
A Context-Aware System to
Communicate Urgency Cues to Health
Care Workers

Qi Wei

Master of Telematics - Communication Networks and Networked Services (2

Supervisor: Rolv Bræk, ITEM
Co-supervisor: Joakim Klemets, ITEM

Department of Telematics

Submission date: May 2014

Norwegian University of Science and Technology

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND

ELECTRICAL ENGINEERING

THESIS ASSIGNMENT

Student’s name: Qi Wei

Course: TTM4905, master thesis

Thesis title: A Context-Aware System to Communicate Urgency

Cues to Health Care Workers

Thesis description:

When nurses receive calls on their mobile phones, they need to decide whether to

engage in the call or not. Several contextual factors play roles in making this decision.

For example, if a nurse is busy with another patient when the phone rings, she is

reluctant leave that patient. Research shows, for example, that the urgency of a call is

an important factor. Another important factor is the availability of colleagues.

The objective of this thesis is to develop a proof-of-concept system that automatically,

or semiautomatically, detects and communicates context clues to health care workers.

The system could utilize various information sources, such as sensors and patient

records, to capture relevant context clues. These context clues are used by the health

care workers to make more informed decisions.

Department: Department of Telematics

Supervisor: Joakim Klemets

Responsible professor: Rolv Braek

A Context-Aware System to

Communicate Urgency Cues to

Health Care Workers

Qi Wei

Submission date: May 2014

Responsible professor: Rolv Braek

Supervisor: Joakim Klemets

Norwegian University of Science and Technology

Department of Telematics

Abstract

In hospital, patients use nurse call system to call the nurse when they need help. On

the other hand, a nurse could be busy with other patient when the nurse call is

delivered. In this case, the nurse needs to decide if he should stop what he is doing

and answer the nurse call. This decision normally depends on how urgent this nurse

call is. However, the nurse only knows who is call, but do not know the current

situation of the patient. In this paper, a context-aware urgency cue system is proposed

in order to resolve the problem. This system is based on context-aware and case-based

reasoning. It collects patients’ newest context and provides a particular patient’s

urgency cue to the nurse call system, so the nurse call system can provide the urgency

cue with the nurse call to the nurse.

Contents

List of Figures .. I

List of Tables ... III

List of Acronyms .. V

Chapter 1 Introduction ... 1

Chapter 2 Background .. 2

2.1 Case .. 2

2.2 Problem .. 3

Chapter 3 Related Work ... 5

3.1 Related Technologies .. 5

3.1.1 Context-aware .. 5

3.1.2 Case-based Reasoning ... 7

3.2 Former Work .. 9

3.2.1 Calling with Text .. 9

3.2.2 Context-aware system in Heath Care Environment ... 11

3.2.3 Case-based Reasoning in Health Care Environment .. 14

3.2.4 Summary .. 16

Chapter 4 Methodology ... 18

4.1 Design Science ...18

4.2 Agile Development ...19

Chapter 5 Design and Implementation of the Context-aware urgency cue

system .. 21

5.1 System Functionality ...21

5.2 System Architecture ...23

5.3 Context Model ..25

5.4 Communication protocol ...25

5.4.1 External Communication .. 25

5.4.2 Internal Communication ... 28

5.5 Context Gathering Server ...29

5.5.1 Context Gathering Server Structure ... 30

5.5.2 Context Gathering Server Process ... 31

5.5.3 Context Gathering Server Implementation ... 32

5.6 Urgency Server ..34

5.6.1 Urgency Server Structure ... 34

5.6.2 Urgency Server Process ... 35

5.6.3 Urgency Server Implementation .. 37

Chapter 6 Demo Evaluation .. 41

6.1 Test Objective ...41

6.2 Test Environment ..41

6.3 Functional Test ..42

6.4 Evaluation..45

Chapter 7 Discussion .. 46

Chapter 8 Conclusion .. 47

References .. 48

Appendix A Project Setup Example by using myCBR GUI 51

Appendix B System deployment ... 57

 I

List of Figures

Figure 1 Overview of nurse call system in St. Olav Hospital 2

Figure 2 Nurse phone in St. Olav Hospital .. 3

Figure 3 CBR cycle .. 8

Figure 4 Caller interface of telling calls .. 9

Figure 5 Receiver interface of telling calls .. 10

Figure 6 Comparison of two nurse call systems .. 12

Figure 7 General concept of the oNCS platform with probabilistic risk

assessment and profile management .. 13

Figure 8 System overview of case-based decision support system for the stress

diagnosis .. 15

Figure 9 Task management .. 20

Figure 10 User cases figure.. 22

Figure 11 System architecture .. 24

Figure 12 External interfaces ... 26

Figure 13 Context gathering server structure... 30

Figure 14 Process of responding urgency server’s request 31

Figure 15 Process of updating context ... 32

Figure 16 Urgency server structure .. 34

Figure 17 Urgency request process .. 36

Figure 18 Feedback request process .. 37

Figure 19 System test architecture ... 42

Figure 20 Dummy patient sensor publishes a new patient’s body temperature ... 43

Figure 21 Dummy patient sensor updates a previous patient’s body temperature

.. 44

Figure 22 Situation of casebase and Mike’s context before urgency request 44

Figure 23 Response for urgency request .. 45

Figure 24 A new case is stored after the system received a feedback request 45

 III

List of Tables

Table 1 Comparative analysis of context models .. 6

Table 2 Table context_item .. 33

Table 3 Table context_temp ... 37

Table 4 Test cases ... 42

 V

List of Acronyms

oNCS ontology-based Nurse Call System

EPR Electronic Patient Record

FT Finger Temperature

CBR Case-Based Reasoning

RFID Radio Frequency, Identification

XML Extensible Markup Language

RDF Resource Description Framework

NTNU Norwegian University of Science and Technology

EPR Electronic Patient Record

W3C World Wide Web Consortium

OWL Web Ontology Language

DAO Data Access Object

JDBC Java Database Connectivity

API Application Interface

GUI Graphical User Interfaces

 VI

Chapter 1 Introduction

 1

Chapter 1 Introduction

Now communication and electronic technologies are widely used in hospitals. For

instance, wireless nurse call system is quite common in hospitals. As described in [1],

a typical wireless nurse call system includes call buttons, a central console and

wireless phones. Call buttons are usually placed in patients’ rooms, toilets and so on.

Central console is a big screen set up at the nurse station. Each nurse holds a wireless

phone. When a patient needs nurse’s help, he (or she) presses the button that is the

nearest one to him. After the button is pressed, a nurse call will be generated and

delivered to a wireless phone that is held by a nurse. At the meantime, there will be

information printed out on the central console, which tells which room or which

patient is calling.

As mentioned in [2], nurse call system also brings interruption problem for nurses

while it makes it easy for patients to call the nurses. For example, a patient could call

a nurse when the nurse is treating another patient. In this case, the nurse would be

interrupted by the call. The reason that the patient calls the nurse could be different.

For example, the patient could feel terrible and need some treatment, the patient could

just need some water, or the patient could want to ask for some information. Normally,

the nurse does not know why the patient makes the call. When the nurse is busy to

treat a patient, it is hard for him to decide whether he should answer the phone, since

he does not know which patient is in a more urgent situation. So if there are some

urgency cues of the caller when the nurse call is delivered, the nurse could have better

idea to decide if he should answer the call immediately.

In this paper, a context-aware based urgency cue system is proposed to provide

urgency cues to hint nurses while they make the decision if they should answer the

nurse call immediately. In the following chapters, chapter 2 describes the case in St.

Olav’s University Hospital in Trondheim where it has been equipped a wireless nurse

call system. In chapter 3, several former works will be discussed. These works are

related to case-based reasoning and context-aware system in the health care field.

Chapter 4 describes the methodology while doing this project. In chapter 5, the

context-aware based urgency cue system will be presented in details, including the

system architecture, communication between different components and details of each

component. Followed by chapter 5, chapter 6 tests and evaluates the system. In

chapter 7, we discuss the benefits and disadvantages of this context-aware based

urgency cue system. In the end, conclusion will be given in chapter 7.

Chapter 2 Background

 2

Chapter 2 Background

2.1 Case

In St. Olav University Hospital, Trondheim, Norway, there are different departments.

Each department contains a few nurses and patient rooms. The rooms are relatively

small, so there is only one patient in each room. The whole hospital is covered by

wireless network, and also has deployed nurse call system. Although all the

departments in the hospital use the same nurse call system, each department has its

own nurse call system instance, which is separated from the instances in other

departments. Patients use the nurse call system to call nurses when they need help.

As described in [3], the nurse call system in St. Olav University Hospital contains: A

telephony system (delivered by Cisco), a fixed nurse call system (delivered by BEST

[4]), and a wireless nurse call system delivered by Imatis). The nurse call system

overview is showed in figure 1 (The telephony system is omitted for simplification).

This paper will discuss the Imatis part in figure 1, and details about other parts can be

found in [3].

Figure 1 Overview of nurse call system in St. Olav Hospital [3]

Chapter 2 Background

 3

When a patient presses the “Call” button in his room, a signal will be transmitted to

the Imatis server. This server will further generate a request in order to generate a

nurse call. This request will be sent to the message server. The message server

receives the request, and then looks up the call plan in order to find the responsible

nurse for the calling patient. The call plan stores the nurse-patient mapping. Usually a

nurse is responsible for a few patients. After the message server found the responsible

nurse, it will generate a nurse call to the specific nurse. When the nurse call is

delivered to the nurse, the nurse can see who is calling on the nurse phone. A nurse

phone looks like a normal mobile phone, as shown in figure 2. If the nurse rejects or

ignore the call in 15 seconds, the call will be redelivered to another nurse.

Figure 2 Nurse phone in St. Olav Hospital

2.2 Problem

In the hospital, a nurse is responsible for more than one patient. Thus, when a nurse

call is delivered to a nurse, the nurse is likely to be occupied by another patient. In

this case, it is hard for the nurse to decide whether he should stop what he is doing

and answer the call. Basically, the nurse’s decision is made based on the urgency of

the calling patient and the on-treating patient. In other words, knowing the urgency

situation of both patients is helpful for the nurse. Since the nurse is treating the

on-treating patient, he knows for sure how emergent the on-treating patient is. On the

other hand, there is no sign for him to know the situation of the calling patient. The

Chapter 2 Background

 4

calling patient could have a high fever or low heart beat, which means the patient is in

danger. Or everything is fine with the calling patient, and he calls the nurse just

because he wants some water.

For example:

1. Patient A has diabetes. When he calls the nurse, his blood pressure is 120, body

temperature is 36, heart beat is 90 and is located in his patient room. Everything

is fine for him, and he calls the nurse because he needs water.

2. Patient B has diabetes. When he calls the nurse, his blood pressure is 180, body

temperature is 36.5, heart beat is 120 and he is located in his room. He fell on the

floor, so he calls the nurse to ask for help.

3. Patient C has diabetes. When he calls the nurse, his blood pressure is 180, body

temperature is 39, heart beat is 150 and he is in his room. He calls the nurse

because he feels chest pain.

In the above examples, it is obvious that the first patient is not in an urgent situation at

all. If the nurse is busy when he receives the call, he can finish what he is doing

before checking this patient. In the second case, the patient is in a medium urgent

situation. And in the last case, the patient is in a dangerous situation, and the nurse

needs to response to the call as soon as possible.

Unfortunately, the nurse only knows which room the call is from, but do not know the

calling patient’s context. So it is difficult for the nurse to decide if he should response

to the call immediately.

In order to solve the problem, a context-aware urgency cue system is proposed in this

thesis. This system focuses on the architecture that collects context and dynamically

provides urgency cue about a patient. Data sources are not the emphasis of this thesis.

The system in this thesis does not implement any data source. It provides interfaces

for different data sources so that they can publish new data. The system collects the

data and maintains it. It can also provide urgency cue about a patient based on the

data received from different data sources. In order to provide dynamically urgency

cue, case-based reasoning is used.

Chapter 3 Related Work

 5

Chapter 3 Related Work

This chapter discusses some former works in order to propose a solution for the

problem in 2.2. In addition context-aware and case-based reasoning will also be

introduced in this chapter.

3.1 Related Technologies

In order to understand the rest parts of the thesis better, it is necessary to introduce

context-aware and case-based reasoning here. They are also core technologies for the

system proposed in this thesis.

3.1.1 Context-aware

“Context is any information that can be used to characterize the situation of an entity.

An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications

themselves.”[5]

When human talks to human, it is easy to understand each other without explaining

background, because human shares implicit situational information (context). This is

based on human’s common knowledge about the world we are living in. For example,

when you are talking with your mother about your father, you do not have to explain

why he would react to something in some particular way, because both of you knows

his personality well.

Unfortunately, when human interact with computer, this common knowledge does not

exist. Thus, human needs to input extra information so that computer can understand

and provide further services. In order to make computer provide better services, we

can try to make computer know context automatically, i.e. context-aware.

“A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task.”[5]

A system that wants to be context-aware, it must have the ability to capture the state

of the environment and collect information about the surroundings that is related to

Chapter 3 Related Work

 6

the human computer interactions. The awareness is often achieved by collecting data

from sensors, devices, other applications and user predefining [6]. However, these

data sources provide various data types, and the data is diverse in practice. Thus,

context modeling is important in context-aware. Context-aware system needs a formal

form to share and interpret context.

In [7], the author suggests the following way to model context:

Key-value pair context models

This is the most simple approach to represent context. RFID (Radio Frequency,

Identification) [8] tag is a typical usage of this approach. A RFID tag has a unique ID

that can be read by a RFID reader, and the RFID often contains a simple message.

This approach is more common for items with limited memory.

Markup scheme context models

Markup scheme can express more complex information and typically has a fixed

structure. This model type is often serialized in XML (Extensible Markup Language)

or RDF (Resource Description Framework). This approach is more often used to

capture static information, such as user agent profile, device profile, user profile and

configuration.

Ontology-based context models

Ontologies provide a specification of a conceptualization [9]. And also ontologies are

well known to model concepts and the relationships that hold among them [7]. The

Semantic Web has published specifications and tools about using ontologies to model

context. Because ontologies have explicit support for semantic reasoning, they are

used frequently to model context [7]. Such examples can be found in [10, 11].

Table 1 Comparative analysis of context models [7]

 Key-value

Pairs

Markup

Scheme

Ontology

Based

Expressiveness * ** ***

Efficiency *** ** *

Programming *** ** **

Reasoning * * ***

Chapter 3 Related Work

 7

Ambiguity * * ***

Comparison about the previous context models is presented in table 1. The stars mean

score (from 1 to 3), the more, the better. From table 1, it is easy to conclude that

ontology-based context model can express most complex information and is best for

reasoning. However, it has biggest overhead. Markup scheme context model can

express relatively complicated information while it has medium overhead, and

markup scheme does not fit reasoning scenarios. Key-value context model is most

efficient and has smallest overhead, but it has limited ability to express information

and deal reasoning.

3.1.2 Case-based Reasoning

According to [24], when human wants to resolve a problem, we first try to apply

previous experience, and then adjust to the current situation in order to come out a

solution for the new problem. Case-based reasoning is inspired by it.

As described in [12], case-based reasoning approaches the reasoning process by using

old memory, instead of using rules or general knowledge. Knowledge in a case-based

reasoning system always contains plenty of old experience (cases) and solution to

each case. Case-based reasoning finds out the solution to a new problem by reusing

the solution of a similar previous case.

As shown in figure 3, case-based reasoning solves a problem by going through a cycle.

It contains four steps:

1. Retrieve:

When a case-based system faces a new problem, it tries to retrieve the most

similar case(s) by matching the previous cases with the new case.

2. Reuse:

If the system finds suitable previous case that is similar to the new case, the

solution of the previous case will be reused and proposed to the user.

3. Revise:

The user may revise the selected old case with new solution if he is not satisfied

with the old solution.

Chapter 3 Related Work

 8

4. Retain:

In the end, the user could retain the revised old case and the new case into the

case base. This is the learning process.

Figure 3 CBR cycle [12]

The challenge of CBR system is the design of similarity computation. How the

similarities are computed is a very important factor that affects the performance of a

CBR system. And the similarity computation is diverse in different use scenarios. In

addition, academic knowledge is also quite important while design the similarity

computation. Normally, it is the computer scientists who implement the CBR systems.

However, the computer scientists have limited knowledge in the system’s use scenario,

such as hospital. Thus, a CBR system should be flexible and provide a user-friendly

mechanism to let the user define similarity computation function.

Chapter 3 Related Work

 9

3.2 Former Work

3.2.1 Calling with Text

In [14], the authors mentioned that when a phone call is coming, the receiver is facing

the task to make the decision whether to answer or reject it. Normally, the decision is

made by knowing limited information (caller name). In this situation, the receiver

could think the call is important and answer it, but actually this call is not important.

Sometimes this does not affect the receiver. However, if the receiver is doing

something else, he might have been interrupted by the call and wasted time to answer

it. This could be harmful. On the other hand, the receiver could also think the call is

not important and therefor ignore it. In this situation, it could be harmful when the

caller really needs help, and this is an emergent call.

Thus, the authors in [14] proposed to use context to help the receiver to decide

whether he answers the call. They suggest that additional information could be used

to provide hints to the receiver. In addition, a mobile application was developed to

evaluate the concept.

The mobile application’s name is telling calls. As shown in figure 4, the caller needs

to fill up the blanks before he makes the call. On the other side, the receiver will

receive not only the call, but also the information that has been sent from the caller,

As shown in figure 5.

Figure 4 Caller interface of telling calls [14]

Chapter 3 Related Work

 10

Figure 5 Receiver interface of telling calls [14]

[15] had investigation about factors that affect receiver’s decision to answer the call.

It found out that call reason, caller’s estimated call length, activity of the caller,

location of the caller, caller’s mood, the urgency and importance of the call, people

the caller is with are the factors the receiver highly expected when he receives a call.

Based on the investigation, the authors in [14] decided to use the information in figure

4 to help the receiver to decide whether he should answer the call.

After the application was implemented, en evaluation was made as well. The authors

asked 37 individuals to use the application with their friends, lover or families. The 37

users were interviewed after they had used the application for 1 to 2 weeks. The 37

users included adults and students, and all of them had used mobile phone more then

3 years.

As the result, most participants liked the concept that they got extra information when

they received the calls. They thought this was helpful when they made decision to

answer it or not. The following are two participants experience about telling calls.

“I know her very well. I could almost deduce everything from the location and activity.

I knew if she was in the supermarket shopping that – this would be a quick call and

that it was probably something important.” --Anonymous user in [14]

“The other day, she was waiting for me to pick her up. She gave me a call. I didn’t

have a hands free <set> on and I didn’t want to pick the call up for the fear of getting

a ticket. And I saw all the information <on Telling Calls> - she was finished at the

gym and was waiting at so and so location. So, I knew what it was about and I was

heading there, so <I thought> it’s okay if I let this call go.”--Anonymous user in [14]

Chapter 3 Related Work

 11

On the other side, [14] also mentioned that the participants preferred to use the

application to answer calls other than to make the calls. They thought it was annoying

that they had to type various information before they made the calls.

Back to our issue in 2.2, the nurses as call receivers might like to have additional

information when they receive nurse calls, just like the receivers in this research.

Inspired by this research, we could also add information with the nurse call and

present them together on the nurse phone. And a nurse could use the information to

know how the calling patient is, if he should answer the call immediately.

However, the way to provide information in this research is unacceptable in hospital

scenario. As we can see in this research, normal phone users do not like to type a

bunch of information before they make calls. In hospital, patients can be in various

situations. Therefor, it is not practical to ask them to type things before they call.

Thus, we could use the idea to send extra information while the call is made, but the

patients should be able to call the nurses without doing any pre-work.

3.2.2 Context-aware system in Heath Care Environment

In [16], the authors concerned that the current nurse call systems in the hospitals are

place-oriented, which means that the systems are very static. However, the nurse call

system could be improved to be person-oriented. In this way, the system could be

context-aware.

In study [17], they tested two nurse call systems in a hospital. As in the left part of

figure 6, it is the traditional place-oriented nurse call system. Call buttons only exist

in the patient rooms, so when a patient wants to call a nurse, he has to be in his room.

And when the call is generated, the controller will decide which nurse the call should

go to according to some algorithm. However, it is possible that a patient needs help

when he is not in his room, for example, in the hall or in other patient’s room. If the

patient is in the hall, he could not even be able to make the call. If the patient is in

other patient’s room, the wrong nurse could receive the call because this nurse is

assigned to the room. And these situations could be harmful.

On the other hand, in the right part of figure 6, the person-oriented nurse call system

is different. In this system, the call buttons are not longer fixed in the rooms. They are

portable and assigned to specific patients. Each patient has a portable call button

(typically a mobile phone). In this case, patients can carry their call buttons moving

around. Whenever they press the call button, the system will know who is calling, and

deliver the call to the right nurse.

Chapter 3 Related Work

 12

Figure 6 Comparison of two nurse call systems [16]

According to [17], 80% patients preferred to use the person-oriented nurse call system,

because they can make the nurse call wherever they are.

In addition, [16] also suggested that the nurse call system should be “smarter”.

According to [18, 19], there are already various systems in hospital scenario. These

systems manage staff tasks, patient data, EPR (Electronic Patient Record) and so on.

And these systems provide various data about he patients and health care staff.

However, these systems work separately. It is a waste that the data is used separately

[20]. So [16] proposed to use context-aware technology to exploit the medical context

in the nurse call system. Further more, the authors of [16] developed a new nurse call

system to evaluate their concept.

Chapter 3 Related Work

 13

Figure 7 General concept of the oNCS platform with probabilistic risk assessment and profile

management [16]

The system built in [16] is oNCS (ontology-based Nurse Call System). Compared to

traditional nurse call system, oNCS contains a profile management component. As

shown in figure 7, this component manages context about patients and health care

staff. Context includes location information, patient profile, assignment of staff

members to patients, staff task, patient risk factors and so on. And the context is

collected through various devices and servers, such as location badge, EPR server.

Based on the profile management, oNCS provides (1) “smart” nurse call assignment

and (2) priority of nurse call.

“Smart” nurse call assignment aims to find the correct staff member to handle a call.

When a call request is received, the system uses information stored in the ontology to

determine the receiver of the call. The information includes location of nurses,

availability of nurses and so on. Details about this algorithm can be found in [16].

Priority of a call in oNCS is determined using probabilistic reasoning algorithm, and

it was concluded by Pronto [21]. The details can be found in [16].

In the person-oriented context-aware nurse call system, when a patient presses his

own call button, the system will notice which patient is calling. And then the system

Chapter 3 Related Work

 14

can find all context related to this patient. Based on the patient’s information and

other relevant information, the system can not only deliver the call to a right nurse but

also provide the probabilistic priority of this call.

The evaluation of the system was done with realistic simulations with data collected

from the Ghent University Hospital. And the results showed that the oNCS system

improved the nurse assignment. The priorities of the calls were also dynamically

determined according to the current situation of the patients. At the meantime, the

execution time is negligible. Unfortunately, the authors did not evaluate this system in

a practical environment.

Context-aware technology can be used to provide patient’s current context, such as

patient’s location, diagnosis, heart beat, body temperature. This could help the nurse

to determine the urgency of the patient. Thus, it can be used to resolve the problem in

2.2.

The authors mentioned in [22] that the systems in hospital should not decide too much,

because cases in hospital are often live-related. If the systems decide too much instead

of health care staff themselves, it could be harmful to the patients. Thus, the systems

in the hospital should provide advices to health care staff, but not decide for them.

This is the shortage of the system in [16].

In addition, the situation and environment changes in the hospital. The system in [16]

cannot adapt itself automatically according to the new environment, because its

strategy is static. Thus, we need a system that is more flexible and is able to “learn”

the new environment by itself.

3.2.3 Case-based Reasoning in Health Care Environment

It is risky to live with severe stress in a long period. This could cause disease such as

heart attack and high blood pressure [23]. According to [23], it is identified by

medical investigation that FT (Finger Temperature) has a strong correlation with

human’s stress status. In practice, clinicians always need to do a lot of measurements

in order to capture the patients’ symptom. After this, the clinicians need to understand

the measurements. Considering the large variation of measurements from diverse

patients, it requires knowledge and experience for the clinicians to determine the

patients’ situation correctly. However, there are many clinicians who are lack of

experience. So they could misjudge the patients’ situation, which could be harmful.

Thus, the authors of [23] proposed a case-based decision support system to help the

clinicians to determine the patients’ situation. Diagnosing is given out based on

doctor’s knowledge and experience, which comes from previous study. And this

process is similar to the concept of case-based reasoning. That is the reason why the

Chapter 3 Related Work

 15

authors chose to use case-based reasoning to solve the problem.

Figure 8 System overview of case-based decision support system for the stress diagnosis [23]

As shown in figure 8, the case-based decision support system works in the following

steps:

1. A patient needs to take FT measurements in order to setup his stress profile, and

the measurements can be done by using temperature sensor.

2. After the patient’s stress profile is stored, the system will extract relevant

features.

3. Based on the features, a new problem case will be formulated.

4. The system compares the new problem case with old problem cases, and selects

the most similar old problem case as best matching for this new problem.

5. The clinician can then revise the best matching case and approve it to solve the

new problem. The clinician may need to adjust the solution to the old problem

case when he uses it to solve the new problem case, because the new problem

case is not always as the same as the old ones.

Chapter 3 Related Work

 16

6. After the new problem case is solved, this case will be stored in the case base in

order to solve a future problem. This is the learning process in CBR (Case-Based

Reasoning).

Evaluation has been done to this case-based decision support system. As in [24], the

authors compared the diagnostic performance between this system and clinicians. The

clinicians had different experience levels, including expert, senior and junior

clinicians. The result showed that the system could correctly classify more 80% of

cases. That number for junior clinicians is between 57% and 69%. For a senior

clinician, the correct rate is 73%.

Case-based reasoning suits health care environment, and this has been identified in

[25]. It can also be used to solve the problem mentioned in 2.2. Because in hospital, a

patient usually has a specific responsible nurse, and this nurse knows the patient’s

situation best. When the nurse is away, another nurse will temporarily take over the

responsibility for the patient, and the new nurse does not know the patient’s situation

well. In this case, it could be useful that a system can provide some urgency cues

based on previous experience.

3.2.4 Summary

Through section 3.2.1, 3.2.2 and 3.2.3, we can use the concepts in the three works. To

solve the problem that nurse does not have clues to decide whether he should answer

the nurse call when he is busy with another patient. The concept in 3.2.1 can be used.

We can add extra information about the calling patient sending with the nurse call to

the nurse, so the nurse could know how urgent the patient’s situation is.

Instead of asking the caller to type in information as in 3.2.1, the concept in 3.2.2

could be used. We can use context-aware technology to provide patient information,

including patient’s diagnosis, location, heart-beat, body temperature and so on. In this

case, the system can know patients’ context. When a patient calls a nurse, the system

can quickly give urgency clues to the nurse based on the patient’s context. Since the

patients’ context includes a lot of information, it is not practical to send all the

information to nurses. Otherwise it will be hard for the nurse to know the situation

quickly. So the system should only give short urgency cues instead of long and

complex information. Further more, the concept person-oriented nurse call is needed,

since the system needs to know who the caller is.

In addition, case-based reasoning can also be used to improve the accuracy of the

urgency cues. As mentioned in 3.2.3, case-based reasoning fits health care

environment. We can let the system remember the old cases, which includes the

current patient context and the urgency cues. When a patient tries to call the nurse, the

system can compare the patient’s current context with old cases, and find out the most

Chapter 3 Related Work

 17

similar one. The urgency cues of the most similar old case will be sent to the nurse as

well as the nurse call.

Chapter 4 Methodology

 18

Chapter 4 Methodology

4.1 Design Science

Design science is applied though the whole project. Design science provides research

rigor, doing project in this way makes the outcome more acceptable by the scientific

community.

In order to make the output of this project more valuable and more acceptable by the

scientific community, the project is processed following the guidelines, which are

mentioned in [26]:

 “Design as an artifact: Design-science research must product a viable

artifact in the form of a construct, a model, a method, or an instantiation.”

[26]

In this project, a runnable context-aware urgency cue system is built in order to

prove the concept.

 “Problem relevance: The objective of design-science research is to develop

technology-based solutions to important and relevant business problems.”

[26]

Firstly, the case in St. Olav University Hospital is literally studied and the

problem that the nurse call is lack of urgency cues is explained. Further, related

former works are studied in order to find a solution for this problem. All the

works are based on the problem.

 “Design evaluation: The utility, quality, and efficacy of a design artifact

must be rigorously demonstrated via well-executed evaluation.” [26]

In order to evaluate the outcome of this project, tests are done after developing

the system.

 “Communication of Research: Design-science research must be presented

effectively both to technology-oriented as well as management-oriented

audiences.” [26]

Chapter 4 Methodology

 19

This report as part of the output of the project presents the whole concept and

important details of this project. Both technology-oriented and

management-oriented audiences can learn something from this report.

The entire project is processed following the design science guidelines. Firstly, a case

in St. Olav University Hospital is studied and an issue has been focused. The issue is

that the nurse call in the hospital does not have urgency cues, so it is hard for the

nurse who receives the call to decide which patient is more urgent, the calling one or

the on-treating one (assuming that the nurse is treating a patient when he receives a

nurse call from another patient). Secondly, several former works has been studied in

order to find useful technologies to resolve the problem. Thirdly, a context-aware

urgency cue system is built in order to resolve the problem. After that, tests and

evaluation has been done to evaluate the solution. In the end, the report is proposed to

present the outcome of this project.

During the development of the system, Agile development was used.

4.2 Agile Development

In order to make sure the development is flexible, Agile software development is used.

Agile development is different from traditional waterfall development. According to

[27], Agile uses short iterations. The reasons to use short iterations are: increasing

feedback opportunities and make course corrections. Developing with Agile,

developers have more small demos to present to the customers after short periods. As

in return, the customers can give feedback after the demos, so the developers can

react and modify the system according to the feedback immediately. In this way, the

final system can fit the customers’ requirement better.

Runnable is an important factor in Agile development. The project is divided into

small tasks, and all the tasks come out with runnable demos. After all the tasks, the

whole system should be close to the final produce. In this project, Trello [28] was

used to manage the tasks.

Chapter 4 Methodology

 20

Figure 9 Task management

As shown in figure 9, There are 3 columns to present the states for the tasks: To Do,

Doing and Done. In the beginning, all the tasks are in To Do column, because all of

them need to be done. The on-going task will be move to Doing column, and there

should not be so many tasks in this column, because it is better to focus on one or two

tasks once. After the on-going task is achieved, it will be moved to Done column.

Trello is very helpful in Agile development, and it can also be used in group

development.

During the development, the codes are managed on GitHub [29]. GitHub is a useful

code management tool. It provides code storage, and also version control. If one is not

satisfied with the newly modification to the codes, GitHub provides rollback. So the

codes can be rollback to the last version.

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 21

Chapter 5 Design and Implementation of the

Context-aware urgency cue system

In order to solve the issues discussed in [30], Telematics department at NTNU is

developing a new nurse call system prototype to research and resolve the problem

regarding the current nurse call system in St. Olav University Hospital. This new

nurse call system has similar architecture as Imats part in figure 1. In this new nurse

call system, Android-based smart phones are used as nurse phones. Although smart

phones are not used in the current nurse call system in this hospital, it is reasonable to

assume that they will be used in the future.

In this thesis, a context-aware urgency cue system is built in order to solve the

problem described in 2.2. This system will provide urgency cues to the new nurse call

system so it can be sent with the nurse call to the nurse.

The context-aware urgency cue system is inspired by the former works introduced in

chapter 3. This system is based on context-aware and case-based reasoning. It has a

context-gathering server to collect data from diverse sources, such as sensors, profiles

and other systems. In addition, this system also includes an urgency server that

approaches case-based reasoning. The system details will be described in 5.2.

This chapter introduces the context-aware urgency cue system that is the main work

of this thesis, including system main functionality, system architecture, protocol and

two main components in the system. The system is implemented in Java.

5.1 System Functionality

As shown in figure 10 is the use cases figure. The system provides three main

functions to outer instances:

1. Diverse data sources should be able to update context to the system.

2. Nurse call system should be able to get an urgency cue from the system.

3. Nurse call system should be able to give feedback about an urgency cue, and this

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 22

feedback should be learned as a new case by the system.

Figure 10 User cases figure

According to figure 10, the system has two main functions: (1) manage context and (2)

approach case-based reasoning.

For the first function, the system should be able to get the latest data from every data

source and keep the data consistent and formal in the system.

For the second function, the system should be able to use the data from function (1),

and dynamically match the new case with previous cases in order to find the most

similar case to get urgency cue for the new case. In addition, the system should also

be able to accept the nurse’s feedback towards a case, and retain the case with the

feedback into the case base.

An example will be introduced bellow in order to describe the system.

There are three data sources: location system, patient sensor and EPR system.

Location system can provide which room the patient is in. Patient sensor can provide

patients’ blood pressure, body temperature and heart beat. EPR system can provide

patients’ diagnosis. All the three data sources are able to publish new status about a

patient to the context-aware urgency cue system, and the system maintains the latest

patients’ context.

Three previous cases have already been stored in the context-aware urgency cue

D ata
source

N urse
call

system

C ontext-aw are urgency cue system

Update
context

Manage
context

Get urgency
cue

Give
feedback to
an urgency

cue

Case-based
reasoning

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 23

system. They are:

1. In case A, the patient had diabetes. When he called the nurse, his blood pressure

was 120, body temperature was 36, heart beat was 90 and was located in his

patient room. And urgency number for this patient was 1.

2. In case B, the patient had diabetes. When he called the nurse, his blood pressure

was 180, body temperature was 36.5, heart beat was 120 and he was located in

his room. And urgency number for this patient was 5.

3. In case C, the patient had diabetes. When he called the nurse, his blood pressure

was 180, body temperature was 39, heart beat was 150 and he was in his room.

And urgency number for this patient was 10.

There is another patient, and he has diabetes. When he calls the nurse, his blood

pressure is 110, body temperature is 36, heart beat is 89 and is located in his patient

room.

When the patient calls the nurse, the nurse call system will send a request to the

context-aware urgency cue system. This system will compare the patent’s context,

which has been collected from the data sources before, to the previous cases. After

comparison, the system will pick case A as the most similar case and return the

urgency number in case A, which is 1, to the nurse call system.

The nurse call system delivers the urgency number 1 along with the nurse call to the

nurse. After the nurse checked the patient and assessed the urgency by himself, he can

assign a new urgency number (for example 2) as feedback to the call. This feedback

will be delivered to the context-aware urgency cue system through the nurse call

system. After this, the context-aware urgency cue system will store this case with the

urgency number (in this case, 2) as previous case for future use.

5.2 System Architecture

Figure 11 shows the system architecture. The context-aware urgency cue system

needs to cooperate with other systems in order to provide fully functionality. This

system provides interfaces to nurse call system so that nurse call system could get

urgency cue and give feedback towards an urgency cue. On the other side, this system

also provides interfaces to data sources, such as location sensors, patient sensors and

EPR (Electronic Patient Record) system. These data sources can use the interfaces to

update corresponding data.

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 24

Figure 11 System architecture

As shown in figure 11, there are three components in this context-aware urgency cue

system: broker, context gathering server and urgency server.

In order to keep the context-aware urgency cue system having the latest status about

patients, a publish/subscribe pattern is used. The broker in figure 11 as an

intermediary message broker, receives published new status from data sources (For

example, “Mike has_location patient_room_1” from location sensor) and sends

subscribed data to the context gathering server. In this thesis, Moquitto [35] is chosen

as the broker.

Context gathering server collects data from diverse data sources and manages the

context. It also provides context to urgency server based on urgency server’s request.

Urgency server waits for nurse call system’s request, and ask for relevant context

from context gathering server according to the request. After gotten relevant context,

urgency server retrieves the most similar case in the case base compared to the

relevant context gotten from context gathering server, and then send the most similar

case’s urgency solution to the nurse call system as response. In addition, the urgency

server also accepts feedback from nurse call system in order to learn a new case. The

detailed process will be described in section 5.6

In this thesis, the context-aware urgency cue system is proposed to provide

architecture in order to collect the context about patients and provide an urgency

number about a patient based on the patient’s context. Only the context-aware

urgency cue system is implemented in this thesis. This system aims to provide flexible

architecture so that more data sources can be included. Although there is only three

data sources are included in figure 11, more data sources can be added as long as they

follow the protocol described in 5.4

P atient m oniter

P atie
nt

C ontext-aw are urgency cue system

Nurse call
system

Urgency
Server

Context
gathering

Location
sensor

Patient
sensor

EPR

Broker

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 25

5.3 Context Model

As discussed in 3.1.1, context-aware system needs a model to share and interpret the

context. According to the comparison in 3.1.1, ontology-based context model is

chosen for this project, because ontology-based context model is most expressive.

Since the data sources in hospital are diversity, we need expressive model to cover all

the data types.

W3C (World Wide Web Consortium) Web Ontology Working Group proposed

ontology language OWL (Web Ontology Language) to express ontology-based

context model [32]. OWL is a very expressive language. Therefore it is very

complicated, including several specifications and pre-knowledge, such as RDF

scheme. Since the time to accomplish this thesis is limited, only the basic model of

OWL is used in this project. According to [33], The basic model of OWL is:

Tuple (subject, predicate, object)

The above model is used in this project. Context is presented in this form. Each tuple

presents a statement. For example: (Anna, has location, operation room 1). In this

example, “Anna” is the subject, “is located in” is the predicate and “operation room 1”

is the object.

5.4 Communication protocol

As shown in figure 11, there are both external communication and internal

communication for the context-aware urgency cue system. The internal

communication are between the urgency server and the context gathering server, and

between context gathering server and broker. This system also has external

communication with both nurse call system and data sources.

5.4.1 External Communication

The context-aware urgency cue system needs to communicate with the nurse call

system and diverse data sources. This section will discuss the communication

protocols used in the communications.

Figure 12 shows the context-aware urgency cue system’s external interfaces. The

system has three external interfaces: (1) cnu, (2) cnf and (3) cd.

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 26

Figure 12 External interfaces

Interface cnu and cnf:

They are the interfaces between the context-aware urgency cue system and the nurse

call system. Request-response protocol is used in these interfaces. Since there is not

so much data need to be transmitted in these two interfaces.

As discussed in 3.2.4, it is not practical to send all the context about a patient to a

nurse, since it is hard for the nurse to read a lot of information in a short time. Thus,

the context-aware urgency cue system will provide an urgency number based on a

patient’s context. The urgency number indicates an emergency degree. From 1 to 10,

1 is not emergent at all, and 10 is extremely emergent. However, it is possible to add a

few more information about the patient in the future, such as heart beat and body

temperature. Therefore, the messages in these interfaces are presented in XML

scheme in order to be extensible.

Interface cnu is used for the nurse call system to send request to ask for urgency cues,

and the request and response should be in the following form. The nurse call system

must send the urgency request as the following request form, and the context-aware

urgency cue system will send the response in one of the responses’ form.

Context-aware
urgency cues

system

Nurse call system

Data source

cnu

cd

cnf

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 27

<request>

 <callId>XXXXX</callId> //the nurse call’s idtification

 <patient>XXX</patient> //patient’s identification

</request>

<response status=”200”> //status code, 200 means success

 <urgency>XX</urgency> //urgency number

</response>

<response status=”XXX”> //status code, XXX is as the same as HTTP status

code

 <message>XXX</message> //reason for failure

</response>

Interface cnf is used for the nurse call system to send request to give feedback

towards an urgency cue, and the request and response should be in the following form.

The nurse call system must send the feedback request as the following request form,

and the context-aware urgency cue system will send the response in one of the

responses’ form.

<request>

 <callId>XXXX</callId> //the nurse call’s idtification

 <urgency>XXX</urgency> //new urgency number

</request>

<response status=”200”> //status code, 200 means success

</response>

<response status=”XXX”> //status code, XXX is as the same as HTTP status

code

 <message>XXX</message> //reason for failure

</response>

Interface cd:

This interface is used by the data sources to update their new information.

Considering that some of the data sources do not have big bandwidth or power, the

communication protocol in this interface is designed to be as simple as possible. Thus,

MQTT (MQ Telemetry Transport) is used in this interface. MQTT is a lightweight

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 28

broker-based publish/subscribe messaging protocol [34]. It contains only 2 bytes

header, which makes this protocol lightweight and less overhead.

In addition, in order to reduce the delay, a publish/subscribe pattern is reasonable in

this interface. If the system needs to collect the data from diverse data sources every

time when the nurse call system sends an urgency request, the system performance

will be affected due to various communications must be accomplished. However, if

the data sources update their information whenever they have changed data, the

system can collect the context before it receives an urgency request. This will make

the system response to the request faster. Thus, MQTT is a proper choice in this

interface.

MQTT is broker-based protocol. The context-aware urgency cue system needs to

subscribe data sources to the broker. And all the data sources will send their new data

to the broker. Whenever the broker receives a new publish, it will send a message to

the context-aware urgency cue system if the system have subscribed data from this

data source.

In this interface, the data sources need to publish new information as a statement in

order to follow the context model described in 5.3. A data source can only publish one

statement at once, and the statement must be in this form:

Subject Predicate Object

A statement contains three elements: subject, predicate and object. They are separated

by space. To make sure there is no ambiguity, there must not have space in each

element.

5.4.2 Internal Communication

There is one interface between the urgency server and the context gathering server.

Urgency server uses this interface to get current context of a patient. In order to make

the protocol extendable, XML is used to present messages in this interface. And the

communication is a request-response pattern.

The following is the message pattern used in this interface. The urgency server sends

the request to ask for context of one or more subject. If there is predicate node under

an item node, it means it only asks for the listed predicates of this subject. Otherwise

it asks all the context of a subject. The context gathering server sends one of the

responses to the urgency server.

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 29

<request>

 <item subject=”Anna”>

 //if an item has no predicate, it means that it asks all context about the

subject, otherwise means only ask for the listed predicates

 <predicate>has_location</predicate>

 <predicate>has_diagnosis</predicate>

 </item>

 <item subject=”Peter”>

 <predicate>has_location</predicate>

 </item>

</request>

<response status=”200”> //status code, 200 means success

 <item subject=”Anna”>

 <predicate>has_location</predicate>

 <object>room_1</object>

 </item>

 <item subject=”Anna”>

 <predicate>has_diagnosis</predicate>

 <object>diabetes</object>

 </item>

 <item subject=”Peter”>

 <predicate>has_location</predicate>

 <object>room_2</object>

 </item>

</response>

<response status=”XXX”> //status code, XXX is as the same as HTTP status

code

 <message>XXX</message> //reason for failure

</response>

Another internal interface is between the broker and the context gathering server. In

this interface, MQTT protocol is used, and the message pattern is as the same as it is

in interface cd in section 5.4.1

5.5 Context Gathering Server

Context gathering server subscribes data sources and collects latest data. It maintains

the context collected from every data source. When the urgency server asks for

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 30

context of a patient, the context gathering server prepares the relevant context

according to the request content.

5.5.1 Context Gathering Server Structure

As shown in figure 13, context gathering server includes five modules: urgency server

connector, request handler, broker connector, context DAO (Data Access Object) and

database.

Figure 13 Context gathering server structure

Urgency server connector communicates with urgency server, gets request from

urgency server and sends response back.

Request handler processes the messages from the urgency server, extracts information

from a message and encapsulates response information in a message.

Broker connector subscribes data from data sources and receives publish. Broker

connector also handles MQTT protocol.

Context DAO is the module handles database operation, such as store and read.

Urgency
server

connector

Broker
connector

Broker

Request
Handler

Context
DAO

Data
base

Urgency
Server

C ontext gathering server

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 31

Database is the instance that stores context.

5.5.2 Context Gathering Server Process

There are two types of process in context gathering system: (1) Urgency server sends

request to get context about specific patient and (2) Data source publish data to update

context.

The first process is shown in figure 14:

1. Urgency server sends a request to ask for context;

2. Urgency server connector receives the request message and hands it to request

handler;

3. After request handler gets a message from urgency server connector, it extracts

information from the message and asks context DAO to read relevant data;

4. Context DAO forms correct SQL query according to the information extracted in

step 3 and asks database to return data;

5. Database executes the query in step 4 and returns data to context DAO.

6. Context DAO returns the data gotten in step 5 to request handler.

7. Request handler encapsulates data as a message that follows the protocol and

delivers it back to urgency server connector.

8. Urgency server connector sends this message back to urgency server as a

response.

Figure 14 Process of responding urgency server’s request

U rgency S erver
C onnector R equest H andler C ontext D A O D atabaseU rgency S erver

Request(message)
Request(message)

Read(subject, [predicate])
Read(clause)

Return(data)

Return(data)

Response(message)

Response(message)

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 32

The second process is shown in figure 15:

1. Data source publishes new data to the broker, and the broker sends a new

message to broker connector.

2. Broker connector receives the new message and extracts the payload of the

MQTT message. After gotten the context statement, broker connector asks

context DAO to store it.

3. Context DAO updates the database with new data.

Figure 15 Process of updating context

5.5.3 Context Gathering Server Implementation

The server is programmed in Java. There are two key processes in context gathering

server’s implementation: (1) database process and (2) MQTT process.

Database process:

MySQL is used as database management, since it is free. In addition, this is a

proof-of-concept system, so there is no need to use a commercial database

management. In Java code, JDBC (Java Database Connectivity) API (Application

Interface) is used to operate MySQL.

The table for the context in the context gathering server is context_item and is

described in table 2.

B roker C onnectorB roker C ontext D A O D atabase

Publish(message)

Store(newStatement)

Store(tuple)

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 33

Table 2 Table context_item

Field Type Null Key Description

id int(11) NO PRI ID of a context item

subject varchar(255) NO subject of a context item

predicate varchar(255) NO predicate of a context item

object varchar(255) NO object of a context item

A class ContextDAO is implemented in order to store and read context items. This

class has the following methods:

public void store(ContextItem contextItem)

public ArrayList<ContextItem> read(String subject)

The read method is simple. It reads the relevant items in table context_item. The sql

for this method is:

 select * from context_item

 where subject = ?

When the data source publish new status about a subject. The object of the statement

is the new status, subject and predicate do not change. For example, when a location

system publishes a new status about Anna, it publishes “Anna has_location

operation_room_1”. In this statement, “operation_room_1” is the new status. “Anna”

and “has_location” is the same as before. So the store method first tries to find the

context item in table context_item with the sql:

 select * from context_item

 where subject = ? and predicate = ?

If the query returns an instance, then updates this instance with new object. Otherwise

insert this new context item as a new instance into the database.

MQTT process:

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 34

In order to save time, Moquitto [35] is chosen as the broker in the MQTT

communication. In addition, Eclipse Paho [36] is used as MQTT API in Java code.

With Paho, it is very easy to handle MQTT messages. Paho provides listeners. In

order to capture the new messages from the broker, only one callback function is

needed to implement, this function is:

public void messageArrived(String topicName, MqttMessage message)

5.6 Urgency Server

The urgency server runs the case-based reasoning. It receives urgency request from

the nurse call system, asks current context from the context gathering server, retrieves

the most similar case in the case base and returns the urgency number back to the

nurse call system. It also receives feedback request from the nurse call system and

updates the case base with new context and urgency number.

5.6.1 Urgency Server Structure

As shown in figure 16, urgency server contains 4 modules: analyzer, adjustor,

casebase and temporary cases.

Figure 16 Urgency server structure

Analyzer manages urgency request process. It receives urgency request from the nurse

Nurse Call
System

Context
Gathering

Server

Analyzer Adjustor

Casebase

Temporary
cases

Urgency
Server

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 35

call system, asks context from the context gathering server, retrieves the most similar

case from the casebase and sends the urgency number as response to the nurse call

system. It also stores the context (case) gotten from the context gathering server in the

temporary cases, so the adjustor can retrieve it and store it into casebase.

Adjustor manages feedback request process. It receives feedback request from the

nurse call system, retrieves the correspondent context (case) from the temporary cases

and stores it with the new urgency number gotten from the feedback request into

casebase.

Temporary cases is the case library that stores the context (case) without urgency

number. These cases are formed in previous urgency request, and they are waiting for

the nurse to give feedback urgency number. This will be discussed in details in the

following section.

Casebase is the case library that stores the learned cases. A new case will be compared

to the cases in this library in order to find a most similar case.

5.6.2 Urgency Server Process

Urgency server needs to handle two processes: (1) urgency request process and (2)

feedback request process

The first process is shown in figure 17:

1. Analyzer gets urgency request from nurse call system with callId and patientId;

2. Analyzer extracts the information from the request and asks context gathering

server for the patient’s context;

3. Context gathering system sends the current context about patient with the

patientId to the analyzer;

4. Analyzer stores the current context gotten in step 3 with the callId gotten in step

1 into the temporary cases;

5. Analyzer asks the casebase to compare the current context (case) gotten in step 3

with the cases in the casebase;

6. Casebase compares the new case with the previous cases and returns a most

similar case.

7. Analyzer gets the urgency number of the most similar case in step 6 and sends it

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 36

as response to the nurse call system.

Figure 17 Urgency request process

The second process is shown in figure 18:

1. Adjustor receives feedback request from the nurse call system with callId and

new urgency number;

2. Adjustor gets information from the feedback request and asks temporary cases to

retrieve the case mapped to the callId in step 1;

3. Temporary cases gets the case according to the callId in step 1 and returns it back

to adjustor;

4. Adjustor stores the case (context) gotten in step 3 with the new urgency number

in step 1 into the casebase;

5. Adjustor returns response to the nurse call system.

C ontext G athering A nalyzer Tem porary C ases C asebaseN urse C all S ystem

Request(callId, patientId)

Request(patientId)

Response(context)

Store(context, callId)

Retrieve(context)

Return(case)

Response(urgencyNumber)

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 37

Figure 18 Feedback request process

5.6.3 Urgency Server Implementation

The urgency server is implemented in Java. There are two key processes in urgency

server’s implementation: (1) database process and (2) case-based reasoning.

Database process:

MySQL is still used in the urgency server implementation. The table for the

temporary cases in the urgency server is context_temp and is described in table 3.

Table 3 Table context_temp

Field Type Null Key Description

callId varchar(255) NO PRI callId is used to map the context

with a previous call

context varchar(1000) NO A current context

TempContextDAO is implemented in order to store and read temporary context. I

provides the following methods:

public void store(String callId, ArrayList<ContextItem> context)

public ArrayList<ContextItem> read(String callId)

Case-based reasoning:

According to 3.1.2, case-based reasoning includes four steps: retrieve, reuse, revise

A djustor Tem porary C ases C asebaseN urse C all S ystem

Request(callId, urgencyNumber)

Response

Retrieve(callId)

Store(case)

Return(context)

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 38

and retain. Urgency server runs case-based reasoning. Analyzer executes retrieve and

reuse while adjustor executes retain. It is not safe to let a normal nurse revise the old

cases frequently in practical, so this step can only be done by administer. And

administer can revise old cases though extra tool.

The challenge for case-based reasoning is how to store and compare cases. Firstly, a

self-defined approach was implemented. After found some issues in the self-defined

approach, it was stopped, and an approach based on an open source case-based

reasoning project was used in the end.

1. Self-defined approach

In this approach, XML file is used to store cases, and the cases are stored in this form:

<cases>

 <case urgency=”1”>

 <context>

 <predicate>has_diagnosis</predicate>

 <object>diabetes</object>

</context>

<context>

 <predicate>has_location</predicate>

 <object>patient_room</object>

</context>

 </case>

 <case urgency=”5”>

<context>

 <predicate>has_diagnosis</predicate>

 <object>diabetes</object>

</context>

<context>

 <predicate>has_location</predicate>

 <object>patient_room</object>

</context>

<context>

 <predicate>has_blood_pressure</predicate>

 <object>high</object>

</context>

 </case>

</cases>

Each “case” node represents a case, and a case can have several context items. If a

new case contains all the context items in one case, then the case is called matched to

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 39

the new case. There could be several cases that match the new case, the case with

highest urgency number will be chosen as the most similar case.

For example, A with diabetes, high blood pressure, high heart beat rate, and located in

patient room. According to the upper cases, both case 1 and case 2 match the new

case, but case 2 with higher urgency number, so the urgency number for this patient is

5.

However, this approach is not flexible. Normally some context items have numeric

data, such as heart beat, blood pressure and body temperature. For these context, it is

difficult determine if two cases are similar. For example, patient with heart beat 92

and patient with heart beat 90 could be similar, but this is difficult to determine based

on the algorithm above.

In order to reuse existing tools, myCBR is used instead of the algorithm above.

2. MyCBR approach

According to [37], myCBR is free open source CBR project. It is developed at

German Research Center for Artificial Intelligence. MyCBR is suitable for research,

because it is free, open source and easy to develop with. Although it does not provide

as much functionality as other commercial CBR implementation, it is still enough for

research.

In order to reduce the complexity of developing CBR application, myCBR provides

Java API as well as GUI (Graphical User Interfaces). The graphical client can be used

to setup, modify and manage a CBR project. Java API can also be used to do the same

thing.

Since myCBR provides GUI, it has very good flexibility and extendibility. Both Java

API and GUI store and retrieve project related data in a common file. User can setup

and manage a project using GUI. And urgency server can use Java API to read data

from the common file, define a new case to compare to the previous cases, get

similarity of each case and add a new case to the casebase.

The GUI usage example can be found in appendix A.

The urgency server uses myCBR Java API to do three tasks: (1) retreive previous

cases, (2) compare the new case with previous cases and (3) add new case to

casebase.

The first task can be done by using the following API. When the project is retrieved

from the common file, all the data related to the project will be retrieved, including

the casebase.

Chapter 5 Design and Implementation of the Context-aware urgency cue system

 40

Project project = new Project(data_path+projectName);

The second task can be done by using the following codes.

Retrieval retrieval = new Retrieval(concept, casebase);

 retrieval.setRetrievalMethod(RetrievalMethod.RETRIEVE_SORTED);

 Instance query = retrieval.getQueryInstance();

 setAttributesToInstance(query, newCase);

 retrieval.start();

 List<Pair<Instance, Similarity>> result = retrieval.getResult();

The third task can be done by using the following codes.

Instance instance = new Instance(concept, NewCaseName);

setAttributesToInstance(instance, newCase.getContext());

 AttributeDesc desc = concept.getAttributeDesc("urgency");

 instance.addAttribute(desc, newCase.getUrgency());

 casebase.addCase(instance);

 project.save();

Although myCBR is used in the urgency server in the end, the self-defined approach

is also kept in the urgency server project. In addition, an interface was defined in

order to exploit Java’s polymorphism. The interface is defined as:

public interface PersistentStore {

 public Case getMostSimilarCase(ArrayList<ContextItem> subjectContext);

 public void addCase(Case newCase);

}

Each CBR implementation approach implements this interface, and the system

administrator can modify the server configuration file to choose between different

approaches. Implementing in this way, the server’s extendibility is also improved. If

there is need to use a new CBR approach in the future, the new approach just needs to

implements the PersistentStore interface, and no other code in the existing system

needs to modify.

Chapter 6 Demo Evaluation

 41

Chapter 6 Demo Evaluation

In order to evaluate the context-aware urgency cue system described in chapter 5,

some tests were done. This chapter will introduce the tests based on the system

functionality described in 5.1, and evaluation will also be presented in this chapter.

6.1 Test Objective

The system main functionality has been discussed in 5.1, and they are:

1. Data source should be able to publish new status to the system;

2. It should be able to get an urgency cue from the system by sending an urgency

request;

3. It should be able to add an new case to the system by sending a feedback request;

6.2 Test Environment

As described in chapter 5, the context-aware urgency cue system needs data update

from data sources in hospital. However, the data sources are not accessible due to

practical reason. In addition, the data sources were not designed to publish updates to

this system, so an adapter is needed for every data sources. And there is not enough

time to develop adapters. So faked data sources are used to test the system.

On the other side, the nurse call system needs to be modified in order to use the

context-aware urgency cue system. This thesis focus on providing urgency cues to the

nurse call system, but not the nurse call system itself. Thus, a tester was developed to

test the context-aware urgency cue system instead of modifying the nurse call system.

In fact, the tester sends the requests to the context-aware urgency cue system

following the protocols in 5.4. If the real nurse call system sends the requests in the

same form, it should have the same test result as the tester.

Figure 19 shows the test architecture. Basically it is the same architecture as in 5.2,

but the nurse call system is replaced by tester. Location system, patient sensor and

EPR system are replaced by dummy ones individually.

Chapter 6 Demo Evaluation

 42

Figure 19 System test architecture

In the tests, all the instances (servers) are executed in the same computer, but different

ports. And a myCBR project has already been setup by using myCBR GUI. The setup

process can be found in appendix A.

6.3 Functional Test

In order to test the functional requirement, the tests in table 4 are done.

Table 4 Test cases

Test case Test procedure Expected result

Patient sensor

publishes a new

patient’s body

temperature (refer

to functionality 1)

1. The dummy patient

sensor publish a

statement “Anna

has_body_temperature

38”

There is a new context item

about “Anna

has_body_temperature 38” in

the context_item table

Patient sensor

updates a previous

patient’s body

temperature (refer

1. The dummy patient

sensor publish a

statement “Anna

has_body_temperature

The context item in

context_item table is updated

to “Anna

Tester

Dummy
location

Dummy
Patient
sensor

Dummy
EPR

Context-aware
urgency cues

system

Chapter 6 Demo Evaluation

 43

to functionality 1) 36” has_body_temperature 36”

The system

provides the

urgency number of

the most similar

case to the tester

(refer to

functionality 2)

1. Two previous cases has

been in casebase, and

Mike’s current context is

more similar to the first

case

2. The tester sends the

urgency request to the

system to ask about

Mike’s urgency

The system response the tester

with the urgency number of

the first case

The system stores

the new urgency

number with the

new case when it

receives feedback

request (refer to

functionality 3)

1. The system had

processed the procedure

in last test

2. The tester sends the

feedback request with a

new urgency number

The system stores a new case

in the casebase that records

Mike’s current context in last

test with the new urgency

number

 Test 1: Patient sensor publishes a new patient’s body temperature

As shown in figure 20, after the patient sensor publish a new patient (Anna)’s body

temperature, there is a new context item in the context_item table that shows “Anna

has_body_temperature 38”.

Figure 20 Dummy patient sensor publishes a new patient’s body temperature

 Test 2: Patient sensor updates a previous patient’s body temperature

As shown in figure 21, after the patient sensor published a new statement, Anna’s

Chapter 6 Demo Evaluation

 44

body temperature changed to 36 in the context_item table.

Figure 21 Dummy patient sensor updates a previous patient’s body temperature

 Test 3: The system provides the urgency number of the most similar case to the

tester when the tester sends the urgency request

As shown in figure 22, the left upper part is the first case, the right upper part is the

second case, and the bottom part is the current context about Mike. It is easy to

determine that Mike’s current context is more similar to the first case. After the tester

sent the urgency request to ask for Mike’s urgency, the system responses with the first

case’s urgency number, which is “1”. The tester receives the response and prints it out,

as shown in figure 23.

Figure 22 Situation of casebase and Mike’s context before urgency request

Chapter 6 Demo Evaluation

 45

Figure 23 Response for urgency request

 Test 4: The system stores the new urgency number with the new case when it

receives feedback request

Based on the procedure of the last test, the tester sends the feedback request to give

the new urgency number “6” to the system. After the system received the feedback

request, it stores Mike’s context as in the bottom part of figure 22 with the new

urgency number “6” into the casebase. As shown in figure 24, the new case can be

seen from the myCBR GUI.

Figure 24 A new case is stored after the system received a feedback request

6.4 Evaluation

Based on the dummy data and tester, the system has been proved to be able to work as

we expected. It fulfills the functionality stated in 5.1.

Although the systems passed the tests that have been described in this chapter, it is not

proved that the system is qualified to use in practice. Since the system was tested

without real data and real environment, the system still needs much more tests in a

real hospital environment.

Chapter 7 Discussion

 46

Chapter 7 Discussion

Functionally, the context-aware urgency cue system works as it is designed. It listens

to the data sources’ change and updates the context of the patients. It realizes

context-aware. On the hand, the context-aware urgency cue system is able to execute

the case-based reasoning. To achieve this, myCBR is used in the system. myCBR is

enough for research, but it may not work as well as desired in practice. So it may be

necessary to use a commercial myCBR implementation in real hospital.

The system built in this thesis is flexible and extendible. As shown in appendix A,

users can use the GUI to set up a new project and define how to calculate the

similarities by themselves. And according to appendix B, the system is easy to add

other data sources by modifying the configuration file. Thus, this system can be used

in different departments in different hospitals.

The tests in chapter 6 are actually far less than enough. In order to test case-based

reasoning system, an amount of cases are needed. However, there is not enough time

to create lots of cases. So the case base is not big enough to test the accuracy of the

case-based reasoning result.

In addition, there is no real data to test with. Since there is no healthcare staff

involved in this thesis, the test cases are too naive. So if it is possible, it is better to

test the system with real data in hospital.

In order to use this system, the existing data sources need to be modified or add extra

adapters. That is the same situation for the nurse call system. The nurse call system

needs to be modified as person-oriented architecture in order to exploit the benefits of

context-aware and case-based reasoning.

Another issue with case-based reasoning is that it needs a relatively long time to setup

the case base at the first beginning. Because there is almost no case in the case base

when the project is first set up. The nurses may suffers in the first beginning, because

they cannot get valuable urgency cues, but have to give a lot of feedback in order to

add more cases into the case base. However, this could be done in the testing stage.

Chapter 8 Conclusion

 47

Chapter 8 Conclusion

In this thesis, a context-aware urgency cue system was built up in order to provide

clues to nurses along with the nurse calls. The context-aware urgency cue system

includes context-aware and case-based reasoning technologies. It requires the nurse

call system has a person-oriented architecture. It also requires data sources in the

hospital, such as location system and EPR, has ability to publish new updates

following a specific protocol. So adapters for each existing data source may be

needed in the future. This system has been tested roughly, and real data from hospital

is needed to test the system. If it is possible, it is better to test it in a hospital.

References

 48

References

[1] C.B. Jensen, ”The Wireless Nursing Call System: Politics of Discourse,

Technology and Dependability(…)”, CSCW, 15 (5-6), pp 419-441, 2006.

[2] Scholl J, Hasvold P, Henriksen E, Ellingsen G. Managing communication

availability and interruptions: a study of mobile communication in an oncology

department. Proc PERVASIVE; 2007.

[3] L. Kristiansen, “Nurse Calls via Personal Wireless Devices: Some Challenges

and Possible Design Solutions”. In: Proc CBMS 11.2011: pp. 1-6.

[4] Best, BEST IQ , Product Information, http://www.best.se/?id=647, (Accessed in

May, 2014)

[5] Anind K. Dey. Understanding and using context. Personal and Ubiquitous

Computing (2001) 5: 4-7

[6] Davy Preuveneers (2010). Context-aware adaptation for ambient intelligence.

ISBN 978-3-8383-4477-5, pp. 1-9

[7] Davy Preuveneers (2010). Context-aware adaptation for ambient intelligence.

ISBN 978-3-8383-4477-5, pp. 15-19

[8] Sen Dipankar, Sen Prosenjit, Das Anand M. (2009), RFID For Energy and

Utility Industries, PennWell, ISBN 978-1-59370-105-5, pp. 1-48

[9] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowl. Acquis., 5 (2): 199-220, 1993.

[10] H. Chen, F. Perich, T. Finin, A. Joshi. Soupa: standard ontology for ubiquitous

and pervasive applications. International conference on mobile and ubiquitous

systems: networking and services. pp. 258-267. 2004.

[11] X. H. Wang, D. Q. Zhang, T. Gu, H. K. Pung. Ontology based context modeling

and reasoning using OWL. pp. 18-22, 2004.

[12] Anders Kofod-Petersen. A case-based approach to realizing ambient intelligence

References

 49

among agents. Doctoral theses at NTNU, 2007:97.

[13] Aamodt A, Plaza E. Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AI Communications 7, 1994, pp 39-59.

[14] S. A. Grandhi, R. P. Schuler, Q. Jones. Telling Calls: Facilitating Mobile Phone

Conversation Grounding and Management. CHI 2011, May 7-12, 2011.

[15] Grandhi, S. A., Schuler, R. P., & Jones, Q. (2009). To answer or not to answer:

that is the question for cell phone users. CHI '09 (EA). ACM Press.

[16] F. Ongenae, D. Myny, T. Dhaene, T. Defloor, D. V. Goubergen, P. Verhoeve, J.

Decruyenaere, F. D. Turck. An ontology-based nurse call management system

(oNCS) with probabilistic priority assessment. BMC Health Services Reserch

2011.

[17] Miller ET, Deets C, Miller R. Nurse call and the work environment: lessons

learned. J nurs Care Qual 2000, 15 (3): 7-15.

[18] Van Hoeche S, Decruyenaere J, Danneels C, Taveirne K, Colpaert K, Hoste E,

Dhoedt B, De Turck F. Service-oriented subscription management of medical

decision data in the intensive care unit. Methods of information in Medicine

2008, 47 (4): 364-380.

[19] Colpaert K, Van Belleghem S, Benoit D, Steurbaut K, Van Hoecke S, De Turck F,

Decruyenaere J. Has information technology finally been adopted in intensive

care units? Proceedings of the 22
nd

 Annual Congress of the European Sciety of

Intensive Care Medicine: Oct 11-14 2009. Vienna, Austria 2009, 235.

[20] Tentori M, Segura D, Favela J. Monitoring Hospital Patients Using Ambient

Displays. Mobile Health Solutions for Biomedical Applications New York.

Medical Information Science Reference. 2009, 143-158.

[21] Klinov P. Pronto: a non-monotonic probabilistic description logic reasoner.

Proceedings of the 5
th

 European Semantic Web Conference: June 1-5 2008.

Tenerife, Spain 2008. 822-826.

[22] J. Klemets, L. Kristiansen. A pervasive system for communicating urgency cues

to health care workers. 24
th

 International Conference of the European Federation

for Medical Informatics Quality of Life through Quality of Information.

[23] Begum S, Ahmed M. U, Funk P, Xiong N, Von Scheele B. A case-based decision

support system for individual stress diagnosis using fuzzy similarity matching.

Computational Intelligence, 25, 180-195.

References

 50

[24] C. Marling, S. Montani, I. Bichindaritz, P. Funk. Synergistic case-based

reasoning in medical domains. Expert Systems with Applications 41 (2014).

249-259.

[25] S. Begum, M. U. Ahmed, P. Funk. Case-based systems in health sciences – a

case study in the field of stress management. Wseas transactions on systems,

issue 3, volume 8, March 2009.

[26] A. R. Hevner, S. T. March, J. Park, S. Ram. Design Science in Information

System Research. MIS Quarterly Vol. 28 No. 1, pp. 75-105. March 2004

[27] C. Hibbs, S. Jewett, M. Sullivan. The Art of Lean Software Development. ISBN

978-0-596-51731-1. pp 1-24

[28] Joel Spolsky. How Trello is different [Online]. From:

http://www.joelonsoftware.com/items/2012/01/06.html [Accessed: May 2014]

[29] Wikipedia. GitHub [Online]. From: http://en.wikipedia.org/wiki/GitHub

[Accessed: May 2014]

[30] J. Klemets, T.E. Evjemo, L. Kristiansen, “Designing for Redundancy: Nurses

Experiences with the Wireless Nurse Call System”, MEDINFO, pp 328-332,

2013.

[31] X. Franch, P. Botella. Putting Non-functional Requirements into Software

Architecture. Software Specification and Design. April 1998. pp. 60-67

[32] W3C OWL Working Group. OWL 2 Web Ontolog Language Document

Overview (Second Edition). 11 December 2012.

[33] T. Gu, H. K. Pung, D. Q. Zhang. A service-oriented middleware for building

context-aware services. Journal of Network and Computer Applications 28 (2005)

1-18.

[34] IBM, Eurotech. MQTT V3.1 Protocol Specification.

[35] Mosquitto [Online]. From: http://mosquitto.org/. [Accessed: May 2014]

[36] Paho [Online]. From: http://eclipse.org/paho/. [Accessed: May 2014]

[37] A. Stahl, T. T. Roth-Berghofer. Rapid prototyping of CBR applications with the

open source tool my CBR. Computer Science Volume 5239, 2008, pp 615-629

http://en.wikipedia.org/wiki/GitHub

Appendix

 51

Appendix A Project Setup Example by using

myCBR GUI

myCBR provides GUI to setup and manage a CBR project. There are different GUI

clients based on Linux, MAC and Windows platform. The clients can be done on

myCBR’s website: http://www.mycbr-project.net/download.html. On this website,

detailed documentation about the GUI can also be found. This appendix will

introduce the setup of the project that is used in chaper 6.

1. Create a new project. This will create a .prj file, and this will be shared between

the GUI and Java API;

2. Create a new concept by clicking the “New concept” button;

http://www.mycbr-project.net/download.html

Appendix

 52

3. Add new attribute “has_blood_pressure” by clicking the “Add new attribute”

button, set the attribute type as “Float”, set minimum as 0 and maximum as 300;

4. Add new similarity function to this attribute by clicking “Add new function”.

Because “has_blood_pressure” is a numeric attribute, it needs to be set a

similarity function. Add a similarity point, set distance to be 20 and similarity

value to be 0. This defines a linear function as the following figure. The

similarity of this attribute is computed based on this function. And similarity of

case is computed based on all its attributes’ similarities.

Appendix

 53

5. Add new attribute “has_body_temperature”, set it as type “Float”, set minimum

as 0 and maximum as 50;

6. Follow the same procedure in step 4, add similarity function for attribute

“has_body_temperature”. Add similarity point “distance 1, similarity 0”;

7. Add new attribute “has_diagnosis”, set it as type “Symbol” and add “diabetes”

and “heart_attack” as allowed values; There is no need to add similarity function

for symbol type attributes. If two cases have the same value of “has_diagnosis”

attribute, then the similarity for this attribute is 1. Otherwise is 0.

Appendix

 54

8. Add new attribute “has_heart_beat”, set it as type “Float”, set minimum as 0 and

maximum as 200;

9. Follow the same procedure in step 4, add similarity function for attribute

“has_heart_beat”. Add similarity point “distance 20, similarity 0”;

10. Add new attribute “has_location”, set it as type “location” and add

“operation_room_1”, “patient_room_1” and “toilet_1” as allowed value;

11. Add new attribute “urgency”, set it as type “Integer”, set minimum as 0 and

maximum as 10;

12. Add similarity function to the concept “PatientCases”. Set the fields as the

following figure. “Discriminant” determines if this attribute should be

considerred when myCBR computes the similarity of cases. “Weight” determines

how important this attribute is when myCBR computes the similarity of cases.

SMF is the similarity function that has been defined in the previous steps for

each attribute.

Appendix

 55

13. Add case base. Firstly select “Case Bases” label. And then add case base by

clicking the “Add case base” button;

14. Add the first case instance. Firstly select “Instance” label. And then click “Add

case base” button. In the following view, fill in the information as the following

figure;

Appendix

 56

15. Add the second case instance. Click “Add case base” button again. In the

following view, fill in the information as the following figure;

16. Save the project. And the project setup is accomplished.

Appendix

 57

Appendix B System deployment

The context-aware urgency cue system includes context gathering server, urgency

server and broker. All the three servers need to be deployed.

1. Moquitto is used as the broker. It can be downloaded on the Internet, and it is

free. Other brokers can also be used in stead of Moquitto, but they have to follow

MQTT.

2. Context gathering server is implemented in Java, so it can be executed by

running the .jar file. Before running this file, the configuration file needs to be

modified.

In the following configuration, “mqtt_address” is the broker’s address; “mqtt_name”

is the name of context gathering server in the MQTT communication;

“mqtt_subscribe” is the list of subscribing data sources, they are separated by “;”;

“port” is the port this server listens to, and the urgency server should ask context of a

patient though this port; “db_url” is the url of database that stores context items;

“db_user” is the user name of database; “db_passwork” is the passwork of the

database; “db_table_context_item” is the table that describes context item;

mqtt_address=tcp://localhost:1883

mqtt_name=server

mqtt_subscribe=location;patientSensor;epr

port=7979

db_url=jdbc:mysql://localhost/context

db_user=root

db_password=

db_table_context_item=context_item

3. Urgency server is implemented in Java, so it can be executed by running the .jar

file. Before running this file, the configuration file needs to be modified.

In the following configuration file, “urgency_port” is the port that is used by the nurse

call system to send urgency request to; “feedback_port” is the port that is used by the

nuse call system to send feedback request to; “context_gathering_ip” is the IP of the

context gathering server; “context_gathering_port” is the port of the context gathering

Appendix

 58

server; “db_url” is the url of data base that stores the temporary cases; “db_user” is

the user name of database that stores the temporary cases; “db_password” is the

password of the database; “db_table_context_temp” is the table describes the

temporary cases; “myCBR_path” is the path of the myCBR project; “myCBR_project”

is the name of the myCBR project; “myCBR_concept” is the concept name;

“myCBR_casebase” is the casebase name;

urgency_port=7980

feedback_port=7981

context_gathering_ip=127.0.0.1

context_gathering_port=7979

db_url=jdbc:mysql://localhost/context

db_user=root

db_password=

db_table_context_temp=context_temp

myCBR_path=/Users/which/Documents/workspace/Urgency/

myCBR_project=Urgency.prj

myCBR_concept=PatientCases

myCBR_casebase=casebase

A myCBR project has to be set up before executing the urgency server. The way to set

up a myCBR project can be found in appendix A.

