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Abstract

In this thesis, a new method for aliasing correction of Doppler ultrasound measure-
ments is described, and a pipeline from beamforming acquired data until blood flow
estimation on a GPU/Tensorflow platform is presented. The method uses Doppler au-
tocorrelation and cross correlation to produce velocity estimates for multiple unique
transmit-receive pairs. The different estimates are then combined using a least squares
method in order to produce angle-independent aliasing-resistant velocity estimates,
implemented in the Tensorflow framework. The method is verified through compari-
son with a reference dealiasing method. The results indicate that the method produces
qualitatively accurate and robust velocity estimates. Further analysis of the method is
needed in order to quantitatively verify the method, but the results shown look promis-
ing for the future use of GPU-based processing for ultrasound Doppler applications.
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1 Introduction

1.1 Motivation

Cardiovascular disease is the world’s leading cause of death, and this will likely not
change in the near future due to a globally aging population and lifestyle changes in
developing countries. The reason for the high death toll can be contributed to sev-
eral factors, one being the difficulty in detecting and thus preventing cardiovascular
diseases. One of the most important tools for detection of cardiovascular diseases is
ultrasound technology. The discovery of using ultrasound technology for medical ap-
plications with a focus on cardiovascular diseases dates back to the late 1940s, when a
few scientists recognized the potential of ultrasonic energy to produce information that
can be used for medical diagnosis(1). When the early enthusiasts showed the potential
for the field the amount of resources and effort put into research increased rapidly, and
in the early 1950’s, the first medical uses were implemented. The use of ultrasound
imaging for cardiovascular diseases has expanded since, and today ultrasound is one
of the most commonly used diagnostic tools.

One area where diagnostic ultrasound imaging is widely used, is assessment of carotid
artery stenosis. Stenoses in the carotid artieries may cause a cerebral infarction due to
shredding of emboli. These emboli will follow the blood stream to smaller arteries in
the brain, where they may cause a stroke by blocking the blood flow. In order to detect
stenosis, the velocity of the blood is measured, and the risk for brain infraction can
be assessed based on the resulting blood flow estimates. The specific technique most
commonly used for this area, is Doppler ultrasound.

Although greatly successful, Doppler ultrasound has one significant limitation, as it is
one-dimensional. True blood flow is three-dimensional. However, with Doppler ul-
trasound, only the velocity component in the direction of the ultrasound beam can be
measured. As a result of this, the measured velocity is dependent on the beam-to-flow
angle. To obtain an estimate of the true velocity, it is often assumed that the blood flow
is parallel to the vessel axis, and angle correction of the 1D velocity estimate is per-
formed. As blood flow through stenoses may not be parallel to the vessel, assumptions
on the flow angle may cause considerable spread in velocity measurements and large
interobserver variability, and a definite conclusion about the state of the cardiovascular
health is harder to achieve(2).
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1.2 Aim of Study

One way to address the limitations of 1D velocity estimation, is to use multiple angle
measurements to produce 2D velocity estimates. A 2D velocity estimate can be used
to visualize complex blood flow, which will yield more robust and conclusive results.
One of the main drawbacks of multiple angle measurements is the increased processing
time, as the same computations need to be performed for all angles. The goals for this
project will be to implement a pipeline from beamforming plane wave ultrasound data,
until producing final 2D velocity estimates on a GPU based platform. The method’s
robustness and accuracy will then be analyzed through a comparison with another al-
ready verified method. Program run-time will also be presented, as processing data in
close to real-time is desired for a final product.

1.3 Outline of report

Chapter 2 covers background information about ischaemic stroke, diagnostic ultra-
sound, and presents the Graphical Processing Unit. Chapter 3 covers the theory aspect
of the underlying methods the implementation. Chapter 4 presents the method, and
steps needed for replication of the presented results. Results are presented in Chapter
5 and discussed in Chapter 6. Chapter 7 concludes the report.
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2 Background

This chapter gives the background information needed to understand the implemented
method, the issues it faces, and the problems it solves. The first section covers ischaemic
stroke, which is the clinical motivation for this thesis. Then, it presents areas of diag-
nostic ultrasound used in the implemented methods, and finally a description of the
framework used to implement the method.

2.1 Ischaemic strokes

Cardiovascular disease (CVD) is the most frequent cause of premature death in modern
countries, and was responsible for 17.8 million deaths world wide in 2017(3). Stroke
is included as a sub-category within cardiovascular diseases, and is estimated to cause
slightly over 6 million deaths yearly. 87% of the strokes that occur are Ischaemic strokes,
which occurs due to a restriction on blood flow to the brain. The underlying cause for
Ischaemic stroke is Atherosclerosis(4), which in effect blocks the blood vessels in the
neck. The danger with this, however, is that the atherosclerosis plaque may rupture and
cause blood clots which can occlude the vessel where the plaque is located, or occlude
smaller vessels downstream.

Figure 1: Atherosclerosis (5)

Figure 1 illustrates atherosclerosis in the carotid artery. Plaques builds up inside the
artery, reducing blood flow. If the plaque ruptures, it can create a blood clot, which in
turn can lead to a stroke.
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2.2 Diagnostic Ultrasound

Ultrasound is the term used to describe sound with frequencies above 20 000 Hertz(Hz),
which is beyond the range of human hearing(6). Image formation using ultrasound is
possible because of the difference in compressibility and density between materials in
the body, causing reflection and scattering of ultrasound beams. The properties of a
medium can be described by a given density ρ, and compressibility k(7). The equation
illustrating pressure wave propagation can be derived by considering the conservation
of mass and momentum. Assuming a homogeneous medium, and linear propagation
where the displacement of scattering volumes is proportional to the change in pressure,
the basic equation governing the propagation of a pressure wave ρ(r, t) is given by:

∇2ρ(r, t)− 1
c2

δ2ρ(r, t)
δt2 − 0, (1)

where r is a spatial position vector, t is time and c = 1√
ρk

is the speed of sound in the

medium. The average speed of sound in human tissue is about 1540 m/s. The ultra-
sonic waves are attenuated as they travel through tissue, due to scattering losses, power
absoption and geometric spreading of the ultrasound beam. Attenuation is frequency
dependent, so high resolution results may be obtained using higher frequencies, but
higher frequencies also lead to more attenuation. More attenuation leads to smaller
penetration depth, and for this reason, different frequency ranges are used for exami-
nation of different parts of the body.

2.2.1 Sound Propagation

When sound propagates, it often interacts with different kinds of tissue. If the interac-
tion is with objects that are large compared to the wavelength, there are two different
outcomes, either reflection or transmission(8). A part of the incident energy (Ii) is re-
flected (Ir) while the rest is transmitted (It). The reflection coefficient α R is used to
measure the reflection between two adjacent tissues, with different impedances, Z1 and
Z2 (where Z = ρc):

αR =
Ir

It
=

( Z2
cosθt
− Z1

cosθi
)2

( Z2
cosθt

+ Z1
cosθi

)2
(2)

The sound wave that is not reflected, will be transmitted into the medium. The trans-
mission coefficient αT is expressed as:

αT =
It

Ii
= 1− αR (3)
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The equations governing the angles of incidence, θi, reflection θr and transmission θt
are the following:

θi = θr,
sinθi

sinθt
=

c1

c2
(4)

where c1 and c2 are the sound velocities in medium or tissue 1, respectively medium 2.
In the case when θi = θt = 0, we can rewrite 2 depending on just the ration between Z1
and Z2:

αR =
Ir

Ii
=

(Z2 − Z1)
2

(Z2 + Z1)2 (5)

In biological tissues, the medium is very rarely smooth, which will lead to the phe-
nomenon of scattering. Scattering also occurs when the dimension of the target is neg-
ligible compared to the wavelength (e.g. blood cells). The scattering phenomenon can
be seen in 2.

Figure 2: (9).

2.2.2 Speckle

A result of the scattering process (as described in 2.1.1) is the speckle pattern. Speckle
patterns are the result of constructive and destructive interference of ultrasound back-
scattered from structures that are small compared to the wavelength. The speckle pat-
tern that occurs in an image is random, but deterministic interference(10). The texture
of the observed speckle pattern does not correspond to underlying structure, and it
has a negative impact on ultrasound imaging quality. However, because of the deter-
ministic nature of the speckle pattern, it follows the movement of underlying tissue in
the image. Different speckle tracking methods are based on this attribute of speckle
patterns, and they offer the ability to identify and track the same speckle occurring in
multiple images. There are different algorithms used by different vendors for track-
ing speckle. Speckle tracking methods can be based on different techniques, e.g., block
matching, differential based optical flow algorithms or conservation of gray value, i.e.,
it is assumed that gray values do not change over time(11).
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2.2.3 Transducer

The transducer is responsible for the transmission and reception of ultrasonic pres-
sure waves. A transducer typically consists of an array of piezoelectric elements(7).
The piezoelectric elements vibrate in response to an external electric field, creating and
transmitting ultrasonic waves. The backscattered pressure field is received by the same
transducer elements. On receive, the piezoelectric elements vibrate in response to an
external pressure, producing an electrical signal. Modern transducers come with con-
trollable pulse emission timing and array element apodization, and allows for flexible
beam shaping and electronic focusing and steering of the beam.

Figure 3: Illustration of a convex type transducer, highlighting the main elements(12).

2.2.4 Doppler Effect

When a transmitted ultrasound wave is scattered by moving objects in the body, the
wave will experience a shift in frequency, and this phenomenon is called the Doppler
effect(6). The Doppler effect was first presented by Christian Doppler in relation to
the colors of double stars. The effect is used to explain changes in the frequency of
waves emitted by moving objects as detected by a non-moving observer. The perceived
frequency is lower if the object is moving away from the observer, and higher if the
object is moving towards the observer. In ultrasound pulse-echo imaging, both of these
cases occur. The scaling of the temporal axis can be given by:

α =
c + v cos θ

c− v cos θ
≈ (1 +

2v cos θ

c
). (6)

where θ is the angle between the ultrasound beam direction and the scatter velocity
vector, and v cos θ is the axial component of the scatter velocity, defined as positive
towards the ultrasound transducer. The shift in frequency is then given by:

fd = α f0 − f0 = 2 f0
vcosθ

c
. (7)

where fd is the doppler shift, and f0 is the emitted frequency. The equation is valid as
long as v cos θ � c. For blood the received signal from an insonified sample volume
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is a sum of contributions from a large number of scatterers, each producing a Doppler
shift according to their given velocity and direction(7). The received signal is therefore
made up of a spectrum of different velocities. Further, as each scatterer is observed in
a finite time interval, the estimated velocity spectra will broaden. This is termed the
transit time effect.
Doppler imaging has many applications within diagnostic ultrasound, but is mainly
used to image blood flow, and to measure movement of the cardiac muscle. The Doppler
imaging techniques work by forming information regarding the location of each target
in the body, corresponding to each pixel in the image, and analyzing the returning
echoes in terms of Doppler shift or phase shift.

2.2.5 Pulsed-wave Doppler

In pulsed-wave Doppler (PW-Doppler), a series of pulses are emitted into the tissue at
a constant pulse repetition frequency (PRF), phase-coherent with respect to the trans-
mission carrier frequency f0, and range-gated on receive to achieve range resolution(7).
The received signal is sampled after a predetermined delay τ, given by the round-trip
time for the echo from scatterers in distance z; τ = 2

c0
z, where c0 is the velocity of ul-

trasound in blood(13). The echo from each blood scatterer is an attenuated copy of the
transmitted pulse, and will contribute to the sampled receive signal when the round-
trip time is in the range T ± 1

2 Tp. The axial measurement size region is given by the
transmitted pulse length according to the equation:

∆z =
c0

2
Tp (8)

In order to avoid interfering echoes from previous pulses, the time interval between
pulse transmissions must be larger than the round-trip time for the echos from the
depth range z of interest. This means that the PRF must be limited to:

PRF <
c0

2z
(9)

The maximum measurable velocity is called the Nyquist velocity, and is inversely pro-
porsional with depth range z and ultrasound frequency f0. The maximum measurable
velocity for PW-doppler is called the Nyquist velocity. The Nyquist velocity can be
found with the equation:

vNyquist =
cPRF

4 f0
(10)

If the velocity exceeds the Nyquist limit, aliasing in the spectrum will occur.

2.3 Beamforming

The beamformer is the primary driver for image formation in an ultrasound system.
Beamforming enables the selectivity of acoustic signals reflected from some known po-
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sitions, while attenuating the signals from other positions. This is often done by delay-
ing (focusing) and applying specific weights to the reflected signals.

2.3.1 Focusing

During transmission, delays are applied to ensure that the contributions coming from
all transducer elements are focused in a given point, called focal point in emission.
During reception, the echoes received by the elements are delayed such that the sum of
contributions are coming from the same given point in the medium(8).

Figure 4: Beamforming Focusing example(8).

An example that shows how transmit focusing works is shown in 4. The probe contains
M active elements with a central element highlighted in blue. The distance from the i-th
element to the focal point is ri. The distance from the central element to the focal point
is rc. The delay that is applied to the signal emitted by the i-th elements is ∆ri.
The received signals are also delayed during image formation, as described in section
2.3.2.

2.3.2 Delay and Sum Beamforming

Depending on the calculation of the weights applied to the output array of the reflected
signals, beamformers can either be data-independent (fixed) or data-dependent (adap-
tive). The Delay-And-Sum is an data-independent beamforming method(8).
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Figure 5: Delay and Sum illustration(14).

The Delay-And-Sum method is illustrated in 5. The echoes received by the elements of
the ultrasound probe, also called channel data, are delayed in order to compensate for
the time-of-flight differences. The signals are also weighted (using a weighting func-
tion, also called apodization function) and further summed to form one beamformed
signal.

2.3.3 Block Matching

Motion estimation using block matching takes advantage of the fact that successive im-
age frames are often highly correlated(15). In the block matching motion estimation
process, each frame is divided into overlapping blocks of size n*n. Then, for the largest
motion displacement of ’p’ pixels per frame, the current block is matched with a cor-
responding block in the previous frame with many sets of displaced coordinates. The
highest correlation value yields the estimated displacement.

Figure 6: (16).

When the value of n increases, the number of total blocks that needs to be processed
in each frame will decrease, therefore, the computational complexity decreases as well.
However, finding a valid match for the given block is difficult with a large n, and the
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probability of not finding a match in a corresponding frame increases with n.
The most straightforward block matching approach is the full search methods, which ex-
haustively searches for the best matching block within the search window. The disad-
vantage of this approach is the high associated computational load, which often makes
it the bottleneck for real-time applications. Another approach is the fast search methods.
The fast search methods exploit certain properties of visual communication applica-
tions, and eliminates areas in the search window based on different assumptions. An
example of such a property can be that there is little motion between the adjacent frames
in a real-time application, and therefore, a large percentage of zero-motion blocks are
encountered. The number of static blocks per frame could be easily as high as 70%,
which can eliminate much of the computational cost.

2.4 Vector Velocity Estimation

2D vector velocity imaging has the potential to visualize complex blood flow patterns
for medical applications. The method should also provide accurate, angle-independent
velocity estimates and cover a large velocity span. Maniatis et al. (17) shows in his
study that there can be benefits for having multiple angle measurements where the
true flow velocity is unknown, and that the dominant factor determining the velocity
estimation accuracy is the angle between the observations.

Vector doppler imaging is based on the autocorrelation technique, which is limited by
the PRF, which sets the limit for the velocity span that can be measured. If the velocity
exceeds this limit, aliasing can occur. The maximum PRF is ultimately determined by
the imaging depth, and a compromise between the measurable velocity span and the
number of transmit beams that can be used to generate the velocity vectors must be
made. Multiple angle transmit measurements can increase the accuracy of the velocity
estimate, but on the cost of a smaller measurable velocity span due to the reduced PRF.

2.5 Graphical Processing Units

During the past several decades, there has been a major shift from sequential com-
puting to parallel computing. One of the most important methods for improving the
performance of consumer computing devices has been to increase the speed at which
the processor clock operated. But due to the phenomenon known as Dennard Scal-
ing, this is no longer a feasible method of improving Performance. In the early years
of parallel computing, much was limited to exotic supercomputers or mainframes(18).
The interest for parallel computing started back in the 1950s, which lead to the ad-
vancement of supercomputers throughout the 1960s and 1970s. The early machines
were shared memory multiprocessors, with multiple processors working side-by-side
on shared data. In the late 1980s, clusters came to compete and replaced the current
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supercomputers within many domains. A cluster is a type of parallel computer built
from large numbers of off-the-shelf computers connected by an off-the-shelf network.
Today, parallel computing is becoming mainstream as even the low-end netbook ma-
chines, cell phones and a number of microcontrollers use the multicore paradigm.

When the central processors evolved both in clock speeds and core count, there were
also made large improvements to the state of of graphics processing. In the late 1980s
and early 1990s, the growth in popularity of graphically driven operating systems such
as Microsoft Windows helped create a marked for a new type of processor. In the early
1990s, users began purchasing 2D display accelerators for their personal computers.
These display accelerators offered hardware-assisted bitmap operations to assist in the
display and usability of graphical operating systems. Around the same time, in the
world of professional computing, a company by the name of Silicon Graphics spent
the 1980s popularizing the use of three-dimensional graphics in a variety of markets,
including government and defence applications and scientific and technical visualiza-
tion, as well as providing the tools to create magnificent cinematic effects. In 1992,
Silicon Graphics opened the programming interface to its hardware by releasing the
OpenGL library.

By the mid 1990s, the demand for consumer applications employing 3D graphics had
escalated rapidly, setting the state for two fairly significant developments. First, the re-
lease of first-person games which ignited the quest to create progressivley more realistic
3D environments for PC gaming. Att the same time, companies such as NVIDIA, ATI
Technologies and 3dfx Interactive began releasing graphics accelerators that were af-
fordable enough to attract widespread attention. When NVIDIA released their GEForce
256, it further pushed the capabilities of consumer graphics hardware. For the first time,
transform and lighting fast computations could be performed directly on the graphics
processor, thereby enchanting the potential for even more visually interesting applica-
tions. From a parallel computing standpoint, the release of NVIDIA’s GeForce 3 series
in 2001 might have been the biggest breakthrough in GPU technology. The GeForce
3 series were the first GPUs to implement Microsoft’s then-new DirectX 8.0 standard.
The standard required that compliant hardware contain both programmable vertex and
programmable pixel shading stages. For the first time, developers were able to control
the exact computations that would be performed on their GPUs.

Today, the GPU is a massively parallel device dedicated to generating and drawing
graphical objects on a screen. It is used by the CPU as a coprocessor, by offloading
graphics related processing tasks to the GPU. GPUs are necassary in tasks where the
CPU cannot possibly be expected to satisfy all the computational demands related to
graphical processing. Such examples are easy to find when it comes to graphical pro-
cessing, as tasks like real-time video games and live video encoding / decoding needs
a lot of parallel computations.
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2.5.1 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is a general-purpose parallel compuing
platform and programming model which is used to program NVIDIA GPU’s in order to
solve complex computational problems in a more efficient manner(19). The CUDA plat-
form is accessible through CUDA-accelerated libraries, compiler directives, application
programming interfaces and extensions to industry-standard programming languages
like C, C++ and Python (as illustrated by 7.

Figure 7: The CUDA platform(19)

2.5.2 Tensorflow

TensorFlow in an open source distributed numerical computation framework released
by Google in 2015(20). The main intention is to reduce the amount of effort needed
in order to implement a neural network manually, tensorflow instead gives building
blocks to put together. The back-end of TensorFlow is implemented using CUDA,
which provides low run-time computation of data. Even though TensorFlow origi-
nally was intended for neural networks, the framework is suited for other applications
as well, such as ultrasound data processing.
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3 Theory

3.1 Least-squares Regression

The linear regression model is a statistical method that estimates the linear relation-
ship between two or more variables. This relationship gives the amount of change in
one variable, that is associated with change in another variable. The model can also
be tested for statistical significance, to predict if the linear relationship could have oc-
curred by chance or not. Least squares estimation is a method used to combine all the
information to give one solution which is "best" by some criterion. The method uses the
criterion that the solution must give the smallest possible sum of squared deviations of
the observed b from the estimates provided by the solution. The problem to be solved
has the form:

Ax = b (11)

where b is a vector containing observations, x is a vector containing the parameters to
be estimated and the matrix A describes the linear relationship between x and b. The
least squares estimate of x is then given by:

x̂ = Awb (12)

where:
Aw = (ATWA)−1ATW (13)

The least squares residual can then be calculated with:

r = ||W 1
2 (Ax̂− b)||2 (14)

= ||W 1
2 (AAw − I)b||2 (15)

Where r is a vector containing the residuals, which are a measure of the ability of the
model to explain the observation. A lower residual value means a better fit.

3.2 Doppler Autocorrelation estimator

The Doppler autocorrelation estimator was presented by Namekawa and Kasai in 1980
(21), and is still a standard algorithm used in commercial ultrasound systems. The
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autocorrelation approach estimates the three spectral parameters from the slow-time
correlation function Rx(m) at lag 0 and 1 as follows:

P̂ = R̂x(0), ŵd = ∠R̂x(1), B̂ =

√
1− |R̂x(1)|

R̂x(0)
(16)

where P̂ is the blood flow signal power indicating the presence of blood flow, ŵd is the
mean frequency of the Doppler spectrum, B̂ is the frequency bandwidth of the Doppler
spectrum and R̂x(m) is given by:

R̂x(m) =
1

Np −m

Np−m−1

∑
k=0

x(k)∗x(k + m) (17)

where * denotes the conjugate operation. The mean axial velocity of blood is further
obtained by a scaling factor:

v̂z =
c0 PRF
4π f0

∠R̂x(1) (18)

Where c0 is the speed of sound in blood(1560 m/s), and f0 is the received pulse center
frequency. The main advantage of the autocorrelation estimator compared to other
methods, is that it provides valid estimates of the mean velocity over the whole Nyquist
range(13).

14



4 Methodology

In this work we will implement and compare two methods, and validate them using in
vivo data. This chapter describes the implementation of the two methods, and presents
the experimental setup. Section 4.1 presents an extended least squares vector Doppler
method, which is used as a reference. A GPU implementation of the proposed method
is presented in section 4.2. Chapter 4.3 describes the validation of the method. The
two methods have been compared using two different data-sets, data-set 1 and data-
set 2. The comparison will give an indication of the accuracy and robustness of the
implemented method.

4.1 Blood Flow Estimation Using Plane-Wave Ultrasound
Imaging

The method presented by Ekroll et al(22) uses an extended least squares method for ro-
bust, angle-independent 2D vector velocity estimation. A combination of least squares
regression of Doppler auto-correlation estimates and block matching method yields
aliasing-resistant vector velocity estimates.

The method consists of five main parts, which are plane wave transmissions for ac-
quiring the signals, processing the acquired data with conventional beamforming and
Doppler processing, using Least Squares Regression to find the alias patterns and ve-
locity vector candidates, and Block Matching for resolving aliasing ambiguities and
determining the true 2-D velocity vector.

4.1.1 Least Squares Regression

The area of interest is insonated from a small number of transmit angles (M = 1 - 5), fired
successively in a coherent compounding setup. The Doppler shift is estimated for N
different transmit-recieve angle combinations for each resolution cell in the ultrasound
image, and each angle corresponds to a unique two-way Doppler angle.

A least-squares regression method is then applied on order to calculate the velocity
vector v = [vx, vz] that corresponds to the best measured Doppler shift. However, alias-
ing can still be an issue for one or more of the N Doppler frequencies. To account for
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aliasing, separate least squares problems are solved for all possible aliasing patterns.
As seen in (23), each least squares problem can be written as:

kAvi = f̂ + gi (19)

where i iterates though all the aliasing patterns and their corresponding solutions, k is
a constant factor converting velocity to normalized frequency. f̂ = [ f0, ..., fn−1] + ε is a
vector containing normalized Doppler frequency estimates from N different transmit-
receive combinations, ε is the measurement noise.
The matrix A = Atx + Arx has dimensions N X 2 and is the sum of the projection
matrices onto the transmit and receive Doppler directions, respectively. The rows of A
are given by:

an = [− sin αn − sin βn, cos αn + cos βn] (20)

where αn and βn are the steering angles of the angle pair n, on the transmit and receive,
respectively. The frequencies estimates in are corrected by the aliasing vectors gi for all
aliasing pattern candidates, and all the elements in these vectors represent a frequency
bias of an integer number of PRFs. gi runs through all the combinations of integers with
an absolute value smaller than L. L is a parameter dependent on the applications PRF
and the maximum that represents the maximum aliasing order to be investigated. The
general least squares solutions are as following:

vi = k−1Aw( f + gi) (21)

where:
Aw = (ATWA)−1ATW (22)

The weighting matrix W is typically used to account for differences in the variances of
the autocorrelation estimates. For each solution vi of (1), (3) can be used to calculate the
least squares residual:

ri = ||W
1
2 (kAvi − ( f̂ + gi))||2 (23)

= ||W 1
2 (AAw− I)( f̂ + gi)||2 (24)

The solution vm with the smallest residual rm is selected as the dealiased solution.

4.1.2 Block Matching

One significant drawback with the least squares method is that it cannot reliably dis-
tinguish between candidate vector solutions vi and vj if the difference between their
respective residuals ri and rj is small compared with the norm of the measurement
noise ε. Also, the triangle inequality states that for any triangle, the sum of the lengths
of any two sides must be greater than or equal to the length of the remaining side. Thus,
the difference between r and rj has an upper bound given by:

|rj − ri| ≤ Bij (25)
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where:
Bij = ||W

1
2 (AAw− I)(gj − gi)||2 (26)

It follows from (6) that a small value of Bij increases the probability of selecting gj in
pixels where the correct aliasing pattern is gi, and vice versa. Thus, the solutions vi and
vj will be indistinguishable if Bij is small. In practice, when cosαn ≈ 1 for all steering
angles, Bij is very small(<0.005) if:

gj = gi + [l, l, ..., l] (27)

where l is an integer and |l| ≤ L.. When Bij ≈ 0, the method will select gi and gj with
equal probability. As a consequence, any solution vi actually belongs to a set Si up to
2L + 1 vectors that are in practice equivalent using the least squares approach, where Si
is the set of candidate vector solutions vi,l to (5) with aliasing patterns gi,l given by:

gi,l = gi + [l, l, ..., l], max|gi,l | ≤ L. (28)

The ambiguities were solved using block matching with 2L + 1 candidate displacement
vectors. The candidate with the smallest residual was selected as the dealiased estimate.
Block matching is performed as described in 2.3.4.

4.2 GPU based 2D blood flow estimation

The second implemented method is based on the work presented in (22), and it uses
the same mathematical concepts in order to produce a 2D velocity estimate. One major
difference between the methods is the platform in which it is implemented on. The
new method is implemented on a GPU-based platform, and all major calculations are
performed on a GPU. The programming language used in order to interface with the
GPU is Python. In general, the method consists of 3 main parts, which is beamforming
of acquired data, cross correlation in order to eliminate aliasing, and a machine learning
based least-squares regression using tensorflow.

4.2.1 Beamforming

The acquired data are beamformed using a DAS beamformer, as described in section
2.3.2. The beamforming is performed using a skewed grid as shown in figure 8. This
was done in order to use a feature of the speckle tracking library that performed axial
cross-correlation.

The beamformed data is then filtered in order to suppress the clutter signals from sta-
tionary and slowly moving tissue.
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Figure 8: Skewed grid illustration of data-set 2

4.2.2 Dealiasing using cross-correlation

The block-matching step first calculates the blood velocity using the autocorrelation
method as described in section 3.2. Then, it calculates the cross correlation between
beams in consecutive frames in the image. For each transmit-receive pair, only axial
displacements matching the Doppler shift or its aliased copies are evaluated. The dis-
placement yielding the highest correlation is selected as the dealiased candidate.

4.2.3 Tensorflow Least-squares Regression

The least-squares step uses a weighted root mean squared error method on the dealiased
velocity component estimates in order to produce one final velocity estimate. First, a
new grid C is created, and filled with random numbers ≈ 0. The following error func-
tion is calculated for each image point:

error = w(I(x) · b−Vd)
2 (29)

where I(x) is the velocity estimate interpolated to position x, Vd is the velocity esti-
mate, b is a unit vector in the beam direction and w is the weight for the given point.
The weight w is proportional to the signal power in each pixel after clutter filtering, as
shown in section 3.2. The error is then minimized by adapting C to a value that best fits
the data in the surrounding area.

Because of the skewed grid, the velocity estimates for the different angles are on dif-
ferent grids, and a pixel-to-pixel based least squares approach was not suited to find
the best velocity estimates. The velocity estimate of each pixel p in C was produced by
spline interpolation of a small spatial region surrounding p in all the grids.

For display of velocity estimates, a manually segmented mask was created from the
mean of the B-mode image from all angles, as seen in figure 9 and 10. The mask was
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Figure 9: Binary mask data-set 1 Figure 10: binary mask for data-set 2

then interpolated and applied to the grid, excluding all velocity estimates outside the
mask.

A threshold was then selected for the minimum energy level indicating blood flow, re-
sulting in a mask as shown in figure 11. This mask was applied to the velocity estimates
Vd before executing the least squares regression step.

Figure 11: Data-set 1 masked based on signal energy level. Yellow indicates 1, black indicates 0.
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4.3 Experimental setup

Parameter Data-set 1 Data-set 2

PRF[Hz] 6448 6000
c[m/s] 1540 1540
f0[Hz] 5111350.5 4808000

Probe type Linear
Apodization window Tukey75
Apodization f number 1.1 for Tx and Rx = 0, 1.4 for rest

Transmit angles -15, 15
Receive angles -15, -3.5, 6, 15, 0, -6, 3.5, 15, 0

Table 1: Experimental setup

Two different data-sets were used when conducting the experiments. Both were in vivo
recordings of the carotid artery. Data-set 1 is of a healthy person with no atherosclerotic
plaque, with normal blood velocities. Data-set 2 is a recording where atherosclerosis
plaque is present, which may lead to higher blood velocity and more complex blood
flow pattern.

The GPU used in this experiment was a NVIDIA Titan V Graphical Processing Unit.
The Processor used was a Intel Xeon E5-1600/E5-2600 v2. A run-time comparison was
conducted comparing the GPU pipeline with the same version ran on a CPU. The cross
correlation step, however, requires a GPU to run. The data set used for measurements
were a 274x126 grid for all 9 angles, and 270 frames were used. Parameters used for
acquisition and processing of data are given in table 1.
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5 Results

This chapter presents the results obtained for each step in the implemented pipeline,
the final velocity estimates for the two data-sets, and the computational time for the
different steps either using a GPU or a CPU.

5.1 Beamforming results

Figure 12: B-mode image
from data-set 1

Figure 13: B-mode image
from data-set 2

Figure 12 and 13 shows the beamforming results for data-set 1 and 2 respectively. With
data-set 1, you can see a clear indication of where the carotid artery is from the B-mode
image, as the inside of the vessel has lower intensity. For data-set 2, the upper wall of
the artery is clearly delineated, whereas the lower wall is unclear in parts of the image.
Some narrowing of the vessel can be seen in the middle of the artery.
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5.2 Aliasing correction results

Figure 14 shows the velocity estimates from using the autocorrelation method on data-
set 2.

Figure 14: Velocity estimate for 9 different angles using the autocorrelation method.

Figure 15: Velocity estimate for 9 different angles using autocorrelation and cross correlation.

Figure 15 shows the corresponding velocity estimates after performing the cross corre-
lation step for aliasing correction, as described in Section 4.2.2. The velocities are similar
to the ones in Figure 14, except in regions with apparent aliasing in the central part of
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the image. Visual inspection shows that aliasing is corrected in these regions, with only
a few exceptions.

5.3 Velocity estimates results

Figure 16, 17, 18 and 19 shows gray scaled B-mode images, overlayed by a colorplot
indicating blood flow velocity. The arrows indicate blood flow direction and velocity.

5.3.1 Data-set 1 result

Figure 16: Data-set 1 velocity estimate from method described in section 4.1.

Figure 17: Data-set 1 velocity estimate from method described in section 4.2.

Figures 16 and 17 show the velocity estimates in data set 1 after aliasing correction, for
the reference method and the implemented method, respectively. Velocity estimates
look qualitatively similar, except along the edges of the flow region.
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5.3.2 Data-set 2 result

Figure 18: Data-set 2 velocity estimate from method described in section 4.1.

Figure 19: Data-set 2 velocity estimate from method described in section 4.2.

Figures 18 and 19 show the corresponding dealiased velocity estimates for data set 2.
Again, the results look qualitatively similar, and for both methods, it is possible to see
the inflow region, high velocity stenotic jet flow, and vortex formation in the outflow
region of the jet.
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5.4 Computational time

Processing Unit Beamforming Cross correlation Least squares Total
CPU run-time[s] 262 - 114 -
GPU run-time[s] 30 18 14 118

Table 2: Computational time
Table 2 shows the computational time used for the indicated steps using either a CPU
or a GPU. No run-time results could be obtained for the cross correlation step, as the
library used only is compatible with GPU’s.
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6 Discussion

Two methods for 2D vector velocity estimation using plane wave ultrasound imaging
has been presented in this work. The pipeline described in section 4.3 utilizes GPU
technology for all major calculations. The results indicate that aliasing correction is
performed correctly, as the vector velocity estimates are similar to the reference method.

6.1 Beamforming

The beamforming process produced the correct results with different apodization used
in the 9 different transmit-receive angles. The difference between the angles is clearly
displayed in Figures 14 and 15. There is a clear difference between the velocity esti-
mates for the different angles, especially when comparing the velocity estimate with
transmit and receive angle of -15 degrees with the estimate with transmit and receive
angle of 15 degrees.

6.2 Anti Aliasing

Figure 14 shows velocity estimates from 9 different transmit-receive pairs using only
the autocorrelation method. Figure 20 shows a subset the same velocity estimate with
receive angle and transmit angle both at -15 degrees.
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Figure 20: Autocorrelation velocity estimates with aliasing.

The velocity changes from vNyquist to -vNyquist within two neighboring pixels, which
indicates that aliasing has occurred in a substantial area in the image. Figure 21 shows
the same area as Figure 20 after performing cross correlation. It shows that the cross
correlation step removes the aliasing, and all values near -vNyquist have been given
values close to vNyquist in the correct direction. This shows that the cross correlation
step using speckle tracking works as intended.
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Figure 21: Aliasing corrected velocity estimate.

6.2.1 Final Velocity estimates

In the following the method presented in 4.1 will be called method 1, and the method
presented in 4.2 will be called method 2. Figure 16 and 17 shows the estimated velocities
for data-set 1. The blood flow direction is qualitatively similar in both methods, as
indicated by the white arrows in the image. The velocity ranges are also similar in
the two methods. Exceptions can be found in the edges of the estimation area, where
method 1 shows a higher velocity estimate. This is mostly due to a more restrictive
mask used in method 2 in the weighted root mean squared error step, as values near
the edges got a weight of 0.
The velocity estimates for data-set 2 can be seen in figure 18 and 19. It shows that the
blood flow direction is consistent in the two methods. The presence of plaque causes a
narrowing in the artery, which leads to an increase in velocity in the narrow area. Right
after the narrowing, parts of a vortex flow patter can be observed, which is as expected
near the outflow region of a jet. A slight difference in velocity estimates can be seen,
however, as method 1 displays about 0.4-0.6 m/s higher peak velocities. One potential
explanation for this is that the use of different grids in method 2 leads to more spatial
smoothing than in method 1.

6.2.2 Computational Cost

The GPU based method shows a clear speed up where comparison was possible. It
shows a approximately 8 times speedup on both the beamforming and the least squares
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regression. It also shows that the method uses 56 seconds on the steps before, in be-
tween and after beamforming, cross correlation and least squares, which is slightly
below half of the processing time. This shows that the bottleneck for this method no
longer is the main parts (beamforming, cross correlation and least squares), but rather
the small and many computations in between needed. Many optimizations are still
needed in order to achieve real-time computations.

6.3 Weaknesses and future work

As the artery walls will not be static during measurements over a longer time period,
the masks shown in 9 and 10 will not be valid for each frame in the recording. An ap-
proach for improving how to exclude the noise from the data should be investigated
for the method, as it might be the biggest source of erroneous results. It is especially
critical when using skewed grids, as velocity estimates for one pixel is affected by the
surrounding area. Areas near the artery wall (which often consist of noise) will there-
fore impact the velocity estimates near the edges of the artery, and produce wrong
estimates.
A weakness of the study is that the two methods only have been compared qualita-
tively, so a conclusion of the robustness and accuracy of the method can not be made.
Also, only 270 frames of two different data sets have been tested, so even though data-
set 2 tested the aliasing-resistance of the method, it is not sufficient to completely verify
the functionality of the method. Further work should include a quantitative analysis of
the method using a larger bulk of data. A study in an environment where the correct
results are known would also be beneficial for tuning and improving the accuracy of
the method.
The computational costs are also all approximations, as the code has not yet been cor-
rectly profiled. The functions should be ran extensively on different data sets to provide
a correct run time estimate.
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7 Conclusion

A method for aliasing correction in Doppler ultrasound was implemented on a GPU-
based platform using autocorrelation, cross correlation and least squares regression.
A quantitative study is still needed for an thorough verification of the method, how-
ever, the qualitative results indicate that the presented method produces correct veloc-
ity estimates, as both flow direction and velocity is qualitatively equal to the reference
method. The vast difference in computational time also shows that a GPU/Tensorflow
framework provides a large speedup compared to the same version of the code using a
CPU.
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