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Abstract1

Harvested biomass is linked to final consumption by networks of processes and ac-2

tors that convert and distribute food and non-food goods. Achieving a sustainable3

resource metabolism of the economy is an overarching challenge which manifests itself4

in a number of the UN Sustainable Development Goals. Modeling the physical dimen-5

sions of biomass conversion and distribution networks is essential to understanding the6

characteristics, drivers and dynamics of the socio-economic biomass metabolism. In this7

paper, we present the Food and Agriculture Biomass Input–Output model (FABIO), a8

set of multi-regional supply, use and input–output tables in physical units, that docu-9

ment the complex flows of agricultural and food products in the global economy. The10
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model assembles FAOSTAT statistics reporting crop production, trade, and utilization11

in physical units, supplemented by data on technical and metabolic conversion efficien-12

cies, into a consistent, balanced, input–output framework. FABIO covers 191 countries13

and 130 agriculture, food and forestry products from 1986 to 2013. The physical supply-14

use tables offered by FABIO provide a comprehensive, transparent and flexible structure15

for organizing data representing flows of materials within metabolic networks. They16

allow tracing biomass flows and embodied environmental pressures along global supply17

chains at an unprecedented level of product and country detail and can help to answer18

a range of questions regarding environment, agriculture, and trade. Here we apply19

FABIO to the case of cropland footprints and show the evolution of consumption-based20

cropland demand in China, the EU, and the US for plant-based and livestock-based21

food and non-food products.22

Introduction23

In the context of the Paris Agreement, the UN Sustainable Development Goals (SDGs) and24

related resource efficiency and circular economy agendas, the increasing displacement of en-25

vironmental impacts from primary production through global trade has become a prominent26

issue in international policy debates.1 Traceability tools are needed to support both stake-27

holders and policy makers in monitoring and governing global trade-flows and their undesired28

impacts.229

Traceability tools should provide results, which are trustworthy, comprehensive, and30

detailed enough to be able to guide policy response. We argue in this paper that current31

global supply chain databases, in the form of multi-region input–output (MRIO) models,32

are often inadequate a) to account for the specific environmental impacts associated to a33

large range of different agricultural products, and b) to capture the physical basis of the34

food system. Farming, grazing, and forestry activities are central in many sustainability35

challenges across health, water, energy, and biodiversity. Gaining an accurate picture of the36
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physical metabolism of these goods through the global economy, i.e. the networks of processes37

and actors that convert and distribute food and non-food goods (metabolic networks), is38

arguably a prerequisite for addressing biomass goods in the context of sustainability goals.39

Material flow analysis (MFA)3 has developed into an important framework to study40

metabolic networks and support the governance of societal transitions. MFA aims at quan-41

tifying the biophysical dimension of socio-economic activities4 and identifying options to42

reduce their negative environmental impacts, such as global warming.5 Physical supply-use43

tables (PSUT) provide a comprehensive, transparent and flexible structure for organizing44

data on material flows within metabolic networks. The groundwork for PSUTs was laid by45

Kneese et al. 6 and their application of the material balance approach to economic analysis.46

In the meantime, pilot PSUTs and physical input–output tables (PIOT) have been presented47

for a number of countries and regions, including the European Union, Austria, Germany,48

Finland, Italy, the Netherlands, Japan, and China.7–10 PSUTs are the basis for compiling49

PIOTs and provide a detailed description of the physical flows between the natural and the50

socio-economic system.51

Bio-based inputs, such as crops and timber, are supplied by the natural environment52

and mostly introduced into the economic system by the agriculture and forestry sectors.53

Processing industries, such as paper and food industries, use and transform these inputs54

of natural resources to generate products for intermediate or final consumption. Residuals55

are generated by both, industries and households, and are either treated further within the56

economy or released back to the environment.57

In recent years, environmentally-extended multi-regional input–output (EE-MRIO) ap-58

proaches have been widely used to study physical flows of materials induced by production59

and consumption activities in the global economy. Despite the significant progress,11 the ro-60

bustness of MRIO-based calculations of global physical biomass flows has been questioned.61

Three main problematic areas have been identified.12–15 First, the monetary structure of the62

economy does not always represent the quantities of physical product flows correctly. Due63
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to price variations of product flows between different customers, the assumption of propor-64

tionality between monetary and physical flows can lead to over- or underestimations.16,1765

Second, the limited detail of monetary input–output tables results in a grouping of products66

with differing material and environmental properties and use structures into homogeneous67

sectors.13 Third, there exist mismatches between agricultural and forestry statistics reported68

in physical units on the one hand, and macro-economic production statistics in monetary69

units on the other hand, for example due to different system boundaries.1870

In order to reduce uncertainties arising from the above mentioned limitations of input–71

output models, a number of studies have suggested moving from sector-level economic data72

towards a more detailed physical data basis. For example, Ewing et al. 19 developed physi-73

cal use accounts for agricultural products which model the first stage of agricultural supply74

chains in physical instead of monetary units and allocate crops to the first users reflecting75

detailed international trade and type of the first use provided by FAOSTAT. This approach76

was further developed by Weinzettel and Wood 20 and applied to calculate footprints for bio-77

diversity,21 scarce water use,22 and net primary production.23 A similar approach is applied78

by Croft et al. 24 , but going one step further for selected processed products such as vegetable79

oils. Liang et al. 10 presented a 30-sector, mixed-unit PIOT for China to investigate material80

flows by aggregated product groups.81

All these hybrid IO models rely on monetary IO data to track biomass products from the82

first (or second) use stage to the final consumers. A growing number of researchers worldwide,83

however, argue that describing the structure of material conversion and distribution networks84

in physical terms, i.e., by means of detailed PSUTs, provides a beneficial basis for the85

analysis of material flows in metabolic networks.25,26 While Kastner et al. 27 developed a86

trade accounting approach that tracks crops embodied in international trade purely based87

on physical data, they convert all products into primary crop equivalents. The same is88

the case for the Trase.earth project,28 which does not use an input–output framework but89

instead is collecting detailed data on production and trade of critical commodities, such as90

4



soy and palm oil, pursuing a bottom-up approach to providing detail on key countries and91

commodities. A system of physical supply-use or input–output tables instead transparently92

describes all intermediate uses and conversion processes, thereby retaining flow information93

at each step of the supply chain.94

In this paper, we present the Food and Agriculture Biomass Input Output model (FABIO),95

a global set of trade-linked PSUTs and PIOTs capturing detailed supply chain information96

for 130 raw and processed agricultural and forestry products covering 191 countries and one97

rest of world region from 1986 to 2013. By using agricultural statistics from FAOSTAT, we98

obtain a considerably higher level of product and process detail compared to any available99

MRIO database and, moreover, cover supply chains in physical units, thereby alleviating the100

uncertainties introduced by the homogeneity, proportionality and consistency assumptions101

applied in IO analysis.102

We demonstrate this physical MRIO model applying it to the case of the cropland foot-103

print of China, the EU-28, and the US. We reveal differences in trends and composition of104

cropland footprints and import shares over a period of nearly three decades, and highlight105

the role of allocation when tracing physical flows along processing steps.106

Overview of the FABIO model107

Figure 1 illustrates the approach used to build FABIO. The procedure is described in detail in108

the following sections. First, we give a detailed overview of all data sources used to construct109

FABIO. In Section 3.2 we then describe how we deal with data gaps and inconsistencies. After110

that we elucidate how supply and use tables are built based on the available data. Finally,111

we show how national PSUTs are trade-linked and converted into a symmetric multi-regional112

PIOT.113
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Comparison with other MRIOs114

The resulting FABIO database offers PSUTs and PIOTs with an unprecedented level of detail115

for agriculture and food products. In most standard IO tables, such as those provided by116

EUROSTAT, and also in the WIOD, ICIO, and Eora MRIO databases, these products are117

represented using 1-10 aggregate categories, while FABIO features 127 distinct products (see118

Table S.1). GTAP and EXIOBASE distinguish 21 and 27 agriculture and food products,119

respectively. We note that Eora offers more detail for some countries, the UK representing an120

extreme case with 80 agriculture and food products and 1022 products in total. Furthermore,121

FABIO provides more detail than most other MRIOs also regarding country detail and time122

coverage. Most importantly, it documents product flows in physical instead of monetary123

units. However, other parts of the economy are not represented, which implies limitations124

for the tracking of non-food commodities such as biofuels, wood, and fibers. These caveats125

are further elaborated in the Discussion Section.126

Open science127

All data sets and R scripts are available to the research community under the GNU Gen-128

eral Public License (GPL-v3) license via GitHub (https://github.com/martinbruckner/129

fabio) and the open science platform Zenodo,29 which is fully compliant with the FAIR guid-130

ing principles30 for the provision and management of open data in scientific research. We131

hope that openness, transparency and sharing of code contributes to further advancements132

and invite researchers to test and scrutinize our codes and results.133

Methods and data134

In this section, we explain which data sources were used and how they were processed to135

build multi-regional PSUTs and PIOTs for agriculture, fish, forestry, and food products.136
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Data sources137

Most of the data used for constructing the FABIO supply and use tables are provided by138

FAOSTAT, the Statistical Services of the Food and Agriculture Organization of the United139

Nations.31 To build FABIO we used data from the following FAOSTAT domains:140

• Production, Crops141

• Production, Crops processed142

• Production, Live animals143

• Production, Livestock primary144

• Production, Livestock processed145

• Trade, Crops and livestock products146

• Trade, Live animals147

• Trade, Detailed trade matrix148

• Commodity balances, Crops primary equivalent149

• Commodity balances, Livestock and fish primary equivalent150

• Forestry production and trade151

• Forestry trade flows152

Additionally, fodder crop production data (previously part of the aggregated item “Crops153

Primary (List)” in the Production domain) are required, but are no longer available from the154

FAOSTAT website. These data were often estimated, and as we understood FAO has become155

hesitant to publish such estimated data. However, we decided it was valid to continue using156

these estimates as (a) some estimate is better than estimating the amount of fodder crops157

at zero and (b) due to the way FABIO is constructed these estimates will be aligned and158

constrained with other datasets to inform the final FABIO model result. In order to replicate159

FABIO, it is necessary to request these data from FAOSTAT.160
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Global statistics on capture and aquaculture fish production were retrieved from FAO’s161

fishery division.32 UN Comtrade, the international trade statistics database of the United162

Nations Statistics Division 33 , provides bilateral trade data. We use the Comtrade database163

for data on bilateral fish and ethanol trade from 1988 to 1994. Data for all other years are164

sourced from BACI, a reconciled and harmonized version of the UN Comtrade database,165

which is available for 1995 to 2017.34 The trade data are balanced as described below.166

Production data for ethanol from agricultural sources are reported by FAOSTAT under167

the name Alcohol, non-food. However, large data gaps induced us to use production data on168

ethanol and biogasoline from both EIA 35 and IEA 36 .169

The data structures of all data sets were harmonized, particularly regarding their country170

and commodity classification. We defined 130 commodities, 121 processes and 191 countries171

plus one rest of world region to be covered in FABIO. The final classifications are given in172

the Supporting Information (SI) (see Table S.2, Table S.3, and Table S.4).173

The Commodity Balance Sheets (CBS), available from FAOSTAT, are the core of the174

FABIO PSUTs. The CBS provide detailed and comprehensive supply and use data for pri-175

mary and processed agricultural commodities in terms of physical quantities by matching176

supply (domestic production, imports, and stock removals) with utilization (food, feed, pro-177

cessing, seed, waste, other uses, and exports). Other uses “refer to quantities of commodities178

used for non-food purposes, e.g. oil for soap. [. . . ] In addition, this variable covers pet179

food.” 31 Changes in moisture content, which may occur for many products between extrac-180

tion and use, are neglected. The CBS database structure is designed to cover each country’s181

entire agricultural and food processing sector.37 About 200 different primary and processed182

crop and livestock commodities can be linked to form a consistent commodity tree structure183

using technical conversion factors.38184

While particularly the use accounts are an indispensable source of information for the185

development of PSUTs, an unavoidable limitation of these data is that for many cases crops186

and derived products are combined into a single CBS by converting products into primary187
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equivalents. For example, the CBS for wheat and products comprises also trade and con-188

sumption of bread and pasta measured in wheat equivalents. Disaggregating primary from189

processed products, thus, represents an option for future refinements. However, we do not190

expect differentiating primary and processed products to have a significant influence on the191

results when using FABIO as a footprinting tool,20 but it would be of relevance when linking192

FABIO to data from economic accounts.193

As other domains of FAOSTAT (e.g. Trade and Production) give the actual weight of194

products, units had to be converted into primary equivalents where applicable. This was195

done using country specific technical conversion factors (TCF) for 66 products and global196

average TCF for 404 products, which for example give the kg of wheat required to produce197

an average kg of bread.38198

Trade data for crops and crop products, livestock and livestock products, timber, and199

fish are organized in different data domains of the FAO. We therefore harmonized their200

data structures and integrated them into one bilateral trade database (BTD). To reconcile201

discrepancies, i.e. the case that A’s reported exports to B disagree with B’s reported imports202

from A, only import data were used. We assumed that the importer will rather know203

the correct origin of a traded commodity, than the exporter the correct final destination.204

Moreover, import statistics use to be more complete as customs have comprehensible interest205

in thorough data collection for tax purposes. In the case of missing records for a country we206

obtained missing trade data from “mirror” statistics, i.e. trade partners’ data.207

Estimating missing values208

Data gaps are a common problem in any heavily data-dependent research work. We used209

several approaches to estimate missing data.210
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Commodity balances211

The CBS database does not cover some of the commodities included in the FABIO model,212

i.e. live animals, fodder crops (grasses, forages and silage from cropland), grazing (grasses213

and hay from grasslands), and timber. Therefore, commodity balances had to be built based214

on alternative sources. We estimated grazing production based on39. Production data for215

all other missing commodities as well as trade data for live animals and timber are available216

from FAOSTAT. Fodder crops and grasses are assumed not to be traded internationally. Low217

prices and the consequent disproportionate transportation costs support this assumption.218

For simplicity, stock changes, seed use and waste were assumed to be zero. Domestic use of219

live animals is at large assigned to food processing (i.e. animal slaughtering), fodder crops220

and grazing to feed use, and timber to other uses.221

The CBS and bilateral trade data for Alcohol, non-food were updated with production222

data from IEA and EIA (using the highest value respectively) and trade data from Com-223

trade/BACI.224

For some countries, not included in the CBS domain (namely: Singapore, Qatar, Demo-225

cratic Republic of the Congo, Bahrain, Syrian Arab Republic, Papua New Guinea, Burundi,226

Libya, Somalia, Eritrea, Timor-Leste, and Puerto Rico), all commodity balances were esti-227

mated based on available production, seed use and trade data. FAO has stopped reporting228

the seed use in the production domain of FAOSTAT. Thus for future updates seed-production229

ratios reported in past years or for other countries will be taken. While production for seed230

is important, it is not especially large in physical terms. On average globally, 1.4% of crop231

production is used for seed in the following year, though this ranges between as much as232

5.7% for pulses to 0.01% for vegetables. Processing requirements, e.g. the rapeseed used233

for rapeseed oil production or the sugar cane used for sugar production, were estimated for234

each commodity based on production data for the derived products and the country specific235

TCF. If we then found data gaps for co-products, e.g. molasses from sugar production, we236

imputed these data using again the respective TCF.237
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In the CBS, a certain commodity might be reported for a country most of the time, but238

with a few years missing. While production and trade data are available from other data239

domains of FAOSTAT throughout the time series, the use structure of the commodities is240

only provided by the CBS. In their absence, we performed linear inter- and extrapolation241

of the respective use structures. In total, for the case of the year 2013, 15,234 commodity242

balances were reported for the 191 countries included in FABIO, and 4271 were estimated243

(see Table S.5 and Table S.6), representing less than 0.5 % of the covered global product244

supply.245

Bilateral trade246

The BTD was reconciled to receive a bilateral trade matrix brsc in the format countries-by-247

countries (r×s) for each commodity c and year as described in Section "Data sources". The248

dataset, as provided by FAOSTAT, reveals significant gaps and discrepancies with the total249

import and export quantities reported in the CBS. We followed a multi-step approach to250

estimate a comprehensive set of bilateral trade data, which is in accordance with the CBS:251

• We first derive a BTD estimate by spreading exports for each commodity over all252

countries worldwide according to their import shares. The elements of B′ for a specific253

crop c and a country pair r, s are derived by b′rsc = imprc/impc · expsc254

• We repeat this procedure, but spreading imports for each commodity over all countries255

worldwide according to their export shares: b′′rsc = expsc/expc · imprc256

• We derive the average of the two estimates b̄rsc and proceed.257

• We calculate the difference between the total exports of crop c from country r docu-258

mented in the BTD and those reported in the CBS dataset.259

• We populate the gaps in B, i.e. those fields that are N/A, with the corresponding values260

from B̄ up-/down-scaling them to meet the target export sum for each commodity and261

each exporting country as reported in the CBS.262
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• We balance the resulting bilateral trade matrices one product at a time using the RAS263

biproportional balancing technique40 to ensure the original total imports and total264

exports are matched.265

The resulting bilateral trade matrix is fully consistent with the import and export totals266

given by the CBS per country and commodity. In order to give an idea of the potential267

uncertainties, we show the discrepancies between the different FAO datasets, which are268

overcome with the help of the RAS method, in Table S.7 in the SI.269

Building the supply tables270

Populating the supply table is straightforward, as production data is available from FAO-271

STAT and can be attributed to a specific process. First, we identify the processes, supplying272

more than one output, i.e. joint products or by-products. We find a reasonable list of273

multi-output processes such as the crushing of oilseeds, the production of sugar, alcoholic274

beverages, and livestock products (see Table S.9). We insert the compiled production data275

for each process-item combination into a supply table. Ten livestock commodities are sup-276

plied by multiple processes. Production values of those have to be divided between the277

respective processes:278

• Milk and butter from 5 different animal groups are aggregated into one CBS item. At279

the same time, FAOSTAT reports detailed production data for fresh milk by animal280

type (e.g. cattle, goats, camels). These are used to split the aggregates over the281

supplying animal sectors in FABIO.282

• The same is true for meat, hides and skins, where the CBS provide less detail than the283

FAO’s production statistics. We use the latter to allocate meat supply to the detailed284

slaughtering processes.285

• Slaughtering by-products such as edible offal, animal fats, and meat meal are split286
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among the animal categories according to their respective share in overall meat pro-287

duction.288

We obtain one supply table S with i commodities by p processes for each country and289

year.290

Building the use tables291

The Commodity Balance Sheets distinguish the following uses: exports, food, feed, process-292

ing, seed, waste, and other uses. Moreover, we invert the supply item stock removals, thereby293

converting it into the additional use item stock additions.294

Waste can be treated in a physical accounting framework in different ways.41 On-farm295

waste of biomass can be regarded as an output flow that would either be returned to the296

environment or serve as an input to other processes. Such an accounting perspective enables297

assessing the actual physical flows within metabolic networks.42 Alternatively, waste flows298

can be allocated to the process where the waste occurs, thus considering losses synonymous299

to an own use. As opposed to the tracking of actual physical flows in option one, the second300

option allows for the tracking of embodied flows, which is required for consumption-based (or301

footprint) accounting.43 In this first version of FABIO, we decided to implement the latter302

option, but plan to release an alternate version with waste streams reported as out-flows as303

well.304

Seed is considered an own use of the process which later harvests a crop. Exports, stock305

additions, food, and other uses are considered final demand categories. Exports will later306

be spread over the receiving countries, while food, stock additions and other uses together307

comprise the final demand categories of FABIO.308

In the following, we describe the allocation of feed and processing use.309

Allocation of processing use310

Processing uses are allocated to the respective processes distinguishing between several cases.311
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Single-process commodities: Commodities that are only processed by one single pro-312

cess include oil crops (processed in the respective oil extraction processes), hops (used in313

beer production), seed cotton (separated into cotton lint and cotton seed in the cotton pro-314

duction process), and live animals (processed by the respective slaughtering sectors). Given315

processing quantities are directly allocated to the respective processes.316

Multi-purpose crops: Crops that are used by several processes are allocated by esti-317

mating the input requirements to each process based on technical conversion factors giving318

the conversion efficiencies for food processing. The use of product i in process p is deter-319

mined by upi =
∑

j(s
p
j · φ

p
ij), where s

p
j is the supply of product j by process p and φp

ij is320

the conversion efficiency from product i to product j in process p. For example, φp
ij = 0.5321

indicates, that process p converts each ton of product i into 0.5 tons of product j. This322

approach is used to estimate the use of sugar crops in sugar production, rice in ricebran oil323

extraction, maize in maize germ oil extraction, and grapes in wine production.324

Ethanol feedstock: For Brazil and the US, responsible for over 85 % of the global325

ethanol production in 2014,36 the feedstock composition is known. Brazil uses sugar cane,326

while the ethanol industry of the US is mainly based on maize, with less than 2 % coming327

from sorghum, barley, cheese whey, sugar cane, wheat, and food and wood wastes.44 For all328

other countries, i.e. less than 15 % of global ethanol production, feedstocks are estimated329

based on the availability of useful feedstock crops and their respective conversion rates.330

Alcoholic beverages: Crops are allocated to the processes which supply alcoholic bev-331

erages by solving an optimization problem. We have given the national production of beer332

and other alcoholic beverages sj, the total available feedstock supply ui which was not allo-333

cated already to other processes, and the conversion efficiencies φij, e.g., from barley to beer.334

With these inputs, we solve the following constrained least-squares optimization problem:335

min
∑((

s− s̃

φ̄

)2

+ (u− ũ)2

)
,
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where336

s̃j =
n∑

i=1

(ũij · φij) ,

s.t.337
m∑
j=1

ũij = ui ± 0.1,

and receive a table of crop use per alcoholic beverage and country, which we insert into the338

use table.339

Allocation of feed use340

The quantities of each crop used as animal feed are reported by FAOSTAT. This feed supply341

is allocated to the 14 animal husbandry sectors specified in FABIO (Table S.3) according to342

their feed intake requirements. The procedure is explained in the following three steps:343

• Feed supply: Retrieve detailed data on feed supply from FAO in fresh weight, and344

convert them into dry matter (DM).345

• Feed demand: Calculate feed demand of 14 livestock groups in tons of DM.346

– Cattle, buffaloes, pigs, poultry, sheep and goats: Bouwman et al. 39 pub-347

lished estimates on the feed demand in kg DM per kg product (e.g. milk, beef,348

fat) for 1970, 1995 and 2030, differentiating specific dietary requirements and feed349

composition (i.e. feed crops, grass, animal products, residues, and scavenging) for350

livestock in 17 world regions. We interpolate the given feed conversion rates to get351

year-specific values and multiply them with the reported production quantities of352

animal products to get the total feed requirements per product. For this step, it353

was important to consider trade with live animals in order to correctly assign feed354

demand to the country, where the animals were raised.355

– Horses, asses, mules, camels, other camelids, rabbits and hares, other356

rodents, other live animals: Krausmann et al. 45 provide average feed demand357
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coefficients for the above listed animal groups in kg DM per head, which are mul-358

tiplied with the reported livestock numbers to calculate total feed requirements.359

• Match supply and demand: We then balance the generated feed requirements per360

country to match the reported feed supply by proportional up- or downscaling. Finally,361

we convert the quantities into the fresh weight of every single feed crop.362

Trade-linking363

Once the supply and use tables for all countries are filled, they are linked into multi-regional364

supply and use tables. The multi-regional supply table S with the dimensions {r, i}× {s, p}365

contains zeros at the trade blocks (where r 6= s) and is filled with the domestic supply tables366

where r = s.367

The national use tables are trade-linked by spreading the use of a product i in a process368

p in country s over the source countries r of that product: ursip = usip ·hrsi , where hrsi = srsi /s
s
i369

and srsi is the total supply of product i in country s sourced from country r. Finally, we370

receive a matrix U with the dimensions {r, i} × {s, p}.371

Constructing symmetric IO table372

The transformation from supply-use tables into symmetric input–output tables requires as-373

sumptions on how to deal with multiple-output processes, i.e. a process supplying more374

than one product such as, e.g., soybean crushing delivering soybean oil and cake. The issue375

of how to allocate process inputs to outputs is discussed both in the fields of input–output376

economics and life cycle analysis, with clear parallels in the allocation approaches.46,47 When377

applying the widely used industry technology assumption for the transformation of rectan-378

gular process-by-product SUTs into symmetric product-by-product IOTs, process inputs are379

allocated to its respective outputs according to the supply shares documented in the supply380

table. For example, in the case of soybean crushing, the input quantities of soybeans are381

16



allocated to the outputs of oil and cake. We do this by deriving the product mix matrix or382

transformation matrix T = ĝ−1S, where ĝ is a diagonalized vector with the row sums of S,383

and multiplying the use and the transformation matrix Z = UT.384

Assuming PSUTs in weight units, this allocates inputs according to the relative weight385

of the outputs. In order to facilitate analyses of the economic drivers of resource flows, we386

derive also a version that uses the relative economic value for the allocation. We therefore387

convert the supply tables into monetary values (based on price information from FAOSTAT388

and IEA) before deriving the transformation matrix as explained above. Thereby, we switch389

from mass to value allocation, i.e. allocating the inputs of each process to its outputs in390

relation to their value rather than their weight.391

This allows us to test the effects that the different allocation decisions have on the392

resulting PIOTs. This is particularly relevant for products from processes that produce393

outputs with highly varying value-weight ratios. It should be noted that, in accordance with394

the requirements of a specific research question, allocation could be performed also according395

to supply shares in other units, for example based on the carbon, nitrogen, phosphorous or396

protein content.397

Results398

Heatmaps of the resulting physical MRIO table for 2013 can be found in the SI. We extend399

the FABIO model by cropland use data sourced from FAOSTAT 31 and calculate exemplary400

cropland footprint results for China, the EU-28, and the US, distinguishing plant-based and401

livestock-based products for food and non-food uses from 1986 to 2013. We apply both ver-402

sions of FABIO, i.e. using mass and value allocation. Figure 2 presents the results derived403

with the FABIO model based on mass allocation (in the upper part), the difference between404

mass and value allocation (in the middle part), and the share of imports in the overall foot-405

print (in the lower part) based on mass allocation. The figure reveals characteristic patterns406
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and distinct trends for these three major agricultural producer and consumer regions. While407

animal source foods take the highest but declining share in the EU and the US cropland408

footprint, their place is still only second after plant-based food in China, albeit showing a409

rapid increase throughout the time series. Other uses, i.e. mainly industrial non-food uses,410

are particularly increasing in China and the US. In the EU, we see a shift from animal-based411

to plant-based non-food products. The middle part of Figure 2 illustrates the impact of412

using mass or value allocation for by-products in the construction of FABIO on the crop-413

land footprints. While the overall footprint only changes slightly, the composition changes414

significantly. In China and the EU, livestock products have a smaller footprint when using415

value allocation. This is mainly due to the lower price of soybean cake (used as animal feed)416

as compared to soybean oil. Accordingly, non-food uses of crop products such as soybean417

oil receive a higher share of the land inputs. In contrast, the products from the livestock418

sector used by non-food industries, for instance hides and skins, are usually cheaper than419

those intended for human consumption. China constitutes an exception, as prices of animal420

hides are driven by the high demand of industries and often exceed meat prices, thus shift-421

ing more of the inputs to hides when switching from mass to value allocation. The relative422

impact of allocation choice is significant, with a maximum of 59% of the total impact of the423

food-livestock product group, 63% of the other uses of livestock products, and 38% of the424

other uses of crops being affected by choice of allocation. The evolution of import shares,425

shown at the bottom of Figure 2, reveals an increasing reliance on imports for China’s use426

of livestock products and crops for other uses. The EU, at the same time, reduced import427

dependence for most product groups, albeit starting from high levels. The US import share428

of crop products for other uses declined by roughly half, while increasing slightly for the429

other product groups.430

For a first comparison of our results with other land footprint studies, we amend the431

comparison of net-trade flows of embodied cropland for China in 2004 presented in Hubacek432

and Feng 48 , including numbers from Qiang et al. 49 , Kastner et al. 17 , Meyfroidt et al. 50 ,433
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Weinzettel et al. 51 , and Yu et al. 52 , with results generated with FABIO (see Figure 3).434

FABIO is evidently very much in line with other physical accounting methods, although435

applying the IO method. We could determine net-imports of 21 Mha cropland, both with436

mass and value allocation. This, however, could change when further tracing the supply437

chains of non-food uses (e.g. the further export of derived cotton/leather products such as438

clothing and furniture). Currently, FABIO does not cover non-food manufacturing industries439

(see Discussion Section). In total, 27 Mha of cropland were embodied in other uses of440

agricultural products in Chinese industries in 2004. Many of these might produce for export441

markets, thus reducing China’s net-imports. Yet, net-exports of 17 Mha as shown by Yu442

et al. 52 couldn’t be reached, even if China exported all of its manufacturing products. A443

detailed model comparison is beyond the scope of this article and is being prepared separately.444

Discussion445

Limitations and next steps446

Estimating feed production and demand447

Achieving accurate estimates of feed production and demand is extremely challenging. On448

the production side, crops grown for feed are reported inconsistently, or not at all, to FAO. In449

some cases a crop is grown for feed and reported, in other cases a crop is used for both human450

consumption and animal feed (e.g. cereal grains are used for food and the straw used for451

feed), and in other cases crops may be grown for feed but not reported. On the consumption452

side, there are no international statistics on the total herd feed consumption from roughage453

(incl. grazed biomass) versus concentrate feed. Cattle and sheep can vary widely in their454

feed demands, in the extreme by perhaps up to an order of magnitude (compare a small455

undernourished street cow in urban India, foraging opportunistically with little provided456

feed, to a prizewinning Austrian dairy cow). FABIO attempts to use the best available data457
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with global coverage39,45 and reconcile feed production and feed demand estimates into a458

mass-balance consistent model, but nevertheless it must be kept in mind that estimates of459

feed demand remain a source of uncertainty in the results.460

Model uncertainty461

The global PSUT provided by FABIO is an underdetermined system, i.e. not all data462

elements in the result are explicitly informed by input data. As described above in the463

Methods, some elements are inferred by disaggregating or pro-rating more aggregate totals.464

Thus, every element of the global PSUT output is best understood not as a “true” value465

but rather as an estimate which is subject to some degree of uncertainty. We expect lower466

uncertainty for crops and derived products such as vegetable oils, as for these parts of467

FABIO we could draw on extensive FAOSTAT data with only minor needs for estimates or468

assumptions. The uncertainty for animal feed, particularly grasses, is presumably higher, as469

this module of FABIO is widely based on incomplete data, hence requiring comprehensive470

estimation algorithms. The number of commodity balances reported and estimated for each471

country and for each commodity for 2013 are given in Table S.5 and Table S.6 in the SI.472

Formalizing or estimating this uncertainty remains an open task for future versions of the473

model. For example, standard deviation can be used with Monte Carlo methods to estimate474

the variance of model results.53,54475

Linear dependency476

The high similarity in the feed input composition among monogastric as well as among477

ruminant animals results in some degree of linear dependency between the columns of the478

input–output table Z, thus impeding invertibility. The Leontief inverse therefore can be479

approximated using the power series expansion, i.e. L = I + A + A2 + A3 + ...+ A∞, where480

I is the identity matrix and A is the technology matrix, which is generated by the equation481

A = Zx̂−1, where x̂ is the diagonalized vector of total production output. Alternatively, the482
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matrix becomes invertible by making an incremental change (e.g. −1e− 10) to those values483

at the main diagonal of the Leontief matrix I −A which are exactly equal to one. For the484

results presented here, we used the latter approach.485

Industrial uses486

The final demand category other uses of FABIO comprises all industrial non-food uses. Fur-487

ther trade and final consumption of these products cannot be traced based on FAO data,488

therefore these supply chains are truncated at the place where a commodity enters a non-489

food industry. As shown by Bruckner et al. 55 , non-food products are responsible for about490

one quarter of the EU’s cropland footprint, a share which was constantly rising over the491

past 20 years. These trends are confirmed by the results shown in this article for China,492

the EU, and the US (see Figure 2). We find that crop-based non-food products are the493

only product category consistently showing increases throughout the three regions. This494

emphasizes the relevance and importance of correctly accounting for trade and consumption495

of non-food products such as biofuels, cosmetics, textiles and leather products. The trun-496

cation of non-food supply chains could be avoided by integrating FABIO with a monetary497

MRIO into a hybrid IO system in order to track flows of non-food products along monetary498

supply chains.20,24 Currently FABIO, as well as other biophysical accounting approaches,56499

considers other uses a final consumption category. Yet, hybridization of FABIO is an obvious500

development option.501

SEEA compatibility502

In its current version, FABIO is not fully compliant with the SEEA guidelines for physi-503

cal flow accounts for agriculture, forestry and fisheries.57 First, natural inputs (e.g. carbon504

dioxide, soil minerals, water), technical inputs (e.g. fertilizers, fuels, pesticides), and resid-505

uals (food waste, oxygen, water vapor, unused biomass, not incorporated technical inputs)506

are not fully captured by the PSUTs. Moreover, the commodity balances are reported in507
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primary equivalents, aggregating agricultural and food products. Primary and secondary508

products can thus in many cases not be distinguished. This is a substantial limitation, as it509

means that FABIO’s classification is not compatible with that of national accounts and it510

is therefore difficult to connect with economic modeling approaches using a standard indus-511

try classification such as ISIC or NACE. While production and trade data are available for512

agricultural and food products separately, use information is only obtainable in aggregate513

form. This could be overcome applying additional assumptions and some standard estima-514

tion procedures for input–output tables such as RAS or maximum entropy modeling.58 For515

the first version of FABIO, we decided to stick as far as possible to the data as reported516

by FAOSTAT, thus not further splitting commodity balances into primary and secondary517

products.518

Transparency and flexibility519

PSUTs represent a highly transparent and flexible way of organizing physical flow data520

strictly following a mass balancing principle. SUTs were introduced into economic accounting521

in order to give a transparent framework for reporting economic transactions without the522

need for assumptions. They give an integrated framework for checking the consistency523

and completeness of data, and report transactions in natural units (products as inputs and524

outputs, industries as activities that transform products). From SUT data, a variety of525

assumptions can be made in order to utilize the data for various analytical purposes.46526

Allocation527

The critical aspect here for environmental footprint or life-cycle type approaches is when528

co-production (joint products/by-products) occurs such that inputs into one activity are529

used to produce more than one output. Either disaggregation of co-production must occur,530

or some form of assumption (based on weight, value, the protein or energy content, etc.)531

must be applied to allocate the inputs into the co-production process to the respective532
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product outputs.43,59 This is the step that transforms a SUT to an IOT where inputs are533

uniquely represented in relation to the production and further use of products.The current534

version of the FABIO database comprises two sets of IO tables based on value and mass535

allocation. While value allocation, and the resultant footprints, pursue an economic logic,536

when assigning responsibility for inputs to the output product, mass allocation represents a537

biophysical logic, splitting inputs based on the physical outputs independent of their value538

for the economic system.539

The choice of unit used in the allocation has a large effect on results. We compared both540

physical and economic allocation for transformation of PSUT to IOT, and found significant541

differences for livestock products and “other uses” of crops. These product groups are based542

on processes with highly differing prices of co-products. The choice of allocation procedure543

for these co-products can thus easily have a large impact on net-trade results. While we544

found only minor differences in net-trade for China, the US, and the EU as a whole (see545

Figure 2), calculations for Germany revealed even a change in the direction of net-trade546

flows. We found that Germany was a net-exporter of 0.42 Mha in the year 2013 when using547

mass allocation. This result, however, changed to net-imports of 0.31 Mha when applying548

value allocation.549

It is important to note that the allocation procedure discussed here solely focuses on550

the allocation of inputs to co-produced products (the step to form an IOT). The further551

allocation according to subsequent usage of the product (performed during the Leontief552

inverse) fully follows a physical logic in our approach (i.e. the IOT is in physical terms). For553

example, the land use impacts of wheat production are allocated to the subsequent users554

of wheat based on the kg of wheat used, and not its dollar value. In contrast, monetary555

IOTs would allocate wheat to users according to the users’ payments, irrespective of actual556

physical flows.557
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Drivers558

Moreover, in contrast to other biophysical accounting approaches such as presented by Kast-559

ner et al. 56 and Tramberend et al. 60 , any data analysis methods applicable to matrix struc-560

tures can be applied to FABIO. Structural decomposition analysis, for example, can be used561

to identify the drivers of changes in the global agriculture and land use system.562

FABIO exposes the detailed composition and origin of renewable raw materials and re-563

lated land embodied in a wide range of final products. Applying decomposition methods564

reveals the main driving factors, such as technology or feed mix, supply structure or affluence,565

responsible for changes in biomass consumption and related supply chains in different world566

regions over the past three decades. Such an assessment will deliver an important empirical567

basis for identifying potential future trade-offs arising from the increased competition for568

global biomass and for designing actions by business and policy makers to reduce competing569

demands.570

Economic modeling571

FABIO can be used as a stand-alone tool to perform footprint and scenario analyses in572

the tradition of Leontief-style IO analysis. However, these analyses assume that physical573

shares in production inputs are constant, e.g. that beef producers in one country use a574

fixed amount of soy cake from another country per ton of produced beef. Economic models,575

such as CGE and econometric models, can be combined with FABIO in order to introduce576

dynamic changes, such as altered bilateral trade shares based on relative price changes. At577

the same time, FABIO can strengthen existing economic simulation models by contributing578

additional product and country detail.579
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Figure 1: Flow chart illustrating the data sources and processing steps involved in building
FABIO. (CBS = commodity balance sheets, BTD = bilateral trade data, SUT = supply-use
table, MRIOT = multi-regional input–output table)
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Figure 2: Plant and animal-based food and non-food cropland footprint of China, the EU-28,
and the USA, 1986-2013; Top: overall footprint; center: difference due to allocation method
(with positive values meaning higher footprints based on value allocation); bottom: share of
imports in the footprint
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Figure 3: Comparison of China’s net-trade with embodied cropland in 2004. Note: The
results in Yu et al. 52 are based on 2007 data, while all others are 2004 data.
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