
Relay attacks of NFC smart cards

Xiqing Chu

Master in Security and Mobile Computing

Supervisor: Colin Alexander Boyd, ITEM

Department of Telematics

Submission date: June 2014

Norwegian University of Science and Technology

Relay Attack of NFC Smart Card

Xiqing Chu

Submission date: June 2014
Responsible professor: Colin Boyd, ITEM, NTNU Tuomas Aura, Aalto University
Supervisor: Sandeep Tamrakar, PhD Researcher, Aalto University

Norwegian University of Science and Technology
Department of Telematics

Title: Relay Attack of NFC Smart Card
Student: Xiqing Chu

Problem description:

This thesis would study and understand ticketing system based on DESFire
cards. Student would investigate whether replay attack using two proxy devices is
possible or not. After establishment of attack, student observes what would be the
consequences of the replay attack on public transportation system and the valuable
assets attackers can profit on during the attack.

Student would develop Android programs on NFC based phones to perform
research. Testing environment would be built on legacy Java code. Possible attacks
experiment would be carried on lab ticketing system. Bases on the findings from
research, student will try to recommend solutions to improve the ticket protocol so
that this system is unaffected by the relay attack or at least minimize the profit that
attacker can get.

Responsible professor: Colin Boyd, ITEM, NTNU Tuomas Aura, Aalto University
Supervisor: Sandeep Tamrakar, PhD Researcher, Aalto University

Abstract

Contactless smartcards are used for various security-critical applica-
tions, such as identification and access, ticketing, and payment. Smart
cards are vulnerable to a relay attack where the card is read e.g. from
the victim’s pocket and used remotely for unauthorized purposes. Some
common card technologies are also vulnerable to man-in-the-middle at-
tacks where the attacker manipulates the communicated data, typically
to the card holder’s advantage. This thesis project has two goals: (1)
to implement relay attacks against NFC smart cards, such as transport
tickets based on Mifare DESFire EV1 tehcnologies, and (2) to investi-
gate how time measurements could be used to detect and prevent such
attacks. We have utilized off-shelf smart phone NFC features and built a
prototype of NFC smart card relay attack for experiments. We also con-
ducted time measurements on both direct DESFire APDU transactions
and transactions through relay attack channels. Finally we proposed
counter-measures to relay attack such as timing on each transaction and
check UID of NFC tags in transaction.

Preface

During the past two years, NordSecMob international master program
offered me a splendid opportunity to discover the western world. I am
glad I have achieved a successful student life and this program broadened
my horizon. The valuable experience in the past two years will company
me to the future.

Special thanks goes to my instructor Sandeep, professor Tuomas
from Aalto University and professor Colin from NTNU. Sandeep as an
instructor offered me numerous amounts of help during the exploration
of this thesis. He gave me advice on both life and academic research.

Life will go on.

June 30, 2014

Espoo, Finland

Contents

List of Figures vii

List of Tables ix

Abbreviations and Acronyms 1

1 Introduction 3
1.1 Problem statement . 4
1.2 Structure of the Thesis . 5

2 Background and Previous Studies 7
2.1 Near Field Communication . 8

2.1.1 NFC Definition and Smart Cards 8
2.1.2 NFC Standard Protocols . 9
2.1.3 NFC Operating Modes . 10
2.1.4 Mobile Phone and NFC . 11

2.2 Relay attack and Frame Waiting Time 12
2.2.1 Relay Attack on NFC . 12
2.2.2 Relay Attack on NFC with Smart Phone 12
2.2.3 Frame Waiting Time and Relay Attack 13

3 DESFire EV1 Specifications 15
3.1 DESFire EV1 Card Identification . 15
3.2 DESFire EV1 File System . 18
3.3 Authentication and Key System . 19

3.3.1 Operations and Authentication 19
3.3.2 Authentication and Session Key 21

3.4 An Example of DESFire Operation 22

4 Relay Attack on NFC applications 25
4.1 Man-in-the-middle attack (MITM) and Relay attack 25
4.2 Requirements of Smart Phone NFC Relay Attack 27

4.2.1 Phone-to-Phone Communication Channel 28

v

4.2.2 NFC Read/Write, Emulation Mode 28
4.2.3 Block Communication between Reader and Card 30

4.3 Solution Design Components . 31

5 Implementation 33
5.1 Development Tools and Dependencies 33
5.2 Architecture Implementation . 34

5.2.1 Ticket Reader Application . 35
5.2.2 Host Card Emulation App . 38
5.2.3 NFC Reader/Writer App . 41

5.3 Flow of Relay Attack . 42
5.4 Problems and Optimization . 43

6 Evaluation and Experiments 47
6.1 Experimental Setup . 47

6.1.1 Tools and Environment . 48
6.1.2 Error Sources in Experiment 48

6.2 Time Delay Measurements . 49
6.2.1 Single Command Encryption Time of Real Card 49
6.2.2 Single Read Operation Time of Real Card 50
6.2.3 Relay Attack Delay Measurement (Sniffer) 52
6.2.4 Relay Attack Delay Measurement (Java Application Side) . . 52

6.3 Problems in Experiments . 54

7 Discussion 57
7.1 Frame Waiting Time . 57
7.2 Bluetooth vs Wi-Fi . 57
7.3 Cellular network . 58
7.4 Preventing Attack From The Beginning 58

References 59

List of Figures

3.1 ISO 14443-3 Card Identification Process[NXP12]. 16
3.2 ATQA, SAK, UID and ATS for Real Card and Emulated Card 17
3.3 PICC level commands . 19
3.4 Application level commands . 20
3.5 File level commands . 20
3.6 Authenticate PICC master key. 22
3.7 Create New Application on PICC. 23
3.8 Create a Backup file under New Application on PICC. 24
3.9 Write data to Backup Data File. 24

4.1 Man-in-the-middle attack workflow. 26
4.2 Design of Relay Attack against NFC tags. 27
4.3 NFC Relay Attack via Mobile Broad Band. 29
4.4 Host Card Emulation of NFC on Android. 30

5.1 Prototype Overview of Relay Attack. 35
5.2 Java NFC program structure (on PC). 36
5.3 Format Card, Java code based on libnfc. 37
5.4 Format Card, Actual APDU been Exchanged 37
5.5 Tag Wrapper to enable Host Card Emulation 39
5.6 Three Threads Architecture of HCE app 40
5.7 Important Class Diagram of HCE application 41
5.8 Internal Status of HCE application . 42
5.9 Tag Connection Class Diagram of Reader/Writer app 43
5.10 Tag Connection Class Diagram of Reader/Writer app 44
5.11 UID of Emulated Card vs. Real Smart Card 45

6.1 Single Command authentication by DES example 49
6.2 Response Time for Reading Data, Different Encryption methods, Real

Card . 51
6.3 Different Channel Delay . 53
6.4 Delay of different operations from server side. 56

vii

List of Tables

3.1 ATQA, SAK, UID and ATS in Card Identification 17
3.2 DESFire EV1 Smart Card Structure . 18
3.3 DESFire EV1 Smart Card File Types 19

5.1 Developer Machine Settings . 34
5.2 Nexus S phone with Cyanogenmod 9 . 34

6.1 Java NFC Server Setting . 48
6.2 Nexus S phone settings . 48
6.3 DESFire EV1 features . 48
6.4 Response Time for Different Encryption method on Real Card 50
6.5 Response Time for Reading Data, Different Encryption methods on Real

Card . 50
6.6 Channel Delay created by Wi-Fi, Bluetooth 52
6.7 Different execution time of transactions 54

ix

Abbreviations and Acronyms

3K3DES Triple Key, Triple DES Encryption
ATS Answer to Select
APDU Application Protocol Data Unit
FWT Frame Waiting Time
HCE Host Card Emulation
MITM Man-in-the-middle Attack
NFC Near Field Communication
OS Operating System
POS Point of Sale
PC Personal Computer
PCD Proximity Coupling Device
PICC Proximity Integrated Circuit Card
RFID Radio Frequency IDentification

1

Chapter1Introduction

Near Field Communication (NFC) technology exists in our daily life and has inte-
grated into many aspects of our activities(See Chapter 2). Originally developed as a
subset of RFID technology, NFC features a low range but high frequency wireless
communication between two devices. Contactless smart cards, or say, NFC smart
cards are nowadays used in many applications including ticketing system like bus tick-
ets, payment systems like NFC embedded Master card[All07] and even identification
cards which can unlock the door. Already there have been plenty of researches on the
security features of NFC applications[KW05, HB06, OP11, SVV10, MLKS08, Mul09].

The emergence of NFC technology is far earlier and tools to operate NFC are
dedicated devices from vendors. In the past, business solution programmers or
researchers have the resource to explore the pattern of NFC through dedicated
devices and proprietary protocols. Normal users possessing NFC cards can only check
their information of cards and read or write information through official provided
service points. For example, the bus card users can only check their balance in cards
via top-up machines. However, the situation has changed since smart phones with
NFC chips come into common user’s life. A normal user has no knowledge of NFC
specifications can read/write his card and even customize his NFC tag with the help
of smart phone applications.

With the unveiling of the NFC technology, a piece of hardware enabled NFC
features can easily perform the following two important tasks in NFC, read/write
mode and card emulation mode. As the NFC technology is labeled as a low distance
and encryption protected communication, we are not the first one to perform relay
attack[Han05]. However, this thesis might be the first to discover the possibility to
make a feasible relay attack by taking advantage of NFC feature on off-shelf Android1

smart phones.

1http://www.android.com/

3

4 1. INTRODUCTION

1.1 Problem statement

John leaves home in the morning with his bus travel card on the desk
with a smart phone attached to it. When he catches up the bus and trying
to pay for the trip, instead of showing his travel card, he shows another
smart phone from his pocket to the reader. Surprisingly, the reader accepts
it and beeps as normal. The bus driver cannot believe his eyes and thinks
it must be some dark magic. What he does not know is that John’s card
at home updates the value simultaneously already via cellular network by
the smart phone put on it. John doesn’t cheat, all he does is a simple
relay attack on NFC technology.

Our goal in this thesis research is to prevent relay attack on NFC smart cards,
Forcing real contactless smart card to be physically presented to service points,
e.g. bus card to bus card reader. Traditionally an attacker who is performing a
relay attack needs to sit in between two communication parties. As we already
know the specification of NFC is to communicate in an extremely low distance
by 1-10cm, attackers cannot derive a possible relay attack without enlarging this
distance. With the help of NFC hardware operating in card emulation mode, we
can already impersonate the interface of a real card[Han05]. Connected via a third
channel, another piece of NFC hardware can read/write information accordingly to
the real card somewhere else. Thus, the attacker can fully hijack the communication
between reader and card and sniff the traffic.

As nowadays NFC chips are becoming a standard part in smart phones, it lowers
the difficulty to get a useful device to perform card emulation. Our research would
use a modified Android operating system to control the NFC chip in smart phone
over certain level. Standard Android room does not provide us APIs to emulate NFC
tags freely, only modified Android can do emulation 4. One smart phone is used to
impersonate the card and the other is going to read/write transactions to the real
card. Transactions are recorded for further understanding. Communication between
two smart phones is via Wi-Fi or Bluetooth channel. This communication channel
covers a far distance of 46m indorr or 92m outdoor if using Wi-Fi 802.11, and 31m
for Bluetooth 2.1[FP05].

By extending existing library of Android smart phone SDK via Java Reflection, we
build useful prototype applications to facilitate our relay attacks. The documentations
of predecessors are studied to better our understanding of protocols.

As part of the evaluation, we choose one type of NFC smart cards — Mifare
DESFire EV1 as target NFC system. A demo reader program is written to normally

1.2. STRUCTURE OF THE THESIS 5

interact with DESFire cards. We record each transaction and command between
reader and card as well as time for completing each transaction. After inserting
our relay attack devices in between, we evaluate the impact of delay in transactions
introduced by the relay attack. And from the data collected we evaluate the relay
attack channel delay on original transaction. Together with existing smart card
protocols we propose our strategy to tackle with this type of relay attack.

During the implementation and real field demonstration, we also study the failures
of attack and security mechanisms we can put forward to prevent emulation based
relay attacks.

1.2 Structure of the Thesis

This thesis consists of eight parts.

From Chapter two we present the background knowledge of NFC and related
terminologies. Useful previous studies and some projects which lay down the funda-
mental of our research are revisited. Important terminologies are also introduced to
reader of this article.

Chapter three would have an in-depth look of Mifare DESFire EV1 smart card
features. Protocol level details are covered in this chapter. These protocols are
important for later-on implementation.

Chapter four would be a bird-eye view of our NFC relay attack design. We analyze
some prerequisite before implementation. We also try to optimize our architecture
to achieve fast speed of information exchange between devices. Chapter five is rather
standalone part; it describes the implementation details of relay attack. Programming
codes snippets and other dependencies are put in this chapter. As a demo, work
flows of the relay attack and screen shots are also included.

In chapter six and seven we collect corresponding performance and evaluation
metrics and start to explore the impact we introduced. A comparison between
different transactions, different data communication channel is taken place. The
comparison of time of transactions between original card and emulated card is well
discussed. Also we would talk about little the future of relay attack and prevention
of it.

Chapter Eight is the conclusion of this thesis.

Chapter2Background and Previous Studies

Near Field Communication (NFC) is a technology which enables low-range, low-
power, lightweight information exchange between devices. As a subset of RFID
technology, it is composed of a set of specifications and protocol stacks brought up
front by NFC Forum[Def06].

NFC roots deeply in our daily lives as it is considered an important part of
great evolution: Internet of Things (IoT)[AIM10]. NFC technology features a touch
paradigm which is easy to use and intuitive[JTSM07], thus it is considered to be
one of the enabling technologies of IoT[AIM10]. Users generally touch one device to
another to activate NFC service and exchange information. Three operating modes
are available: read/write mode, card emulation mode and peer-to-peer mode. Among
those three modes, read/write mode is the common scenario where ordinary users of
NFC enjoy the convenience of NFC. A user can use a safe NFC key to lock or unlock
his door and authenticate him to the access control system[MLKS08]. Bus cards
with NFC embedded chips can keep values and credit information which is used for
transactions[RKSH07]. Payment cards with NFC feature offer users another option
than contact-based bank cards[MB09]. NFC tags contain structured information
that can be used as portable information storage, e.g. business cards which can be
read by scanning it with NFC readers. NFC is also used as a part of the biometric
passports to store private information about an individual[AM10].

Although in our daily scenario NFC is easy to use and all operations on NFC
tags happen in a contactless yet invisible manner, our interests in security of NFC
technology rises. As Kfir Z et al. has pointed out in paper [KW05], relay attack
on NFC has a potential to become a popular attack in recent years and can cause
potential financial loss. As the tools for investigating NFC becomes more advanced
and easy to get, we want to explore the security limits of NFC and especially in our
topic, relay attack on NFC.

In the section 2.1 we would introduce the basic definitions, special features and

7

8 2. BACKGROUND AND PREVIOUS STUDIES

standards in NFC and NFC operation modes. In the section 2.2 we discuss about
a feature of NFC—Frame Waiting Time— and the related previous studies which
lay down the foundation of our relay attack research.

2.1 Near Field Communication

In this section we introduces the fundamental knowledge of NFC to our audience.
The topics discussed here cover from NFC standards and specifications to more
practical aspects such as NFC operation modes and using smart phone as a NFC
tool. Some tool libraries are also covered here as we bring together the necessities of
practical programming of NFC smart cards.

2.1.1 NFC Definition and Smart Cards

NFC technology is driven and standardized by NFC Forum to promote the interop-
erability of NFC devices and services. This alliance is initially formed up by Nokia,
Philips and Sony in the early year of 2004. The NFC protocol stacks, architecture
and message exchange format are brought forward and defined in the following years
until 2010. NFC Data Exchange Format (NDEF) is one of those outcomes of NFC
specifications.[Def06]

The biggest distinguish feature that separates NFC and other communication
technology such as Bluetooth1 is that NFC is only meant for low-band width infor-
mation exchange. As a subset of RFID technology (Radio Frequency IDentification),
NFC only focuses on the low-range communication. To summarize the characteristics
of NFC, it is a standard which operates on frequency 13.56 MHz and has a close
distance range of 1-2cm. Its target is to exchange lightweight information between
two devices at a transmission speed of 106, 212 or 424 kbps.[Wan06] [COO13]

NFC devices in communication are two parties both in compliance with NFC
standards. One party is the initiator and the other is defined as recipient. Usually
the case is that the recipient is a NFC smart card and initiator is a NFC reader.
The initiator is idle until a passive recipient enters the communication area and is
selected to communicate with. The initiator creates an electromagnet field to power
the powerless recipient and starts the data exchange. Once transmission is done, as
soon as the recipient is out of communication range, the initiator is returned to idle
again.

Smart card is one of the most commonly seen NFC tags (recipient) in the use
cases[Ort06]. It has an onboard file system and micro-possessing chip embedded to
it. It has a size of regular bank card and does not contain a power source. [HB06]

1http://www.bluetooth.com/

2.1. NEAR FIELD COMMUNICATION 9

[KW05]. A microprocessor unit together with a file system form up an access control
which limits the access of data on smart card to only authorized users. Some vital
data can be set as read-only and be visited by authorized users with correct key.
As it is targeted at becoming a portable computing device with small amount of
data storage, smart card is extremely suitable for ticketing system and crediting
system. For example, bank cards, bus travel cards and identity cards at access control
points. Credit data stored on smart cards can be rewritten and the structure of file
is flexible and thus it is widely used in commercial systems[KW05]. As the smart
cards evolve in generations, some of the old types are already compromised such as
MIFARE DESFire D40 (MF3ICD40)[OP11]. In this thesis our studying target is
Mifare DESFire EV1 smart card, the successor of DESFIRE D40. It is a mature
smart card type and its technical details would be covered in Chapter 3.

2.1.2 NFC Standard Protocols

Although the smart card implementation details remain in proprietary to vendors
(such as DESFire), the standard of NFC protocol stack is open and widely studied.
NFC enabled devices shall respect and fully implement the requirements in order to
be compatible with devices from different manufactures.

The International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) have documented standards for NFC. In our
thesis study, the most relevant components are protocol standards for NFC enabled
devices. These are parts of the NFC features in modern NFC equipped smart phones.
From top to bottom, ISO 7816-4, ISO14443-4, ISO14443-3 type A and B, ISO 14443-2
and ISO 14443-1 protocols are used to form whole protocol stack of NFC enabled
smart phones. All details of ISO 14443 protocol suits can be found in the article
[CH07]. This article is for both entry level readers and experts. Here we give out
some summarize of four layers of protocol stack in our context.

From the below of the protocol stack, ISO 14443-1 describes the physical char-
acteristics of contactless integrated circuit cards. These cards are called Proximity
Integrated Circuit Chip (PICC) in a standard term. Above of it is the ISO 14443-2
protocol defines the behavior of radio frequency signal interface. It defines the power
and the frequency to conduct NFC transactions.

Starting from ISO 14443-3 level, it divides into two different flavors, type A
and type B. Each type provides initialization phase of NFC communication with
different modulation methods and different code schemes. Thus devices which are
implemented for one type of protocol cannot successfully communicate with the other
type. However, despite the differences, the transmission protocol of ISO 14443-4 can
be established on either of them.

10 2. BACKGROUND AND PREVIOUS STUDIES

ISO 14443-4 transmission protocol is the main protocol layer where exposed to
NFC business logic programmers on Android smart phones nowadays[CKP+12]. It
features data block exchange and multi-activation mechanisms to enable successful
transmitting of messages between PICC and PCD (Proximity Coupling Device, also
known as card reader). The visible appearance of messages transmitted is in bytes
thus is quite raw.

Above the transmission protocol layer, there is a final layer of ISO 7816-4 where the
Application Protocol Data Unit (APDU) is defined. This layer helps to encapsulate
and abstract the message format and thus the programmers are less troubled with
exploring raw data in bytes.

2.1.3 NFC Operating Modes

One NFC enabled device is a certain kind of device which can perform NFC transac-
tions with the other NFC device. One Nexus S phone with NXP PN544 chip[Sem10]
can be considered as an appropriate NFC enabled device. As for the art status quo,
NFC enabled devices shall be able to perform all or one of the following three operating
models: read/write mode, peer-to-peer mode and card emulation mode[COO13].

– Read/write mode is the most commonly seen existing mode. An active reader
initiates a session to exchange data with a passive tag. The passive tag
itself is powerless and thus requires the reader to provide driven energy in an
electromagnet field. The active reader extracts useful information through the
session and creates/updates data on the tag. For example, a bus terminal
reader makes transactions with a user travel card.

– Peer-to-peer mode is a data exchange communication mode exists largely
between two NFC enabled devices. It is a bidirectional channel which both
parties can initiate requests and retrieve information through the channel.
The applicable scenario is like this: two smart phones use NFC to exchange
parameters about Bluetooth settings and then establish Bluetooth channel
afterwards.

– Card emulation mode is the main focus in our thesis. One NFC device operates
in this mode is tempting to emulate a passive tag. As a passive tag it can be
read and write like a normal NFC tag. This emulation is often divided into two
different flavors if the NFC device is a smart phone: emulation with a Secure
Element (SE)[SVV10] or direct emulation with client applications. The SE in
a smart phone is not easy to be tempered with and provides virtual smart card
functionality. If directly emulating a tag with client application, programmers
have to manually manage the ISO 14443-4 layer commands and secure the
critical information stored on the phone. The direct emulating approach gives

2.1. NEAR FIELD COMMUNICATION 11

us large freedom to derive a practical relay attack on NFC applications. The
phone emulating a passive tag can absorb and analyze the message that card
reader sends to it. It can also forward the messages to another device through
a second channel and make real transactions with a real smart card. This
emulated NFC tag is the vital element to the process of relay attack.

2.1.4 Mobile Phone and NFC

With the converge of phones and PDAs, no longer are the mobile phones specialized to
only making phone calls and text messaging. Smart phones, with a growing number
and a growing functionality, have become personal data processing hubs[ZN06]. New
services emerge in the market as smart phones adopt technologies such as Wi-Fi,
Bluetooth, GPS2 and NFC.

However, the role for smart phone to play is far more than personal computing.
Smart phone is a ubiquitous input device for personal daily life that gives user a
unified access point to different services[BBRS06]. Home appliances, vender machines,
and other new services use smart phone as input. Storing with personal information,
smart phone has become the true centralized service hub for a personal consumer.

As we have covered in previous section and introduction, mobiles phones with
a suitable NFC chip can provide a user with experience of difference NFC related
services. A user can check remaining value and travel history in a NFC bus card from
a smart phone. He/She can also purchase a concert ticket by scanning NFC tags at
ticketing office. These features utilized the read/write mode of NFC in smart phone.
Furthermore, credential information can be stored on a smart phone so that it turns
out to be a personal bank card. Whenever the user wants to purchase with bank card,
he can instead let the POS (Point of Sales) machine to scan his smart phone[DM08].
This feature utilized the card emulation mode of NFC in smart phones.

The flexible NFC features in smart phone open the gate of booming business
around NFC-centered services and applications. However, numerous security issues
also been pointed out in recent study including spoof of tag content, deny of service
and our thesis topic, relay attack. These attacks are not only target at NFC-subsystem
of smart phone, and also target at weak applications built on top of NFC[Mul09].

In our research of this thesis, thanks to the advancement of smart phones in recent
years, we implemented a prototype of relay attack within two off-shelf market smart
phones. Only minimum software changes are made to API and original operating
system(See chapter 5). As the relay attack hardware (smart phone) and software
(smart phone apps) become more available to end users, our audience can realize the

2http://www.gps.gov/

12 2. BACKGROUND AND PREVIOUS STUDIES

urgent is not only addressing the issue of relay attack of NFC, but also the preventing
of such attack.

2.2 Relay attack and Frame Waiting Time

In this section we go through the previous studies about the vulnerability of NFC
especially in the context of relay attack. We point out the imperfect implementing
of ISO 14443 protocols and how it fails to detect relay attack in practical scenario.
We would introduce the Frame Waiting Time, a useful parameter and its role to play
in preventing relay attacks on NFC.

2.2.1 Relay Attack on NFC

Sportiello et al. [SC13] describes a long distance of relay attack on NFC card which
gives out a solution that a reader can establish a transaction in a controlled channel
by relay attacker with a NFC card in a long distance. Within specially designed
hardware, they can route the APDUs between the card and reader in a long distance.
Thus the NFC smart card is no longer required to be proximate enough to reader,
but geologically locates in any area.

Issovits et al. [IH11] have conducted a study on the weaknesses on ISO 14443
protocol stack. They implemented a prototype of RFID relay attack using an off-shelf
mobile phone and a specially designed RFID emulator tag. The study suggests
two countermeasures to relay attack: a protocol binding of distance detection of
NFC communication or additional checks on initial parameters in an encrypted way.
However, these amendments need to modify existing protocol and may break the
existing services already in use.

Jason Reid et al. [RNTS07] suggests a distance-bounding protocol not only on
NFC but on all RFID based contactless smart cards. It utilized a symmetric key
encrypted protocol to protect the information from altering by attacker and uses a
timing mechanism to detect if the channel is of high latency. This novel approach
also introduces new elements to the existing protocol if we want to implement it.
Thus this can also break down the existing services.

2.2.2 Relay Attack on NFC with Smart Phone

Roland et al.[RLS12] have conducted a research targeting at NFC Secure Elements
on mobile phone. They propose to conduct a relay attack by implanting a malicious
application on user smart phone to forward NFC transactions out of Secure Elements
and to another location located on a global accessible place. This article inspires us
about forwarding the NFC transactions outside the smart phone itself to give attacker

2.2. RELAY ATTACK AND FRAME WAITING TIME 13

more flexibility of placing the actual attack logic, and more complex operations on
original NFC transactions.

Markantonakis et al. [Mar12] have successfully conducted a practical relay attack
with Nokia cell phones with Bluetooth feature to forward APDUs in between thus
forms up a relay attack on NFC smart cards. In the article author implemented a
prototype to justify his arguments. This article inspires us the feasibility of using
NFC enabled smart phones to conduct a relay attack. Our research is based on
the same concept but instead, we are seeking for a more general approach of using
Android based cell phones and applications. Thus lower the complexity of building
attacking app and also gives more freedom of choosing suitable attacking devices.

2.2.3 Frame Waiting Time and Relay Attack

As we are not only target at lowering the complexity of NFC relay attacks, we also
want to explore the future of preventing relay attacks on NFC. As the existing ISO
14443 series protocols are widely used in contactless smart cards nowadays and we
want to utilize this protocol instead of building up a new protocol. New protocol can
result in incompatibility of existing services and redesign of end point hardware.

Frame Waiting Time (FWT) has come into our sight as it is already a specification
in ISO 14443 protocols. It describes the waiting time that reader can expect of NFC
response from card before this reader considers that transaction is invalid. After
sending the request from the reader, a card shall respond quicker than the FWT. As
described in reference[Han05], a FWT in ISO 14443-4 specification is calculated by
formula:

FWT = (256× 16/fc)× 2F W I (2.1)

Right now the fc of DESFire EV1 card (A typical NFC smart card, see chapter 3)
has a fixed value of 13.56×106 and FWI integer with a value decided in ATS (Answer
to Select) response in initialization phase (ISO 14443-3). The default ATS of a
DESFire real card is 0x08 and thus, the FWT is a value of 77.33ms.

As the FWT limits the time the reader expect for a response. It requires a relay
attack to complete in a certain amount of time. As we know that relay attack using
two smart phones at least requires forwarding of messages on a second communication
channel and that could make the relay attack detectable if the NFC response is
slower than usual(high latency). We will discuss in practical implementation, to
which extend can attacker accelerate the progress. We also point out how a system
designer of NFC applications using FWT to prevent most relay attacks in Chapter 7.

Chapter3DESFire EV1 Specifications

This chapter serves as a bridge between abstract protocol definition and imple-
mentation of NFC attacks. As the subject of our experiment is Mifare DESFire
EV1 smart card, we describe the characteristics and specification of this type of
card in this chapter. As a mature NFC smart card after its predecessor DESFire
D40[OP11], DESFire EV1 card brings security and usability to a new level. The
target of this chapter is to cover the most relevant areas of DESFire EV1 in the
context of relay attack. We here cover the topics of card identification, file system,
key management, authentication process and finally, we gives out examples of typical
DESFire transactions.

Much of the information about Mifare DESFire comes from officially published
document[NXP12]. Information about DESFire smart card itself is covered by
experiments, open source community online documents and its predecessor DESFire
D40[OP11]. The example of transaction is produced by experiments we conducted
on real card.

3.1 DESFire EV1 Card Identification

As the document[NXP12] states, before we enter the ISO 14443-4 protocol for
transactions, DESFire smart card goes through a standard ISO 14443-3 (type A)
anti-collision and card selection phase (card identification). This phase is aiming at
exchanging critical information for establishing transmission phase, and separating
and choosing correct card for transaction. Holder of the card may have presented to
the reader a wrong card or a card with wrong physical parameters; these can all be
detected by ISO 14443-3 phase and it prevents further wrong steps from happening.

As we summarize from the document[NXP12], the card identification process of
ISO 14443-3 shall go through the following steps illustrated in the Figure 3.1. Here
we identify the smart card reader as PCD and smart card as PICC(See Chapter 2.

15

16 3. DESFIRE EV1 SPECIFICATIONS

Figure 3.1: ISO 14443-3 Card Identification Process[NXP12].

PCD is in idle state waiting for PICC to approach it. It sends out REQA (REQ
type A) command to poll for information from any PICC that comes close enough.
As a PICC comes near PCD, it immediately responses with ATQA (ATQ type A).
This ATQA contains anti-collision information but the content is generally ignored
by PCD, see [NXP12]. Then it enters an anti-collision loop where the SAK value and
UID value of a card is checked to distinguish different type of cards. After checking
the SAK value, ATS is checked and we now can enter the ISO 14443-4 transmission.
Definition and functionality of ATQA, SAK, UID and ATS are covered in Table 3.1

Different smart cards have different parameters. Emulated smart card has different
parameters to real cards. Thus the behavior of reader can vary because of the card
type. SAK bit 3 indicates the length of cascaded UID bit, if it is set to 0, it is
complete (7 byte UID). If it is set to 1, it is not complete. SAK bit 6 indicates which
protocol to be used for transmission. It is set to 1 to indicate that transmission
protocol is ISO 14443-4 compliant; otherwise it is a proprietary protocol. ATS value
is by default 0x80 according to ISO 14443. But it can be customized which states in
the NXP document[NXP12]:

3.1. DESFIRE EV1 CARD IDENTIFICATION 17

Name Definition
ATQA Answer to Request type A.
SAK Bit 3 : indicates the length of

UID. Bit 6 : indicates the ISO
14443-4 compatibility.

UID Unique identifier of PICC.
ATS Answer to Select. Can be cus-

tomized. Default : 0x80

Table 3.1: ATQA, SAK, UID and ATS in Card Identification

As the ATS of different MIFARE ICs can be customized, it is certainly
not advisable to rely on the ATS to differentiate the IC type. NXP advises
to keep the default value of the ATS to avoid any privacy attack based on
the information in ATS.

We here present two examples about the detailed difference about a real card and
an emulated card in the phase of card identification(captured from experiments):

Figure 3.2: ATQA, SAK, UID and ATS for Real Card and Emulated Card

Here the ATQA is generally ignored by reader, but the UID is definitely different
for real card and Nexus S phone emulated card. Nexus S has a random and shorter
version of UID (4 bytes). A DESFire EV1 real card has a unique 7-byte UID which

18 3. DESFIRE EV1 SPECIFICATIONS

has been burnt into card while being manufactured (This special feature is discussed
in section 5.4). SAK for DESFire EV1 real card is 0x20, which indicates it is
compliant with ISO 14443-4 transmission protocol and ATS is customized to 0x75
0x77 0x81 0x02 0x80. For Nexus S emulated card, ATS is 0x78 0x33 0x88 0x00.
Both ATS values are different from default value 0x80.

3.2 DESFire EV1 File System

Our research project requires us to establish a prototype of reading and writing on a
DESFire EV1 card. Thus the internal file system and access control on the DESFire
contactless card is of vital importance to our discussion. Both authentication key
and critical information are stored on the on-chip persistent memory of DESFire EV1
card and protected by access control. This section will bring knowledge of DESFire
EV1 file system to our audience.

DESFire EV1 smart card has a non-violate 4kbyte memory which can endure
100,000 cycles of reading/writing. The memory accessing is fast with 2ms of write
time (1ms erase, 1ms write). Data stored on the card can retain for over 10 years.
[NXP12]

On each DESFire EV1 card, 28 applications can exist simultaneously. They are
numbered in a form of 3-byte AID (Application ID). For each application, 16 files can
be created. Furthermore, each application has a vector of 14 different keys (numbered
from 0 to 13). These keys can be used to indicate the different access rights to each
file and file operations (read, write, delete).

Name Definition
Application 28 in each card. Distinguish by

3-byte AID.
File 16 files each application.
Key 14 keys each application. For ac-

cess control purpose.

Table 3.2: DESFire EV1 Smart Card Structure

There are different file types existing on the DESFire EV1. Standard data file,
which stores unformatted user data. Backup data file, which stores unformatted data
and integrated with backup mechanism. Value file stores a 32-bit integer. Linear
record file stores information about structured user data. And finally cyclic record
file, a file can store structured data and it overrides old data when space limit is
reached. Each file has a encoded identifier as in table 3.3.

3.3. AUTHENTICATION AND KEY SYSTEM 19

Name Encoded Identifier
Standard Data File 0x00
Backup Data File 0x01
Value File 0x02
Linear Record File 0x03
Cyclic Record File 0x04

Table 3.3: DESFire EV1 Smart Card File Types

As each file on the DESFire smart card is protected by an access control system,
reading and writing to the files need to verify corresponding keys. During key
authentication, a temporary key is generated to encrypt the transmission. We cover
this knowledge in the following section.

3.3 Authentication and Key System

In the previous section we have mentioned that accessing contents on DESFire EV1
smart card needs to pass an access control system. The accessing control system exists
on three level, PICC level (card level), application level and file level.
The keys stored on DESFire card would determine that if the reader has certain
rights to read/write content or delete/create application.

3.3.1 Operations and Authentication

Figure 3.3: PICC level commands

20 3. DESFIRE EV1 SPECIFICATIONS

On PICC level, a reader can try to create/delete application and even format
PICC (format whole card to factory setting). These operations are critical thus shall
check PICC master key before the reader can take actual action.

Figure 3.4: Application level commands

On application level, different files can be created and deleted. Each application
has an application master key. If a reader wants to do mentioned operation in
table 3.4, it shall possess a correct application master key and pass the authentication
check.

Figure 3.5: File level commands

On file level, multiple operations can be performed. Read/write and credit values
are all subject to the file key authentication. Application can choose from key vector
(contains 14 keys) which key is used for write and which key is used for read. Reader
shall authenticate itself with corresponding key before the action can be taken.

3.3. AUTHENTICATION AND KEY SYSTEM 21

3.3.2 Authentication and Session Key

The purpose for authentication with key is not only to grant authorization to specific
actions, moreover, it lets the reader and smart card to establish a session key which
is used for encrypting transmission. Without the session key, though the attacker
can captured the traffic of transaction, he is not able to interpret the content. The
encryption method available for choosing is DES, AES and 3K3DES (triple key, triple
DES). For DES and AES, 16-byte length of key is required. Only first 8 bytes from
16 bytes is used for DES. For 3K3DES, a 24-byte key length is required. But as we
reuse part of the key, an actual 16-byte long key is used in practice[NXP12].

On PICC level, we negotiate a proper session key before the transmission section
starts. DESFire card (PICC) always performs encryption and reader (PCD) always
performs decryption. The data to be encrypted is filled with 0x00 to meet a length
requirement. If the data is 0x00, it is filled with a 0x80 byte, then 0x00 to meet the
requirement. All encryption is performed in CBC(Cipher Block Chain) mode.

First, the reader initiate a command to indicate that it wants to enter the
authentication steps. It wants to authenticate with the PICC card master key K.
Choosing method is either DES or 3DES. Then card prepares a random number
rndA (8 bytes) and encrypts it with K with agreed encryption cipher.

m = EncryptK(rndA) (3.1)

Upon receiving the encrypted message m, reader decrypts it with PICC master
key k stored in its memory (maybe different from K, thus the following authentication
will fail) and shifts result left for 8 bits. The shifted result is represented as rndA’.
Then the reader creates another 8 byte random number rndB and connect rndA,rndB
into rndC. The reader decrypts the rndC with k and sends back.

Decrpytk(m) = rndA

rndA′ =<< rndA

rndC = rndB|rndA′

then, p = Decryptk(rndC)

(3.2)

The card receives p and encrypts it. It checks if the rndA’ is correct shifted result
of rndA. If not correct, the reader possessed PICC master key k is not correct. Thus,

22 3. DESFIRE EV1 SPECIFICATIONS

the reader is not authorized. If the authorization is successful, the card will shift the
rndB left by 8 bits to become rndB’ and encrypts it and sends it back.

EncryptK(p) = rndC

rndB′ =<< rndB

q = EncryptK(rndB′)
(3.3)

Upon receiving the encrypted q, the reader would decrypt and check if the rndB’
is the correct shifting of rndB. If correct, then the smart card possesses the same
PICC master key as the reader does. Mutual authentication completes.

The session key is generated from rndA and rndB. It is composed of first 4 bytes
of rndA, first 4 bytes of rndB, last 4 bytes of rndA and last 4 bytes of rndB.

key = rndA(part1) + rndB(part1) + rndA(part2) + rndB(part2) (3.4)

3.4 An Example of DESFire Operation

In this section we give out an example of DESFire EV1 smart card transaction.
The transaction is recorded fully from ISO 14443-4 transmission level and is in raw
bytes. We document each transaction command with human readable comments.
The whole transactions are performed on a blank DESFire card. This example first
authenticates the reader and grants authority to create and application. Then the
reader selects the application and creates a new backup file. Finally it appends
information the newly created file then commits the transaction.

Figure 3.6: Authenticate PICC master key.

This piece (Figure 3.6) of trace demonstrates the authentication for PICC master
key. The choosing method for encryption is DES. The marks of >> is the request

3.4. AN EXAMPLE OF DESFIRE OPERATION 23

command send out by PCD and commands start with << is the response from
PICC.

The PCD starts with the select application command which selects the 0x00
0x00 0x00 application which is the PICC card itself. So the authentication master
key is PICC master key. Then the PICC responds with 0x91 0x00 to indicate that
PCD can proceed. PCD chooses the authentication cipher as DES (on the third
line of trace). The PICC does mathematical operation described in equation 3.1
and sends encrypted message to PCD (marked as ADDITIONAL FRAME). The
PCD decrypt message and recalculate rndC according to our operation described
in equation 3.2 and send them to PICC. Finally the PICC returns information
described in equation 3.3 and finish the authentication.

Figure 3.7: Create New Application on PICC.

After successful authentication, PCD now has the power to create applications
on PICC. In the trace (Figure 3.7), PCD first create an application with blank
0x00 keys. This key filled with 0x00 can be used for authenticate with 3K3DES
method. Then in order to gain power to create files inside application, the PCD
again authenticate itself to the application. As we can see the authentication process
is just following the same pattern as authentication of PICC master key, the length
of APDUs transferred is longer. This is because we used 3K3DES as a chosen cipher,
which requires longer block of data.

In trace (Figure 3.8), PCD first selects the already created application then
authenticates itself by 3K3DES method with default key (bytes of 0x00). After
gaining the power to the application, it creates a backup data file.

The final trace is writing data to backup data file. After the authentication to
the application, PCD gets the specific backup data file settings and write data in

24 3. DESFIRE EV1 SPECIFICATIONS

Figure 3.8: Create a Backup file under New Application on PICC.

Figure 3.9: Write data to Backup Data File.

bytes to the file. After writing is complete, it commits the change and finish the
transaction.

Chapter4Relay Attack on NFC applications

The partial goal of this thesis is to deliver a successful NFC relay attack system via off-
stock market phones. The final goal is to study the relay attack by smart phones and
propose methods to detect and prevent it. We use off-shelf Android smart phones as
hardware and build applications on them. We install modified open source operating
system Cyanogenmod 91 on them. We also using Java reflection technology to
expose related NFC emulation APIs from the operating system. Within the powerful
handset, we are able to emulate a practical tag at the same time communicate the
data we received from real reader back to the smart phone which is operating in
read/write mode, where the tag is actually read/written according the transaction.

This chapter consists of information and perquisites of derive a practical attack
on NFC applications. We first discuss about the basic of general relay attacks, and
then talk a little about the requirement of NFC relay attack. We explore in-depth
about how far we can achieve via the existing operating system and hardware, and
give out an overall design of attacking system.

4.1 Man-in-the-middle attack (MITM) and Relay attack

The very beginning of implementing this practical attacking system is to understand
the fundamental concept of relay attack and its similarity to Man-in-the-middle
(MITM) attack.

Man-in-the-middle attack, is often refer to a kind of attack that that a third
party is interfering with the normal traffic between two parties to gain information
about the communication. The attacker hijacks the communication channel and
impersonates as the normal users. The entire communication is interrupted and
legitimate users at end points still believe they are talking to each other without a

1http://www.cyanogenmod.org/

25

26 4. RELAY ATTACK ON NFC APPLICATIONS

Figure 4.1: Man-in-the-middle attack workflow.

third party in the middle. The attacker must be able to achieve the following points
to make a successful MITM attack:

– Interrupt the whole communication between two legal parties. This
is achieved via hijacking communication, e.g. pretending to be the access point
of Wi-Fi to hijack all internet traffic[ACL07]. This is not easy to achieve in
telecommunications.

– Impersonate as legitimate users in the conversation. For simplicity,
if there is a server-client mode service running, MITM attacker shall be able to
impersonate both as client and server.

– Reproduce exchanging information. This step is the most difficult part.
Usually modern communication protocol(such as SSL/TLS) is encrypted and
needs authentication steps (to both end-users) to generate session key to encrypt
the channel. Or the session key is generated based on a shared secret for both
parties(such as NFC smart card[NXP12]). Without the session key, an attacker
can do nothing with the actual content in fly. Nonetheless he inserts new,
valid traffic in to communication, e.g. An attacker shall be able to have the
symmetric encryption key to encrypt and decrypt traffic. Otherwise he becomes
a dummy pipe during the attack.

As we can see from the illustration 4.1, the attacker will receive communication
from server at step one and try to decrypt it and then encrypt it again to send out
at step two. The same thing would happen if attacker receives information from

4.2. REQUIREMENTS OF SMART PHONE NFC RELAY ATTACK 27

client on step three. However, if the attack fails to obtain the session key for original
message encryption, he cannot fully understand traffic and reproduce correct message.
In our very specific scenario NFC applications, unfortunately the communication
can be encrypted by DES/AES/3DES. Some communications can be plain text or
MACed messages thus attacker still can sniff them.

Here comes the relay attack, a close variant of MITM attack. In a "reader -
attacker - card" system, an attacker can forward information without recalculate it.
It is just like a router, forwarding IP packages without understanding the payload
of it. But the router still can dump the traffic and study the traffic time pattern.
Such kind of attacks is easy to implement as long as we can emulate the parties
in the communication. Fortunately in our NFC cases, although the traffic has an
option to be encrypted, it still lacks of a detecting system to find out the existence
of possible relay attackers in the middle. As operating in a close distance as a design
and pattern, NFC is totally vulnerable to relay attacks. The figure 4.2 is an example
of design a two-phone solution to derive such kind of relay attack.

Figure 4.2: Design of Relay Attack against NFC tags.

Here a cell phone is used as a fake card (AsTag) to communicate with the real
reader, using card emulation technology to emulate a smart card. Another cell
phone is acting as a fake reader (AsReader) to communicate with the real card. The
two cell phones are linked with a wireless channel (Wi-Fi or Bluetooth). Once the
real reader initiates transactions, all the request messages are forwarded through
wireless channel from AsTag to AsReader. AsReader conducts real transaction with
smart card using the request messages. The transaction responses from real card are
transmitting back to the real reader via the same channel. This relay attack makes
the relay attacker transparent to both NFC reader and real card.

4.2 Requirements of Smart Phone NFC Relay Attack

This section we discuss the basic requirements if we want to make a NFC relay attack
using off-shelf Android smart phones.

28 4. RELAY ATTACK ON NFC APPLICATIONS

4.2.1 Phone-to-Phone Communication Channel

As we have discussed above in chapter 1, NFC relay attacks have to solve the
problem of distance in the first place. Usually the card is read and written at a
service point such as POS machine. If you have a wired communication cable between
your attacking devices, it not only limited your attacking range but also make yourself
more suspicious in public.

Fortunately, the modern Android smart phones are equipped with enough com-
munication ability such as Wi-Fi or Bluetooth. This serves as a best invisible proxy
channel. NFC transactions limit the length of payload by 253 bytes so the total
on-fly traffic would be less than 300 bytes[NXP12]. Regardless of means of transmis-
sion, this payload will be quickly transmitted over Wi-Fi/Bluetooth. The design of
communication results in three styles of link between our attacking devices:

– Wi-Fi directly link. In this mode one cell phone is acting as a router and the
other as a regular Wi-Fi client. Information is passed without going through a
third router.

– Bluetooth directly link. In this mode two cell phones are connected via Bluetooth
in pairs. Information is also passed without a third party.

– Mobile Broad Band links. In this mode two cell phones will both sends in-
formation to a remote server on the internet acting as an exchange server.
Communication is indirect but has the most flexibility. Also this channel is
provided by a reliable telecommunication company.

The obvious advantage of first two methods is they are controllable in terms of
time delay. Communication time is highly dependent on the Wi-Fi and Bluetooth
technology itself and operating system stacks on each phone. However, the short-
coming is the devices must be configured and paired before they can be used. Also
the distance of attack is limited by the max Wi-Fi or Bluetooth transmission range
between two devices.

The third option is less reliable. As we rely on a third party telecommunication
service, delay time is uncertain. Also it requires a reflection server operating constantly
on the remote, this will increase the delay in the communication as described in
figure 4.3.

4.2.2 NFC Read/Write, Emulation Mode

As we have mentioned in chapter 1 and chapter 3, nowadays a smart phone is
as a powerful personal computing base.Popular smart phones are equipped with

4.2. REQUIREMENTS OF SMART PHONE NFC RELAY ATTACK 29

Figure 4.3: NFC Relay Attack via Mobile Broad Band.

NFC chips and the APIs for those smart phone platform enable the programmer
to easily implement their logic. So these smart phones become more suitable for
conducting NFC relay attack. Take Android smart phones as an example, although
different vendors has different models, most of them have NFC chips and a unified
API interface exposed by Android operating system. Read/Write of NFC bus cards
is no longer bound to specific top-up machine as a user can easily check his bus card
balance on special designed app by tapping his card on the back of Android smart
phone. But how to emulate a card is not introduced in official Android version until
recently. Recently on Google Nexus 5 phone released an Android version 4.4 which
can enable programmers to write applications which emulates a NFC card (Host
Card Emulation).

As the figure 4.4 shows the design of an Android native application to use host
card emulation (HCE) feature is highly controlled by Google Android operating
system. It only exposes the interface of ISO 7816 application level APIs. Right
now among official releases only KitKat 4.4 operating system has the feature and
during the time this thesis is writing, Android devices with 4.4 version of operating
system update just emerged for several months. Many old devices cannot receive
offical KitKat 4.4 update from Google. However this HCE idea has become popular
already in the modified Android operating system for several years. According to
Cyanogenmod 9 operating system (a modified Android) documentation, it supports
ISO-DEP specification (based on ISO 14443-4) and upper layer. Especially, the
operating system supports the NFC-A (ISO 14443-3 type A) protocol, which the
DESFire EV1 useschapter 3.

30 4. RELAY ATTACK ON NFC APPLICATIONS

When the HCE device is approaching a reader , Cyanogenmod operating system
will generates an intent and invoke the NFC app designed by us. This app emulates
the interface as a DESFire EV1 card. Requests from reader are sent directly from
Android operating system to NFC app. These requests are then transmitted to
another smart phone which is interacting with a real card. While functionalities are
described simply in design, how to let it cooperate with the communication channel
is difficult during implementation. We have to carefully optimize the application
structure to accelerate app logic speed and achieve low latency of our relay attack.
The trasmission of NFC messages to Wi-Fi/Bluetooth channel shall be efficient and
error tolerated. We also have to make the program code separate and components
de-coupled so maintenance of code is easier.

Figure 4.4: Host Card Emulation of NFC on Android.

4.2.3 Block Communication between Reader and Card

The nature of NFC is a contactless transmission protocol in short range only by
1-10cm, we can achieve blocking communication by attaching attacker’s AsReader
phone directly on the NFC card to avoid other devices reading it. Furthermore, put
the NFC card away from reader and attach another AsCard phone to its reading
surface. By the design of Android operating system, only one intent is triggered if
we are doing NFC transaction. We design our application to be triggered and keeps
foreground running during the attack. This forces the communication between the
reader and card to go through our attack devices only.

4.3. SOLUTION DESIGN COMPONENTS 31

4.3 Solution Design Components

In this section we will cover the general choices of components to build up feasible relay
attack software architecture on AsReader phone and AsCard phone. These softare
components form Android apps to run on the phones. The detailed implementation
codes are covered in Chapter 5. Here we introduce the components on high level and
justify our choices.

– Wi-Fi and Bluetooth direct links. As we have discussed, using a third router
or mobile broad band would significantly increase the potential delay time in
transmitting the data.

– Cyanogenmod version 9 operating systems instead of Android 4.4 KitKat. For
the art right now, Android KitKat 4.4 is only available for newest devices (like
Nexus 5). Cyanogenmod 9 has a better compatibility with our old experimenting
devices at hand — Nexus S and it has been tested. Furthermore, Cyanogenmod
9 enables us to manipulate on ISO 14443-4 level and we can observe raw APDUs
from there. Android 4.4 KitKat only allows programmer to visit ISO 7816
level, which is a level higher than ISO 14443-4.

– Control communication from ISO 14443-4 transmission level. Leave the lower
level to the operating system to deal with. ISO 14443-3 anti-collision is
performed by under-lying operating system. Our app program logic starts to
forward actual APDUs on the ISO 14443-4 level.

– Device Role Divide. One smart phone is called AsCard, it is in card emulation
mode and expose its interface as Mifare DESFire EV1 to the real reader.
Another smart phone is called AsReader, it is in read/write mode and gets
transaction instructions from the AsCard phone over Wi-Fi or Bluetooth.
AsReader phone receives the requests and deals real transactions with a DESFire
EV1 Card. No third device is required.

The above first point and last point is easy to understand in our scenario. Only
two phones are involved and we choose a wireless channel of Wi-fi/Bluetooth to
link them up. But the second and third are related to physical constrains we
have. Cyanogemod version 9 operating system is a moddification of Android open
source project. It already introduced API level host card emulation although quite
primitive, limited only to ISO 14443-4 level (no above layer ISO 7816 support). The
development progress is also painful. It also requires the programmer to use Java
reflection technique to wrap around the corresponding APIs(these APIs are not
part of the Android Development SDK release). However, the raw APIs on ISO
14443-4 level gives us great chance to truly look at the content of original NFC

32 4. RELAY ATTACK ON NFC APPLICATIONS

requests/responses in bytes. Also Cyanogenmod 9 is a tested operating system
version which is compatible with our hardware existing in laboratory — Nexus S
smart phones.

In the third decision we decided to forward NFC commands on ISO 14443-4
level. It is because the lower level ISO 14443-3 anti-collision is not exposed to client
application in Android even in modified Android. And since lower level ISO 14443-3
level provides anti-collision and activation at the beginning of the conversation phase,
we have no choice but rely on underlying operating system to handle it then take the
control over once it is done. This can cause a difference of parameters in chapter 3,
figure 3.2. From ISO 14443-4 level, our app logic begins the monitoring/forwarding
on real NFC transaction commands.

Chapter5Implementation

This chapter covers the procedure how to build up a useful prototype that enables the
relay attack on NFC smart cards. This prototype demonstrates the general design
we discussed in section 4.3. Also some details of programming code are covered in
this chapter.

The whole prototype consists of three major parts. One Java application is in
charge of performing basic transactions including reading, writing files on card and
erasing and reset the card. This program exists on a regular PC; the libnfc library
enables it to control a dedicated NFC reader to perform those actions. The other
two parts are two different Android programs runs on two separate smart phones.
They share the main software architecture but with different functionality. One
smart phone operates in host card emulation mode, we call it AsCard. The other one
operates in regular read/write mode just like a regular NFC reader. We call this one
AsReader. Together AsCard and AsReader are connected via Bluetooth or Wi-Fi
channel to achieve internal communications.

5.1 Development Tools and Dependencies

For the basic developer machine, a Ubuntu 12.04 LTS is with Java 6 is required
(Used to develop NFC apps on Nexus S smart phones). There should also be a
PC running on Java 6 with a specialized reader for NFC attached to it (Used to
develop DESFire EV1 smart card read/write application). This PC shall also install
a package of libnfc Java library. In addition, there would be two already rooted
Android smart phones with NFC features enabled. These two phones are installed
with Cyanogenmod 9 operating system. These requirements are described in table
5.1

Another important tool we use here is the ACR122u NFC reader. This is the
standard reader to support Mifare DESFire EV1 smart card. Within the libnfc
library enabled inside server, the Java program on the server can fully control the

33

34 5. IMPLEMENTATION

Machine OS Library IDE
Dev Machine Windows 7 Java 6, Android SDK Eclipse
Server Machine Ubuntu

12.04
Java6, libnfc Eclipse

Table 5.1: Developer Machine Settings

reader. Libnfc library is an open source libray aiming at operating existing NFC
devices. It supports many languages including Java1. ACR122u reader operates in
13.56MHz frequency and is in compliance with ISO 14443 NFC protocol standards.
It both supports ISO 14443 type A and B cards. But for our experiment DESFire
EV1 cards, only type A is needed.

In order to make the relay attack, we need two off-shelf smart phones which
can run Android system. Google Nexus S is used. Although it is not the newest
one in the market, it features enough battery power to do the experiment and is
available in laboratory. See table 5.2 for supported features about this phone.We
will have to both re-install them into Cynogenmod 9 operating system. The modified
system exposes NFC host card emulation feature which cannot be accessed in regular
Android operating system. See Chapter 4. Although we are using default Android
SDK (Which means we cannot call Host Card Emulation APIs in Cyanogenmod
directly), But we can walk around it by Java Reflection technique.

Model NFC Bluetooth/WIFI OS
Nexus S NXP PN544 Supported Cyanogenmod9

Table 5.2: Nexus S phone with Cyanogenmod 9

5.2 Architecture Implementation

Before we get into the detail design of this prototype, we would like to remind our
readers about the final goal we want to achieve in this picture 5.1.

As we can see in our laboratory environment, we have a machine which runs a
simple read/write ticketing NFC system. It connects to the ACR122u reader for
providing NFC operations. Each time the transaction is either triggered manually or
by Java program runs on it. The attacker is responsible for placing the relay attack
phones between real DESFire EV1 card and real reader. The smart phone attached
to the real card is called AsReader as we have mentioned earlier. The other one
which operates in card emulation mode is impersonating as a fake card, thus, we call

1http://nfc-tools.org/

5.2. ARCHITECTURE IMPLEMENTATION 35

Figure 5.1: Prototype Overview of Relay Attack.

it AsCard. To make a connecting between the two cell phones, We use Bluetooth 2.1
or Wi-Fi (802.11b).

Section 5.2.1 discusses about the setup of Java Read/write program. Section 5.2.2
is the design of host card emulation phone program including its optimized architec-
ture. Section 5.2.3 is the implementation details of reader/writer phone program.

5.2.1 Ticket Reader Application

The NFC read/write component is rather simple in logic than the smart phone apps.
It has a main purpose to control the ACR122u reader which has been attached to
it via USB port and performs NFC transactions. The stack of operating system
and the connection between our programs to the rest components are illustrated in
Figure 5.2.

Daniel[And13] in his thesis has wrapped up the libnfc library and provides us
a convenient API interface to make NFC transactions on DESFire EV1 card, our
design of Java program logic is much simpler. As the primary goal is to successfully
operate the information of the card and make NFC transactions, we here gives one
example how to authenticate and format the Mifare DESFire EV1 card.

The Java Code snippet for authentication and then format the card is as following
Figure 5.3:

Here we assume the card primary key is a 8 byte of 0x00 array and the au-

36 5. IMPLEMENTATION

Figure 5.2: Java NFC program structure (on PC).

thentication method is DES encryption. We first wait for a DESFire EV1 card
and then connect to the card. We select the default card application (which is the
authentication of whole card key), and then perform actual authentication. After we
have done the authentication, we issue the format card command immediately, then
disconnect.

On the ISO 14443-4 type A transmission layer, the actual APDU bytes that are
transferred are looks like below code block Figure 5.4:

Here are some important bytes which lead to our attention. Starting the third
line from "0x90 0x0a", the reader application tries to authenticate to card. Any
line starts with symbol "»" is the outgoing APDUs from NFC reader. The line starts
with symbol "«" is the APDU that DESFire EV1 card answers.

As our audience can see, with the three lines below, the card and reader exchange
information to authenticate the reader and the card as described in section 3.3.2to
make sure the reader has a valid PICC master key to the card. This encryption
is non-repeatable because its process involves random numbers (see section 3.3.2).
After the mutual authentication is done, "0x90 0xfc" command line is issued for
the sake for wiping the card entirely. If during the process the authentication is
failed, the whole transaction would be terminated.

5.2. ARCHITECTURE IMPLEMENTATION 37

Figure 5.3: Format Card, Java code based on libnfc.

Figure 5.4: Format Card, Actual APDU been Exchanged

We have more examples in the Chapter 6. These examples are written as part of
the timer framework which we can measure the round trip time in different situations.
The timer framework means we insert Java code before and after NFC operations
like read/write to detect round trip time for each command to be executed. To
summarize, we measured the time for mutual authentication with DES, 3K3DES, AES
are measured as well as reading and writing different length of data. The reading and
writing process is covered with scenario which includes plain text, MACed messages
or fully encrypted messages. We carefully measured the delay we introduced to the
system when we implant our relay attack devices. Please move on to Chapter 6 for
more details.

38 5. IMPLEMENTATION

5.2.2 Host Card Emulation App

As our audience may wonder, within a standard Android SDK(which lacks of func-
tionality of Host Card Emulation feature provided by Cyanogenmod 9), how can we
expose these Host Card Emulation feature APIs?

The answer is Java Reflection. By using Java reflection, we can explore and wrap
around the functionality which is only accessible at run time. Thus, we here first
create a TagWrapper Class which looks exactly like regular NFC class interface. The
only difference here is we are no longer reading or writing to the NFC cards, instead
we are doing it to the NFC readers.

As we see from the class diagram Figure 5.5, TagWrapper class gives out same
interface as connect(), reconnect(), transceive(byte[]). This interface has the same
syntax as the regular NFC operations to DESFire EV1 Cards. The only difference
here is they are targeted at PCD reader devices rather than NFC cards. The function
transceiver(byte[]) will send out byte[] array to reader and get the response as return.
Just like we send out byte[] array to NFC cards and expect responses.

The main architecture of the Host Card Emulation (HCE) app is built using a
loosely coupled design. As we are dealing with at least two communications: NFC
communication from NFC reader and Bluetooth/Wi-Fi communication from the
other phone, making a single thread application becomes impossible. Nonetheless we
should consider another thread which is default in Android, which is the UI thread.

As the HCE app gets the environment and then enabled NFC and Bluetooth/
Wi-Fi feature, it now waits for the NFC reader to approach for further transactions.
But what if the paring phone on the other side of communication does not prepared
to receive APDUs? What if the other phone is already dead? How to manage the
lifecycle of both Android UI and NFC lifecycle? How to create efficiency during the
transmitting and exchanging data?

These challenges are address by the following message system design in figure 5.6.
The Android system launches us a default UI thread which is long live. We use it as
a hub to spawn more threads. Namely NFC thread and Bluetooth/Wi-Fi thread.

NFC thread is in charge of listening to any NFC events triggered by NFC chips on
the phone. Once there is an APDU comes in, it will quickly forward the information
to UI thread, where the APDU is logged. NFC thread is also responsible for reporting
the status of NFC events. Such events like reader are closed by force and reader is
reconnected. Once these events are received, the corresponding flag in UI thread
will be set, so UI thread can tell the other phone about the emergency situation via
Bluetooth/Wi-Fi.

5.2. ARCHITECTURE IMPLEMENTATION 39

Figure 5.5: Tag Wrapper to enable Host Card Emulation

Bluetooth/Wi-Fi thread is another thread which similarly in charge of Bluetooth
or Wi-Fi messages. This long live thread can monitor the traffic comes from the
other phone thus servers as a tunnel between AsCard and AsReader phones. Also
the system events like Bluetooth/Wi-Fi connection failure would be reported by
this thread to UI thread. So the UI thread would know how to make corresponding
activity fall down naturally.

As on the Bluetooth and Wi-Fi channel, we choose to implement a UDP socket.
This is because UDP is easier to manage than TCP and much faster because there
is no mechanism for retransmission. Unreliable it is, but it servers well in our close
range communication.

The figure of 5.6 best demonstrates when the connections are all established, how

40 5. IMPLEMENTATION

Figure 5.6: Three Threads Architecture of HCE app

is an APDU request from NFC reader been captured and forward to Bluetooth/Wi-Fi
channel to deliver. Once the APDU response is prepared and sent back from the
other phone, we can again monitor the content of APDU and forward it back to
the NFC reader. The whole process is decoupled by using threads and asynchronies.
Even if either NFC channel or Bluetooth/Wi-Fi device faces a failure, the system
can handle it gracefully.

Some important class diagrams is included in figure 5.7 for interested readers.
The AsCard Activity is the main UI thread created when launching the application.
BluetoothMessageService is a class which in charge of Bluetooth connection. It will
spawn corresponding threads used for listening and accepting sockets. HCEDesfire-
Service is a class in charge of NFC module on the phone. It would spawn a thread
DummyReplyThread to handle the APDUs to and from NFC reader. This thread
will periodically empty and send the APDUs in the buffer to feed the NFC reader.

As this thesis is a research paper targeting at solving problems rather than
discussing the solution method itself, we would not dive into the code design details.
Documentation would be found in the original source code if reader is interested.

We display here is a figure 5.8 shows the important internal state of our HCE
application, to summarize, the rows begin with BT is related to Bluetooth read-
ing/writing. Once the flag is set, the program would know there are messages coming
from or needs to be sent out via Bluetooth channel. The rows begin with HCE is

5.2. ARCHITECTURE IMPLEMENTATION 41

Figure 5.7: Important Class Diagram of HCE application

related to NFC host card emulation. Once the flag is set, we know that there would
be NFC messages coming or the NFC reader has changed its status.

5.2.3 NFC Reader/Writer App

As we have gone through the design principles and architecture of Host Card Em-
ulation app we built above in section 5.2.2, it is not difficult to image a similar
structure app can be built to read/write real Mifare DESFire EV1 cards. It also has
a similar life cycle and communication ability except that it comes along with a real
NFC tag reading/writing interface targeting at real smart cards.

We here omit the description of all the same structure but keeps the most essential
part of the code, the NFC read/write interface. As show in figure 5.9. It has public
methods of openTagConnection(), writeToCard(byte[]) to manipulate the APDUs
transfer to and from card. It also has a DummyReplyThread() which is spawn by
the UI thread to monitor the NFC card status. This thread has extremely similar
functionalities with the same named thread in Host Card Emulation app.

42 5. IMPLEMENTATION

Figure 5.8: Internal Status of HCE application

5.3 Flow of Relay Attack

As we have all the components in hand, we start to pair them and derive a practical
attack on the NFC smart card. The static set up would be show in figure 5.10.

Attack shall do the following things to successfully launch up a relay attack.

– Launch the apps on both AsCard and AsReader smart phone. Click on the
already installed app icon to launch the app.

– Enable the NFC feature and Wi-Fi or Bluetooth. Remember to enable NFC
and communication radio interface, otherwise the feature is not complete.

– Connect two phones with Bluetooth or Wi-Fi. Pairing your devices so they can
talk to each other.

5.4. PROBLEMS AND OPTIMIZATION 43

Figure 5.9: Tag Connection Class Diagram of Reader/Writer app

– Attach the AsReader smart phone to the victim smart card. Simply touch the
card with smart phone. It will be captured by our app.

– Attach the AsCard smart phone to the NFC reader. Similar to the step above,
but the target is the NFC reader we want to play with.

– The Relay attack automatically triggered when the reader start to make trans-
actions.

– Attacker hijacks the communication and can drop or analyze any APDUs on
the fly. Attacker can now instantly see the APDUs on the UI of each app. He
can further saving them for analysis.

5.4 Problems and Optimization

During the implementation of prototype and the iteration of experiment-test-modification
loop, we found out many difficulties lying in our path. Most of the problems related

44 5. IMPLEMENTATION

Figure 5.10: Tag Connection Class Diagram of Reader/Writer app

to software are solved and optimized and integrated to our app. But some problems
lies in the hardware and driver itself.

Efficiency of relay attack and message buffer size. This problem is a obvious
question. We try to decouple all the components and use thread to keep the
application runs as fluently as possible. The Wi-Fi/Bluetooth service is not interfer
with NFC transaction service. These two services are run in sepearate threads to
make the app smooth. If we do not use threads, Wi-Fi/Bluetooth service may
wait for transmission of data and delay the receiving of NFC requests or delivering
of NFC responses. As we have the knowledge of Mifare DesFire EV1, the max
transmission byte size is 253. Thus we have programmed a 300 bytes buffer for
information exchange. We do not want to waste a longer buffersize to be transmitted
via communication channel. As this buffer can be chopped into pieces on before Wi-Fi
transmission and re-assembled on the other side. This will reduce the transmission
speed.

Lost connection after Formatting card. This is a small flaw in our implementation
but amended. When to Java server program tries to format the card, the card would
do it then disconnect. Our phone was unaware of this automatic feature and still hang

5.4. PROBLEMS AND OPTIMIZATION 45

there waiting for response. But this flaw has been fixed during the implementation.

Different UID of real Card and Emulated Card. According to our observation,
the initial phase of wake-up and anti-collision is handled by Cyanogenmod operating
system in a different way than real card. The protocol ISO 14443-3 describes the
anti-collision phase shall detect where the UID of card is 7 bytes or 4 bytes. As we
have known the Cyanogenmod can only controls the NFC chip to emulate a 4-byte
UID. This feature can be best described in the figure 5.11. Far from now, it is fixed
in the operating system driver and NXP PN544 chip. So we cannot overcome this.

Figure 5.11: UID of Emulated Card vs. Real Smart Card

Chapter6Evaluation and Experiments

As we have successfully implemented our relay attack on off-stock market smart
phones, it is time to measure the impact of relay attack on original communication.
This chapter describes the experiments we have conducted in order to discover the
difference, errors we have introduced into the NFC communication model. Also the
performance of our relay attack is also measured.

As we have explicitly stated in section 5.4, Emulated NFC tags(by phone) has a
different UID and behavior in the ISO 14443-3 protocol level. Thus our emulated tag
has a slightly different anti-collision phase than the common Mifare DESFire card.
But the real world transaction activity is actually carried out after anti-collision
phase and into ISO 14443-4 transmission protocol. On this level, our relay message
is exactly the same to the original message. For this reason, the most experiments
here we covered is focusing on the ISO 14443-4 level. The main metrics we focus on
is delay time introduced by relay attack comparing to the original smart card.

This chapter will first introduce our experiment set up and talk about some error
sources in delay time measurement. Tools and equipment we used to track the status
of whole system. Next we will carefully run experiments over most possible DESFire
commands and transactions to test the delay we introduced when plug in our relay
attack. Finally would be a discussion on the data we collected.

6.1 Experimental Setup

Experiments are carried out in a scientific manner and we have to lay out a foundation
for them. This section describes some basic set ups and also the error resources if we
have such set up.

47

48 6. EVALUATION AND EXPERIMENTS

6.1.1 Tools and Environment

During the experiments, we choose Nexus S as our smart phone devices and both
phones are installed with our attacker app. During experiments, the phones are
placed one meter to each other on the desk.

Name OS Library Reader
NFC Server Windows 7 Java 6 JVM ACR122u reader

Table 6.1: Java NFC Server Setting

Name Connectivity Distance Feature
Nexus S Bluetooth

2.1/Wi-Fi
802.11b

1 meter NFC

Table 6.2: Nexus S phone settings

Name Frequency Functions Protocol
Mifare DESFire Card 13.56Mhz read/write, au-

thenticate
ISO 14443
A

Table 6.3: DESFire EV1 features

Also we have a device Proxmark3 to sniffing the traffic and have a more specific
round trip time measurement. Proxmark3 is developed as an open source hardware
project to clone, read and sniffing the traffic of RFID tags. Our Mifare DESFire cards
are acutally supported by Proxmark3. With the high frequency antenna connected,
it can continuously sniff the traffic and mark down the time interval of APDU
commands sending from reader and from card.

Another time measurement method is to measure the round trip time from Java
reader program. The time measurement is subject to the actual accuracy of JVM
implemented. However as the actual NFC smart card services are implemented with
business logic inside various NFC applications on server, its time measurement also
can be representative for our study.

6.1.2 Error Sources in Experiment

As we highly depend on the Proxmark3 to give out delay time information if we
insert relay attack between the reader and DESFire EV1 card, the first errors source
is the Proxmark3 hardware itself. It may record wrong messages or wrong times by
accident. By the time now, the only method we have is to upgrade to newest stable
version and do as much experiments as we can to eliminate unstable results.

6.2. TIME DELAY MEASUREMENTS 49

The second error source is when we calculate the delay from Java NFC server
application; we usually omit the accuracy of JVM time measurement. Also the
ACR122u reader itself is a black box to experiments. Delay time measurement may
also vary from time to time because operating system maybe busy running other
processes. Thus the time measurement results from Java NFC server application can
only be an indicator, rather than a serious data source.

6.2 Time Delay Measurements

6.2.1 Single Command Encryption Time of Real Card

Figure 6.1: Single Command authentication by DES example

Here we come back to the problem of exploring the processing time of encryption
of messages on the DESFire card. Namely we have three choices, DES, 3K3DES (a
variation of triple DES) and more advanced AES. For the DES and 3K3DES, each
round only 8 bytes of key is used. But for AES, key length would be 16 bytes.

The best place to explore the encryption progress is showed again in figure 6.1.
As we have discussed before, DESFire card has a mutual authentication progress
which evolves encryption and decryption. Take DES for example. The trace lines
begin with "0x10 0xd1" and "0xe9 0x0d" in figure 6.1 are actually card response
APDUs. These responses are the result of DES encryption/decryption of 8 byte
temporary secrets. As the processes of responses in these two steps are different, we
call them step 1 and step 2 respectfully.

Table 6.4 best describes the different time we observed for the step 1 and step 2
phase of authentication. DES uses a 16-byte key but only 8 bytes are effective(as we
mark as *), 3K3DES would use a 24-byte key as it needs three rounds. AES only
needs 16-byte key but provides the same strong mechanism as 3K3DES.

50 6. EVALUATION AND EXPERIMENTS

As our audience may observe from the table, our testing results show that
regardless of 8-byte or 16-byte encryption, all the three encryption mechanism can
be finished in 2-3 ms. From the average time, DES is always fastest, following by
AES. The slowest option is 3K3DES. But the advantage is really not so huge enough
to catch up our attention.

Name DES 3K3DES AES
Key Size(byte) 16(*) 24 16
Step 1 (Avg) ms 2.34 2.76 2.66
Standard Deviation 0.04 0.05 0.03
Step 2 (Avg) ms 2.29 3.12 2.73
Standard Deviation 0.05 0.03 0.04

Table 6.4: Response Time for Different Encryption method on Real Card

6.2.2 Single Read Operation Time of Real Card

After we have known the time of processing encryption on 8 to 16 bytes of small data,
we start to look at some more advanced operation or say, transaction on DESFire
card. We hereby choose a standard backup file on DESFire card as our testing object.
We have tried to read different length of data from it with different methods.

We choose to read from 8 bytes to 253 bytes (top limit of transceiver payload
length) from a single backup file. Only backup file allows us to freely manage our
own content structure. This reading process is either plain text, or MACed, or fully
encrypted. There are also choices for encryption methods, like DES/3K3DES/AES
are applied accordingly. Table 6.5 is the matrix we collected after we have carefully
measured the response of DESFire card.

Size/Time(ms) DES DES
MAC

AES AES
MAC

3K3DES 3K3DES
MAC

8 byte 0.51 0.96 1.25 1.25 1.37 1.37
16 byte 0.54 1.22 1.63 1.58 1.51 1.64
32 byte 0.59 1.79 1.93 1.93 2.29 2.22
64 byte * 0.85 3.11 2.81 2.78 3.48 3.48
128 byte ** 1.21 5.48 4.42 4.42 5.92 5.88
253 byte *** 1.91 10.37 7.51 7.49 10.41 10.38

Table 6.5: Response Time for Reading Data, Different Encryption methods on Real
Card

6.2. TIME DELAY MEASUREMENTS 51

These data are also illustrated in the figure 6.2 . To our surprise, short payload
from 8 to 32 bytes are transferred in a single response and regardless of their ways of
transmission, time for DESFire card to send out response is always around or less
than 2ms.

Figure 6.2: Response Time for Reading Data, Different Encryption methods, Real
Card

Starting from 64 bytes to 253 bytes(as we marked as *,** and ***), data are
transferred in 2 pieces, 3 pieces and 5 pieces. This is in compliance with ISO 7816
protocol specification about single APDU length. DESFire card will automatically
split the answers into small trunks less than 64 bytes. Thus the respond time increases
due to multiple transmissiones.

Among all the methods, Plain text method is always the easiest and fastest. DES
with MAC option is as slow as 3K3DES encryption with MAC option. This makes
us conclude that MAC calculation is more time consuming than simple rounds of
DES calculation.

The AES encryption method is significantly faster than 3K3DES. It is the second

52 6. EVALUATION AND EXPERIMENTS

fast method next to plain text transmission. As AES provides the same encryption
protection as 3K3DES, we strongly suggest our reader to use AES for the sake of
saving time.

6.2.3 Relay Attack Delay Measurement (Sniffer)

After we have tested DESFire card basic transactions, now we collected enough data
as benchmark of transaction timing. This time we investigate the time delay impact
of different channels. As the nature of relay attack is inserting the attacker into the
communication and forwarding messages, some delays are expected here. So the
single command transmission time can no longer be near 2ms.

Channel/
Time(ms)

DES
Step1

AES
Step1

3K3DES
Step1

DES
Step2

AES
Step2

3K3DES
Step2

Real Card 2.34 2.65 2.75 2.28 2.72 3.12
Wi-Fi 67.91 71.59 72.63 73.54 74.03 74.03
Bluetooth 66.30 69.45 70.57 72.68 74.03 73.64

Table 6.6: Channel Delay created by Wi-Fi, Bluetooth

As we can see from table 6.6, the first line is the normal time for a DESFire
card to respond to step 1 phase and step 2 phase of different authentication methods.
Usually this phase only takes around 2-3ms as we have discussed above. However, by
introducing two smart phones in between to do the relay attack, the single command
response time increased into 60-70ms.

These delays are illustrated in figure 6.3 for a more direct and easy understanding.
Although the Bluetooth 2.1 channel is slightly faster than Wi-Fi 802.11b channel, the
worst case does not take more than 74.1ms. As far as our knowledge of DESFire EV1
specification, Frame Waiting Time is set to be 77ms as recommended, which means
even the relay attack can survive the most strict time limitation in real environment.

Our delay in both Bluetooth channel and Wi-Fi channel in relay attack is
acceptable. However, we have to mention that it is already close to the upper
threshold, so further optimization is needed.

6.2.4 Relay Attack Delay Measurement (Java Application Side)

After we have a precise measurement with our tool Proxmark3 as sniffer, we return
back to the Java NFC server side to have a more overall view of time delay. Despite
each single APDU we sent out to execute our command, only several steps linked
together can we perform meaningful operations and transactions. For example, server

6.2. TIME DELAY MEASUREMENTS 53

Figure 6.3: Different Channel Delay

side NFC application shall first authenticate itself then perform reading operation,
or write to a file first then commit transaction to make the change permanent.

Thus we insert into our Java program time measurement codes to see the time
delay between a real DESFire card and a relay attacked scenario. Here we choose
only 32 byte small data for reading and writing purpose. All the file types are covered
including value file, backup file, CRC file. The data can be seen in table 6.7.

To make it easier for reader to understand, we take the data and make a figure
in 6.4. As we said in the beginning of this chapter, server side timing can never be
accurate but gives a good, intuitive insightful look about what has happened from
server observation. DESFire card makes a full-step transaction usually less than
150ms. In case it counters with CRC files, it takes much longer time.

Our Bluetooth or Wi-Fi relay channel takes much longer time than DESFire in
terms of multiple-step transaction. The more transmission rounds a single transaction
takes, the more we can see the delay. As we conclude here, the delay is accumulated

54 6. EVALUATION AND EXPERIMENTS

Name/Time(ms) Real Card Wi-Fi Bluetooth
Create App 54.8 127.8 112.2
Select App 16 94.3 111.5
Authen App 51.4 223.9 202.9
Create CRC file 60 140.5 117.5
Create Value file 48 122.3 107.3
Create Backup file 52.4 131.5 112
Write CRC file 77 291.0 254.5
Commit CRC file 29 101.1 84.8
Write Backup file* 132.2 540.9 483.5
Commit Backup file 29.2 100.1 109.4
Read CRC file 212.6 932.7 672.5
Read Value file 37.4 208.0 197
Read Backup file 117.6 547.3 415.6

Table 6.7: Different execution time of transactions

and can be felt by server side programs easily. Taking reading backup file as an
example. The direct command without relay attack only spent 117ms to finish
this transaction, but if we insert relay attack phones with Wi-Fi and Bluetooth in
between, it spent 547ms and 415ms respectfully. Server side business logic program
can already suspect there is an abnormal behavior of client DESFire card.

6.3 Problems in Experiments

During our experiments, we have encountered several problems in collecting data.

– Data corruption. As our Proxmark3 sniffer has a limit ability, it sometimes
cannot capture correct signal from high frequency antenna. Some bytes are
lost. Especially when the buffer of sniffer is full, it starts to stop recording
any new transactions. So some data we collected are corrupted. During the
analysis, we find out more than 20

– Limited memory. Our Proxmark3 is powerful of sniffing, but it has a limited
internal buffer. Usually it stops working halfway when we are doing heavy data
transactions. Thus we have to stop manually from time to time to collect data
and restart the Proxmark3.

– Sniffing ability. The Proxmark3 sniffer has a good performance in laboratory,
but when it is taken out to be tested in real environment (bus card charging
machine), it can only capture the transaction of deducting values. It cannot

6.3. PROBLEMS IN EXPERIMENTS 55

capture a single signal when we are top-up our bus card credits. This might
due to the frequency bus company used to top-up bus card is different from
normal usage.

56 6. EVALUATION AND EXPERIMENTS

Figure 6.4: Delay of different operations from server side.

Chapter7Discussion

At this point, we have finished our experiments about our relay attack. Truly it
succeeded in our laboratory environment and was an excellent proof of concept.
However there are several things shall be taken into consideration. A single successful
attack does not mean it can work everywhere. And also the relay attack itself has
limitations. From those limitations, we can have effective preventions to stop smart
phone based relay attacks.

7.1 Frame Waiting Time

According to ISO 14443 specifications, smart card and it pairing reader shall negotiate
a proper Frame Waiting Time. This time window is the max waiting time for reader
to expect card to finish a single command. In ISO 14443 protocol design, the default
waiting time is 77ms(see section 2.2). As we can see our attack needs nearly 74ms
to complete a single command, it would go exceeding this limit easily. However, in
real life NFC applications, this time windows has not been properly implemented.
In DESFire cards, ATS is not set to default value of 0x80 but instead set to 0x75
0x77 0x81 0x02 0x80. See section 3.1. Thus this Frame Waiting Time is no longer
calculated as 77.33ms. It depends how the programmer of NFC logic interprets it.
But if the NFC program truly respects and implements the FWT, we suggest to
enforce a smaller frame waiting time to eliminate more illegal relay attacks. Since
the DESFire card can respond to reader in less than 77ms (See table 6.4, table 6.5),
we suggest a smaller value shall be used. For example, any APDU response later
than 50ms is considered invalid response. This FWT can at least elimiate our
implementation of relay attack by smart phones.

7.2 Bluetooth vs Wi-Fi

As we have seen from the previous chapter, relay attacks in Bluetooth channel is
always slightly faster than Wi-Fi channel. The difference is more obvious when

57

58 7. DISCUSSION

we execute multiple commands rather than single command. We have carefully
measured the time at each point and conclude that under same software architecture,
on Android Nexus S phone the Bluetooth stack is faster than Wi-Fi stack in our case.
This may due to the Bluetooth chip or Wi-Fi chips capability, or may be the inside
the implementation of operating system itself. Our further study would be comparing
different communication channel efficiency under same software architecutre.

7.3 Cellular network

One of our goals in the very beginning of thesis is to do the relay attack in a much
longer distance than Wi-Fi. To achieve this, we can put the traffic over cellular
network (mobile broad band). However, as in theory it makes no difference to the
experiments we have done right now, in practice user may suffer from potential traffic
congestion and delay in cellular network. This may affect our user experience in
a larger scale. We also have to point out that more delay means more rejection
possibility from correctly implemented NFC applications, because they have a strict
Frame Waiting Time.

7.4 Preventing Attack From The Beginning

As we have mentioned in the Chapter of Implementation, during the initial phase of
activation and anti-collision, ISO 14443-4 protocol is used. And our smart phone
emulated NFC cards has a significant shortcoming: 4-byte UID rather than regular
7-byte UID in a real card. This can be detected by NFC reader and thus we can reject
the emulated NFC card at the very beginning. No further transactions are allowed
as long as the UID is only 4 bytes long. But this may cause some new problem in the
future. As we know that security can never depends on the UID because it can be
read by everyone as plain text. Also advanced tools like Proxmark3 can easily spoof
7-byte UID. Thus this prevention is useless towards this type of hacking devices.

References

[ACL07] Marco Domenico Aime, Giogrio Calandriello, and Antonio Lioy. Dependability in
wireless networks: can we rely on wifi? Security & Privacy, IEEE, 5(1):23–29,
2007.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787–2805, 2010.

[All07] Smart Card Alliance. Proximity mobile payments: Leveraging nfc and the
contactless financial payments infrastructure. Smart Card Alliance, 2007.

[AM10] Adrian Atanasiu and Marius Iulian Mihailescu. Biometric passports (epassports).
In Communications (COMM), 2010 8th International Conference on, pages
443–446. IEEE, 2010.

[And13] Daniel Andrade. Connecting nfc to the cloud, remote updating of smart cards.
Master’s thesis, Aalto University, 2013.

[BBRS06] Rafael Ballagas, Jan Borchers, Michael Rohs, and Jennifer G Sheridan. The
smart phone: a ubiquitous input device. Pervasive Computing, IEEE, 5(1):70–77,
2006.

[CH07] Vipul Chawla and Dong Sam Ha. An overview of passive rfid. Communications
Magazine, IEEE, 45(9):11–17, 2007.

[CKP+12] ByungRae Cha, DaeKyu Kim, SunMi Park, Jongwon Kim, and JaeHyun Seo.
Concept design of micro payment model based on android nfc to reinvigorate
traditional markets. In Proceedings of the International Conference on Smart
Convergence Technologies and Applications (SCTA?12), 2012.

[COO13] Vedat Coskun, Busra Ozdenizci, and Kerem Ok. A survey on near field commu-
nication (nfc) technology. Wireless personal communications, 71(3):2259–2294,
2013.

[Def06] NFC Record Type Definition. Nfc forum technical specification, 2006.

[DM08] Mohsen Darianian and Martin Peter Michael. Smart home mobile rfid-based
internet-of-things systems and services. In Advanced Computer Theory and

59

60 REFERENCES

Engineering, 2008. ICACTE’08. International Conference on, pages 116–120.
IEEE, 2008.

[FP05] Erina Ferro and Francesco Potorti. Bluetooth and wi-fi wireless protocols: a
survey and a comparison. Wireless Communications, IEEE, 12(1):12–26, 2005.

[Han05] Gerhard P Hancke. A practical relay attack on iso 14443 proximity cards. Technical
report, University of Cambridge Computer Laboratory, pages 1–13, 2005.

[HB06] Ernst Haselsteiner and Klemens Breitfuß. Security in near field communication
(nfc). In Workshop on RFID security, pages 12–14, 2006.

[IH11] Wolfgang Issovits and Michael Hutter. Weaknesses of the iso/iec 14443 protocol
regarding relay attacks. In RFID-Technologies and Applications (RFID-TA),
2011 IEEE International Conference on, pages 335–342. IEEE, 2011.

[JTSM07] Päivi Jaring, Vili Törmänen, Erkki Siira, and Tapio Matinmikko. Improving
mobile solution workflows and usability using near field communication technology.
In Ambient Intelligence, pages 358–373. Springer, 2007.

[KW05] Ziv Kfir and Avishai Wool. Picking virtual pockets using relay attacks on contact-
less smartcard. In Security and Privacy for Emerging Areas in Communications
Networks, 2005. SecureComm 2005. First International Conference on, pages
47–58. IEEE, 2005.

[Mar12] Konstantinos Markantonakis. Practical relay attack on contactless transactions
by using nfc mobile phones. Radio Frequency Identification System Security:
RFIDsec, 12:21, 2012.

[MB09] Michael Massoth and Thomas Bingel. Performance of different mobile payment
service concepts compared with a nfc-based solution. In Internet and Web
Applications and Services, 2009. ICIW’09. Fourth International Conference on,
pages 205–210. IEEE, 2009.

[MLKS08] Gerald Madlmayr, Josef Langer, Christian Kantner, and Josef Scharinger. Nfc
devices: Security and privacy. In Availability, Reliability and Security, 2008.
ARES 08. Third International Conference on, pages 642–647. IEEE, 2008.

[Mul09] Collin Mulliner. Vulnerability analysis and attacks on nfc-enabled mobile phones.
In Availability, Reliability and Security, 2009. ARES’09. International Conference
on, pages 695–700. IEEE, 2009.

[NXP12] NXP. An10833 mifare type identification procedure. 2012.

[OP11] David Oswald and Christof Paar. Breaking mifare desfire mf3icd40: Power analysis
and templates in the real world. In Cryptographic Hardware and Embedded
Systems–CHES 2011, pages 207–222. Springer, 2011.

[Ort06] S Ortiz. Is near-field communication close to success? Computer, 39(3):18–20,
2006.

REFERENCES 61

[RKSH07] Florian Resatsch, Stephan Karpischek, Uwe Sandner, and Stephan Hamacher.
Mobile sales assistant: Nfc for retailers. In Proceedings of the 9th international
conference on Human computer interaction with mobile devices and services, pages
313–316. ACM, 2007.

[RLS12] Michael Roland, Josef Langer, and Josef Scharinger. Relay attacks on secure
element-enabled mobile devices. In Information Security and Privacy Research,
pages 1–12. Springer, 2012.

[RNTS07] Jason Reid, Juan M Gonzalez Nieto, Tee Tang, and Bouchra Senadji. Detecting
relay attacks with timing-based protocols. In Proceedings of the 2nd ACM
symposium on Information, computer and communications security, pages 204–
213. ACM, 2007.

[SC13] Luigi Sportiello and Andrea Ciardulli. Long distance relay attack. In Radio
Frequency Identification, pages 69–85. Springer, 2013.

[Sem10] NXP Semiconductors. An 190810: Pn544 c2 antenna design guide. Application
Note, Rev, 1, 2010.

[SVV10] Jarkko Sevanto, Petri Vesikivi, and Pekka K Viitaniemi. Phone with secure
element and critical data, April 6 2010. US Patent 7,694,331.

[Wan06] Roy Want. An introduction to rfid technology. Pervasive Computing, IEEE,
5(1):25–33, 2006.

[ZN06] Pei Zheng and Lionel M Ni. Spotlight: the rise of the smart phone. Distributed
systems online, IEEE, 7(3), 2006.

	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Introduction
	Problem statement
	Structure of the Thesis

	Background and Previous Studies
	Near Field Communication
	NFC Definition and Smart Cards
	NFC Standard Protocols
	NFC Operating Modes
	Mobile Phone and NFC

	Relay attack and Frame Waiting Time
	Relay Attack on NFC
	Relay Attack on NFC with Smart Phone
	Frame Waiting Time and Relay Attack

	DESFire EV1 Specifications
	DESFire EV1 Card Identification
	DESFire EV1 File System
	Authentication and Key System
	Operations and Authentication
	Authentication and Session Key

	An Example of DESFire Operation

	Relay Attack on NFC applications
	Man-in-the-middle attack (MITM) and Relay attack
	Requirements of Smart Phone NFC Relay Attack
	Phone-to-Phone Communication Channel
	NFC Read/Write, Emulation Mode
	Block Communication between Reader and Card

	Solution Design Components

	Implementation
	Development Tools and Dependencies
	Architecture Implementation
	Ticket Reader Application
	Host Card Emulation App
	NFC Reader/Writer App

	Flow of Relay Attack
	Problems and Optimization

	Evaluation and Experiments
	Experimental Setup
	Tools and Environment
	Error Sources in Experiment

	Time Delay Measurements
	Single Command Encryption Time of Real Card
	Single Read Operation Time of Real Card
	Relay Attack Delay Measurement (Sniffer)
	Relay Attack Delay Measurement (Java Application Side)

	Problems in Experiments

	Discussion
	Frame Waiting Time
	Bluetooth vs Wi-Fi
	Cellular network
	Preventing Attack From The Beginning

	References

