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A B S T R A C T

Deforestation, the second largest source of anthropogenic greenhouse gas emissions, is largely driven by ex-
panding forestry and agriculture. However, despite agricultural expansion being increasingly driven by foreign
demand, the links between deforestation and foreign demand for agricultural commodities have only been
partially mapped. Here we present a pan-tropical quantification of carbon emissions from deforestation asso-
ciated with the expansion of agriculture and forest plantations, and trace embodied emissions through global
supply chains to consumers. We find that in the period 2010–2014, expansion of agriculture and tree plantations
into forests across the tropics was associated with net emissions of approximately 2.6 gigatonnes carbon dioxide
per year. Cattle and oilseed products account for over half of these emissions. Europe and China are major
importers, and for many developed countries, deforestation emissions embodied in imports rival or exceed
emissions from domestic agriculture. Depending on the trade model used, 29–39% of deforestation-related
emissions were driven by international trade. This is substantially higher than the share of fossil carbon emis-
sions embodied in trade, indicating that efforts to reduce greenhouse gas emissions from land-use change need to
consider the role of international demand in driving deforestation. Additionally, we find that deforestation
emissions are similar to, or larger than, other emissions in the carbon footprint of key forest-risk commodities.
Similarly, deforestation emissions constitute a substantial share (˜15%) of the total carbon footprint of food
consumption in EU countries. This highlights the need for consumption-based accounts to include emissions
from deforestation, and for the implementation of policy measures that cross these international supply-chains if
deforestation emissions are to be effectively reduced.

1. Introduction

There is increasing recognition that to effectively reduce environ-
mental impacts, pressure must be alleviated not only at the point where
environmental impacts occur, but also by addressing the broader socio-
economic drivers of those impacts, which are often distant (Liu et al.,
2015; Geist and Lambin, 2002; Kanemoto et al., 2014). For instance,
foreign demand has already been shown to be a major driver of carbon
emissions from fossil fuel combustion (Davis and Caldeira, 2010; Peters
et al., 2011, 2012) and air pollution (Kanemoto et al., 2014), particu-
larly for the developing world, as well as a driver of land use
(Weinzettel et al., 2013), forestry (Kastner et al., 2011a), water ex-
traction (Hoekstra and Mekonnen, 2012), and biomass consumption

(Erb et al., 2009).
However, despite the fact that tropical deforestation—the second

largest source of anthropogenic greenhouse gas emissions (van der Werf
et al., 2009; Smith et al., 2014) and a major driver of biodiversity loss
(Maxwell et al., 2016; Tilman et al., 2017)—is increasingly driven by
international demand for agricultural commodities (DeFries et al.,
2010), up-to-date, comprehensive (pan-tropical) assessments of embo-
died emissions from deforestation are still lacking. Existing studies
analysing deforestation emissions embodied in trade have either con-
sidered only a handful of countries (Saikku et al., 2012; Karstensen
et al., 2013; Henders et al., 2015), or are based on outdated data on
deforestation and carbon stocks (European Commission, 2013;
Sandström et al., 2018) that do not draw on recent advances in remote
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sensing estimates of both forest loss and associated carbon emission
(Baccini et al., 2017). A better understanding of the links between trade
and deforestation could support recent efforts to rid supply chains from
deforestation, as encompassed, for example, by the goals of the Tropical
Forest Alliance 2020 and the New York Declaration on Forests (Lambin
et al., 2018), as well as the UN Sustainable Development Goals (SDGs)
which aspire to halt deforestation by 2020 (target 15.1).
Here we attribute emissions associated with forest loss to the pri-

mary drivers of deforestation (Geist and Lambin, 2002; Hosonuma
et al., 2012) across the tropics: expanding cropland, pasture and plan-
tation (henceforth we label this forest loss as deforestation, even if e.g.
oil palm or short-rotation tree plantations may still technically be
classified as forests). The analysis is based on state-of-the-art spatial
datasets on tree cover loss (Hansen et al., 2013) and forest carbon
stocks (Zarin et al., 2016). We exclude emissions associated with log-
ging and other selective biomass extraction, but include those from
peatland drainage. We allocate emissions to 10 commodity groups
(including all crops covered by FAOSTAT (FAO, 2017), plus cattle meat,
and forestry products), and go beyond most previous studies by cov-
ering 106 countries across the tropics and sub-tropics. Additionally, for
Brazil and Indonesia—the two countries dominating tropical forest loss
in 2001–2014 (together they account for 40% of total tropical forest
loss) (Hansen et al., 2013)—the analysis is done at subnational level
(557 Brazilian micro-regions and 34 Indonesian provinces). We then
trace those embodied emissions through international supply chains to
countries of consumption using two different models: a physical-based
bilateral trade-model (Kastner et al., 2011b) and an economic multi-
regional input-output model (Stadler et al., 2018).

2. Methods

The analysis linking deforestation to agricultural and forestry pro-
duction, trade and consumption is carried out in three steps: (1) attri-
buting detected deforestation to expanding land uses (cropland, pas-
tures and forest plantations) and associated commodity production, (2)
quantifying the carbon emissions resulting from the land-cover changes
by estimating net carbon stock changes in above-ground biomass,
below-ground biomass and soil organic carbon, as well as emissions
from peatland drainage, and finally, (3) using international trade
models to assess the flows of embodied emissions to countries of con-
sumption (Fig. A.1). The first two steps employ a methodology for
calculating land-use change carbon footprints developed proposed by
Persson et al. (2014b), and use a simple land-balance model that at-
tributes forest loss to major land uses and crop groups across the tropics
(Pendrill et al., 2019). For the third step we use two complementary
models: (a) a physical trade (PT) model based on bilateral trade data
(Kastner et al., 2011b) that provides an understanding of the physical,
country-to-country linkages between deforestation, production and
trade in agricultural commodities, and (b) a new version of the en-
vironmentally-extended multi-regional input output model (MRIO)
EXIOBASE3 (Stadler et al., 2018; Wood et al., 2015), that also accounts
for indirect linkages between deforestation and consumption
throughout the whole economy.

2.1. Attribution of deforestation

Ideally, attribution of forest loss and associated carbon emissions to
agricultural and forestry production would be based on spatially ex-
plicit (e.g., remotely-sensed) data. However, existing spatial analyses of
land cover and use following forest loss in the tropics are limited both
geographically (continental-scale analyses only available for tropical
Americas (De Sy et al., 2015; Graesser et al., 2015)) and temporally.
Although pan-tropical data on forest loss (Hansen et al., 2013; Kim
et al., 2014; Curtis et al., 2018) and land cover exist (Congalton et al.,
2014; Gómez et al., 2016), quality and consistency of land classifica-
tions across datasets is still too poor for combining these to sufficiently

assess post-forest land use with sufficient discrimination between pas-
tures and cropland (Pendrill and Persson, 2017).
Here we therefore use a simple land balance model—encompassing

cropland, pastures, forest plantations and other land uses—to attribute
detected forest loss (Hansen et al., 2013) to agricultural and forestry
commodities on national level. For Brazil and Indonesia, the same
model is applied at the sub-national level. The model is based on the
premises that where there is detected forest loss, (1) if cropland is ex-
panding, it first expands into pastures (if there is a gross loss of pasture
area) and then into forests, and (2) if pastures and forest plantation
areas are expanding, they are replacing forest land. While these as-
sumptions are simplifications that do not describe all possible land-use
transitions, they reflect the predominant land-use transitions related to
tropical deforestation: forests and other native vegetation (e.g., wood-
lands and shrublands) are the main sources of new agricultural land in
the tropics (Gibbs et al., 2010), but cropland expansion also occurs on
former pastureland (the latter is primarily evident in Latin America
(Gibbs et al., 2010; Graesser et al., 2015); this is also evident in our
data, and the results for tropical Africa and Asia are less affected by this
assumption).
Formally, detected forest loss area (Hansen et al., 2013), Ft , in a

given year (t) is attributed to expanding cropland ( FCL t, ), permanent
pasture ( FPP t, ), and forest plantations ( FFP t, ) according to:
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where CLEt , PPE FPE,t t denotes expansion of cropland, permanent
pastures and forest plantations, respectively (i.e., where these land
classes are shrinking, these variables are zero), and GPLt denotes gross
pasture loss (all expressed in hectares).
In words, Eqs. (1)–(3) attributes forest loss to cropland, pasture and

forest plantations in proportion to their relative area expansion, capped
at total forest loss area. More specifically, if detected forest loss exceeds
(or equals) the expansion of cropland, pastures and forest plantations,
the deforestation attributed to each land use will be the full amount of
their respective expansion, and any forest loss exceeding the expansion
of these land uses is left “unattributed” (i.e. due to causes not identified
here). If detected forest loss area is lower than the total expansion of
cropland, pastures and forest plantations (the denominator in Eqs.
(1)–(3)), the total area attributed to the expanding land uses is capped
at total detected forest loss area, attributing all (but never more than)
detected forest loss to cropland, pastures and forest plantations in
proportion to their relative area expansion.
Forest loss attributed to cropland expansion ( FCL t, ) is further al-

located to the eight crop groups (paddy rice; wheat; other cereal grains;
vegetables, fruits and nuts; oil seeds; sugar; plant-based fibres; other
crops; following EXIOBASE sectors, see Table A.1) based on the ex-
pansion of each crop group i (CGEi t, ) (in ha) relative to the other crop
groups according to

F F CGE CGE/ .CL i t CL t i t i i t, , , , ,= (4)

Thus, land uses and associated commodities that are not expanding
during the time period considered will not be attributed any forest loss
nor any concomitant emissions.
Given that the attribution of forest loss estimated by Eqs. (1)–(4) is

non-spatial, with data aggregated at national level, it will mix direct
and indirect drivers (i.e., direct expansion of a land use or crop onto
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previous forest land, or expansion onto another land use or crop that
pushes that land use onto forest land, directly or through substitution of
subsequent land uses). We reduce this problem for the common land-
use transition (in tropical America) of cropland expanding into pas-
tures, indirectly pushing cattle ranchers into forest frontiers (Barona
et al., 2010; Graesser et al., 2015), by assuming cropland first expands
on pastures.
The mixing of direct and indirect drivers is also likely to be more

prevalent the larger the spatial unit at which Eqs. (1)–(4) is evaluated.
Therefore, conducting the analysis as sub-national instead of national
level yields better results. While data availability makes this a challenge
to accomplish globally, we perform subnational analyses for Brazil and
Indonesia, as they are two of the largest countries in our sample and
account for 40% of the forest loss in the period analysed. We carry out
this analysis at micro-region (n= 557) and province (n=34) level,
respectively.
Because we focus on expanding land uses, this attribution method

does not capture areas where forests were cleared for timber without
subsequent establishment of cropland, pastures or plantations. As this
can be an important driver of forest loss in some countries (especially in
Southeast Asia (Henders et al., 2015)), it will lead to an under-
estimation of the emissions attributed to forestry products (here cap-
turing only those resulting from expanding plantations), but the lack of
a land use following forest loss makes logging in natural forests much
harder to quantify, resulting in high uncertainties (Henders et al.,
2015).

2.2. Forest loss and deforestation for cropland, pasture, plantations and
crops: definitions & data

Here we use the term deforestation to refer to forest loss attributed
to the expansion of cropland, pasture or plantations (i.e., FCL t, , FPP t, ,
and FFP t, ). Forest loss ( Ft), on the other hand, is defined as complete
removal of tree cover exceeding 5m height and 25% canopy cover (in
year 2000), and ideally not within tree plantations. Forest loss data
(2001–2014) were taken from updates of Hansen et al. (2013), which
include not only loss of primary forests and secondary vegetation, but
also harvesting of planted forests, so where tree plantations occupy
large areas, this may overestimate carbon losses. For Indonesia and
Malaysia, we therefore only consider forest loss outside tree plantations
using spatial data on tree plantation extent (Petersen et al., 2016).
National level data on net changes in cropland and pasture areas in

2000–2014 are taken from FAOSTAT (FAO, 2017), using the categories
‘Arable land and permanent crops’ and ‘Permanent meadows and pas-
tures’. These net changes will not entirely capture where gross expan-
sion caused forest loss (e.g., in shifting cultivation, or where loss in one
place— e.g., due to urbanization or cropland degradation—is sup-
planted by expansion elsewhere). Hence, we estimate gross expansion
of pasture (PPEt) and cropland (CLEt) area by adding estimates of gross
losses of grasslands (assumed to approximate pasture loss; discussed
further in A1. Supplementary Methods) and cropland from remote
sensing data (Li et al., 2018) respectively to the net changes from the
FAOSTAT data.
The sub-attribution of cropland deforestation to the eight ag-

gregated crop groups ( FCL i t, , ) is based on harvested area data from
FAOSTAT (FAO, 2017). In line with the approach of Opio et al. (2013),
we assume that pasture expansion into forests is primarily for extensive
cattle grazing for meat production (and not dairy products), and hence
allocate all associated carbon emissions to cattle meat.
National level data on forest plantations are also from FAO (2016).

These data are only available in 5-year intervals (2000, 2005, 2010, and
2015) and thus interpolated to create an annual time-series. As there is
no data on gross loss of forest plantation area, we only assess net area
changes.
Sub-national agricultural and forest plantation statistics were taken

from the Brazilian Institute of Geography and Statistics (IBGE, 2018,

2015) and the Brazilian Tree Industry (IBA and ABRAF, 2015) for
Brazil, and from the Ministry of Agriculture (Republic of Indonesia
Ministry of Agriculture, 2017) and Ministry of Forestry (Dermawan,
2017) for Indonesia (see A1. Supplementary Methods for details).
All changes in cropland, crop group, pasture and forest plantation

areas were averaged over the three years following the forest loss,
implying that forest loss is attributed to an expanding land-use if ex-
pansion occurs within a maximum three years following deforestation
(Gibbs et al., 2015). To account for this time-lag (and for an amorti-
zation time, see below), the input data on land-use change needs to pre-
date (and cover) the study time period. The availability of the input
data thus constrained to study time period to 2010–2014.

2.3. Carbon emissions

Carbon emissions were estimated by quantifying changes to carbon
stocks as a result of forest loss and the subsequent land use, considering
changes in three carbon reservoirs: above-ground biomass (AGB),
below-ground biomass (BGB) and soil organic carbon (SOC). We also
estimate carbon emissions resulting from peatland drainage (see
Section 2.4).
Loss of AGB carbon was estimated in a spatially-explicit manner,

combing forest loss (2001–2014) data (Hansen et al., 2013) with a co-
located dataset on AGB carbon stocks (Zarin et al., 2016) prior to forest
loss (year 2000), both based on satellite remote sensing techniques.
AGB carbon loss was evaluated for each 30-m pixel, and subsequently
summarised per country (micro-region and province for Brazil and In-
donesia, respectively). Note that this approach allocates the entire loss
of carbon stock in each forest loss pixel to the forest loss event, implying
that where there have been carbon losses due to forest degradation (e.g.
through selective logging) after 2000, our approach may overestimate
the carbon emissions attributed to agriculture and forest plantations.
Estimates of the impact of land-use change on BGB are uncertain,

and most studies rely on assuming a ratio between BGB and AGB to
estimate the total carbon stocks in BGB (Mokany et al., 2006). The ratio
used here is vegetation-type specific, varying between 0.20 and 1.06
(depending on AGB and the FAO global ecological zone (FAO, 2012) of
the forest land), following 2006 IPCC Guidelines (IPCC, 2006) and
Mokany et al. (2006). The gross losses of AGB and BGB were attributed
to commodity groups based on the share of total deforestation asso-
ciated with each group (i.e., a commodity attributed 10% of total de-
forestation area is attributed 10% of total gross carbon losses).
Stocks of AGB and BGB for the land uses replacing forests were

based on existing literature. We accounted for differences in carbon
stocks between different crops in the EXIOBASE crop groups by splitting
them into subcategories with similar carbon content, primarily distin-
guishing between annual and perennial (tree) crops (see Table A.7 for
details and references).
Finally, to approximate SOC stock changes associated with the land-

use transitions, we used estimate SOC loss values from a meta-analysis
specific to the tropics (Don et al., 2011) (Table A.7).

2.4. Emissions from peatland drainage

For all countries but Indonesia (which accounts for nearly two-
thirds of tropical peatland carbon (Page et al., 2011)), estimates of
carbon emissions from peatland drainage are based on Joosten (2010),
providing country-level data on carbon emission from peatlands
drained for agriculture and forestry for the years 1990 and 2008. We
use Joosten’s emissions factors to convert emissions to area peatland
drained, interpolating the data between 1990 and 2008. We extrapolate
the area up to 2014 based on expansion of agricultural land and forest
plantations (i.e., assuming that the share of cropland and forest plan-
tations that are on drained peatlands is constant) and subdivide the
cropland area on peat by the crop categories in proportion to their
harvested area, all based on data from FAOSTAT (FAO, 2017). Finally,
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we estimate carbon emissions from drainage by commodity group using
the IPCC emission factors (Drösler et al., 2014) for tropical ‘long-rota-
tion plantations’ (forestry), ‘paddy rice’, ‘oil palm’, and ‘cropland and
fallow’ (all other crops). The IPCC emission factors do not include the
potentially high emissions from drainage in the first five years after
forest clearing, so we estimate these separately, based on data from
Hooijer et al. (2012).
Our estimates for Indonesia are primarily based on data from

Miettinen et al. (2016), which provide province-level, time-series
(1990, 2007, 2015) data on peatland area under smallholder-domi-
nated cultivation and industrial plantations on Sumatra and Kali-
mantan. This is supplemented by data for Papua (accounting for ˜40%
of Indonesian peatland area) from Hooijer et al. (2010) for the year
2000. We adjust the smallholder area from Hooijer et al. (2010)
downwards so that it matches with data from Miettinen et al. (2016)
where they overlap, as Hooijer et al. (2010) label all land classified as
mosaics of tree cover, other natural vegetation, and croplands as
smallholder area. Data from Miettinen et al. (2016) are interpolated to
yield an annual time-series, and for Papua (where expansion of crop-
land and plantations has been more limited than on Sumatra and Ka-
limantan) drained peatland area is conservatively estimated to be
constant between 2000 and 2014. Again, cropland area is subdivided by
crop group based on harvested area by province (Republic of Indonesia
Ministry of Agriculture, 2017) and carbon emission are estimated using
the same emission factors as for the pan-tropical analysis.
A comparison between carbon emissions from peatland drainage

estimated here and in previous studies can be found in Table A.8.

2.5. Calculating land-use change carbon footprints

Given that land-use change is a one-time event (to which we here
assign the AGB, BGB and SOC carbon-stock change emissions), but
commodities flow from the cleared land over time, we amortized
(uniformly distributed) the estimated carbon emissions over a period of
10 years, giving us a time-series of total carbon emissions attributed to
each of the 10 commodity groups for the years 2010–2014. The
amortization period is not intended to represent when the emissions to
the atmosphere occur, but rather to distribute responsibility for the
emissions based on an (highly simplified) assumption that expansion of
the land use is done with an anticipation of 10 years of production. In
practice, however, there is large variation and uncertainty in this and
the deforested land may in theory be used indefinitely, so the choice of
amortization period is ultimately arbitrary (Persson et al., 2014a;
Ponsioen and Blonk, 2012; Cederberg et al., 2011; Hörtenhuber et al.,
2014). However, results for 1 and 5 years amortization are similar
(Table A.2).
To then trace the emissions through international trade to con-

sumers and to estimate carbon footprints per commodity and consumer
country, total emissions (AGB, BGB, SOC and peatland drainage emis-
sions) attributed to each commodity group were averaged over the total
production in that year (expressed in dollars for the MRIO, and in
tonnes, taken from FAOSTAT (FAO, 2017), for the PT model and carbon
footprints; i.e., assuming homogenous emissions for all products within
the same commodity group and country). This implies that the results
cannot be directly used to infer emissions resulting from changes in
demand for a given commodity (i.e., are analysis follows an attribu-
tional life cycle assessment (LCA) approach, rather than a consequential
LCA modelling approach).

2.6. Trade models

Building on recent discussions on model choice in assessments of
environmental impacts embodied in trade for different applications
(Hubacek and Feng, 2016; Kastner et al., 2014b; Bruckner et al., 2015),
we use two conceptually different trade models that provide com-
plementary perspectives: (1) a physical trade model of country-to-

country trade flows in the agriculture and forestry sectors, and (2) a
global multi-regional input-output (MRIO) model that covers all sectors
of the economy, albeit with more coarser regional and commodity re-
solution.
The two models differ both in what is tracked (physical quantities

versus monetary flows) and in what they consider as the end-user. The
physical trade model used here traces products to where they are
physically consumed, either as food or in industrial processes (except
for livestock feed, which is further followed indirectly through traded
animal products) (Kastner et al., 2014a). The MRIO further follows
indirect monetary trade flows through multi-stage supply chains and
economic sectors all the way to final consumption, including further
food processing, manufacturing and services (Stadler et al., 2018; Wood
et al., 2015).
The trade approaches were both used to provide annual data on

trade flows 2010–2014, and the same 10 commodity groups were
traced with both approaches. The PT model encompasses trade between
191 countries, and the MRIO between 44 countries and 5 rest-of-the-
world regions. Results from both trade approaches are presented below,
typically by indicating a range (the lower value is from the physical
trade model and the higher value from the MRIO).
The physical trade analysis relies on production data for 130 crop

commodities, 7 primary livestock products and industrial roundwood,
as well as bilateral trade data of ˜400 primary and processed agri-
cultural and forestry products obtained from the FAO's statistical da-
tabase FAOSTAT (FAO, 2017). The calculations aim to track the pro-
ducts along supply chains, including re-exports and basic processing, up
to the point where they are physically consumed, either as food, as is
the case for ˜90% of the included agricultural products, or in industrial
processes. The use of crop products as livestock feed is an exception,
here indirect trade via feed crops embodied in traded animal products is
considered (Kastner et al., 2014a). The level of processing covered in
the database excludes highly processed products; for instance, trade in
macaroni is included, trade in frozen pizzas is not. The included pro-
cessed products are translated into primary commodity equivalents
based on their carbon content. The primary equivalent data are then
arranged into a matrix where each cell corresponds to a trade flow from
country A to country B. Along with information on country-level pro-
duction of primary items, these data are used to create production-
consumption links between countries. For methodological details and
mathematical formalization we refer to the original publications
(Kastner et al., 2014a,b).
MRIOs are an increasingly popular tool for consumption-based ac-

counting (Wiedmann and Barrett, 2013; Kitzes, 2013), and in this work,
we use the EXIOBASE 3 dataset (Stadler et al., 2018; Wood et al., 2015).
For tracing deforestation-related emissions through trade in agri-
cultural commodities, EXIOBASE has an advantage compared to other
MRIO databases (Tukker et al., 2013) in that it has, (a) a consistent
detailed representation of the agricultural and food manufacturing
sector, (b) country detail for the most important countries (Brazil, In-
donesia), and, (c) annual estimates for the time period 2010–2014.
Other MRIO databases such as Eora have more individual countries
represented, but lack the agricultural sector resolution, whilst GTAP is
only available for a few years (Tukker and Dietzenbacher, 2013).
EXIOBASE is based upon national level supply and use tables for

individual EU countries and 15 other major economies. Full global
coverage is achieved with estimates for 5 other rest of world regions
(Stadler et al., 2014). Individual country tables are disaggregated into
200 products based upon detailed agricultural, energy and trade sta-
tistics (Wood et al., 2014) and then trade-linked using data re-
conciliation methods applied to bilateral trade data (Gaulier and
Zignago, 2010). EXIOBASE provides a harmonized time series of MRIO
tables from 1995 to 2015; here we use the data for 2010–2014. Agri-
cultural production is broken down into 15 product groups, further
resolved downstream into 12 manufacturing product groups related to
food. Here we attribute deforestation to production for 10 of these
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product groups (cattle meat, forestry products and eight crop groups
including plant-based fibres); for consumption we consider all product
groups (not limited to agricultural production). Information on product
resolution is provided in Table A.1.

3. Results

For the period 2010–2014, we estimate net emissions of 2.6 giga-
tonnes of carbon dioxide (GtCO2) yr−1 due to deforestation associated
to the expansion of croplands, pastures and forestry plantations in the
tropics (Appendix B, temporal trends shown in Fig. A.2). The main
commodity groups associated with these emissions were cattle meat
(0.9 GtCO2 yr−1) and oilseed products (including both palm oil and
soybeans; 0.6 GtCO2 yr−1) (Fig. 1). There are large geographic varia-
tions in what commodities are associated with deforestation-related
emissions (Figs. 1 and A.3). In Latin America, cattle meat is the domi-
nant contributor (0.8 GtCO2 yr−1), mainly attributed to Brazilian pro-
duction. In Indonesia almost half of the emissions (0.3 GtCO2 yr−1)
come from oilseeds (mainly oil palm). In the rest of Asia-Pacific and
Africa, a more diverse mix of commodities drives emissions from de-
forestation. A fifth to a quarter of the total embodied emissions
(0.5–0.7 GtCO2 yr−1) related to deforestation are due to peatland
drainage, most of which occurs in Indonesia (0.3–0.4 GtCO2 yr−1) (Fig.
A.4).

3.1. International trade

A significant part of the embodied emissions is attributed to com-
modities consumed internationally (Figs. 2b, 3, A.5, A.6, Appendix C,
D). Looking at physical trade flows in the PT model, 29%
(0.8 GtCO2 yr−1) of emissions embodied in production were attributed
to exports. In the MRIO model, this share increased to 39%
(1.0 GtCO2 yr−1), as indirect links between economic sectors (where
the commodities serve as inputs) are considered. This is a substantially
larger share than those found by MRIO studies looking at embodied
land footprint (24%, Weinzettel et al. (2013) with high country re-
solution; 15–20%, with EXIOBASE country resolution (Wood et al.,
2018)), and harvested area (20%, MacDonald et al. (2015)), as well as
the share of fossil fuel emissions embodied in traded goods (23–26%,
Peters et al. (2011); Davis and Caldeira (2010); 20–24%, with EXIOB-
ASE country resolution (Wood et al., 2018)). The share found with the
PT model is also somewhat larger than that found for cropland area
(21%) with a physical trade approach (Kastner et al., 2014a). The im-
portance of trade is further pronounced if one excludes cattle meat,
which is primarily consumed domestically (the export share averaging
10–22%), with the export share rising to 38–48% (from the PT and
MRIO model, respectively).
The exported share of embodied emissions varies considerably by

commodity and country (Fig. 2). Latin America exports 23–34% of its
emissions, though the difference between the two main drivers, cattle
meat (11–21%) and oilseeds (71–89%), is large. The Asia-Pacific region
exports a higher share (44–49%), and Africa a lower share (9–32%).
Oilseeds are produced primarily for export, with 62–76% of embodied
emissions exported, mostly from Asia-Pacific and Latin America to
Europe, China and the Middle East (Figs. 3 and A.6). The same holds for
the “other crops” commodity group, which includes high-value crops
such as cocoa, coffee, tea, and spices, with an export share of 68–75%.
The largest individual country-to-country physical trade flows make

up a disproportionately large part of the embodied emissions (Fig. 3c).
The top three alone – all involving exports of oilseeds to India and
China – together amount for one eighth of traded emissions (and 3–5%
of the total emissions attributed to the production of agricultural and
forest plantation products).

3.2. Consumption emissions and carbon footprints - comparisons

In relation to consumption-based accounting, we compared Annex-I
countries’ imports of embodied emissions from deforestation to national
agricultural emissions (United Nations Framework Convention on
Climate Change (UNFCCC), 2014), including all anthropogenic emis-
sions from agricultural sources within the national territory, such as
enteric fermentation, manure, and synthetic fertilizers, but excluding
land-use change emissions and fuel combustion (IPCC, 2006). On
average, we find that deforestation emissions embodied in imports
amount to 17–31% of national agricultural emissions
(0.25–0.42 GtCO2 yr−1 imported, compared to 1.45 GtCO2e yr−1 na-
tional emissions for year 2012) (Fig. 4). For just over one third of the
Annex-I countries, imported emissions due to deforestation (as esti-
mated by the MRIO) amount to more than half of the national agri-
cultural emissions and for some (Malta, Japan, Luxemburg, and Bel-
gium) imported emissions exceed national agriculture emissions. This
indicates that transfers of deforestation-related emissions through in-
ternational trade are not negligible, and should be considered by
countries in addition to emissions within their national territory.
We also calculated per capita footprints of deforestation emissions

for food consumption0F1 for the individual countries in the MRIO
(Fig. 5). Unsurprisingly, the Brazilian footprint is the highest, given the
large share of Brazilian beef being consumed domestically. The average
EU footprint is estimated at 0.3 tCO2/cap/yr for both trade models,
implying that deforestation accounts for roughly a sixth of the total
carbon footprint of average EU diets (the footprint excluding defor-
estation emissions estimated to be about 1.5 tCO2/cap/yr; Notarnicola
et al., 2017). However, as seen in Fig. 5, there is large variation across
import countries, with some EU countries (e.g., Belgium and the
Netherlands) having as high a footprint as Indonesia (as estimated by
the MRIO). Footprints for most other developed import countries are
similar to the EU average, except the US—which is somewhat lower, at
0.2 tCO2/cap/yr—and Norway—which is somewhat higher, at 0.5
tCO2/cap/yr—while the footprints of emerging economics (China,
India, South Africa) are much lower (< 0.1 tCO2/cap/yr).
Additionally, we find that for many agricultural commodities, the

carbon footprint from deforestation and peatland drainage (Fig. 2a) is
in the same order of magnitude as non-land use change (non-LUC)
emission footprint. For instance, the average deforestation footprint for
Latin American beef estimated here, 43 tCO2 t−1 carcass weight, is al-
most as high as the estimated non-LUC footprint (Opio et al., 2013). The
average deforestation footprints for Latin American and Asia-Pacific
oilseeds, 0.9 and 0.7 tCO2 t−1 oilseeds respectively, are almost twice
the non-LUC footprints of Brazilian soybean and Indonesian palm oil,
respectively (Persson et al., 2014a). This highlights the need to account
for deforestation when assessing the carbon footprint of agricultural
commodities from the tropics.

3.3. Sensitivity analyses

We performed sensitivity analyses to test the impact of the as-
sumptions made in attributing deforestation-related emissions to the
production and consumption of different commodities (see Appendix A,
Section A2.3, for a detailed discussion). The total attribution of defor-
estation-related emissions was stable to variations in assumptions, with
some exceptions: as expected, if the canopy cover threshold used to
define forest areas prior to forest loss is raised (from 25% to 75%) or if
the land-balance model is based on net (rather than gross) expansion of
cropland and pasture, the attributed amount is lowered, by 14% and

1 In the MRIO this includes the consumption of all primary and processed
food commodities, plus service sectors, such as hotels, restaurants, health and
education; in the physical trade model this includes all apparent consumption.
Further differences between the trade model results are discussed in A2.5.
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6%, respectively (see Table A.3). Adopting a more strict forest defini-
tion resulted in particularly large differences for Africa and Latin
America, mainly affecting the area attributed to cropland (Fig. A.9).
Under all alternative model assumptions (i.e., regarding amortization
time, canopy cover threshold, and net vs. gross expansion), the share of
emissions embodied in international trade was stable at 28%–30% for
the PT model, and 39%–40% for the MRIO (Table A.4).
The results were also influenced by the degree of spatial aggregation

at which the land-balance model was run for Brazil and Indonesia,

especially in terms of the emissions attributed to certain commodity
groups (and thus also influencing the share of emissions attributed to
international trade) (Appendix A2.3). This is in line with the reasoning
behind using sub-national data for these countries: applying the land-
balance model for smaller areas better represents the land uses ex-
panding in the areas where deforestation occurred. A less anticipated
result was that the choice of dataset (FAOSTAT compared to more de-
tailed agricultural statistics aggregated to national level) for Brazil and
Indonesia also had quite a large impact on the result, both in terms of

Fig. 1. Emissions sources for deforestation-re-
lated carbon dioxide emissions are diverse and
vary by region. Emissions embodied in pro-
duction are quantified for each commodity
group within each country (here summarised
by region). A region’s width on the x-axis cor-
responds to the embodied emissions produced
in that region, while the y-axis shows the share
of emission attributed to each commodity
group within each region, implying that the
rectangles within the plot are scaled according
to the emissions embodied in each region-
commodity combination. The percentages
within the rectangles indicate the share of the
total (2.6 GtCO2 yr−1) embodied emissions.
For forestry products, the results show emis-
sions associated with tree-plantation expan-
sion, but not emissions due to clearing purely
for timber without subsequent land-use ex-
pansion.

Fig. 2. Country level distribution, by producer region and commodity group, of (2a) deforestation carbon footprints (DCF), expressed in tonnes of carbon dioxide per
tonne of product, and (2b) share of carbon emissions embodied in production that is exported, as well as (2c) total absolute amount of carbon emissions from
deforestation embodied in production (i.e., both for domestic and export demand), expressed in gigatonnes of carbon dioxide attributed to the production each year.
The boxplots (a,b; based on country-year values within each region) represent the median, first and third quartiles, the whiskers show the maximum and minimum
values (though extend no further than 1.5 times the interquartile range), and points indicate outliers. Note the different axis scales in (a): carbon footprints for edible
crops are shown using the left axis, whereas cattle meat and plant-based fibres (indicated by grey shading) are shown using the right axis. In (a), the y-axis has been
truncated to enable presentation, thus excluding several outliers and part of the whiskers. There are large variations between countries and commodity groups in
terms of deforestation related carbon footprints, exported shares and embedded emissions. For example, some crops are primarily for export (such as oilseed products
and other crops), while others (such as cattle meat) are primarily for domestic consumption.
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total attribution and on the share of this attributed to international
trade especially (Fig. A.9, A1. Methods). This underscores that there are
uncertainties in the underlying data, and that the effort to use more
detailed data for the countries with large amounts of deforestation is
motivated.

4. Discussion & conclusions

The quantification of deforestation-related emissions embodied in
production, export and consumption presented here improves on pre-
vious estimates (Henders et al., 2015; Karstensen et al., 2013; Saikku
et al., 2012) by covering all agricultural commodities in all tropical

Fig. 3. Trade flows of embodied emissions from deforestation. (a, b) Trade flows of embodied carbon emissions from region of production to region of consumption
(left to right), for the (a) physical trade (PT) model and (b) multi-regional input output (MRIO) model. Region abbreviations: EU – Europe, CHN – China, ME – Middle
East, NAM – North America. In (a), DOMESTIC (or DOM.) indicates embodied emissions consumed domestically (in the same country as they are produced). In (b),
domestic flows are not distinguished due to the regional aggregation, therefore flows from e.g., Asia-Pacific to Asia-Pacific represents both domestic consumption and
trade between countries in the region. (c) The 20 largest individual country-to-country physical trade flows of the PT model (bars) together account for 30% of
emissions embodied in international trade (dots show the cumulative share of traded emissions; source country codes: IDN – Indonesia, BRA – Brazil, MYS – Malaysia,
VNM – Vietnam, ARG – Argentina, PNG – Papua New Guinea).

Fig. 4. Imports of embodied deforestation-related carbon emissions are comparable to country-reported national agricultural emissions for many Annex-I countries.
The bars (left axis) show the relative magnitude of Annex-I countries’ imports of embodied emissions from deforestation compared to agricultural emissions within
the country’s national territory (i.e., imported embodied emissions divided by territorial emissions). The data on national (territorial) emissions from agriculture are
those reported by Annex-I countries to the UNFCCC (United Nations Framework Convention on Climate Change (UNFCCC), 2014) (for 2012), and include most
anthropogenic emissions from agriculture. The absolute size of the national emissions from agriculture are indicated with points (right axis). See Fig. A.7 for a
comparison of the absolute, rather than relative, emission sizes (per capita).
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countries, as well as by using subnational resolution for the two
countries with largest deforestation rates, Brazil and Indonesia. While
the land-balance model that allows us to assess drivers of deforestation
across the tropics depends on some simplifying assumptions, the model
overall gives reasonable results, in particular for Brazil and Indonesia,
where the model is implemented at sub-national scale. Differences to
earlier results, i.e., in Henders et al. (2015), are larger for some Latin
American countries, though here the deforestation driver assessment of
Henders et al. (2015) (as well as other remote sensing based assess-
ments) is also less robust (for a detailed discussion on model validation,
see A2.1 Comparisons to earlier (case) studies, as well as Pendrill et al.
(2019)). Still, there are a couple of important caveats (see also A2.2 and
Tables A.2–A.5 for additional sensitivity analyses).
First, while expanding cropland, pastures and plantations are the

main deforestation drivers (Geist and Lambin, 2002; Hosonuma et al.,
2012), our approach excludes other deforestation drivers. As a result, a
large share (˜40%) of tropical deforestation remains unattributed in our
approach; this deforestation is likely due to a mix of drivers, such as
logging, shifting cultivation not captured by national agricultural sta-
tistics, expansion of other land uses (e.g., urbanization and mining),
and natural forest fires, in line with the findings of Curtis et al. (2018).
Second, the spatial aggregation of the analysis (i.e., primarily

country-level) implies that we cannot distinguish between commodities
directly expanding on recently deforested land, and those pushing other
land uses into forests (e.g., soy expansion on pasture land pushing cattle
ranchers into forests in Latin America). Disentangling direct and in-
direct drivers requires improved spatially explicit land-use data, parti-
cularly on the extent of crops, pastures and forest plantations. This

could also help better distinguish large-scale, commercial clearings
from shifting cultivation. Our sub-national analysis of the two main
deforestation countries, Brazil and Indonesia, was done as a partial
remedy for the lack of spatial data, and the results for deforestation
attributed to pasture and oilseeds are in line with studies primarily
based on spatially explicit, remote-sensing data (Table A.6, Fig. A.8).
Sub-national analyses for additional countries would likely also in-
crease the extent to which the results represent the direct drivers,
especially where patterns of land-use change differ between different
parts of the county, but determining exactly how this would impact the
results would require better knowledge and/or data on the spatial
variations of land-use change dynamics within them (Appendix A2.3).
Third, while the results differ between the two trade models, they

provide complementary information, as they differ in aim, system
boundaries and trade-relationship metric. Thus, model choice has a
significant impact on the estimations of embedded carbon emissions
and their allocation to commodities and countries, but depends on the
research questions or policy aims (Bruckner et al., 2015; MacDonald
et al., 2015; Hubacek and Feng, 2016). Understanding country-to-
country trade flows as depicted by the physical trade model is more
relevant for upstream actors such as trading companies and investors,
governments and other actors seeking to reduce deforestation through
direct supply chain interventions, such as commodity moratoria, zero-
deforestation commitments, and other demand-side measures. The
MRIO analysis is more relevant for downstream actors, helping to un-
derstand better the underlying distant drivers of deforestation-related
emissions, and is more suitable for consumption-based accounting, as it
follows the emissions further through the supply chain to the point of
final demand (Wiedmann and Barrett, 2013). As expected, while overall
trade links are similar between the models, the MRIO import and export
flows are generally larger (Figs. 2, 3, A.5, and A2.5 Supplementary
discussion). Future quantifications would also benefit from improved
data quality in production and trade data, where large uncertainties
remain.
Despite these uncertainties, our results clearly indicate that inter-

national trade is a key driver of carbon emissions from tropical defor-
estation, even more so than for fossil CO2 emissions. Policies aimed at
reducing carbon emissions from deforestation should therefore consider
not only territorial emissions in isolation, but also telecouplings
through international supply chains (Peters et al., 2011; Davis and
Caldeira, 2010). The fact that emissions from consumption of com-
modities linked to tropical deforestation are high compared to both
territorial agricultural emissions and non-land use change carbon
footprints for food consumption in importing countries, highlights the
need to complement territorial emission accounts with consumption
based accounts that include emissions from deforestation to gain a
fuller picture. Similarly, our results highlight the need to account for
deforestation when assessing the carbon footprint of agricultural com-
modities from the tropics.
Efforts primarily targeting international consumers and supply

chains might benefit from focusing on those commodities which have
both large embodied emissions and are largely exported, such as oil-
seeds. Our results further show that emissions are concentrated in
comparatively few trade flows, suggesting that effective efforts to re-
duce deforestation in supply chains should target specific trade re-
lationships and commodities (as intended by Brazil’s Soy Moratorium
and zero-deforestation commitments targeting palm oil, beef and high-
value crops). Furthermore, the large deforestation carbon footprints of
some agricultural and forest products could also be addressed through
carbon taxes on food products in export markets (Wirsenius et al., 2011;
Edjabou and Smed, 2013).
However, the importance of international trade in driving tropical

deforestation does not take away from the need to also tackle domestic
demand if deforestation is to be reduced; after all, more than half of
deforestation emissions attributed to agricultural and forestry produc-
tion here were destined for domestic consumption, even when using the

Fig. 5. The average (2010–2014) deforestation carbon footprint for food con-
sumption across countries.
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MRIO to consider both direct and indirect trade dependencies. This
indicates that there is a limit to what can be accomplished by demand-
side measures targeting international supply chains, and that these need
to be complemented by national-level efforts (which can target both the
supply and demand side) if carbon emissions from deforestation are to
be effectively reduced (Lambin et al., 2018).
Reducing emissions from deforestation often involves complex

trade-offs, for example between preserving ecological and cultural va-
lues of forests on the one hand, and meeting increasing global needs for
food, fuel, and fibre resulting from increasing populations and afflu-
ence, driving life-style changes, on the other. Although more detailed
assessments are certainly needed, the data presented here provide in-
formation on which agricultural and forest commodities are con-
tributing to large carbon emissions from deforestation and peat drai-
nage, thereby helping to illuminate some of these trade-offs.
In summary, here we have sought to address the need to better

understand the increasing role of international demand in driving tro-
pical deforestation, by providing a pan-tropical quantification of carbon
emissions from deforestation associated with the expansion of agri-
culture and tree plantations, and subsequently tracing these embodied
emissions through global supply chains to consumers. In total, net
emissions of 2.6 GtCO2 per year were attributed to loss of forests due to
expansion of agriculture and tree plantations in the period 2010–2014.
More than half of these emissions were associated with cattle and oil-
seed products alone. Further, using trade models to follow the source of
the demand for the implicated commodities, we find that a large share
of the deforestation-related carbon emissions – 29–39% – was embo-
died in international trade, especially to Europe and China. Notably, in
many developed countries, deforestation carbon emissions embodied in
consumption rival or exceed emissions from domestic agriculture, and
deforestation emissions constitute a sixth of the carbon footprint of the
average EU diet. Put together, these results highlight that consumption-
based accounting should include emissions from deforestation to gain a
more complete picture, and that—if emissions from deforestation are to
be effectively reduced—domestic policy measures can benefit from
being complemented by efforts targeting actors in international supply
chains.
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