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Abstract

An overset grid method is used to investigate the interaction between a particle-
laden flow and a circular cylinder. The overset grid method is implemented in
the Pencil code, a high-order finite-difference code for compressible flow simula-
tions. High-order summation-by-part operators are used at the cylinder bound-
ary and both bi-linear Lagrangian and bi-quadratic spline interpolation is used
for communication between the background grid and the body-conformal cylin-
drical grid. The performance of the overset grid method is assessed for bench-
marking cases of steady and unsteady flows past a cylinder. For steady flow at
low Reynolds number, high-order accuracy is achieved for velocity components.
Results for flow in the vortex shedding regime is compared with literature,
and show good agreement. Following this, the method is applied to particle-
laden flow simulations, where spherical point particles are inserted in the flow
upstream of the cylinder. These inertial particles are convected downstream
towards and (possibly) past the cylinder. The simulations reproduce data from
literature at a significantly reduced cost, and reveal that the previously pub-
lished DNS data is less accurate than assumed for particles with very small
Stokes numbers.

Key words: overset grids, particle-laden flow, high-order, finite-difference,
particle impaction, compressible fluid dynamics

1. Introduction

A common flow problem in numerical simulations is flow past a bluff body.
Obstructions in the flow include (but are not limited to) spheres, flat plates,
circular, rectangular or elliptical cylinders, triangles and spheroids, and complex
geometries made out of a combination of these. Particle-laden flows interacting
with such obstacles are important for a range of applications. Whether the goal
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is to maximize the particle extraction from the flow, as for filter applications,
or minimizing particle sticking on the object to avoid an insulating layer, as
for biomass boilers, understanding the mechanics of inertial particles may help
improve design, and hence efficiency, of said applications. Accurate predictions
of particle behavior in the vicinity of the bluff bodies require highly accurate
boundary layer representation in numerical simulations. Finding the numerical
method best suited to this task is not trivial task, but can have a huge impact
on both efficiency and accuracy of such simulations.

1.1. Representing solid objects in the flow

For generic shapes (cylinders, spheres, plates, etc.) both body-fitted struc-
tured meshes are commonly used to accurately resolve the solid boundary. Such
methods use grids that conform to the solid (or solids) immersed in the flow and
to other the physical boundaries of the domain (inlet/outlet, walls, etc.). De-
pending on the flow domain, this may require some deformation of the grid to
conform to the boundaries, in addition to the mapping of the flow domain into
a simple computational domain. The result may be unnecessary local variations
of the grid and time consuming grid generation [1]. Alternatively, one can use
unstructured meshes in order to resolve the solid boundaries in the flow. Un-
structured meshed provide the highest flexibility in adapting a mesh to the flow
problem, and are a good alternative for complex geometries when finite-volume
or finite-element formulations of the governing equations are used [2]. Among
the disadvantages of such grids are much larger storage requirements than for
structured grids [3] and the need for intricate mesh generation techniques [4].

An alternative to body-fitted grids are non-conforming (typically Cartesian)
meshes, where a solid in the flow is represented by some change in the fluid equa-
tions in the vicinity of the solid boundary. One such method, that has gained
vast popularity the last decades, is the immersed boundary method (IBM). This
method (or rather, this class of methods) was originally developed to model flow
around heart valves [5] by allowing for representation of bluff bodies in the flow
without using body-conformal grids. A simple Cartesian grid can be used, where
the boundary conditions (the sharp interface) of the bluff body are incorporated
in the solver by a modification of the equations in the vicinity of the boundary
(see review article by Mittal & Iaccarino [6] and references therein for details).
This makes IBMs very flexible in representing bluff bodies, and particularly well
suited for complex geometries where the use of body-fitted structured meshes
are limited. A caveat of the IBM is the difficulty in achieving high-order accu-
racy near boundaries that do not conform to physical boundaries. For complex
geometries this may be regarded as a necessary loss in order to be able to rep-
resent the boundary, but not so for simple geometric shapes. For flow past such
bodies other methods may be more suitable, especially when the accuracy in
the vicinity of the surface is a major concern.

Roughly ten years after the development of the IBM, a method of multi-
ple grids overset one another was proposed to represent solids in a flow (see
[7, 8, 9]). Overset grids, or Chimera methods, employ body-conformal grids
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at the bluff bodies, but the body-conformal grids do not extend to the do-
main boundaries. Instead, a non-conforming background grid (typically uniform
Cartesian) is used, and updated flow information of overlapping grid regions is
communicated between grids at every time step. In this way, a flow simulation
is split into multiple simulations, one for each grid, and the boundaries of one
grid is updated with information from the other grids. The background grid is
used to compute the general flow outside the smaller body-fitted grids, and the
communication between the different grids is done by interpolation.

Overset grid methods have the advantages of being highly accurate at the
solid-fluid interface. This is due to the use of body-fitted grids in these re-
gions, and the flexibility in grid stretching made possible when several grids are
used. At the same time, no grid deformation is necessary to conform to domain
boundaries, due to the use of an appropriate non body-conformal background
grid. If the domain is circular, a cylindrical grid can be used as a background
grid, if rectangular, a Cartesian grid, etc.

The communication between the grids is the limiting factor in terms of accu-
racy of overset grid methods. As in fluid dynamic codes using IBM, interpola-
tion of flow variables is detrimental to mass conservation (although conservative,
mass correcting overset grid methods do exist for finite-volume codes, see e.g.
[10, 11]). Using high-order interpolation between grids have proved beneficial
in regards to the overall accuracy and stability of the overset grid method for
both finite-difference and finite-volume implementations [12, 13, 14]. While ad-
vantageous in terms of accuracy, high-order interpolation techniques have the
disadvantage of an increase in complexity, inter-processor communication and
floating-point operations, as compared to low-order interpolation schemes. Fur-
thermore, straightforward extension to high-order interpolation, typically from
second-order to fourth-order Lagrangian interpolation, does not guarantee a
better solution. Possible overshoots in the interpolation polynomials may have
a devastating impact on the interpolation accuracy. The applied interpolation
scheme should therefore be evaluated for the flow problem at hand. For overset
grid implementations several interpolation schemes are available. In this study
we compare two of these: bi-linear Lagrangian interpolation and bi-quadratic
spline interpolation. Together with high-order low-pass filtering, the resulting
computations are both stable and accurate. We will consider this topic further
in Section 2.

If several body-fitted grids overlap, the overset grid computations will be in-
creasingly difficult, particularly in regards to the communication of overlapping
zones of the different grids. For our purpose, we limit the discussion to a single
body-fitted grid on top of a Cartesian background grid. For a more general
discussion on overset grids, see [15] or [16].

1.2. Particle impaction

When considering particle deposition on a surface, two mechanisms are nec-
essary for a particle to deposit. The particle must impact the surface, that is, it
must get in physical contact with the surface, and it must stick to it. Only the
first of these two mechanisms will be a focus of this study. Hence, all particles
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that come in contact with the bluff body are absorbed by it. Further, only
inertial impaction is considered, and other particle impaction mechanisms like
Brownian motion, thermophoresis and turbulent diffusion are omitted. This is
acceptable for inertial particles in laminar flows without temperature gradients
[17].

The impaction efficiency η = Nimp/Nins is a measure of the efficiency of
a cylindrical object to capture the particles that initially is incident on the
cylinder. The number of impacting particles is given by Nimp, while Nins is a
count of particles with a center of mass that is initially moving in the direction
of the solid object. Note that following this convention may lead to η > 1, even
if no forces act on the particles, since a particle may follow a path close enough
to be intercepted by the object, due to its finite size, although the path of the
center of mass does not hit the object.

A flow past a bluff body will be deflected by the object, and particles in
the flow will experience a drag force. This force will accelerate the particles
towards the fluid trajectory, leading particles away from the bluff body. The
particle Stokes number, St = τp/τf , where τp and τf are particle and fluid time
scales, respectively (details in Section 4), can be considered a measure of particle
inertia. Hence, particles with a small Stokes number follow the flow to a larger
extent than particles with a large Stokes number. By using potential flow theory
to compute the flow past a circular cylinder, Israel & Rosner [18] found a curve fit
for the impaction efficiency as a function of the Stokes number. The predictions
by Israel & Rosner are useful, but they are inaccurate in predicting particle
impactions for flows where the viscous boundary layer on the cylinder plays an
important role (as potential flow theory assumes inviscid flow). In particular,
the theory is insufficient in predicting particle impactions for particles with
small Stokes number, and impaction in moderate Reynolds number flows. Here,
the Reynolds number is defined as Re = U0D/ν, where U0 is the mean flow
velocity, D is the diameter of a cylinder (the bluff body in the flow) and ν is
the kinematic viscosity. Haugen & Kragset [19] performed simulations using the
Pencil Code to compute inertial particle impaction on a cylinder in a crossflow
for different Stokes and Reynolds numbers. Later, Haugen et al. [20] performed
a similar study on a flow with multiple cylinders in order to emulate impaction
on a super-heater tube bundle. The impaction efficiencies obtained by Haugen
& Kragset [19] have been used as benchmarking results, but they are limited
to moderate Reynolds numbers and two-dimensional flows. Part of the reason
of this limitation is the use of an immersed boundary method that requires a
very fine grid to achieve the accuracy necessary to get accurate results in such
simulations.

1.3. Present

The purpose of this paper is to introduce an overset grid method applicable
to compressible particle-laden flows past a circular cylinder, and to assess its
performance for benchmarking cases and for a full blown particle-laden flow
simulation. The method has been implemented in the open source compressible
flow solver known as The Pencil Code [21, 22]. The aim is to improve the
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accuracy of the flow in the vicinity of a cylinder and to reduce computational
cost of these kinds of particle-laden flow simulations.

The structure of the paper is the following: In Section 2 the equations gov-
erning the flow and the bluff body representation is described. An assessment
of the accuracy of the method for steady and unsteady flow past a cylinder is
given in Section 3. In Section 4 the capabilities of the overset grid method is
demonstrated by simulating particle-laden flow interacting with a bluff body
at a moderate Reynolds number. The results and the computational costs are
compared with those of Haugen & Kragset [19], before concluding remarks are
given in Section 5.

2. Methodology

2.1. Governing equations

The governing equations of the flow are the continuity equation:

Dρ

Dt
= −ρ∇ · u , (1)

and the momentum equation:

ρ
Du

Dt
= −∇p+ ∇ · (2µS) , (2)

where ρ, t, u and p are the density, time, velocity vector and pressure, respec-
tively, and µ = ρν is the dynamic viscosity. The compressible strain rate tensor
S is given by:

S =
1

2

(
∇u+ (∇u)

T
)
− I

(
1

3
∇ · u

)
, (3)

where I is the identity matrix. The pressure is computed by the isothermal ideal
gas law, p = c2sρ , where cs is the speed of sound. The flow is isothermal and
weakly compressible, with the Mach number of ∼ 0.1 for all simulations. With
a constant speed of sound (for the isothermal case) and a constant kinematic
viscosity, the momentum equation solved on the overset grids is:

Du

Dt
= −c2s∇ (ln ρ) + ν

(
∇2u+

1

3
∇ (∇ · u) + 2S ·∇ (ln ρ)

)
. (4)

The governing equations are discretized with sixth-order finite-differences in
space and a third-order memory efficient Runge-Kutta scheme in time [23].
The flow is simulated on a rectangular domain with inlet at the bottom and
flow in the vertical direction. The circular cylinder is situated in the center
of the domain, and has boundary conditions no-slip and impermeability for
the velocity, and zero gradient in the radial direction for the density at its
surface. The latter condition can be derived from the ideal gas law and the

boundary layer approximation
(
∂p
∂n = 0 ,where n is the wall normal direction

)
for an isothermal flow. Navier-Stokes characteristic boundary conditions are
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used both at the inlet and at the outlet of the flow domain. This boundary
condition is a formulation that makes use of one-dimensional characteristic wave
relations to allow acoustic waves to pass through the boundaries [24]. The
remaining domain boundaries are periodic.

2.2. Overset grids

To resolve the flow domain with an overset grid method, a cylindrical coor-
dinate grid is body-fitted to the cylinder, and a uniform Cartesian grid is used
as the background grid (see Fig. 1a). Stretching in the radial direction is used
for the cylindrical grid. It is beneficial that the grids have similar grid spacing
in the region where fluid data is communicated between them. The stretching
enables having similar grid spacing in the interpolation region and a much finer
grid near the cylinder surface.

The compressibility of the flow leads to a strict stability limit for the Runge-
Kutta method, imposing a very small time step in the simulations. As we are
effectively solving two different flow problems, coupled only by the communica-
tions between the grids, some flexibility in the choice of time step is possible.
Choosing a time step on the background grid small enough to guarantee sta-
bility for the Cartesian grid spacing, and a smaller time step on the cylindrical
grid can reduce the overall computational cost significantly. The cylindrical grid
time step must be a multiple of the background grid time step to ensure that
the computations on each grid are synchronized. Another possibility, possibly
beneficial if the grid spacing near the cylinder is several orders of magnitude
smaller than that of the background grid, is to use an implicit solver on the
cylindrical grid. Such a solver is beyond the scope of this study.

The communication of data between the grids in the overset grid simulation
is done in two stages for each time step of the background grid. At each stage
of the communication, the required flow properties are interpolated from donor-
points to fringe-points. Each grid needs a zone of fringe-points at least three
point deep, such that the seven point central difference stencil can be used
without any special handling at points adjacent to the fringe-points. For a
curvilinear grid, the fringe-points are simply the three outer points at each
radial grid line (see Fig. 1b). For the Cartesian grid, the fringe-points need to
be identified, typically during pre-processing, to include all grid points within a
fixed area in the region covered by both the Cartesian and the cylindrical grid.
This is set by an inner and outer radius defining the interpolation region, see
red lines enclosing fringe-points on the Cartesian grid in Fig. 1c. Cartesian grid
points that are closer to the solid than the inner radius of the fringe-point zone
(or inside the solid), are hole-points. The hole-points are not used at all in the
computations.

In the overset grid method implemented in the Pencil Code, there is no
overlap between the two interpolation regions of Figs. 1b and 1c. That is, no
fringe-points are used as donor points. Hence, the interpolation is explicit, not
implicit [16]. Note that if the bluff body enclosed by the body-fitted grid is
moving, the cost of inter-grid communication is significantly increased due to
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(a)

(b) (c)

Figure 1: Overset grid method: (a) Cylinder grid on top of background grid (fringe-points of
cylinder grid and background grid points within cylinder grid radius not shown). (b) Commu-
nication between grids, interpolation from Cartesian donor-points to cylindrical fringe-points.
(c) Communication between grids, interpolation from cylindrical donor-points to Cartesian
fringe-points. Four donor-points (green) surround each fringe-point (orange) in bi-linear in-
terpolation. Dashed lines used for the part of the grid where variables are not computed by
finite-differences (fringe-points and hole-points).

cost related to identifying new fringe and donor-points on the background grid
at each new position of the bluff body.

At present, two types of interpolation are implemented for overset grid com-
munication in the Pencil Code. These are bi-linear Lagrangian interpolation and
bi-quadratic spline interpolation. Both methods have the advantage of avoid-
ing oscillations in the interpolation interval, a common problem for high-order
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interpolation. The Lagrangian interpolation is a second-order accurate scheme,
while the spline interpolation is third-order accurate. The illustration of donor-
points and fringe-points in Figs. 1b and 1c is for the Lagrangian interpolation,
where each fringe-point on one grid is interpolated from the 2 × 2 surround-
ing donor-points from the other grid. For the spline interpolation, a zone of
the 3 × 3 closest grid points are used as donor-points for interpolation of each
fringe-point. Note that the interpolation is bi-linear or bi-quadratic in both two-
and three-dimensions. This is due to the Cartesian and cylindrical grid having
a shared z-plane, hence no interpolation is needed in the z-direction.

At the solid-fluid interface, summation-by-parts finite-difference operators
are used to enhance stability for the unsteady flow problem (an unsteady wake
develops for Re > 47). The order of accuracy for such operators are third-order
for the sixth-order centered finite-difference method. Details on these operators
can be found in [25] (first derivatives) and [26] (second derivatives).

The centered finite-difference schemes are non-dissipative. This can cause
problems due to the potential growth of high-frequency modes, leading to nu-
merical instability. To some extent, the summation-by-parts boundary condi-
tions suppress such instabilities that are due to boundary conditions, but these
boundary stencils are not sufficient to suppress all oscillations in the solution on
the curvilinear stretched grid. In particular, such oscillations are prominent in
the density field. The detrimental effect of the high-frequency modes increase
as the grid spacing decreases, and may lead to diverging solutions as the grid
is refined. To suppress the high-frequency modes, a high-order low-pass filter
is used on the curvilinear part of the overset grid. The filter is a 10th order
Padé filter, with boundary stencils of 8th and 6th order. On the interior of the
domain, the filter is given by:

αf φ̂i−1 + φ̂i + αf φ̂i+1 =

N∑
n=0

αn
2

(φi+n + φi−n) , (5)

where φ̂k and φk are components k of the filtered and unfiltered solution vectors,
respectively, αf is a free parameter (|αf | ≤ 0.5) and αn are fixed parameters
dependent only on αf [27]. Boundary stencils can be found in Gaitonde and
Visbal [28]. The Padé filter is implicit, and requires us to solve a tri-diagonal
linear system at grid point in the radial direction, and a cyclic tri-diagonal
system at every grid point in the direction tangential to the surface. The free
parameter af is set to 0.1. With such a small value for af , filtering the solution
once per Cartesian time step is found sufficient to get a stable and accurate
solution.

3. Performance

3.1. Assessment of accuracy

The spatial accuracy of the overset grid method is examined by simulating
a steady flow past a circular cylinder at Reynolds number 20. A domain of size
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Table 1: Grid refinement levels used in the assessment of accuracy of the overset grid method.

Refinement Cylinder grid Cartesian grid
level Nr ×Nθ Nx ×Ny

0 17× 80 80× 81
1 33× 160 160× 161
2 65× 320 320× 321
3 129× 640 640× 641

Lx×Ly = 10D×10D is used. The diameter of the curvilinear, body-fitted grid
(henceforth called the cylinder grid) is three times the cylinder diameter.

An indicative measure of the accuracy of the method can be found by com-
puting solutions on several grid refinement levels, and using the finest grid as
the “correct solution” when computing two-norm errors of the solution. The
grids used in this accuracy assessment are listed in Tab. 1. An odd number of
grid points is used in the directions that are not periodic, to get grid points
that are aligned at each refinement level. A fixed (dimensionless) time step
∆t = 0.25 × 10−5 is used for the Cartesian grid computations at all refine-
ment levels. The small time step ensures that there is no violation of diffusive
or advective time step restrictions on any of the grids. These restrictions are
∆τ ≤ Cν∆χ2

min/ν and ∆τ ≤ Cu∆χmin/ (|u|+ cs), respectively, where ∆τ is
the dimensional time step, ∆χmin the smallest grid spacing in any direction,
and Cν and Cu are the diffusive and advective Courant numbers, respectively.

Hyperbolic sine functions are used for the stretching in the radial direction.
The parameters in the grid stretching are set such that the ratio between the
grid spacing normal and tangential to the cylinder surface is approximately
one, both in the vicinity of the solid surface and in the interpolation region in
the outer part of the cylinder grid. Furthermore, the number of grid points of
the Cartesian and the cylindrical grids are chosen to have similar grid spacings
in the region of inter-grid interpolation. The resulting local time step on the
cylindrical grid is ∆tc = 0.2∆t.

The main concern of the method we describe here, is to compute a very
accurate boundary layer around the cylinder. This is crucial for the application
to particle impaction simulations that the code will be used for in Section 4 and
in future studies. We therefore consider the L2-error norms of flow variables
along strips tangential to the cylinder surface as close as possible to the surface,
to get an indication of the accuracy of the scheme in the boundary layer. Figure
2 depicts L2-error norms of the density and the normal and tangential veloc-
ity components (with respect to the cylinder surface), computed with the two
different interpolation methods. The norms are computed along a strip around
the cylinder, at the grid point closest the cylinder for refinement level 0 (this
corresponds to the 2nd point from the cylinder for refinement level 1, 4th for
level 2, etc.).

For both interpolation methods the density computation is second-order and
the computation of the radial velocity component is between third- and fourth-
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Figure 2: L2-error norms of ur, uθ and ρ at varying refinement levels at the grid point closest
to the cylinder surface (for the coarsest grid). Results are for the computations with bi-linear
Lagrangian interpolaiton (left) and bi-quadratic spline interpolation (right), and ∆x is the
grid spacing on the Cartesian grid.

order accurate, at the grid point closest to the surface on the coarsest grid. Note
that although the density computations are only second-order accurate, the L2-
error norms of density are approximately one order of magnitude smaller than
those of the velocity components on the finest grid. Further, the fluctuations
in density are very small compared to those in the velocity, in our low Mach
number simulations. We therefore focus only on the velocity components in the
further assessment of the order of accuracy.

The only noticeable difference between the results from simulations with
different interpolation methods, as seen in Fig. 2, is the computation of the tan-
gential velocity component. With the Lagrangian interpolation the accuracy
is approximately second-order. With spline interpolation, on the other hand,
the order is in-between first and second-order for the first grid refinement and
improves to third-order for the second grid refinement. The results suggest that
the communication between grids is less influential to the accuracy in the bound-
ary layer when spline interpolation is used rather than second-order Lagrangian
interpolation.

For a more detailed picture of the formal order of accuracy of the overset
grid method, consider Fig. 3. The figure depicts the formal order of accuracy
P , of the radial and tangential velocity components, computed along strips at
increasing distance from the cylinder boundary (cylinder boundary at rc = 0.5).
Based on the assumption that the L2-error norm on a grid with grid spacing ∆x
can be expressed as L2(∆x) ∼ ∆xp, the order of accuracy P can be computed
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Figure 3: Formal order of accuracy of velocity components computed along strips tangential
to the cylinder surface at non-dimensional radial position r, for upper refinement levels for
flow with Re = 20 with Lagrangian interpolation (upper) and spline interpolation (lower).

by:

P =
log(L2(∆x)/L2(∆x/2))

log 2
. (6)

As expected, the interpolation between grids has a significant effect on the
accuracy over the entire cylinder domain. In principle, the spline interpolation
scheme is third-order accurate while the Lagrangian interpolation a second-order
accurate method. The effect of using the different methods of interpolation can
be seen in Fig. 3. We see that the interpolation alone is not enough to lower
the accuracy by one order (there is approximately half an order of accuracy
difference between the results obtained with the two methods). This may be
due to a number of other properties that affect the accuracy, like grid stretching,
boundary conditions, filtering, etc. The accuracy from the simulations using
Lagrangian interpolation yields P ≈ 3 for ur and P ≥ 2 for uθ on most of
the cylinder grid. In the vicinity of the cylinder surface the difference between
the Lagrangian and spline interpolation diminishes, particularly for the radial
velocity component where both methods yield very high order of accuracy, with
P ≈ 5. This is significantly more accurate than the more conservative suggestion
of radial velocity accuracy in-between third- and fourth-order, that we saw in
Fig. 2 (the results in Fig. 2 correspond to the second point from the left in
Fig. 3).

3.2. Unsteady flow

The L2-error norms are suggestive of the formal accuracy of the numerical
method, but do not reveal the in-use accuracy of the method for simulations
in the unsteady flow regime. We therefore need to consider the performance
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of the overset grid scheme for unsteady flow, before arriving at our goal of a
full-blown simulation of a particle-laden flow interacting with a cylinder in this
flow regime.

A grid refinement study is performed for Re = 100, where unsteady vortex
shedding has developed in the cylinder wake. A domain with Lx×Ly = 10D×
20D is used, still with the cylinder in the center of the domain. The resulting
mean drag coefficient (CD), root-mean-square lift coefficient (C ′L) and Strouhal
number (Str) are computed, where the drag and lift coefficients are computed
from the pressure and shear forces on the cylinder, Fp and Fs, respectively.
These are given by:

Fp = −
∫
p
∣∣
rc
dA ≈ −r̂hrc∆θ

Nθ∑
i=1

p(rc, θi) , (7)

Fs =

∫
σ
∣∣
rc
dA ≈ θ̂νhrc∆θ

Nθ∑
i=1

ρ(rc, θi)
∂u

∂r

∣∣∣∣
(rc,θi)

, (8)

where h is the height of the cylinder and σ is the shear stress. With flow in the
y-direction, the drag and lift forces, FD and FL, are found by taking the sum of
the pressure and shear forces in y- and x-direction, respectively. These forces
can be used to find the drag and lift coefficients by:

CD =
FD

1
2ρ0U

2
0A

, (9)

CL =
FL

1
2ρ0U

2
0A

, (10)

where ρ0 and U0 are free-stream values of the density and velocity, respectively,
and A = 2hrc is the projected frontal area of the cylinder. The Strouhal num-
ber is simply the shedding frequency, non-dimensionalized by the free-stream
velocity and cylinder diameter.

The grid refinement study of the unsteady flow is performed with both La-
grangian and spline interpolation on two differently sized overset grids. One
overset grid has a cylindrical grid with diameter 3D, that is, the same size that
was used in the assessment of accuracy for the Re = 20. The other has a size
5D. Hence, there is a factor two difference in the radial length (Lr = rcg − rc,
where rcg is the outer cylinder grid radius) of the two cylindrical grids. At
each refinement level, the smallest spacing in the radial direction is the same for
the two different overset grids, and the properties of the stretching is the same
as that in the Re = 20 flow simulations (approximately quadratic cells in the
vicinity of the surface and in the interpolation region, and approximately equal
grid spacing on the Cartesian and curvilinear grid on the interpolation region).
Hence, the outer grid spacing on the larger cylindrical grid will be larger than
the outer grid spacing of the smaller cylindrical grid. Thus, a coarser Cartesian
grid can be used for the overset grid with the larger cylinder grid. This, in
turn, allows for a larger time step on the background grid, but requires more
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Table 2: Grid refinement levels used in the grid refinement study for flow past a cylinder
at Re = 100 with two different sized cylindrical grids. Grid spacing ∆r has been made
non-dimensional by the cylinder diameter.

Refinement ∆rmin rcg = 3rc rcg = 5rc
level ×10−2 Nr ×Nθ Nx ×Ny Nr ×Nθ Nx ×Ny

0 4.1 16× 80 80× 160 24× 80 50× 100
1 2.7 24× 120 120× 240 36× 120 76× 152
2 2.0 32× 160 160× 320 48× 160 100× 200
3 1.6 40× 200 200× 400 60× 200 128× 256
4 1.3 48× 240 240× 480 72× 240 150× 300
5 0.97 64× 320 320× 640 96× 320 200× 400
6 0.77 80× 400 400× 800 120× 400 256× 512
7 0.64 96× 480 480× 960 144× 480 306× 612
8 0.48 128× 640 640× 1280 192× 640 408× 816

Table 3: Mean drag coefficient (CD), rms-lift coefficient (C′L) and Strouhal number (Str) for
Re = 100 computed at a domain Lx ×Ly = 10D× 20D with two different overset grids. The
resolution is given by the finest refinement levels in Tab. 2, and both Lagrangian (LI) and
spline interpolation (SI) cases are considered.

rcg = 3rc rcg = 5rc
Coefficient LI SI LI SI

CD 1.461 1.459 1.473 1.473
C ′L 0.2535 0.2492 0.2637 0.2633
Str 0.1721 0.1720 0.1724 0.1724

sub-cycles on the cylindrical grid for each Cartesian time step. Details on the
grids used in this refinement study are listed in Tab. 2.

Results for the grid refinement at Re = 100 can be seen in Fig. 4 and Tab. 3.
In Fig. 4, the dimensionless drag and lift coefficients, and the Strouhal number
have been normalized by the result computed at the finest grid. Hence, the
plots depict the relative deviation from the result at grid refinement level eight
from Tab. 2. The values of the coefficients computed at this refinement level,
for each of the four cases, are given in Tab. 3.

We see that the dimensionless numbers converge quite rapidly for all but one
of the cases tested. The exception is the rms lift coefficient computed at the
smaller of the two cylindrical grids with spline interpolation, where the values
at refinement levels five to seven deviate approximately one percent from the
finest grid result. For the three remaining cases, the deviation from results at
refinement levels four to seven from the finest grid result is less than 0.14% for
all coefficients (if only drag and Strouhal number are considered, the deviation
is less than 0.06% for these cases). Hence, a definite grid independent solution
is achieved for three of the four cases considered.

The fact that one of the cases with a cylinder grid with radius rcg = 3rc gives
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Figure 4: Normalized values for mean drag coefficient (CD), rms-lift coefficient (C′L) and
Strouhal number (Str) for Re = 100 computed at different refinement levels (see Tab. 2)
for overset grids with two sizes of the radii of the body-fitted cylindrical grid, rcg . Results
are given for computations with Lagrangian interpolation (upper) and spline interpolation
(lower).

a sub-par solution for the unsteady flow is quite surprising. Especially as the case
is the one using the high-order interpolation (quadratic spline interpolation),
which had the best performance for the steady flow simulations. This is perhaps
caused by a larger mass loss in the inter-grid communication for transient flow,
when spline interpolation is used rather than Lagrangian interpolation. We
will not speculate further on this, but note that the Lagrangian interpolation
outperformed the spline interpolation on the smaller cylindrical grid.

By considering the grid independent solutions in Tab. 3, used to normalize
the grid refinement results, two particular factors catch our attention. Firstly,
by comparing the results with the two different interpolation schemes at the
domain where the cylindrical grid has rcg = 5rc, we see that the computed
drag, lift and Strouhal number appear to be independent of choice of inter-
grid communication for these cases. This in contrast to the rcg = 3rc results,
but in accordance with our intuitive understanding of the problem: the farther
away from the cylinder boundary the interpolation is moved, the less it affects
computation of quantities at the boundary. Note, however, that even though
the drag and lift forces are computed at the boundary, the boundary layer
variables that these coefficients are dependent on are dependent on the flow
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upstream and downstream of the cylinder. The results therefore suggest that
the flow surrounding the cylinder, not just the solution in its immediate vicinity,
is affected little from the choice between the two interpolation methods when
the larger rcg is used for the cylinder grid.

Secondly, by comparing the results for CD and C ′L on the different sized
cylinder grids, computed with Lagrangian interpolation, we see that the values
are somewhat higher for the larger cylinder grid. Although the results are grid
independent, neither of the values are quantitatively accurate values for the drag
or lift of a cylinder in a cross flow at Re = 100. The values are too large, which is
dye to the small domain sizes. The higher values computed for the case with the
larger rcg suggest that the blockage effect is largest for this case. Since the width
of the domain is only 10D, a cylinder grid with diameter 5D covers up to half of
the spanwise width. It is not unlikely that interpolation errors on the Cartesian
grid, on one side of the cylinder grid can affect the flow on the other side of
the cylinder grid, due to the periodic boundary. Further, a larger cylinder grid
brings the interpolation region closer to the inlet and outlet, and a larger effect
from the limited streamwise length may have a significant effect on the flow.
The increased blockage effects may appear contradictory to the interpolation
independent solution noted above, as it is farther from the interpolation region
to the solid boundary, than from this region to the inlet, outlet or periodic
boundary. But keep in mind that when moving from the interpolation region
to the cylinder the solution is filtered, which has a smoothing effect on spurious
errors that arise from interpolation, grid stretching, etc., while no filtering is
used on the Cartesian grid.

To control that the grid independent solutions yield accurate flow predictions
we also perform a simulation on a large domain, Lx×Ly = 50D×50D, for each
of the four flow cases, and compare the results with data from previous studies.
The grid spacing corresponding to grid refinement level five in Tab. 2 is used on
the large square domain. The computed flow quantities show good agreement
with previous studies performed on similar domain sizes (see Tab. 4). Again
we note that the results from the simulations with the larger cylinder grid is
somewhat larger than the results with rcg = 3rc. The increased blockage effect
on the larger cylindrical grid means that larger domains should be used when
a larger cylinder grid radius is used. This will decrease the difference in the
number of grid points required to resolve the flow for the two different grid
sizes. Further, as more sub-cycles of the cylindrical grid are necessary for each
time step for the 5rc case, and each sub-cycle is more expensive due to more
cylindrical grid points than for the 3rc case, we stick to the smaller of the two
cylindrical grids in the simulations with particle deposition.

4. Particle deposition on a circular cylinder in a laminar cross flow

Direct numerical simulations with a large number of particles suspended in
the flow have been performed. This has been done to assess the performance of
the overset grids on a more complex and demanding simulation than the simple
flow past a cylinder at low Reynolds numbers.

15

This is the accepted version of an article published in International Journal of Computational Fluid Dynamics 
DOI: 10.1080/10618562.2019.1593385



Table 4: Comparison with previous studies. The studies are performed on domains with
streamwise length 60 ≤ Lx/D ≤ 100 and spanwise length 40 ≤ Lx/D ≤ 100, and the present
study has Lx = Ly = 50D. Results from the present study are listed for both Lagrangian
interpolation (LI) and spline interpolation (SI) for two different sized overset grids. The
asterisk on some values of C′L denote a value where only the amplitude of the lift was given.

The asterisk mark a lift amplitude scaled by 1/
√

2 to get the root-mean-square lift coefficient,
a valid scaling for the sinusoidal-like lift coefficient (with mean value zero).

CD C ′L St

Li et al. [29] 1.336 − 0.164
Posdziech & Grundmann [30] 1.3504 0.234(∗) 0.1667
Pan [31] 1.32 0.23(∗) 0.16
Qu et. al. [32] 1.326 0.2191 0.1660
Present, rcg = 3rc (LI) 1.3368 0.2352 0.1609
Present, rcg = 3rc (SI) 1.3342 0.2292 0.1605
Present, rcg = 5rc (LI) 1.3409 0.2428 0.1605
Present, rcg = 5rc (SI) 1.3407 0.2423 0.1604

The particle deposition simulations are based on the study by Haugen &
Kragset [19] where particle-laden flow simulations were performed on a range of
Reynolds numbers on a moderate sized flow domain (6D × 12D). The analysis
will not be repeated here, as a brief introduction to the method used for particle
representation and deposition is sufficient for our present purpose. The particle-
laden flow simulations have been performed on a domain of the same size as in
Haugen & Kragset[19], for unsteady laminar flow with Reynolds number 100.

4.1. Particle equations

The particles are point particles tracked using a Lagrangian formalism, where
the particle velocity and position are described by:

dvp
dt

=
FD,p
mp

, (11)

dxp
dt

= vp , (12)

where vp, xp and mp are the velocity, center of mass position and mass of the
particle, respectively. The force FD,p acting upon a spherical particle is the
drag force:

FD,p =
1

2Cc
ρCD,pAp |u− vp| (u− vp) , (13)

where Ap = πd2p/4 is the cross sectional area of the particle and

Cc = 1 +
2λ

dp

(
1.257 + 0.4e(−1.1dp/2λ)

)
, (14)

is the Stokes-Cunningham factor (with parameters set for air) for a particle
with diameter dp. The mean free path λ = 67 nm accounts for the fact that for
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very small particles, the surrounding medium can no longer be regarded as a
continuum but rather distinct particles. Further, the particle drag coefficient is
given by:

CD,p =
24

Rep

(
1 + 0.15Re0.687p

)
, (15)

for particle Reynolds number Rep = dp |vp − u| /ν . 1000. With this, the
particle drag force can be re-written as

FD,p =
mp

τp
(u− vp) , (16)

where

τp =
Sd2pCc

18ν(1 + fc)
(17)

is the particle response time, with fc = 0.15Re0.687p and S = ρp/ρ. Note that
this equals Stokes drag in the limit Cc = 1 and fc = 0. Using the convention of
[19], the Stokes number (St = τp/τf ) is defined with a fluid time scale

τf =
D

2U0
. (18)

The fluid velocity is interpolated from surrounding grid points by bi-linear
interpolation on the Cartesian grid and bi-quadratic interpolation on the curvi-
linear grid. The order of the interpolation is higher on the curvilinear grid
as the velocity components (the radial, in particular) are expected to be close
to quadratic near the cylinder surface. For three-dimensional simulations, lin-
ear interpolation is used for the velocity component along the z-direction (the
cylinder’s spanwise direction) on all grids.

For particles very close to the cylinder surface, special handling is used to
interpolate the radial component of the fluid velocity. By very close to the
cylinder we mean in-between a surface grid point and a grid point neighboring
the surface, or, alternatively, withing the pre-calculated momentum thickness of
the boundary layer. The special handling in use for particles at such positions
is a quadratic interpolation that guarantees no overshoots in the interpolation.
Since all velocities are zero at the surface, this can be achieved by:

ur,p = ui,g (δrp/δrg)
2
, (19)

where ur,p and ur,g are radial velocity components at the position of the particle
and at the position of the interception between a surface normal and the first
grid line further from the surface than the particle, respectively. The distances
δp and δg are distances from the surface to the particle and to said grid line,
respectively.
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(a) St = 0.1 (b) St = 1.0 (c) St = 10

Figure 5: Particle-laden flow interacting with a circular cylinder at Re = 100. An unhindered
particle will cross the flow domain, from the inlet (bottom) to the outlet (top) in approximately
two shedding periods at this Reynolds number. Contours of the streamwise velocity component
make up the background.

4.2. Particle impaction

After the flow has developed to unsteady periodic vortex shedding, particles
are inserted continuously at the inlet. The particles are inserted randomly, as a
homogeneous distribution over a rectangle covering the possible particle trajec-
tories that can impact the cylinder. From here they are convected downstream,
and removed from the flow either by impacting the cylinder or by reaching the
outlet (see Fig. 5). An impaction is registered (and the particle removed) if the
distance between the cylinder surface and the particle’s center of mass is less
than or equal to dp/2. Every particle impaction simulation is run until all par-
ticles have been removed from the flow. In total 3.1×106 particles are inserted,
distributed over particles with Stokes numbers in the range 0.01–10, with a
progressive particle distribution with respect to particle radius (approximately
2× 102 more particles with St = 0.01 than St = 10 inserted).

The resulting impaction efficiency (η = Nimp/Nins) can be split into front
(ηf ) and back side impaction (ηb). At the low Reynolds number flow in this
study, backside impaction hardly occurs and we focus on the front side im-
paction. Figure 6 depicts the particle front side impaction from the present
simulations, compared to results from literature. The present results are com-
puted on the grid with grid spacing defined as refinement level four in Tab. 2, for
the rcg = 3rc case with Lagrangian interpolation. With the Lx×Ly = 6D×12D
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Figure 6: Front side impaction efficiency (ηf ) as a function of Stokes number (St) for Reynolds
number 100. Present results compared to a previous study by Haugen & Kragset [19]

domain used here, this means we are using a grid (Nr × Nθ) + (Nx × Ny) =
(48×240)+(144×288). The results from Haugen & Kragset [19] were computed
on an equidistant grid with 512×1024 grid points, using an immersed boundary
method to resolve the cylinder surface.

The particle impaction results from our study agree very well with the results
from literature, although the results from the present study are computed on
the grid with only 10.1% as many grid points as used by Haugen & Kragset [19].
An additional efficiency improvement was achieved due to the possibility to use
a time step of a factor 3.5 larger, due the time steps proportionality to the grid
spacing, although some extra work is needed at each time step (computation
on two grids, communication of data, filtering on cylinder grid, etc.). Note that
for very small particles, the time step can also be restricted by the particle time
scale. That is, the time step must be small enough to resolve the time-dependent
particle equations. Particles are updated only at the Cartesian time step.

4.3. Investigating the accuracy of the computed impaction efficiencies

The coarseness of the grid used in the computation of particle impaction
efficiencies in the previous section allow us to assess, at moderate computational
expense, some of the assumptions that must be made in order to regard these
impaction results as quantitatively accurate results. These assumptions are,
firstly, that blockage effects from the limited domain (with Lx×Ly = 6D×12D)
have a negligible impact on the particle impaction. Secondly, using the coarsest
resolution where grid independency of drag and lift coefficients was reached,
means assuming that the transport of the particles is dependent on an accurate
flow field only.

A critical assessment of these assumptions leads us to expect a somewhat
higher impaction result for particles on a domain where the blockage effect
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Figure 7: Front side impaction efficiency (ηf ) as a function of Stokes number (St) for Reynolds
number 100 for different domain sizes (left) and grid resolutions (right).

is large, due to a squeezing of the flow field and, consequently, less particles
being directed away from the cylinder. In particular, this is expected to affect
particle that follow the flow to a large extent, that is, particles with small
Stokes numbers. Further, the flow velocities at particle positions are not only
dependent on an accurately computed flow field, but also accurate interpolation.
The latter aspect can be very sensitive to grid spacing, even if the flow is resolved
accurately. Haugen & Kragset [19] used linear interpolation to compute flow
velocity at particle positions, except withing the grid point closest to the surface,
where an expression similar to that of Eq. 19 was used. Linear interpolation
of velocities that are proportional to −(δr)2 (as the upstream flow field at the
centerline through the cylinder is) will lead to a systematic over-estimation of
these velocities. Hence, an over-prediction in particle impaction can be expected
from their results. What is important in this respect, is how large this possible
over-prediction is, and for what particle sizes it occurs.

To investigate accuracy of the computed impaction efficiencies we perform
particle-laden flow simulations at a larger domain size, Lx × Ly = 10D × 20D,
that is, the size used in the grid independence study of Section 3.2. At this larger
domain several refined grids are used. These are grids denoted refinement levels
4–7 in Tab. 2, with rcg = 3rc. Thus, from 48 (coarsest) to 96 (finest) grid points
are used in the radial direction on the cylindrical grid, and the background grid
is refined accordingly. The number of inserted particles is 1.1 × 107, whereof
7× 106 are particles with St ≤ 0.1. The results are seen in Fig. 7.

Very few of the smallest particles deposit on the cylinder. To get enough
particle impaction at the smallest Stokes numbers to give reliable statistics,
we only insert particles with St ≤ 0.1 over a region covering one tenth of the
cylinder’s projected ares, around the centerline of the cylinder, and divide the
resulting impaction efficiency by ten. No small Stokes number particles inserted
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outside the insertion area are expected to hit the cylinder. To control this, a
simulation with St = 0.05 and 0.1 inserted over the whole projected cylinder
area has been performed, and the results are included as black circles (o) in
Fig. 7. There is close to an exact overlap between the impaction efficiencies
from the particles inserted in the two different ways.

From Fig. 7 it is clear that the blockage effect from the limited domain size
has a significant effect on the particle impaction efficiencies. For St ≤ 0.5 this
effect is larger than 10%, and it increases as the Stokes number is decreased.
The largest difference in impaction efficiencies is seen at St = 0.01, where 200%
more impaction occurs for the smallest domain size. The resolution plays a
smaller, but not insignificant, role in the impaction efficiencies. Increasing from
the coarsest grid, with Nr = 48, to Nr = 64, noticeably reduces the impaction
efficiencies. The reduction is more than 10% for St ≤ 0.3. A further refinement
of the grid has some effect, but this effect is negligible for Nr ≥ 80. Comparing
the results from the larger domain with Nr = 80 to impaction results by Haugen
& Kragset [19] suggests that Haugen & Kragset have found a qualitatively
correct result, but have somewhat quantitatively over-predicted the particle
impaction, in particular in the boundary interception region St . 0.3. For the
smallest Stokes number (St = 0.01) the over-prediction is of approximately a
factor 6.3, but at St = 0.1 this factor has decreased to 1.7.

5. Concluding remarks

In this work, we have presented a high-order overset grid method, imple-
mented in the open-source code known as the Pencil code. The method uses
high-order finite-difference discretization to solve the compressible Navier-Stokes
equations on several grids, and communicates necessary flow data between the
grids by linear or quadratic interpolation. Unique for the overset grid implemen-
tation described here, is the use of local time step restriction and summation-
by-parts finite-difference operators. The relaxed time stepping restriction on
the coarser grid is very cost efficient for a weakly compressible flow, while the
summation-by-parts operators enhance numerical stability together with the use
of Padé filtering. The purpose of developing the method is to compute parti-
cle impaction on a cylinder in a cross flow, and for this purpose a body-fitted
cylindrical grid is an appropriate choice to resolve the boundary layer around
the cylinder with high accuracy.

An investigation of the formal order of accuracy of the overset grid implemen-
tation revealed that high-order accuracy is indeed reached. Regardless of the
choice of bi-linear og bi-quadratic interpolation, the radial velocity component
was above third-order (and approximately fifth order at the grid point closest
to the surface) and the tangential velocity components was in-between second
and third-order in most of the domain covered by the body-fitted cylindrical
grid. For unsteady flow the method converges quite rapidly to grid independent
solutions for the essential flow variables (drag, lift and Strouhal number) for
most of the cases considered. An exception is the smaller cylindrical grid where
inaccuracy from spline interpolation was seen in the lift coefficient of the flow.
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Using a larger cylindrical grid, with radius five times as large as the cylinder
radius, decreased the effect of the interpolation, but increased blockage effect of
the restricted size of the flow domain.

When applied to the problem of inertial particles impacting on a cylinder,
impaction efficiencies of previously published results where reproduced at a sig-
nificantly reduced cost. The computational cost was reduced due the coarser
background grid required to resolve the flow, which yielded both a much smaller
number of grid point (90% reduction in 2D) and the possibility to use a larger
time step in a most of the solution domain.

A critical assessment of the particle impaction results revealed that the lim-
ited domain size had a significant impact on particle impaction, particularly
for the smaller Stokes numbers. Further, although the flow was deemed grid
independent, using a finer grid, and thus a more accurate interpolation of flow
velocity to particle positions, reduced the number of particles that hit the cylin-
der. The resulting impaction curves suggest that particle impaction has been
over-estimated in previous studies, in particular for very light particles where
impaction occurs by boundary interception.

The overset grid method implementation in the Pencil Code is ready for
three-dimensional simulations, and extending DNS studies of particle impactions
on a cylinder to Reynolds number for real-world application (factor 10-20 larger
than the investigation here, for industrial boilers) is within reach. However,
even with the highly accurate and efficient method presented here, increasing
the Reynolds number and computing three-dimensional flow will be computa-
tionally costly. How large Reynolds numbers that can be considered will de-
pend largely on the Stokes numbers of the particles in the study, and on what is
deemed acceptable accuracy when particle impaction efficiencies are computed.
If the focus is not just qualitative trends, but quantitatively accurate results, we
recommend a careful assessment of grid independence (not just of flow variables,
but of the particle impaction itself), and care in selection of domain size and
set-up.
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