles stays as a
fixed parameter in further tests regarding distance d.

Next step is to find the most suitable parameter d for the metric. To test that
we form a test scenario where the weighted Levenshtein distance is calculated for all
encodings, ranging from d = 10 up to d = 200 with the step of only 2 pixels (after
the value of d = 60 we increased the step to 10). During those tests we calculate the
FPR based on the value of FNR which is equal to only 1%. First test incorporates
the distance d without performing centering and scaling operations. Graph shown on
Figure 3.8 represents the change of the FPR and Threshold of acceptable drawings
on x-axis in regards to the changing (non scaled) distance d. Line on the graph show
chaotic behavior which can easily be explained by the fact that the distance is not
scaled properly. Namely, various di�erent device have a wide range of resolutions
and sizes of the touch surface. Taking that into consideration along with the fact
that di�erent devices do not call the touch sensing events in their OS on the same
time basis we end up with unpredictable results that may vary (for example, if we
add or remove a certain device the results change drastically).

However, the most important test for our metric is when the distance d is scaled.
Figure 3.9 represents a graph with same properties as in the previous case but with
the fact that the distance is scaled. Our goal is to find a maximum value of the
distance that at the same time has an acceptable level of FPR. Maximization of
the distance arises from the fact that the computation cost of weighted Levenshtein



34 3. METRICS FOR SYNCHRONOUS DRAWING

distance is increasing with lower distance since low distance values imply more
artificially created points for encoding and thus longer strings to compare. Having a
look at the Figure 3.9 and by observing statistical data we come up with distance
d = 34. The actual minimum is at the distance of 36 but the value of FPRs are
di�erent on a scale of 10≠10 and then it is more useful to reduce computation costs.

It is also interesting to see how the ANGLE metric performs in regards of encoding
the original drawings. Figure 3.10 shows 6 di�erent subfigures, each containing 4
lines. Two lines (red and black) show the original drawings made by the user
(accepted pairing instance of similar drawings). The other two lines (blue and green,

Figure 3.8: Comparison of FPRs and Thresholds in regards to changing distance d
(NOT scaled)

Figure 3.9: Comparison of FPRs and Thresholds in regards to changing distance d
(scaled)



3.5. METRIC EVALUATION AND ANALYSIS 35

respectively) show drawings recovered from the calculated movements of the angle
metric. We may observe a gradual change when increasing the distance d where the
encoded drawings of smaller distances follow the original line almost perfectly. If
we increase the distance up to 200 the line cannot be followed precisely any more
and the encoded drawing shows hard turns. In that case even small deviations in the
original drawing will cause the ANGLE metric to encode movement points under
di�erent angles which a�ect the calculation of the Levenshtein distance greatly.

Another graphical representation of the results might be seen in Figure 3.11.
Subfigures from a) to f) show distribution of the matching (green) and non-matching
(red) test results. Each subfigure is characterized with a di�erent value of distance d
(the same values as in Figure 3.10 for easier comparison)10.

From the figure we may notice that with the increase in distance the gap between
the positives and negatives reduces, and eventually overlaps. Our goal is to maintain
the biggest possible gap while taking into consideration the overall computation costs.
Therefore, distance of 36 again proves to be appropriate since the gap is big enough
to allow variations of results without endangering the security of the protocol.

3.5.2 Optimal grid size values for the LURD metric

Unlike the ANGLE metric, the LURD metric is characterized by only one parameter,
the size of the grid G. The optimization of the grid size is carried out by running
test scenarios on the user group, but each time with a di�erent grid size. The grid
size variation ranges from 2 ◊ 2 up to 64 ◊ 64 with the increase step of 2. We took
the FNR to be 1% and tested the possible values of the FPRs and Thresholds on
the x-axis. The result are shown in Figure 3.12. xThresholds represents the value of
the threshold that is calculated via ICDF by using the mean and standard deviation
values of matching drawings along with the mentioned FNR. Next, that values is
used in the CDF to calculate the FPR. Note that the FPR is presented in the figure
on a logarithmic scale due to the large di�erences between the values. Specifically,
up to the level of 12 ◊ 12 grid size the FPR value is so large that we could basically
not see the variations for larger grid sizes. By observing the figure and the statistical
results we conclude that the minimum FPR is given when the grid size is G = 58:
1.54256 ú 10≠7. Due to the large number of squares the encoded strings are quite long
and the computation costs increase exponentially. Therefore, we search for a more
suitable grid size but without losing the quality of the metric. One of the appropriate
sizes is G = 29 with the value of FPR equaling 2.60326 ú 10≠7. The extent of the
loss in the metric quality is not meaningful, yet the computation cost is much less
since the grid size is half of the original one with the minimum FPR.

10Note that the test on the subfigures d) to f) were made on a smaller user group, so the bars of
positive matches look larger even though the scale of the y-axis is changed.



36 3. METRICS FOR SYNCHRONOUS DRAWING

(a) Distance d=30 (b) Distance d=50

(c) Distance d=70 (d) Distance d=100

(e) Distance d=150 (f) Dist,ance d=200

Figure 3.10: ANGLE metric original+encoded drawings over di�erent distance values



3.5. METRIC EVALUATION AND ANALYSIS 37

(a) Distance d=30 (b) Distance d=50

(c) Distance d=70 (d) Distance d=100

(e) Distance d=150 (f) Distance d=200

Figure 3.11: ANGLE metric distribution over di�erent distance values



38 3. METRICS FOR SYNCHRONOUS DRAWING

Figure 3.12: Comparison of FPRs in regards to the number of angles M

3.5.3 Comparison of metrics

The final step of the analysis is comparing proposed metrics that have optimal
parameters. Thus, we take the ANGLE metric with M = 32 and d = 36 and LURD
metric (along with its subversions) with G = 29. Figure 3.14 shows the distribution
charts for each of the compared metric. From here we might observe that the ANGLE
metric (Figure 3.14c) shows the best results, keeping in mind the size of the gap
between the matching and non-matching results. Next is the LURD metric (Figure
3.14d) with slightly worse results. However, it might be di�cult to distinguish the
quality of the metric only from the distribution charts. Hence, in Table 3.1 we show
the numerical representation of the results, and also the graphical representation
of FPRs (on a logarithmic scale because of greater variations) by each metric with
the changing value of FNR (Figure 3.13). The figure clearly shows the di�erence
between metric qualities. The best performing is the ANGLE metric with the lowest
value of FPR when FNR is 1%. It is followed by LURD metric which shows lower
quality results on a scale of 10≠7. Next is the location metric with worse results
approximately on the scale of 10≠3. LURD binary follows and interestingly shows
worse results in comparison to the regular LURD metric on a scale of 10≠5. Yet,
by looking the distribution of the LURD binary we can see a clear gap between the
matching and non-matching results. Thus, the higher value of the FPR might be
explained by a slight deviation from the Normal distribution (we may see that the
first bar in the Figure 3.14f is large).

Taking these result into consideration we may conclude on which metric to use in
the protocol. Even though the ANGLE metric shows the best results, the calculation
process has a high computation cost due to the high number of movement points and
calculations of suitable angles and error propagation. Hence, LURD metric seems
as a good approximation of the more mathematically stable solution (angles and
movements). LURD metric in its description has a drawback that a lot of information
is lost during the encoding, yet the performance results are good and do not show



3.5. METRIC EVALUATION AND ANALYSIS 39

Table 3.1: Comparison of metric results (FNR=1%)

Metric xThreshold FPR

LURDxy 0,346822795 1,58167E-01
Movement 0,07634962 1,45685233E-01
LURD binary 0,336924031 8,68675E-04
Location 0,097337955 1,57469E-05
LURD 0,3281627109 2,60326E-07
ANGLE 0,319844303 1,3403E-07

that this lost is a�ecting the protocol execution. In conclusion, the commitment
protocol from Sethi et al. [SAA13] will continue to use the originally presented
LURD metric while we consider the binary LURD metric in out fuzzy device pairing
protocol. The reasons for that lie in the fact that our metric comparison functions
(along with the codes and error correction capabilities) rely on binary symbols. Even
though the metric has worse results than the original LURD metric, test have shown
that it would be enough to support the pairing mechanism.

Figure 3.13: Comparison of FPRs achieved with LURD and ANGLE metric



40 3. METRICS FOR SYNCHRONOUS DRAWING

(a) Location metric (b) Movement metric

(c) ANGLE metric (d) LURD metric

(e) LURD xy metric (f) LURD binary metric

Figure 3.14: Comparison of all metric distribution graphs



Chapter4Introduction to fuzzy cryptography
and component constructions

Cryptography in general is based on the quality and security of the secret that is used
to protect the communication. Thus, uniformly distributed random strings, with
the properties of precise retrieval, represent the best possible secrets. However, in
practice it is often di�cult to generate uniformly distributed secrets and at the same
time be able to reproduce the same strings. Our protocol su�ers from that exact
problem since it is based on extraction of a shared secret from a fuzzy environment.
Two drawings, each drawn on a separate device, may never be the same, yet just
su�ciently similar. In this section we focus on the mathematical background needed
for using such unreliable and non-uniform secrets to perform protocol bootstrapping
and thus assuring secure communication.

Our main problem and therefore goal is to convert noisy non-uniform inputs
(drawings) into reproducible, uniform and reliable random strings. A primitive that
provides a solution was first introduced by Dodis et al. [DRS04] under the term
fuzzy extractors. A fuzzy extractor extracts a uniformly distributed random string x
from the noisy input Ê, but with a certain degree of noise-tolerance. Noise-tolerance
implies that the random string x can be reproduced exactly if the individual input
Ê changes to some ÊÕ, but remains close enough. However, the main question is
how can the fuzzy extractor output the same random string even with the change of
the input. In order to do so, a fuzzy extractor outputs another non-secret string,
named P , which is subsequently used to assist in reproducing the original x. P
should be constructed in a way that even knowing its value would not a�ect uniform
randomness of the generated value x. In terms of practical implementation we can
not vouch for complete uniformity, yet we expect the string to be ±‘ close to uniform,
where ‘ is exponentially a very small value.

Due to the di�erences between Ê and ÊÕ we need a way to firstly measure the
extent of it and upon that fix the existing errors. The protocol proposal and its
mathematical base for development logically imply the usage of error-correction codes
since they are well-known and used for retrieval of original data in communication

41



42 4. INTRODUCTION TO FUZZY CRYPTOGRAPHY AND COMPONENT
CONSTRUCTIONS

systems. With the help of the generated, non-secret side string P and the input ÊÕ

we are to successfully extract the original and first input Ê as well as the uniformly
random generated string x. Dodis et al. [DRS04] claim that x extracted from Ê
may be used as a secure key in cryptographic application but with the di�erence
that the key does not need to be stored (since it can be extracted again from the
similar ÊÕ. Therefore, the fuzzy extractors are information-theoretically secure and
they may be used in crypto-systems without any further assumptions. However, note
that this does not imply the cryptographic application itself to be computationally
secure, which should be achieved by careful design and choice of parameters (length
of secure keys, etc.)

In the next several sections we cover di�erent terms that are used in the construc-
tion of our fuzzy commitment protocol. Mathematical theorems along with some
constructions are explained with detailed taxonomy introduction of distance metrics,
random number extractors, hash functions, entropy, code spaces along code words
and the implications/application of error correction codes.

4.1 Mathematical definitions and terms

All of the calculations in our fuzzy commitment protocol are made under a defined
metric space. By definition, a metric space1 is a set M with a defined distance
function d : M ◊ M Ω R+ = [0, Œ >, where all distances between members of the
set are fixed. The set of these distances is called a metric of the set [Bry85]. M itself
is a finite set, bounded by the number of di�erent values that a string consisted in a
set can have (depends on its size, more particularly on the number of bits in binary
form). The distance function d on set M can only take integer values and respects
following characteristics:

1. distance of two same strings is zero, d(a, b) = 0, if and only if a = b,
2. distance between two strings is symmetrical, d(a, b) = d(b, a), and
3. distance conforms to the law of triangle inequality, d(a, c) Æ d(a, b) + d(b, c).
Along with the various distance functions we might use the term of Hamming

weight of a string which gives the number of non-zero characters in it[Wei91].

4.1.1 Metrics used in fuzzy commitment protocol scheme

Our protocol is based on three di�erent metrics that appear natural to use given the
design of fuzzy commitments. Hence, we introduce the definitions of those metric as
follows [DRS04]:

1For easier understanding, one very familiar metric space is the 3-dimensional Euclidean space
where we often use the term metric as a generalization of Euclidean space metric well known as the
Euclidean distance.



4.1. MATHEMATICAL DEFINITIONS AND TERMS 43

1. Hamming metric defines the distance function d(a, b) as the number of
positions in which the two strings a and b are di�erent. The metric space is
defined as M = �n, where � is some alphabet of defined size (di�erent values),
and n is the size of the strings for subsequent comparison. Additionally, we
might use the term of weighted Hamming metric which di�ers from the original
one by the distance calculation between specific symbols of the alphabet �. For
example, if the alphabet is consisted of symbols 1, 2, 3, 4 the distance between
two subsequent symbols (1, 2) may be one while the distance between other
symbols is di�erent (d

w

(1, 3) = d
w

(2, 4) = 2),
2. Set di�erence metric represents the size of the symmetric di�erence of

the two input sets Ê and ÊÕ. Let us assume that there exists a universe U of
possible features. Our metric space M then consists of all subsets of the universe
U . The symmetric di�erence of the two compared sets may be presented as
Ê — ÊÕ , {x œ Ê fi ÊÕ|x /œ Ê fl ÊÕ}. Therefore, the symmetric di�erence is equal
to |Ê — ÊÕ|. In our constructions we use a sub-method of the set di�erence
metric as well. Due to the di�erent sizes of elements in a specific universe we
might want to explore the di�erences only between set elements of the same
size. Hence, the metric space M is then going to be restricted to metric space
M

k

to contain k-element subsets, where k is the size of symbols in a string.
3. Edit metric is somewhat similar to the original Hamming distance metric.

The metric space is M = �ú, where � is the same alphabet mentioned above.
Unlike Hamming distance, in edit metric the distance between Ê and ÊÕ is
calculated by the minimum number of symbol insertions and deletions needed
to transform the string Ê to ÊÕ. Another di�erence in the edit metric is that
inserting or deleting a character from the string shifts the rest of it to the
right or left, respectively. In our protocol, we use Levenshtein distance metric
([YB07]) which is further and more closely discussed in Chapter 3.

4.1.2 Codes and correcting mechanisms

The mechanism that we use in our fuzzy commitment protocol implies the need
for correcting errors that are formed as a consequence of similarity (and not exact
equality) between the two device inputs Ê and ÊÕ. One obvious solution is utilization
of error-correction codes which, depending on their type and structure, may fix a
defined number of di�erences between two string generated from the input. In order
to do so we have to introduce the code and syndrome terms.

A code, marked as C, is a subset {Ê
0

, Ê
1

, · · · , Ê
m≠1

} of m elements of M .
The process of mapping symbols/substrings from the sequence number i to the
exact element Ê

i

is called encoding. We use this term in the thesis very often to
implicate processing of the original fuzzy input (in our case user drawings) into
meaningful strings of some alphabet �. Since we calculate the distance as an integer,



44 4. INTRODUCTION TO FUZZY CRYPTOGRAPHY AND COMPONENT
CONSTRUCTIONS

we define the minimum distance of the code C as the smallest d > 0, such that
’i, j œ 0 · · · m, i ”= j the distance dÕ(Ê, ÊÕ) > d. Hence the error correction mechanism
may detect a maximum of (d ≠ 1) mistakes in an element of metric space M .

On the other hand, the number of detected errors is not equal to the number of
errors that can be fixed. That number may defined as the error-correcting distance
(ECD) t [DRS04] of code C. Thus, ECD is the largest number t > 0, such that
’Ê œ M there exists a maximum of one codeword c (from the set of codes C) where
the radius representing the distance is of maximum value t around a string Ê; distance
d(Ê, c) Æ t for at most one c œ C. Hence, the formed error-correction code can fix
up to t errors in a string Ê œ M .

The process of finding the right codeword c œ C when given the string Ê, and
with the condition that d(Ê, c) Æ t, can be intuitively called decoding, as proposed
by Dodis et al. [DRS04]. The codeword for each string is therefore to be unique
which is important when recovering the original Ê from ÊÕ on the other side. Due to
the restriction posed by limiting the distance to integer values, and by the laws of
triangle inequality we are guaranteed the maximum number of fixed error can be
t Ø Â d≠1

2

Ê. Codes in general are often denoted as (M, m, d) ≠ codes, but due to our
specific application (intention of fixing di�erences) of the codes in the error-correcting
mechanisms we denote our formed codes as (M, m, t) ≠ codes in the rest of the thesis.

Syndromes

To successfully recover the original string Ê from the codeword we need to determine
the error pattern, denoted as e. The error pattern may be perceived as the string of
the same size as the original Ê and is equal to e = ÊÕ ≠ Ê, where the Õ≠Õ operation
indicates modulo addition in a finite field. It is important to mention that in this
thesis we base our calculations and models on finite fields and linear codes2.

The error pattern may be calculated using syndromes. A "syndrome of a vector is
its projection onto subspace that is orthogonal to the code and can thus be intuitively
viewed as the vector modulo the code" [DRS04]. In linear codes we can create a
parity check matrix H with the properties that its rows generate the orthogonal
space C‹. Then for any vector v œ �n we calculate the syndrome as syn(v) , Hv.
Important thing to note is that v œ C … syn(v) = 0 and that the parity matrix
size depends on the number of bits in the metric space and the dimension of the
code. For example, in the Hamming distance metric over �n we can calculate the
dimension of the code as k = log|�| m. Following the notation for error-correction
codes in the literature we may then denote our codes as (n, k, d = 2 ú t + 1)

�

≠ codes3.
2� is a field, �n is a vector space over �, and lastly the code C is a linear subspace of it
3The maximum possible value of m may be denoted as A|�|(n, d) where the base is likely to be

omitted if |�| = 2. The code’s metric space is then obviously set over {0, 1}n



4.1. MATHEMATICAL DEFINITIONS AND TERMS 45

Hence, the parity check matrix is an (n ≠ k) ◊ n matrix and the syndrome of any
vector is n ≠ k bits long.

We calculate the syndrome due to its properties of capturing all the necessary
information for decoding and hence recovering the original information. Let us
assume an example where the codeword c is sent to the other side and the string
cÕ = c + e is received. Then the syndrome of cÕ is exactly equal to the syndrome of
the errors since it stands that syn(cÕ) = syn(c) + syn(e) = 0 + syn(e). In regards
to metric properties, for any value vector v there exists a maximum of one vector e
of weight less than d

2

such that it is equal to the syndrome of the error4.Therefore,
calculating the syndrome of the received vector is enough to determine the pattern
of errors e and thus fix mistakes5.

4.1.3 Entropy calculations

The goal of our device pairing protocol is secure bootstrapping of the communication
line between two device. Hence, the security of device communication depends on
the protocol design. Since we use random numbers in the protocol, first for creating
a secret value and afterwards delivering it to the second device, we need to know
up to what extent/certainty the potential adversary can predict generated random
values, and thus acquire the secret key. Depending on the number of di�erent values
that a random number can have, one of the possible attacks is the guessing attack.
If the random number is too small the adversary has a bigger probability to guess it
correctly.

Predictability of a random variable X can be represented as max
a

Pr|X = x|,
while the value that we are interested in is its entropy:

HŒ(X) = log(max
a

Pr|X = x|) (4.1)

For security proofs we are always interested in worst case scenarios, where in this
case it is the lowest possible entropy that can be achieved [CG88]. If we calculate the
minimum entropy of some distribution we get the number of almost uniform random
bits that can be extracted from it. We use the term "almost" uniform due to the
limitations of measuring and applying algorithms that would give us pure uniformity.
Nisan et al. [NZ96] defined the term randomness extractor function as:

– Let Ex : {0, 1}n Ω {0, 1}l be a probabilistic function on polynomial time
that uses r bits as the seed for randomness. Then we can define Ex to be an

4This is valid due to the impossibility of the fact that given two distinctive vectors v1 and v2
their modulo addition/subtraction would give a codeword of weight less than d

5Note that the number of errors |e| Æ t = 2 ú d + 1, or the original vector cannot be recovered



46 4. INTRODUCTION TO FUZZY CRYPTOGRAPHY AND COMPONENT
CONSTRUCTIONS

e�cient (n, m, l, ‘) ≠ strong extractor if for all min-entropy m distributions W
on {0, 1}n, it follows that:

SD((Ex(W ; X), (U
l

, X)) Æ ‘ (4.2)

where U
l

denotes the uniform distribution on l≠bit binary strings, X is uniform
on {0, 1}r, and SD denotes the statistical distance between two probability
distribution expressed as:

SD(A, B) = 1
2

ÿ

v

|Pr(A = v) ≠ Pr(Bs = v)| (4.3)

According to the Radhakrishnan et al. [RTS00] a strong extractor may extract
l = m ≠ 2 log( 1

‘

+ O(1)) random bits at most. We do not present the proof since it is
irrelevant for the main topic, yet we seek a plausible extractor construction. However,
constructing a proper extractor may often be too complex. Thus, according to the
Carter et al. [CW77] and Wegman et al. [WC81] who explored the properties of the
universal hash functions and to Dodis et al. [DRS04] who resolves a proof of the
usage of hash functions as strong extractor we get the optimal number of bits as:

l = m ≠ 2 log(1
‘

) + 2 (4.4)

4.2 Defining sketches and extractors for fuzzy input
handling

To construct our fuzzy device pairing protocol we use a certain combination of
techniques and sketches proposed in Dodis et al.[DRS04]. The idea of the protocol
design is based on two simple constructions: i) Secure sketches, and ii) Fuzzy
extractors. Secure sketch is a secure construction that allows precise reconstruction
of the noisy input in such a way that having input Ê the procedure outputs a sketch
s. That sketch is used on the other side where if given the input ÊÕ v Ê it is
possible to completely recover the original input Ê. Security of the sketch relies in
the masquerading of the input Ê in a way that the sketch s does not reveal much
about the original input. Hence, Ê retains the majority of its entropy even if the
sketch is known to the adversary. Unlike the secure sketch, a fuzzy extractor does
not deal with the reproduction of the original input, yet it is oriented on creating a
uniformly random secret. On one side the extractor takes the input Ê and reproduces
two vectors, P and R while on the other side the extractor takes the created vector
P and the input ÊÕ v Ê which results in the construction of the same vector R which
can be used as a key in a cryptographic application. Both parties can verify the
success of the generation of R by checking that they have the same f(R), where
we need f to be a one-way collision resistant function. In further subsections we



4.2. DEFINING SKETCHES AND EXTRACTORS FOR FUZZY INPUT HANDLING
47

explain the formal mathematical definitions of sketches and extractors as presented
in [DRS04] with some modifications in notation that will suit our protocol design
further in the thesis.

4.2.1 Formal definition of a secure sketch

As previously, let M be the metric space with a defined distance function d. Then we
can define (M, m, Âm, t) ≠ secure sketch as a pair of randomized procedures to create
and recover the sketch (S and SÕ, respectively). The sketch possesses the following
properties:

1. When given the noisy input Ê œ M the first (sketching) randomized procedure
returns a bit vector s œ {0, 1}ú,

2. When given another noisy input ÊÕ œ M and a bit vector s œ {0, 1}ú the
correctness feature of the secure sketch guarantees that if d(Ê, ÊÕ) Æ t, then
the SÕ(ÊÕ, S(Ê)) = Ê. However, if the d(Ê, ÊÕ) Ø t than the recovered vector
Ê

S

Õ is unpredictable and incorrect,
3. The secure sketch enjoys the security feature that assures for any distribution

W over the metric M , with the minimal entropy denoted as m that the value
of W can be recovered by a malicious adversary, who has knowledge of s, with
the maximum probability of 2≠m. Thus, ÁHŒ(W |S(W )) Ø Âm, and

4. Both of the randomized procedures are considered e�cient if they run in
polynomial time.

However, the security properties of the secure sketch also depend on the input Ê,
since it is not defined in the sketch how the Ê is created. It may be that a potential
adversary has some probabilistic information i about the input Ê in a way that it
can reveal a lot of information about the original input. In general, the input is hard
to predict even given the additional information, but due to these circumstances
the simple definition of the secure sketch cannot stand since there is no assurance
that HŒ(W |i) is fixed to at least m bits. Therefore, a more robust definition whose
security properties as strengthened is as follows: Let M be a metric space with a
defined distance function d and (M, m, Âm, t) a secure sketch with additional features
implying that for any random variables W over M and I over {0, 1}ú such that
ÁHŒ(W |I) Ø m. Then we have ÁHŒ(W |(S(W ), I)) Ø Âm.

In both definitions the notation of Âm defines residual minimal entropy. The value
may be calculated as Âm = m ≠ ⁄, where ⁄ is the entropy loss. The value of entropy
loss is very important in the security analysis of designed protocols where we aim to
restrain it and provide some upper bound for which the protocol is secure. Thus, for
a given construction of S and SÕ with the given value t we get the entropy loss ⁄
such that for any value of m the (S, SÕ) is a (M, m, m ≠ ⁄, t) ≠ secure sketch.



48 4. INTRODUCTION TO FUZZY CRYPTOGRAPHY AND COMPONENT
CONSTRUCTIONS

4.2.2 Formal definition of a fuzzy extractor

As previously, let M be the metric space with a defined distance function d. Then
we can define (M, m, l, t, ‘) ≠ fuzzy extractor as a pair of randomized procedures to
generate and reproduce the value (Gen and Rep, respectively). The sketch possesses
the following properties:

1. When given the noisy input Ê œ M the first (generating) randomized procedure
returns an extracted vector R œ {0, 1}l and a helper vector P œ {0, 1}ú,

2. When given another noisy input ÊÕ œ M and a helper vector P œ {0, 1}ú

in the reproducing construction of the extractor the correctness feature of
the fuzzy extractor guarantees that if d(Ê, ÊÕ) Æ t and R, P are generated by
(R, P ) Ω Gen(Ê), then the Rep(ÊÕ, P ) = R. However, if the d(Ê, ÊÕ) Ø t than
the recovered vector R

Ê

Õ is unpredictable and incorrect,
3. The secure sketch enjoys the security feature that assures for any distribution

W over the metric M , with the minimal entropy denoted as m that the
extracted vector R is nearly uniform even if the helper vector P can be
observed by the potential adversary. Additionally, if (R, P ) Ω Gen(W ), then
SD((R, P ), (U

l

, P )) Æ ‘, and
4. Both of the randomized procedures are considered e�cient if they run in

polynomial time.
Thus, a fuzzy extractor may be seen as a construction that is used to extract

a random vector R from Ê (and maybe another input depending on the protocol
design and application) and afterwards the same vector may be reproduced from any
vector ÊÕ if it is close enough to the first input Ê. During the generation process the
extractor outputs a helper vector P that does not have to be secret since the fuzzy
extractor design implies achieving truly random values of R even with the presence
of vector P . However, the fuzzy extractor does not output truly uniform and random
number, yet nearly uniform. This nearly uniform value can still (regarding properties
of the extractor) used in a cryptographic application that requires completely uniform
random bits (key establishment). Note that this limitation reduces security up to
the distance ‘ from pure uniformity. If the distance ‘ is negligibly small, the losses
are as well negligible and irrelevant.

4.3 Exemplar constructions for di�erent metric spaces and
distance functions

[Exemplar constructions]

In the next several subsections we define some constructions for di�erent metrics
as presented in relevant literature (note that the general literature overview is in
the Chapter 2, while here we use some of the real examples). These constructions
provide baseline elements for designing the fuzzy device pairing protocol further



4.3. EXEMPLAR CONSTRUCTIONS FOR DIFFERENT METRIC SPACES AND
DISTANCE FUNCTIONS 49

on. Moreover, the constructions provide deeper understanding on secure sketches
and fuzzy extractors since they are applicable solutions and not only theoretical
definitions.

4.3.1 Hamming distance metric

Let the metric space be defined as M = �n, its size as F = |�| and f = log
2

�. The
distance is calculated based on the Hamming distance metric. To create a secure
sketch we may use code-o�set construction [DRS04]. On one side, take the input Ê
and select a random codeword c 6. The secure sketch of the input, S(Ê), is set to
be the shift needed from the input to the codeword c calculated as: S(Ê) = Ê ≠ c,
where if we have � = {0, 1} then the subtracting operation is equal to the modulo
(addition) operation. The recovery procedure is then carried out by subtracting the
shift s from the second input ÊÕ to get cÕ = ÊÕ ≠ s. If d(Ê, ÊÕ) Æ t then according
to the performed operations, we also have d(c, cÕ) Æ t. Hence, decoding procedure
of cÕ to acquire c can be done successfully. Now when the original codeword c is
calculated and we have received the shift s it is easy to recover the original input Ê
as Ê = c + s7.

First construction using code o�sets was introduced by Juels et al. [JW99]
as a fuzzy commitment scheme where the secrets were not revealed in the same
fashion as other commitment protocols. The definition of the construction may
be seen as (�n, m, m ≠ (n ≠ k)f, t) secure sketch. The entropy loss depends on
the added k random bits8 of � and sent n bits as the input. Therefore, given a
(n, k, 2t + 1) error correction code the secure sketch would be e�cient in its encoding
and decoding procedures. Additionally, since we focus on linear codes the output
is fixed and is (n ≠ k) bits long. Accordingly, we can calculate the entropy loss as
nf ≠ log

2

A
�

(n, 2t + 1)9 if the input is nearly uniform and m = nf since K(M, t) is
equal to A

�

(n, 2t+1). For optimal codes the o�set construction is as well optimal and
then the entropy loss is nf ≠ log|�| K log

2

|�| = nf ≠ log
2

K. However, the creation
of the e�ciently decodable code remain a great challenge due to its dependency of
|�|, n and d.

For the creation of fuzzy extractors, which will be one of the main design properties
of our fuzzy commitment scheme, we construct the same code o�set denoted as
v = � ≠C(x). The first randomized procedure Gen(Ê) then return R = x and P = v.
On the other side, the input from the second device and the helper string are used as

6Similar construction could be to choose a random number x œ �k and then compute the
corresponding codeword C(x)

7Note that we use almost the similar construction in the fuzzy device pairing protocol to extract
the input from the first device in the second one

8The notation is in bits since � œ {0, 1}. For other spaces we would use the term symbols.
9
A� denotes the maximum number of codewords K in a code with n bits and of distance d

from an alphabet of size F = |�|



50 4. INTRODUCTION TO FUZZY CRYPTOGRAPHY AND COMPONENT
CONSTRUCTIONS

Rep(ÊÕ, P ) where the C(x) is calculated as ÊÕ ≠ P . If the distance d(Ê, ÊÕ) Æ t then
we can successfully perform C≠1 operation to get x. The extractor (�, nf, kf, t, 0)
works well if the vector P = v is truly random and independent of x when Ê is
random. This construction exploits the exact idea by Juels et al. [JW99] where they
used the commitment process between devices to share and confirm knowledge of x,
but without revealing it.

4.3.2 Edit distance metric

Let the metric space be defined as M = �ú for some alphabet � and its size as
F = |�|. The distance function between two vectors (or strings for non-binary
alphabets) is defined as the smallest number of substitution, insertions and deletions
needed to transform one vector to another. Note that due to the properties of the
distance function the metric does not have transitive properties and the calculations
are di�erent then in the case of Hamming distance metric.

Due to the properties of our device pairing protocol related to synchronized
drawing and comparison of the two pictures via di�erent metrics we may expect
high-distortion between the strings, as the metric results have shown in Chapter 3.
Dodis et al. [DRS04] have conducted several measurements based on the properties
of the metric space and strings themselves. They found out that the characteristics
of metrics depend on the level of distortion between the compared strings. We
will concentrate on the high-distortion features where according to the authors the
entropy loss is roughly 2.38 3

Ô
tn log n. Experimental results show as well that the

number of corrected errors could be roughly t < n

15úlog

2
n

.

The construction for the edit distance metric is as follows [Bro97][OR07][GXTL10].
The idea is to construct shingles based on the original input and then compare them.
A c-shingle is consecutive substring of the given input Ê with the length of c. The
result of a shingling10 that processes a string Ê of length n is a set of all (n ≠ c + 1)
c-shingles of Ê that are not particularly order and are without duplicates. Hence,
the shingling results include all non-empty subsets of maximum size (n ≠ c + 1) over
�c. The output of the shingling process is denoted as SH

c

(Ê). Additionally, this
construction exploits the usage of both set and edit distance in the following way. Let
Ê, ÊÕ œ �n be such that their distance d(Ê, ÊÕ) Æ t

1

. Let I be the number of actions
of maximum t

1

insertions and deletion that transform one string to another. Each
character deletion or insertion will add at most (2c ≠ 1) to the symmetric di�erence
between two shingle sets, SH

c

(Ê) and SH
c

(ÊÕ). Thus, the calculated distance is
d(SH

c

(Ê), SH
c

(ÊÕ)) Æ (2c ≠ 1)t.

10For example, a 5-shingling process of a string "123456789" is {12345,23456,34567,45678,56789}



4.3. EXEMPLAR CONSTRUCTIONS FOR DIFFERENT METRIC SPACES AND
DISTANCE FUNCTIONS 51

One example construction is as follows. Let Ê œ �n. We compute SH
c

(Ê) and
afterwards store the resulting shingles in a lexicographic order h

1

, · · · , h
k

, where
k Æ n ≠ c + 1. Second step is to naturally divide Ê into Án/cË c-shingles s

1

, · · · sÁn/cË
where there are no overlaps between the shingles except for the last two (since the
string length is maybe not dividable by c) which overlap by maximum c ú Án/cË ≠ n
characters. Further on, for 1 Æ j Æ Án/cË, set p

j

to be the index i œ {0, · · · , k} such
that s

j

= h
i

(p
j

tells the index of j th divided shingle of Ê in the order set SH
c

(Ê).
Then we define g

c

(w) to be the set containing p values as g
c

(Ê) = (p
1

, · · · , pÁn/cË)
with the maximum number of possible values equal to (n ≠ c + 1)Án/cË. Due to
properties of this construction the original value of Ê can then be recovered by
knowing SH

c

(Ê) and g
c

(Ê). An exact fuzzy extractor may be created with an
addition of a uniformly random number x which can, in addition to the g

c

(Ê), be
exchanged in a helper string. The check by both parties to confirm the successful
extraction is by comparing shingle sets that they acquired (first one uses the original
set while the other recovers the original set with the help of its own set and the
helper string). The values are to be hashed to avoid leaking of the information to a
potential adversary.

An example construction for a secure sketch is somewhat similar. For the first
randomized procedure S(Ê) we can compute v = SH

c

(Ê) and calculate syndrome
s

1

= syn(x
v

), where x is a generated random number. Furthermore we compute
s

2

= g
c

(Ê) where each p
j

is a string of Álog nË. From the value s
1

, s
2

the output
s = (s

1

, s
2

) is created and transmitted to the other party. Upon receiving the value,
the second randomized procedure SÕ(ÊÕ, (s

1

, s
2

)) is initiated to recover the original v,
sort it and then the original string may be easily recovered by concatenating shingle
elements of v according to the values in s

2

.

4.3.3 Set di�erence metric

The set di�erence metric is the least one connected to our design of the fuzzy device
pairing protocol, but since we use some elements it is useful to devote some space
to it and explain its properties. The inputs from both devices can now be seen as
subsets of a universe U , where the size will be n = |U |. We then define the metric
space by SD

m

(U). Set di�erence metric represents objects by the list of its features11.
Thus, the distance between two sets Ê, ÊÕ is the size of the symmetric di�erence,
d(Ê, ÊÕ) = |Ê — ÊÕ|. Each set Ê is represented as its characteristic vector in binary
form, {0, 1}n, where 1 are at positions where x œ U if x œ Ê, and 0 otherwise. Note
that the settings of applicable solutions imply that the size n is much larger than
the size of the observed set Ê. Therefore, the representation of the set Ê requires
|Ê| log n bits.

11e.g. strings of various length in a long document, list of favorite objects, etc.



52 4. INTRODUCTION TO FUZZY CRYPTOGRAPHY AND COMPONENT
CONSTRUCTIONS

A good example of a construction for set di�erence metric is given by Dodis et
al.[DRS04]. The authors sought to improve constructions for large universes made
by Juels et al. [JS06]. Additionally, schemes from the information reconciliation
literature by Minsky et al. [MTZ03] were analyzed as well. The resulting construction
is as follows. Let us assume that size of n is one less than a power of two, n = 2m ≠ 1
for some chosen integer m. Then, n, m will identify U with the non-zero elements
of the binary finite field of degree m : U = GF (2m)ú. Furthermore, let Ê ™ U
of size s, where n ∫ s. Let x

Ê

denote the characteristic vector of Ê. According
to the process of syndrome calculation we now have the sketch’s first randomized
procedure to be S(Ê) = syn(x

Ê

) which is (n ≠ k) bits long. Note that for smaller
universe where n ∫ (n ≠ k) there is a substantial improvement in the calculation
time and e�ciency. Hence, the use of syn(x

Ê

) as the sketch of Ê implies that
the code properties (n ≠ k) has to be very small. Maximum entropy of the input
may be calculated as log(n

s

) ¥ s log n and due to that the entropy loss on n ≠ k
should certainly be under that value. The next step is to identify a suitable code
for error correcting, where the family of binary BCH codes, introduced first by A.
Hocquenghem in 1959 and then improved by Raj Bose and D. K. Ray-Chaudhuri
[BRC60] in 1960, prove to be suitable. BCH codes are a family of (n, k, 2t + 1)

2

linear codes where k = n ≠ tm under the assumption that n = 2m ≠ 1. The code
proves to be optimal for t π n by the Hamming bound12 where k Æ n ≠ log(n

t

)
[VLVL82]. Lastly, using the syndrome as a sketch with the constructed BCH code
C, the entropy loss finally equals n ≠ k = t log(n + 1).

This section concludes the chapter related to the mathematical background
needed to comprehend and design the fuzzy device pairing protocol. The next
chapter provides the exact protocol design and related assumptions.

12For any code of distance ” the circular radius of size Â(” ≠ 1)/2Ê centered at di�erent code-
words must be disjoint. Each circular radius then contains ( n

Â(”≠1)/2Ê ) points and therefore
2k ú ( n

Â(”≠1)/2Ê ) Æ 2n. Specifically, the construction here implies that ” = 2t + 1 and hence the
boundary is at k Æ n ≠ log( n

t )



Chapter5Protocol design

In this chapter we introduce the design of the synchronized drawing fuzzy device
pairing protocol. The idea to use the synchronized drawing as a mechanism to
establish authentication between two device was first introduced by Sethi et al.
[SAA13] as a novel idea not previously used, at least from the available literature in
the research community. Due to the uncertainty of the input entropy the authors
have decided to use the commitment scheme rather than the fuzzy cryptography
with error-correction codes. We continue research on the initial idea to create a fuzzy
cryptography protocol with additional analysis on the metrics that could be used for
drawing comparison. These results are presented in Chapter 3 where we researched
a suitable metric that could be used in our design while taking into consideration
the overall e�ciency. Analysis resulted in a comparison between the metric and a
journal paper published with the mentioned authors of the synchronized drawings
commitment scheme protocol. The metric that we use in our design is the LURD
binary metric. Even though the metric does not show the best result and is obviously
worse than the original LURD metric, the LURD binary metric represents a viable
solution in regards to its binary form. The problem with other metrics is the alphabet
size, since the error-correction codes are mostly constructed to work with binary
forms. Levenshtein’s distance calculation, which is our primary comparison method
of two fuzzy inputs, may work with all alphabet sizes but it is then more di�cult to
reconstruct original inputs if the alphabet is larger.

In the next several sections we explain the protocol design in detail by explaining
all components, computations and exchanged message. We continue on with the
construction of a suitable error-correction code that may fix the errors up to the
metric boundaries for accepted and rejected drawings. Our goal is to eliminate
any possibility of having false positives and maximally reduce the number of false
negatives. Security analysis follows the design description where we comment on the
viability of the protocol. Some uncertainties were identified, and thus, some solutions
presented accordingly.

53



54 5. PROTOCOL DESIGN

5.1 Protocol components and notation

The fuzzy device pairing protocol is divided into two stages on two separate sides,
device

1

and device
2

. In the first stage both of the devices acquire fuzzy inputs
generated from drawings, they encode them and then device

1

"commits" his input
value masqueraded with the random number to the device

2

. After that, device2
reconstructs the original input and the generated random number from the first side
to continue the protocol in the second stage. Second stage consist of operations
that will enable device

2

to "commit" his input to device
1

using a di�erent distance
metric (i.e. set di�erence metric encompassed with the edit distance metric) for more
enhanced security. In this way both of the device posses both inputs and a random
number generated in the beginning. These values are enough to start performing a
key generating mechanism that results in a shared key which can protect subsequent
communication.

5.1.1 First protocol stage

To show all the functionalities of the protocol more closely we split the graphical
representation of the whole protocol in 4 di�erent parts (stage one and two along
with the device-specific sides respectively). The complete picture may be seen in
5.5 the end of this Chapter. Additionally, all of the abbreviations, functions and
variables of the protocol can be reviewed in Appendix A.

Figure 5.1 shows the first stage of the protocol on the side of device
1

. The first
step of the protocol is initiated when the user starts the pairing procedure on two
devices. Application that we developed 1 capture the drawings in its raw form which
is then encoded to suit the metric. After that (or at the same time) a suitable random
number generator creates a random sequence x such that x œ M , M = {0, 1}k, where
k is the length of the created sequence. Since the randomly generated number cannot
be directly used for fuzzy cryptography (remember that we first have to define a code
with certain distance properties in order to perform successful error correction) we
translate the generated number into a specific codeword c, where c œ C, C = {0, 1}n,
and n is the length of the codeword. The translation function is denoted with symbol
g and can be represented as: g : {0, 1}k æ {0, 1}n, g : M æ C. The resulting
codeword is then added to the encoded fuzzy input Ê in modulo arithmetic to acquire
the output of device

1

’s first stage. The output P is exactly the helper vector that
we discussed about in Chapter 4 under fuzzy extractors and it can be defined as:
P = c

m
Ê, P œ {0, 1}n.

1original code used from Sethi et al. [SAA13] with substantial modification, and a laptop
touchpad surface apps developed from scratch



5.1. PROTOCOL COMPONENTS AND NOTATION 55

Figure 5.1: First protocol stage on the side of device
1

The next thing to observe is the first stage of the protocol on the side of device
2

,
represented by Figure 5.2. After the helper vector arrives on the device it is used
to extract a codeword cÕ that should be close to the originally created codeword c.
Namely, the received helper string P is added with modulo arithmetic to the input ÊÕ

in the same way as it was created: P = c
m

ÊÕ © cÕ = P
m

ÊÕ, where cÕ œ C Õ, is the
fuzzy extracted codeword and C Õ ™ C, cÕ œ {0, 1}n. The extracted fuzzy codeword
cÕ acts as the input to the function denoted as f which is a decoding function
(error-correction control) that translates cÕ to the closest matching codeword c. The
recovered codeword will match the originally calculated codeword (computed on the
side of device

1

) if d(Ê, ÊÕ) Æ t, where t is the maximum di�erence allowed in order to
successfully extract c from cÕ. Thus, we define the functions as: f : {0, 1}n æ C

t
{ÿ}.

Basically, the function will either translate the codeword successfully under given
limitations or the extracted codeword would not match and by performing the
protocol operation further on, the result will be a failure in bootstrapping a secure
connection.

If the original codeword is extracted correctly it is pretty straightforward to
extract the input of device

1

by the device
2

. Using the same operation of addition
in modulo arithmetic the extracted codeword is combined with the received helper
vector P which by the computation P = c

m
Ê © Ê = P

m
c returns the original

input Ê from the first device. This value is further on used in the second stage of
the protocol so device

2

can prove to device
1

the successful decoding process. Along



56 5. PROTOCOL DESIGN

Figure 5.2: First protocol stage on the side of device
2

with the last operation, the reverse function g≠1 of the codeword translation function
g is performed in order to acquire the originally created random number x. This
process should as well be straightforward if the codeword c is extracted properly and
correctly. Random number x is used as well as original input Ê further in the second
stage of the protocol.

5.1.2 Second protocol stage

Unlike discussing the first protocol stage we will start from device
2

in this section. It
is naturally to continue here since the first calculations are made on the second side.
Figure 5.3 shows the second stage of the protocol on the side of device

2

. As inputs
from the first stage we may see the recovered original input Ê, random number x
from device

1

and the fuzzy input encoded on device
2

, acquired in the beginning of
the protocol bootstrapping operation. The first operation performed involves the
characteristic set creation function ”(Ê) which takes the fuzzy input Ê and outputs
the c-shingle set. The operations for set/edit distance metric and the constructions
of shingles were discussed in Chapter 4 under sections 4.3.2 and 4.3.3. Hence, we
define the characteristic set creation function as: ” : Ê Ω SH

c

(Ê) © {{0, 1}s}n≠s+1,
where s is the size of one s-shingle element that is a part of the characteristic set



5.1. PROTOCOL COMPONENTS AND NOTATION 57

with the total of Án/sË elements. The SH
c

(Ê) is then used with the fuzzy input
of the second device ÊÕ as input to the characteristic shingle extraction function
gc. Due to the similarities between Ê and ÊÕ we can allow this kind of usage in our
protocol. Namely, the gc function, when using SH

c

(Ê), would only be used with
Ê as input. Our creation allows the usage of a similar input ÊÕ, when d(Ê, ÊÕ) Æ t
since SH

c

(Ê) ≥= SH
c

(ÊÕ). This procedure, as explained before, will allow device
1

to confirm successful operation on the side of device
2

. Nevertheless, we define gc
function as: gc : (SH

c

(Ê), ÊÕ) Ω {0, · · · , (n≠s+1)}Án/sË. The output of the function,
denoted as gc(Ê, ÊÕ), is a sequence of ordinal numbers where the parts of the divided
ÊÕ can be found in the shingle set SH

c

(Ê).

Figure 5.3: Second protocol stage on the side of device
2

After these protocol operations, device
2

is ready to initiate key generation process
which is a variant of a hash or multiply nested hash functions for acquiring the key
used to encrypt subsequent communication. The key generator takes Ê, ÊÕ and x
as input and outputs the secret key. The protocol bootstrapping procedure is thus
done in device

2

.

Last step left is conducted on device
1

and is represented by Figure 5.4. As we
may see, the first operation performed is the recovery of the fuzzy input of device

2

.
In the same fashion as in device

2

we perform the ”(Ê) function to acquire the shingle
set SH

c

(Ê). The resulting set is then used as input to the inverse characteristic
shingle extraction function gc≠1 that basically takes the shingle set SH

c

(Ê) along
with the sequence of parts ordinal numbers that, when put back together, can repro-
duce/recover the original fuzzy input. Obviously, we now have all the predispositions
in device

1

to start the key generation process in the same way as in device
2

. If
all calculation during this bootstrapping have been encoded/decoded properly, two



58 5. PROTOCOL DESIGN

devices will have the same secret key and can start meaningful conversation that
depend on upper layer applications.

Figure 5.4: Second protocol stage on the side of device
1

Lastly, Figure 5.5 represents the protocol design in total where all of the four
parts are connected. Brief descriptions of abbreviations, functions and variables are
summarized in Appendix A.



5.1. PROTOCOL COMPONENTS AND NOTATION 59

Fi
gu

re
5.

5:
C

om
pl

et
e

de
sig

n
of

th
e

fu
zz

y
de

vi
ce

pa
iri

ng
pr

ot
oc

ol



60 5. PROTOCOL DESIGN

5.1.3 Simplifying second protocol stage

In general, the complete protocol design could be simplified by completely removing
stage two from the protocol. Practically, it is enough to deliver the original input Ê
to device

2

and use that along with the randomly generated number x to perform
key generation, thus performing further authentication at a later stage after a shared
secret is obtained. The disadvantage of this method is that it relies only on one
random number generator and hence if one device is faulty there could not be a
successful device pairing.

5.2 Construction of the code and error-correction
mechanism

In this section our primary goal is to define the needed variables for our fuzzy device
pairing protocol. Namely, we have to define the code length from which the codewords
are picked up in relation to the generated random number, and as well define the
shingle sizes that are used in the second protocol stage.

The first step is to observe the length of the fuzzy input generated by users’
drawing on the touchpad surfaces. An average length of a LURD metric generated
string from the input ranges from around 2500 symbols on average depending on the
duration of the drawing and as well the number of movements. Furthermore, the
users have to perform the drawing sequence for at least 4 seconds which gives us
some lower bound. However, the upper bound is not strictly set and the users could
presumably make drawings that would be even longer than e.g. 3000 symbols. In
that case we will take only the first part into consideration and the rest is going to
be discarded. We assume that these 2500 symbols will carry enough entropy (even
though we cannot calculate it directly due to the properties of the fuzzy input) to
perform bootstrapping of the secure protocol and derive a shared secret. In the
end, we can imply reasonable security of the protocol if we are left with at least
128-bit entropy of the secret. Nowadays, that length of the secret is enough for many
applications, and comparing it to the existing Bluetooth 4-pin security protocol (that
only has the entropy of 13 bits) it is much more higher and reliable. However, in
order to be able to perform an error-correction mechanism, codewords have to have
redundancy, i.e. there has to be more symbols in the transmitted message than the
actual information length to be able to reconstruct the original information from the
input.

An extensive research throughout the coding theory and research community
has given us the answer for choosing a suitable code that may fix the errors. I. S.
Reed and G. Solomon published a paper in the Journal of Society for Industrial and
Applied Mathematics in 1960 which describes a new class of error-correction codes



5.2. CONSTRUCTION OF THE CODE AND ERROR-CORRECTION MECHANISM
61

now called Reed-Solomon (RS) codes. Further on, Wicker et al. [WB99] performed
a survey of the code properties and its applications. In general, Reed-Solomon codes
are a group of linear cyclic error-correction codes that can detect and subsequently
correct multiple random symbol errors. The mechanism is based on the addition
of d check symbols to the original message which then enables detection up to any
combination of d errors. However, the correction capacity is lower and equals a
maximum of Ád/2Ë. The codes are very suitable for non-binary metrics since they
can fix multiple bursts of bit errors (e.g. a sequence of n + 1 consecutive bit errors
a�ect a maximum of two symbols that are n bits long). Nonetheless, our application
uses binary symbols and is thus not a�ected by this property. The reason why we
chose this code is its flexibility in determining the value d from within very wide
limits. This allows us more freedom in the code construction which will in the end
have better compliance with the design of the fuzzy device pairing protocol.

The principle of encoding is based on the idea that the original symbols (informa-
tion) are viewed as coe�cients of a certain polynomial p(x) over a finite Galois field.
The current implementations consider RS codes as a special case of cyclic BCH codes
where encoded symbols are calculated from the coe�cients of a defined polynomial
constructed as the multiplication of a cyclic generator polynomial and p(x). The
original idea of RS codes encompasses creation of n code symbols from k symbols
of the original information by oversampling the polynomial p(x) at n > k distinct
point. These sample points are then transmitted and with the use of interpolation
techniques the receiver is able to recover the original message [WB99]. The Reed-
Solomon codes are popular today due to their great power and utility, and are found
in many important applications such as computer electronics (CDs, DVDs, Discs in
general, RAID), deep-space communications, data-transmission technologies and a
wide array of broadcasting systems.

In this thesis we do not focus on actual encoding of the codewords which can be
either related to the original idea of RS codes where a codeword is seen as a sequence
of values or to the BCH codes point of view where a codeword is a sequence of
coe�cients. This problem relates directly to the code and error-correction mechanism
implementation which is not the main goal here. However, the parameter setting
is crucial and we address it. Firstly, it is important to explain the code variables
and their construction. Reed-Solomon codes may be presented as a family of codes
since for every parameter q, n and k there is an RS code with the alphabet size of
q, block length n < q and a message length of k < n. Its alphabet is represented
as a finite field of order q, where the value of q then has to be a prime power. The
most optimized RS codes follow the property which aims the block length to be a
multiple constant of the message length denoted as R = k/n. Furthermore, the RS
code possess a bound on the block length which has to be equal or one less than the
size of the alphabet, hence, n = (q|q ≠ 1).



62 5. PROTOCOL DESIGN

Formally, the RS code is a (n, k, n≠k+1) linear block code of length n over a field
F with the dimension k and the minimum Hamming distance of n ≠ k + 1. RS code
additionally complies to the Singleton bound, where it is basically optimal in a sense
that its minimum distance has the maximum value for a linear (n, k) code2. This
minimum distance actually determines the error-correcting capability of RS codes.
Moreover, the minimum distance is the measure of redundancy in the block and if
the location of erroneous symbols is not known beforehand then the Reed-Solomon
code may correct up to Â(n ≠ k)/2Ê errors, which equals to the half of of redundant
symbols added to the block of original information. In some cases, not applicable to
out protocol design, the error locations might be known in advance. These errors are
denoted as erasures and an RS code is able to correct a double amount of erasures.
However, all the error positions will not always be known and the resulting error
sequence might be a combination of errors and erasures. Thus, the RS code is then
capable of correcting 2e + s Æ n ≠ k, where e denotes errors and s denotes erasures
in the observed block. In practice, the RS codes are often constructed using a finite
field F with 2m elements where m represents the size of each symbol. Hence, on the
sending side the blocks are encoded and each block has a size of 2m ≠ 13.

In the end it is worth mentioning that the RS codes are transparent codes, similar
to convolutional codes. This property allows the operation of the decoder even if the
symbols were inverted along the transmission. However, RS codes are sensitive to
shortening and thereby lose their transparency if the there are some missing bits in the
decoder. We do not address this issue since we assume that the transmission channel
between two devices that want to pair is clear and will not cause and additional
modification of the originally created codeword on the side of the first device. These
issues could be addressed upon real world implementation of the protocol since then
we would have enough information about the channel properties and could measure
potential modifications that are not directly related to the protocol design itself.

5.2.1 Setting the parameters for the RS code

As previously mentioned the only parameter that we know for now is the length
of the fuzzy encoded input Ê which is around 2500 symbols. Thus, we are able to
set parameter k approximately, for now. Other parameters depend on the number
of errors that our error-correction code is able to fix. To be able to determine the
minimum distance for the code we have to look back in the Chapter 3 where di�erent
metric were analyzed. The LURD binary metric that we choose to use as our initial
metric has a threshold on the x ≠ axis which basically tells us the percentage of
di�erences discovered throughout drawing comparisons, and that number is exactly

2Such codes are also called Maximum distance separable (MDS) codes
3One of the very popular construction is the (255, 223)RS code where m = 8, n = 28 ≠ 1 = 255

and the value of k, k < n is 223 which basically allows the code to have 32 parity symbols and, thus,
can correct up to 16 symbols per block.



5.2. CONSTRUCTION OF THE CODE AND ERROR-CORRECTION MECHANISM
63

our minimum distance which we have to be able to fix. If we look at the Figure 5.6
then it is easy to observe that the threshold for accepted drawings is 0.26 (calculated
as the actual distance divided by the string length). This means that the value of t
as the number of errors possible to fix is 0.26 ú k, and thus the minimum hamming
distance d = n ≠ k + 1 = 2 ú t.

Figure 5.6: Comparison of metric distances for threshold evaluation

The goal is to find a set of parameters that will suit the equations posed by the
RS code. If we set the value of m to be 12, then the value of the RS code alphabet is
q = 212 = 4096. Thus, the total length of the code is then n = q≠1 = 4096≠1 = 4095.
Now we can acquire the actual value of allowed block length k from this equation:

n ≠ k = 2 ú 0.26 ú k Ω 4095 = (1 + 0.52) ú k Ω ÂkÊ = 4095
1, 52 = 2694 (5.1)

Therefore, in our fuzzy device pairing protocol we will use a (4096, 2694, 1403)
RS

code. A useful thing to calculate furthermore is the entropy loss of this construction
since the security of the protocol depends on it. If we refer to the Chapter 4, Section
4.1.3 the entropy loss can be calculated as 2.38 3

Ô
tn log n which equals approximately

Á774. This leaves is with more than enough entropy from the original fuzzy input.
However, due to the inability to determine the actual entropy of the fuzzy input



64 5. PROTOCOL DESIGN

(drawing characteristics are unpredictable) we are unable to determine the actual
entropy that is left. A security threat for our protocol might be an adversary with a
large statistical knowledge of drawn and encoded picture. Even though the number
of recorded and saved pictures from the adversary would have to be exponentially
large it is still considered a threat. Nonetheless, with the introduction of the random
number which is incorporated in the creation of the codeword to masquerade the
input we somehow overcome the issue. Let us assume that the random number
generator on the side of device

1

is nearly uniform and since it is added in modulo
arithmetic to the input it is practically infeasible to acquire statistical knowledge of
the transmitted message which would make the protocol information-theoretically
(note the Evaluation section that follows bellow on this topic) secure. In this protocol
design we will, however, have some false negatives since some drawings cross the
boundary of 0.26 distance.

5.2.2 Evaluating protocol and security properties

The protocol design explained in the above section unfortunately cannot be claimed
completely secure without real-world implementation and experiments. Namely,
there are several settings that might be ambiguous when considering the security
of the protocol. Firstly, the construction based on Reed-Solomon codes uses a
somewhat di�erent metric for comparison and correction of the strings and therefore
can achieve worse (or even better) results. Hence, the parameters of our RS code
might be completely wrong and potentially would not fit with the sizes of the original
framework. RS codes are mainly built on the basis of Hamming distance metric
while in our case we focus the metric analysis on edit distance metric. Secondly, we
do not posses any actual data on the error rates that the fuzzy inputs would create
and to do so we would need a much larger user database with many more user test
cases and experiments. An additional problem is the calculation of the entropy that
is left after subtracting entropy loss based on the protocol construction. Since it is
very di�cult to calculate the entropy of the drawings then it is, naturally, di�cult to
subtract some value from it and further on claim the correctness of the result to be
either secure or insecure.

We performed an approximate entropy calculation using cryptool4 and based
on the string length of 2694 symbols, the entropy per symbol and the compression
ratio we end up with 843,2 bits of entropy. If we calculate the entropy loss by
using the previously mentioned 2.38 3

Ô
tn log n we roughly get around 774.63 bits. By

subtracting these value we can assume that the leftover entropy is 68.57 bit. Even
though that might give enough security for a protocol of this type we cannot be
certain of the calculation and protocol correctness.

4www.cryptool.org



5.2. CONSTRUCTION OF THE CODE AND ERROR-CORRECTION MECHANISM
65

However, the protocol design (if we disregard the comparison metrics and its
application with synchronized drawing) is theoretically correct and supported by
mathematical theorems from the widely available literature. Thus if we were to find
a shared noisy environment and an input type that can be based and compared on
the Hamming distance metric, we would be able to use the protocol immediately.
One thing that would remain to determine is the entropy of the proposed inputs,
and after subtracting the entropy loss, the leftover entropy which indicates the level
of security.

Even though the design of the protocol and the code construction might leak some
information to the adversary it is not known how the attacker could potentially use
that information and revert the operations to recover the strings. Hence, the notation
of "practical security" might be a potential term that is applicable to this case. It
basically means that even though in theory a protocol or some secure communication
is not proven to be theoretically secure, under given circumstances and parameters, it
may be that they are still secure in practice due to di�cult mechanisms of breaking
them.

5.2.3 Using constructions for edit distance

Due to the discussed flaws we present a viable solution constructed by Dodis et
al.[DORS08] in a paper Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data from year 2008 which is an extension of the same name paper
by the same authors published in 2004. Their construction is directly related to
acquiring a key based on input from a noisy environment. Moreover, the authors
provide theorems and proofs for the construction and thus it may be used as a
working example without further experimentation. The scheme may be applied to
our protocol as a replacement for the Stage 1. Regarding the fact that the explanation
is straightforward and that it is based on the mathematical background that we cover
in the previous Chapter 4 we do not provide an explicit protocol diagram like for our
fuzzy pairing device protocol. The construction is as follows.

Let us assume the existence of some space F ú for a defined alphabet F , where
the distance between two strings is defined as the number of character insertions
and deletions needed to transform one string to another. The metric space is of size
n. Thus, we can construct a secure sketch S(Ê) by computing n ≠ c + 1 shingles
v = SH

c

(Ê) = (v
1

, v2, · · · , v
n≠c+1

), and s
1

= syn(x
Ê

), where the x
v

=
q

xœÊ

xi

based on computations in GF (2m). Further on, we compute s
2

as s
2

= g
c

(Ê)
by writing each p

j

as a string of Álog nË. Hence, the output helper string that is
transferred from device

1

to device
2

is denoted as s = (s
1

, s
2

). In the device
2

the
recovery procedure SÕ(ÊÕ, (s

1

, s
2

)) is used to recover v by firstly calculating SH
c

(Ê)
to acquire vÕ, and then calculating syn(v) = (vÕ

1

≠ x
v(1)

, · · · , vÕ
n≠x+1

≠ x
v(n≠c+1)

).



66 5. PROTOCOL DESIGN

Further procedure requires sorting v in the alphabetical order and then recovering the
original Ê by stringing along the elements of v according to the indices specified in the
vector s

2

. Both devices are now sharing the original input Ê and can subsequently use
it to generate a key using, for example, some type of hash function. The formal proof
of the construction can be found in Dodis et al.[DORS08] under constructions 6-9.
Note that in this construction the original LURD metric or even ANGLE metric can
be used since the alphabet does not have to be binary (there are no error correction
codes involved).

5.2.4 Determining the shingle set size

The shingle set size parameter refers to both constructions, the Stage 2 of the initial
and main protocol design, as well as the additional subversion that covers the protocol
under edit distance metric.

Unlike setting the parameters for the Reed-Solomon code, determining the size
of the shingle sets is an easier task. We are looking for a shingle set that is large
enough to cover all the possible combination that may occur in the fuzzy input of
some size and additionally that it is not too large, since there might be di�erences in
the shingle sets calculated from two di�erent inputs Ê and ÊÕ.

Experimentally, we found a suitable shingle size to be 10 bits which equals to 5
original LURD symbols. If we look at the number of possible combinations it is equal
to 45 = 210 = 1024. By taking more symbols the second protocol stage produces
some inconsistencies and thus a shared secret cannot be successfully derived. On the
other hand if we take less symbols then we open a path for the adversary since he can
easily calculate all the possible shingle sets (256 di�erent symbols) and with a good
statistical knowledge about the inputs he can determine the ones that repeat very
often. Thus, he might be able to reconstruct the fuzzy input ÊÕ of device

2

. The size
of 1024 makes the guessing attack more di�cult and the probability of the attacker
to determine the input is very little. Tests with this shingle size have produced
satisfactory results in more than 90% of the protocol bootstrapping instances in
regards to successful delivery of the ÊÕ to device

1

.

With this section we finalize the protocol design. Ideas for further improvement
and possibilities for future work might be found in the Conclusion chapter which
follows further on.



Chapter6Conclusion

Throughout the thesis we have addressed several important questions regarding
device pairing protocols. In the beginning we performed a literature overview of
the current state of research regarding di�erent ways and available constructions
to design pairing protocols. Our focus moves to a specific type of device pairing
protocols that lean on the term of fuzzy cryptography and hence we continued on
investigating di�erent approaches to design a fuzzy device pairing protocol based
on synchronous drawing between two devices that have a touch surface. First part
of the research involves extensive encoding and metric analysis for comparing two
di�erent, yet similar drawings. We conclude that the best quality can be achieved
by using ANGLE and original LURD metrics when the edit distance metric is used.
However, for our device pairing protocol we decided to use the binary version of
the LURD metric since its form complies to the construction (even though it has a
slightly worse performance).

The design of the protocol first started by discussing mathematical background
and providing various constructions that may be used, some available from the
literature and some designed as a combination of these. Even though the protocol
constructed in this thesis was theoretically correct we have stumbled upon a limiting
fact on using error correction code for its success. Namely, all of the constructions
used in the fuzzy device pairing protocols were based on Hamming distance metric
while the comparison metrics that we analyzed were based on Levenshtein’s edit
distance metric. Due to these di�erence we were unable to prove for certain if the
protocol is secure enough and what are the actual performance parameters of the
protocol. However, the protocol design and its mathematical construction gave us the
ability to assume practical security since the reverse engineering process that would
destroy its security was not straightforward to comprehend and achieve. Nevertheless,
to provide a viable solution for the protocol based on synchronous drawing we use
the constructions from the literature that was proved working and was based on the
edit distance metric which complies to our metric analysis.

67



68 6. CONCLUSION

Further work on this topic encompasses the actual implementation of the first
version of the device pairing protocol and analyzing its correctness and security.
By doing this, we could with certainty comment on the protocol itself and possibly
introduce modifications, if needed, in order for the protocol to achieve reasonable
security in its domain.



References

[BBCM95] Charles H Bennett, Gilles Brassard, Claude Crépeau, and Ueli M Maurer. General-
ized privacy amplification. Information Theory, IEEE Transactions on, 41(6):1915–
1923, 1995.

[BBCS92] Charles H Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélene Sku-
biszewska. Practical quantum oblivious transfer. In Advances in Cryptol-
ogy—CRYPTO’91, pages 351–366. Springer, 1992.

[BBR88] Charles H Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification
by public discussion. SIAM journal on Computing, 17(2):210–229, 1988.

[BCN04] Claude Barral, Jean-Sébastien Coron, and David Naccache. Externalized finger-
print matching. In Biometric Authentication, pages 309–315. Springer, 2004.

[BD62] Richard Ernest Bellman and Stuart E Dreyfus. Applied dynamic programming.
Princeton, Nj. : Princeton Univ., 1962.

[BH03] Martin Berger and Kohei Honda. The two-phase commitment protocol in an
extended pi-calculus. Electronic Notes in Theoretical Computer Science, 39(1):21
– 46, 2003. EXPRESS’00, 7th International Workshop on Expressiveness in
Concurrency (Satellite Workshop from {CONCUR} 2000).

[Bla08] P. E. Black. Levenshtein distance. Dictionary of Algorithms and Data Structures
[online], U.S. National Institute of Standards and Technology, 2008.

[BM92] Steven M Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In Research in Security and Privacy,
1992. Proceedings., 1992 IEEE Computer Society Symposium on, pages 72–84.
IEEE, 1992.

[BRC60] Raj Chandra Bose and Dwijendra K. Ray-Chaudhuri. On a class of error correcting
binary group codes. Information and control, 3(1):68–79, 1960.

[Bro97] Andrei Z Broder. On the resemblance and containment of documents. In
Compression and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE,
1997.

69



70 REFERENCES

[Bry85] Victor Bryant. Metric spaces: iteration and application. Cambridge University
Press, 1985.

[BSHL07] Daniel Bichler, Guido Stromberg, Mario Huemer, and Manuel Löw. Key genera-
tion based on acceleration data of shaking processes. In John Krumm, GregoryD.
Abowd, Aruna Seneviratne, and Thomas Strang, editors, UbiComp 2007: Ubiq-
uitous Computing, volume 4717 of Lecture Notes in Computer Science, pages
304–317. Springer Berlin Heidelberg, 2007.

[BSSW02] Dirk Balfanz, Diana Smetters, Paul Stewart, and H. Chi Wong. Talking to
strangers: Authentication in ad-hoc wireless networks. In Network and Distributed
System Security Symposium (NDSS), 2002.

[CCH06] M. Cagalj, S. Capkun, and J-P Hubaux. Key agreement in peer-to-peer wireless
networks. Proceedings of the IEEE, 94(2):467–478, Feb 2006.

[CDVdG88] David Chaum, Ivan B. Damgard, and Jeroen Van de Graaf. Multiparty compu-
tations ensuring privacy of each party’s input and correctness of the result. In
Advances in Cryptology—CRYPTO’87, pages 87–119. Springer, 1988.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing,
17(2):230–261, 1988.

[CS06] Amit K. Chopra and Munindar P. Singh. Contextualizing commitment protocol.
In Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’06, pages 1345–1352, New York, NY, USA,
2006. ACM.

[CW77] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In
Proceedings of the ninth annual ACM symposium on Theory of computing, pages
106–112. ACM, 1977.

[DD09] Elena Deza and Michel Marie Deza. Encyclopedia of distances. In Encyclopedia
of Distances, page 94. Springer, 2009.

[DFMP99] George I. Davida, Yair Frankel, Brian J. Matt, and René Peralta. On the relation
of error correction and cryptography to an o� line biometric based identification
scheme. 1999.

[DH76] Whitfield Di�e and Martin E Hellman. New directions in cryptography. Infor-
mation Theory, IEEE Transactions on, 22(6):644–654, 1976.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
SIAM Journal on Computing, 38(1):97–139, 2008.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In Christian Cachin
and JanL. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,



REFERENCES 71

volume 3027 of Lecture Notes in Computer Science, pages 523–540. Springer
Berlin Heidelberg, 2004.

[ED03] Carl Ellison and Steve Dohrmann. Public-key support for group collaboration.
ACM Trans. Inf. Syst. Secur., 6(4):547–565, November 2003.

[EHMS00] Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier. Protecting secret
keys with personal entropy. Future Generation Computer Systems, 16(4):311–318,
2000.

[FJ01] Niklas Frykholm and Ari Juels. Error-tolerant password recovery. In Proceedings
of the 8th ACM conference on Computer and Communications Security, pages
1–9. ACM, 2001.

[Fre01] Gerhard Frey. Applications of arithmetical geometry to cryptographic constructions.
Springer, 2001.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology—CRYPTO’86,
pages 186–194. Springer, 1987.

[GM12] Bogdan Groza and Rene Mayrhofer. Saphe: Simple accelerometer based wireless
pairing with heuristic trees. In Proceedings of the 10th International Conference
on Advances in Mobile Computing, MoMM ’12, pages 161–168, New York, NY,
USA, 2012. ACM.

[GMN04] Christian Gehrmann, Chris J Mitchell, and Kaisa Nyberg. Manual authentication
for wireless devices. RSA Cryptobytes, 7(1):29–37, 2004.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design. In FOCS,
volume 86, pages 174–187, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229. ACM, 1987.

[GN01] Christian Gehrmann and Kaisa Nyberg. Enhancements to bluetooth baseband
security. In Proceedings of Nordsec, volume 2001, pages 191–230, 2001.

[Gol96] I. Goldberg. Visual key fingerprint code. 1996.

[GR93] Jim Gray and Andreas Reuter. Transaction processing: Concepts and techniques.
Kaufmann, 1993.

[GSS+06] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Uzun. Loud and
clear: Human-verifiable authentication based on audio. In Distributed Computing
Systems, 2006. ICDCS 2006. 26th IEEE International Conference on, pages
10–10, 2006.



72 REFERENCES

[GXTL10] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit
distance. Pattern Analysis and applications, 13(1):113–129, 2010.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. Bell Systems
Technical Journal, 29(2):147–160, 1950.

[Har60] An implementation of syndrome encod- ing and decoding for binary bch codes,
secure sketches and fuzzy extractors. 1960.

[HB01] Nicholas J Hopper and Manuel Blum. Secure human identification protocols. In
Advances in cryptology—ASIACRYPT 2001, pages 52–66. Springer, 2001.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[JS06] Ari Juels and Madhu Sudan. A fuzzy vault scheme. Designs, Codes and Cryptog-
raphy, 38(2):237–257, 2006.

[JW99] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In Proceedings
of the 6th ACM conference on Computer and communications security, pages
28–36. ACM, 1999.

[JW01] Markus Jakobsson and Susanne Wetzel. Security weaknesses in bluetooth. In
David Naccache, editor, Topics in Cryptology — CT-RSA 2001, volume 2020 of
Lecture Notes in Computer Science, pages 176–191. Springer Berlin Heidelberg,
2001.

[KB02] Serkan Kaygin and M.Mete Bulut. Shape recognition using attributed string
matching with polygon vertices as the primitives. Pattern Recognition Letters,
23(1-3):287–294, January 2002.

[KFR09] Ronald Kainda, Ivan Flechais, and A. W. Roscoe. Usability and security of
out-of-band channels in secure device pairing protocols. In Proceedings of the 5th
Symposium on Usable Privacy and Security, SOUPS ’09, pages 11:1–11:12. ACM,
2009.

[KPDS02] V. Kumar, N. Prabhu, M.H. Dunham, and A.Y. Seydim. Tcot-a timeout-based
mobile transaction commitment protocol. Computers, IEEE Transactions on,
51(10):1212–1218, Oct 2002.

[KSHW98] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. Secure applications
of low-entropy keys. In Information Security, pages 121–134. Springer, 1998.

[KSTU09] A. Kumar, N. Saxena, G. Tsudik, and E. Uzun. Caveat eptor: A comparative study
of secure device pairing methods. In Pervasive Computing and Communications,
2009. PerCom 2009. IEEE International Conference on, pages 1–10, March 2009.



REFERENCES 73

[KSW07] Darko Kirovski, Michael Sinclair, and David Wilson. The martini synch: Joint
fuzzy hashing via error correction. In Frank Stajano, Catherine Meadows, Srdjan
Capkun, and Tyler Moore, editors, Security and Privacy in Ad-hoc and Sensor
Networks, volume 4572 of Lecture Notes in Computer Science, pages 16–30.
Springer Berlin Heidelberg, 2007.

[Lan04] Michael Langberg. Private codes or succinct random codes that are (almost)
perfect. In FOCS, volume 4, pages 325–334, 2004.

[Lev65] V. I. Levenshtein. Binary codes with correction of deletions, insertions and
substitution of svmbols. Dokl. Akad. Nank. SSSR., 163:845–848, 1965.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, inser- tions, and
reversals. Sov. Phys.—Dokl., 10(8):707–710, 1966.

[Lip94] Richard J Lipton. A new approach to information theory. In STACS 94, pages
699–708. Springer, 1994.

[LN06a] Sven Laur and Kaisa Nyberg. E�cient mutual data authentication using manually
authenticated strings. In David Pointcheval, Yi Mu, and Kefei Chen, editors,
Cryptology and Network Security, volume 4301 of Lecture Notes in Computer
Science, pages 90–107. Springer Berlin Heidelberg, 2006.

[LN06b] Sven Laur and Kaisa Nyberg. E�cient mutual data authentication using manually
authenticated strings. In Cryptology and Network Security, pages 90–107. Springer,
2006.

[Mae91] Maurice Maes. Polygonal shape recognition using string-matching techniques.
Pattern Recognition, 24(5):433–440, January 1991.

[May07] Rene Mayrhofer. The candidate key protocol for generating secret shared keys
from similar sensor data streams. In Frank Stajano, Catherine Meadows, Srdjan
Capkun, and Tyler Moore, editors, Security and Privacy in Ad-hoc and Sensor
Networks, volume 4572 of Lecture Notes in Computer Science, pages 1–15. Springer
Berlin Heidelberg, 2007.

[MG07] Rene Mayrhofer and Hans Gellersen. Shake well before use: Authentication based
on accelerometer data. In Anthony LaMarca, Marc Langheinrich, and Khain
Truong, editors, Pervasive Computing, volume 4480 of Lecture Notes in Computer
Science, pages 144–161. Springer Berlin Heidelberg, 2007.

[MMV+11] Suhas Mathur, Robert Miller, Alexander Varshavsky, Wade Trappe, and Narayan
Mandayam. Proximate: Proximity-based secure pairing using ambient wireless
signals. In Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, pages 211–224, New York, NY, USA,
2011. ACM.

[MPR05] J.M. McCune, A. Perrig, and M.K. Reiter. Seeing-is-believing: using camera
phones for human-verifiable authentication. In Security and Privacy, 2005 IEEE
Symposium on, pages 110–124, May 2005.



74 REFERENCES

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David A Wilson. Optimal error
correction against computationally bounded noise. In Theory of Cryptography,
pages 1–16. Springer, 2005.

[MRLW01] Fabian Monrose, Michael K Reiter, Qi Li, and Susanne Wetzel. Cryptographic
key generation from voice. In Security and Privacy, 2001. S&P 2001. Proceedings.
2001 IEEE Symposium on, pages 202–213. IEEE, 2001.

[MRW02] Fabian Monrose, Michael K Reiter, and Susanne Wetzel. Password hardening
based on keystroke dynamics. International Journal of Information Security,
1(2):69–83, 2002.

[MTZ03] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with
nearly optimal communication complexity. Information Theory, IEEE Transac-
tions on, 49(9):2213–2218, 2003.

[MW07] R. Mayrhofer and M. Welch. A human-verifiable authentication protocol using
visible laser light. In Availability, Reliability and Security, 2007. ARES 2007. The
Second International Conference on, pages 1143–1148, April 2007.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

[NR06] L. H. Nguyen and A. W. Roscoe. E�cient group authentication protocol based on
human interaction. In Proceedings of the Workshop on Foundation of Computer
Security and Automated Reasoning Protocol Security Analysis (FCS-ARSPA),
pages 9–33, 2006.

[NSHJ12] N. Nguyen, S. Sigg, A. Huynh, and Y. Ji. Pattern-based alignment of audio data
for ad hoc secure device pairing. In Wearable Computers (ISWC), 2012 16th
International Symposium on, pages 88–91, June 2012.

[NSHY12] Nguyen Ngu, S. Sigg, A. Huynh, and Ji Yusheng. Using ambient audio in secure
mobile phone communication. In Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2012 IEEE International Conference on,
pages 431–434, March 2012.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing, STOC ’89, pages 33–43, New York, NY, USA, 1989. ACM.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, 1996.

[OR07] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance.
Journal of the ACM (JACM), 54(5):23, 2007.

[PS99] Adrian Perrig and Dawn Song. Hash visualization: A new technique to improve
real-world security. In International Workshop on Cryptographic Techniques and
E-Commerce, pages 131–138, 1999.



REFERENCES 75

[PV06] Sylvain Pasini and Serge Vaudenay. Sas-based authenticated key agreement. In
Public Key Cryptography-PKC 2006, pages 395–409. Springer, 2006.

[RS84] Ronald L Rivest and Adi Shamir. How to expose an eavesdropper. Communica-
tions of the ACM, 27(4):393–394, 1984.

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors,
and depth-two superconcentrators. SIAM Journal on Discrete Mathematics,
13(1):2–24, 2000.

[SA02] F. Stajano and R. Anderson. The resurrecting duckling: security issues for
ubiquitous computing. Computer, 35(4):22–26, Apr 2002.

[SAA13] Mohit Sethi, Markku Anrikainen, and Tuomas Aura. Commitment-based device
pairing with synchronized drawing (too appear in Percom conference. 2013.

[San72] David Sanko�. Matching sequences under deletion/insertion constraints. Proceed-
ings of the National Academy of Sciences, 69(1):4–6, 1972.

[SEKA06] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing
based on a visual channel. In Security and Privacy, 2006 IEEE Symposium on,
pages 6 pp.–313, May 2006.

[SGB67] Claude E Shannon, Robert G Gallager, and Elwyn R Berlekamp. Lower bounds
to error probability for coding on discrete memoryless channels. i. Information
and Control, 10(1):65–103, 1967.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the EATCS, 77:67–95, 2002.

[SJ12] S. Sigg and Y. Ji. Adhocpairing : Spontaneous audio based secure device pairing
for android mobile devices. 2012.

[SS13] D. Schurmann and S. Sigg. Secure communication based on ambient audio. Mobile
Computing, IEEE Transactions on, 12(2):358–370, Feb 2013.

[STU08] Claudio Soriente, Gene Tsudik, and Ersin Uzun. Hapadep: Human-assisted pure
audio device pairing. In Tzong-Chen Wu, Chin-Laung Lei, Vincent Rijmen, and
Der-Tsai Lee, editors, Information Security, volume 5222 of Lecture Notes in
Computer Science, pages 385–400. Springer Berlin Heidelberg, 2008.

[SVA07] Jani Suomalainen, Jukka Valkonen, and N Asokan. Security associations in
personal networks: A comparative analysis. In Security and Privacy in Ad-hoc
and Sensor Networks, pages 43–57. Springer, 2007.



76 REFERENCES

[TK76] E. Tanaka and T. Kasai. Synchronization and substitution error-correcting
codes for the levenshtein metric. Information Theory, IEEE Transactions on,
IT-22:156–162, 1976.

[UKA07] Ersin Uzun, Kristiina Karvonen, and N. Asokan. Usability analysis of secure
pairing methods. In Sven Dietrich and Rachna Dhamija, editors, Financial
Cryptography and Data Security, volume 4886 of Lecture Notes in Computer
Science, pages 307–324. Springer Berlin Heidelberg, 2007.

[Vau05] Serge Vaudenay. Secure communications over insecure channels based on short
authenticated strings. In Victor Shoup, editor, Advances in Cryptology – CRYPTO
2005, volume 3621 of Lecture Notes in Computer Science, pages 309–326. Springer
Berlin Heidelberg, 2005.

[VLVL82] Jacobus Hendricus Van Lint and Jacobus Hendricus Van Lint. Introduction to
coding theory, volume 86. Springer, 1982.

[VSLDL07] Alex Varshavsky, Adin Scannell, Anthony LaMarca, and Eyal De Lara. Amigo:
Proximity-based authentication of mobile devices. In UbiComp 2007: Ubiquitous
Computing, pages 253–270. Springer, 2007.

[WB99] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applica-
tions. John Wiley & Sons, 1999.

[WC81] Mark N Wegman and J Lawrence Carter. New hash functions and their use
in authentication and set equality. Journal of computer and system sciences,
22(3):265–279, 1981.

[Wei91] Victor K Wei. Generalized hamming weights for linear codes. Information Theory,
IEEE Transactions on, 37(5):1412–1418, 1991.

[WF74] Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

[YB07] L. Yujian and L. Bo. A normalized levenshtein distance metric. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 29(6):1091–1095, 2007.

[Zad97] Lotfi A Zadeh. Toward a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic. Fuzzy sets and systems, 90(2):111–127, 1997.



AppendixAAbbreviations, functions and
variables of the fuzzy device

pairing protocol

Ê - represent the sensory input from device1

ÊÕ - represents the sensory input from device2

x- represents a sequence from space M = {0, 1}k, x œ M ,

where k represents the length of variable x

g - translation function to a codeword, g : {0, 1}k æ {0, 1}n, g : M æ C,

where C = {0, 1}n, c œ C, and n is the length of the codeword

g≠1 - revert function for acquiring the generated random number from the
codeword

c - represents the codeword, c œ C

P - represent the fuzzy (helper) vector that is sent from device1 to device2,
P œ {0, 1}n, and P = c ü Ê

cÕ - fuzzy extracted codeword,

where C Õ ™ C, cÕ œ {0, 1}n, cÕ œ C Õ, and P = c ü ÊÕ

f - decoding function (error correction control) that translates cÕ to c if the
d(Ê, ÊÕ) < t, f : {0, 1}n æ C fi {ÿ}

where t is the maximum di�erence allowed in order to successfully extract c
from cÕ

”(Ê) - characteristic set creation function outputs SH
c

(Ê), ” : Ê æ {{0, 1}s}n≠s+1,

77



78 A. ABBREVIATIONS, FUNCTIONS AND VARIABLES OF THE FUZZY DEVICE
PAIRING PROTOCOL

where s is the size of one s-shingle element that is a part of the characteristic
set with the total of Án/sË elements

gc - characteristic shingle extraction function,

where gc : (SH
c

(Ê), ÊÕ) æ {0 · · · (n ≠ s + 1)}Án/sË

output - ÊÕ (presented as well as input), gc(Ê, ÊÕ) as sequence of ordinal
number where the parts of the divided ÊÕ can be found in the shingle set SH

c

(Ê)

KEY GENERATOR - a variant of hash or multiply nested hash functions for
acquiring the key used to encrypt subsequent communication


	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Goals
	Outline

	Background
	Taxonomy of device pairing methods
	Out-of-band channels
	Commitment-based protocols

	Fuzzy contextual data for key establishment

	Metrics for synchronous drawing
	User data collection
	Location metric
	Movement metric
	String distance metrics
	Levenshtein distance
	ANGLE metric
	LURD metric
	LURD xy metric
	LURD binary metric

	Metric evaluation and analysis
	Optimal angle number and distance for the ANGLE metric
	Optimal grid size values for the LURD metric
	Comparison of metrics


	Introduction to fuzzy cryptography and component constructions
	Mathematical definitions and terms
	Metrics used in fuzzy commitment protocol scheme
	Codes and correcting mechanisms
	Entropy calculations

	Defining sketches and extractors for fuzzy input handling
	Formal definition of a secure sketch
	Formal definition of a fuzzy extractor

	Exemplar constructions for different metric spaces and distance functions
	Hamming distance metric
	Edit distance metric
	Set difference metric


	Protocol design
	Protocol components and notation
	First protocol stage
	Second protocol stage
	Simplifying second protocol stage

	Construction of the code and error-correction mechanism
	Setting the parameters for the RS code
	Evaluating protocol and security properties
	Using constructions for edit distance
	Determining the shingle set size


	Conclusion
	References
	Abbreviations, functions and variables of the fuzzy device pairing protocol

