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Preface

This Master thesis is submitted as partial fulfillment of the MSc in Geotechnics and Geohaz-

ards at the Department of Civil and Environmental Engineering at the Norwegian University of

Science and Technology (NTNU).

The aim of this study is to investigate the application of statistical methods in geotechnical engi-

neering, in particular, the application of kriging and machine learning approaches to site char-

acterization.

The study was performed during the spring semester and was developed from the joint interest

of the supervisors, Vikas Thakur and Ivan Depina, and the student on the subject.

Trondheim, June 2019
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Summary and Conclusions

Site characterization has a great number of uncertainties associated with the nature of soil for-

mation and deposition, but also due to technical and economic constraints. In geotechnical

practice, these uncertainties have to be addressed in order to perform the most optimum de-

sign possible. In this scenario, statistical approaches can be useful to help engineers to gain a

better insight into the soil properties and the uncertainties associated.

This master thesis focuses on using two statistical approaches to solve a major challenge faced

in geotechnical site characterization: data availability. The first approach is the geostatistical

interpolation of soil properties, in which a certain soil property is estimated based on measure-

ments in different locations and the spatial relationship between data. The second approach

is machine learning classification and is used to determine the soil types present on the field

based on indirect measurements.

Geostatistical interpolation was performed on a slope located in Rissa, which has been stud-

ied deeply in previous works, five different CPTu test measurements were used to estimate the

properties values in unsampled locations within the slope. The results show a good agreement

between the properties distributions and the layering proposed for the site.

Machine learning classification was used to determine the soil classes present on two different

sites based on CPTu tests measurements. The sites studied are the NGTS investigation site at

Tiller, and the Skaudal bridge foundations site part of a Statens Vegvesen project. The results

show a very good capacity of prediction using these algorithms compared with chart classifica-

tions commonly used in engineering practise.

Finally, it is always better for design purposes to have additional information whether it be as

more field tests to cover the entire area or more laboratory tests to certainly know the properties

of the soil beneath the surface. Since resources are rarely enough to fulfill all the engineering

necessities, the use of the statistical approaches studied within the framework of this thesis can

help engineers to improve the interpretation of field tests without increasing exploration costs.
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Chapter 1

Introduction

1.1 Background

Geotechnical site characterization is a process that is always limited by several constrains whether

technical or economical, making this a difficult task for geotechnical engineers which requires

a great deal of engineering judgement, experience and complementary information. In the site

characterization workflow, the field exploration and the following laboratory campaign are key

tasks that can determine the success or failure of an engineering project. Since it is economically

and technically impossible to get rid of all the uncertainties involved in the site characterization

process, geotechnical engineers have to deal with them in an everyday basis. Is in this context

where the use of field tests, which in general measure indirect properties, and statistical meth-

ods, which allow to make inference given incomplete information, have an important role. In

this work, the use advanced statistical methods applied to field tests is going to be studied. In

particular, this thesis focuses on the use of CPTu tests measurements complemented with krig-

ing for interpolation and machine learning classification, and their application to geotechnical

site characterization.

The use of these approaches in geotechnical engineering is starting to increase as new research

support their success. Examples of geostatiscs in geotechnics are several: Olea (1999) applied

universal kriging to water level measurements in High Plains aquifer in Kansas (2D horizontal

2
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plane interpolation), Nadim (1988) used kriging to interpolate the depth to a weak clay layer

under an offshore platform, Uzielli et al. (2010) used bayesian kriging to interpolate Vs values

from seismic piezocone tests (SCPT) in clay (pseudo 3D interpolation), Firouzianbandpey et al.

(2015) used universal kriging to estimate CPTu cone resistance at different depths considering

soil’s anisotropy (pseudo 3D interpolation).

Machine Learning given its flexibility can been applied in different ways, Rabarijoely et al. (2007)

used a clustering algorithm to perform a zoning of earthquake damage, Farrokhzad et al. (2010),

Samui and Sitharam (2011) and García et al. (2012) used machine learning to assess liquefaction

potential in soil deposits, Krogstad et al. (2018) and Vezhapparambu et al. (2018) used Hidden

Markov Models on field tests to classify soil and rock, respectively.

In the case of Kriging interpolation, a big challenge is faced when it is performed on a 2D cross

section due to the difficulty associated to the determination of horizontal spatial correlation,

since all the data points are located aligned in vertical lines. This is interesting since cross-

sections are a main output in geotechnical engineering reports and constitute the basis for slope

stability and stress-strain analyses.

On the other hand, the use of CPTu for soil classification is a widespread practice, specially

using the well-known classification charts found in literature (Lunne et al., 2002). But the major

challenge comes to light when the soil deposits are non-textbook soils, as in the case of quick

or highly sensitive clays, very common in Norway. In this cases, alternatives should be found

in order to keep the convenience of using indirect field measurements without expending a big

amount of resources.

Problem Formulation

This thesis is a research study on site characterization using CPTu tests measurements comple-

mented through the use of statistical methods, in particular geostatistics and machine learning

approaches. The main focus is to gain knowledge on how both approaches can be implemented

to help design engineers to achieve better characterization without an increased amount of test-

ing. The thesis is divided in two main problems, the first is applying kriging to a well studied pro-
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file in Rissa (Kornbrekke, 2012; Wolebo, 2016) and assess the performance of the interpolation.

The other is to perform machine learning classification using CPTu tests from two databases to

identify the presence of highly sensitive and quick clays.

1.2 Objectives

The main objectives of this project are

1. Study and gain insight in the theoretical framework of geostatistical interpolation and ma-

chine learning classification

2. Program in Python the necessary geostatistical methods to perform kriging and, if neces-

sary customize them in order to fit the necessities of the study.

3. Learn and use the Python libraries available for machine learning (scikit-learn and hmm-

learn).

4. Perform spatial interpolation of CPTu tests in a cross section, particularly profile 3-3 in

Rissa slope (Kornbrekke, 2012), and assess the correctness of the interpolation results.

5. Perform the classification of the soils present at the NGTS and Vegvesen sites, putting spe-

cial emphasis on the identification of quick and highly sensitive clays. Assess the quality

of the prediction, the necessary number of training tests, and evaluate different classifica-

tion methodologies.

1.3 Limitations

Kriging

Due to time constraints this thesis will focus on univariate kriging, despite cokriging (interpo-

lation with the help of one or many covariates) is interesting because of the potential synergy

between geotechnical and geophysical sounding. Anisotropy effects are going to be studied but

limited to geometrical anisotropy, however zonal anisotropy can have a great effect in natural
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soil deposits. Due to data availability, it will not be possible to assess the quality of the interpo-

lation with the help of additional soundings, since all the data available will be used to make the

predictions, however the results from Kornbrekke (2012) will be used to compare.

Machine Learning

Even though there are several classification algorithms available, this work will only focus on

three of them: Logistic Regression, Naive Bayes and Hidden Markov Models. In the last two of

them, Gaussian distribution is assumed for the distribution of CPTu measurements, despite the

libraries allow for different distributions.

1.4 Approach

The general scientific approach to the project starts with a literature study of the theoretical

background behind soil variability, geostatistics and machine learning classification.

To gain a better insight into the subject, kriging and all the associated calculation are going to be

programmed in Python (Van Rossum, 1995) which will give the opportunity to customize them

according to the needs of the project. The method will be applied at Rissa slope, using the avail-

able CPTu data to interpolate a continuous profile of the different measured properties. Since

there is no additional sampling and testing, the assessment on the performance will be done

comparing with the results of a previous study of the area. Cross-validation will be performed

in order to evaluate the influence of the amount of information on the prediction accuracy.

The classification part will also be addressed using Python, but in this case all the algorithms are

provided by two machine learning libraries: Scikit-Learn (Pedregosa et al., 2011) and hmmlearn

(hmmlearn developers, 2010). The methodologies will be tested on two datasets representing

different sites with presence of quick and highly sensitive clays. The different classification mod-

els will be trained by sequentially adding information, and the accuracy will be tested by com-

paring the classification results with the actual layering on the sites.
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1.5 Structure of the Report

The rest of the thesis is structured as follows. Chapter 2 gives an introduction to basic geostatis-

tical concepts. Chapter 3 gives a theoretical framework on machine learning and classification

algorithms. Chapter 4 presents the results of the application of ordinary kriging to the CPTu

tests performed in profile 3-3 in Rissa. Chapter 5 shows the results of machine learning classifi-

cation on the datasets provided by NGTS and Statens Vegvesen. And, finally, Chapter 6 presents

a summary and the conclusions of the project, and the discussion of the results.



Chapter 2

Geostatistics

This chapter is dedicated to state the theoretical background behind geostatistics. First a review

of random functions and quantification of spatial correlation, continuing with the different krig-

ing methods, a summary of their computation algorithms and technical aspects considered for

their implementation.

The main bibliography used in this chapter is Journel (1978), Deutsch (2002) and Olea (1999).

2.1 Quantification of Spatial Correlation

2.1.1 Regionalization and Random Function Concepts

A variable that is distributed in space it is said to be "regionalized". Regionalized variables usu-

ally describe natural properties, as ore body’s metal grade, soil’s friction angle, reservoir’s piezo-

metric elevation, population density, rainfall measurements, among others, such phenomena

are called "regionalization". From a mathematical point of view a regionalized variable is a func-

tion f (x) which takes a value at every point x within a region or spatial domain. A regionalized

variable have two characteristics:

i. A local, random behavior depending on some probability distribution (random variable)

ii. An average aspect which requires a certain functional representation

7
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The concept of random functions takes into account this dual behavior of regionalized variables.

The uncertainty of an unsampled value z is modeled through the probability distribution of

random variable, Z (x), which depends on the location x. A random function is a set of random

variables defined over the field of interest ({Z (x), z ∈ study area}). While a random variable is

characterized by its cumulative distribution function (cdf), a random function is characterized

by the set of all of its cdfs.

F (x1, ..., xN ; z1, ..., zN ) = P (Z (x1) ≤ z1, ..., Z (xN ) ≤ zN ) (2.1)

2.1.2 Statistical Moments

Expectation or first order moment: If f (x) is the probability density function (pdf) of Z (x), then

the expectation is a function of x defined by.

E(Z (x)) =
∫

x f (x)d x =µ(x) (2.2)

Second-order moments: In geostatistics, usually three second order moments are considered:

i. The variance:

V ar (Z (x)) = E((Z (x)−µ(x))2) (2.3)

ii. The covariance:

C (x1, x2) = E((Z (x1)−µ(x1))(Z (x2)−µ(x2))) (2.4)

iii. The variogram (also called semivariogram):

γ(x1, x2) = 1

2
V ar (Z (x1)−Z (x2)) (2.5)

In simple words covariance measures the similarity between the spatial data, while variogram

measures the average dissimilarity between the data.
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2.1.3 Stationarity

Stationarity is an assumption that has to be made in order to allow sampling in different loca-

tions (or at different times) be used to infer the random variable cdf over the entire domain.

Depending on the properties of the random function, different types of stationarity can be de-

fined.

Strict stationarity: A random function is said to be stationary, in the strict sense, if its multivari-

ate cdf is invariant under any traslation, that is:

F (x1, ..., xN ) = F (x1 +h, ..., xN +h) (2.6)

for any traslation vector h.

Second order stationarity: A random function is said to be second order stationary when:

i. The mathematical expectation, E(x), exists and does not depend on spatial location, x. In

other words,

E(Z (x)) =µ (2.7)

ii. for any pair of random variables Z (x), Z (x +h) the covariance exists and depends on the

separation distance h.

C (h) = E(Z (x +h) ·Z (x))−µ2 (2.8)

At h = 0 the stationary covariance C (0) equals the stationary variance σ2, that is,

C (0) =V ar (Z (x)) =σ2 (2.9)

Intrinsic stationarity: A random function Z (x) is intrinsic when:

i. The mathematical expectation, E(x), exists and does not depend on spatial location, x.

ii. For all vectors h the increment Z (x+h)−Z (x) has a finite variance which does not depend
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on x. In other words, the variogram only depends on the increment vector h.

γ(x, x +h) = γ(h) (2.10)

A second order stationary random function is intrinsic but the converse is not true.

The variogram and the covariance can be linked through the following equation:

γ(h) =C (0)−C (h) (2.11)

This allows to estimate the variogram (whose advantages will be discussed later in this chapter)

to study the spatial correlation of the data and then convert to covariance for the interpolation

over a second order random field.

Quasi stationarity: If the random variable Z (x) is only homogeneous in certain area defined by

the limit b such as |h| < b. In those cases the covariance function, C (x, x +h), is defined for

distances |h| < b being locally stationary. In practical terms, neighborhoods should be defined

inside of which the expectation and covariance can be considered as stationary and the data is

sufficient in order to make possible a statistical inference.

Stationarity is a property of the random function needed for inference and it is not a character-

istic of the phenomenon under study. It is a decision that has to be made by the user and can

not be assessed from data. In this work it is assumed that the random function is second order

stationary and the verification of this assumption is not part of the scope of this thesis.

2.1.4 Empical Variogram

In geostatistics, the variogram is preferred for calculations, even though it might be converted

to covariance afterwards. Among the benefits of using the variogram Olea (1999) mentions the

following:

i. In a probabilistic framework, the variogram does not require knowledge of the mean of

the random function for its estimation.
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ii. The variogram require less assumptions for its existence compared with the covariance.

iii. The estimation of the variogram is insensitive to the addition of a constant to the random

function, whereas the covariance is.

iv. Estimation of the variogram is less sensitive than the covariance estimation to failure to

comply with the requirement that the trend must be constant (simple and ordinary krig-

ing).

The most common estimator of the variogram from experimental data is defined as the average

squared difference of values separated approximately by h.

γ̂(h) = 1

2N (h)

∑
N (h)

[z(x)− z(x +h)]2 (2.12)

Where N (h) is the number of pairs for lag (h).

The algorithm to obtain the experimental variogram of a sampling is described below:

1. Identify all the possible combination of pairs within the data. Compute the distance and

azimuth angle of each pair.

2. The variogram can be omnidirectional (when the search of pairs is made disregarding the

direction) or directional, if this is the case, only the pairs oriented with a defined azimuth

angle, α, within an angular and linear tolerance should be considered. The linear toler-

ance around the search direction is called bandwidth.

3. Set the lag increment, the maximum recommended lag is half of the maximum dimension

of the sampling area. The pairs whose distance to each other is equal to the lag distance

(plus or less a lag tolerance) are grouped in that lag.

4. Use the estimator defined in Equation 2.12 to compute the experimental variogram for

each lag. It is recommended to discard lags where N (h) < 30. Basically, the variogram of a

lag, is the mean value of the variogram of each pair of points in that lag.

Figure 2.1 shows how to define a lag for a given point, considering the distances and tolerances.
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Figure 2.1: Illustration for lag definition for a given point, it is defined by the lag distance (h)
and tolerance (tol), direction, angle tolerance and bandwidth. The shaded area is the area of
allowable points for the given lag. (modified from Deutsch (2002))

The following figure shows the variogram cloud, which is the variogram of each pair of data, the

lags discretization and, finally, the variogram of each lag.

Figure 2.2: The experimental variogram computation involves computing each pair of data’s
variogram, the discretization of distances into lags and the averaging of lag’s variograms.
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2.1.5 Variogram Models

Kriging procedure (and other geostatistical procedures as simulation) involves inverting matri-

ces whose terms are calculated from the variogram. If the discrete values are used, this can lead

to singular matrices, multiple solutions or negative mean square errors in the kriging system.

The solution is to use functions, called permissible or licit variogram functions, some of the

most commonly used ones are presented below.

Nugget Effect:

γ(h) =


0, h = 0.

C0, h > 0.
(2.13)

Spherical:

γ(h) =


C ( 3

2
h
a − 1

2 ( h
a )2), 0 ≤ h < a.

C , a ≤ h.
(2.14)

Exponential:

γ(h) =C (1−e− 3h
a ) (2.15)

Gaussian:

γ(h) =C (1−e−3( h
a )2

) (2.16)

In the definitions presented above, C is called the sill, C0 is the nugget and a is the range of the
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model. Figure 2.3 shown below, present the four variogram models mentioned before,

however, there are many more who have not been mentioned for the sake of simplicity, the

reader is referred to Olea (1999) for more information about variogram models.

Figure 2.3: Four typical variogram models: nugget effect, spherical, exponential and Gaussian
(parameters used: C0 = 1.0, a = 0.2).

An important property is that a variogram model can be constructed as a possitive sum of licit

variograms functions:

γ(h) =
n∑

i=1
γi (h) (2.17)

Figure 2.4 shows the result of combining a nugget effect and a Gaussian models, it shows the

parameters that usually define a variogram: nugget, sill and range. The difference between the

sill and the nugget is often called partial sill. The combination of a nugget effect plus one of the

remaining licit functions is commonly used since it reflects the uncertainty at small (close to

zero) distance, which is usually associated with measurement errors. The range is the distance

at which the data relate to each other, the practical range is defined as the distance at which the

variogram value is 95% of the sill. The sill value, reflects the maximum dissimilarity between

data for a given distance.
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Figure 2.4: Variogram model made by summing a nugget effect and a gaussian models, along-
side with the model parameters C0, C and a, the value C −C0 is often called partial sill.

In a soil deposit, layered or with vertical variation of the properties, it is expected that the rate

of change of the properties would be greater in the vertical direction compared with the

horizontal. This leads to the range to be shorter in the vertical than the one in the horizontal

direction.

2.2 Kriging

Kriging is a generic name adopted by geostaticians for a set of generalized least-squares

regression alogorithms accounting for data spatially related. Kriging estimators are defined

(with some variations) as:

Ẑ (x) =µ(x)+
n∑

i=1
λi [Z (xi )−µ(xi )] (2.18)

Where: Ẑ (x) is the kriging estimator of Z (x), λi is the weight associated to xi , µ(x) and µ(xi ) are

the expected values of Z (x) and Z (xi ), respectively; n is a subset of the sampled space, called

neighborhood.

The error, thus, can be defined as the random variable Ẑ (x)−Z (x). The goal of all kriging



CHAPTER 2. GEOSTATISTICS 16

variants is to minimize the error variance σ2
E :

σ2
E (x) =V ar (Ẑ (x)−Z (x)) (2.19)

under the constraint of unbiasedness, this is:

E(Ẑ (x)−Z (x)) = 0 (2.20)

Depending on how the trend is modeled a different kriging variant is defined (Goovaerts, 1997):

1. Simple Kriging: considers the mean µ(x) to be known and constant throughout the study

area.

2. Ordinary Kriging: considers an unknown and constant mean but takes into account its

fluctuations by using a local neighborhood in the computations.

3. Universal Kriging: considers that the mean varies smoothly in the study area, and is

modeled as a linear combination of functions of the coordinates.

The three variants of Kriging are summarized in the following sections, for a more detailed

explanation of the mathematical foundations of them the reader is encouraged to check Olea

(1999).

2.2.1 Simple Kriging

The Simple Kriging (SK) estimator of Z, a second order stationary random function with mean

µ, at point x0 is defined by the following equation,

Ẑ (x0) =µ+
n∑

i=1
λi (Z (xi )−µ) (2.21)

The minimum mean square error for simple kriging is defined by:
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σ2
SK (x0) =C (0)−

n∑
i=1

λi C (x0, xi ) (2.22)

The solution with minimum variance will be the one in which the derivative of the variance

with respect to the weights is zero:

∂(σ2
SK )

∂(λi )
= 0 (2.23)

The solution of the system defined by the previous equations can be expressed in terms of

matrices for simplicity.

The covariance matrix is defined as:

C =



C (x1, x1) C (x1, x2) ... C (x1, xn)

C (x2, x1) C (x2, x2) ... C (x2, xn)

... ... ... ...

C (xn , x1) C (xn , x2) ... C (xn , xn)

 (2.24)

The weights vector (λ) and the covariance vector (c) are defined as following,

λ=



λ1

λ2

...

λn

 (2.25) c =



C (x0, x1)

C (x0, x2)

...

C (x0, xn)

 (2.26)

And, finally, the vector with the random variables is,

Y =



Z (x1)−µ
Z (x2)−µ

...

Z (xn)−µ

 (2.27)
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Then the optimum weights are found by solving the equation:

C ·λ= c (2.28)

The simple kriging estimator of Z at the point x0 is defined by:

ẐSK (x0) =µ+YTλ=µ+YT C−1c (2.29)

While the variance of the estimation is computed as:

σ2
SK (x0) =C (0)−cTλ=C (0)−cT C−1c (2.30)

2.2.2 Ordinary Kriging

Ordinary kriging is a improvement of simple kriging by discarding the requirement of previous

knowledge of the random function’s mean. In the formulation this entails a constrained

optimization that is solved through Lagrange method of multipliers.

The ordinary kriging estimator is given by a linear combination of the sampled random

variables at sites xi :

Ẑ (x0) =
n∑

i=1
λi Z (xi ) (2.31)

with the constrain that
∑n

i=1λi = 1 (this ensures unbiasedness of the estimator).

The estimation variance is defined by:

σ2(x0) =C (0)+
n∑

i=1

n∑
j=1

λiλ j C (xi , x j )−2
n∑

i=1
λi C (xi , x0) (2.32)

The optimal weight of the constrained optimization problem can be calculated using the
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Lagrange method of multipliers through the use of a new objective function called Lagrangian

function, defined by:

L =σ2(x0)+2k(
n∑

i=1
λi −1) (2.33)

where k is called the Lagrange multiplier.

With the optimal weights, the minimum mean square error for ordinary kriging is:

σ2
OK (x0) =

n∑
i=1

λi C (x0, xi )−k (2.34)

As in simple kriging, the algorithm is simpler using matrices. The covariance matrix is given by:

C =



C (x1, x1) C (x1, x2) ... C (x1, xn) 1

C (x2, x1) C (x2, x2) ... C (x2, xn) 1

... ... ... ... ...

C (xn , x1) C (xn , x2) ... C (xn , xn) 1

1 1 ... 1 0


(2.35)

The weights vector (λ) and the covariance vector (c) are:

λ=



λ1

λ2

...

λn

k


(2.36) c =



C (x0, x1)

C (x0, x2)

...

C (x0, xn)

1


(2.37)

The system to be solved is:

C ·λ= c (2.38)

The ordinary kriging estimate is defined by:
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ẐOK (x0) = ZT ·λ= ZT ·C−1 ·c (2.39)

The estimation variance is then defined by:

σ2
OK (x0) =C (0)−c ·λ=C (0)−cT ·C−1 ·c (2.40)

2.2.3 Universal Kriging

This kind of kriging is based on the hypothesis that the random function is not stationary and

its expected value (called drift) varies through the space by a systematic trend, which in this

case is assumed a polynomial function of the coordinates (Emery, 2016).

The estimator is the same as in ordinary kriging, shown in equation 2.31: Ẑ (x0) =∑n
i=1λi Z (xi ).

The residual of the random function is defined as the difference between the random function

and its expected value.

Y (x) = Z (x)−E(Z (x)) (2.41)

The mean, also called the drift, is defined as a linear combination of k functions of the

coordinates:

µ(x) = E(Z (x)) =
k∑

i=0
ai fi (x), with f0(x) = 1 (2.42)

Usually, the mean is modeled with a with a first- or second-order polynomial function as

µ(x, y) = a0 +a1x +a2 y +a3x2 +a4x y +a5 y2.

A particular case of universal kriging when the mean is µ(x) = a0 =µ is ordinary kriging. Thus,

universal kriging follows a methodology similar to the one shown for ordinary kriging.

The unbiasedness requirement is

n∑
i=1

λi fi (xi ) = f j , for j = 0,1,...,k (2.43)
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The minimum mean square error for universal kriging is given by,

σ2
U K (x0) =CY (0)−

n∑
i=1

λi CY (x0, xi )−µ0 −
k∑

j=1
µ j f j (x0) (2.44)

where CY is the covariance function of the residuals Y (x) instead of the random function Z (x).

Defining the covariance matrix as:

C =



CY (x1, x1) ... CY (x1, xn) 1 f1(x1) f2(x1) ... fk (x1)

CY (x2, x1) ... CY (x2, xn) 1 f1(x2) f2(x2) ... fk (x2)

... ... ... ... ... ... ... ...

CY (xn , x1) ... CY (xn , xn) 1 f1(xn) f2(xn) ... fk (xn)

1 ... 1 0 0 0 ... 0

f1(x1) ... f1(xn) 0 0 0 ... 0

f2(x1) ... f2(xn) 0 0 0 ... 0

... ... ... ... ... ... ... ...

fk (x1) ... fk (xn) 0 0 0 ... 0



(2.45)

The weights vector (λ) and the covariance vector (c) are:

λ=



λ1

λ2

...

λn

−k0

−k1

−k2

...

−kk



(2.46) c =



CY (x0, x1)

CY (x0, x2)

...

CY (x0, xn)

1

f1(x0)

f2(x0)

...

fk (x0)



(2.47)

Additionally, the matrix Z whose elements are the random variables (n elements) and k+1 zeros.
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Z =



Z (x1)

Z (x2)

...

Z (xn)

0

0

...

0



(2.48)

As before, the system to be solved is:

C ·λ= c (2.49)

The universal kriging estimation is:

ẐU K (x0) = ZT ·λ= ZT ·C−1 ·c (2.50)

And the estimation variance is,

σ2
U K (x0) =CY (0)−cT ·λ=CY (0)−cT ·C−1 ·c (2.51)

Universal and ordinary kriging are both minimum mean square error, unbiassed, exact

interpolators that automatically corrects for clustering in the sampling (Olea, 1999).

Two drawbacks for this method would be that is necessary to specify a trend model for the

random function, and besides, a variogram for the residuals (which is not the same as the

variogram of the data minus the trend as stated in Goovaerts (1997)) and not for the random

function as before. According to Emery (2019) it is not advisable to use Universal Kriging when

it is not sure that the drift can be modeled as linear combination of the coordinates, in that

case Ordinary kriging and constant in the neighborhood mean would be better choice.
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2.2.4 Search Neighborhood

When performing kriging, if all the measured data is used, the covariance matrix (C) is not

changed by changing the location of the estimation point. On the other hand, the larger the

sampled space, the larger the matrix to invert, and in that way, the longer the solution will take.

As the distance between the sampled and unsampled point increases, the weight associated

tends to be zero, since covariance tend to zero as well. The latter can imply instability of the

system to solve (Davis and Morris, 1997).

The reduction of the sampling space can be performed in different ways, for example defining

maximum radius and select a certain amount of neighbors by quadrant. If there is a

preferential search direction, an elliptical search would be a clever choice. In this project, the

nearest sampling points are chosen given a tolerance distance and a circular or elliptical search

is made depending on the anisotropy of the site in study. Also the search area is divided in four

quadrants with fixed number of points to be considered in each of them, in order to distribute

in a better way the information around the point to be estimated (Emery, 2016), this can be

seen in Figure 2.5.

Figure 2.5: Search neighborhood, with elliptical shape and search by quadrant (modified from
Emery (2016)).
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2.2.5 Anisotropy

Anisotropy can be assessed by inspecting the experimental variogram in different directions.

The variogram is considered isotropic if changing the direction does not produce significant

changes on it. A common case is the geometric anisotropy, shown in Figure 2.6, where the

range varies with the direction of the variogram. This kind of anisotropy can be addressed by

rescaling the sampling space in order for the range to become constant.

Figure 2.6: Geometric anisotropy, the ranges in these variograms are 15 m in the vertical direc-
tion and 35 m in the horizontal.

Another kind of anisotropy is zonal anisotropy which is not covered in this thesis but Goovaerts

(1997) offers a comprehensive review of this and other interesting variogram features.

2.2.6 Cross-validation

Cross-validation is a tool for testing interpolation methods without requiring additional data.

The methodology for cross-validation consists in leave out a measured value or a subset of

measured values, and use the rest of them to predict it with the same kriging model that the

one used to interpolate the unsampled data. The error is computed by comparing the

measured and estimated values.

Emery (2016) recommends some graphical cues for a better understanding of the

cross-validation results, the first being the correlation cloud between the actual and the
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estimated values. Additionally, he recommends to plot a histogram of the standardized errors,

a good estimation is considered if it is centered around 0, with the mean of the standardized

error being close to 0. The standardized error is given by the following equation:

SE(xi ) = Ẑ (xi )−Z (xi )

σ̂(xi )
(2.52)

According to Olea (1999) cross-validation is the only way to indirectly test kriging, despite it

does not indicate if the interpolation is correct, it can help draw conclusions by comparison. In

this thesis, the cross-validation methodology to be used will be the "leave one group out"

(Scikit-learn developers, 2019) in which an entire group (subset) of data is left out in order to

make the prediction, in this work a group is represented by a different CPTu test.
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Machine Learning

Machine learning is a series of statistical and computational techniques to allow a computer to

learn from experience (data) without relying on a predetermined equation as a model. The

algorithms improve their performance as the number of samples available for learning

increases. Machine learning algorithms find patterns in data that generate insight and help the

user to make better decisions and predictions. They are used every day to make critical

decisions in medicine, business, engineering and many other areas of knowledge.

3.1 Types of Machine Learning

Machine Learning methods can be classified in different types depending on the application.

One of the most used criteria to differentiate them is if it is supervised or unsupervised. In

supervised machine learning, the training data which feed the algorithm include the desired

solutions, called labels or class variable. Two typical supervised tasks are regression and

classification. Regression predicts continuous responses, for example, the correlation between

SPT blow count and soil density as studied by Puri et al. (2018); classification on the other

hand, predicts discrete responses, for example, if a soil is susceptible to liquefaction under

cyclic loading based on the SPT test, as the work done by Samui and Sitharam (2011).

In unsupervised machine learning, on the other hand, the system do not require the target

26
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solution, so it has to be able of recognize patterns in the data itself. Clustering is a widely used

unsupervised machine learning method. For example, an application of clustering can be the

zoning of earthquake damage given the peak ground acceleration, lithology and topographic

zone as done by Rabarijoely et al. (2007).

The focus of the application of machine learning techniques to geotechnical engineering

issued in this work will be the classification of soils using CPTu test. Thereby the methods to be

studied are basically classification methods such as Logistic Regression and Naive Bayes

classificators, and Hidden Markov Models applied to supervised classification. Nevertheless,

towards the end of this document a small clustering exercise is performed given the ability of

Hidden Markov Model to perform such kind of tasks.

3.2 The Classification Problem

According to Asiri (2018): "Classification is the process of predicting the class of given data

points. Classes are sometimes called as targets/ labels or categories. Classification predictive

modeling is the task of approximating a mapping function (f) from input variables (X) to

discrete output variables (y)". In general, classificators build a model based on training data

before getting the data to be classified.

Classification in a probabilistic framework consists in quantify the probability that a sample to

belong to a class (Y) given a set of observations (X), in mathematical terms this will be P (Y |X )

(Flach, 2012), where Y is the variable defining the classes (targets) and X is a set of observations.

In geotechnical terms, this can be the probability that a soil sample classifies as "sand" given

that its angle of internal friction is 28°, P (Y = "sand"|X =φ= 28°).

3.2.1 Classification metric: The accuracy score

There are many metrics to evaluate the classification results (Scikit-learn developers, 2019),

one of the simplest is the one called Accuracy Score. In a binary classification context (being

the class labels 1 and 0), there are four possible outcomes: True Positive (TP), True Negative
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(TN), False Positive (FP) and False Negative (FN), representing a observation correctly put into

class 1, correctly put into class 0, incorrectly put into class 1 and incorrectly put into class 0,

respectively. The accuracy score will be in this case (Marsland, 2011):

Accur ac y Scor e = T P +T N

T P +F P +T N +F N
(3.1)

In a multiclass classification, the essence of the score is the same but counting all the samples

where the classification matches the target value over the total number of samples classified.

Despite there are many improved metrics for multiclass classification (Mosley, 2013), the

accuracy score will be used in this work to evaluate the classification results due to its

simplicity.

3.3 Logistic Regression Classification

Logistic regression is a linear model for classification rather than a regression, it is commonly

used to estimate the probability that an instance belongs to a particular class (for example, the

probability that soil is quick clay or not). If the estimated probability is greater than 50%, then

the model predicts that the instance belongs to that class (called the positive class, labeled “1”),

or else it predicts that it does not (it belongs to the negative class, labeled “0”). This makes it a

binary classifier.

In a binary classification, the probability that a set of observations X belongs to a class Y (=1) is

defined by:

hθ(X ) = 1

1+exp(−(θT X ))
= P (Y = 1|X ;θ) (3.2)

Assuming that the observations are independently Bernoulli distributed, the likelihood

function is given by:

L(θ|x) = P (Y |X ;θ) =∏
P (yi |xi ;θ) =∏

hθ(xi )yi (1−hθ(xi ))(1−yi ) (3.3)
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The likelihood, or frequently the logarithm of it, is maximized using an optimization technique

such as gradient descent (Wikipedia contributors, 2019a).

When the data is multinomial, as in geotechnical classification problems where a soil can be

part of one of many soil classes, like clay, silt, sand, gravel, and so on; the formulation changes

as described below.

With a given set of input parameters X, the multinomial logistic regression, first compute a

score sk (X ) for each class k, then estimates the probability of each class by applying a

normalized exponential function (also called Softmax function) to the score. The equation to

compute the scores is just a equation for linear regression prediction: sk (X ) = θT
k ·X . The

probability P (Y = k|X ;θ) that the input belongs to a class k is given by:

P (Y = k|X ;θ) = exp(sk (X ))∑K
j=1 exp(s j (X ))

(3.4)

Being K the total number of classes.

The optimal parameter vector θ is determined by a maximum a posteriori estimation (MAP),

which is an extension of maximum likelihood method mentioned above. The problem to solve

is shown in the equation below, and is solved by using an iterative optimization procedure such

as gradient descent (Géron, 2017).

ŷ = argmax
k

P (Y = k|X ;θ) = argmax
k

sk (x) = argmax
k

(θT
k · x) (3.5)

3.4 Naive Bayes Classification

Naive Bayes is a supervised learning algorithm based on applying Bayes theorem with the

assumption of conditional independence between every pair of features given the value of the

class variable. Bayes theorem states the following relationship, given class variable Y and

dependent feature vectors Xi :
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P (Y |X1, ..., Xn) = P (Y )P (X1, ..., Xn |Y )

P (X1, ..., Xn)
(3.6)

The conditional independence assumes that P (Xi |Y , X1, ..., Xi−1, Xi+1, ..., Xn) = P (Xi |Y ), so the

relationship is simplified to:

P (Y |X1, ..., Xn) = P (Y )
∏n

i=1 P (Xi |Y )

P (X1, ..., Xn)
(3.7)

The equation above represents the "naive" part of the classifier, since the conditional

independence assumption is rarely true in most real-world applications, however, despite this

simplification, its performance is still satisfactory compared with other classifiers (Zhang,

2004).

The a priori probability of the classes, P (Y ), is estimated from the training set, while an

assumption is required regarding the distribution of the likelihood function, P (Xi |Y ). In a

Gaussian Naive Bayes Classifier, the likelihood is assumed to be Gaussian.

P (Xi |Y ) = 1√
2πσ2

Y

exp

(
− (Xi −µY )2

2σ2
Y

)
(3.8)

The parameters of the likelihood function (σY and µY ) are estimated by maximum likelihood.

The value P (X1, ..., Xn) is constant given the input. The classification problem is solved using a

maximum a posteriori (MAP) estimation (Scikit-learn developers, 2019), which means:

Ŷ = argmax
Y

P (Y )
n∏

i=1
P (Xi |Y ) (3.9)

3.5 Hidden Markov Models

Consider a system that can be described at any depth (or time) as being in one of N different

states Si . At regularly space depth intervals the system can change the state (possibly back to

the same state) according to a set of probabilities associated with each state. The depths (or
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times) associated with the state changes are denoted as t, the actual state at certain depth is

denoted as qt . Considering a first order Markov chain, the system can be described

probabilistically as only depending on just the current and the previous state, according to the

next expression:

P (qt = S j |qt−1 = Si , qt−2 = Sk , ....) = P (qt = S j |qt−1 = Si ) = pi j (3.10)

pi j are called the transition probabilities and define the transition matrix P, defining the

probability of being in a state given the state in the previous depth. In other words, the

transition matrix is defined by: P = pi j with the rows (i) being the previous state and columns

(j) the current state. Both the columns and the rows must sum 1. The size of P is defined by the

total number of different states in the problem to model.

The initial probabilities πi = P (q1 = Si ) are the probabilities that the first value of the sequence

is defined by the state i.

If the states are not observable (hidden) and can only be observed through another set of

stochastic processes that produce a sequence of observations (O), it is said that the model is a

Hidden Markov Model. In this thesis context, the hidden states are the soil classes (if a soil is

clayey or sandy, etc.), the observations are any combination of the measurements made by the

CPTu test (tip resistance, side friction, pore pressure, or the normalization of them).

Summing up a Hidden Markov Model is completely characterized by: the number of states (N),

the observations (O), the transition matrix (P), the starting probabilities (πi ) and the

probability distribution of the observations. In the case of a Normal distribution, a mean

matrix is required µ with the expected value of each observation variable for each state, and a

variance matrix Σ that can be the same for each state, in which case it is said that the model has

tied covariance, or a different matrix for each state defining a full covariance model, this

influences the relative orientation of the likelihood functions for the different classes, as can be

seen in Figure 3.1 below.
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Figure 3.1: Likelihood contour of two Gaussian distributions with tied (left) and full (right) co-
variance model.

Concerning HMM there are three kind of problems that must be solved in order for the model

to be applicable:

1. Given the observation sequence and a model, compute the probability of observations

given the model P (O|Model ). This is solved by the Forward-Backward algorithm (Baum

and Eagon, 1967).

2. Given the observation sequence and a model, choose the corresponding state sequence

which is optimal. This is solved with the help of the Viterbi algorithm (Forney, 1973).

3. Given the observations, estimate the model parameters (train the model). This problem

is solved iteratively by the Expectation-Maximization (EM) algorithm (Dempster et al.,

1977).

All these algorithms are part of the Python library hmmlearn (hmmlearn developers, 2010)

which was used in this work to solve the problems modeled through a Hidden Markov Model.

For a better understanding of the algorithms and the theory behind HMM, it is recommended

to read the work of Rabiner (1989) on which was based this section and that presents a well

explained summary of applied Hidden Markov Models.



Chapter 4

Site Characterization using Ordinary

Kriging

Rissa is a town located in the Indre Fosen municipality in the Trøndelag county. This site

became famous after a huge quick clay landslide in 1978 (Gregersen, 1981). After this event

efforts have been made in order to characterize the site and assess the stability of its slopes. In

that framework a comprehensive study was made by Kornbrekke (2012) in which field and

laboratory tests were gathered and processed to characterize the properties of a site near Rein

church, in particular the profile called 3-3. This chapter presents the results of applying

Ordinary Kriging to the data from CPTu testing for the continuous interpolation of the three

parameters measured by CPTu test: tip resistance (qt ), sleeve friction ( fs) and excess pore

pressure (∆u2) in the slope.

All the computations performed within this chapter where done using Python (Van Rossum,

1995) as programming environment and through custom made scripts and functions for data

handling, variogram determination and fitting, kriging interpolation, cross-validation and,

visualization and plotting.

33
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4.1 Study Profile and Test Data

For the present investigation, a set of five CPTu performed in Rein church’s slope were used

whose names are: C2, C3, C4, C5 and C6. The locations of these CPTu tests are shown in Figure

4.1 as well as a segment of the profile 3-3 studied in Kornbrekke (2012).

For a cross-section construction, a projection of each test was performed into the profile 3-3,

the criteria used to do this was to project them to the same elevation. The resulting

cross-section is presented in Figure 4.2 shown below.

Figure 4.2: Cross-section of profile 3-3 with the projected CPTu tests and the layering proposed
by Kornbrekke (2012)

The CPTu data was filtered in order to reduce the total amount of data points, and smoothed

with a rolling mean (Wikipedia contributors, 2019b) to get rid of unrepresentative peaks. Figure

4.3 shows the results from the CPTu test projected on the study profile.
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(a)

(b)

(c)

Figure 4.3: CPTu measurements projected on the study profile for: Tip Resistance (a), Sleeve
Friction (b) and Excess Pore Pressure (c).



CHAPTER 4. SITE CHARACTERIZATION USING ORDINARY KRIGING 37

4.2 Variogram Models

For the variogram computation, since the data is not aligned in the X, Z plane shown in Figure

4.2, a three dimensional approach should be used to compute the distance in order to account

for the right variogram’s distances between each sampling point.

The experimental variograms were fitted using a nested Nugget plus Spherical model by

recommendation of Emery (2019). The maximum lag distance for the computation was one

large enough to express the total variance of the data.

To fit the horizontal variogram, since there are less data points per lag in that direction

compared to the vertical, the result is more scattered. If only geometric anisotropy is assumed,

then the only different parameter between vertical and horizontal variograms would be the

range. Thus, the horizontal variogram was fitted keeping constant the sill and nugget from the

vertical.

4.2.1 Tip resistance variograms

The experimental variograms for tip resistance are shown in Figure 4.4. The fitting parameters

are:

Nugget (C0) 0 kPa2

Partial Sill (C −C0) 251038.77 kPa2

Vertical Range (aV ) 2 m
Horizontal Range (aH ) 170 m
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(a) (b)

Figure 4.4: Vertical (a) and Horizontal (b) variograms for tip resistance qt .

4.2.2 Sleeve friction variograms

The experimental variograms for sleeve friction are shown in Figure 4.5. The fitting parameters

are:

Nugget (C0) 14.91 kPa2

Partial Sill (C −C0) 23.09 kPa2

Vertical Range (aV ) 9.52 m
Horizontal Range (aH ) 128.5 m

(a) (b)

Figure 4.5: Vertical (a) and Horizontal (b) variograms for sleeve friction fs .
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4.2.3 Excess pore pressure variograms

In the case of excess pore pressure behind the cone tip ∆u2, the variogram showed a quadratic

trend which indicates a linear trend in the modeled variable (because variograms are

calculated with squared values), this can be seen in Figure 4.6.

Figure 4.6: Linear trend on ∆u2 expressed as a quadratic trend in the variogram.

For a better calculation of the variogram, and according to the reccomendations of Goovaerts

(1997), the variogram should be computed using the residuals (the values minus the trend)

then the kriging interpolation is performed for them. After the interpolated values are

computed, the trend is added to get the values of ∆u2. The experimental variograms for the

residuals of excess pore pressure are shown in Figure 4.7. The fitting parameters are:

Nugget (C0) 1119.9 kPa2

Partial Sill (C −C0) 3460.1 kPa2

Vertical Range (aV ) 5.9 m
Horizontal Range (aH ) 80 m
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(a) (b)

Figure 4.7: Vertical (a) and Horizontal (b) variograms for the residuals of excess pore pressure
behind the cone tip ∆u2.

4.2.4 Conclusions about the variogram models

Constraining the variograms with the total variance allowed to get a good fit. Having the

vertical variogram fitted allowed to fit the horizontal variogram’s range. The results presented

in Figures 4.4 to 4.7 show that all the variogram were successfully fitted considering the great

variability on the data, and allow to perform kriging interpolation of the parameters over the

entire area as it will be shown in the next section.

The values found in literature for vertical and horizontal range (expressed as correlation

length) are smaller than the ones proposed here, for example, Firouzianbandpey et al. (2014)

estimated values of around 0.5 m for the vertical and 2.0 m for the horizontal; Stuedlein et al.

(2012) estimated values of less than 1.2 m and less than 10 m for vertical and horizontal

respectively; Uzielli et al. (2005) found values ranging between 0.16 m to 1.11 m for the vertical

range. Fenton (1999) explains that the different values on the correlation length can be due to

different domain of the model, this means that larger models might have larger correlation

length compared to smaller ones.
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4.3 Ordinary Kriging Interpolation

The interpolation mesh was spaced 0.6 m and 0.7 m in the vertical and horizontal direction,

respectively, giving a mesh of 11645 points. The search neighborhood in all cases is elliptical,

with anisotropies (horizontal range over vertical range, aH
aV

) of 85 for qt and 14 for fs and ∆u2,

and a maximum search distance of 10 m and 10 neighbours per quadrant.

The results of the ordinary kriging of the CPTu tests at Rissa are shown in Figure 4.8. As a

reference, the average runtime of the interpolation of the 11645 points comprising the mesh is

around 4.3 minutes (260 seconds). The results show the ability of the kriging method to

smoothly interpolate between the data points and to extrapolate outside the area defined by

the soundings. It is also evident that the anisotropy is reflected in the shape of the contours of

the estimated parameters.

The variance plots in Figure 4.9 show, as it would be to expect, a higher variance on the

extrapolation zones (where there is no actual data) and is minimal (equals to the nugget of the

variogram) in the CPTu lines, and in between them the variance increases with the distance.

To assess the goodness of the estimation, since all the measured data was used for the

interpolation, it is interesting to compare the results of the interpolation with the layering

proposed by Kornbrekke (2012), which was defined using field and laboratory testing. The

results are shown in Figure 4.10. It is possible to see a good match between the layering and the

changes in tip resistance predicted by the interpolation, and specially in the sleeve friction map

(which can be related with the remoulded resistance of the soil) where lower values are reached

within the sensitive clay area. The excess pore pressure agrees with what is to be expected,

especially for the sand layer where the lowest (even negative) pressure values are reached.
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(a)

(b)

(c)

Figure 4.8: Kriging interpolation maps for: Tip Resistance (a), Sleeve Friction (b) and Excess Pore
Pressure (c).
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(a)

(b)

(c)

Figure 4.9: Kriging variance maps for: Tip Resistance (a), Sleeve Friction (b) and Excess Pore
Pressure (c).
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(a)

(b)

(c)

Figure 4.10: Kriging interpolation maps for: Tip Resistance (a), Sleeve Friction (b) and Excess
Pore Pressure (c), alongside with the layering proposed by Kornbrekke (2012).
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As mentioned before, it is difficult to quantify the goodness of fit of a geostatistical

interpolation without performing new sampling, but with the cross-validation technique a

sense of the performance of the estimation model can be obtained, as well as a grasp of the

influence of each test in the overall estimation.

The cross-validation was performed by removing a complete CPTu test from the data available

for the interpolation, and estimating the values at its location using the remaining data. The

results are measured in terms of the standardized error explained in Chapter 2. In this case, the

CPTu test at the profile borders are always kept since its influence constraining the solution is

vital, and also because the main focus of this methodology is to interpolate rather than

extrapolate values.

The results are shown in Figures 4.11 and 4.12, the associated standardized errors means of the

estimations are -0.47, 0.45 and -0.18 for qt , fs and ∆u2 (residuals), respectively, the histograms

of the errors show that they are centered around 0. It can be noticed a good fit for the majority

of the values, however, the outliers present in the tests, are not accounted by the kriging

interpolation. Nevertheless, these outliers representing the peak values which are typical of

CPTu tests, are seldom used with design purposes because they do not represent the overall

behavior of the soil but minor discontinuities or testing flaws.

Regarding the influence of leaving a CPTu test out, it is possible to see that C3 is the less

influential one, and it is thought that this is because of the lack of outliers on it. While, leaving

C2 and C5 produce a bigger dispersion between the measured and the estimated values,

mainly at the outliers.
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(a)

(b)

(c)

Figure 4.11: Cross-validation plots, measured vs estimated scatter plot (left) and standardized
error histogram (right), for tip resistance (a), sleeve friction (b) and excess pore pressure (resid-
uals) (c).
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(a)

(b)

(c)

Figure 4.12: Cross-validation plots, measured vs estimated scatter plot grouped by the left out
CPTu test, for tip resistance (a), sleeve friction (b) and excess pore pressure (residuals) (c).



Chapter 5

Site Characterization using Machine

Learning

In Norway, a big concern in any construction project is the presence of highly sensitive or quick

clays, since they can easily determine the feasibility of them. Since CPTu tests are widespread

and are present in almost every geotechnical exploration program in Norway, it would be

convenient to have a way to determine whether a soil profile contains quick clays or not based

on the CPTu test results. Classification charts based on CPTu tests are meant to be global,

indicating general behavior rather than specific soil characteristics.

In this context, the use of machine learning approaches is ideal since local data can be used to

help a model to "learn" which measured data characterizes a certain kind of soil, highly

sensitive or quick clays in this case. With few information the results will not be satisfactory,

but as the exploration advances, the model will learn from the newly generated data and adjust

to give better results.

The following chapter studies how machine learning techniques can be used to improve the

identification of highly sensitive and quick clay soils from CPTu tests.

All the computations performed within this chapter were done using Python (Van Rossum,

1995) as programming environment, complemented by Scikit-Learn machine learning library

(Pedregosa et al., 2011) and hmmlearn Hidden Markov Model library (hmmlearn developers,

48
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2010), alongside with custom made scripts and functions for data handling, visualization and

plotting.

5.1 Datasets

This chapter describe the datasets used to test the machine learning approach with real data

from one investigation project (NTGS) and one engineering challenge faced by Statens

Vegvesen, both involving the presence of quick and highly sensitive clays.

5.1.1 NGTS dataset

NGTS stands for Norwegian Geo-Test Sites and is a research consortium led by the Norwegian

Geotechnical Institute (NGI) and with the participation of NTNU and other organizations. Its

main focus is to develop field laboratories for testing, verification and control of new methods

and equipment for site investigations and foundation engineering (NGI, 2019). Within the

NGTS framework, one of the important study subjects are quick clays, being the site at Tiller

chosen for that matter which is located near Trondheim. Figure 5.1 presents the location of the

CPTu tests, while Figure 5.2 shows the summary of the tests alongside with the layering of the

site. For the present work, 31 CPTu test were used (CPTu test C18 was discarded because of

high sleeve friction which was not representative of the site). Detailed plots of each test can be

found in Appendix A

The layering of the site consists of 2.5 m of dry crust, followed by a clay layer up to a depth of

7.5 m on top of a quick clay layer 12.5 m thick. The water table is at 1.5 m from the surface. The

terrain is flat so the features described above are expected to have few variations over the study

area.
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Figure 5.1: CPTu test layout at NGTS site.



CHAPTER 5. SITE CHARACTERIZATION USING MACHINE LEARNING 51

Figure 5.2: CPTu test summary and layering at NGTS site, the plots show the tip resistance, sleeve
friction and pore pressure over the depth.

5.1.2 Vegvesen dataset

This dataset is made by seven CPTu tests which are part of the studies for the construction of

the county road 715 connecting Keiserås and Olsøy which passes through an area of high risk of

quick clay slides where the foundations of Skaudal bridge were placed. The soil layering of the

site is not as constant as it is at the NGTS site, however, the common sequence is a stiff upper

layer followed by clay on top of a thick quick clay layer, in deep it can appear clay or stiffer

layers. The locations of the tests are shown in Figure 5.3, while the layering is shown in

Figure 5.4. It is important to note that the layering, in this case, is a proposed layering made by

the student based on the information of the data report of the site made by Statens Vegvesen

(2013). The summary of the tests in terms of the parameters measured is shown in Figure 5.5,

detailed plots of the tests considered for this dataset can be found in Appendix A.
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Figure 5.3: CPTu test layout at Vegvesen site, Fv. 715 Keiresås-Olsøy.

Figure 5.4: Layering of Vegvesen site.
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Figure 5.5: Summary of CPTu test at Vegvesen site.

5.2 Data processing

The CPTu test data was received as raw files in ".cpt" format with measurement of depth, tip

resistance (qc ), sleeve friction ( fs) and pore pressure behind the cone (u2). The tip resistance

value was corrected from the effects of pore pressure acting at the conical tip, using the

formula: qt = qc + (1+a) ·u2, where a is the net area ratio dependent on probe design and qt is

the corrected tip resistance. The normalized parameters were computed according to the

following equations:

Normalized cone resistance (Qt ):

Qt = qt −σv0

σ′
v0

(5.1)
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Normalized friction ratio (Fr ):

Fr = fs

qt −σv0
(5.2)

Pore pressure ratio (Bq ):

Bq = u2 −u0

qt −σv0
= ∆u2

qt −σv0
(5.3)

Normalized excess pore pressure (U2):

U2 = ∆u2

σ′
v0

(5.4)

Where σv0 and σ′
v0 are the in situ total and effective stresses, respectively, and u0 is the in situ

pore pressure.

The data were inspected to check for abnormal measurements (like negative sleeve friction)

and was smoothed using a median statistical filter, as recommended by Wickremesinghe

(1989), in order to remove unwanted spikes. The results of such smoothing can be seen in

Figure 5.6 below.

Figure 5.6: Vegvesen dataset CPTu 106 Friction ratio, raw data (solid gray line) compared with
the smoothed through statistical filter (dashed red line).

In the present study, for the Machine Learning classification, a logarithmic transformation is

done in order to normalize the data in the range of (0,1). The transformations done are

presented below. The normalized excess pore pressure (U2) is preferred over the pore pressure
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ratio (Bq ).

Qnor m
t = 2 · log10(Qt )+1

9
(5.5)

F nor m
r = l og10(Fr )+4.5

6
(5.6)

U nor m
2 = log10(U2 +40)

2.2
(5.7)

5.3 Classification using charts

To have a point to compare the Machine Learning approach, the classification first was

performed using well-known charts which consider in their classification schemes sensitive

soils. The charts used those recommended by Robertson (1990), Eslami and Fellenius (1997),

Schneider et al. (2008), Robertson (2016) and Gylland et al. (2017). The metric used to evaluate

the accuracy is the Accuracy Score. Since this part of the work is focused on predicting the

appearance of highly sensitive and quick clays from the measurements of CPTu tests, only

three soil classes will be taken into account: Sensitive, Clayey and other (more competent)

soils. The classification results will be adjusted consequently in order to measure the

classification accuracy.

5.3.1 Robertson (1990)

This classification chart is based on an extensive database of CPTu tests, using the three

normalized parameters introduced above to define soil behavior types. The chart is presented

in Figure 5.7 and the respective soil classes are summarized in Table 5.1.
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Figure 5.7: Soil behavior type classification chart based on normalized CPTu (Robertson, 1990).

Table 5.1: Soil behavior type classification chart based on normalized CPTu (Robertson, 1990).

Zone Soil Behavior Type Zone Soil Behavior Type Zone Soil Behavior Type

1 Sensitive, fine grained 4
Silt mixtures clayey silt
to silty clay

7 Gravelly sand to sand

2 Organic soils - peats 5
Sand mixtures; silty sand
to sand silty

8
Very stiff sand
to clayey sand

3 Clays - clay to silty clay 6
Sands; clean sands
to silty sands

9 Very stiff fine grained

The results of using this classification chart are shown in Figure 5.8. For comparison, soil

classes 3 and 4 are considered as clayey, while 5, 6, 7, 8 and 9 are considered as other. The

accuracy score of this classification using the study datasets are shown below:

NGTS: Qt −Fr Chart: 70%

Qt −Bq Chart: 53%

Vegvesen: Qt −Fr Chart: 28%

Qt −Bq Chart: 27%

By looking at the chart is evident that the classification results for Vegvesen dataset will have
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low accuracy score because of the high Qt of the site’s sensitive clays compared with the zone

defined by Robertson. On the other hand, the results for NGTS site show a better agreement

with the chart, specially the QT −Fr plot.

(a)

(b)

Figure 5.8: Robertson (1990) Classification showing the NGTS (a) and Vegvesen (b) datasets.



CHAPTER 5. SITE CHARACTERIZATION USING MACHINE LEARNING 58

5.3.2 Eslami and Fellenius (1997)

This classification chart was developed when investigating the use of CPT in pile design and

was made using data from 20 sites in 5 countries. In this case, an "effective" cone resistance and

the sleeve friction values are used instead of the normalized ones. The effective cone resistance

is defined as qE = qt −u2. The chart defines five classes: 1. Sensitive and Collapsible Clay

and/or Silt, 2. Clay and/or Silt, 3. Silty Clay and/or Clayey Silt, 4. Sandy Silt and/or Silty Sand,

and 5. Sand and/or Sandy Gravel. Figure 5.9 shows the zones where each soil class is defined.

Figure 5.9: Soil type categories classification chart (Eslami and Fellenius, 1997).

The results of using the Eslami and Fellenius chart with the datasets in study are shown in

Figure 5.10. It is possible to see a better agreement in the identification of sensitive soils for the

Vegvesen dataset compared with Robertson’s 1990 classification. In both datasets, but clearer

in NGTS, is possible to see a major overlap between Clayey and Quick Clay soils. The accuracy

scores are 63% for NGTS and 74% for Vegvesen.
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(a)

(b)

Figure 5.10: Eslami and Fellenius (1997) Classification showing the NGTS (a) and Vegvesen (b)
datasets.

5.3.3 Schneider et al. (2008)

The work done by Schneider et al. (2008) focuses on improving the simple classification charts

available at that time in order to take into account the undrained penetration effects on
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penetration resistance. The chart is plotted on Qt - U2 space which gives improved results for a

range of soil types. According to the authors: "Trends in normalized piezocone response

observed in this study may influence design decisions, particularly in non-textbook geomaterials,

such as silts, heavily overconsolidated clays, loams, sensitive clays, and mixed soil types". The

database used in this study includes sensitive soils from Norway and Canada. The

classification chart, which can be seen in Figure 5.11, is divided into five different zones: 1a.

Silts and low rigidity index (Ir ) clays, 1b. Clays, 1c. Sensitive clays, 2. Essentially drained sands,

and 3. Transitional soils.

Figure 5.11: Schneider et al. (2008) proposed classification, on the left the chart is plotted on
Qt -∆u2

σ′
v0

, while the right one is on the common Qt -Bq space.

Figure 5.12 shows both dataset plotted on the Qt − ∆u2
σ′

v0
proposed by Schneider et al. (2008). It is

possible to see that the sensitive clays from the Vegvesen dataset show a behavior closer to the

one predicted by the scheme, giving an accuracy score of 75%, while in the NGTS dataset, there

are more cases of "False Positives" meaning that a big fraction of the clay layer would be

classified as Sensitive when they are not, however, the accuracy score is still 75% as well.
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(a)

(b)

Figure 5.12: Schneider (2008) Classification showing the NGTS (a) and Vegvesen (b) datasets.

5.3.4 Robertson (2016)

This work presents new correlations in the form of contours of key parameters on the

Robertson’s 1990 Soil Behavior Type chart with normalized parameters (SBTn) updating also

the classification system to use behaviour-based descriptions. Robertson (2009) updated his
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original classification by updating the normalization of tip resistance including a variable

stress exponent (n) which depends on a soil behavior type index (Ic ). The 2016 classification

introduces contractive-dilative boundaries (CD) representing the behavior of the soil and a

modified soil behaviour type index, IB . Figure 5.13 shows the new classification system

overlaying the original one.

Figure 5.13: Robertson (2016) SBTn chart based on Qtn–Fr (solid lines show proposed new soil
behaviour type boundaries, and dashed lines show boundaries suggested by Robertson (1990)).

The normalized tip resistance is computed iteratively according to the following expressions:

Qtn = (Qt −σv0)

pa

( pa

σ′
v0

)n
(5.8)

n = 0.381 · Ic +0.05 · σ
′
v0

pa
−0.15 (5.9)

Ic =
(
(3.47− log(Qtn))2 + (log(Fr )+1.22)2

)0.5

(5.10)

While the CD boundary and the modified soil behavior type index are computed as follow:
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C D = (Qtn −11)(1+0.06 ·Fr )17 (5.11)

IB = 100 · (Qtn +10)

70+Qtn ·Fr
(5.12)

Figure 5.14 show both dataset plotted on the Qtn −Fr space, again the NGTS dataset present a

big fraction of the Clayey soil classifying as Sensitive, but the other two soil classes seem to fall

well within the correct groups. The Vegvesen dataset shows a big fraction of Sensitive soils

classifying as Transitional or Clay Contractive. The accuracy score for NGTS is 75% while for

Vegvesen is 52%.

(a) (b)

Figure 5.14: Robertson (2016) Classification showing the NGTS (a) and Vegvesen (b) datasets.

5.3.5 Gylland et al. (2017)

This work proposes a classification chart specially focused on the identification of sensitive

clays and is based on tests performed in Norway. This is done using parameters following the
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same philosophy as Robertson (1990) but with different normalization, as shown below.

Nmc = qt −σv0

σ′
A +a

(5.13)

Bq1 = ∆u1

qt −σv0
(5.14)

R f u = fs

∆u1
(5.15)

Where the reference stress σ′
A =σ′m

c +σ′(1−m)
v0 , σ′

c is the effective pre-consolidation stress, a is

the attraction, m is the SHANSEP-framework exponent (typically between 0.7 - 0.8 for

Norwegian clays), and ∆u1 is the excess pore pressure at the tip of the cone. The classification

chart is shown in Figure 5.15 below.

Figure 5.15: Gylland classification charts.

The main drawback of this scheme is that is necessary to know parameters that do not come

necessarily associated with the CPT test itself, as the attraction and pre-consolidation stress,

and requires also the knowledge of the pore pressure at the tip (u1) which is not usually

measured in spite of the one behind the cone (u2). In that case, is necessary to use correlation

involving the measured parameters to estimate the ones from the model.

Figure 5.16 shows both datasets plotted on the chart proposed by Gylland et al. (2017), in this



CHAPTER 5. SITE CHARACTERIZATION USING MACHINE LEARNING 65

case, it is evident that the NGTS dataset shows better agreement compared with the Vegvesen

one. The accuracy score, in this case, is only a binary classification score due to the nature of

the classification proposed by the authors, the results are summarized below:

NGTS: Nmc −Bq1 Chart: 86%

Nmc −R f u Chart: 87%

Vegvesen: Nmc −Bq1 Chart: 39%

Nmc −R f u Chart: 40%

The Vegvesen dataset is plotted almost completely out of the red shaded area defining sensitive

clays, showing a different behavior of the sensitive clays present in the area compared with the

ones that were part of the dataset used by the authors, which included the NGTS site at Tiller.

(a)

(b)

Figure 5.16: Gylland (2017) Classification showing the NGTS (a) and Vegvesen (b) datasets.
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5.3.6 Summary of classification charts

A summary of the accuracies of each classification is presented on Table 5.2. It is possible to see

that the results are quite good for general classification charts, but they are not very consistent,

showing big differences between each dataset, being the exception the Schneider chart which

scores the same accuracy for both. The accuracy and consistency problem from classification

charts arises because of the datasets that were used to define each classification set are

whether very global or very local, which makes them difficult to classify accurately specific

cases as the quick clays in Norway, which have particular properties that make them unique. In

that sense, it would be better to develop local approaches that allow to get feedback from the

field and predict with higher accuracy the appearance of quick or highly sensitive clays.

In the next section, a Machine Learning approach will be studied where data from the field will

be used to train a model which is able to learn from the data and improve as new knowledge is

gathered for making better predictions.

Table 5.2: Summary of accuracy scores for the different classification charts studied.

Authors Parameters
Accuracy Score (%)

NGTS Vegvesen

Robertson (1990)
Qt −Fr 70 28
Qt −Bq 53 27

Eslami & Fellenius (1997) qE − fs 63 74
Schneider (2008) Qt −U2 75 75
Robertson (2016) Qtn −Fr 75 52

Gylland (2017)
Nmc −Bq1 86 39
Nmc −R f u 87 40

5.4 Machine Learning Classification Results

This section presents the results of applying machine learning to the datasets from NGTS site

and Vegvesen described before.
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5.4.1 Train and test datasets

Machine learning is about learning some properties from a dataset and then testing those

properties against another dataset. A common practice in machine learning is to evaluate an

algorithm by splitting a dataset into two. One of those sets is called the training set, on which

the model learns some properties; the other set is called the testing set, on which the learned

properties are tested. Geotechnical site exploration, generally because of resources constrains,

is done sequentially, with a couple of exploration teams working at the same time. To take this

into account, the splitting of the dataset will be done sequentially, using the data from one

CPTu to train the model, then predict the next one and use it to re-train the model and predict

the next one, and so on. The CPTu data to be used will be selected randomly as well as the

testing one. Since the draws are made randomly, the process will be repeated at least 30 times

to account for different combinations of CPTu tests in the training and testing datasets.

5.4.2 Results on NGTS Dataset

Logistic Regression Classifier

A logistic regression classificator was sequentially trained and the results of the predictions are

shown in Figure 5.17, using Qnor m
t −F nor m

r , Qnor m
t −U nor m

2 and the three of them as predictors.

The results show a high accuracy score even for the first estimation (using only one CPTu test to

train) and a sharp increase in it afterwards. It can be noticed that using just four tests to train

the classificator, accuracies of at least 80% are reached. It is also possible to see that the

Qnor m
t −U nor m

2 scheme shows higher accuracies with fewer data. The use of the three

parameters to train the classificator shows improved accuracies as well as less variability.

It is important to highlight that NGTS site is a highly homogeneous site with a regular layering

sequence and low dispersion of the parameters measured. These results are not expected to

happen on non-homogeneous sites. And because of its homogeneity would be difficult to use a

model trained in this site to predict the classification of the soils at a different site.
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(a)

(b)

(c)

Figure 5.17: Results of a sequentially trained Logistic Regression classificator on the NGTS
dataset using Qnor m

t and F nor m
r (a), Qnor m

t and U nor m
2 (b), and all of them (c) as predictors.
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Using all the data to train the model it is possible to get an equivalent of the classification

charts shown before. This is done by meshing the domain defined by any set of two parameters

(Qt -Fr , Qt -U2) and use the classificator to predict the class that each point of the mesh belongs.

The results for the typical Qt -Fr and Qt -U2 are shown below in Figure 5.18. Since the Logistic

Regression classificator is a linear model for classification, the boundaries defining each class

will be straight lines, outside the area defined by the data it is not expected that the charts will

be representative even for data in the same sites.

(a)

(b)

Figure 5.18: Classification charts for NGTS site obtained by Logistic Regression.
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Naive Bayes Classifier

The results of using a Naive Bayes classificator on the NGTS dataset are shown in Figure 5.19. It

is possible to see that it shows more scatter in the accuracy of the first estimation, specially

using F nor m
r but it increases quickly afterwards. The major advantage of using a Naive Bayes

approach compared with the Logistic Regression is that the time it takes to run can be 10 times

less, so in big datasets it can make a major difference.
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(a)

(b)

(c)

Figure 5.19: Results of a sequentially trained Naive Bayes classificator on the NGTS dataset using
Qnor m

t and F nor m
r (a), Qnor m

t and U nor m
2 (b), and all of them (c) as predictors.
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In the same way as done with Logistic Regression, classification charts can be obtained by

using the Naive Bayes classificator. In this case it is possible to see that the decision boundaries

(boundaries separating classes) are elliptical containing better the data that define them,

however this does not make sense in a general classification context specially at low Qt values

where a soil can be classified as a dry crust material with very low tip resistance.

(a)

(b)

Figure 5.20: Classification charts for NGTS site obtained by Naive Bayes.
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Hidden Markov Model

For this part a Hidden Markov Model (HMM) was trained in a semi-supervised way. The model

parameters (transition matrix, means, covariances and starting probabilities) were estimated

from the training data and then the model was allowed to update (optimize) the values of the

transition matrix and covariances in the Expectation-Maximization stage, the rest remained

fixed. The decoding algorithm to determine the most likely sequence of states (soil classes) was

the Viterbi algorithm. The sequential training was perfomed, but due to restriction in the

programmed code, it was only possible to use the CPTu test which contained the three soil

classes defined, this reduced the number of combinations available but it is thought that they

are enough to draw conclusions. The results of the sequential training and classification are

shown in Figure 5.21.
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(a)

(b)

(c)

Figure 5.21: Results of a sequentially trained HMM on the NGTS dataset using Qnor m
t and F nor m

r
(a), Qnor m

t and U nor m
2 (b), and all of them (c) as predictors.
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It is possible to see that despite the prediction is less accurate with few data, it increases quickly

yielding results similar to the ones obtained using the other two methods. The advantage of

using the HMM is that, since it takes into account how likely is to change from one class

(hidden state) to another, the predicted profiles do not have unrepresentative thin layers within

another. This can be observed in Figure 5.22 for CPTu C04 and C10.

Site profiles

In order to compare visually the different classification methods, Figures 5.22 and 5.23 shows

some selected CPTu tests with the actual site layering alongside the machine learning

classification. The remaining profiles can be seen in Appendix B, while the accuracies for each

profile estimation is presented in Table 5.3

For the profile estimation, only seven CPTu test were used for training for each test to be

classified. The criteria used to select the training dataset was to sort the test by name and use

the seven closest to the one to be classified.

The mean accuracies are 95% for logistic regression, 96% for Naive Bayes and 91% for HMM,

these values are quite close to each other, but a visual comparison shows despite the high

mean accuracy of HMM it can present interpolations which are not close to the reality, as in the

case of C05, this can be due to the training set chosen and can be improved with more data in

the training phase.
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Table 5.3: Comparison of machine learning classification for the NGTS dataset in terms of accu-
racy score.

CPTu
Accuracy Score

Logistic Reg. Naive Bayes HMM
C01 96% 90% 76%
C02 89% 89% 91%
C03 98% 96% 90%
C04 95% 97% 96%
C05 94% 88% 46%
C06 97% 98% 97%
C07 96% 95% 95%
C08 99% 97% 88%
C09 99% 98% 96%
C10 96% 94% 95%
C11 98% 98% 96%
C12 95% 98% 99%
C13 96% 95% 90%
C14 95% 96% 98%
C15 93% 95% 95%
C16 94% 96% 99%
C17 96% 93% 50%
C19 97% 100% 97%
C20 90% 93% 94%
C22 97% 99% 77%
C23 96% 98% 99%
C24 96% 98% 99%
C25 94% 94% 98%
C26 96% 97% 98%
C27 95% 96% 98%
C28 97% 97% 91%
C29 95% 97% 88%
C30 96% 98% 92%
C31 86% 89% 92%
C32 97% 100% 99%
C33 96% 98% 99%

5.4.3 Results on Vegvesen Dataset

Since the Vegvesen dataset is much smaller than NGTS, and since the layering of the site is not

as homogeneous, classification using machine learning is more challenging because in the
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process of splitting the dataset to train and test, a major share of the information is lost

(because it is not possible to use it to train). So in this case, besides performing the sequential

training and prediction, a cross-validation technique will be used to assess the performance of

the classificators. The cross-validation technique used will be the "Leave One Group Out"

which means for each CPTu test to be classified, the remaining six will be used to train the

model.

Logistic Regression Classifier

The results are shown in Figure 5.24 below. It is possible to see a more scattered behavior and a

less accuracy in general compared with NGTS site, however, given the fact that this dataset has

fewer CPTu test and the soil layering is more complex, the results are good, and compared with

the classification charts they improve the results. This is more evident when analyzing the

cross-validation results shown in Table 5.4.
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(a)

(b)

(c)

Figure 5.24: Results of a sequentially trained Logistic Regression classificator on the Vegvesen
dataset using Qnor m

t and F nor m
r (a), Qnor m

t and U nor m
2 (b), and all of them (c) as predictors.
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Table 5.4: Results of "Leave One Group Out" Cross-validation with Logistic Regression, Vegvesen
dataset.

"Left Out"
CPTu

Cross-validation Score
Qt −FrQt −FrQt −Fr Qt −U2Qt −U2Qt −U2 All

100 88% 87% 88%
102 71% 65% 71%
106 78% 69% 78%
107 66% 41% 67%
149 93% 85% 93%
154 92% 93% 93%
155 79% 62% 80%

Median 79% 69% 80%

Naive Bayes Classifier

The results are shown in Figure 5.25 below. As with the Logistic Regression, the results are more

scattered and less accurate, but when using the remaining six tests for training the accuracies

increase considerably, as shown in Table 5.5. In the case of the Qt −Fr classification, the results

show a 91% accuracy which is much more accurate than any of the classification charts.
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(a)

(b)

(c)

Figure 5.25: Results of a sequentially trained Naive Bayes classificator on the Vegvesen dataset
using Qnor m

t and F nor m
r (a), Qnor m

t and U nor m
2 (b), and all of them (c) as predictors.
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Table 5.5: Results of "Leave One Group Out" Cross-validation with Naive Bayes, Vegvesen
dataset.

"Left Out"
CPTu

Cross-validation Score
Qt −FrQt −FrQt −Fr Qt −U2Qt −U2Qt −U2 All

100 92% 92% 90%
102 75% 79% 78%
106 71% 47% 54%
107 72% 43% 73%
149 97% 87% 98%
154 91% 67% 89%
155 93% 76% 92%

Median 91% 76% 89%

Hidden Markov Model

The results of the sequential training and classification are shown in Figure 5.26. While the

results of the cross-validation are shown on Table 5.6.
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(a)

(b)

(c)

Figure 5.26: Results of a sequentially trained HMM on the Vegvesen dataset using Qnor m
t and

F nor m
r (a), Qnor m

t and U nor m
2 (b), and all of them (c) as predictors.
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Table 5.6: Results of "Leave One Group Out" Cross-validation with the Hidden Markov Model,
Vegvesen dataset.

"Left Out"
CPTu

Cross-validation Score
Qt −FrQt −FrQt −Fr Qt −U2Qt −U2Qt −U2 All

100 93% 89% 91%
102 87% 85% 87%
106 70% 18% 30%
107 71% 81% 77%
149 67% 44% 48%
154 90% 68% 91%
155 95% 92% 96%

Median 87% 81% 87%

The results show high accuracies that in general are reached after using four tests to train the

model.

5.4.4 Site profiles

The results of the profiles estimated by machine learning classification of the CPTu tests from

Vegvesen are shown in Figures 5.27 and 5.28, while the detailed figures are attached in

Appendix B. Table 5.7 shows the accuracies of the predictions, in this case six tests were used to

train the machine learning model to estimate the remaining one, thus the values shown in the

table are the same as in the cross-validation part. The mean accuracies are 81% for logistic

regression, 84% for Naive Bayes and 82% for HMM, although these values are close to each

other, as in the NGTS dataset the Naive Bayes classification shows the highest mean of the

three.
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Table 5.7: Comparison of machine learning classification for the NGTS dataset in terms of accu-
racy score.

CPTu
Accuracy Score

Logistic Reg. Naive Bayes HMM
100 88% 92% 93%
102 71% 75% 87%
106 78% 71% 70%
107 66% 72% 71%
149 93% 97% 67%
154 92% 91% 90%
155 79% 93% 95%

5.4.5 Cross-site prediction

In this section, a Machine Learning model trained with the data of one site will be used to

predict the layering of the other. Since the dataset from Vegvesen is short, the NGTS site will be

used fully to train a Logistic Regression classificator and then predict the soil classes at

Vegvesen site.

The results are summarized in the table below, it is possible to see a very poor fit which was

expected as stated previously because of the homogeneity of NGTS site makes it hard to train a

model with its data that can be used in another site with different soil conditions.

The recommendation here would be in case that there is not enough data from the site in study

to properly train a machine learning model, it is better to perform a chart classification rather

to use the data from a different site, unless there is evidence that the material will have similar

behavior.

However, it would be interesting to keep adding information besides the one defined by these

two datasets in order to generate a database which can be big enough to represent several site

conditions, at least for the Norwegian sensitive clays.
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Table 5.8: Results of using NGTS trained Logistic Regression Classificator on Vegvesen dataset.

CPTu
Accuracy Score
Qt −FrQt −FrQt −Fr Qt −U2Qt −U2Qt −U2 All

100 15% 16% 17%
102 32% 35% 35%
106 42% 40% 40%
107 61% 76% 77%
149 48% 37% 52%
154 8% 9% 10%
155 27% 34% 34%
Median 31% 31% 34%

5.4.6 Clustering with Hidden Markov Model

Another way to use the Hidden Markov Model concept is to perform clustering of the data, this

is done in an unsupervised way with the only input of the target number of clusters (soil types).

In general, when there is no information about how many clusters are there in the dataset, the

elbow method is used to identify the most appropriate one. This is done by plotting the

within-cluster dissimilarities (which is a measure of the distance of the cluster data to the

cluster center) against the number of clusters (k), when there are too many clusters the

dissimilarity is reduced since all the cluster data is close to its center so adding more clusters

does not reduce it noticeably. The most appropriate number of clusters is the one that if one

extra cluster is added does not significantly reduce the dissimilarity, this is graphically

represented as a bend in a descending curve (or elbow). Only two parameters, Qnor m
t and

F nor m
r , are going to be used in this clustering exercise. The HMM follows the same conditions

as explained on 5.4.2 with the exception that two different models of covariance were used: tied

(same covariance matrix for all classes) and full (different covariance matrix for each class), this

was done in order to allow more flexibility in the clustering process. The elbow chart obtained

by clustering Qnor m
t and F nor m

r from the Vegvesen dataset is shown in Figure 5.29. It is possible

to see that after four clusters the dissimilarities start to reduce less for both covariance model

used, so four clusters are chosen as the optimal number.
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Figure 5.29: Elbow chart for clustering of Vegvesen dataset using HMM.

The data clustered alongside the likelihood function of each cluster is shown in Figure 5.30, it is

possible to see that a tied covariance model reflects better what is expected from a

classification of soft soils, for example, clusters 1 and 2 could represent sensitive/very soft soils,

cluster 3 represents clayey soils and cluster 4 represents more competent material (dry crust or

sandy clay/silt).

The clustering scheme proposed in the previous paragraph is chosen and tested against the

proposed layering for the sites. The result in terms of accuracy score is 85% which is a very high

value considering that the model was not trained with the actual classes and comparing with

the classification chart is better than any of them, however, engineering judgement is required

in order to know what represents each cluster and if two or more clusters need to be grouped

together (which is different to perform a clustering analysis with fewer groups). Figure 5.30,

shows a comparison between the site layering and the one obtained by the clustering analysis

done.

This kind of analysis can help geotechnical engineers to interpret CPTu test in a better way by

grouping data with similar characteristic before classifying it whether using only the data

measured or by complementing it with laboratory tests.
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(a)

(b)

Figure 5.30: Results of the clustering of Vegvesen dataset using HMM for tied covariance (a) and
full covariance (b) models. Different colors show different clusters while ellipses show a contour
of the likelihood function of each cluster.



CHAPTER 5. SITE CHARACTERIZATION USING MACHINE LEARNING 92

F
ig

u
re

5.
31

:S
it

e
la

ye
ri

n
g

ve
rs

u
s

la
ye

ri
n

g
o

b
ta

in
ed

fr
o

m
th

e
cl

u
st

er
in

g
o

fV
eg

ve
se

n
d

at
as

et
u

si
n

g
H

M
M

fo
r

ti
ed

co
va

ri
an

ce
.



Chapter 6

Summary and Recommendations for

Further Work

6.1 Summary and Conclusions

This thesis gave insight into the application of statistical methods on geotechnical site

characterization.

The main geostatistical methods were programmed in Python and used to interpolate (and

extrapolate) CPTu tests measurements performed in Rissa slope. The major challenge of this

task was the determination of horizontal variograms since the data resolution in the horizontal

plane is considerably less compared with the vertical one. This was solved by constraining the

variograms with the total variance and assuming a geometric anisotropy. The results of the

interpolation show a good agreement between the distribution of the different parameters and

the layers limits defined by a previous study done in the area. Cross-validation results show low

standardized errors, even though the model is unable to predict outliers in the measurements.

Regarding machine learning, a set of Python libraries were used to train three different learning

algorithms: Logistic Regression, Naive Bayes and Hidden Markov Models. The results show the

ability of this kind of methods to learn from the data as it is incorporated to the model, in

particular, good classification accuracies are reached with just four training CPTu tests.

93
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However, these methods are not meant to be used as general classification solutions (unless

they are trained with a big dataset that includes different soil conditions). The major challenge

here is to get enough data to train the models and also have enough laboratory results to test it.

Finally, it would be interesting to keep researching these methodologies and their application

in the geotechnical field since they have proved to yield good results that can help engineers to

optimize both field and laboratory tests.

6.2 Discussion

Geotechnical field investigations are, in general, discrete and, mainly because of economic

constraints, they represent only a small fraction of the area to be studied. In that scenario,

geotechnical engineers should find ways to assess how the properties are distributed within the

area of interest. Statistical methods can be a really useful toolbox to help engineers to gain a

better understanding of both the property distribution and the uncertainties associated, and

also to make predictions based on the information already gathered.

6.2.1 Kriging

In the present work, the use of kriging was studied, in particular, its most widespread variant:

ordinary kriging. Simple kriging as its name implies is a simple method, which gives a

minimum variance unbiased estimator of a random function. The main drawback is that it

needs the knowledge of the mean in its formulation. Ordinary kriging overcomes this problem

without many additional complexities. When the data have a trend, universal kriging can

handle it by default, but at the expense of a more complicated formulation and better

knowledge of the physical phenomenon in study. In general, the ordinary kriging implicitly

takes into account the trend through a constant in the neighborhood mean, as the

neighborhood moves the trend changes accordingly.

Regarding Rissa slope, since CPTu is a vertical sounding, the variogram estimation in that

direction is straightforward since there is abundant data to use. The opposite happens in the
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horizontal direction by cause of the reduced data in it (each CPTu location means only one

distance in the horizontal variogram). Constraining the variogram through the total variance of

the data and assuming a geometric anisotropy, allowed to fit properly both variograms. It might

be a good idea to use as much data as possible for a certain location, even though it is not part

of the estimation profile. If the data used is not aligned in the profile, as in this case, care

should be taken in compute the variogram with the appropriate distance between the sampled

points, this was taken into consideration when programming the method to compute it.

With reference to the results of the interpolation of Rissa CPTu tests using ordinary kriging,

they are considered adequate since they capture the layering in an appropriate way. The

variance plots show that reducing the spacing between the test improves the accuracy of the

estimations (reducing the estimation variance).

The cross-validation shows that only one test (C3) can be dropped without significantly

influencing the estimation results, however, the cross-validation errors are centered around

zero, and the biggest errors are associated with isolated outliers that are rather difficult to

estimate correctly, being this a problem that will affect any interpolation method.

6.2.2 Machine Learning

In general, classification charts meant for broad use fail in capture special soils like quick or

sensitive clays, especially Norwegian sensitive clays which have distinctive features compared

with other soils with similar behavior (for example Canadian quick clays). Furthermore,

classification charts use each data point individually without taking into account the spatial

correlation between soils in the same layer.

This study used three machine learning approaches to study a methodology to improve

sensitive soil determination from CPTu tests. The approaches studied were Logistic Regression,

Naive Nayes and Hidden Markov Model Classifications.

Logistic Regression uses a linear model to create a decision boundary which separates different

classes, Naive Bayes approach uses a probabilistic framework based on Bayes Theorem with

the simplification of conditional independence of the data, finally, HMM uses Markov Chains
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and a probabilistic framework to model the spatial correlation between measured data.

The approaches were tested in two different datasets, comprising soils of different

characteristics. In the case of the NGTS site, where the soil layering was regular and layers

characteristics are homogeneous, the three methods show excellent performance measured

through an accuracy score well above 90%. Even though the three methods score high

accuracies, the HMM is slightly lower than the other two, particularly low accuracies can be

seen in two profiles: C05 and C17, as shown in Table 5.3 and Figure 5.22. The advantage of

HMM is that it takes into account the spatial connection between the data and that can be

noticed in less presence of thin layers within the bigger ones. Vegvesen dataset has fewer data

available to train the models, but results also are quite favourable with accuracy scores above

80%.

The sequential training of the models, shows graphically how they learn from the data as it is

incorporated, both datasets show that using just four tests to train the model improves

significantly the accuracy of the classification. This can be helpful when performing site

investigations where the model can be trained as the data is retrieved from the soundings and

laboratory tests or even from in-place visual classification. Once the model is successfully

trained, the necessity of laboratory test might be reduced. This works even in not so

homogeneous datasets such as the one from Vegvesen. Also, a small test of clustering through

Hidden Markov Model was performed yielding good results and showing an application of this

approach that can help engineers improve the definition of geotechnical layers based on field

test measurements such as CPTu.

The drawbacks of the machine learning approach are related with the fact that they use data to

learn making them a site-specific solution rather than a global one. It is seen clearly on the

decision boundaries defined by Naive Bayes classification (which was the highest accuracy

method) representing a solution that can not be used beyond the data which defined it, and

also in the low accuracies of the classification of Vegvesen dataset using a model trained with

the NGTS one. A solution for that would be to incorporate as many data as possible for the case

in study, for example, the identification of quick clays.
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6.3 Recommendations for Further Work

Despite statistical approaches in geotechnical engineering and, in particular, its application to

site characterization, are being used increasingly, there is still plenty of space for it to grow

inside the geoengineering field. There are many ideas and methodologies that would have

contributed to enhancing the scope of this thesis but due to time and technical limitations they

were not possible to implement. Here are presented a list of recommendations for those who

might be interested in further research in this field.

1. Study on potential improvements of the horizontal variogram calculation through

constraining it with complementary data. In Rezvandehy and Deutsch (2018) it is

explained how to use the vertical variogram and geophysical testing to constrain the

horizontal one and quantify the uncertainty associated with it. Solberg et al. (2012) made

resistivity measurements in almost the same profile at Rissa, this data could be valuable

to perform this task.

2. An interesting step forward in this research would be the study and implementation of

kriging with external drift and cokriging. They represent different approaches to handle

secondary information which might be better sampled than the one in study. This fits

perfectly in geotechnical engineering since, usually, geotechnical exploration comes

along with geophysical field tests which have a better resolution in the space of study and

is cheaper than geotechnical soundings. In Goovaerts (1997) and Olea (1999) there can

be found the theoretical basis and the algorithms for both methodologies.

3. Furthermore, kriging can be used as a stochastic simulation tool, which can be useful in

slope stability analyses or any other geotechnical assessment that requires uncertainty

handling. The theory behind this and examples of application can be found in Olea

(1999) and Emery (2007).

4. The machine learning part of this thesis can be improved by testing different methods

than the ones used here, the Scikit-learn library has a big set of algorithms already

available for the user, and many others that can be customized to fit particular needs. A

first approach would be to use Naive Bayes with non-Gaussian distributions, Support
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vector machines with different kernel functions (which can improve the linear decision

boundaries obtained with Logistic Regression), Gaussian Mixture Models, Hidden

Markov Models with custom emission probability, and so on.

5. Regarding the machine learning classification, it would be interesting to make a big

database which comprises all the tests performed on Norwegian quick and highly

sensitive clay sites. In this way a predictive model can be trained which incorporates all

the information available, and check if the predictions on new sites have better accuracy

than the charts generally used.

6. In geotechnical practise, it would be interesting to use both approaches in a linked way.

In that sense it is recommended for future work to study the alternatives of

implementing the whole workflow from CPTu data read and conversion, kriging

interpolation, normalized parameters calculation, machine learning pre-processing,

machine learning classification and geotechnical layering.
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