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Abstract

Automatic ship docking is one of the applications of autonomous ships. How

to realize autonomous low-speed maneuver under environmental disturbances

for docking is the fundamental problem at present. This paper presents an

efficient approach based on artificial neural network (ANN) for automatic ship

docking. The problem is formulated and well-modelled for simulating ship dock-

ing operation. A joystick implementation in simulation provides manual maneu-

vering and thus enables collection of sufficient and reliable data from successful

maneuvers. To keep consistent with the manual control, an ANN with two

parallel structure is proposed to control the ship’s thrust and rudder, respec-

tively. Feature selection technique and genetic algorithm (GA) are utilized to

optimize the structure and reduce the training cost. Numerical simulations un-

der different environmental disturbances, including no wind, constant wind and

dynamic wind are carried out. The results show the ship is able to reach the

dock smoothly, which confirms the effectiveness of the proposed approach.
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1. Introduction1

Digitization is a major agenda in the development strategy of the European2

shipbuilding industry, which promotes technological innovation and economic3

growth. This agenda points out that the first task is to achieve ship autopilot4

characterized by strong adaptability to sea conditions, low energy consumption,5

and high safety performance. Automatic ship docking is considered an essential6

application of ship autopilot. Ship docking is a challenging manoeuvring task7

for captains. During the docking process, the captain needs to know the ship’s8

current state and estimates its future state based on the manoeuvrability of the9

ship. The ship is suggested to be sailed at low speed to avoid collision with10

the dock and other vessels; but low speed will sharply reduce the shipâĂŹs11

manoeuvrability and increase control complexity.12

To address the above challenges, attempts have been made to design ad-13

vanced controllers using knowledge of nonlinear control theory [1, 2, 3] and14

fuzzy theory [4, 5]. However, it is hard to construct nonlinear mathematical15

models and define fuzzy rules for ship docking since any unpredictable situa-16

tions including weather influences and other vessels’ disturbances may arise. In17

such a case, an ANN-based approach with the ability to learn the underlying18

nature from manoeuvring data, provides a potential solution for automatic ship19

docking. In principle, the robustness of this approach depends not only on the20

ANN’s structure but also on the training data. The training data can be either21

from real ship docking operation, or from reliable simulation. The former has22

high reliability, but is difficult to be collected under different environmental dis-23

turbances; the latter is most frequently used because of its high efficiency, and24

as long as the fidelity of modeling ship docking operation is good enough, the25

reliability of the training data is guaranteed.26

In this paper, we propose a new ANN-based approach to achieve automatic27

ship docking under different environmental disturbances. The main contribu-28

tions of this paper can be summarized as follows:29

1) A ship docking simulation module with complete ship-environment models30
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is established for generating reliable docking data.31

2) The feature selection technique is applied to provide optimal inputs for32

the ANN.33

3) The ANN-based approach with two parallel structure optimized by genetic34

algorithm is verified to be able to dock the ship under different environ-35

mental disturbances.36

The present paper is organized as follow. Section II is a brief overview of37

related work. In Section III, a ship docking simulation module including ship38

mathematical model and wind disturbance model is established. In section IV,39

the proposed ANN-based approach, from data collection, feature selection, to40

ANN construction and optimization, is introduced in detail. Section V presents41

the docking results of the approach under different environmental disturbances.42

Conclusions and future work are given in Section VI.43

2. Related work44

The first automatic ship berthing system based on ANN was demonstrated45

in the 1990’s by H. Yamato [6]. Later, Zhang et al. developed an automatic46

ship-berthing system using a multivariate neural network based controller [7].47

The pre-planned birthing path was determined as the input of the controller.48

However, the authors did not introduce how to set the berthing path. In 2001,49

Im and Hasegawa proposed a parallel neural network based controller to control50

ship thrust RPM and rudder [8]. The experimental results demonstrated the51

proposed parallel neural network-based controller could eliminate the effects of52

slight wind and current, but failed to manipulate the ship to the destination in53

harsh environment. To address this challenge, a motion recognition method was54

utilized to cope with environmental impacts [9]. The method succeeded to com-55

pensate the crosswind disturbance, but still failed when the wind comes from the56

direction of the bow. Nguyen and Jung explored the adaptive neural networks to57

achieve automatic ship berthing [10]. Recently, Zhang et al. proposed a robust58
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adaptive neural network approach based on the navigation dynamic deep-rooted59

information to reconstruct the lumped uncertainties caused by unknown ship60

dynamics and external disturbances [11].61

The above researches focused more on the structure design of the ANN62

controller; whilst none of them tried to generate training data with different63

constraints by using an algorithm to improve the applicability of the ANN con-64

troller. In fact, there have been attempts in training data generation. In 2007,65

Ohtsu et al. proposed a new solution using nonlinear programming method66

to generate minimum time ship manoeuvring data [12]. Hasegawa et al. first67

attempted to use a nonlinear programming language (NPL) to generate ship68

berthing data with restricted conditions [13]. Ahmed and Hasegawa followed69

the research and first proposed the concept of virtual windows which is used to70

ensure the consistency of training data [14, 15, 16, 17]. The NPL method allows71

the user to define non-equal constraints by setting rudder angle as the optimal72

variable and the time as an objective function. However, excessive restrictions73

are defined as termination conditions in these researches when using the NPL74

method, which causes fluctuation of rudder angle commands.75

Nonlinear model prediction algorithm is another solution for optimal berthing76

data generation, but requires higher computational resources to obtain the op-77

timal maneuver path [18]. However, taking advantages of graphics processing78

unit, the method can be executed in parallel, which makes real-time optimal79

control feasible [19]. For example, Mizuno et al. proposed a quasi-real-time80

optimal control system composed of a multiple shooting algorithm for docking81

data generation and a nonlinear model predictive controller for path following82

under wind disturbance [20].83

There are also researches that directly use real ship docking data obtained84

by experienced captains who successfully maneuver the ship into the berth, to85

train neural network based controllers [21, 22]. But the method is not applica-86

ble to general docking operation, as it is difficult to collect large number of real87

ship docking data under different cases of environmental disturbances for train-88

ing. To achieve the generality of ANN based docking in different environment89
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disturbances, we propose a new automatic ship docking strategy that employs90

a ship docking simulation platform to generate reliable docking data and an91

ANN-based approach with optimized parallel structure to manoeuvre ships into92

the dock.93

3. Docking problem statement and simulation model94

3.1. Docking problem statement95

Slow speed, planning, on-board sensing equipment and control approach play96

key roles in ship docking. Kose et al. proposed two requirements to ensure ship97

safety according to the manoeuvring procedures followed by the captain in the98

actual docking of ships [23]. The first one is that the destination for docking99

should be at some distance away the dock instead of completely at the dock.100

The second one is that the captain has enough time to plan a good manoeuvre101

in any critical situation. To meet these two requirements, the whole process can102

be divided into two phases as shown in Fig. 1. The first is the ballistic phase. It103

utilizes the main thrusters and rudder for course changing, speed adjustment,104

and stopping. The second phase is to use tunnel thrusters to achieve side push.105

106

In this paper, we focus on the first phase of the docking operation. It is107

assumed that the ship starts from a stationary state and maneuvers towards the108

port in low speed. The ship will dock in parallel to the port with zero velocities109

when it arrives at the destination. Moreover, three different sea conditions,110

including no wind, constant wind and dynamic wind, are considered for the111

docking problem.112

In Fig. 1, {n} = (xN , yN ) is the North-East coordinate system, and its113

coordinate values can be obtained from the Global Positioning System (GPS).114

{d} = (xo, yo) is called the north-up coordinate system which includes the head-115

ing angle and distance from ship to dock [22]. In this paper, all simulations are116

performed in the north-up coordinate system. The merit of using the north-up117

coordinate system is to control the ship into other different docks without re-118
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training the controller. {b} = (xb, yb) represents the body coordinate system.119

The notation for the marine vessel in Fig. 1 is shown in Table 1.120

Table 1: The notation for marine vessels

Symbol Description

G The center of gravity

βw, Vw Relative wind direction and speed expressed in {d}

u, v, r Surge, sway and yaw velocities expressed in {b}

x, y, ψ Position and heading expressed in {d}

xn, yn, ψn Position and heading expressed in {n}

3.2. Ship mathematical model121

The study of ship dynamics consists of two parts: kinematics, which over-

comes geometrical problems of motion; and kinetics, which analyzes the rela-

tionship between force and motion. Ship movement is expressed in six degrees

DockDock

Ballistic

 phase

Side-push

 phase

ny

nx



ox

oy

G

W WV

Wind

Nx

Ny

n

Figure 1: Coordinate systems for ship docking.
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of freedom (DOF) which includes surge, sway, heave, roll, pitch and yaw [24].

For a surface ship, as shown in Fig. 1, it is only necessary to study the motion in

three DOF, namely, the surge, sway and yaw. In this study, the maneuver model

group (MMG) is used to describe ship motion, in which the hydrodynamic forces

and moments acting on the ship are divided into modular components such as

hull, rudder and propeller. The following is an MMG-based mathematical model

considering wind influence [25]:

(m+mx)u̇+ (m+my)vr =XH +XP +XR +XW

(m+my)v̇ + (m+mx)ur =YH + YP + YR + YW

(IZZ + JZZ)ṙ =NH +NP +NR +NW

(1)

where m is the ship mass; mx,my are the added mass in surge, sway direction;122

IZZ is the mass moment of inertia; JZZ is the added mass moment of inertia;123

X,Y and N denote surge force, sway force and yaw moment; H,P,R and W124

are the symbols that represent hull, propeller, rudder and wind. The propeller125

and rudder are power-providing devices of ship, so XP , YP , NP , XR, YR and NR126

are the control inputs; and the ship velocities u, v, r are the control outputs for127

Eq.( 1).128

Xh, Yh and Nh represent the hydrodynamic forces and moment acting on

the ship hull, which are defined as [26]:

XH =
ρ

2
LdU2(X ′βr sinβ +X ′uu cos

2 β
rL

U
)

YH =
ρ

2
LdU2(Y ′β + Y ′r

rL

U
+ Y ′βββ|β|+ Y ′rr

rL

U
|rL
U
|

+ Y ′ββrβ
2 rL

U
+ Y ′βrrβ|β|(

rL

U
)2)

NH =
ρ

2
LdU2(N ′β +N ′r

rL

U
+N ′βββ|β|+N ′rr

rL

U
|rL
U
|

+N ′ββrβ
2 rL

U
+N ′βrrβ|β|(

rL

U
)2)

(2)

where ρ is the water density; L denotes the length over all of ship; d is the129

draught of ship; U represents the speed of ship. The hydrodynamic coefficients130

(X ′βr, X
′
uu, ...,N ′βrr) can be estimated with the method described in [26].131
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The propeller mainly produces longitudinal force, and its lateral force is

negligible. Thus propeller hydrodynamic model can be written as:

Xp =(1− tP )T

YP =0

NP =0

(3)

where tP is a coefficient, and the propeller thrust force T is defined:

T =ρn2D4
pkT (4)

where n is propeller speed (rpm); Dp is diameter of the propeller; kT is the132

thrust coefficient.133

The hydrodynamic forces and moment generated by the rudder can be cal-

culated by the following formula:

XR =− (1− tR)FN sin δ

YR =− (1 + aH)FN cos δ

NR =− (xR + aHxH)FN cos δ

(5)

where tR, aH are coefficients; xR and xH are the distances from the rudder134

and the propeller to the ship’s center of gravity, respectively; FN is the rudder135

pressure; δ denotes the rudder angle.136

3.3. Wind force model137

The wind has a significant effect on the ship, which will affect heading and

sway movement. Failure to compensate correctly for wind during docking is one

of the main factor of docking accidents. Here, the wind forces and moments

acting on the ship are estimated as [27]:

XW =
1

2
CXρaV

2
r AF

YW =
1

2
CY ρaV

2
r AL

NW =
1

2
CNρaV

2
r ALL

(6)

The physical meaning of each symbol in Eq.(6) is shown in Table 2.138
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Table 2: Parameters of wind force model

Symbol Physical meaning

ρa Air density

AF Frontal projected area of ship

AL Lateral projected area of ship

Vr Relative wind speed

XW Fore-aft component of wind force

YW Lateral component of wind force

NW Yawing moment

CX ,CY ,CN Coefficients calculated using Isherwood72

4. Proposed approach139

Ship Model

Environmental 

Disturbances

ANN Controller

Manual Controller

Simulation Data

Command

States

Data Set Controller Simulation

Training 

data

Feature Selection

Data Preprocessing

Data Normalization

Genetic Algorithm

Optimization
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Environmental 

Disturbances

ANN Controller

Manual Controller

Simulation Data

Command

States

Data Set Controller Simulation

Training 

data

Feature Selection

Data Preprocessing

Data Normalization

Genetic Algorithm

Optimization

Figure 2: A neural-network based control strategy for automatic ship docking.

Fig. 2 schematically depicts the ANN-based ship docking control strategy140

for ship docking under environmental disturbances. First, the ship docking141

simulation module is constructed. It consists of a ship model and environmental142

disturbance models, which is is fundamental to both manual control and ANN-143

based control. Based on that, training data set can be generated, as indicated144

by the blue arrow. The âĂĲdata setâĂİ is the collection of ship manoeuvring145
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data from the simulation. The data is pre-processed through feature selection146

to find optimal input parameters for ANN construction, and further normalized147

before the training of the ANN. The green arrow illustrates the implementation148

of the ANN-based approach. The ANN is optimized by a genetic algorithm and149

trained using the data set. As a result, the trained ANN model can be applied150

to steer the ship to dock under external disturbances.151

4.1. Data generation152

3 4

5

1

2

Definition
1 + 4: thruster adjustment
2 + 5: rudder adjustment

3: stop

Figure 3: Definition of Joystick.

In this research, training data is created through “manual controller”, i.e.,153

by a skilled captain using a joystick to control ship’s rudder and thrust. The154

usage of the joystick is shown in Fig. 3. “Button 4" is used to enable the155

control of thruster speed. Only when it is pressed, can “Button 1" be used to156

adjust thruster speed within the range of [−130, 130]RPM . Similarly, “Button157

5" enables the use of rudder control, and “Handle 2" can adjust rudder angle158

between −45◦ and 45◦ only if “Button 5" is pressed. “Button 3" is the stop key.159

When the ship arrives at the dock safely, the captain can press the button to160

stop the maneuver.161
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4.2. Data pre-processing162

The data pre-processing mainly contains two parts: feature selection and

data normalization. The purpose of feature selection is to choose an optimal

subset from the training data for ship control. In this paper, a step-wise feature

selection method is developed. First, those constant variables would be deleted.

In addition, to remove the redundant information between input parameters,

Pearson correlation analysis [28] is applied. Then ANN-based variance-based

sensitivity analysis is used for identifying the importance of each feature [29].

Assume any two input parameters x and y, the Pearson correlation of these two

parameters can be defined as follows:

ρxy =
σ2
xy√
σ2
xσ

2
y

(7)

where σx is the standard deviation of x; σ2
x is the variance of x; σy is the

standard deviation of y; σ2
y is the variance of y; σ2

xy is the co-variance of the

variables x and y. The Pearson coefficient can be used to detect the dependency

of two input parameters. In this paper, one of the two parameters would be

removed, if the Pearson coefficient of the two parameters is large. If the model

form is f(X) = f(x1, ..., xM ), where X = (x1, ..., xM ) represents the model

input which contains M independent parameters. Based on the theory of Sobol

[30], the variance-based sensitivity index can be described as the ratio of partial

variance and total variance. The influence of the i-th variable xi to the output

can be defined by

STi = 1− V∼i
V

(8)

where STi is the influence of input parameter to output; V stands for the total163

variance; and V∼i represents the influence excluding the i-th variable. If the STi164

is close to zero, the parameter can be considered to be non-important.165

In addition, it is necessary to normalize all parameters to speed up the train-

ing convergence and improve accuracy of the ANN model. All the parameters

would be normalized:

x̂ =
x− E(x)√
V ar(x) + ε

(9)
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where E(x) represents the mean of x; V ar(x) stands for the variance of x; ε is166

a positive infinitesimal to make the calculation possible when x is a constant; ε167

is set to 10−6 in this paper.168

4.3. ANN-based controller169

Since the automatic ship docking system is a multi-input and multi-output

system, it is important to design a neural network that can learn the underlying

nature relationship between inputs and outputs autonomously. An ANN-based

controller with two independent parallel structure is designed. The inputs of the

ANN are the parameters selected from data analysis, and the outputs are the

ship’s propeller speed and rudder angle. The construction of the two parallel

multi-layer ANN is demonstrated in Fig. 4. The ANN is a multilayer feedforward

network that can be trained by error backpropagation. The principle of the

mI

Input 

layer

Hidden layer
Output 

layer



RPMRPM

1

0W

cO

2I

MH

c

MW

1H

1I

nI

Figure 4: Multi-layer ANN with two parallel architecture.
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training algorithm is the gradient descent method that is used to minimize the

mean square error (MSE) between the actual output value of the network and

the desired output value. Assume the neural network in Fig. 4 consists of an

input layer, M hidden layers and an output layer. The output of each hidden

layer can be written as:

Hi =f(W
i
i−1Hi−1 + bi), i = 1, 2, ...,M (10)

where H0 = Im, W i+1
i is the weight between the hidden layers; bi is the offset

of the hidden layer; and f is activation functions. Here we choose the Tansig

function as the activation function, and its mathematical expression is expressed

as:

f(x) =
2

1− exp(−2x)
− 1 (11)

Similarly, the output layer of ANN uses linear function, and its formula is ex-

pressed as following form:

Oc =purelin(W
c
nHn + bc) (12)

whereW c
n is the weight between the last hidden layer and output layer; bc is the

offset; and Hn is the input of the output layer. The performance of the trained

network is determined by calculating the value of the MSE. Suppose there are k

samples in the training data, (x1, y1),(x2, y2),...,(xk, yk), where (xk, yk) represent

the inputs and outputs of the samples. The objective function of the network

training is written as:

MSE =
1

k

k∑
i=1

(y(i)−Oc)2 (13)

where y(i) can be either rudder angle or propeller speed. The Levenberg-

Marquardt algorithm is used to minimize the MSE. The weights of the ANN

are updated as follows:

W i
i−1(t) =W

i
i−1(t− 1)− [JT (W i

i−1(t− 1))J(W i
i−1(t− 1))

+ µI]−1JT (W i
i−1(t− 1))MSE(W i

i−1(t))
(14)
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where J is Jacobian matrix; and I is identity matrix.170

In this paper, GA is used to optimize the ANN based controller. The chro-171

mosome consists of integers, representing the number of hidden layers and the172

number of neurons in each hidden layer [31]. The fitness function is designed as173

the performance of ANN in Eq.(13). Through GA operation including crossover174

and mutation, individuals with high fitness values will be selected to form a new175

generation. The process is repeated until termination condition is satisfied. As176

a result, the ANN structure is optimized to fit the training data.177

5. Experiments178

Table 3: Initial and Termination Ship States

Ship States Initial Termination

position x (m) 122 0

position y (m) 600 0

heading ψ (o) [0,360] 270

surge velocity u (m/s) 0 0

sway velocity v (m/s) 0 0

yaw velocity r (rad/s) 0 0

Table 4: PARAMETERS OF MODEL SHIP

Type Length Beam Draught Deadweight AF AL

Value 93(m) 23(m) 8(m) 4925(tonnes) 470(m2) 965(m2)

This section is devoted to the validation of the proposed ANN-based ap-179

proach. First, a docking scenario is built up, as listed in Table 3. Then, for180

training the ANN, the data with three different environmental conditions, in-181

cluding no wind, constant wind and dynamic wind, is collected from a simulated182
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vessel, whose parameters are shown in Table 4. All experiments are conducted183

in a computer equipped with 2.60 GHz i7-6700K CPU and 16 GB RAM.184

5.1. Feature selection185

To obtain the optimal input parameters for the ANN shown in Fig. 4, the186

proposed feature selection method is performed. There are 16 parameters are187

logged in the simulated scenarios, mainly including two categories: state of188

vessel and environmental information. The vessel’s state includes its position

Figure 5: Correlation analysis of 12 input parameters.

189

and heading, the speed of vessel in each DOF, the force of vessel in each DOF,190

and the state of thrusters; environmental information includes the force of wind191

in each DOF, the wind speed and the wind direction. Since wind speed and192

wind direction are constant values, they are removed for analysis. Thus, the193

correlation of 12 parameters excluding two output variables, i.e., rudder and194

thruster speed, are used for correlation analysis, as shown in Fig. 5. We195

further use a threshold ρxy = 0.84 to eliminate redundant information among196

parameters, which results in the removal of parameters “yaw speed”, “surge197
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force”, “sway force”, “yaw force”, “wind force of surge”, “wind force of sway”, and198

“wind force of yaw”. An ANN used for sensitivity analysis is built on the basis199

of the rest 5 parameters. A variance-based Sobol method with a distribution200

sampled from the original data is performed on the ANN [29]. Fig. 6 shows the201

sensitivity index of the 5 parameters.202

From the sensitivity analysis, 3 input parameters, i.e., x, y, and heading203

angle are selected as the inputs of the ANN with parallel structure for rudder204

control, and 2 input parameters including x and y for the control of thruster205

speed.206
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Figure 6: Sensitivity analysis for rudder and RPM.

5.2. Configuration of ANN207

It is necessary to determine the structure of ANN, as there are no existing208

rules that can be used to accurately select the number of layers of the hidden209

layer and the number of neurons. In this study, the structure was determined210

by trial and observation of the minimum MSE employing GA. The search for211

the number of hidden layers is set as M ∈ [2, 3, 4, 5, 6], and the search for212

the number of neurons in each hidden layer is set as N ∈ [0, 3, 6, 9, 12]. The213
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Table 5: parameters for hidden layers after GA optimization

M

δ Rpm

Mo N MSE Mo N MSE

2
2 12, 12 1.100× 10−3 2 12, 12 3.800× 10−3

2 12, 12 1.100× 10−3 2 12, 12 3.800× 10−3

3
3 12, 12, 12 8.388× 10−4 3 12, 12, 12 3.400× 10−3

3 9, 9, 12 8.514× 10−4 3 12, 12, 12 3.400× 10−3

4
3 9, 12, 3 7.088× 10−4 4 12, 6, 12, 12 3.100× 10−3

4 9, 9, 12, 6 7.547× 10−4 4 12, 6, 12, 12 3.100× 10−3

5
4 12, 12, 12, 12 5.976 × 10−4 4 12, 6, 12, 6 3.100 × 10−3

5 12, 9, 12, 12, 12 5.673× 10−4 4 12, 6, 12, 12 3.100× 10−3

6
4 12, 12, 6, 12 6.430× 10−4 4 12, 12, 12, 12 3.200× 10−3

4 12, 3 , 12, 12 7.419× 10−4 5 12, 6, 3, 12, 12 3.200× 10−3

optimized hidden number Mo should meet the requirement Mo ∈ M . For GA,214

each chromosome contains the above two parameters, i.e. number of hidden215

layers and neurons. The crossover probability and mutation probability of GA216

are set to 0.3, and the stopping criterion is that the number of generations217

reaches 50. Table 5 lists the optimized hidden layers and the neuron number of218

each hidden layer. Considering both MSE and training time, four hidden layers219

with the corresponding neuron number shown in bold in Table 5 are used for220

the experiment.221

5.3. Verification of ANN in no wind condition222

Fig. 7 illustrates some successful maneuvers without wind perturbation in223

dotted lines using the ANN-based approach. Note the two paths one in red224

representing the trajectory using the same initial heading in training data; and225

the blue one representing a completely new initial heading different from the226

training data. The rudder angle and thruster speed generated completely by227

the ANN are expressed in Fig. 8. Fig. 9 illustrates the variation of the ship’s228

surge velocity, sway velocity, yaw velocity and heading angle during the docking229

process. When the ship arrives at the dock, its velocities are very close to zero230

(less than 0.01 m/s), and the ship’s heading angle is also approximately 270◦.231
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In this case, the ship successfully stopped at the dock and terminal states also232

meet the requirements in Table 3.
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Figure 9: Ship velocities and heading angle for maneuvers with initial heading of 280◦ and

326◦ under no wind.

233

5.4. Verification of ANN in constant wind condition234

Here we test the ANN-based controller in different initial states under con-235

stant wind condition of Vw = 3m/s and βw = 0◦.236

Fig. 10 illustrates the automatic docking trajectory starting from different237

initial headings. The red curve and the blue curve are two successful maneuvers,238

with the same initial states and different initial states from the training set,239

respectively. The thruster speed dramatically fluctuates between 300 and 400240

seconds, which may be caused by speed adjustment. It can be seen from Fig. 12241

that when ships arrive at the dock, the surge velocity and yaw velocity are close242

to zero, and the heading angle is also close to 270◦. Due to the disturbance of243

wind, the ship’s sway velocity is not zero.244

5.5. Verification of ANN in dynamic wind condition245

The ANN-based controller is tested under different wind speeds. Fig. 13246

shows the results of different ship initial states. The red curve represents a ship247
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Figure 10: Docking results with different initial headings under constant wind.
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298◦ under constant wind.
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Figure 12: Ship velocities and heading angle for maneuvers with initial heading of 80◦ and

298◦ under constant wind.

docking path starting from heading 300◦ which is included in training data.248

The blue curve is a maneuver that the ship starts from a random heading. It249

shows that the ANN cannot navigate the ship to move straight when arriving250

at position (0, 500), even though the ship is heading towards the dock. The251

reason is that the wind is becoming stronger at the moment. In the simulation,252

wind direction is constant(βw = 0◦), and speed changes randomly from 1.5m/s253

to 4.5m/s per minute, as demonstrated in the bottom panel of Fig. 14. The254

change of surge velocity, yaw velocity, and heading angle can converge to zero255

at last, but the sway velocity fluctuates periodically with the wind disturbance,256

as shown in Fig. 15.257

5.6. Discussion258

The simulation results show that in no wind condition, the ANN controller259

works very well, with only small fluctuations in command of rudder angle and260

thruster speed. Moreover, the ship states are in full compliance with the re-261

quirements in Table 3 when the ship arrives at its destination. Ships can also262

dock safely in the constant wind environment, but there is a slight error in the263

final heading angle (less than 2◦) and the yaw speed is not fully zero. The main264
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Figure 13: Docking results with different initial headings under dynamic wind.
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Figure 14: Rudder angle and thruster speed for maneuvers with initial heading of 300◦ and
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Figure 15: Ship velocities and heading angle for maneuvers with initial heading of 300◦ and

142◦ under dynamic wind.

reason for this problem is that the ship is required to sail at low speed when it265

approaches the berth, which greatly reduces the ship’s maneuverability. In the266

dynamic wind condition, the control results of the ANN are not as good as these267

in the previous conditions due to the randomness of the wind. The rudder angle268

and propeller speed fluctuate drastically and the path is not smooth enough. In269

addition, the ship cannot successfully arrive the dock when it departs from ini-270

tial heading angles between 5◦ and 23◦. Because at these initial heading angles,271

the ANN is very sensitive to the disturbance of dynamic wind.272

6. Conclusion273

This research proposes a novel way to generate reliable ship docking data274

and finds the optimal variables for training a new neural network by employing275

feature selection technique and genetic algorithm which were not considered in276

previous studies. The conclusions of this work are summarized as follows:277

1) A ship docking simulation module is established, which provides both278

manual and algorithm-based interface for ship docking operation.279
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2) Feature selection is applied to eliminate redundant information between280

input parameters and identify their importance to ship’s control parame-281

ters.282

3) To ensure the stability of the ANN-based approach, the neural network283

structure is optimized by using GA. Two parallel forward neural networks284

with four hidden layers are established to control ship’s rudder angle and285

the propeller speed, respectively.286

4) Numerical results show that under no wind and constant wind conditions,287

the feasibility of the ANN-based approach is fully reflected; while under288

the dynamic wind environment, the performance is inferior but can still289

steer the ship into dock.290

For future study, it is critical to improve the proposed approach to effec-291

tively compensate for dynamic wind disturbances. In addition, advanced mech-292

anisms will be set up to create versatile control strategies that meet different293

requirements, such as minimum time maneuver, lowest energy consumption,294

and collision avoidance with dynamic obstacles.295
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