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Abstract: Computational workload is one of the key challenges in biometric identification systems. The naïve retrieval method
based on an exhaustive search becomes impractical with the growth of the number of the enrolled data subjects. Consequently,
in recent years, many methods with the aim of reducing or optimising the computational workload, and thereby speeding-up the
identification transactions, in biometric identification systems have been developed. In this article, a taxonomy for conceptual
categorisation of such methods is presented, followed by a comprehensive survey of the relevant academic publications, including
computational workload reduction and software/hardware-based acceleration. Lastly, the pertinent technical considerations and
trade-offs of the surveyed methods are discussed, along with an industry perspective, and open issues/challenges in the field.

1 Introduction

The interest in biometric technologies has been steadily growing in
recent years, as evidenced by various market value studies [1–3]
and numbers of scientific publications in the area. Many states have
utilised biometric technologies for purposes such as forensic inves-
tigations and law enforcement, border crossing entry-exit tracking,
national citizen inventory (ID systems), and voter registration. By
far the largest biometric deployment to date is the Indian Aadhaar
national ID system, which, at the time of this writing, accommodates
1.3 billion enrolled subjects – almost the entire Indian population.

(a) Fingerprint (b) Face (c) Iris

Fig. 1: Example images of some biometric characteristics com-
monly used in large-scale biometric identification systems (taken
from the MCYT, FRGC, and IITD databases)

Table 1 gives an overview of this and several other examples of
operational and planned large-scale biometric systems. The table is
non-exhaustive; instead, it seeks to highlight the diversity of the used
biometric characteristics, the system purposes, and the geographi-
cal locations of some of the largest biometric systems around the
world. In figure 1, example images of biometric characteristics most
commonly used in large-scale biometric identification systems are
shown.

Biometric systems can operate in a broad variety of ways. Two
such ways (as defined in the ISO/IEC international standards [4, 5])
are:

Biometric verification Referring to the “process of confirming a
biometric claim through biometric comparison”.

Biometric identification Referring to the “process of searching
against a biometric enrolment database to find and return the bio-
metric reference identifier(s) attributable to a single individual”.
Two main scenarios can be distinguished in this case: closed-set
identification, for which all potential users are enrolled in the sys-
tem, and open-set identification, for which some potential users
are not enrolled in the system.

Naturally, the second case (i.e. open-set identification, as well
as the duplicate-enrolment check) is the most interesting and chal-
lenging from the practical point of view for the aforementioned
real-world applications. Unfortunately, in the worst case, an exhaus-
tive search (i.e. comparing a probe against all the enrolled subjects)
is required in order to reach a decision. This naïve approach quickly
runs into two non-trivial problems:

Computational costs As the number of enrolled subjects increases,
the system response times become gradually slower, thus requir-
ing optimisations and/or investment into larger hardware architec-
tures.

False positives costs The probability of at least one false positive
(PN ) occurring in a identification scenario is: PN = 1− (1−
P1)

N , where N is the number of enrolled subjects and P1 the
false positive probability of a one-to-one template comparison.
This relationship is very demanding – even for systems which
perform extremely well in verification mode (i.e. have low P1),
the value of PN very quickly becomes unacceptably high, as
the number of enrolled subjects N increases (see [17]). Note,
that this equation ignores other system errors, e.g. the failure-to-
acquire rate and assumes that at a given threshold all subjects have
the same false-match-rate, which likely is not the case. Nonethe-
less, it is a useful approximation for illustrating this challenge of
biometric identification systems.

In a recent interview [18], Daugman, the pioneer of iris recog-
nition (see [19]), has stated that performing accurate and efficient
biometric identification (i.e. not by an exhaustive search) is one of
the important, unsolved issues in the biometrics field in general.
Substantial research effort has been devoted to development of work-
load reduction methods, which seek to alleviate the aforementioned
issues (especially the computational cost, since the biometric perfor-
mance can also be improved through other means, such as increasing
data quality and information fusion). Since the overall computa-
tional costs in a biometric identification scenario are dominated by
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Table 1 Examples of currently operational and planned large-scale biometric identification systems around the world

Status System Location Characteristic(s) Subjects Purpose
Operational Aadhaar [6, 7] India Fingerprint and iris (operational), face (potential future use) 1.3 billion National ID

EURODAC [8, 9] EU Fingerprint 7 million Border-control
IDENT/US-VISIT [10] USA Fingerprint (operational), face and iris (pilots ongoing) 200 million Entry-exit

CODIS [11] USA DNA 17.5 million Law enforcement
CENI [12] DR Congo Fingerprint 46 million Voter registration

Planned HART [13, 14] USA Fingerprint, Face, Iris (expected) up to 500 million Entry-exit
EES [15, 16] EU Fingerprint, Face (expected) up to 200 million Entry-exit

performing the biometric comparisons, most approaches are aimed
at that step in the system pipeline. Specialised data representations
and search algorithms are utilised to reduce the computational effort
required for a single template comparison, and/or to reduce the over-
all number of required template comparisons. However, biometric
data exhibits certain properties, which present challenges or out-
right invalidate many traditional approaches aimed at retrieval speed
improvement:

Ordering Biometric data has no inherent logical ordering (as
opposed to, for example, text data, which can be indexed e.g.
alphabetically).

Within-subject variability The samples acquired from the same
subject (even within short time intervals) are almost never
exactly identical (i.e. they are fuzzy). Some variations are nearly
inevitable due to numerous noise sources in the acquisition pro-
cess (e.g. distance and angle from the sensor, environmental
conditions, occlusions etc.).

Dimensionality The biometric feature vectors are typically high-
dimensional; many search and indexing methods perform poorly
in such spaces [20].

Consequently, computational workload reduction methods tai-
lored specifically to the particular properties of biometric data have
been developed in recent years. Such methods will be surveyed in
the following sections. For a general overview of search structures
and algorithms used for fast similarity searches across various disci-
plines, the reader is referred to e.g. [21–28]. The reader is expected
to possess certain background knowledge on biometric recognition
systems in general and the typical algorithms used in their signal
processing pipelines. For quick primers, the reader is referred to the
encyclopedia of biometrics [29], as well as the renowned handbook
series: [30] for biometrics in general and [31–34] specifically for
fingerprint, face, iris, and vascular characteristics, respectively.

While previously there have been surveys on biometric workload
reduction methods (e.g. [35] for iris and [36] for fingerprint), they
tend to concentrate on particular methods and/or biometric char-
acteristics, rather than the overall spectrum of available research.
Although the emphasis of this article is on the academic research,
a discussion from the industry perspective and the interplay between
academia and industry are included. The main contributions of this
article are thus as follows:

Taxonomy which conceptually categorises the computational work-
load reduction methods in biometric identification.

Comprehensive survey of the methods reported in the scientific lit-
erature. It is organised by the relevant concepts, rather than by
biometric characteristics. Instead of concentrating on one bio-
metric characteristic only, the (arguably) most popular ones (in
terms of actual use in industry and scientific research interest) are
surveyed.

Discussion of relevant technical considerations and trade-offs, along
with an industry perspective, and open issues/challenges pertain-
ing to this research field.

The remainder of this article is organised as follows: section 2
gives an overview of relevant background information; in particular
it introduces and defines key concepts used throughout the article,
as well as outlines the current methodologies for results reporting
and issues associated therewith. Section 3 contains a comprehensive

survey of the existing computational workload reduction approaches
reported in the scientific literature, conceptually organised within the
framework of the proposed taxonomy. Section 4 discusses the topic
from the purely academic, as well as industrial perspective, and out-
lines open issues/challenges. A summary and concluding remarks
are given in section 5.

2 Background

This section gives an overview of relevant background information.
Subsection 2.1 contains a list and short descriptions of the pertinent
concepts and nomenclature, whereas in subsection 2.2, the dilemma
associated with biometric result reporting and benchmarking is
outlined.

2.1 Concepts and Nomenclature

Throughout this article, the nomenclature from the biometric vocab-
ulary [4] and biometric performance testing and reporting [5]
ISO/IEC international standards are used whenever applicable. How-
ever, as of this writing, many concepts relating to computational
workload in biometric systems have not yet been put into standards
by ISO/IEC (although efforts in this direction are ongoing, especially
as some of the key standards are now/soon up for a revision). In this
context, the present standards only defines the terms (quoted directly
from the standards):

Pre-selection algorithm Referring to the “algorithm to reduce the
number of templates that need to be matched in an identification
search of the enrolment database”.

Pre-selection error Referring to “the error that occurs when the cor-
responding enrolment template is not in the pre-selected subset of
candidates when a sample from the same biometric characteristic
on the same user is given”.

Baseline performance Referring to the “performance of a biometric
system in a reference evaluation environment”.

Those terms are insufficient to capture the whole spectrum of
issues and methods relevant in the aforementioned context. There-
fore, several key concepts listed below are defined based on their
actual use in the surveyed scientific literature:

Baseline system A state-of-the-art algorithm performing an exhaus-
tive database search during a biometric identification transaction.

Computational workload The total computational effort of a single
transaction (or a set of transactions) in a biometric (identification)
system, including: number of intrinsic operations, execution time,
memory and storage requirements.

Computational workload reduction The extent to which a method
reduces the computational requirements (workload) of a biomet-
ric transaction (in a biometric identification system). See also
subsection 2.2.

Pre-filtering (also “pre-selection”, “cascading algorithms”, “serial
combination of algorithms”, “guided search”, “continuous clas-
sification”) Computationally efficient, but somewhat inaccurate,
comparator(s) are used to compare the biometric probe against
the enrolled templates to produce successively smaller short-lists
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Fig. 2: Taxonomy of methods used for the purpose of speeding-up biometric identification

of candidate identities. In the end, the actual accurate, but com-
putationally expensive, comparator is applied only to a fraction of
the entries from the candidate short-list.

Binning (also “(discrete/exclusive) classification”, “clustering”)
Splitting of the enrolment database into a number of subset (i.e.
bins) based on coarse-level features. Those features can be tangi-
ble sample meta-data (e.g. sex, ethnicity, age) or based on intrinsic
statistical properties of a template representation. During retrieval,
the search space is reduced by only searching within the bins(s)
most likely corresponding to the biometric probe.

Data-structures Organising the enrolment database to take advan-
tage of efficient ordering principles (e.g. based on trees or fuzzy
hashing), thus enabling searching in sub-linear/logarithmic time.

Indexing An often used umbrella term (in the biometric literature
– e.g. a recent survey [36] and many individual publications)
for all pre-selection methods (i.e. pre-filtering, binning, and data-
structures). Simultaneously, it also has specific meaning outside
the biometrics community. In order to avoid ambiguities, the
term is not used in this article. Instead, the publications which
present “indexing” methods, are assigned conceptually to one of
the aforementioned categories.

Feature transformation The act of deriving additional features
from a biometric template with the goal of attaining some desir-
able properties (e.g. smaller template size, ability to use a faster
comparator, biometric sample alignment invariance).

Acceleration (hardware and/or software based) Utilisation of spe-
cialised hardware, hardware-software co-design, parallelism, dis-
tributed computing, and other methods in order to increase the
efficiency/speed of a system compared to execution on standard
CPUs.

In section 3, a taxonomy, which encompasses the abovementioned
concepts and terms is presented.

2.2 Results Reporting

In subsequent subsections, tables which summarise the surveyed
publications are presented. They include, among other matters, bio-
metric performance and computational workload details. The met-
rics used for measuring biometric performance are well-defined and
standardised [5]. The most relevant, in the context of this article, is
the pre-selection error rate (complement of the hit rate; incidentally
the hit rate is preferred in the vast majority of the works referenced
later on in this article). While, in theory, this should make it possible

to directly compare different methods, the reality is rather disap-
pointing. First of all, some of the listed publications pre-date or
ignore this standard, i.e. use a wide range of other metrics. Secondly,
there inevitably exist other confounding issues and discrepancies in
the experimental protocol, such as e.g. mode of operation (closed or
open set), choice of dataset (hence, crucially, data quality), as well as
size and partitioning thereof (i.e. training/testing partitions, number
of biometric mated and non-mated comparison trials). Furthermore,
at the time of this writing, metrics for measuring computational
workload and its reduction are not standardised in any way what-
soever; many different metrics do appear in the scientific literature,
for example:

• Penetration rate, which measures what fraction of the database is
searched during a biometric identification transaction.
• Biometric template and/or model size, which determines how
computationally expensive a single biometric comparison is.
• The fraction or percentage between the computational workload
of a proposed system and a baseline system.
• Computational time, which measures the average execution time
on some specific hardware configuration.

Additionally, it is often the case, that the publications present var-
ious parameter configurations with different trade-off spectra etc. for
the proposed systems. It is therefore not always clear, which result to
choose to present in a survey table, and how to select the single oper-
ational point which best encompasses all the aspects of the proposed
systems. As such, the choices in this survey were made as follows:

1. If the authors have provided a single representative result (opera-
tional point) in the publication text (e.g. in the abstract or summary)
for the biometric performance and/or computational workload, those
values are taken directly.
2. Otherwise, a single operational point is chosen in good faith from
the presented plots and tables. If possible, this is done based on what
is commonly reported elsewhere in the literature, e.g. equal-error-
rate or other recognised metric. For the sake of consistency, if results
for multiple ranks (e.g. CMC curve) are available, rank-1 results are
preferred.
3. Computational time results are not reproduced, since they depend
on a specific hardware configuration (which is most likely obsolete
anyway). Where possible, the relative speed-up between the baseline
and the proposed method is (calculated and) reported.
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Due to the aforementioned issues, directly comparing the results
from the surveyed publications is problematic, if not impossible.
Furthermore, different systems require different considerations and
trade-offs w.r.t. the biometric performance and the computational
workload, as well as additional matters such as user convenience,
software and hardware infrastructure, financial costs, and others.
Consequently, the readers interested in benchmarking and/or utilis-
ing the surveyed methods are strongly recommended to investigate
the relevant publications by themselves in order to obtain full-
picture information of the proposed methods along with the biomet-
ric performance and computational workload trade-offs associated
therewith.

2.3 Feature Extraction

Extracting sufficiently discriminative features is a critical prereq-
uisite for any biometric system. This is especially a concern in
biometric identification systems, due to the significantly increased
risk of false positive errors (see section 1). Over time, various gen-
eral purpose and biometric characteristic specific feature extraction
methods have been proposed and used in this context. However,
comprehensively surveying and comparing those would tremen-
dously extend the already significant scope of this article. Therefore,
the reader interested in a detailed treatment of this subject is referred
to a recently published comprehensive survey of general purpose tex-
ture based feature extraction methods [37], as well as the handbook
series: [30] for biometrics in general and [31–34] specifically for
fingerprint, face, iris, and vascular characteristics, respectively.

3 Computational Workload Reduction
Approaches

In this section, the current state-of-the-art is presented. Firstly, the
proposed taxonomy around which this section is structured is intro-
duced and described below. Thereafter, a comprehensive survey of
existing methods is given and put in the context of the taxonomy.

Figure 2 shows the proposed taxonomy under which the existing
approaches to speeding-up the biometric identification can be cate-
gorised. Note, that in many cases the approaches can be combined
into multi-level frameworks, e.g. a binning followed by tree-based
hierarchical retrieval, implemented utilising hardware acceleration
or pre-selection based on multiple levels of complementary features.
Two main approaches to improving the computational efficiency of
biometric identification can be distinguished: workload reduction
(subsections 3.1 to 3.5) and acceleration (subsection 3.6). The lat-
ter does not reduce the computational workload per se – instead, it
seeks to perform the same amount of computations in a more effi-
cient manner (e.g. by utilising specialised hardware or optimising
the software implementation). The goal of the former is to reduce
the amount of computations necessary to perform a biometric iden-
tification transaction. For those approaches, two main categories can
be distinguished: concentrating on reducing the penetration rate, the
aim of the pre-selection approaches (subsections 3.1 to 3.3) is to nar-
row down the search space by taking advantage of auxiliary features,
metadata, or search structures, which can be extracted or created
from the samples. On the other hand, the goal of feature transforma-
tion approaches (subsection 3.4) is to reduce the computational cost
of individual template comparisons, e.g. by reducing their dimen-
sionality or utilising more computationally efficient comparators.
The vast majority of the approaches can be assigned to one of those
categories. The remaining few ones (subsection 3.5) are based e.g.
on augmenting the search strategy of the retrieval algorithm or rely
on certain intrinsic properties of specific biometric data.

This section is organised to facilitate selective reading: firstly, a
very broad overview of the efficient biometric identification research
areas has been given above by introducing and describing the
proposed taxonomy. The following subsections’ text outlines the rel-
evant high-level concepts and ideas, while the tables contain more
detailed information w.r.t. specific tools, algorithms, and datasets
used, as well as the achieved results. Finally, the considerations

and trade-offs associated with the different approach categories are
discussed in subsection 4.1.

3.1 Pre-filtering

Figure 3 shows a conceptual overview of pre-filtering approaches,
while table 2 summarises the surveyed methods.

3.1.1 Multi-Feature: The key idea behind the multi-feature
approaches is the extraction of one or several auxiliary features,
which in themselves do not have sufficient discriminative power for
unique identification, but can nonetheless significantly reduce the
search space (i.e. by acting as an index, which allows to determine a
candidate short-list).

Auxiliary features such as orientation field, ridge density, local
(minutiae-based) and global (e.g. fingerprint types, which have been
in use for decades for the purposes of manual indexing of ana-
log ten-fingerprint records with the Henry Classification System,
see e.g. [72, 73], and subsection 3.2) can be extracted from fin-
gerprint images; some of them also pertain to other characteristics,
such as vascular and palmprint patterns. Several authors (e.g. [39–
44, 46, 57]) utilise such coarse features as an index in a pre-filtering
step. In other cases, the methods proposed in the scientific literature
do not rely on specific, biometric characteristic-dependent features
as above; instead, to create an index, they utilise general-purpose
algorithms, such as texture extractors (e.g. [51, 56]), principal com-
ponent analysis (e.g. [50]), and, more recently, deep learning (e.g.
[52, 53]). It should be noted, that the pre-filtering can happen in
a cascading manner, over two (e.g. [48, 49, 54]) or multiple (e.g.
[38, 45, 58]) levels, which successively produce smaller candidate
lists, or through direct application of information fusion strategies
to the extracted features (e.g. [47]). However, an in-depth analysis
and evaluation concerning which of the methods (cascades or fusion)
performs better has not yet been reported in the scientific literature.

3.1.2 Same feature, different representation: The key idea
behind this category of approaches is transformation of the original
feature representation into a more compact one, whereby the com-
putational costs of comparisons are decreased (often at the cost of
losing some discriminative power). The compact templates can then
be used to reduce the search space (i.e. by acting as an index, which
allows to determine a candidate short-list).

Conceptually similar approaches, where binarised (see also sub-
section 3.4.1) and/or shortened feature vectors are used as an index
in the pre-filtering step, have been proposed e.g. in [59–63] for iris,
face, fingervein, voice, and ear, respectively.

The difference between the key idea in this and previous sub-
section is subtle – here, the same feature is used to create the
index template (e.g. through binarisation), whereas in the multi-
feature concept, additional features are extracted from the sample
(e.g. through texture or keypoint descriptors or high level geometric
features).

3.1.3 Sub-sampling: The key idea behind sub-sampling is to
utilise partial information from the original feature vectors once or in
an incremental manner to facilitate search space reduction via accu-
rate early rejection of unlikely candidates. In other words, parts of
the original feature vector itself act as an index in this case. This
can be done trivially by deterministically or randomly selecting the
partial information or, in more advanced approaches, by reorganis-
ing the feature vectors based on reliability and discriminative power
(see e.g. [74]), as well as utilising other heuristics. In the literature,
numerous conceptually similar approaches have been presented e.g.
in [64–66, 68–71] for various biometric characteristics, including
fingerprints, face, iris, and fingervein. In all the aforementioned pub-
lications, the computational workload is shown to be substantially
reduced without causing degradation of the biometric performance.
In [67] a more sophisticated approach, which relies on creating an
auxiliary search guiding structure and an early search termination
strategy, was presented with impressive results, albeit on proprietary
data.
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Table 2 Pre-filtering approaches
Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Multi-Feature Fingerprint Ratha et al. [38] Metadata (only conceptual), fingerprint type,
ridge density

NIST-9 subset 80% accuracy, 10% reject rate 12.5% search space

De Boer et al. [39] Directional field, FingerCode, and minutiae
triplets

FVC2000 100% hit rate 18% penetration rate

Bhanu [40] Minutiae triplets, geometric features NIST SD4 85% hit rate 10% penetration rate
Feng et al. [41] Minutiae points and types, local ridge struc-

tures
FVC2002 100% hit rate 22% penetration rate

Li et al. [42] Ridge structure, symmetrical filters NIST DB4 98% hit rate 32.7% penetration rate
Liang et al. [43] Minutiae neighbourhoods, Delaunay triangula-

tion
FVC2002, FVC2004 100% hit rate 18.1%, 20.9% penetration rate

Wang et al. [44] 2D Fourier expansion coefficients NIST SD 14 100% hit rate 10% penetration rate
Feng et al. [45] Fingerprint type, singular points, orientation

field
NIST SD27 (search attempts), NIST SD4,
SD14 and SD27 (background)

97.3% accuracy 39% penetration rate

Cappelli [46] Ridge-line orientations and frequencies NIST SD4, SD14, FVC2000 (DB2, DB3),
FVC2002 (DB1)

96.5%, 96.5%, 99%, 93.5%, 99% hit rate 10% penetration rate

Paulino et al. [47] Orientation field, ridge period, singular points,
minutiae triplets, simplified MCC

NIST SD27 (search attempts), in-house
(background)

90.3% hit rate 20% penetration rate

Fingerprint, face Gyaourova et al. [48, 49] Index-codes from non-mated comparison tri-
als, fusion

FERET, FRGC, WVU 100% hit rate 84% reduction

Face Mohanty et al. [50] Affine approximation, PCA FERET — 20-fold reduction
Chen et al. [51] LBP, semantic codewords from metadata LFW, Pubfig 18.6%, 21.0% MAP —
Wang et al. [52, 53] Deep features and COTS LFW, IJB-A 0.25 MAP at 1% FAR, 0.175 MAP at 1%

FAR
30-fold time reduction

Iris Konrad et al. [54] Rotationally invariant representation CASIA-V1, CASIA-V3 Interval, MMU 92% IR, 0% FAR; 89% IR, 0.85% FAR;
79% IR, 0.85% FAR

70-80% time reduction

Gadde et al. [55] BWT CASIA-V3-Interval 99.83% hit rate 17.23 % penetration rate
Dey et al. [56] Gabor energy features, multi-sample enrol-

ment
Bath, CASIA-V3-Interval, CASIA-V4-
Thousand, MMU2, WVU

98.2%, 91.1%, 90.7%, 85.2%, 96% hit
rate

11.3%, 14.5%, 16.3%, 13.5%, 10.3%
penetration rate

Fingervein Kavati et al. [57] Delaunay triangulation NTU NIR, NTU FIR 100% hit rate 17.99%, 11.75% penetration rate
Palmprint You et al. [58] Global geometry, global texture energy, fuzzy

“interest” line, local texture
In-house 6.13% FRR at 11.77% FAR 2-fold speed-up

Same feature, different
representations

Face Wu et al. [59] Binary template pre-screening In-house Better than baseline ∼10-fold reduction

Iris Gentile et al. [60] Short-length Iris-Codes MMU 7% pre-selection error 12-fold reduction
Fingervein Tang et al. [61] Binary vein encoding PKU 98.4% hit rate 250-fold time reduction
Voice Billeb et al. [62] Binary template pre-screening Unknown, text-independent same or better than baseline 95% speed-up
Ear Pflug et al. [63] Binary template pre-screening PolyU, UND-J2 100% hit rate 30% penetration rate

Sub-sampling Fingerprint Iqbal et al. [64] Incremental matching FVC2002 99% hit rate 26% penetration rate
Fingerprint, palmprint Chen et al. [65] Incremental matching THU, NIST SD 4, in-house 90.4% IR, 85.3% IR, 75.3% IR ∼50% reduction
Face Yi et al. [66] Incremental matching FERET, in-house Same as baseline 7.5-fold speed-up
Iris Hao et al. [67] BGS, incremental matching UAE 0% FAR, 0.64% FRR 0.006% penetration rate

Ross et al. [68] Partial matching UPOL 0.62% EER 10% of baseline
Hämmerle-Uhl et al. [69] Partial matching CASIA-V3 Interval Same as baseline 1 order of magnitude reduction
Rathgeb et al. [70] Incremental matching CASIA-V3 Interval Same as baseline 95% fewer bit comparisons

Fingervein Surbiryala et al. [71] Partial matching Combined 7 fingervein DBs 8.05% pre-selection error ∼3-fold reduction

3.2 Binning

Figure 4 shows a conceptual overview of binning approaches, while
table 3 summarises the surveyed methods.

3.2.1 Handcrafted: Depending on the observed biometric char-
acteristic, there exist classification approaches designed to reliably
extract human understandable attributes from a biometric sample,
e.g. sex or ethnicity for face, or fingerprint types. Such attributes are
called “soft biometrics” (see e.g. [75] for a comprehensive survey).

Based on the global pattern formed by the ridge lines, fingerprints
can be classified into a number of classes/types initially proposed by
Galton [76] and Henry [72] (currently typically 4 or 5, i.e. whorls,
right and left loops, and (tented) arches, sometimes extended with
additional sub-types). Over time, numerous approaches to auto-
mated fingerprint type classification have been proposed (see e.g.
[77, 78] for a comprehensive survey). The classification accuracy on
data of reasonable quality is near-optimal; however, it tends to vary
somewhat across the different fingerprint types. Binning based on
fingerprint classes has been evaluated for single fingerprints by e.g.
[38, 79] and for multi-instance data in [80, 81]. Attributes extracted
from iris data can also be used in this manner. Conceptually similar
systems are presented in [82], [83], and [84], where binning based on
biometric characteristic-specific geometric/texture features is pro-
posed for irs, palmprint, and palmvein data, respectively. In [85–87],
it has been demonstrated, that ethnicity and gender information can
be extracted from iris images. When reliably extracted, such features

could be used for simple database binning. Binning based on iris
colour has been performed e.g. in [88, 89]. Although the vast major-
ity of the human population has brown eyes, for certain population
groups, the eye colour can be used as a somewhat distinguishing soft
biometric trait. Currently, all practical iris recognition systems oper-
ate within the near-infrared (NIR) light spectrum. In recent years,
significant advances in the visible-wavelength (VW) iris recognition
have been made, hence potentially making it an emerging technol-
ogy. See e.g. [90] for an investigation of the reliability of the iris
colour as a soft biometric trait. Facial region is a rich source of poten-
tial soft biometric attributes. In addition to simple approaches based
on sex, age, or ethnicity classification, binning based on marks, scars,
and tattoos has been proposed [91].

While the aforementioned attributes are not discriminative
enough to be directly used in biometric identification, they allow for
a relatively straightforward binning of biometric databases accord-
ing to a predefined number of classes. In other words, the potential
search space for a given biometric probe can be narrowed down
to one (or a few) bin(s), thereby reducing the penetration rate, and
hence the computational workload.

3.2.2 Clustering: Cluster analysis or clustering refers to the
unsupervised or semi-supervised classification of patterns (i.e. fea-
ture vectors, data items, or observations) into groups (referred to as
clusters), wherein the items are, in some sense, similar to each other.
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Table 3 Binning approaches
Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Handcrafted Fingerprint Zheng et al. [79] Classification, coarse-level matching, class-
jumping, SURF

NIST DB 4 100% hit rate 15% penetration rate

Drozdowski et al. [81] Fingerprint types, multi-instance, variable
search order

NIST DB 9, in-house Bundeskriminalamt
(BKA) DB

Same as an exhaustive search 5-15% of an exhaustive search

Face Park et al. [91] Facial marks, scars, and tattoos PCSO (police mugshots) 7.1%, 0.5% rank-1 accuracy loss 7%,20% speed-up
Iris Yu et al. [82] Box-counting, fractal dimensions In-house 1.72% pre-selection error Less than 40% time

Puhan et al. [88] Colour information in YCbCr space, set inter-
section

UBIRIS 97% hit rate 25% penetration rate

Zhao [89] Average RGB colour components, set union UBIRIS 92.35% hit rate 28.28% penetration rate
Palmprint Palla et al. [83] Geometric features, codebook vectors,

Voronoi regions
In-house 100% hit rate rate 30% penetration rate

Palmvein Zhou et al. [84] Principal orientation features PolyU, CASIA, in-house 96.67%, 96.00%, 97.71% retrieval accu-
racy

14.29%, 14.50%, 14.28% penetration rate

Clustering Fingerprint Germain et al. [92] Minutiae triplets, ridge skeleton, Flash
algorithm

In-house 3.5% FNMR at 0.01% FMR —

Ross et al. [93] Delaunay triangulation, geometric and ridge
features, k-means clustering

FVC2002, FVC2004 100% hit rate ∼50% av. penetration rate

Liu et al. [94] Orientation field, average ridge distance, k-
means clustering

NIST-DB 4 95.8% hit rate 20% penetration rate

Biswas et al. [95] Curvature, minutiae geometry, k-means clus-
tering

IBM proprietary 90% rank-1 accuracy 5-fold decrease

Iloanusi et al. [96, 97] Minutiae quadruplets, k-means clustering FVC2002, FVC2004 100% av. hit rate ∼12% av. penetration rate
Face Perronnin et al. [98] Expectation maximisation clustering, anchor

modelling
FERET ∼95% IR 6-7-fold reduction

Chaari et al. [99] Eigenfaces and Fisherfaces, k-means cluster-
ing

XM2VTS 87.5% IR at rank-1 40% penetration rate

Klare et al. [100] Spectral clustering, k-means and k-medoids
clustering

LFW, PCSO 85% IR 50% reduction

Iris Mukherjee et al. [101] Iris-Code, PCA, k-means clustering CASIA-V3-Interval 80% hit rate 8% penetration rate
Ross et al. [68] Statistical texture features, Principal Direction

Divisive Partitioning
UPOL 100% CCR 3-5-fold reduction

Sun et al. [102] Ordinal measures, hierarchical visual code-
book, k-means clustering, SVM

CASIA Thousand ∼2% EER less than 30%

Nalla et al. [103] Online dictionary learning, k-means clustering UPOL 100% CCR 3-4-fold reduction
Fingervein Surbiryala et al. [71] Maximum curvature, k-means clustering Combined 7 fingervein DBs 97.47% hit rate 86.43% penetration rate

Raghavendra et al. [104] Self Organizing Map neural network, k-means
or k-medoids clustering, multi-cluster search

Combined 7 fingervein DBs 92.42%; 99.02% hit rate 42.48%; 52.88% penetration rate

Palmprint and signature Mhatre et al. [105] K-means clustering Unknown 0% FRR, — FAR 5% penetration rate
Ear Pflug et al. [106] K-means clustering, texture descriptors UND-J2, AMI, IITK 3.11% pre-selection error rate 31.7% penetration rate

With applications across many different disciplines, k-means clus-
tering is currently one of the most popular and effective algorithms
used in data mining [107].

Likewise, in the surveyed literature, k-means clustering (and its
various extensions/derivatives) is by far the most popular method,
used in e.g. [71, 93–97, 99–106]. Other methods include e.g. mul-
timap clustering [92], expectation maximisation clustering [98], and
principal direction divisive partitioning [68]. Comparing the various
clustering methods is out of scope for this article. For more details
regarding this field of research, the reader is referred to surveys, e.g.
[108, 109]. Generally, the approaches referenced in this subsection
extract certain biometric characteristic-specific features (e.g. orien-
tation field or Delaunay triangles for fingerprint, or general-purpose
texture descriptors for iris) to facilitate the clustering or apply it
directly with the feature vectors (e.g. minutiae points) themselves.
As a result, the search space is separated into distinct bins, whereby
during biometric identification, candidates only from the most likely
one(s) are retrieved. Hence, the penetration rate (and thereby the
computational workload) is significantly reduced.

3.3 Data-Structures

Figure 5 shows a conceptual overview of hierarchical retrieval
approaches, while table 4 summarises the surveyed methods. A mul-
titude of methods, algorithms, and data-structures (whose detailed
descriptions are out of scope for this article) has been used in

the surveyed approaches. For a general introduction to on approx-
imate searching, relevant concepts, and most commonly used data-
structures, the reader is referred to existing surveys, e.g. [21, 22, 25]
for theoretical, practical, and easily digestible perspectives, respec-
tively.

3.3.1 Hierarchical: Approaches in this category are most often
tree-based, most prominently utilising k-d trees (e.g. [111, 114, 115,
122]), b or b+ trees (e.g. [112, 113, 124, 125]), other tree-like
search structures (e.g. [35, 101, 110, 116, 121, 123]), and forests
thereof (e.g. [117–120]). The differences between the various types
of used trees (some of which are each other’s generalisations) are
out of scope for this article; instead, the reader is referred to e.g.
[138, 139]. The key idea is to create a search structure, which
repeatedly partitions the data (i.e. the search space – the enrolment
database) into successively smaller subsets. For this partitioning, the
highly discriminative (and high-dimensional) feature vectors them-
selves and/or the more coarse auxiliary features can be used. By
doing so, sub-linear or even logarithmic lookup complexity can be
achieved, thereby substantially reducing the computational workload
of biometric identification.

3.3.2 Hashing: Hashing makes it possible to map the highly-
dimensional biometric feature vectors into compact hashtables or
similar data-structures, which facilitate efficient retrieval. Since
biometric data is inherently fuzzy (recall section 1), many tradi-
tional hashing approaches are not suitable. Nevertheless, there exist
methods, which can deal with fuzzy data. One of such method is
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Table 4 Data-structures approaches
Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Hierarchical Fingerprint Mansukhani et al. [110] Local minutiae neighbourhoods, unbalanced
tree

FVC2002, FVC2004 81% accuracy Almost constant w.r.t. enrolment DB size

Face Dewangan et al. [111] SURF, kd-tree FERET, FRGC, CalTech 95.57%, 97.00%, 92.31% hit rate 7.90%, 12.55% and 23.72% penetration
rate

Iris Mukherjee et al. [101] Blockwise texture SPLDH, tree-like structure CASIA-V3-Interval 84% hit rate 30% penetration rate
Mehrotra et al. [112] DCT, subband coding, energy histogram, b-

tree
CASIA Interval, BATH, IITK 95% hit rate 25% penetration rate

Khalaf et al. [113] DCT, DWT, SVD, subband coding, energy his-
togram, b-tree

CASIA Interval, BATH, IITK ∼97.5%,∼97.5%, 95% hit-rate 20% penetration rate

Jayaraman et al. [114] Iris colour, SURF, kd-tree UBIRISv2, UPOL 98.7%, 98.5% av. hit rate 7.5%, 1.5% av. penetration rate
Barbu et al. [115] HOG, kd-tree UPOL 85% precision and recall —
Rathgeb et al. [116] Bloom filters, binary search trees IITD same or better than baseline 6% penetration rate
Drozdowski et al. [117] Bloom filters, binary search trees, multi-

instance fusion
Combination of 4 iris datasets 99.41% TPIR at 0.01% FPIR <1% of baseline

Drozdowski et al. [118] Bloom filters, binary search trees Combination of 4 iris datasets 98% TPIR at 0.1% FPIR 10% of baseline
Damer et al. [119] LSH-forest ISYN1 99.85% single instance, 99.99% multi

instance hit rate
0.4% penetration rate

Damer et al. [120] General Borda count, LSH-forest, multi-
instance

ISYN1 >99.5% hit rate 0.1% penetration rate

Proença et al. [35, 121] Multi-resolution decomposition, n-ary trees CASIA-V4-Thousand, UBIRISv2 95% hit rate 20%, 80% penetration rate
Iris, Signature, Face, Ear Jayaraman et al. [122] Dimensionality reduction, feature-level fusion,

kd-tree
IITK 97.33% hit-rate at 0.66% FRR —

Fingervein Wang et al. [123] Local textons, vocabulary tree PolyU, SDUMLA, MMCBNU, FV-USM ∼99% hit rate at rank-5 Up to 5-fold speedup
Palmprint Mhatre et al. [124] Geometric features, spatial hashing, b-tree unknown 0% FRR, — FAR 8.86% penetration rate
Ear Gupta et al. [125] Division into quadrants, wavelet decomposi-

tion, b-tree
IITK 95.8% accuracy 34% penetration rate

Hashing Fingerprint Shuai et al. [126] SIFT, LSH FVC2000, FVC2002 98%, 96% hit rate 10% penetration rate
He et al. [127] SIFT, SURF, DAISY, LSH FVC2000, FVC2002 99%, 90% hit rate 10% penetration rate
Capelli et al. [128] MCC, LSH, voting NIST SD4, 14, FVC2000, 2002 95% hit rate <10% penetration rate
Yuan et al. [129] Minutiae triplets, two-level hashtable FVC2000, 2002, 2004 100% hit rate 22%, 9.9%, 11.7% av. penetration rate
Wang et al. [130] MCC, Markov random field theory, geometric

dictionary
FVC2002 DB1 100% hit rate 10% penetration rate

Li et al. [131] MCC, binarisation, LSH FVC2002, FVC2004, FVC2006 7.5%, 22.5%, 4% pre-selection error rate 10%, 10%, 5% penetration rate
Face Kaushik et al. [132] SURF, geometric hashing, voting FERET 100% hit rate 4% penetration rate
Iris Mehrotra et al. [133] SIFT, geometric hashing, voting BATH, CASIA-V3-Interval, IITK, UBIRIS 98.29%, 98.55%, 99.61%, 97.57% EER Order of magnitude faster than baseline

Rathgeb et al. [134] Iris texture hashes, Karnaugh map CASIA-V3 Interval 90% accuracy 3% of baseline
Jayaraman et al. [135] Iris-Code, LSH, voting CASIA-V3-Interval 94.07% hit rate 10.63% penetration rate
Panda et al. [136] SIFT, geometric hashing CASIA-V3-Interval, UBIRISv1 98.25%, 97.62% accuracy ∼75% of baseline time

Palmprint Badrinath et al. [137] SURF, geometric hashing IITK, CASIA, PolyU 100% hit rate 22.5%, 22.8%, 31.9% penetration rate

locality-sensitive hashing (LSH) [20], which refers to a family of
functions, which can be used to map data points into buckets in
such a way, that it is highly probable for data points which are
close to each to be located in the same buckets; conversely, data
points which are distant from each other, are likely located in differ-
ent buckets. Several authors utilised LSH and variations/extensions
thereof to facilitate efficient retrieval of (in most cases) fingerprint
data [126–129, 131, 135]. Geometric hashing [140], which was
originally developed for object recognition (matching similar geo-
metric shapes irrespective of translation, rotation, and scaling), has
also been applied in the context of biometrics by coupling it with
general-purpose keypoint detectors [132, 133, 136, 137].

Deeper descriptions of the various hashing algorithms and their
extensions are out of scope for this article – the reader is referred to
e.g. [24, 141]. Generally, by significantly reducing the dimension-
ality of the data and facilitating retrieval of a subset of candidate
identities, general purpose fuzzy hashing methods adapted to the
biometric data can be used to greatly reduce the computational work-
load. Aside from potential biometric performance degradation due
to hashtable/bucket misses, the storage requirements of the system
(especially in the case of geometric hashing) are typically increased.

3.4 Feature Transformation

This subsection surveys methods based on creating efficient repre-
sentations of biometric templates, which reduce the computational
cost of a single template comparison. This can typically be achieved
through e.g. reducing the template dimensionality, creating fully
or partially alignment invariant representations, or utilising more
efficient template comparators (for instance, based on bit instead
of floating-point operations). In other words, the goal is often to
transform the original template (or create an unrelated alterna-
tive representation), so that it obtains certain desirable properties,
while predominantly maintaining the discriminative power. Tem-
plates utilising such alternative or transformed representations can

then be used on their own in an exhaustive search, or in more
advanced approaches, e.g. act as a pre-selector (see subsection 3.1)
in a multi-stage retrieval system. Table 5 summarises the surveyed
methods.

3.4.1 Binarisation: Comparison of float-based feature vectors
is relatively expensive computationally, due to use of comparators
based on e.g. Euclidean or χ2 distances. In many cases, such feature
vectors can be quantised and encoded into binary strings, whereby
utilisation of comparators based on e.g. Hamming distance is pos-
sible. Such comparators can take advantage of the more efficient
bitwise operators, thereby reducing the computational workload. An
illustrative example can be seen in [144] (and a simpler one in [143]),
where various bit allocation schemes for float-based feature vec-
tors generated by neural network-based systems are benchmarked. In
[142], a new representation is extracted from minutiae points, which
can be further binarised to accelerate the biometric template com-
parisons. Although some information is lost through the binarisation
process, both publications show only negligible biometric perfor-
mance loss in relation to their respective baselines, while achieving a
significant speed-up. Finally, binarised feature vectors are an essen-
tial component in the context of many template protection schemes
(see e.g. [157] for more details on this subject).

3.4.2 Dimensionality reduction: Templates produced through
dimensionality reduction can be used directly as a replacement for
the full-sized templates (e.g. through PCA). Additionally, they can
serve as a first pre-filtering step in a two-stage system (see sub-
section 3.1 for examples). An illustrative example is[145] (and a
similar approach in [146]), where the so-called “short-length Iris-
Codes’, which comprise the most discriminative parts of the normal
Iris-Codes, are presented. The transformed templates are an order
of magnitude smaller than the original ones, and exhibit some-
what impaired biometric performance when benchmarked against
the original templates, thereby making them good candidates for a
pre-filtering step.
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Table 5 Feature transformation approaches
Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Binarisation Fingerprint Capelli et al. [142] Binarised minutia cylinder-code FVC2006 <1% average EER At least an order of magnitude faster
Face Schlett et al. [143] Multi-scale block LBP, binarisation FERET, Extended-Yale-B 15% FNMR at 10% FMR 20-fold speed-up

Drozdowski et al. [144] Benchmark of various quantisation and encod-
ing methods

FERET, FRGC 0.3% EER, 2.3% EER An order of magnitude fewer CPU opera-
tions required

Dimensionality reduction Iris Gentile et al. [145] Short-length Iris-Codes MMU 79.4% FNR at 1% FPR 12-fold size reduction
Rathgeb et al. [146] Most discriminative bits, selective algorithm

fusion
CASIA-V3-Interval 1.15% EER ∼50% fewer bits

Variable to fixed size Fingerprint Jain et al. [147] FingerCode NIST SD9, MSU_DBI ∼15% FRR at 1% FAR; ∼8% FRR at 1%
FAR

—

Xu et al. [148] Spectral minutiae MCYT 3.13% EER —
Yang et al. [149] Tessellated invariant moment features FVC2002 3.57% average EER 3-fold reduction

Alignment invariance Iris Rathgeb et al. [150] Bloom filters CASIA-V3 interval 1.5% EER 20% of baseline
Damer et al. [151] Translation-invariant transformation SYN1 0.646%EER, 1.213% EER 6.56% of baseline, 2.45% of baseline

Table 6 Other approaches
Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Search strategies Iris Kuehlkamp et al. [152] 1-to-first search Notre-Dame see paper 50-70% of baseline
Fingerprint Cappelli et al. [153] Analysis of comparison scores, ruleset/criteria FVC 1% average error rate 27% penetration rate (from indexing)

reduced to 3.9%
Intrinsic data properties Iris Rathgeb et al. [154] Iris-Code analysis, fewer relative shifting posi-

tions at comparison
CASIA-V4 interval <1% EER 4-fold reduction

Sample pre-alignment Iris Drozdowski et al. [155] Pre-alignment of raw samples based on eye
corner and pupil center locations

BioSecure ∼2.5% EER 2-fold reduction

Information fusion Face Drozdowski et al. [156] Morphing FERET 98.82% RR-1 52.5% penetration rate

3.4.3 Variable to fixed size: Comparisons of variable-size fea-
ture vectors are computationally demanding and often suffer from
other domain-specific drawbacks. In biometrics, most prominently
used variable-sized feature representation is that of fingerprint
minutiae. The number of minutiae points can be inherently differ-
ent between different data subjects and can further be augmented
depending on the sample acquisition conditions (i.e. the so-called
missing and spurious minutiae). In the literature, a number of alter-
native approaches to the traditional minutiae-based fingerprint com-
parison algorithm has been proposed by several authors [147–149].
All of those methods achieve biometric performance and compu-
tational workload results competitive with those of the traditional
variable-size, minutiae-based algorithm.

3.4.4 Alignment Invariance: An important issue in biometrics,
and especially fingerprint and iris recognition is the necessity of
compensating for the relative sample misalignment caused by roll
pose variations. This is typically done by considering multiple rel-
ative shifting positions of the Iris-Codes matrix and choosing the
one with best comparison score, thereby increasing the computa-
tional cost of a single template comparison. In [150] and [151]
feature transformations are presented, which ensure that sample mis-
alignment (to a certain degree, reasonable from practical point of
view) is intrinsically compensated for by the resulting feature vec-
tors. Both approaches achieve substantial speed-up in an exhaustive
search without significantly impairing the baseline biometric perfor-
mance. Several other (not feature transformation based) approaches
tackling the issue of iris alignment are also listed in subsection 3.5.

3.5 Other

This subsection presents computational workload reduction approaches
which do not fit into the previous categories. Table 6 summarises
the surveyed methods. A simple method of reducing the compu-
tational workload in an exhaustive search is performing an early
exit strategy, i.e. finishing the search once first (not necessarily best)
suitable candidate is found. This is sometimes referred to as “one-to-
first” search. In [152] this search strategy is analysed extensively for
iris recognition in order to assess potential degradation of biometric
performance. It is discovered, that the biometric performance degra-
dation is strongly dependent on the decision thresholds (accuracy
target) and size of the enrolment database. For some parameters, the
biometric performance of an exhaustive search can be maintained,
while the computational workload is significantly reduced. In [153]
several strategies were proposed, which reduce candidate lists (pro-
duced by other methods) through analysis of comparison scores. In
[154] an approach to reduce the number of relative shifting posi-
tions of the Iris-Codes which need to be considered in a template
comparison was presented. The method is based on an analysis of
the intrinsic properties of the iris data and achieves a considerable

speed-up without impairing the biometric performance. In [155] a
pre-alignment of raw iris images is performed. The method is based
on automatic detection of eye corners and several other points in raw
iris images, and subsequently aligning the eye corners onto a hori-
zontal line. Thus, at a later point, once features are extracted, fewer
relative shifting positions need to be considered during template
comparisons. The approach of [156] relies on morphing (signal-
level fusion). The facial images from the enrolment database are
morphed (in 2s, 4s, or 8s), whereby biometric information from mul-
tiple subjects is fused into one image. The morphed images are then
utilised for pre-filtering (see subsection 3.1). In addition to being
explicitly used in some computational workload reduction schemes
surveyed in this article, information fusion is an important aspect in
ensuring the scalability of biometric systems in terms of biometric
performance. For a comprehensive survey of this topic, the reader is
referred to e.g. [158].

3.6 Acceleration

Hardware acceleration can facilitate massive execution speed gains
for certain types of computations. In the following subsections, the
use of reconfigurable computing (subsection 3.6.1) and graphical
processing units (subsection 3.6.2) in biometric systems is surveyed.
The references in those two subsections are by no means exhaus-
tive, due to the focus of this article being elsewhere. Instead, they
outline the relevant concepts and highlight a few systems created
for the different biometric characteristics. Lastly, they focus on the
more recent publications due to the fast pace of developments within
hardware components. For a quick general comparison of the capa-
bilities, along with the advantages and disadvantages of those two
types of hardware, the reader is referred to e.g. an industry white
paper in [159], or a general survey of various Big Data analysis
platforms and methods [160].

Although hardware acceleration cannot be strictly considered a
method of workload reduction (since the amount of computations
is not reduced – it is merely parallelised, distributed, or executed
more efficiently), it is also mentioned here as an important aspect of
speeding-up transactions in large-scale biometric identification sys-
tems. There appears to be a substantial research interest in the area
of hardware-based acceleration utilising FPGAs and GPUs. Some of
the existing publications present convincing and well-substantiated
results, whereby massive speed gains (up to two orders of magni-
tude) are achieved in the benchmarks. It should be noted, however,
that in some cases the experimental protocols of the benchmarks
are questionable; in particular, it is not always clear if the external
latency factors (unrelated to the algorithms themselves) have been
accounted for in the evaluation. Furthermore, the degree of the CPU-
based baseline algorithm optimisation is often not clearly outlined.
The results must therefore be closely scrutinised, as it could be that
the speed gains result merely from a poor baseline implementation.
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This caveat notwithstanding, using reconfigurable computing and/or
graphical processing units could be a promising avenue for speeding
up the execution of various components (or even entire pipelines) in
many different biometric modalities. On the other hand, factors such
as difficulty of implementation, as well as purchase and maintenance
cost have to be taken into consideration for real-world systems.

Lastly, software acceleration and optimisation are also worth
mentioning in this context; although there does not seem to be
many scientific publications on the topic. In [161], an extensive
analysis of possible speed-ups in CPU-based Iris-Code compar-
isons is presented. The authors consider possible improvements
through low-level implementations, manual loop unrolling, caching
and pre-computing certain parts of data, analysis of memory access
bottlenecks, multi-threading, as well as statistical optimisation of
micro-operations. In [162], a hardware-software co-design of iris
recognition pipeline is proposed. The authors benchmark highly
optimised software code, coupled with a hardware-based implemen-
tation of several of the pipeline components. Both publications show
that substantial speed-ups (but not computational workload reduc-
tion) can be achieved through code optimisations, which do not in
themselves change the underlying algorithms or biometric feature
representations.

3.6.1 Reconfigurable Computing: Field Programmable Gate
Arrays (FPGAs) are integrated circuits containing an array/matrix
of programmable logic blocks (of different types, e.g. general
logic, memory, arithmetic), which can be programmably intercon-
nected with each other and with input/output blocks. The program-
ming/configuring is generally done using a hardware description
language (e.g. VHDL or Verilog) or (nowadays rarely) circuit dia-
grams, and takes place after the chip has been manufactured. In
other words, the FPGAs can be configured and re-configured to exe-
cute arbitrary digital circuits, and thus are capable of solving any
computable problem. FPGAs can utilise hardware parallelism and
deep pipelining extensively, thereby completing many more compu-
tations per clock cycle as opposed to a normal sequential execution.
Additionally, they rely on much fewer layers of abstraction than the
general purpose CPUs, thus facilitating lower-level programming, as
well as custom memory and I/O interfaces. Those properties can be
exploited to yield potentially massive speed-ups for certain applica-
tions (see e.g. [163, 164]). For a more detailed view of the current
FPGA state-of-the-art, advantages and disatvantages, as well as
future outlook and challenges, the reader is referred to fundamentals,
e.g. [165]. Due to the abovementioned advantages, reconfigurable
computing has been extensively applied to solve a variety of prob-
lems in many fields (see e.g. [166] for a survey), including computer
vision, signal processing and pattern matching (see e.g. [167]), and
neural networks (see e.g. [168]). Algorithms from those domains
are cornerstones of various biometric systems; hence, substantial
research effort has also been devoted to development of FPGA-based
processing of biometric data.

FPGA based implementations of biometric systems’ compo-
nents or complete data processing pipelines were published e.g. for
iris [169], fingerprint [170], face [171], (finger)vein [172], retina
[173], and voice [174]. There, speed-ups over traditional CPU-based
algorithms of up to two orders of magnitude were reported.

3.6.2 Graphical Processing Units: As the name suggests, tra-
ditional Graphical Processing Units (GPUs) were designed for very
efficient processing of two and three dimensional graphics and have
a rigid set of functions and programmable features. Over time, the
ease of use/programmability and the range of applications for GPUs
have steadily increased, especially with the introduction of gen-
eral purpose frameworks for GPU programming such as CUDA
[175] and OpenCL [176]. Taking advantage of the single program
multiple-data (SPMD) programming model, the data can be pro-
cessed in highly parallel ways. Thus, adapting code to run on GPUs
can yield massive execution speed gains for many applications, e.g.
linear algebra, sorting and searching, differential equations, or more
generally floating-point operations on vectorisable data. For a gen-
eral introduction to GPU computing, the reader is referred to e.g.

[177]. Some tasks at which GPUs excel are important in typical bio-
metric processing pipelines. Hence, there has been interest in the
scientific community to leverage the power of GPUs in this domain
as well. A good general introduction to usage of GPUs in biomet-
rics, along with a brief survey of applications for fingerprint-based
systems can be found in [178].

GPU based implementations of biometric systems’ components
or complete data processing pipelines were reported. It should also
be noted, that GPUs (and more recently, specialised tensor pro-
cessing units (TPUs) [179]), have also been utilised extensively in
problems involving machine learning and deep neural networks, see
e.g. [180]. In recent years, those technologies have also been applied
to biometrics (e.g. facial recognition deep neural networks [181]),
highlighting possibilities of hardware-acceleration use beyond effi-
cient biometric identification, more specifically in the algorithm
training phase. E.g. for iris [182], fingerprint [183], face [184], and
sclera-vein [185], similarly to FPGAs (see subsection 3.6.1), speed-
ups over traditional CPU-based algorithms of up to two orders of
magnitude were reported.

4 Discussion

In this section, several matters relevant to the topic of this article
are discussed, namely: the considerations and trade-offs of com-
putational workload reduction approaches (subsection 4.1), a brief
digression into data security (subsection 4.2), a perspective on how
real large-scale biometric systems deal with large-scale biometric
identification (subsection 4.3), and finally an outline of open issues
and challenges in this research field (subsection 4.4).

4.1 Considerations and Trade-offs

As evidenced by previous sections, there exists a plethora of
approaches which seek to reduce the computational workload
requirements in biometric identification systems. Below, a system-
atic (qualitative, due to the infeasibility of directly comparing the
results – recall subsection 2.2) discussion of noteworthy matters
w.r.t. the different approach categories is given, concentrating on
their general impact on: 1) computational workload, 2) biometric
performance, and 3) disk/memory storage.

Pre-filtering
Computational workload The potential speed-up depends on the

discriminative power and size of the index templates. Given
strongly discriminative index templates, a much smaller short-
list of candidates can be produced, thereby minimising the
number of the necessary template comparisons with the expen-
sive (and accurate) comparator. On the other hand, the size of
the index templates determines the computational cost of the
pre-filtering step, as the probe index is compared exhaustively
against the index templates. Naturally, those two parameters
typically counterbalance each other – smaller size of the index
templates typically entails lower discriminative power.

Biometric performance Since the features used for pre-filtering
typically have limited discriminative power, errors may occur,
so that the sought identity is not among the returned candi-
date short-list, thereby increasing the false-negative rates. CMC
curves are useful in assessing the efficacy of such features and
can help decide on a reasonable size of the candidate short-list.

Storage Since additional information (index) is stored in order
to facilitate the pre-filtering step, the storage requirements are
increased.

Binning
Computational workload The potential speed-up benefits are

limited by the number of bins. It tends to be rather small, espe-
cially for the handcrafted classes/types. Additionally, the hand-
crafted classes/types are very often inherently unevenly dis-
tributed (due to genetics and environmental influences). Con-
sequently, computational workload reduction obtained through
binning varies accordingly with the relative frequencies of the
bins. A good example is binning based on fingerprint types.
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Whorls and loops generally exhibit the highest prevalence and
there are variations across different ethnic groups (see Rife
[186]). Nevertheless, it is still a feasible approach, and it
has been used in operational systems, e.g. in AFIS’ (see e.g.
[187, 188]) – initially using the explicit classes, more recently
utilising machine learning to develop non-exclusive classes that
lead to more balanced bin sizes. In some cases, however, a
severely non-uniform distribution across the bins can invalidate
the binning approach entirely. For instance, people of many eth-
nic groups (or entire countries) have predominantly brown eyes,
thus little to no speed-up can be achieved by binning using eye
colour in such systems.

Biometric performance In order for the system to be viable, the
classification accuracy must be near-optimal. Otherwise, the
probability of false-negative errors increases due to misclassi-
fication and consequently searching in the wrong bin(s) (i.e.
pre-selection errors).

Storage Typically not significantly increased, since only the
metadata (e.g. the fingerprint types) need to be stored.

Data-structures
Computational workload By often relying on divide-and-

conquer approaches, the complexity of the retrieval algorithm
can often be reduced from the linear complexity down to the
(near-)logarithmic complexity.

Biometric performance Due to wrong paths being taken during
the search structure traversal, the potential for making false-
negative error increases. For many approaches this is especially
relevant for the higher levels of the structure, where the infor-
mation stored by the nodes is denser than near the leaves. On
the other hand, the potential for false positive errors is typically
reduced due to the lower penetration rate.

Storage The storage requirements are typically increased, since
additional hashtables and/or tree-like data-structures have to be
maintained.

Feature transformation
Computational workload Although the individual template

comparisons are computed much more efficiently, the identifi-
cation is still carried out over the entire search space (exhaustive
search), thereby severely limiting the potential computational
workload reduction.

Biometric performance The more compact template represen-
tations and/or more efficient comparators may suffer from a
decrease in discriminative power and hence a lower biometric
performance.

Storage Typically decreased, due to more compact template
representations.

Acceleration
Computational workload Not reduced per se, merely computed

more efficiently (e.g. paralellised, distributed, or otherwise
optimised).

Biometric performance Typically unaffected, as functionally
equivalent algorithms are somehow implemented or optimised
to achieve faster computation speeds.

Storage Possibly increased, as it may be necessary to port the bio-
metric data to the specifics of the utilised system (e.g. CUDA)
or distribute them across a network.

Due to varying system requirements and policies, it is important
to enable the biometric systems’ operators to make well-informed
decisions w.r.t. the used algorithms. Therefore, for any proposed
computational workload reduction methods, it is crucial to include
the above information, as well as benchmarks against a current
state-of-the-art algorithm performing an exhaustive search (base-
line). By doing so, the trade-offs (biometric performance, computa-
tional workload, storage) of the proposed methods can be evaluated,
thereby facilitating informed decisions on the systems’ design and
policies. In some cases, it may even be possible to probabilistically
model the impact of the proposed methods on the biometric per-
formance, which could potentially be very useful in establishing the
pertinent trade-offs even prior to the experimental evaluations on real
data. However, such models rarely appear in the surveyed literature.

Examples include, e.g. [17], which discusses the binning approaches
in general and [118], where a statistical model for the proposed
Bloom filter-based hierarchical retrieval method is included. Hence,
the development of such models could be an interesting avenue of
future research.

4.2 Data Security

In addition to the need for computational workload reduction, which
was the core topic of this article, the potential of data exposure is
a large concern in biometric system deployments, where the stored
data is, in most cases, secured using traditional encryption algo-
rithms (see e.g. [189]). From the technical point of view, this means
that should the data be compromised, serious problems such as
identity theft, cross-matching without consent arise, furthermore the
renewability of such biometric templates is severely limited. Addi-
tionally, the centralised storage of sensitive personal and biometric
data has increasingly been under scrutiny, both by the general pub-
lic and various non-governmental organisations, which recently has
led to widened legislation against privacy violations (e.g. GDPR
in Europe [190]). The ISO/IEC international standard on biometric
information protection [191] stipulates several properties required
for biometric template protection schemes. While many approaches
have been proposed for normal biometric systems (see e.g. [192] for
a survey), template protection coupled together with computational
workload reduction has received relatively little attention in the sci-
entific literature. Some early proof-of-concept works and trade-off
analyses have been carried out e.g. in [193–195].

4.3 Real-World Systems

Due to confidentiality constraints (i.e. company or state secrets),
the availability of details for real-world systems is not nearly as
abundant as that of scientific publications. Nevertheless, this sub-
section will give several examples, based on the existing literature
and personal communications.

Aadhaar As of this writing, the Indian National ID Programme
(see e.g. [6, 196]) encompasses acquisition and usage of the
largest biometric system in the world in terms of number of the
enrolled data subjects. During enrolment, a de-duplication check
must be carried out, in order to avoid issuing multiple unique
identification numbers to the same individual. The de-duplication
proceeds in several steps: first, obvious duplicates are pre-filtered
out based on metadata (demographic information), either through
exact matches or fuzzy matches followed by a preemptive bio-
metric check. Subsequently, an exhaustive search of the biometric
database is performed by one of the COTS systems provided
by three different vendors. Each system uses a different imple-
mentation and information fusion (data from two irides and ten
fingerprints is used) strategies. Any potential duplicate is verified
by another system, and if the need arises, it is also adjudicated
manually by a trained biometric system operator. The whole sys-
tem design is distributed and massively parallelisable, and claimed
to be scalable through use of commodity hardware and enterprise
Big Data solutions.

UAE The border control system in United Arab Emirates (see e.g.
[197, 198]) takes advantage of the intrinsically efficient iris rep-
resentation (Iris-Codes, see [199]) and distributed architecture of
COTS components for quick biometric identification queries. It is
reported, that an exhaustive search against the database of close
to 1 million subjects can be executed within a couple seconds.
I/O latency issues are avoided by pre-loading the entire enrolment
database into random access memory.

NEXUS In Canada, automated self-service kiosks for selected air-
ports and (frequent) travellers are offered in order to expedite the
border control process. The system uses iris as the biometric char-
acteristic, and performs 1-to-first searches on the database of over
0.5 million enrolled data subjects for each biometric identification
(see e.g. [200]).
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EES Due to the specifics of the legal mandate [15], the biometric
systems for the EU visa and entry-exit system will be forced to
perform exhaustive database searches. Due to the operational sce-
narios (such as border control), stringent requirements for quick
(real-time) query responses have been imposed on the potential
biometric systems vendors. It can therefore be expected that effi-
cient data representations, information fusion schemes, as well
as parallel/distributed design will be essential components of the
forthcoming infrastructure solutions.

AFIS Deployments of the Automated Fingerprint Identification Sys-
tems (see e.g. [187, 201, 202]) are ubiquitous around the world
and used for instance in the context of criminal investigations.
Such systems are known to utilise computational workload reduc-
tion methods based on demographics, coarse fingerprint data
(such as fingerprint type), along with highly optimised software
algorithms to facilitate fast response times. Prominent examples
include the Integrated AFIS (IAFIS) ran by the Federal Bureau of
Investigation (FBI) in the USA and the database of the German
Bundeskriminalamt (BKA).

Industry In order to provide competitive search speeds for large
biometric identification systems, commercial vendors of biomet-
ric recognition technologies, for example the German company
Dermalog (information acquired through personal communica-
tion), are known to utilise methods of workload reduction in their
products. National Institute of Standards and Technology (NIST)
carried out an evaluation of 1:N face recognition vendors [203].
Among the details, it has been stated that several submitted algo-
rithms take the expense of constructing fast search data-structures
at enrolment, in order to achieve sub-linear search duration growth
(with respect to the size of the biometric reference database).

From the above examples, it is clear that computational workload
is a critical consideration in operational systems and certain methods
used to expedite the high number of queries handled by the existing
large-scale systems around the world. To summarise in the context
of the proposed taxonomy (recall figure 2), the following methods
are represented in the list above:

• Pre-filtering by metadata (e.g. demographic and geographic).
• Search strategies (e.g. 1-to-first search).
• Binning with coarse features (e.g. fingerprint types).
• Intrinsically efficient feature representations (e.g. IrisCodes).
• Software optimisation.
• Massive parallelisation and distribution of computations.

Notably absent are the methods of hardware acceleration (i.e.
reconfigurable computing and graphical processing units) – it
could be, that the practical matters (e.g. monetary implementation
and maintenance costs) outweigh the benefits of potential speed
improvements. Another potential important issue is vendor lock-in
and the necessity of tailoring for specific software/hardware combi-
nation, which was deliberately avoided in e.g. the UAE and Aadhaar
systems by making the design decision to use commodity CPU-
based hardware (see e.g. [6, 197]). The pre-selection methods, which
are heavily researched, seem to be seldom used in those deploy-
ments. In other words, in this case there does appear to be (or perhaps
is perpetuated by the information scarcity in this area), at least to a
certain degree, a mismatch between what is researched in academia
and what is actually used by the industry. This and other open issues
are discussed in more detail in the next subsection.

4.4 Open Issues

Several open issues/challenges remain in research related to compu-
tational workload reduction in biometric identification systems:

Standardisation As described in subsection 2.2, as of yet there
exists no standardised way of reporting results for biometric com-
putational workload and its reduction. This leads to a multitude
of methodologies and metrics in the scientific literature, thereby

making direct benchmarks and comparative assessment of the pro-
posed methods extremely cumbersome to carry out. Moreover,
in many publications, even the baseline results (i.e. exhaustive
search with a state-of-the-art algorithm) are not reported, which
further exacerbates this issue. In [118], experimental prerequisites
and metrics for such evaluations are proposed; as of this writing,
there is an ongoing effort to include metrics to measure compu-
tational workload and its reduction in the current revision of the
ISO/IEC IS 19795-1. This effort notwithstanding, the standardis-
ation in this research area remains an open debate subject within
the standardisation committee and in general.

Scalability Due to limited availability of large-scale biometric
data for academic research, many, if not most, of the surveyed
approaches were tested on relatively small databases (mostly up to
hundreds or thousands of subjects; tens of thousands of samples).
Hence, the scalability of many of the proposed methods remains
questionable or unproven in practice (cf. table 1 w.r.t. the sizes
of large real-world deployments of biometric systems). Some
authors are fortunate enough to receive access to large-scale,
sequestered databases (e.g. law enforcement) in order to evalu-
ate and validate their approaches (e.g. [53, 67]), but such cases are
rare in the surveyed literature, likely as a consequence of the sig-
nificant practical and legal hurdles associated with accessing the
sensitive biometric/personal data.

Biometric performance trade-off It appears that many approaches
are capable of delivering significant (e.g. one or two orders of
magnitude) decrease in computational workload requirements.
However, further reductions prove elusive for most methods due
to rapidly degenerating biometric performance. Some of the sur-
veyed methods incorporate in their designs information fusion
(from multiple biometric characteristics or multiple instances of
the same characteristics) to mitigate this issue to a certain degree.

Dissonance between academia and industry There seem to exist,
to a certain degree, discrepancies between methods and goals
of the research conducted within the academia, and the actual
practical use cases in the industry. Several examples (also par-
tially related to the aforementioned issues of standardisation and
scalability) relevant to the topic of this article are:
Evaluation protocol Whereas a substantial number of the sur-

veyed publications perform their experiments using the closed-
set identification, the real-world systems are essentially univer-
sally required to perform the much more challenging open-set
identification.

Decision thresholds Almost all of the surveyed publications do
not report decision thresholds at which the given biometric per-
formance was achieved. Furthermore, evaluations on different
datasets with fixed decision thresholds are rarely performed.
This is in stark contrast with the industry/law enforcement prac-
tices, where decision thresholds and fixed operational points are
used extensively in the operational systems.

Results reporting The surveyed publications often report results
using metrics, which are of limited value in the industry prac-
tice. For instance, operational systems would not typically
operate at EER (even if it ever was an operational point at
all), but rather at fixed false-positive identification-error rates
acceptable within their respective system policies. Many publi-
cations use rank-based reporting and CMC curves, which imply
the less interesting (from the industry point of view) closed-set
evaluation protocol, as mentioned above.

Acceleration As evidenced by subsection 3.6, significant research
efforts have been devoted to develop biometric algorithms suit-
able for FPGA or GPU computations. However, as mentioned
in subsection 4.3, the existing deployments of large-scale bio-
metric systems lean towards distributed architectures of com-
modity CPU hardware due to other practical considerations;
additionally, software optimisations, which play an important
role in the commercial systems, are only superficially treated in
the scientific literature.

Thus, aside from the technical challenges (and potential lim-
its) of improving on the trade-offs between biometric performance
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and computational workload reduction, there are two key areas
that should be considered by the large-scale biometric identification
practitioners from academia and industry alike:

Academia and industry cooperation Much tighter integration
between the academic research and industry requirements is
needed. The academics should seek out industry partners to vali-
date their proposed systems and solutions outside of a lab setting;
conversely, the industry should engage in outreach initiatives to
academia in order to promote the actual prerequisites, require-
ments, and challenges of the commercial systems. More frequent
and deeper joint (research or otherwise) projects and partnerships
between academia and industry could potentially help to amelio-
rate the aforementioned dissonances. Jain et al. [204] recently
published the short “Guidelines for Best Practices in Biometric
Research”. This document can serve as a good starting point out-
lining the absolute essentials for legitimate and practical reporting
of results within biometrics research. Furthermore, the representa-
tives from all the stakeholders should begin or continue to actively
engage in the international standardisation efforts, for instance
the ones by the ISO/IEC JTC 1/SC 37 (who are responsible
for, among others, the biometric performance evaluation and har-
monized biometric vocabulary standards [4, 5]) and/or of other
national agencies, such as NIST in the USA and BSI in Ger-
many. This way, meaningful consensus w.r.t. evaluation protocols,
metrics, and benchmarks that reflect the real use cases can be
attained.

Practical evaluations Entities (e.g. governmental agencies, univer-
sities, companies) in possession of large amounts of biometric
data should support large-scale evaluations, thus facilitating scal-
ability assessment and fair benchmarks between the systems
developed by the academic researchers and the commercial ven-
dors. Such benchmarks make available an API against which
algorithms can be coded, then submitted to a central server, and
finally ran and evaluated there using the same experimental pro-
tocol and metrics. Such tests offer an additional advantage, in that
the vast majority of the image data used for evaluation remains
unseen by the algorithm authors, which in turn facilitates higher
generalisably of the proposed algorithms. Lastly, synthetically
generated data could be used to some extent in the context of
biometric scalability testing (see e.g. [205]). Interesting existing
initiatives in this area are, for example: the BEAT platform [206]
with the aim of developing a general standard framework biomet-
ric technologies’ evaluation, along with several more constrained
initiatives such as the indexing competition under Fingerprint Ver-
ification Competition (FVC-onGoing) [207], the 1:N Evaluation
under Face Recognition Vendor Test (FRVT) [208], one-to-many
evaluations under Iris Exchange (IREX) – for fingerprint, face,
and iris characteristics, respectively.

5 Summary

Large-scale biometric identification systems are confronted with
high computational workload. This is especially the case for an
exhaustive search, where the computational effort required during
retrieval grows linearly with the number of enrollees. Methods that
seek to alleviate this issue aim at reducing the number of template
comparisons necessary per retrieval (penetration rate), the computa-
tional costs associated with individual template comparisons, or at
optimising the software/hardware system implementations. In this
article, a taxonomy for conceptual categorisation of such methods
is presented, followed by a comprehensive survey of publications
pertaining therewith. The article is concluded with a discussion of
matters to take note of with the various categories of approaches, a
digression on usage of such methods in real-world systems, as well
as an outline of remaining relevant challenges.

As the number and scale of the biometric systems deployments
worldwide steadily increases, computational workload reduction in
biometric identification systems can be expected to remain an active
field of research, especially since a number of open issues/challenges
remains unresolved regardless of the significant advances made

through the academic and commercial research. To solve said chal-
lenges, standardisation and much tighter cooperation between the
academia, industry, governmental agencies, and other concerned
parties is necessary. There exists an urgent need of a unified method-
ology for reporting of computational workload and its reduction.
Furthermore, another important matter is the development of exper-
imental protocols, benchmarks, and metrics which closely corre-
spond with the actual prerequisites and use cases of the real-world
deployments. To accomplish this, the international standardisation
efforts are a promising avenue, albeit continuous engagement from
all the concerned stakeholders is necessary to establish a suitable and
broad consensus.
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