
Technical Debt Trade-off - Experiences from
Software Startups becoming Grownups

No Author Given

No Institute Given

Abstract. Software startups are software-intensive early-stage compa-
nies that have higher growth rates compared to other startup breeds.
Their time to market is often regarded as short and decisive in establish-
ing their product/service success, thus leading to short-cuts in software
engineering decisions. High accumulation of the technical debt at early
stages has been documented from previous investigations. How startups
rapidly becoming grownups perceive technical debt, make the primary
goal of our study. We conducted semi-structured interviews with six tech-
nical and executive officers from five software startups, selected using
purposive sampling. We identified four critical perceptions (managing,
accepting, avoiding, ignoring technical debt) which permit them to make
technical debt trade-offs. We also found that no one size fits all. Star-
tups need to make deliberate educated decisions on how to use technical
debt in their advantage. This study, throughout its recommendations,
provides an initial road-map for future startups.

Keywords: Software Startups · Technical Debt · Software Intensive

1 Introduction

A startup is commonly defined as newly established companies with small teams,
limited resource and aim for rapid scaling business models [11, 2] . At the early
stage, the primary goal is to meet a marketplace need by developing a viable
business model for products, services, processes, or platforms. The failure rate of
startups is commonly high; however, successful startups have had a major impact
on the industry [21]. This is particularly true for startups developing software-
intensive products, which have shown higher rates of scaling [6], making them
stand out.

Facing Technical Debt1 (TD), is becoming even more of an urgent need for
many software startups [24, 9, 3]. Empirical evidence on how TD is perceived
from software startups is still meager, and the need for empirical evidence is
reported from [1]. Software startups are known to accumulate TDs via their
early-stage prototyping and product development, which eventually requires the
companies to pay the debt, causing initial growth hinders productivity [12]. At

1 Metaphoric concept of TD has been first introduced by Ward Cunningham [8] in
1992. Read more on Section 2 about its relation to software startups.



2 No Author Given

the point in time when startups shifting to an established stage in term of fi-
nance and resources, the management of such TDs becomes significance from
managerial perspective. Compared to previous efforts studying TDs at different
startup phases, the understanding of TD management at such transitions is very
limited. We aimed at understanding effective approaches for managing TDs for
startups in the scaling transitions. As the first step, we formulated the following
research question:

RQ: How is Technical Debt perceived in Software Startups becoming Grownups?

To address the RQ, we designed a survey-based semi-structured interview,
conducted with six Chief Executive Officer (CEOs) and Chief Technical Offi-
cers (CTOs) from five software startups, selected using purposive sampling. We
focused on those startups that are almost or have already made a successful
transition towards becoming Grownups2.

Aligned to previous studies findings, we also noticed that TD is deliberately
embraced as long as product/service delivery deadlines and good enough quality
are met. Furthermore, we found that a TD trade-off is required in the transition
from early stages to grownup stages. Eventually, we identified (1) Managing TD,
(2) Accepting TD, (3) Ignoring TD, (4) Avoiding TD are the main approaches
perceived from TS to achieve the TD trade-offs. Providing empirical evidence
on how transitioning startups have been able to conduct a smooth transition
from Minimum Viable Products (MVPs) towards qualitative product/services
can help future practitioners and entrepreneurs make educated decisions.

The rest of this paper is organized as follows: In Section 2, we describe the
background and related work. Our startup cases context is described in Section
3.2. Our research methodology is described in Section 3. The results are presented
in Section 4. Finally, we discuss the implications and limitations of our work in
Section 5. Whereas, the conclusions and future work perspectives are presented
in Section 6.

2 Background and Related Work

2.1 Software Startups ecosystems, development and life-cycle
phases

The failure rate of startups is commonly high; however, successful startups have
had a major impact on the industry [21]. Typically startups operate and evolve
in an ecosystem with connections to various stakeholders, from various types
of investors to incubators, accelerators and third party vendors. Startups typ-
ically undergo several development phases: Ideation (Product or Service idea),
Concepting (Mission and Vision), Commitment (Team with the initial product),

2 Grownups are well established companies with market revenue being primary source
of income. Read more about startup life-cycle phases on Section 2.1



Title Suppressed Due to Excessive Length 3

Validation (Iteration and testing the initial idea), Scaling (Focus on key perfor-
mance indicators), and Establishment (Increasing growth and market potential)
[7].

As shown in Figure 1, the transitions of startups from one stage to another
stage can be characterized under different categories. Finance is one of the most
important factors for startup survival. In the early stages, Funding is commonly
based on self-contributions, in the form of self-investment (by bootstrapping be-
tween jobs) or loans (from relatives or friends). Other funding options in the
early stage of startup formation can come from pre-seed or crowdfunding. In
later stages, when an MVP has been developed, and iteration with the market
is a must (do or die approach), the need for larger funding amounts from ven-
ture capitalists (VCs) and angel investors (AIs) becomes obvious. Finally, if the
startup has developed a fully operational product or service, then the market,
either local or global, decides the startups growth potential.

Fig. 1. Startup ecosystem, development and lifecycle phases

As shown in Figure 1, the transition of startups is also marked by the method-
ological evolution, from ad-hoc or customized development practices [17] to more
principled approaches. A lean startup is a popular methodology among startups
at early-stages and validation stages [20]. It focuses on shortening the product
development cycle, through iterative product releases, market experimentation,
and validation. Meeting the needs of early customers should reduce later failure
risks of large investments. Teams that adopt a lean startup strategy develop a
continuously changing MVP [19]. The MVP, comprising the technological Proof
of Concept (PoC), helps identify product/service potentials with the startup lim-
ited resources. Nevertheless, if the software startups desire to transition towards
the growth phase, it has to establish itself a so-call Grownup stage. The Grownup



4 No Author Given

stage inherits much of the technological features, benefits, drawbacks from its
successful MVP predecessor, now becoming a professionalized product/service
fulfilling a specific market need.

2.2 Technical Debt

The metaphoric concept of TD has been first introduced by Ward Cunningham
[8] in 1992. Becoming more of an interesting research area, further refined defi-
nitions have been provided from several future authors, such as Brown et al. [5]:
”developers sometimes accept compromises in a system in one dimension (e.g.,
modularity) to meet an urgent demand in some other dimension (e.g., a dead-
line), and that such compromises incur a ”debt”: on which ”interest” has to be
paid and which the ”principal” should be repaid at some point for the long-term
health of the project.”. In early 2011, Carolyn Seaman [23] report issues associ-
ated with technical debt, and propose a technical debt management framework
as well as a research plan for validation. Kruchten [15] presents the TD from a
solid consolidated theory and practice standpoint. The author araises the need
and requirement for more tools and methods to identify and manage TD. A prac-
tical evaluation of how TD might impact real software project throughout their
lifecycle is given from Yuepu Guo et al. [14]. The authors evaluate TD effects
and try to emphasize what research methodologies can be used to investigate
TD management.

A systematic mapping of TD and its management has been provided from
Zengyang Li [16], consolidating the TD term usage and identifying a need for
more empirical studies with high-quality evidence from industry practices in
managing TD.

2.3 Software Startups becoming Grownups and Technical Debt

It is only in 2013 and 2016 that the need for conducting TD research in TS con-
text has been reported from Christophe et al. [9] and Unterkalmsteiner et al. [1].
Based on the open questions and product road-map recommendation needs to be
stated by Unterkalmsteiner et al., many researchers started conducting empirical
investigations in this area. Their concern has primarily been on how is technical
debt introduced in different software engineering knowledge areas (code, design
and architecture, environment, knowledge distribution and documentation, and
testing) in TS context, identified by Tom et al[24]. For example, Gralha et al.
in [13] states the following: ”Improved ability to handle technical debt results in
a higher ability to prioritize requirements with greatest customer impact.”, pro-
viding us with a solid theory about dimensions (Requirement artifacts, Product
quality, Knowledge management, Technical debt, Requirements-related roles)
that determine product requirement practices in startups. Whereas, Max et al.
[10] have made an empirical evaluation of how programming language choices
might affect the level of technical debt introduced in small teams and startups.
Moreover, studies reporting empirical evidence on startup product quality rel-
evance and when TD is commonly revealed from startups in industrial setting



Title Suppressed Due to Excessive Length 5

[9], help us make research decisions on which startup phases require more atten-
tion in managing TD. Besker1 et al. [3] also report empirical evidence on how
the taking on or embracing of TD is deemed to be an essential option for TSs.
The authors also analyze how the TD is accumulated and refactored at different
stages of startup development to provide good enough levels of quality.

3 Research Methods

We aim to understand the perception of technical debt in Software Startups
becoming Grownups. Therefore, the RQ: How is Technical Debt perceived in
Software Startups becoming Grownups?, guided our investigation.

In order to gather and to interpret evidence for answering our research
questions, we devised a qualitative approach. To answer it, we conducted semi-
structured interviews with six CEOs/CTOs from the five TS described in detail
in Section 3.2.

3.1 Case selection

We were able to collect the sample data from a significant event where partici-
pation involved 100+ startups. The sample population has been selected using
a non-probability sampling technique. The demographics and startup context is
reported in the upcoming Section 3.2.

3.2 Case Demographics

We present in this section a brief context of the startup companies that par-
ticipated in our study. We collected data from the startups’ online resources
after initial contact (email or face-to-face acquaintance) and then later on from
CEOs and CTOs. Demographics of the five software startups are reported in
Table 1. It is worth noting that all the interviewees are presently co-founders of
the startups.

We have further summarized each startup context and their present life-cycle
phase in Table 2.

3.3 Interview design

We performed a pilot study in constructing our interview template, which was
used for later data collection from all the cases. This allowed us to focus our
interview questions in connection to the RQ. The interview process took place
in three parts. The first part of the survey primarily addressed demographic
information about the startup. The second phase focused more in a broad context
on software and technological aspects of the startup. The third part went in
detail the perception of technical debt each of the samples had. Dividing the
interview into different parts helped us in guiding the startups in expressing their
standpoints, without being biased from our expectations. The approach followed



6 No Author Given

Table 1. Software startup sample demographics.

Table 2. Startup context.



Title Suppressed Due to Excessive Length 7

does not compromise the data gathered since from the start, we planned a semi-
structured interview having little control over the samples chosen. Although the
planning of the interviews was done in collaboration between the two authors,
its execution was performed by only one of them and afterward peer-reviewed
again, as further discussed in Section 3.4.

3.4 Data Collection

In order to answer our RQ and based on recommendations from Runeson [22],
we collected data from semi-structured, face-to-face interviews. We interviewed
eight CTOs/CEOs from six different startups located in the same country and
conducting geographically proximate business activities with a high tech product
focus. The interviews lasted for 60 minutes and were recorded for later transcrip-
tion. To facilitate the latter process, we utilized online tools (sonix.ai), delivering
an approximate accuracy of around 95% in English transcriptions.

The interviews aimed to understand the perception of TD from startup
founders, who are commonly represented by both CEOs and CTOs as reported
in Table 1. Since both these entities represent the primary stakeholders and
their interest in having a smooth transition from MVPs towards qualitative
product/services while migrating in the establishment phase. This being said,
we deliberately overlooked the possibility to interview also the hired developers
of the companies, because they did not have any stakeholder interest. Further-
more, during the second phase of the interview, we discovered that in most cases,
software engineering practice decisions were made top-down.

As explained in Section 3.3, we split our interview into three different parts,
1) demographic questions (lasting 10-15 min) 2) General software engineering
practices questions (lasting 15-20 min) 3) TD perception questions. The specific
questions for each part are reported in Table 3.

3.5 Data Analysis

After carefully collecting the data, in order to obtain significant evidence that
would help us answer our RQ, we used thematic analysis approach [4], consisting
of identifying recurring patterns and themes within the interview data.

The steps followed in conducting the systematic analysis consisted in:

1. Reading the transcripts. This step initially involved quick browsing and
correction of the automatically transcribed data from the audio recordings.
We made quick notes about first impressions. Later on, authors reviewed
more carefully the transcribed data by reading carefully, line by line.

2. Coding. During this step, we focused on choosing and labeling relevant
words, phrases or sentences and even larger text fragments or sections. The
labels constructed reported more about opinions and perceptions related to
TD. We primarily looked for repetitive and unexpected answers compared
to previous theories. We tried to code as much as possible regarding the
TD phenomena. To mitigate the biasing, the two authors worked separately
during this coding process.



8 No Author Given

Table 3. Interview parts and questions.

3. Creating themes. After gathering all the codes, we decided on the most
relevant ones and created different categories, also defined as themes. Many
initial systems from the previous step were either dropped or merged together
to form new ones.

4. Labeling and connecting themes. During this step, we decided on which
themes are more relevant and defined appropriate names for each of them.
Furthermore, we also tried to identify relationships among the themes.

5. Drawing the results summary. After deciding over the theme importance
and hierarchy, we drew a summary of the results, Figure 2.

6. Writing results. Our results comprised different themes reflecting the TD
perceptions of the participants to the study. Based on them, we wrote the
results answering our RQ in Section 4 and discussing them compared to
previous studies in Section 5.

To fulfill the first five steps, we used thematic coding tools, such as NVivo
12 [18].

4 Results

During our analysis, we identified several factors that influenced how TD is
perceived by the CEOs and CTOs of the startup while they are transitioning
to the TG phase. Thus we created five major categories, namely TD trade-off
(Section 4.1), Managing TD (Section 4.2), Avoiding TD (Section 4.3), Accepting



Title Suppressed Due to Excessive Length 9

Fig. 2. Themes summary.

TD (Section 4.4), and Ignoring TD (Section 4.5), each helping to answer our RQ
in the following subsections.

4.1 TD Trade-off

In most cases, we noticed a repetition of the TD trade-off term. The term itself
was mentioned from the interviewer, reporting positive connotation from the
interviewees. This demonstrates that the perception of the TD is not totally
negative or positive, but it is commonly agreed that a TD trade-off is required
in the transition from early to grownup stages. For example, the CTO of Case 5
explicitly states: ”We accept TD can happen, take responsibility for it and this is
all about trade-offs we need to make in achieving deadlines. Our team is highly
deadline driven.”. Yet another case, number 3, told the following when asked
if they wanted to avoid TD: ”No, we need to move fast. We need to try things
and them. So we decided to make a trade-offs.”. We obtained similar answers
from the rest of the cases. Thus, here is where we identified different approaches
(Managing TD, Accepting TD, Ignoring TD, Avoiding TD) part of TD trade-off
while analyzing the perception of the CEOs/CTOs.



10 No Author Given

4.2 Managing TD

In many cases, TD management is reported as the most common option. The
CEOs from two startups (Case 3, 5) emphasize the relevance the increased aware-
ness helped them have better control over the TD. This was common even in
large contingents of development teams adopting paired programming approach
to software development. Whenever a developer has deliberately introduced TD
to certain modules, he would raise a flagship to make other team members aware
of the situation; more precisely : ”We sort the story cards and set aside team
time to simply address technical debt. Everybody on the team tends to know in
the project what is the state of the code and where are the challenges or things
to be solved. So if somebody says hey we’re going to write a story card its going
to change this part of the code. Somebody might raise their hand and say hey we
really need to improve that code.”

In Case 5, TD trade-off was accepted, whenever deadlines had to be met.
However, team members were fully aware of the situation and accepted that TD
issues had to be dealt with later on. Likewise, managing and isolating code is-
sues modules with low coupling helped in controlling TD, as reported in Case 3.
The same case also emphasizes the possibility to mitigate TD whenever having
backend software architectures, which can be easily modified and scaled. Fur-
thermore, we found a recurring pattern, readable code, from all cases, and that
was made part of managing TD. Readable code allows the developers to quickly
unfold whenever TD is introduced to the software system, without requiring
extensive documentation. This approach was considered of immediate relevance
from all our cases under investigation.

4.3 Avoiding TD

We found that avoiding TD is primarily perceived as positive when sacrificing
software features seemed to be a good option. Case 3 reported that: ”We can
develop anything but not everything within the given time limitations”. However,
in Case 1, avoiding TD was strongly connected with exceeded deadlines, or
good software practices producing products that don’t match the end-user needs.
We found that early on architecture, programming language, and technology
choices helped the software startups in taking precautions to avoid TD, Case 2.
Although, it was commonly accepted from all cases that a trade-off has to be
accepted and that it was hard to totally circumvent scenarios introducing TD.
Highly creative senior level developers are perceived as a particular case that
can elegantly fulfill the requirements while introducing marginal levels of TD.
Case 1 mentions that it is enough to tell them why you are building it and them
help you figure out what to build.

4.4 Accepting TD

Although the acceptance of the TD term was a mere surprise for us, we discov-
ered that the acting along with the TD was considered to be beneficial. Case 2,



Title Suppressed Due to Excessive Length 11

reported that requirement validation could be best achieved when introducing
dummy MVPs that can be thrown away due to the large amount of TD intro-
duced. Furthermore, the same case reports that TSs can widely accept TD if
relying on easy to manipulate backend architectures. Accepting TD is perceived
to be inappropriate, Case 3 reports: ”We always use best approaches, although
we accept that we cannot achieve perfect software.”, although with drawbacks
discussed in the earlier Section 4.3. However, in Case 4 the CEO stated the fol-
lowing in very early startup phases: ”We took lots of shortcuts. Mmhmm. So it
was all about shortcuts to get to the first prototype sooner. Okay. So at that point
we didn’t care about robust engineering.”. Continuing statement at a later stage
of their startup development: ”But now that we are getting bigger, we are trying
to use good software techniques and like to make sure that everything is robust.
We are trying to make all the code follow all the different guidelines. But, we
still agree we need to take shortcuts and make trade-offs from time to time.”

4.5 Ignoring TD

We found that this category was strongly associated with a lack of TD awareness
from the team, Case 3. Planning ahead to throw away prototypes can also lead
to ignoring TD for those modules totally. Example made earlier with dummy
MVPs from Case 2. However, to differentiate with the previous example, when a
startup decides to ignore TDs they have made a deliberate long-lasting decision,
which might or might not affect the product during its operational lifetime, but
the reason for doing so is lack of team competence which is not possible for
them to compensate. Nevertheless, ignoring TD might still be part of trade-offs
in startups when still in PoC phase and software is not in production stage. case 2
elegantly reported this scenario while stating: And we were pretty convinced that
we could just do this. And we were told over and over again by manufacturing
just no, you can’t. It’s really hard. When we finally realized, after taking several
shortcuts, oh, crap, this is really hard. We can’t do this or it’s going to take two
years if done appropriately. The failed prototype allowed us to learn internally
about factors towards achieving our goal. Thus, despite not being fully aware
about the TD, even when they became aware, ignoring it at this phase proved
to be efficient and looking for competence elsewhere, joint venture, seemed to
be the successful option.



12 No Author Given

Key findings:

1. All startups transitioning to grownups stages accept that TD trade-
offs are crucial and widely accepted, although they have different ap-
proaches to cope with TD. (Section 4.1)

2. Managing TD is perceived to be an essential aspect of the TD trade-
offs to be made in order to meet deadlines. Accountability for improv-
ing the software system is to be dealt with afterward. Readable code
and flexible software architectures help along the process. (Section
4.2)

3. Avoiding TD can have positive as well as a negative connotation. If
startups are able to cut-off features of their products, then it is recom-
mended for them to try to avoid TDs, while applying good software
development practices. However, it is commonly accepted by most of
the cases that avoiding TD in sacrificing field validation can bring
more harm than benefit to the startups. (Section 4.3)

4. Accepting TD is found in two main beneficial scenarios: (1) acting
along with TD to validate requirements (2) flexible backend software
architectures that allow for rapid change. (Section 4.4)

5. Ignoring TD is primarily affected by lack of awareness and lack of
competence. (Section 4.5)

5 Discussions

5.1 Early-stage technical debts vs. Grownup technical debts

In this section, we compare our findings with existing knowledge on TD in soft-
ware startups. Although the study focuses on a particular niche context, startups
transitioning to grownups, we find our results to have unfolded some important
unnoted differences from previous sources. Thus, we can provide startups unique
recommendations. Nevertheless, limitations of the study exist and are also men-
tioned in this section.

Many of the previous studies have focused on covering and addressing several
startup life cycle phases by unfolding the TD challenges and benefits [3]. In our
case, we focus more on a specific moment in time borderline to the transitioning
from software startups to grownups. This is of significant interest because not
knowing how to cope with TD at this later stage to make the big decisive jump
has higher financial and technological risks. The perception of TD of succeeding
startups having made the jump to grownups can be a winning and compelling
choice for future ones. Another important reason for studying borderlines is also
because it is there when disruptions are observed and successfully overcoming
TD thresholds is required [3].

We believe that TD while transitioning to grown up company has a different
perception compared to TD while at very early stage. Despite the risk here being



Title Suppressed Due to Excessive Length 13

bigger the companies use their experience to make more deliberate decisions in
avoiding, managing, accepting or even ignoring TD.

Key recommendations:

1. TD is going to be your best friend or best enemy, so making the right
Trade-offs is crucial. No one size fits all.

2. Cut-off software features if you require less TD. This workaround can
still allow software startups to meet deadlines without compromising
future updates.

3. Accept TD and make it work in your advantage. Build as many dummy
MVPs as possible until you are sure about requirements.

4. Hire if possible at least one highly creative senior developer. If they
understand why you want to build the system, they can also tell you
what you need to build.

5. Play it smart. Don’t just ignore TD, because you are unaware or be-
cause you think you lack the competence. As per definition, the debt is
later to be paid, unless you decide it is useful in staging your product.

5.2 Threats to validity

The study focuses on highlighting perceptions about TD in software startups
transitioning to grownup stages. Although, we have a limited number of par-
ticipants, the qualitative nature of the study permitted us to obtain legitimate
results that focus on deeply understanding the perceptions rather than evaluat-
ing them on a superficial level.

As often reported in qualitative research [22] main threats to validity related
to :

– External Validity. Related to the sample size and limited context under
consideration. We mitigated this validity while choosing software startups
before, during, and after transitioning to grownup stages. This phase dis-
tribution fits more to our study than choosing a broader range of startup
segments or geolocations. Same applies to the roles of the interviewees who
are purposely selected to be co-founders of the startups, with major stake-
holder concern in the product/service and startup success. Although this
doesn’t generalize the results obtained as of yet, we plan in the future to re-
cruit further samples from different areas and use data triangulation (follow
up questionnaires) to improve our understanding of the data.

– Internal Validity. Internal threats to validity in qualitative studies are
related to data extraction and analysis. We tried to mitigate this threat in our
case by carefully coding and categorizing the transcriptions and gradually
shrinking to the most significant data.

– Construct Validity. Construct validity in our cases is related to the pre-
vious knowledge about TD. Nevertheless, the maturity level of the startups



14 REFERENCES

proved that they were all very well acquainted with the concept, and this
threat to validity was almost non-existing.

6 Conclusions and future work

We focused on understanding how software startups transitioning in grownup,
perceive TD. After interviewing five different software startups and six of the
co-founders, holding either CEO or CTO roles, we identified four important
perceptions (Managing TD, Avoiding TD, Ignoring TD, Accepting TD) which
permit them to make TD trade-offs. We also found that no one size fits all.
Startups need to make deliberate educated decisions on how to use TD in their
advantage. This can only be obtained if they have a clear view of the options to
cope with TD.

This study also provides a set of recommendations, becoming an initial road-
map that can support startup decisions if they need to transition into TGs.

We plan in the future to collect further data by surveying and interview-
ing larger sets of participants. The triangulation will allow us to generalize our
findings and provide guidelines to be exploited by future startups.

References

[1] P Abrahamsson et al. “Software Startups - A Research Agenda”. In: e-
Informatica Softw. Eng. J 10.1 (2016), pp. 1–28.

[2] Vebjørn Berg et al. “Software Startup Engineering: A Systematic Mapping
Study”. In: Journal of Systems and Software (2018).

[3] Terese Besker et al. “Embracing Technical Debt, from a Startup Com-
pany Perspective”. In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2018, pp. 415–425.

[4] Virginia Braun and Victoria Clarke. “Using thematic analysis in psychol-
ogy”. In: Qualitative research in psychology 3.2 (2006), pp. 77–101.

[5] Nanette Brown et al. “Managing technical debt in software-reliant sys-
tems”. In: Proceedings of the FSE/SDP workshop on Future of software
engineering research. ACM. 2010, pp. 47–52.

[6] Mark V Cannice. “Confidence among Silicon Valley Venture Capitalists
Q3 2017–Q4 2018: Trends, Insights, and Tells”. In: The Journal of Private
Equity 22.3 (2019), pp. 18–24.

[7] Mark Crowne. “Why software product startups fail and what to do about
it. Evolution of software product development in startup companies”. In:
IEEE International Engineering Management Conference. Vol. 1. IEEE.
2002, pp. 338–343.

[8] W Cunningham. “The WyCash portfolio management system, Experience
Report”. In: Proceedings on Object-oriented programming systems, lan-
guages, and applications (OOPSLA’92) (1992).



REFERENCES 15

[9] Nicolas Devos, Dimitri Durieux, and Christophe Ponsard. “Managing tech-
nical debt in IT start-ups–an industrial survey”. In: International Con-
ference on Software and System Engineering and their Applications (IC-
SSEA). 2013.

[10] Max Garkavtsev, Nataliya Lamonova, and Alexander Gostev. “Chosing a
Programming Language for a New Project from a Code Quality Perspec-
tive”. In: 2018 IEEE Second International Conference on Data Stream
Mining & Processing (DSMP). IEEE. 2018, pp. 75–78.

[11] Carmine Giardino, Xiaofeng Wang, and Pekka Abrahamsson. “Why early-
stage software startups fail: a behavioral framework”. In: International
Conference of Software Business. Springer. 2014, pp. 27–41.

[12] Carmine Giardino et al. “Software Development in Startup Companies:
The Greenfield Startup Model”. In: IEEE Transactions on Software Engi-
neering 42.6 (2016), pp. 585–604.

[13] Catarina Gralha et al. “The evolution of requirements practices in software
startups”. In: Proceedings of the 40th International Conference on Software
Engineering. ACM. 2018, pp. 823–833.

[14] Yuepu Guo et al. “Tracking technical debt. An exploratory case study”.
In: 2011 27th IEEE international conference on software maintenance
(ICSM). IEEE. 2011, pp. 528–531.

[15] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. “Technical debt:
From metaphor to theory and practice”. In: IEEE software 29.6 (2012),
pp. 18–21.

[16] Zengyang Li, Paris Avgeriou, and Peng Liang. “A systematic mapping
study on technical debt and its management”. In: Journal of Systems and
Software 101 (2015), pp. 193–220.

[17] Anh Nguyen-Duc, Xiaofeng Wang, and Pekka Abrahamsson. “What In-
fluences the Speed of Prototyping? An Empirical Investigation of Twenty
Software Startups”. In: Agile Processes in Software Engineering and Ex-
treme Programming. Ed. by Hubert Baumeister, Horst Lichter, and Matthias
Riebisch. Lecture Notes in Business Information Processing. Springer In-
ternational Publishing, 2017, pp. 20–36.

[18] Nvivo Homepage. https://www.qsrinternational.com/nvivo/home.
Last accessed 16 Aug 2019.

[19] AL Penenberg. Eric Lies is a lean startup machine. 2011.
[20] Eric Ries. The lean startup: how today’s entrepreneurs use continuous in-

novation to create radically successful businesses. 2011.
[21] N Robehmed. What is a startup? Forbes. 2013.
[22] Per Runeson and Martin Höst. “Guidelines for conducting and reporting

case study research in software engineering”. In: Empirical software engi-
neering 14.2 (2009), p. 131.

[23] Carolyn Seaman and Yuepu Guo. “Measuring and monitoring technical
debt”. In: Advances in Computers. Vol. 82. Elsevier, 2011, pp. 25–46.



16 REFERENCES

[24] Edith Tom, AybüKe Aurum, and Richard Vidgen. “An exploration of tech-
nical debt”. In: Journal of Systems and Software 86.6 (2013), pp. 1498–
1516.


