
Performance and Performability
Modeling Framework Considering
Management of Service
Components Deployment

Thesis for the degree of Philosophiae Doctor

Trondheim, May 2014

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Telematics

Razib Hayat Khan

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Telematics

© Razib Hayat Khan

ISBN 978-82-326-0208-7 (printed ver.)
ISBN 978-82-326-0209-4 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2014:143

Printed by NTNU-trykk

Abstract

A distributed system is a complex system. Developing complex systems is a demanding
task when attempting to achieve functional and non-functional properties such as
synchronization, communication, fault tolerance. These properties impose immense
complexities on the design, development, and implementation of a distributed system that
incur massive effort and cost a large amount of money. Therefore, it is vital to ensure that
the system must satisfy the functional and non-functional properties once the system
development process is finished. Once a distributed system is developed, it is very
difficult, time consuming, and expensive to conduct any modification in its architecture.
As a result, the quantitative analysis of a complex distributed system at the early stage of
the development process is always an essential and intricate endeavor. To meet the
challenge of conducting quantitative analysis at the early stage of the system
development process, this thesis introduces an extensive framework for performance and
performability evaluation of a distributed system. The goal of the performance modeling
framework is the assessment of the non-functional properties of the distributed system at
an early stage based on the system’s functional description and deployment mapping of
service components over an execution environment. The performability framework is the
extension of the performance modeling framework. The extended part of the
performability modeling framework considers the behavioral change of the system
components due to failures. This later reveals how such behavioral changes affect the
system performance.

The reusable specification of service components is the main specification unit of our
framework. The specification of the reusable service component is realized through UML
collaboration and activity. Activity diagrams are used to aid the illustration of the
complete behavior of a system, which includes both local behavior of the service
components and the necessary interactions among them. Reusable building blocks are
collaborative in nature, which allows them to span across several participating
components. The local behavior and interaction among the participating components are
realized in an encapsulated way, which can be further reused to develop new applications.
The assignment of service components that capture the system functional behavior of the
physical components is recognized as deployment mapping. Deployment mapping has a
significant impact on ensuring the non-functional properties provided by the system in a
resource limited environment. This thesis also specifies the deployment mapping of
service components using UML deployment diagrams. The focus of the deployment
mapping is on considering the non-functional requirements such that the performance of
a service or a system on a particular physical infrastructure can be assessed in a fully

 ii

distributed manner and for large scale. In addition, a UML state machine diagram is
utilized in our performability modeling framework to capture the dependability behavior
of the system components.

To conduct the performance and performability evaluation of a distributed system, the
UML model is transformed into analytic models that provide performance and
performability evaluation results. The significance of using an analytical model is
because of its well-established mathematical formula and the availability of model
evaluation tools. We have specified an automated transformation process that is
performed in an efficient and scalable way through the use of model transformation rules
to achieve model transformation. To analyze the correctness of the model transformation
process, we have used temporal logic, specifically cTLA, to formalize the UML
specification style. This, in turn, provides the opportunity for model validation. The
motivation of applying cTLA is to take advantage of its well-established method to
illustrate various forms of structures and actions by exploiting a variety of operators and
techniques, which is wonderfully compatible with UML collaborations, activities,
deployment, and state machine diagram.

The framework is applied to artificial and real case studies to generate performance and
performability results at the early stage of the system development process. The modeling
process is supported by a set of tools, including Arctis and SHARPE with the incremental
model checking facility. Arctis is used for specifying the system functional behavior. The
evaluation of the performance and performability models generated by the framework is
achieved using SHARPE.

 iii

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of the
philosophiae doctor (PhD) at the Norwegian University of Science and Technology
(NTNU). The work was performed at the Department of Telematics, during the period
2008-2013, and has been supervised by Prof. Poul E. Heegaard.

First of all, I would like to thank my supervisors Poul E. Heegaard for the prolific
discussions, suggestions, and invaluable support during the whole period of my research.
Furthermore, I would like to thank Prof. Kishor S. Trivedi at Duke University, USA and
Fumio Machida, NEC, Japan for the collaboration we had and their contribution to my
work and publications.

It was a great experience to teach at the department and work with Prof. Stig. Frode
Mjølsnes and Prof. Danilo Gligoroski. I also would like to thank my colleagues for
providing me support to work in a professional and rousing environment. It was a very
nice, proficient, and amusing to work at ITEM under the shade of multi-cultural
environment. Thanks to Andres, Addissu, Based, Frank, Laurent, Mate, Mauritz, Nor
shahniza, Qashim, Vidar, Mona, Pål, and Randi.

Last but not Least, I would like to thank my family, my only brother, Feroz, my parents,
and my dear one for their love, patience, and enormous support during my stay far way
from my motherland Bangladesh for completing my research work.

 iv

 v

Contents

Abstract i

Preface iii

List of Papers vii

Nomenclatures ix

Definition of Terms xi

Abbreviations xiii

Part I Thesis Introduction and Overview

Chapter 1: Introduction 3

Chapter 2: Performance and performability modeling framework 13

Chapter 3: Summary of the papers 59

Chapter 4: Related works 71

Chapter 5: Discussion 85

Chapter 6: Future directions 91

Bibliography 95

Part II Included Papers

Paper 1: 111

Translation from UML to Markov model: A performance modeling framework

Paper 2: 125

Translation from UML to Markov model: A performance modeling framework for
managing behavior of multiple collaborative sessions and instances

Paper 3: 141

Translation from UML to SPN Model: A performance modeling framework for
managing behavior of multiple collaborative sessions and instances

Paper 4: 159

A performance modeling framework incorporating cost efficient deployment of
collaborating components

 vi

Paper 5: 179

A performance modeling framework incorporating cost efficient deployment of
multiple collaborating instances

Paper 6: 197

Derivation of Stochastic Reward Net (SRN) from UML specification considering
cost efficient deployment management of collaborating service components

Paper 7: 223

From UML to SRN: A performability modeling framework considering service
components deployment

Paper 8: 245

A performability modeling framework considering service components deployment

Paper 9: 281

Software performance evaluation utilizing UML specification and SRN model and
their formal representation

Part III Appendix

Appendix A: List of related approaches 345

 vii

List of Papers

Paper 1

Translation from UML to Markov model: A performance modeling framework
Razib Hayat Khan, Poul E. Heegaard
Proceedings of the International Conference on Systems, Computing Sciences, and
Software Engineering, Springer, 2009

Paper 2

Translation from UML to Markov model: A performance modeling framework for
managing behavior of multiple collaborative sessions and instances
Razib Hayat Khan, Poul E. Heegaard
Proceedings of the 3rd IEEE International Conference on Computer Science and
Information Technology, IEEE computer society, 2010

Paper 3

Translation from UML to SPN model: A performance modeling framework for
managing behavior of multiple collaborative sessions and instances
Razib Hayat Khan, Poul E. Heegaard
Proceedings of the 2nd International Conference on Computer Design and Application,
IEEE computer society, 2010

Paper 4

A performance modeling framework incorporating cost efficient deployment of
collaborating components
Razib Hayat Khan, Poul E. Heegaard
Proceedings of the 2nd International Conference on Software Technology and
Engineering, IEEE computer society, 2010

Paper 5

A performance modeling framework incorporating cost efficient deployment of
multiple collaborating instances
Razib Hayat Khan, Poul E. Heegaard
Proceedings of the International Conference on Software Engineering and Computer
Systems, Springer-Verlag Berling Heidelberg, 2011

Paper 6

Derivation of Stochastic Reward Net (SRN) from UML specification considering
cost efficient deployment management of collaborating service components
Razib Hayat Khan, Poul E. Heegaard
International Journal of New Computer Architectures and Their Applications (IJNCAA),
The society of Digital Information and Wireless Communications, 2011

 viii

Paper 7

From UML to SRN: A performability modeling framework considering service
components deployment
Razib Hayat Khan, Fumio Machida, Poul E. Heegaard, Kishor S Trivedi
Proceedings of the 8th International Conference on Networking and Services, IARIA,
2012

Paper 8

A performability modeling framework considering service components deployment
Razib Hayat Khan, Fumio Machida, Poul E. Heegaard, Kishor S Trivedi
International Journal on Advances in Networks and Services, 2012

Paper 9

Software performance evaluation utilizing UML specification and SRN model and
their formal representation
Razib Hayat Khan, Poul E. Heegaard
Submitted to a Journal for reviewing

Other relevant papers by the author (not included in the thesis)

Translation from UML to SPN model: A performance modeling framework
Razib Hayat Khan, Poul E. Heegaard,
Proceedings of Networked Services and Applications – Engineering, Control and
Management (EUNICE), 2010
This paper is a preliminary version of the paper 3

A performance modeling framework considering service components deployment
issue
Razib Hayat Khan, Poul E. Heegaard
Proceedings of the International Conference on Computer Communication and
Management, IACSIT press, 2011
This paper is the preliminary version of the paper 6

Performance modeling of distributed system using SPN
Razib Hayat Khan, Poul E. Heegaard, Petri Nets, InTech publications, 2012
This is a book chapter based on the paper 5

From UML to SRN: A tool based support for performability modeling of
distributed system considering reusable software components
Razib Hayat Khan, Poul E. Heegaard, Fumio Machida
Proceedings of the IASTED International Conference on Modeling and Simulation, 2012
This paper is the preliminary version of the paper 8

 ix

Nomenclatures

The table below summarizes the notational elements used in Part I.

Notation Description
 A Set of arcs connecting and T in a SRN model

C Set of components in a service S

jBf Overhead cost of a collaboration

icf Execution cost of an instance

jkf Communication cost of a collaboration

F(M) A function to evaluate the cost of a given deployment
FK(M) Communication cost of a mapping

I() Indicator function
K Set of collaborations in a service S

n̂l Total execution load of a physical node

m Marking that denotes the number of tokens for each place in
m0 Initial marking for each place in
M Deployment mapping C N for a service
Ml Multiplicity associated with the arcs in A in a SRN model
N Set of all exiting physical nodes

q0(M, c) A function returns the physical node n from a set of physical nodes N available
in the network that host component in the list mapping M

S Set of services to deploy
T Finite set of transitions in a SRN model

TT Specifies the type of the each transition in set a T in a SRN model
Ta Global load balancing estimate

 Finite set of places in a SRN model

 x

 xi

Definition of Terms

Term Definition
Collaborative building block UML collaboration is the main specification unit of

the collaborative building block which captures the
interaction between the software components. The
behavioral aspect of the collaborative building is
defined by the UML activity.

Collaboration role Software component is defined as collaboration
role.

Deployment mapping The allocation of software components to the
available physical resources of the system is
defined as deployment mapping.

Distributed system A distributed system consists of multiple
autonomous computers that communicate through a
computer network. The computers interact with
each other in order to achieve a common goal.

Distributed software system A computer program that runs in a distributed
system is called a distributed software system.

Domain A domain in software engineering is a conceptual
model of all the topics related to a specific problem.
It describes the various entities, their attributes,
roles, and relationships, plus the constraints that
govern the problem domain.

Model synchronization Model synchronization guides performance SRN to
synchronize with the dependability SRN by
identifying the transitions in the dependability
SRN.

Model transformation To transform the UML model into analytical model
(e.g, markov, SPN, SRN) is defined as model
transformation.

Reusable building block Collaborative building block is called as reusable
building block as it is archived in a library for later
reuse.

Self-contained encapsulated building block Collaborative building block is also defined as self-
contained encapsulated building block as each
building block captures the local behavior and
interaction between the software components in it.
Each building block is self described and
independent to each other.

Service A software system to achieve some goals in a
computing environment.

Service turnaround time Service turnaround time may simply deal with the
total time it takes for a service to provide the
required output to the user after the service is
started [122].

Software application Software application, also known as an application
or an app, is computer software designed to help
the user to perform specific tasks.

Software component A software component is a module that
encapsulates a set of related functions.

 xii

Software system Software system consists of a number of separate
programs, configuration files, which are used to set
up these programs, system documentation, which
describes the structure of the system, and user
documentation, which explains how to use the
system.

System A system is a set of interacting or interdependent
components forming an integrated whole.

System bottleneck A system bottleneck is a phenomenon where the
performance or capacity of an entire system is
limited by a single or limited number of physical
components or resources.

System physical component System physical component is the device or node
where the software components deploy.

System throughput System throughput is the sum of the data rates that
are delivered to all terminals in a network.

Star graph In graph theory, a star Sk is the complete bipartite
graph K1,k: a tree with one internal node and k
leaves.

UML Profile Profile in UML is defined using stereotypes, tag
definitions, and constraints that are applied to
specific model elements, such as Classes,
Attributes, Operations, and Activities. A Profile is a
collection of such extensions that collectively
customize UML for a particular domain or
platform.

 xiii

Abbreviations

AD Activity Diagram
ADAGE Ad-hoc Data Grids Environment
ADL Architecture Description Language
ASM Abstract State Machine
AUML Agent UML
BPEL Business Process Execution Language
BPMI Business Process Management Initiative
BPMN Business Process Modeling Notation
CASE Computer Aided Software Engineering
CBD Component Based Development
CLPFD Constraint Logic Programming Finite Domain
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CSP Communication Sequential Process
CSM Core Scenario Model
CSMA/CD Carrier Sense Multiple Access with Collision Detection
CSMA/DCR Carrier Sense Multiple Access with Deterministic Collision Resolution
CSP Communicating Sequential Processes
CTMC Continuous Time Markov Chain
cTLA compositional Temporal Logic of Actions
DSSA Domain Specific Software Architecture
DTMC Discrete Time Markov Chain
EQN Extended Queuing Network
GSMP Generalized Semi-Markov Process
GSPN Generalized Stochastic Petri Net
GUI Graphical User Interface
HPC High Performance Computing
IDE Integrated Development Environment
ITN Intermodal Transportation Network
JMT Java Modeling Tool
LQN Layered Queuing Network
LTSA Labelled Transition System Analyser
MARTE Modeling and Analysis of Real Time Embedded Systems
MDA Model Driven Architecture
MOF Meta Object Facility
MM Machine Model

 xiv

NFP Non-functional Parameters
OCL Object Constraint Language
OMG Object Management Group
OPN Object Petri Net
OPNM Object Petri Net Model
P2P Peer to Peer
PEPA Performance Evaluation Process Algebra
POOSL Parallel Object-Oriented Specification Language
PRISM Probabilistic Symbolic Model Checker
PSM Performance Specific Model
ProSPEX Protocol Software Performance Engineering using XMI
PUMA Performance by Unified Model Analysis
QoS Quality of Service
QVT Query View Transformation
Q-WSDL QoS enabled Web Service Definition Language
RRB Recurrence Relation Based
RSA Rational Software Architect
rt_EFSM real-time Extended Finite State Machine
SAN Storage Area Network
SAN Stochastic Activity Network
SHARPE Symbolic Hierarchical Automated Reliability / Performance Evaluator
SHE Software/Hardware Engineering
SLA Service Level Agreement
SPE Software Performance Engineering
SPL Software Product Line
SPN Stochastic Petri Net
SPNP Stochastic Petri Net Packages
SPT Schedulability, Performance, and Time
SysML Systems Modeling Language
SRN Stochastic Reward Net
STM State Machine
TLA Temporal Logic of Actions
TLC Temporal Logic Checker
UML Unified Modeling Language
XMI XML Metadata Interchange
XML Extensible Markup Language

Part I

Thesis Introduction and Overview

CHAPTER 1

Introduction

The design and implementation of distributed systems and services are always intricate
endeavors and complex tasks (The terms “system” and “service” are used
interchangeably in this thesis). Systems consist of logical components that interact and
are deployed in a physical, resource-constrained infrastructure. Quantitative analysis
determines whether a system achieves its non-functional properties based on the
functional behavior mapped onto a physical, resource-constrained infrastructure.

Quantitative analysis is realized by conducting a performance and performability
evaluation of the distributed system. It is evident that a successful development process
for a distributed system is not guided solely by the perfect modeling and implementation
of such a system. This process is also supported by the early assessment of performance-
and performability-related factors, which helps developers to reveal any bottleneck in the
modeling, design, and implementation of a distributed system that can jeopardize meeting
end-user expectations. This, in turn, reduces the cost of making any modification of the
system architecture once the system is built. In the worst case, this modification might
require restarting the development process from the beginning. However, the perfect
modeling of the system functional behavior is a great concern at the early stage of the
development process for the acceptable evaluation of system performance and
performability.

1.1 Problem description

Being able to assess the performance and performability of a distributed system at an
early stage in the development process is considered to be a matter of great importance.
However, this is a considerable challenge that includes the following:

Precise and formally correct description of the system functional behavior, even at
the early stage

Representation of the physical infrastructure that this system is expected
to be executed on, including the resource constraints

 4

Performance and performability attributes for the system, including acceptable
thresholds (e.g., given as QoS parameters in a SLA)

Knowledge of the specific system complexity and domain, with the expected
usage pattern, deployment strategy, operational issues, environmental influences,
and other related factors

Selection of an approach for performance and performability evaluation to
produce pertinent results in accordance with the real system behavior

To develop a framework that addresses these challenges, we need to focus on the
following:

Functional behavior in a manner that can be combined with the deployment and
enables scalable, automated translation into a model that can assess the
performance and performability of a distributed system

Physical resource constraints to capture the effect of different deployment
strategies

Non-functional properties that reflect the performance and performability
attributes of the system

Performance and performability evaluation approach to uncover meaningful
evaluation results when the real system does not exist

Functional behavior: We use the collaborative method to specify the system functional
behavior and the coordination among the components of the system. We envision an
approach in which collaborations, that is, the local behaviors of participating components,
as well as the necessary interactions related to a certain distributed function or task, are
the major specification units. In particular, we want to model collaboration in the form of
encapsulated building blocks in a self-contained way that can easily be composed with
each other [1]. This, in turn, makes the developer’s tasks easier and faster by removing
the need for the system developer to be an expert in all domains of distributed systems. In
particular, capturing the properties of the system into collaborative building blocks will
allow system developers to reuse those building blocks. The reusability of encapsulated
collaborative building blocks provides tremendous benefits to delineate system functional
behavior such as the following:

When the collaborative building block will be formed in a self-contained way, the
system developers can just reuse them to build the system without dealing with
the inner complexity.

Collaborative building blocks might be combined into more comprehensive
services. This means that new services can be developed through combining

 5

existing building blocks rather than starting the development process from scratch.
This, in turn, increases the productivity in accordance with cost reduction.

Modeling system functional behavior by composing the basic specification unit
thus reflects the subsystem properties in the resulting system behavior. Thus, the
system overall functional behavior will be consistent with the behavior of its
components.

Deployment strategies: An efficient allocation of the service components over the
physical infrastructure (execution environment) is crucial to achieving good performance
and performability. Given a static set of available resources in a fixed topology, the
deployment strategy needs to consider the following:

Overhead cost between two communicating service components. It is assumed
that two components on the same physical component have lower overhead than
two service components that are not co-located.

Resource constraints (capacities) of the physical components constituting the
infrastructure, such as link capacity, memory storage

Non-functional properties (attributes with corresponding thresholds), such as
processing capacity of the distributed node

In real systems, this task is even more complex, as the infrastructure might alter available
system resources and topology dynamically. This alteration occurs due to events such as
failures or overload that might significantly delay or block the operation of certain
components. The objective of the deployment strategies is to find the best possible
service component mapping on the currently available physical resources, satisfying all
the non-functional requirements [2]. The resulting deployment mapping has a large
influence on the QoS that will be provided by the system.

In this thesis, the functional behavior of the system and the representation of the system
physical infrastructure are modeled by the UML, which is a universally used modeling
specification language that is widely accepted by the scientific community [3]. The thesis
does not develop optimal deployment strategies but rather gives a framework for the
performance and performability of a given deployment that can be specified and assessed.

Non-functional properties: In this thesis, the resource constraints and non-functional
properties are included in the UML models by the use of UML profiles, specifically the
following:

UML profile for MARTE: Modeling and Analysis of Real-Time Embedded System

UML profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms

Chapter 1

 6

These UML profiles provide stereotypes and tagged values that are used for quantitative
prediction of system performance and performability taking into consideration both
hardware and software characteristics [4] [9]. The profiles and their use will be explained
in the next chapter.

Performance and performability evaluation approach: Performance is the ability of a
system to provide the resources needed to deliver its services, whereas performability is
the performance of a system where the resources needed to deliver its service might fail
[122]. Several approaches exist for conducting performance and performability
evaluations of systems [5]:

Analytical approach: This method is fast and easy to use when mathematical
models can be formulated and solved, but the method suffers from too restrictive
modeling assumptions that make the results invalid and not applicable for
assessment of the quality of the service. In addition, it sometimes is difficult to
validate the results produced by this approach.

Measurements on the prototype or real system: The results produced by this
method are convincing and reliable as the method is not realized by any
simplification or assumption. However, as the measurement using this method is
based on a prototype or real system, it is only possible to apply this method when
a prototype or real system exists.

Simulation-based approach: The method can be applied with an arbitrary level of
detail to produce realistic results. It provides flexibility in modeling in case of any
changes to the system. However, the approach is very demanding with respect to
computational time. Another challenge is to decide on how much detail should be
included, which is relevant for the evaluation of the system.

Among all the approaches, the analytical approaches are attractive because of the
existence of well-established formulas and the availability of analysis tools for
conducting quantitative system evaluation. This, in turn, makes the analytical approach
easy to implement and evaluate and provides an accurate evaluation results for system
performance and performability when the assumptions reflects the real system and its
services. Moreover, it is very efficient with respect to the execution time and
requirements of computational resources to evaluate the analytical model using
evaluation tools. Nevertheless, a critical challenge with the analytical approach is
restrictive modeling assumptions that sometimes hinder capturing the real behavior of the
system. This challenge can be met by the use of the assessment model at the end, which
can be simulated under less restrictive assumptions.

However, model evaluation using the analytical approach becomes complex when the
evaluation needs to be conducted at an early stage of the system development process.
There might be a chance of producing an erroneous result during the early assessment,
which can result in the incorrect development and implementation of the whole system.
This incorrect development requires changes in the real system after being built, which

 7

incurs waste of effort and cost. The solution to the problem lies in the correct
representation of the modeling formalisms of the system functional behavior and
conducting the model transformation accurately to generate the analytical model.
Conducting the model transformation in a correct, automated, and scalable way requires
developing reusable model transformation rules that can handle the model transformation
process of large and multifaceted systems. The reusability of model transformation rules
makes the model transformation process easier and faster for the system developers who
will just apply the rules for model transformation without understanding the inner
complexity.

Considering the above-mentioned factors, the general structure of the performance and
performability modeling framework for a distributed system is illustrated in Figure 1.1.
The figure shows the framework where the service is evaluated by an analytic approach.
The same framework can be applied with simulations, but in this thesis, the focus is on
analytic models 1 . The rounded rectangle in the figure represents operational steps,
whereas the square boxes represent input/output data. The inputs for the automated model
transformation process are as follows:

A system or service functional behavior specification
Information regarding system execution environment
Non-functional parameters for quantitative analysis.

The model representations of the functional behavior, physical platform, and non-
functional properties are combined to form annotated models using the UML profiles
described above. Then, a given deployment of the service components onto the currently
available physical resource (assumed static throughout the evaluation) is added, using
annotated models. Finally, this deployment specification is automatically translated

into an analytic model, where the performance and performability of the services can be
evaluated. If necessary, the evaluation results can be fed into the system design model to
identify the performance anti-patterns that might cause performance problems. When

1 The SRN models used in this thesis can be solved both by analytic approaches and by simulations.

Figure 1.1 General structure of the performance and performability framework

Feedback

Feedback

Evaluation
result

Annotated
model System physical

platform

Service functional
behaviour

System non-
functional
properties

Model
transformation

Analytical
model

Deployment
mapping

Feedback

Chapter 1

 8

using the framework given in Figure 1.1, several feedback loops will exist, depending on
the objective of the case study. The feedbacks are as follows:

System evaluation results can be utilized to identify any discrepancy in the model
that demonstrates system functional behavior (feedback from “Evaluation result”
to “Service functional behavior”).

The deployment mapping might reveal that there is no feasible solution, forcing
the alteration of the physical infrastructure (feedback from “Deployment
mapping” to “System physical platform”).

Different deployment strategies can be attempted on the same physical platform
with the same service components, and then, the automated translation to analytic
model and corresponding assessment is conducted for each deployment (feedback
from “Evaluation result” to “Deployment mapping”).

Performance and performability parameters sensitivity can also be checked for
different resource constraints in the physical infrastructure (feedback from
“Evaluation result” to “System physical platform”).

1.2 Research objective and questions

The objective of this research is to generate an extensive modeling framework that
provides an automatic transformation process from UML models to analytical models
that can evaluate the performance and performability of the services and systems. The
transformation must be scalable and efficient in such a way that it can hide the intricate
system details.

The framework is given in Figure 1.1. The main focus of this PhD work is on the
framework, mostly without the feedback loops as indicated in Figure 1.2. Although the
case studies included in the thesis demonstrate the applicability of the framework, a more
extensive study of the applicability of the framework is regarded as future work.

Evaluation
result

Annotated
model

System physical
platform

Service functional
behaviour

System non-
functional
properties

Deployment
mapping

Model
transformation

Analytical
model

Figure 1.2 High level overview of the modeling framework used in this thesis

 9

Research questions related to the objective are as follows:

What is the method that will allow us to provide a rapid way to specify the
functional behavior of a distributed system that can easily be combined with a
model of physical infrastructure to represent deployment strategies?

How can the deployment mapping of software components be specified
considering the QoS requirements such that the performance of a service or a
system over a particular physical infrastructure with resource constraints can be
assessed?

How do we incorporate non-functional properties into UML models that reflect
the performance and performability attributes of the system?

How can building blocks from the functional behavior models be translated to
building blocks in performance and performability models?

How do we conduct the automated model transformation in a scalable way to
accomplish performance and performability evaluation of the system?

How do we ensure that we obtain the complete set of model transformation rules?

How can the correctness of the UML model specifications and model
transformations be ensured?

1.3 Research method

To accomplish the research objective and obtain the research results, it is necessary to use
one or more scientific techniques. These will provide methods using existing research and
allowing the acquisition of new knowledge with this whole work. Our preferred approach
is literature studies and scenario-driven methodology in particular to identify the criteria
and valuation methods for the performance and performability framework (see Figure
1.3). We construct the framework according to the criteria that are the most imperative
based on the literature study to provide improvements and to test the framework on
realistic scenarios.

To establish the criteria and building assumptions to fulfill the requirements of our
research, we conduct a knowledge gathering phase through literature study of existing
works and approaches and also by considering real case scenarios. Subsequently, the
design of the performance and performability modeling framework will be defined. The
expected outcome by following our methodology is an architecture model that will be
used in performance and performability modeling for distributed systems. The design of
the framework will be accomplished in accordance with the research objective, which
will be tested against realistic scenarios.

Chapter 1

 10

Later, the performance and performability framework will be implemented, and
validation and testing will be conducted to satisfy the research objective and goal. The
testing phase is devoted to analysis of the developed modeling framework. The results of
this analysis will be compared against the performance and performability requirements,
and a correction action is eventually taken (Re-Engineering) with the supervision of the
modeler. This research methodology is followed to ensure that the objectives are met and
the expected outcome will be reached at the end.

1.4 Contribution

Considering the above research questions and objective, the contributions of this thesis
are mentioned below and are achieved through 9 publications presented in Part II:

The reusable specification of collaborative building blocks is utilized and the
specification is formalized to generate Markov and Petri net models through our
performance and performability modeling framework (focused on Paper 1, Paper
3, Paper 4, Paper 5, Paper 6, and Paper 7) [23].

The reusable specification of collaborative building blocks is utilized and
formalized to generate the Markov and Petri net models for multiple collaborative
sessions and instances that occur at the same time (focused on Paper 2 and Paper
3) [23].

Figure 1.3 Research method

Requirement
Analysis

Construct Criteria &
Assumptions

Designing the
Framework

Framework
Implementation

Literature
Study

Related works and
approaches

Model checking &
Testing

Research
objectives &

goals

Feasibility
analysis Considering

Scenarios

Re-Engineering

Satisfy

 11

The deployment mapping of the software components is specified by considering
QoS requirements so that the performance of a system on a particular physical
topology can be assessed (focused on Paper 4, Paper 5, and Paper 6).

An approach is introduced to incorporate non-functional properties into UML
models that reflect the performance and performability attributes of the system
(focused on all the Papers included in Part II).

A scalable approach is introduced for automatically conducting the model
transformation process by using the reusable model transformation rules (Paper 6,
Paper 7, Paper 8, and Paper 9).

Our performance and performability modeling framework that provides tool
support of the framework, is implemented (Paper 8 and Paper 9).

The feasibility and consistency of our approach is described with the help of
artificial and real case studies (focused on all the Papers included in Part II).

During our research, we worked on several case studies and examples that are presented
in the papers of Part II.

Paper 1 and Paper 2 present an example that utilizes a system description where
users that are equipped with smart phones want to receive current location
weather information using their hand-held devices.

Paper 3 presents an example that utilizes a system description where several users
that are equipped with smart phones want to receive current location weather
information using their hand-held devices after performing authorization checks
based on user identity.

In Paper 4, Paper 5, Paper 6, and Paper 9, we consider a scenario adopted from
Efe dealing with the heuristically clustering of modules and the assignment of
clusters to nodes [6]. This scenario, even though artificial and potentially lacking
tangibility from a designer’s point of view, is sufficiently complex to demonstrate
the applicability of our framework.

Paper 7 and Paper 8 consider an example dealing with heuristically clustering of
modules and assignment of clusters to nodes and is adopted from [6].

Paper 9 also introduces a real case study, the Taxi control system, where several
taxis are connected to a control centre and update their status (busy or free). The
control centre accepts the tour orders from clients via SMS or mobile calls. The
orders are processed by the call centre, which then sends out tour requests to the
taxis.

Chapter 1

 12

1.5 Structure of the thesis

Part I: Introduction and Overview

Part I continues in Chapter 2 where a research approach is described that focuses on the
key points of the work, including the detailed description of the developed performance
and performability modeling framework. The summary of the contribution is illustrated
in Chapter 3 concentrating on how the included articles are interrelated and providing
guidelines for reading. Chapter 4 reviews the related works with a following discussion in
Chapter 5. Part I of the thesis ends with Chapter 6, where some of the on-going works
and future directions have been outlined.

Part II: Included Publications

Part II contains 6 peer-reviewed conference and 3 journal articles (one is submitted) that
are presented in an order that builds up the core of the research approach and expands
successively through several examples.

Part III: Appendix

Appendix A contains a table that includes a list of related approaches.

CHAPTER 2

 Performance & performability

modeling framework

In this chapter, we describe our modeling framework in detail with focuses on the
specification, semantics, reasoning, and algorithms that form the base of our performance
and performability modeling approach. In Figure 1.2, the overview of our approach for
distributed system performance and performability modeling is illustrated. Sections 2.1 -
2.6 illustrate the steps of the framework by highlighting the gradual development process
of the modeling framework. Section 2.7 highlights the formalization of the input models,
whereas in Section 2.8, the tool support of our framework is given, and finally, Section
2.9 is devoted to discussing some critical issues.

2.1 Service functional behavior

We adopt a model-driven approach, where the functional behavior of service is specified
using UML, which is widely used and accepted by the software engineering community.
UML provides a set of diagrams that facilitate illustration of system behavior from
different viewpoints and from different detail levels. The papers of part II describe the
UML specification style with illustrated examples. Therefore, we will present the key
points and features of the UML specification style in this section.

UML collaboration is utilized as the main specification unit of our work to define the
service functional behavior. The service components are defined as collaboration roles,
and the interactions among the collaboration roles are specified by the collaboration
diagram. An example collaboration diagram is shown in Figure 2.2, where ci and cj are
the collaboration roles (illustrated in the dashed rectangle), and the interactions among
them are defined as ki, j (demonstrated in the oval).

 14

The collaboration diagram example is the basic example that is used throughout our work.
The UML collaboration diagram that is mentioned in our work is purely structural. That
means the collaboration diagram defines the structure of the service specification as
combination of service components and the necessary interactions among them.

As the service specification later will be transformed into a performance and
performability model, provided only the structural specification of the service is not
sufficient. This transformation requires a way to define the behavioral aspects of the
collaboration to know the exact functional behavior of the service components. To
remove this shortcoming, we use UML activity diagrams, which define the internal
behavior of the collaboration as well as the detailed behavior of how different events of
collaboration roles are coupled. Figure 2.3 illustrates both the detailed behavior of the
collaboration roles and the internal behavior of the collaboration. The specifications for
collaborations in our work are given as coherent, self-contained building blocks. The
internal behavior of a building block is described by UML activity. It is declared as the
classifier behavior of the collaboration and has one activity partition for each
collaboration role in the structural description. For every collaboration, the activity
declares a corresponding call behavior action referring to the activities of the employed
building block, which is illustrated in Figure 2.3(b). The activity transferij (where ij = AB)
describes the behavior of the corresponding collaboration. It has one activity partition for
each collaboration role: A and B. Activities base their semantics on token flow [1]. The

cj ci ki,j

Figure 2.1 Service functional behavior using UML collaboration and activity diagram

Figure 2.2 Basic collaboration diagram example

Service functional
behavior

- UML collaboration
- UML activity

Annotated
model

System non-
functional
properties

Deployment
mapping

Model
transformation

Analytical
model

System physical
platform

Evaluation
result

 15

activity starts by placing a token when there is a response (indicated by the streaming pin
resA or resB) to transfer by either participant A or B. After completion of the processing
by the collaboration role A, the token passes through the fork node f, where the flow is
divided into two branches. One branch is directly forwarded to the streaming pin reqB as
a request, which is sent to the collaboration role B. Another flow is directed to the join
node j. After completion of the processing by the collaboration role B, the token passes
through the decision node , where only one branch, either x or y, will be activated. If the
flow marked with x activates, it will then pass through the join node j. If both the
incoming flows of the join node j arrive, the join node j will be activated. If the flow
marked with y activates, it will then pass through the merge node m. The outgoing flow
of the merge node will be activated when either of the incoming flows arrives.

For delineating the detailed behavior of how the different events of the collaborative
building blocks are coupled, UML collaborations and activities are used to complement
each other. UML collaborations focus on the role binding and structural aspects, whereas
the UML activities complement this by also covering the behavioral aspect [12]. For this
purpose, call behavior actions are used. Collaboration is represented by call behavior
action referring to the respective activity of building blocks. Each call behavior action
represents an instance of a building block. For each activity parameter node of the
referred activity, a call behavior action declares a corresponding pin. Pins have the same
symbol as the activity parameter nodes to represent them on the frame of a call behavior
action. Arbitrary logic between pins may be used to synchronize the building block
events and transfer data between them. By connecting the individual input and output
pins of the call behavior actions, the events occurring in collaborations can be coupled
with each other. For example, the detailed behavior of collaboration is given in Figure
2.3(a).

Case example: Taxi control system: service functional behavior: Here, the service
specification style using UML collaboration and activity is demonstrated using a real
case scenario. A real case scenario has been considered, the Taxi control system, where
several taxis are connected to a control centre and update their status (busy or free). The
control centre accepts the tour orders from clients via SMS or mobile call. The orders are

A B

resB

reqB resA

reqA

 t:
transferAB

PB

dB

PA

dA

Figure 2.3(a) Detailed behavior of the collaboration roles
 (b) Internal behavior of the collaboration

(a) (b)

t: transferAB

A B

reqB

resB

resA

reqA

f

j

m

x

y

Systesm

Chapter 2

 16

processed by the call centre, which sends out tour requests to the taxis. Figure 2.4
illustrates the scenario as UML collaboration. Participants in the service are represented
by the collaboration roles taxi, control centre, client. The control centre has a default
multiplicity of one, whereas there can be many taxis and clients in the system denoted by
multiplicity [1,…,*]. Between the roles, the collaborations denote the occurrence of the
behavior: the taxi and control centre are interacting with collaboration status update &
tour request, and the control centre is cooperating with the client by means of
collaboration tour order & notify, whereas the interaction between the taxi and client is
realized by the collaboration start tour.

The internal behavior of the collaboration status update & tour request, tour order &
notify, and start tour are demonstrated using UML activity, which are shown in Figure
2.5. The specifications for the collaborations are given as coherent, self-contained
building blocks and have one activity partition for each collaboration role.

Control
centre

st: start tour
[Figure 2.5(c)]

str: status update
& tour request
[Figure 2.5(a)]

Taxi
[1…*] ton: tour order

& notify
[Figure 2.5(b)]

client
[1…*]

Figure 2.4 Collaborations and components in the taxi control system
(references in bracket to the figures that contain more details)

Figure 2.5 Internal behavior of the collaboration using UML activity

 17

For composition of the building blocks to delineate the detailed behavior of the taxi
control system, activity parameter nodes are used that can be connected to other
elements. For each activity parameter node of the referred activity, a corresponding pin
is declared. There are different types of pins (activity parameter nodes) illustrated on the
building blocks such as starting pins, streaming pins, and terminating pins. The pins
shown in Figure 2.5 (resT, reqC, resC1, reqT, etc.) are all streaming pins, which pass tokens
throughout the active phase of the building blocks and are used to connect the building
blocks to delineate the detailed behavior of the taxi control system. The detailed behavior
of the taxi control system is shown in Figure 2.6, which is mainly composed of the
collaborations demonstrated in Figure 2.5. When a new taxi arrives or a busy taxi
becomes free after completing the tour, the taxi performs a log-in operation into the
system and set that taxi status to free. Then, the control centre will be notified of the

status update. The control centre is responsible for adding the taxi in the free taxi queue.
When there is a taxi available in the free taxi queue, the control centre sends the tour
order information to the free taxi if there is any pending tour order. After receiving the

Figure 2.6 Detailed illustration of the service behavior using UML activity

Chapter 2

 18

tour order information, the taxi notifies the control centre of its acceptance of the request.
The control centre adds the taxi into the busy taxi pool and notifies the taxi about the
changing of its status. The taxi then performs the system log-off operation and checks the
tour order to determine whether the client is still waiting for a taxi or not. Based on the
results given by the control centre, the taxi conducts the tour and then again performs
log-in operation into the system and changes its status.

The control centre receives notification about any client request. The control centre is
responsible for adding the request in the queue. After receiving a request from the client,
there might be two possibilities in the control centre (which is realized by the decision
node dec): either the control centre looks for an available taxi, or the request might be
cutoff because of the number of client requests exceed the capacity of the control centre
to handle the client requests. If the control centre locates an available taxi, it notifies the
user about the availability of taxi, but the number of client requests will be cutoff if it
exceeds the capacity of the control centre. When a taxi is ready to conduct the tour and a
client is waiting for the taxi, the taxi will start the tour. When the tour finishes, the taxi
becomes free and is then ready to pick up another client.

2.2 System physical platform

Specification of the system physical platform is incorporated into our modeling
framework by the use of UML deployment and UML STM diagrams.

2.2.1 UML deployment diagram

The static view of the system physical platform is illustrated using a UML deployment
diagram. A UML deployment diagram is used in our modeling framework to define the
execution architecture of the system by identifying the system physical components, the
connection between physical components, and the assignment of software artifacts to

Figure 2.7 System physical platform using UML deployment diagram

Analytical
model

Annotated
model

Model
transformation

Deployment
mapping

System physical
platform

- UML deployment

diagram
- UML STM diagram

Evaluation
result

Service
functional
behavior

System non-
functional
properties

 19

those identified physical components [3]. Service delivered by the system is defined by
the joint behavior of the system components, which are physically distributed. This, in
turn, aids in exposing the direct mapping between the software components to the system
physical components to exhibit the probable deployment of the service.

Case example: Taxi control system: system physical platform: An example of the UML
deployment diagram for the taxi control system is illustrated in Figure 2.8, where the
system components taxi and the user mobile device are connected with the control centre
via a wireless communication channel.

2.2.2 UML STM diagram

The dynamic view of the system components that are deployed in the system execution
environment is illustrated using a UML STM diagram. In our modeling framework, the
UML STM diagram is used to highlight the dependability properties such as failure and
recovery events for the software and hardware components for which changes in the
states of the system components happen. The dependability properties of a system
address the representation of changes in the states of the system components being
modeled, which are generally due to faults, and how such changes affect the availability
of the system. In an STM, a state is depicted as a rectangle, and a transition from one
state to another state is represented by an arrow.

Example: dependability behavior of a hardware component: An example STM of a
hardware process is illustrated in Figure 2.9, which sketches the states and transitions
from one state to another. A hardware process starts in an initial state, represented by
the closed circle, and enters a Running state. If the server process fails during the
operation, the process enters the Failed state. The process moves to the detected state
when the failure is detected by a monitoring mechanism. The process subsequently enters

Failed

Recovery Running

Detect

Recover
Stop

Start Up

Shut
Down

Fail

Figure 2.9 STM diagram of hardware process

<<artefact>>
clientrequest.exe

Taxi Control
centre

Figure 2.8 Physical platform of taxi control system using UML deployment diagram

Mobile
device

Chapter 2

 20

the Recovery state and returns to the Running state after the recovery process finishes.
The server starts the operation when the start-up command is invoked, and then the
process enters the Running state.

2.3 System non-functional properties

Specification of system non-functional properties is included in our modeling framework
using a UML profile. Profiles in UML are defined using stereotypes, tag definitions, and
constraints that are applied to specific model elements, such as classes, attributes,
operations, and activities. A profile is a collection of such extensions that collectively
customize the UML for a particular domain or platform [4]. Stereotypes permit us to map

model elements to the semantics of an analysis domain and provide values for properties
that are necessary to conduct the analysis. Specific tagged values are also applied
according to the above-mentioned profile. Tagged values are a type of value slot
associated with the attributes of specific UML stereotypes [4]. The significance for using
UML profiles is as follows:

As much as possible, modelers should not be hindered in the way they use UML
to represent their systems just to be able to do model analysis. That is, rather than
enforcing a specific approach or modeling style for real-time systems, the profile
should allow modelers to choose the style and modeling constructs that they feel
are the best fit for their needs of the moment.

Profiles provide a common method of modeling both hardware and software
aspects to capture real time properties of the system.

It must be possible to construct UML models that can be used to analyze and
predict the salient real-time properties of a system. In particular, it is important to
be able to perform such analysis early in the development cycle.

Figure 2.10 System non-functional properties

System physical
platform

Deployment
mapping

Annotated
model

Analytical
model

System non-functional
properties

- UML profile for MARTE
- UML profile for Modeling
QoS and Fault Tolerance
(MQFT)

Service functional
behavior

Model
transformation

Evaluation
result

 21

Modelers should be able to take advantage of different types of model analysis
techniques without requiring a deep understanding of the inner workings of those
techniques.

The profiles must support all the current mainstream real-time technologies,
design paradigms, and model analysis techniques. However, profiles should also
be fully open to new developments in all of these areas.

We use two UML profiles throughout the whole work for describing the non-functional
properties of the system:

UML profile for MARTE – Modeling and Analysis of Real-Time Embedded
Systems

UML profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms Specification

The UML profile for MARTE is intended to replace the existing UML Profile for
Schedulability, Performance, and Time [21]. MARTE defines foundations for model-

UML profile for MARTE: Modeling and Analysis of Real Time Embedded
Systems

Stereotypes with definitions
SaStep SaStep is a type of step that begins and ends when decisions

about the allocation of system resources are made.
ComputingResource A ComputingResource represents either virtual or physical

processing devices capable of storing and executing program
code. Hence, its fundamental function is to compute.

Scheduler Scheduler is a stereotype that brings access to a resource
following a certain scheduling policy mentioned by the tagged
value schedPolicy.

SaSharedResource SaSharedResource is a type of shared resources that are
dynamically allocated by means of an access policy.

GaExecHost GaExecHost can be any device that executes behavior,
including storage and peripheral devices.

Tagged Values with definitions
schedPolicy schedPolicy defines certain scheduling policies based on which

access of system physical resources can be conducted.
deadline deadline defines the maximum time limits for the completion of

the particular execution segment.
resmult

resmult indicates the multiplicity of a resource. It may specify
the maximum number of instances of the resource considered as
available.

capacity Capacity defines the number of permissible concurrent users.

Table 2.1 Stereotypes and tagged values of MARTE [4]

Chapter 2

 22

based descriptions of real-time and embedded systems. These core concepts are then
refined for both modeling and analyzing concerns. The modeling part provides the
support required from specification to detailed design of real-time and embedded
characteristics of systems. MARTE also concerns model-based analysis. In this context,
the intent is not to define new techniques for analyzing real-time and embedded systems
but to support them. Hence, it provides facilities to annotate models with information
required to perform specific analysis. The stereotypes and tagged values according to the
UML profile for MARTE: Modeling and Analysis of Real Time Embedded Systems used
in our work are defined in Table 2.1 [4].

The specification UML profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms Specification defines a set of UML extensions to
represent the Quality of Service and Fault-Tolerance concepts. The profile provides the
ability to associate the requirements and properties to UML model elements. The general
profile for fault-tolerance includes notations to model risk assessments, paying special
attention to the description of hazards, risks, and risk treatments. The stereotypes and
tagged values according to the UML profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms Specification used in our work are defined in
Table 2.2 [9].

UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms

Stereotypes with definitions
QoSDimension QoSDimension provides support for the quantification of QoS

characteristics and attributes.
Tagged Values with definitions

mean-time-to-
repair

mean-time-to-repair defines the time required for repairing a system
physical resource.

mean-time-
between-failures

mean-time-between-failures defines the time between the
consecutive failures of system physical components.

2.4 Annotated model

UML is used to specify the service functional behavior by identifying the software
components and interactions between them. UML reveals the relations between software
components with available physical resources in the execution environment and also
captures the dependability-related behavior of the system components. However, one
shortcoming of UML is not having the capability to incorporate non-functional
parameters, which is vital for conducting the quantitative analysis from the system. This
requires a mechanism for providing a specification to make quantitative prediction
regarding non-functional properties of the system, taking into account both software and
hardware characteristics. Thus, we use two specification styles, which provide several
stereotypes and tagged values (see Section 2.3), throughout the whole work for

Table 2.2 Stereotypes and tagged values of UML profile for modeling QoS and fault tolerance [9]

 23

incorporating performance- and dependability-related parameters into the service
specification model defined by the UML. The two specification styles are as follows:

UML profile for MARTE – Modeling and Analysis of Real-Time Embedded
Systems to annotate the UML collaboration, activity, and deployment diagram

UML profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms Specification to annotate the UML STM diagram

Case example: Taxi control system: annotated model: To illustrate the annotation of the
UML model, an example of a UML activity diagram for the taxi control system is
illustrated in Figure 2.12. The scenario is defined as follows: after being deployed in

Figure 2.11 Annotation of UML models

 <<SaStep>>

{deadline1 = 25, s},
{deadline2 = 5, s}

 <<SaStep>>

{deadline1 = 50, s},
{deadline2 = 5, s}

Figure 2.12 Annotation of the UML activity diagram for a taxi control system

<<SaStep>>

{deadline1 = 250, s},

{deadline2 = 5, s}

Deployment
mapping

Analytical
model

Service functional
behavior

Model
transformation

Annotated model

- UML collaboration,
activity, deployment
diagram using MARTE

- UML STM using MQFT

Evaluation
result

System
physical
platform

System non-
functional
properties

Chapter 2

 24

the execution environment, communication between taxi and control centre is achieved in
50 sec, whereas the overhead time to conduct this communication is 5 sec, which is
annotated using the stereotype SaStep and two instances of the tagged value deadline
(according to the UML profile for MARTE) – deadline1 defines the communication time,
and deadline2 is used for overhead time. The communication between the client and the
control centre and the communication between the taxi and the client can be annotated in
the same manner as above.

Another example of annotation of with a UML deployment diagram of the taxi control
system according to the MARTE profile is demonstrated in Figure 2.13. The control
centre is connected with the client and taxi using a wireless communication channel,
where the tagged value schedPolicy specifies that the control centre follows a FIFO
scheduling policy to serve the queued jobs. Moreover, the tagged value resmult indicates
that the maximum number of instances of the resource control centre is one, and the
tagged value capacity indicates that the maximum number of permissible concurrent
users handled by the control centre is 20.

Example: annotated UML STM model: An example of an annotated UML STM diagram
of the software process according to the UML profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms Specification is shown in Figure
2.14. We use the stereotypes <<QoSDimension>>, <<Transition>> and tagged values

Figure 2.13 Annotation of UML deployment diagram for taxi control system

Taxi Control
centre

<<artefact>>
clientrequest.exe {schedPolicy = FIFO}

<<Scheduler>>

Recover

Running

Failed

{mean-time-to-failure-detect = 4, ‘s’}

<<Transition>>

<<QoSDimension>>
{mean-time-between-failures
=14, ‘hr’}

<<QoSDimension>>

{mean-time-to-repair
= 200,‘s’}

Figure 2.14 Annotation of UML STM diagram

Mobile
device

{resMult = 1}

<<GaExecHost>>

{capacity = 20}

<<SaSharedResource>>

 25

mean-time-between-failures, mean-time-to-failure-detect and mean-time-to-repair, which
are already described in Section 2.3. The initial node () indicates the starting of the
operation of the software process. Then, the process enters the Running state. Running is
the only available state in the STM. If the software process fails during the operation, the
process enters the Failed state. The duration between consecutive failures is 14 hours,
which is indicated by the tagged value mean-time-between-failures. When the failure is
detected by the external monitoring service, the software process enters Recovery state
and the repair operation will be started. The time required for detecting a failure is 4
seconds, which is specified by the tagged value mean-time-to-failure-detect. When the
failure of the process is recovered, the software process returns to the Running state. The
time necessary for repairing the failure is 200 seconds, which is tagged by mean-time-to-
repair.

2.5 Deployment mapping

The allocation of software components to the available physical resources of the
distributed system is defined as deployment mapping, which has a considerable impact on
the desired QoS provided by the system. The term desired QoS is interpreted as the
delivery of a service in accordance with its specification [2]. For large and multifaceted
distributed systems, several combinations of deployment mapping exist that provide the
same functionality, but the combinations show differences when satisfying the QoS
provided by the systems. There are many QoS requirements that need to be considered
for providing better deployment mapping. Focusing on one or more requirements to
provide a better deployment mapping might affect the other requirements, which, in turn,
produces a poorer solution. The solution becomes more difficult to derive when the
questions of efficiency, dynamisms, and scalability are involved.

We model the system as a collection of N interconnected physical nodes. Our objective is
to find a deployment mapping for this execution environment for a set of service
components that comprises the service. Deployment mapping M is defined as
[M=(C N)], between a number of service components instances {c1, c2, …} C (captured
by collaboration diagram), onto physical nodes {n1, n2, ….} N (captured by UML
deployment diagram). In this settings, the service components communicate with each
other via a set of collaborations {k1, k2, ….} K. Hence, a collaboration kj may exist

Figure 2.15 Deployment mapping of the system

Analytical
model

Annotated
model

Service
functional
behavior

Model
transformation

Deployment
mapping

- Service functional
behaviour

- System physical
platform

- Cost function

Evaluation
result

System
physical
platform

System non-
functional
properties

Chapter 2

 26

between two components ca and cb. For example, an existing collaboration between two
service components is illustrated in Figure 2.16. These components are ready for
deployment onto the physical nodes. The example also shows two software components
(that have to be deployed) and collaboration between them, where each has a
corresponding cost value. The components have costs related to their execution, e.g.,
memory or CPU sharing needed at the host, factored into a single value, whereas the
collaborations have costs that inform about the communication needed between the
components as well as the overhead costs to conduct the communication. Communication
costs are composite values incorporating the volume of interaction between components,
i.e., they are characterized by the amount of message interchanged and the average
message length. In Figure 2.16, the target network consists of two nodes, N= {n1, n2}.
There are two components to be deployed C= {c1, c2} and one collaboration K= {k1}
between them. The execution platform of services is possibly a highly distributed
hardware environment consisting of physical nodes that are heterogeneous in capabilities,
amount of resources, and in access rights. This network of possible execution hosts is
considered to be a hybrid environment, in which services can be deployed in various
clusters depending on the present conditions and usage patterns. Execution in such a
dynamic and hybrid environment might be influenced by a plethora of various parameters
making the search for an efficient deployment difficult. Regarding the network, it is
assumed that all nodes are identical with respect to the capacity and that the network is
fully interconnected. Furthermore, each participating node contains an execution runtime
that encapsulates the functionalities of installation and execution of components.

Assessment of deployment mapping using cost functions: In this thesis, we focus on
the deployment mapping assessment of the service components to the available physical

n1 n2

Physical nodes

M: Deployment
mapping

Figure 2.16 Deployment mapping with formal definition

Service components

c2 c1 k1

Exec.
cost =

Comm.
cost =

Exec.
cost =

Ovrhd.
cost =

C = {c1, c2}
K = {k1} = {c1, c2}
N = {n1, n2}
M = ({c1, c2} {n1, n2})
Example of deployment
mapping might be as follows:
1. M = ({c1 n1} {c2 n2})
2. M = ({c1 n2} {c2 n1})
3. M = ({c1, c2 n1})
4. M = ({c1, c2 n2})

Formal Definition

UML collaboration diagram

UML deployment diagram

 27

resources by considering several non-functional properties. Assessing the deployment
mapping of the service components is realized by designing cost functions, which are
functions that express the utility of the deployment mapping of a service. We consider
three types of requirements in the deployment problem, where the term cost is introduced
to capture several non-functional requirements those are later utilized to conduct
performance evaluation of the systems:

1. Service components have execution costs.
2. Collaborations have communication costs and costs for running of

background process to conduct the communication, which are known as
overhead costs.

3. Some of the service components can be restricted in the deployment
mapping to specific physical nodes, which are called bound components.

Here, cost is the reward/metric of a certain resource constellation. The resource
constellation is result of stochastic behavior that follows negative exponential distribution
(such as request arrival, service time). It is more like a condition for the modeling
approach. For example, in our system, the stream of processing requests coming for any
given individual service components makes up a very small part of the total stream of
processing requests to the system. It is also reasonable that the processing requests for
any service component are independent of one another. So according to Palm-Khintchine
theorem [123], such arguments provide a theoretical justification for modeling the stream
of processing requests to a system, as a negative exponential distribution.

Furthermore, we observe the processing cost that physical nodes impose, while hosting
the service components and also the target balancing of the cost among the physical
nodes available in the network. Communication costs are considered if the collaboration
between two service components occurs remotely, i.e., it occurs between two physical
nodes [19]. In other words, if two service components are placed onto the same physical
node, the communication cost between them will be ignored. This holds for the case
study that is conducted in this thesis. This is not generally true, and it is not a limiting
factor of our framework. The cost for executing the background process for conducting
the communication between the collaboration roles is always considerable no matter
whether the collaboration roles are deployed on the same or different physical nodes.
Using the above specified input, the deployment logic provides an efficient deployment
architecture taking into account the QoS requirements for the specified services. We then
define the objective of the deployment logic as obtaining an efficient (low-cost, if
possible optimum) mapping of the service components onto the physical nodes that
satisfies the requirements in a reasonable time. The deployment logic is mentioned by the
cost function F(M). This is a function that expresses the utility of deployment mapping of
the service components to the physical resources with their constraints and capabilities to
satisfy the non-functional properties of the system. The cost function should reflect the
execution, communication and overhead cost. Ideally, the service turnaround time should
be minimized, which, in turn, maximizes the utilization of system resources while
minimizing the communication between processing nodes. As a result, a high system
throughput can be accomplished taking into account the expected execution and inter-

Chapter 2

 28

node communication requirements of the service components on the given hardware
architecture [20]. The cost function F(M) is mainly influenced by our method of service
definition. Service is defined in our approach as a collaboration of E service components
labeled as ci (where i = 1,….,E) and K collaborations labeled as kj, (where j = 1,…,K). In
addition, the following labeling methods are used:

The execution cost of each service component can be labeled
icf .

The communication cost between the service components is labeled
jkf .

The cost for executing the background process for conducting the communication
between the service components is labeled

jBf .

We will assess the quality of the solution of equally distributed cost among the
processing nodes and the lowest cost possible, while taking into account the following:

execution cost
icf , i = 1,….,E

communication cost
jkf , j = 1,….,K and

cost for executing the background process
jBf , j = 1,….,K

icf ,
jkf , and

jBf are derived from the service specification, and thus, the total offered

execution cost for the given service can be calculated as | |

1

E

i icf . Hence, the average load

Ta becomes [2]:

| |

1

1
| |

E
a i icfX

T (1)

where X = the available total nodes in a network N where the service is deployed.

To account for the communication cost

jkf of the collaboration kj in the service, the

function 0 (,)q cM is defined first [2]:

0 , { | }q c n N c nM M

This means that 0 (,)q cM returns the physical node n from a set of physical nodes N
available in the network that hosts components in the list mapping M.

Let collaboration 1 1 2,k c c (Figure 2.16), taking into account the following:

The communication cost of k1 is 0 if components c1 and c2 are co-located, i.e.,
0 1 0 2(,) (,)q c q cM M

(if M = ({c1, c2 n1}) or ({c1, c2 n2}) in Figure 2.16).
The cost is

jkf if the service components are otherwise co-located (i.e., the

collaboration is remote) (if M = ({c1 n1} {c2 n2}) or ({c1 n2} {c2 n1}) in Figure
2.16).

(2)

 29

Using an indicator function I(x), this is expressed as 0 1 0 2((,) (,)) 1I q c q cM M ,
if the collaboration is remote and 0 otherwise.
To determine which collaboration kj is remote, the set of mapping M is used.
Given the indicator function, the overall communication cost of service, FK(M), is
the sum [2]:

| |
K 0 ,1 0 ,21

F ((,) (,))K
j jj jkfI q k q kM M M

Given a mapping M = {mn} (where mn is the set of service components at physical node n)
the total load can be obtained as ˆ

in cc mni
fl . Furthermore, the overall cost function

F(M) becomes [2] (where Ij = 1, if kj external or 0 if kj internal to a node):

| | | |
K1 1

ˆF() | | FX K
n an j jBflM MT

The absolute value ˆ| |n al T is used to penalize the deviation from the desired average
load per physical node.

Example: deployment mapping: To specify the deployment mapping using the cost
functions, we consider an example as a service of collaboration of E = 10 components or
collaboration role (labeled C1 . . . C10) to be deployed and K = 14 collaborations between
them, as illustrated in Figure 2.17. We consider three types of requirements in this
specification. In addition to the execution cost, the communication costs and the
overhead cost, we have a restriction on components C2, C7, C9 regarding their location.
They must be bound to physical nodes n2, n1, n3 respectively.

(3)

(4)

Figure 2.17 Collaborations and components in the example
i

Chapter 2

 30

Costs such as execution, communication, and overhead are estimated by guessing in the
application scenario and are utilized for reasoning about the deployment logic. The
development of a method that could be applied for deriving the costs automatically and in
a realistic manner would be useful and is the part of our future work (see Chapter 6).

In this example, the target environment consists only of N = 3 identical, interconnected
physical nodes with a single provided property, namely processing power, and infinite
communication capacities (Figure 2.18).

The optimal deployment mapping can be observed in Table 2.3. The lowest possible
deployment cost, according to equation (4) is 17 + 100 + 70 = 187.

Case example: Taxi control system: deployment mapping: Moreover, the following
Figure 2.19 demonstrates the deployment mapping of a taxi control system, where it is a
straightforward and one-to-one mapping between the service components and the
physical components.

Node Components l | l – T | Internal collaborations

n1 c4, c7, c8 70 2 k8, k9
n2 c2, c3, c5 60 8 k3, k4
n3 c1, c6, c9, c10 75 7 k11, k12, k14

17 100

 cost

117

n2: Processor
Node

n3: Processor
Node

Figure 2.18 Target network of hosts

Table 2.3 Optimal deployment mapping in the example scenario

n n

Taxi Control
centre

Mobile
device

Control
centre

str: status
update & tour

request

st: start tour

Taxi
[1…*]

Client
[1…*]

trn: tour order
& notify

Figure 2.19 Deployment mapping of a taxi control system

n1: Processor
Node

 31

2.6 Model transformation

To conduct the early assessment of performance and performability modeling, the service
design defined by the UML specification is transformed into analytical models such as
the Markov model and Petri net [23]. To keep the service specification model and
analytical model consistent with each other, the process of model transformation is driven

by the model transformation rules, which provide an efficient, scalable, and automated
approach to conducting model transformation for large, complex, and multifaceted
distributed systems. Though we consider the generation of a Markov model from the
UML specification style in Papers 1 and 2, our ultimate goal is to generate Petri nets,
specifically SRN models, from the UML specification style [22]. The reason is that Petri
nets have very similar semantics to the UML activity diagrams and state machine
diagrams that have been used as the main specification unit in our modeling framework,
and, in particular, SRN provides several extremely useful features to model performance-
and performability-related behavior well. The model transformation rules have been
utilized to generate three types of analytical models in our modeling framework:
performance, dependability, and performability. This section contains the description
regarding the below items:

Introduction of the Petri net model
Performance model generation
Dependability model generation
Performability model generation

Before introducing the model transformation rules for generating SRN models, we would
like to provide a brief introduction about Petri nets.

2.6.1 Introduction of the Petri net model

A Petri net is a directed graph with two disjoint-type nodes, such as places and transitions
[23]. A directed arc connecting a place to a transition is called an input arc, and the arc
connecting a transition to a place is called output arc of the transition. A positive integer

Model transformation

Provides rules for
generating:

- Performance model

- Dependability model

- Performability model

Figure 2.20 Model transformation

Analytical
model

Annotated
model

System non-
functional
properties

Service
functional
behavior

Deployment
mapping

Evaluation
result

System
physical
platform

Chapter 2

 32

called multiplicity can be associated with each arc. The places connected to a transition
by input arcs are called the input places of this transition, and those connected by means
of output arcs are called its output places. Each place may contain zero or more tokens in
a marking. A marking represents the state of the model at a particular instant. This
concept is central to Petri nets. The notation # (p,) is used to indicate the number of
tokens in place p in marking . If the marking is clear from the context, the notation #p is
used. A transition is enabled when each of its input places has at least as many tokens as
the multiplicity of the corresponding input arc. A transition may fire when it is enabled,
and on firing, a number of tokens equal to the multiplicity of the input arc are removed
from each of the input places, and a number of tokens equal to the multiplicity of the
output arc deposited in each of its output places [23].

SPNs are obtained by associating stochastic and timing information to Petri nets [23].
This is accomplished by attaching firing time to each transition (shown in Figure 2.21(a),
where transition Tarrival is associated with firing time, which is exponentially distributed
with), representing the time that must elapse from the instant that the transition is
enabled until the instant is actually fires. In GSPNs, transitions are allowed to be either
timed (exponentially distributed firing time (Tarrival in Figure 2.21(b))) or immediate (zero
firing time (Tquick in Fig 2.21(b))) [23]. Another other extension of GSPNs includes
inhibitor arcs. An inhibitor arc has small hollow circles instead of arrows at its
terminating ends. A transition with an inhibitor arc cannot fire if the number of tokens
that the input place of the inhibitor arc contains is equal to or more tokens than the
multiplicity of the arc.

SRNs are based on GSPNs and extend them further by introducing prominent extensions
such as guard function, reward function, and marking dependent firing rate [22]. A guard
function is assigned to a transition. It specifies the condition to enable or disable the
transition and can use the entire state of the net rather than just the number of tokens in
places [22]. It can be expressed by applying logical conditions that can be expressed
graphically using input and inhibitor arcs, which are limited by the following semantics: a
logical “AND” for input arcs (all the input conditions must be satisfied) and a logical
“OR” for inhibitor arcs (any inhibitor condition is sufficient to disable the transition).
Reward function defines the reward rate for each tangible marking of Petri net based on
which various quantitative measures can be performed at the net level. A marking-
dependent firing rate allows using the number of token in a chosen place, multiplying the
basic rate of the transition. An SRN model has the following elements: finite set of the
place (drawn as circle), finite set of the transitions defined as either timed transitions
(drawn as thick transparent bar) or immediate transitions (drawn as thin black bar), set of
the arc connecting place and transition, multiplicity associated with the arcs, and marking

Tarrival
Pa

Pb

Figure 2.21(a) A simple SPN model (b) A simple GSPN model

Tarrival

Pa Pb

(a) (b)

Tquick

 33

that denotes the number of token in each place. The SRN model is described formally by
the 6-tuple { , T, A, TT, Ml, m0} in the following manner [4]:

 = Finite set of the place
T = Finite set of the transition
A { × T} {T × } is a set of the arc connecting and T
TT: T {Timed (time>0), Immediate (time = 0)} specifies the type of the each transition.
Ml: A {1, 2, 3…} is the multiplicity associated with the arcs in A.
m: {0, 1, 2...} is the marking that denotes the number of tokens for each place in . The

initial marking is denoted as m0.

By considering the semantic definition of the SRN model, we provide the model
transformation rules used in this thesis to generate performance, dependability, and
performability models.

2.6.2 Performance model generation

Rules for generating performance SRN model can be divided into four categories:

Rule 1: Deployment mapping of a collaboration role
Rule 2: Deployment mapping of single collaboration (Bidirectional)
Rule 3: Deployment mapping of single collaboration (Unidirectional)
Rule 4: Deployment mapping of multiple collaborations (Unidirectional)

Rule 1: Deployment mapping of a collaboration role: Rule 1 addresses the generation
of an SRN model of a collaboration role with deployment mapping, which is shown in
Fig 2.22 (where Pi = Processing of ith collaboration role and di = Processing performed of
the ith collaboration role). Mainly, rule 1 has been utilized to model the load of a physical
node. For each physical node, there must be an upper bound of the execution of the
process in parallel with that node. The execution of the process is only possible when the
node has the capacity to do so. When the collaboration role of a building block deploys
onto a physical node, the equivalent SRN model is illustrated in Figure 2.22. Initially,
place PPn contains q (where integer q > 0) tokens, which define the upper bound of the
execution of the process in parallel with a physical node n, and the timed transition

Collaboration
role

Physical node

SRN model

PPn

diPi

 Node n
q

do

exit
Pi

di

Activity Diagram with
Deployment mapping

Figure 2.22 Model transformation rule 1

ni

(a)

(b)
(c)

Chapter 2

 34

Rule 1: Deployment mapping of a collaboration role: When the collaboration role of a building
block deploys onto a physical node, the equivalent SRN model is represented by the 6-tuple in
following manner:

 = {Pi, di, PPn}
T= {do, exit}
A = {{(Pi × do) (do × di)}, {(PPn × do) (do × PPn)}, {(di × exit) (exit × Pi)}}
TT = (do Timed, exit Immediate)

 Ml= {(Pi × do) 1, (do × di) 1, (PPn × do) 1, (do × PPn) 1(di × exit) 1, (exit × Pi) 1}
mo = {(Pi 1}, (di 0), (PPn q)}

do will fire (which symbolizes the execution of the process i) only when there is a token
available in both the place Pi and PPn. The place PPn will again receive its token back
after firing of the timed transition do, indicating that the node is ready to execute other
processes deployed on that node.

Rule 2: Deployment mapping of single collaboration (Bidirectional): Rule 2 addresses
the generation of an SRN model of a single collaboration, which is illustrated in Figure
2.23. The collaboration connects only two collaboration roles in bidirectional manner,
where roles are deployed on the same or different physical nodes. When collaboration
roles i and j are deployed on the same physical node n, the timed transition tij in the SRN
model is only realized by the overhead cost, as in this case, communication cost = 0.
When collaboration roles i and j are deployed on the different physical nodes n and m, the
timed transition tij in the SRN model is realized by both the overhead cost and
communication cost.

Rule 2: Deployment mapping of single collaboration (Bidirectional): The SRN model of a
collaboration, where collaboration connects only two collaboration roles in a bidirectional
manner and the roles are deployed on the same physical node can be represented by the 6-tuple
in the following way:

 = {Pi, di, Pj, dj PPn}
T= {doi, doj,tij}
A = {(Pi × doi) (doi × di), (PPn × doi) (doi × PPn), (di × tij) (tij × Pi), (Pj × doj)

(doj × dj), (PPn × doj) (doj × PPn), (dj × tij) (tij × Pj)}
TT = {(doi, doj, tij) Timed}
Ml= {((Pi × doi), (doi × di), (PPn × doi), (doi × PPn), (di × tij), (tij × Pi), (Pj × doj), (doj × dj),

(PPn × doj), (doj × PPn), (dj × tij), (tij × Pj)) 1}
mo = {(Pi 1), (di 0), (Pj 1) (dj 0), (PPn q)}

Similar to the above, the SRN model of a collaboration can be represented by the 6-tuple,
where collaboration connects only two collaboration roles in bidirectional way and the
roles are deployed on different physical nodes.

 35

Rule 3: Deployment mapping of single collaboration (Unidirectional): Rule 3
addresses the generation of a SRN model of single collaboration, which is illustrated in
Figure 2.24. Here, the collaboration connects only two collaboration roles in a
unidirectional way, and the roles are deployed on the same or different physical nodes.
When collaboration roles i and j are deployed on the same physical node n, the timed
transition tij in the SRN model is only realized by the overhead cost, as in this case,
communication cost = 0. When collaboration roles i and j are deployed on the different
physical nodes n and m, the timed transition tij in the SRN model is realized by both the
overhead cost and communication cost.

Rule 3: Deployment mapping of single collaboration (Unidirectional): The SRN model of a
collaboration, where the collaboration connects only two collaboration roles in a unidirectional
manner and the roles are deployed on the same physical node can be represented by the 6-tuple
in the following manner:

 = {Pi, di, Pj, dj PPn}
T= {doi, doj,tij}
A = {(Pi × doi) (doi × di), (PPn × doi) (doi × PPn), (di × tij) (tij × Pj), (Pj × doj)

(doj × dj), (PPn × doj) (doj × PPn)}
TT = {(doi, doj, tij) Timed}
Ml= {((Pi × doi), (doi × di), (PPn × doi), (doi × PPn), (di × tij), (tij × Pj), (Pj × doj), (doj × dj),

(PPn × doj), (doj × PPn)) 1}
mo = {(Pi 1), (di 0), (Pj 0) (dj 0), (PPn q)}

Figure 2.23 Model transformation rule 2

Chapter 2

 36

Similar to the above, the SRN model of a collaboration can be represented by the 6-tuple,
where the collaboration connects only two collaboration roles in a bidirectional manner
and the roles are deployed on different physical nodes.

Rule 4: Deployment mapping of multiple collaborations (Unidirectional): Rule 4 is
described generally with deployment mapping of multiple collaborations. For a
composite structure, if a collaboration role i connects with n collaboration roles by n
collaborations like a star graph (where integer n > 1), where each collaboration connects
only two collaboration roles, then the following is true:

Only one instance of collaboration role i exists during its state transition, and the single
instance of collaboration role i connects with all other collaboration roles by timed
transitions to generate the SRN model.

The rates of transition tij and sik are determined in the same manner as rule 2, based on the
deployment location of the collaboration roles.

The SRN model of rule 4 is shown in Figure 2.25. In the first diagram (Figure 2.25), if
component i contains its own token, an equivalent SRN model of the collaboration role i
will be formed similar to rule 2. The same applies to the components j and k in the second

Figure 2.24 Model transformation rule 3

 37

diagram (Figure 2.25). The collaboration roles i, j, and k can be expanded as like rule 2
shown in Figure 2.23. Model transformation rule 4 can be presented by the 6-tuple in the
same manner as the previously mentioned rules.

Additional rules: Furthermore, we will present the transformation rules to generate SRN
models for some of the components of the activity diagram that might have been
presented in collaborative building blocks:

Decision node: The decision node in the UML activity diagram activates one of the
outgoing flows, which are realized by the immediate or timed transition in the SRN
model according to the performance annotation requirement. The activation of outgoing

Figure 2.25 Model transformation rule 4

operation

operation2

Decision node
SRN model

Figure 2.26 Model transformation of a decision node

operation

operation1 operation2

tno yes no tyes [gr]

(a)

(c)

(b)

operation1

Chapter 2

 38

flow in the UML activity diagram is achieved based on a condition that means the
decision is not random. Therefore, we attach a guard function with immediate or timed
transition in the equivalent SRN model of the decision node during the model
transformation to ensure that the decision is not made randomly. The guard function is
associated with a condition based on which the activation of the transition will be
permitted. For example, immediate transition tyes in Figure 2.26 is attached with a guard
function [gr] in the equivalent SRN model, which will capture the same condition to be
activated as the outgoing flow, which is indicated as yes in the activity diagram. If the
condition of the guard function [gr] is fulfilled, the attached transition will be activated.
In the same manner, it is also possible to attach a guard function with the immediate
transition tno instead of transition tyes and to conduct the same process for the activation of
outgoing flow.

Merge node: In the case of merge nodes, the outgoing flow is activated when either of
the incoming flow arrives. This event is captured by using the immediate transition or
timed transition in the SRN model according to the performance annotation requirement,
which is shown in Figure 2.27.

Timer node: The timer node in the UML activity diagram is represented by the timed
transition in the corresponding SRN model, which is illustrated in Figure 2.28.

operation2

operation

Merge node
 SRN model

operation1

operation2

Timer

SRN model

Figure 2.27 Model transformation of a merge node

operation

operation2 operation1

t1 t2

Figure 2.28 Model transformation of a timer node

operation1

operation2

T

operation1

 39

Join node: In the case of join nodes, when all incoming flows arrive, the outgoing flow
starts, which is realized by the immediate or timed transition in the SRN model according
to the performance annotation requirement.

Fork node: The fork node is realized by the split of the incoming flow into several
outgoing flows, which is represented by the immediate or timed transition in the SRN
model according to the performance annotation requirement.

Case example: Taxi control system: generating performance SRN model using model
transformation rules: Here, we will illustrate how the model transformation rules have
been utilized to generate a performance SRN model for the example taxi control system.
Generation of an analytical model (SRN) for the performance evaluation of the taxi
control system by applying the model transformation rules is demonstrated in Figure 2.31.
Considering the deployment mapping of the taxi control system (Figure 2.19), UML
models with annotations (Figure 2.12, 2.13), and the model transformation rules (Section
2.6.2 and Figure 2.22 – 2.30), the SRN model of the taxi control system has been
generated. The collaborative building block status update & tour request is transformed
into a SRN model according to model transformation rule 2 (Figure 2.23). The generated
places and transitions from collaborative building block status update & tour request
are Pli, Pafq, Prat, and ttr. The timed transition ttr is realized by both communication time
and overhead time (see Figure 2.12), as the collaboration roles taxi and control centre

operation1 operation2

operation

Join node

operation

operation1 operation2

SRN model

Figure 2.29 Model transformation of a join node

operation1 operation2

operation

it

Figure 2.30 Model transformation of fork node

fork node

SRN model

operation2 operation1

operation

it

Chapter 2

 40

are deployed on different physical nodes. Likewise, the collaborative building block tour
order & notify is transformed into a SRN model according to model transformation rule
2 (Figure 2.23). The generated places and transitions from collaborative building block
tour order & notify are Pgr, Pafq, Pgt, and tto. The timed transition tto is realized by both
communication time and overhead time (see Figure 2.12), as the collaboration roles
client and control centre are deployed on different physical nodes. Client activity
partition of the tour order & notify collaborative building block also contains a decision
node, which is transformed into a SRN model according to the decision node
transformation rule (Figure 2.26). Two flows are created from place Pgt: one towards the
immediate transition it1 and another towards the timed transition tst. The immediate
transition it1 is realized by a guard function gr, which is only enabled when the client
requests exceed the capacity of the control centre. The definition of guard function gr is
given in the Table 2.4, where (#(Pgt)) defines the number of client requests that have
arrived in the system, and n defines the capacity of the control centre. In addition, the
collaborative building block start tour is transformed into a SRN model according to
model transformation rule 2 (Figure 2.23), where the timed transition tst is realized by
both communication time and overhead time.

The obtained SRN model for the taxi control system has been solved to calculate the
mean response time for serving client requests (using little’s law [23]) for various
numbers of client and taxi combinations. The graph presented in Figure 2.32 shows the
mean response time for various numbers of client and taxi combinations in the system by
solving the SRN model (Here, the rate of each timed transition in the SRN model is
considered 0.033). The top curve shows the mean response time for serving a client
request when there is only 1 taxi available in the system, and it also focuses on how the
mean response time for individual client requests increases gradually with an increasing
number of clients in the system. This curve shows the mean response time of around 520
sec for serving a client request for over 20-25 customers when there is only one taxi

function definition
gr If (#(Pgt) > n) 1 else 0

Pli
Pafq

Pgr

Pgt
Prat

ttr tto

tst

Figure 2.31 Performance SRN model of taxi control system

it1
[gr]

Table 2.4 Guard function definition

str: status update
&tour request

trn: tour order
& notify

st: start tour

 41

available in the system. The response time for serving a client request is not only depends
on the available taxis in the system but also number of client request arrived in the
system. For fixed number of taxis available in the system, if the number of client requests
increases in the system the response time for serving a client request will be higher.
Again for fixed number of client requests, the response time will be lower with the
increasing number of taxis in the system. The middle and bottom curves show the mean
response times for serving a client request when there are 5 and 20 taxis available in the
system, respectively. It is clearly shown that the response time increases with the higher
number of customers in the system. But all 3 graphs show the cutoff point when the
number of clients equals 20, as in our example, we assume that the control centre
capacity for handling concurrent client is 20. It is not logical that the control centre
would be able to handle unlimited number of clients. Therefore, we consider a cutoff
point of 20 clients for all of the curves. However, it is possible to solve the SRN model for
a large number of client and taxi combinations.

0

100

200

300

400

500

600

1 25 50 75 100 125 150 175 200

No of Customer

m
ea

n
re

sp
on

se
 ti

m
e

(s
ec

)

1 Taxi
5 Taxis
20 Taxis

2.6.3 Dependability model generation

The system is defined by its logic, configuration data, and state space. The system
receives input, i.e., a service request, and delivers a result, i.e., a service. A system fails
when it does not perform the expected actions. A failure may be a physical defect,
weakness or shortcoming of hardware components, or an error in the software
components. Physical defects are the “classical” faults, i.e., wear of components, random
device defects due to manufacturing imperfections, physical degradation of the material
of the components as a result of electric overstress, mechanical stress, or shock. Physical
faults are internal faults with respect to system boundaries, i.e., they are causes of the
succeeding errors within the system. Physical faults are permanent; as soon as a physical
fault occurs, the fault will remain until it is detected and repaired. Physical faults occur
over the operational phase of the system’s life cycle both during use and inactivity (in
store, serving as a back-up or simply powered off). Design faults are another type of fault
that affects the logic of the system. This class of faults spans from basic design flaws to

Figure 2.32 Numerical results of the analytical model (SRN) of the taxi control system

Cut off point at number of
client equals to 20

Chapter 2

 42

trivial implementation failures in the circuitry and software of a system. A lack of proper
timing and synchronization are other examples of design faults. In this context, design
faults also encompass specification faults, e.g., inconsistent system specifications. Design
faults are found in both hardware and software. Software faults are a subgroup of design
faults embedded in the software. Some software faults cause failures that are almost
impossible to reproduce. For instance, a slight change in the timing of the input values or
in the overall system state may change the “course of proceedings” so much that a failure
will not be reproduced. Some of the software faults will cause a failure if the conditions
are roughly the same. These failures are known as reproducible failures. Software faults
are sometimes difficult to localize. Thus, failure detection sometimes takes longer than
recovery. In our work, UML STM is used to focus the abstract view of dependability
behavior (failure and recovery) of the software and hardware components. STM can be
translated into SRN model components by converting each state into a place and each
state transition into a timed transition, which is reflected in the transformation Rule 5 and
Rule 6. The rules for generating a dependability SRN model can be divided into two
categories:

Rule 5: software component
Rule 6: hardware component

Rule 5: software component: Rule 5 addresses the generation of a STM model of
software component dependability behavior, which is shown in Fig 2.33.

Rule 5 (software component): The SRN model of the STM of software component for addressing
the dependability behavior can be presented by the 6-tuple in the following way:

 = {Psrun, Psrec, Psfail}
T= {Tsfail,Tsdet,Tsrec}
A = {(Psrun × Tsfail) (Tsfail × Psfail), (Psfail × Tsdet) (Tsdet × Psrec), (Psrec × Tsrec) (Tsrec ×

Psrun)}
TT = {(Tsfail,Tsdet,Tsrec) Timed}
Ml= {((Psrun × Tsfail) (Tsfail × Psfail), (Psfail × Tsdet) (Tsdet × Psrec), (Psrec × Tsrec) (Tsrec ×

Psrun)) 1}
mo = {(Psrun 1), (Psrec 0), (Psfail 0)}

RecoveryRunning

Failed

Fail Detect

Recover
Psrec

Psfail

Psrun
Tsdet

Tsrec

Tsfail

SRN model
STM diagram of software component

Figure 2.33 Model Transformation rule 5

 43

Rule 6: hardware component: Rule 6 addresses the generation of a STM model of
hardware component dependability behavior, which is shown in Fig 2.34.

Rule 6 (Hardware component): The SRN model of the STM of hardware component for
addressing the dependability behavior can be presented by the 6-tuple in the following way:

 = {Phrun, Phrec, Phfail, Pstop}
T= {Thfail,Thdet,Threc,Tsup ,Tsdown}
A = {(Phrun × Thfail) (Thfail × Phfail), (Phail × Thdet) (Thdet × Phrec), (Phrec × Threc) (Threc ×

Phrun), (Phrun × Tsdown) (Tsdown × Pstop), (Pstop × Tsup) (Tsup × Phrun))}
TT = {(Tsfail,Tsdet,Tsrec,Tup ,Tdown) Timed}
Ml= {((Phrun × Thfail) (Thfail × Phail), (Phail × Thdet) (Thdet × Phrec), (Phrec × Threc) (Threc

× Phrun),(Phrun × Tsdown) (Tsdown × Pstop), (Pstop × Tsup) (Tsup × Phrun)) 1}
mo = {(Psrun 1), (Psrec 0), (Psfail 0)}

2.6.4 Performability model generation

The execution of performance SRN is dependent on the execution of dependability SRN.
A transition in the dependability SRN may induce a state change in the performance SRN.
Moreover, state transitions in the dependability SRN model for the software process are
connected to state transitions in the dependability SRN model for the associated hardware
component where the software process deploy. These dependencies in the SRN models
are handled using guard functions to generate a performability model [5] in two steps:

1. Synchronize the software and hardware dependability SRN models using guard
functions

2. Synchronize the performance SRN model and dependability SRN model using
guard functions

Synchronize the behavior of software and hardware dependability SRN models
using guard functions: Referring to Section 2.6.3 (dependability model generation), two
dependability SRN models are generated in our framework: A SRN model for the
software component and a SRN model for the hardware component. State transitions in
the SRN model of a software component are linked to the state transitions in the SRN
model of the associated hardware component. A software component may stop working
because of its own malfunction or failure. Again if the associated hardware component

Figure 2.34 Model transformation rule 6

Failed

Recovery Running

Detect

Recover
Stop

Start Up

Shut Down

Fail

Phrun
Phrec

Thdet

Phfail

Threc

Thfail

Tsup

Tsdown

Pstop

SRN model
STM diagram of hardware component

Chapter 2

 44

fails, the deployed software component on that hardware automatically stops working. To
maintain the dependency between the state transitions in the software component with the
associated hardware component, the SRN model of the software process is expanded by
incorporating the following (Figure 2.35(c)):

One additional place Phf
Three immediate transitions thf, thfl, thfr
One timed transition Trecv

The expanded SRN model (Figure 2.35(c)) is associated with four additional arcs,
including:

(Psfail × thfl) (thfl × Phf)
(Psrec × thfr) (thfr × Phf)
(Psrun × thf) (thf × Phf)
(Phf × Trecv) (Trecv × Psrun)

The immediate transition, thf (Figure 2.35(c)), will be enabled only when a token is in
place, Psrun (Figure 2.35(b)) and no token is in place, Phrun (Figure 2.35(a)), this means
that a failure of the hardware node will stop the operation of software process deployed
on that node. The enabling of the immediate transitions thfl and thfr can be described in the

same way. The timed transition, Trecv, will be enabled only when there is a token in both
the places Phf (Fig. 2.35(c)) and Phrun (Fig. 2.35(a)). If there is a token in both the places
Phf and Phrun, the software node will again begin to work after being recovered from a
failure of the associated hardware component. Trecv is a timed transition, as it requires
some time to start the operation of the software process after being recovered from the
failure of the associated hardware node, where the software deploys. Four guard
functions, g1, g2, g3, and g4 allow four additional transitions, thf, thfl, thfr, and Trecv of the

Psrec

Psfail

Psrun
Tsdet

Tsrec

Tsfail

Phrec

Thdet

Phfail

Threc

Thfail

Tup

Tdown

Pstop
Phrun

Figure 2.35 (a) Hardware SRN model (b) Software SRN model
(c) Synchronized Software SRN model with hardware SRN model

(a) (b)

(c)

Synchronized
software model using

guard functions

 45

software process to work consistently with the changes of states of the associated
hardware node. The guard function definitions are given in Table 2.5.

Synchronize the performance SRN model and dependability SRN model using
guard functions: The computer system receives an input, i.e., service request, and
delivers a result, i.e., service. A computer system consists of several hardware and
software components that can be used to complete a service request. The failure of either
the software or hardware, which are responsible for achieving a certain service,
eventually stops delivering service to the end user. To maintain the dependency between
the processing of service requests and the running of software and hardware components,
the performance SRN model is expanded by incorporating a guard function to produce
performability model, which is demonstrated in Figure 2.36. For example, the
performance SRN model (Figure 2.36(b)) is expanded by incorporating one additional

place, Pfl, and one immediate transition, fA, shown in Figure 2.36(c). After being
deployed when a service component A begins to execute, a check will be performed to
verify whether both the software and hardware components (Figure 2.35(a), (c)) are
running. If both the software and hardware components work, the timed transition, doA,
will fire, which represents the continuation of the processing of the service component A.
However, if software respective hardware components (Figure 2.35(a), (c)) fail, the
immediate transition, fA, will be fired, which represents the cessation of the processing of
service component A. The guard function, grA (defined in Table 2.6), allows the

Function Definition
g1, g2, g3 if (# Phrun == 0) 1 else 0

g4 if (# Phrun == 1) 1 else 0

Table 2.5 Guard functions definitions

Figure 2.36 Synchronization of the performance SRN model with
the dependability SRN model using guard functions

Chapter 2

 46

immediate transition, fA, to work consistently with the change of states of the software
and hardware components.

In our discussion, we consider that the failure of the execution of one service component
because of the failure of software respective hardware eventually stops providing service
to the users while maintaining the dependency of the parallel execution of service
components with the running of software and hardware components. For example,
service components B and C are executing in parallel (Figure 2.36(b)). To synchronize
the processing of service components with the running of the software and hardware
components, the performance SRN model of the parallel execution of service components
B and C are expanded to produce performability model by incorporating one additional
place, Pfl, and two immediate transitions, fBC and wBC, shown in Figure 2.36(c). If
software respective hardware components (Figure 2.35(a), (c)) fail, the immediate
transition, fBC, will be fired, which symbolizes the cessation of the execution of both
service components B and C instead of stopping the execution of either component B or
C, which eventually postpones the execution of services. Postponing the processing of
either service component B or C will result in the inconsistent execution of the SRN
model and produce erroneous results. If both the software and hardware components
work as intended (Figure 2.35(a), (c)), the timed transition wBC will be fired, which
ensures the continuation of the execution of parallel processes B and C. The guard
functions grBC and grwBC allow the immediate transitions fBC and wBC to work
consistently with the change of the states of the software and hardware components. The
guard function definitions are given in Table 2.6. The examples regarding the generation
of the performability model are illustrated in Paper 7 and Paper 8. The algorithms for the
transformation of UML models to SRN models utilizing the above stated model
transformation rules have been described in Paper 8 and Paper 9.

The above Sections (2.1 - 2.6) mainly describe the steps of our performance and
performability framework. The below Sections (2.7 - 2.9) will describe other aspects of
our modeling framework.

2.7 Formalizing the UML specification style using cTLA

The UML specification style introduced in this thesis has been utilized to define the exact
and complete behavior of the service specification that focuses on the functionalities they
offer and will be used as an input model for the model transformation process. Though
UML provides comprehensive architectural modeling capabilities, it lacks the ability to
formally present the modeling specifications and does not convey formal semantics or
syntax. As a result, we delineate the precise semantics of UML collaborations, activities,
and deployment by formalizing the concept in the temporal logic cTLA style, which is
defined as cTLA/c and the semantics of state machine diagram realized by the cTLA

Function Definition
grA, grBC if (# Psrun == 0) 1 else 0

grwBC if (# Psrun == 1) 1 else 0

Table 2.6 Guard functions definitions

 47

formula [13]. The motivation behind expressing the semantics using cTLA is to describe
various forms of structures and actions through an assortment of operators and techniques,
which correspond superbly with UML collaborations, activities, deployment, and the
state machine diagram.

2.7.1 cTLA/c for collaborative service specification

cTLA/c is a formal basis for defining the collaborative service specification using UML
collaboration and activity [13]. The concept of UML collaboration introduced in this
work is rather structural and describes a structure of collaborating elements. To illustrate
the structural concept of the collaboration, collaborations are mapped into a cTLA/c
process, where the process is realized between the collaboration roles internal to the
collaborations. In Paper 9, the detailed process for formalizing the UML collaboration
specification is introduced, where the focus was not only to specify the behavior
internally to the collaboration but also to define the mechanism to couple the
collaborations with others during the composition if necessary.

UML activities have been utilized to express the behavior of collaborations. A UML
collaboration is complemented by an activity, which uses one separate activity partition
for each collaboration role. In terms of the cTLA/c, an activity partition corresponds to a
collaboration role. The semantics of UML activities are based on the Petri nets [1]. Thus,
an activity essentially describes a state transition system, with the token movements as
the transitions and the placement of tokens within the graph as the states. Consequently,
the variables of a cTLA/c specification model the actual token placement on the activity,
while its actions specify the flow of tokens between states. Flows may cross partition
borders. According to the cTLA/c definition and because partitions are implemented by
distributed components, flows moving between partitions are modeled by communication
buffers, while states assigned to activity nodes are represented in cTLA/c by local
variables. To define the semantics of activities using cTLA/c, we opted for an approach
that directly uses the mechanisms of cTLA [13]. We describe some activity element types
as separate cTLA processes in Paper 9, which help to understand the semantics of the
activity elements. Moreover, the production rules of cTLA actions for UML activities
have been presented in Paper 9 to produce the system actions from the local process
actions as a set of rules, so that each activity element can be defined separately.

Form
alized using cTLA

Figure 2.37 Formal method representations of UML models

Analytical
model

Annotated
model

Deployment
mapping

Model
transformation

System
physical
platform

Service
functional
behavior

System non-
functional
properties

Evaluation
result

Chapter 2

 48

The concept of a UML deployment diagram is also structural and describes a structure of
the execution environment by identifying a system’s physical layout. It also specifies
which pieces of service components run on what pieces of physical nodes and how nodes
are connected by communication paths. We use a specific tuple class as an additional
invariant that is also a part of the style cTLA/c to model UML deployment, which is also
described in Paper 9.

2.7.2 cTLA to specify UML state machine diagrams

Our modeling framework used UML state machine diagrams to capture failure and
recovery events of the system components. TLA is a linear-time temporal logic that
models the system behavior where the system behavior is realized by a set of
considerably large number of state sequences [s0, s1, s2 . .] [14] [15]. Thus, the TLA
formalism can define the state machine formally produced by our framework, which
ultimately also models considerably long sequences of states, si, starting with an initial
state, s0. cTLA originated from TLA to offer more easily comprehensible formalisms and
propose a more supple composition of specifications [8]. A state transition system is
defined by the body of a cTLA process type. One cTLA process represents one state
machine that mentions a set of TLA state sequences with the help of variables, actions,
and events. The detailed formalism is defined in Paper 8.

In addition, the formalization of a UML model using a cTLA process thus helps to
describe the mapping process to show the correspondence with the analytical model.
UML activities are based on Petri Nets and as such describe a state transition system. As
an analytical model, our framework produces a SPN and SRN (extension of Petri Nets).
The cTLA can define the state transitions formally produced by our framework, which
ultimately also model considerably long sequences of states, si, starting with an initial
state, s0. Thus, we consider a mapping approach that directly shows the mapping of the
cTLA-specified UML model into a SRN model. This correspondence in turn ensures that
the mapping of the cTLA-specified UML model and Petri nets fit together and the UML
correctly transforms to the analytical model. The detailed mapping process demonstrating
the correspondence between the cTLA-specified UML and SRN is described in Paper 9.

2.8 Tool support of our framework

Tool support is an essential part of our modeling framework. A tool provides editing
support and an automated means of model transformation with the capability to verify the
model. It also provides a faster way of model development and evaluation. The
description of the tool-based support of our modeling framework is given in Papers 8 and
9. The tool support of our modeling framework is illustrated in Figure 2.38. We have
used two tools:

Arctis for defining service functional behavior
SHARPE for generating model evaluation result

 49

The two tools are integrated in our modeling framework to evaluate the performance and
performability of the distributed system. The above tools are tailored to serve their own
purpose in this work, but the integration achieved between these tools through our
modeling framework performs a novel and complete task that spans from the modeling of
service functional behavior to the performance and performability evaluation of that
service. This functionality ultimately helps to accomplish our research objective.

2.8.1 Arctis

The service specification models of our modeling framework, such as the UML
collaboration and activity diagram (described in Section 2.1), are generated using the
Arctis tool [10]. Arctis focuses on the abstract, reusable service specifications that are
composed of UML collaborations and activities. It uses collaborative building blocks as
reusable specification units to provide the structural and behavioral aspects of the service
components. To support the construction of building blocks that consist of collaborations
and activities, Arctis offers special actions and wizards. Arctis provides an editor to
specify services, which allows the user to create collaborations from scratch or compose
existing ones taken from a library to create composite collaborations. Special actions are
available to update each composite building block, which require that the activities and
their partitions as well as call behavior actions must be synchronized with the
collaboration. For example, Arctis automatically generates a corresponding activity for
the behavioral specification of the composition. For each collaboration role, an activity
partition is created and each collaboration is represented by a call behavior action with its
pins. This skeleton is then completed manually with activity flows and nodes that model
the extra logic to couple the sub-collaborations.

Model verification using Arctis: Model verification is an integral part while deriving
the tool-based support of the developed framework. This verification is also necessary to
precisely and correctly represent the model specifications. Because temporal logic is
applied to define the UML model specification, we can use the model checker TLC to
verify the specification [17]. The external model checker TLC is invoked by Arctis from

Figure 2.38 Tool support of our modeling framework

SHARPE Annotated
model

System
physical
platform

System non-
functional
properties

Deployment
mapping

Model
transformation

Analytical
model

Chapter 2

 50

the command line, invisible to the user. To analyze building blocks and complete systems,
the Arctis editor constantly checks the model for a number of syntactic constraints. For a
more thorough analysis of the behavior, Arctis employs the model checker TLC based on
the Temporal Logic of Actions (TLA). Figure 2.39 outlines this process: When a building
block is complete and syntactically correct, Arctis transforms the UML activity into
TLA+, the language for TLA, and initializes the model checker TLC. TLC can verify a
specification for various temporal properties that are stated as theorems. For each activity,
a set of theorems is automatically generated, which claims certain properties to be

maintained by activities in general. Examples of these properties include the correct use
of building blocks within the activity such that the activity itself satisfies a certain
externally visible behavior; each call behavior action representing an instance of a
building block, where a call behavior action declares a corresponding pin; each building
block that has one activity partition for each collaboration role; state sequences that are
connected through appropriate pins during the composition of building block activity, etc.
When TLC detects that a theorem is violated, it produces an error trace displaying the
state sequence that leads to the violation. If the model specification does not violate any
theorems, the verification ends successfully. Otherwise, an error will be reported by the
TLC in textual format, and a number of diagnoses will be considered based on the error
trace. The detailed model verification process has been defined in [18].

However, the automated model verification process with TLC is currently only applicable
to UML collaborations and activity diagrams, as missing plug-ins to generate UML
deployment diagram, UML STM model, and incorporate non-functional parameters to
annotate UML model for Arctis are under development.

2.8.2 SHARPE

SHARPE (Symbolic Hierarchical Automated Reliability/Performance Evaluator) is a tool
that accepts specifications of mathematical models and requests for model analysis [11].
It is a tool to specify and analyze performance, reliability, and performability models. It is
a toolkit that provides a specification language and solution methods for most of the
commonly used model types. Non-functional requirements of the distributed system can
also be evaluated using SHARPE, such as response time, throughput, job success
probability, etc. The SHARPE tool specifies a SPN or SRN model as follows:

Figure 2.39 Model checking with TLC [18]

 51

spn/srn name {(param list)}

* section 1: places and initial numbers of tokens

<place name expression>

end

* section 2: timed transition names, types, and rates

{

<transition_name ind expression {guard expression} {priority expression}>

<transition_name placedep place_name expression {guard expression}{priority expression}>

<transition_name gendep expression {guard expression} {priority expression}>

}

end

* section 3: immediate transition names, types, and rates

{

<transition_name ind expression {guard expression} { priority expression}>

<transition_name placedep place_name expression {guard expression}{priority expression}

<transition_name gendep expression {guard expression} {priority expression}>

}

end

* section 4: place-to-transition arcs and multiplicity

{ <place_name transition_name expression> }

end

* section 5: transition-to-place arcs and multiplicity

{<transition_name place_name expression>}

end

*section 6: inhibitor arcs and multiplicity

{<place_name transition_name expression>}

end

* section 7: deriving results

{

<built in function >

<user defined function>

}

end

where param list is:

name, name, ..., name

Chapter 2

 52

name, trans name, and place name are all symbols; expression is a mathematical
expression that could contain function calls; ind means that the transition’s firing rate is
not dependent on the current marking of the net; placedep means that the transition’s
firing rate depends on the number of tokens in the specific place mentioned and the
expression assigned to it; and gendep means that the firing rate depends on the marking-
dependent function referenced in the corresponding expression. Each line in the first
section specifies a place name and the initial number of tokens in the place.

Each line in the second section specifies a name for a timed transition, a transition type
(ind if the transition rate is marking-independent and dep if it is marking-dependent), a
place name if and only if the rate is dependent, and a rate. If the transition is marking-
dependent, the effective rate of the transition depends on (is multiplied by) the number of
tokens present in the place.

Each line in the third section specifies a name for an immediate transition, a transition
type (ind if the transition weight is marking-independent and dep if it is marking-
dependent), a place name if and only if the weight is dependent, and a weight. If the
transition is dependent, the effective weight of the transition depends on (is multiplied by)
the number of tokens present in the place. The transition weight determines the
probability that the transition is chosen if it is one of multiple immediate transitions
leaving a place.

The lines in the fourth section specify the arcs from places to transitions. The multiplicity
indicates the number of tokens that must be present in the place for the transition to fire.

The lines in section five specify the arcs from transitions to places. The multiplicity
indicates the number of tokens that are deposited in the place when the transition is fired.

The lines in section six specify inhibitor arcs from places to transitions. The multiplicity
indicates how many tokens must be in place to inhibit the transition from firing.

The lines in section seven specify the built in functions of SHARPE or user-defined
functions that can be used to derive result.

Some of the built-in functions for model evaluation are given below:

tput (system name, transition name): throughput for a GSPN or SRN transition in
steady state
util (system name, transition name): utilization of a GSPN or SRN transition in
steady state
etok (system name, place name): average number of token in the place in steady
state
prempty (system name, place name): probability that the place is empty in steady
state

 53

Although the Arctis and SHARPE tools have been utilized to describe service definitions
using a UML collaboration and activity as well as model evaluations, the following steps
of our modeling framework have been implemented as parts of the PhD thesis work
(focused on Paper 8 and Paper 9):

System physical platform using UML deployment diagram
Describing system components dependability behavior using UML STM
Deployment mapping
Generation of annotated UML model
Automated Model transformation
Model validation for XML

The steps of the performance and performability modeling framework, such as UML
deployment diagram and deployment mapping (Section 2.2 and 2.5), UML STM diagram
generation (Section 2.2), and performance and dependability parameters incorporation
into UML models (Section 2.4) are generated as XML documents. We have defined
XML schema files for corresponding XML documents. The XML schema file describes
the structure of an XML document that is used to validate the corresponding XML
document to ensure that the XML data are in correct format. This validation ensures that
the XML document is syntactically correct. Hence, erroneous data or typos in the XML
document will be fixed during the XML validation and inform the user to correct the
corresponding data. To ensure this claim, we have defined several constraints and checks
in the schema files. The detailed description of XML validation is given in Paper 9.

2.9 Scalability, generalization and extensibility aspects

The contributions of this thesis work were presented in detail in the previous sections.
This section highlights some of the important factors concerning our modeling approach.

2.9.1 Scalability

The examples we considered as case studies and presented in the papers were chosen to
cover real scenarios and also included the well-known problem of assigning clusters to
nodes as artificial case studies. The examples were compact enough in some respects to
be completely presented within the space constraints of an article. We claim, however,
that the modeling approach scales well and can also handle specimens of real system
specifications. Moreover, we might expect more complex forms of collaborations than
those demonstrated in the papers, which can be solved with additional levels of
simplification. In addition, our provided deployment logic can handle any properties of
the service as long as a cost function for the specific property can be produced. The
defined cost function can react in accordance with the changing size of the search space
of an available hosts presented in the execution environment to assure efficient
deployment mapping. For the model transformation, we have described generalized rules
and algorithms (see Papers 8, 9, and Section 2.6) to also handle complexity and
scalability. However, tackling state explosions for model evaluations of large Petri nets
using SHARPE is challenging. Below, we explain an aggregate method (see Paper 9 for

Chapter 2

 54

more description) to easily solve and evaluate large problems by tackling the challenge of
state explosion. To describe the aggregate method, we will revisit the taxi control system
example mentioned in Section 2.1. However, the UML collaboration diagram of the taxi

Figure 2.40 SRN model of taxi control system from UML model

Model transformation for
taxi control system

 55

control system is described more broadly here, which is shown in Figure 2.40. The
participants in the service are represented by the collaboration roles taxi, control center,
and client. The control center has a default multiplicity of one; while many taxis and
customers can be in the system, which are denoted by the multiplicity [1,…,*]. Between
the roles, collaborations denote the occurrence of a behavior: taxi and control center are
interacting with the collaborations status update and tour request (where tour request is a
composite collaboration), the control center cooperates with the client by means of the
collaborations notify and tour order, while the interaction between taxi and client is

Model transformation for taxi control
system (aggregated method)

Figure 2.41 SRN model of Taxi control system from UML model
(aggregated version)

Chapter 2

 56

realized by the collaboration start tour. Considering the collaboration diagram (Figure
2.40), the equivalent SRN model is shown in Figure 2.40, which is generated using model
transformation rule 1 (Figure 2.22), rule 3 (Figure 2.24), and the transformation rule for a
decision node (Figure 2.26). Here, we skip other steps of the model transformation
process, as they were already described in Section 2.1 to Section 2.6.

The taxi control system usually handles a large number of client requests and taxis.
Considering this factor, the SRN model for a taxi control system mentioned in Figure
2.40 is very demanding with respect to the execution time and also quickly suffers from
scalability and state explosion problem as the numbers of client requests and arrival of
taxis increase in the system. To tackle these problems, we have redesigned the UML
model to generate an aggregated version of the above SRN model (Figure 2.40) so that
the model can easily be scaled for a large number of client requests and taxis. The
aggregated version of the UML collaboration diagram and the equivalent SRN model for
the taxi control system are shown in Figure 2.41, which was already described in Section
2.1 to Section 2.6. Between the collaboration roles, collaborations denote the occurrence
of a behavior: taxi and control center interact with the collaboration status update & tour
request (collaborations status update and tour request in Figure 2.40 are presented
aggregately in Figure 2.41); the control center cooperates with the client by means of the
collaboration tour order & notify (collaborations tour order and notify in Figure 2.40 are
presented aggregately in Figure 2.41), while the interaction between taxi and client is
realized by the collaboration start tour. Considering the aggregated collaboration diagram
(Figure 2.41), the equivalent SRN model is shown in Figure 2.41, which is generated
using model transformation rule 1 (Figure 2.22), rule 2 (Figure 2.23), and the
transformation rule for decision nodes (Figure 2.26).

We use SHARPE [11] to execute the obtained SRN models for the taxi control system
and calculate the mean response time for various numbers of client requests and taxis.
The large SRN model in Figure 2.40 and the aggregated version of the large SRN model
in Figure 2.41 produce similar results. However, the large SRN model (Figure 2.40) can
only be solved for very small numbers of client requests and taxis, whereas the
aggregated version (Figure 2.41) can be solved for large numbers of client requests and
taxis. Paper 9 focuses more on the scalability issue.

2.9.2 Generalization and extensibility

The modeling approaches presented in this work are general enough to illustrate a wide
variety of application scenarios (presented in the papers of part II) to show the
applicability of our developed framework. Our provided deployment logic can handle any
properties of the service as long as a cost function for the specific property can be
produced. The model transformation rules are defined to ensure the generality and
completeness such that the model can be transformed for various application domains of
distributed systems. The model transformation also supports the transformation of
arbitrary UML models, such as combinations of collaborations, activity, deployment, and
state machine diagrams. Moreover, the model transformation algorithms (see Paper 8 and
Paper 9) are designed based on the generalized model transformation rules to automate

 57

the model transformation. Moreover, our framework is supported by the tool suites Arctis
and SHARPE, which can be generally used for various model types. The Arctis wizard
can define UML collaborations and activity diagrams. The development of a missing
plug-ins for Arctis to define UML deployment diagram and UML STM diagram are
ongoing. Arctis will then be used to support various UML models as inputs for the model
transformation process. Although SHARPE is used to evaluate Markov and Petri nets in
our modeling framework, it can easily solve various analytical models [11].

The extensibility of our modeling approach can be defined in several directions, such as
considering the internal behavior of collaborative building blocks in run time by
exchanging existing service components or making new components available via some
discovery mechanisms, permitting the deployment logic to dynamically provide new
configurations of the deployment mapping when changes in the execution environment or
workload configuration are encountered, considering more comprehensive scenarios for
large networks, including more physical nodes and clusters, compiling a complete profile
that will help annotate our UML models in accordance with the performance and
performability evaluation, considering a method that could be applied to automatically
and realistically derive the costs, generating other output models using our framework
that can be solved by the SHARPE to evaluate the performance and performability result,
developing an automated feedback method to find UML anti-patterns and then change the
functional design accordingly, comparing numerous execution environments, and to find
the optimal deployment mapping of service components over a physical environment.

Chapter 2

 58

CHAPTER 3

Summary of the papers

The main contributions of this thesis have been published in international peer reviewed
conference proceedings and journals. The papers in Part II of this thesis are organized in
a chronological order that reflect the gradual development of this research work. The
papers are included in this thesis as originally published (except Paper 9, which has been
submitted to a journal for reviewing), but the formatting has been modified according to
the style of this thesis report. However, some variations in the notation used in the papers
might present because of the gradual development of the methods of this research work.

Generally, the papers have been categorized into four areas:

A – Developing a performance modeling framework, which considers reusable software

components to generate performance models from the system design specification

B – Considering execution cost, overhead cost, and communication cost while deriving

cost functions to assess deployment mapping and consider optimized model
transformation rules while generating performance models

C – Developing a performability modeling framework, which considers reusable

software components to capture the system functional behavior, cost functions for
deployment mapping, and optimized model transformation rules

D – Tool support for the performance and performability modeling framework,

including model validation

 60

The order and relationship among the papers are shown in Figure 3.1.

A
(Performance

modeling framework)

B
(Assessment of deployment

 mapping and considering model
transformation rules)

C
(Performability

modeling
framework)

D
(Tool support of
the framework)

The focus of Papers 1 – 3 is to develop a performance modeling framework that utilizes
reusable software components to capture the dynamics of distributed systems. Another
important aspect is to investigate the deviation in the system performance because of
considering alternative system execution architectures (category A). Papers 4 - 6 develop
cost functions to consider deployment mapping while satisfying the non-functional
properties of the system. Optimized model transformation rules to automatically and
scalably transform the models are also emphasized (category B). These six papers present
the research conducted together with the only advisor of the author, Poul E. Heegaard.
Paper 7 focuses on the development of the performability modeling framework while
utilizing reusable software components to capture the dynamics of distributed systems
(category C). Fumio Machida and Kishor S Trivedi also contribute to this research
conducted by the author. Papers 8 and 9 delineate the tool support of the performability
and performance modeling frameworks and formalize the UML specifications. Defining
the model validation to correctly transform the model is another important focus of these
papers (category D). Although we considered generating Markov models from the UML
specification style in Papers 1 and 2, we ultimately aimed to generate Petri nets.
Specifically, we intended to develop SRN models from the UML specification style
because the semantics of Petri nets are similar to those of the UML activity diagram and
state machine diagrams, which are used as the main specification units of our modeling
framework. Moreover, the SRN provides several tremendous features to accurately model
performance- and performability-related behavior [22]. The papers presented in part II
mainly describe the automated generation of Petri net models from the UML
specification style, except for Paper 1 and Paper 2. A brief summary of the included
papers is given below:

Figure 3.1 Relationship and order of the included publications

Markov model

Paper 9

Performability framework

Paper 2 Paper 1

Paper 3

Paper 8 Paper 7

Paper 6 Paper 4 Paper 5

Incremental development of the framework

 61

Paper 1

Translation from UML to Markov model: A performance modeling
framework

This paper focuses on the early assessment of the distributed system performance. This
assessment is achieved by developing a framework that proposed a translation process
from a high-level UML notation to a CTMC model and solved the model for related
performance metrics. UML models capture the functional behavior of the distributed
system, and the system is quantitatively evaluated by solving the CTMC. The framework
utilizes several UML models, such as collaboration, activity, and the deployment diagram.
The system dynamics are captured by the collaborative building block, where the UML
collaboration and activity diagram are complementarily used to each other. The
collaboration- and activity-oriented approach provides an opportunity to reuse the
collaborative building block that specifies the functional behavior of the system where a
collaboration diagram is used to define the structure of the building blocks. An activity
diagram is applied to delineate the internal behavior of the collaboration and overall
behavior of the system. The architecture of the system execution and deployment
mapping of the service components over the execution environment are outlined with the
help of a UML deployment diagram. This deployment mapping shows how the service is
delivered by utilizing the joint behavior of the system components, which may be
physically distributed. UML models are annotated to incorporate non-functional
parameters required during the performance evaluation of the system according to the
UML profile for Schedulability, Performance, and Time. The translation process from a
UML to a CTMC model is specified with the help of a state-marking approach. The
SHARPE tool is used to evaluate the performance by solving the CTMC model.

Unique contributions of Paper 1:

The framework that transforms the UML specification style into CTMC to
evaluate the performance of a distributed system is described in a stepwise
manner.

The system dynamics are captured by collaborative building blocks, where the
UML collaboration diagram is used to define the structure of the building block.
An activity diagram is applied to delineate the internal behavior of the
collaboration and overall behavior of the system.

The physical platform of the system is demonstrated using the UML deployment
diagram.

The deployment mapping of the service components over the execution
environment shows the delivery method of the service by the joint behavior of the
system components, which may be physically distributed.

Chapter 3

 62

The UML models are annotated to incorporate non-functional parameters
according to the UML profile for Schedulability, Performance, and Time.

The deployment mapping with annotation is used to transform the model into a
CTMC model using a state-marking approach.

A real case study is considered to show the applicability of the framework.

Paper 2

Translation from UML to Markov model: A performance modeling
framework for managing behavior of multiple collaborative sessions and
instances

This paper describes the performance modeling framework that presents the UML
specification style to capture the functional behavior of a system while utilizing reusable
software components to explicitly coordinate multiple collaborative sessions that occur
simultaneously. Another contribution of this paper is to consider design alternatives of
the architectures of system execution to stipulate the deployment mapping of software
artifacts on the physical nodes. The UML models are annotated to incorporate non-
functional parameters according to the UML profile for Schedulability, Performance, and
Time. The design alternatives of the execution environment with annotation are
considered while conducting the model transformation to generate a CTMC model from
the UML model. The CTMC models are subsequently evaluated to show the performance
effects of the distributed systems due to the consideration of different system execution
architectures for identical system functional behavior. A new and complex case study is
introduced to show the applicability of the performance modeling framework.

Unique contributions of Paper 2:

The system dynamics are captured by the collaborative building blocks, which
focus on the coordination among multiple collaborative sessions that occur
simultaneously (Paper 1 included the standard description).

The paper considers design alternatives of the system execution architecture using
UML deployment diagram.

The deployment mapping is conducted for design alternatives of the system
execution architectures to show how the service of multiple collaborative sessions
is delivered by the joint behavior of the system components, which may be
physically distributed.

The deployment mapping for the service of multiple collaborative sessions with
model annotation is utilized to transform the model into a CTMC model using a
state-marking approach.

 63

A real case study is considered to demonstrate the applicability of a modeling
framework that focuses on the performance effects of the distributed systems due
to the consideration of different system execution architectures for identical
system functional behaviors.

Paper 3

Translation from UML to SPN model: A performance modeling framework
for managing behavior of multiple collaborative sessions and instances

This paper focuses on the performance evaluation of the distributed system at the early
stage of the system development process that generates a SPN model from the system
design specifications. This assessment is achieved by the developed framework is tailored
to propose a translation process from a high-level UML notation to a SPN and solves the
model for related performance metrics. This paper emphasizes the multiple collaborating
instances that occur simultaneously while capturing system functional behavior and also
the design alternatives of the system execution architecture to illustrate deployment
mapping of the system. UML models are annotated to incorporate non-functional
parameters required during performance evaluation of the system according to the UML
profile for Schedulability, Performance, and Time. In addition, the model transformation
process is described to generate a SPN model from the UML specification style for
multiple collaborating instances and design alternatives of system execution architectures.
The applicability of the performance modeling framework is illustrated with the help of a
new real case scenario.

Unique contributions of Paper 3:

Stepwise description of the framework that transforms the UML specification
style into a SPN model to evaluate the performance of a distributed system
performance (This paper introduces a different analytical model compared with
Paper 1 and Paper 2)

The system dynamics are captured by the collaborative building blocks, which
focused on the coordination among multiple collaborative sessions that occur
simultaneously (Paper 1 included the standard description).

The paper considers design alternatives of the system execution architecture using
UML deployment diagram.

The deployment of design alternatives of the system execution architectures are
mapped to show how the service of multiple collaborative sessions is delivered by
the joint behavior of the system components, which may be physically distributed.

A detailed model transformation approach is described that utilizes the
deployment mapping for the service of multiple collaborative sessions with model
annotations to transform into SPN model

Chapter 3

 64

A real case study is considered to show the applicability of the framework that
focused on the performance effects of the distributed systems due to the
consideration of different system execution architectures for identical system
functional behaviors.

Paper 4

A performance modeling framework incorporating cost efficient deployment
of collaborating components

This paper continues the development of our modeling framework to provide further
general explanations that aims to generate a SPN model from the system design
specifications. System design specifications are modeled by the reusable software
components as collaborative building blocks. The specification is given in such a general
way that can be easily tailored to any specific case scenario of distributed systems. To
assess the deployment mapping of software components to the available physical
resources to satisfy non-functional requirements, cost functions are introduced that
express the utility of the deployment mapping of a distributed service. In addition, model
transformation rules are presented, which ensure the scalability and automation in model
transformations to generate a SPN model from UML specifications. A general formula is
derived to produce performance results by solving the SPN model. A traditional and well-
established task assignment problem is acclimatized to the service-engineering context in
this paper. The original problem is tailored to show the applicability of our performance
modeling framework.

Unique contributions of Paper 4:

The illustration of the service functional behavior using UML specification is
given in such a general way that can be easily tailored to any specific case
scenario of distributed systems (The illustrations are more generalized than in
previous papers).

Cost functions that express the utility of the deployment mapping of a distributed
service are introduced to assess the deployment mapping of software components
to the available physical resources that satisfy non-functional requirements (Here,
deployment decisions were made differently than in previous papers).

Very generalized model transformation rules are presented, which ensure the
scalability and automation of the model transformation to generate a SPN model
from UML specifications.

A formula is derived to produce performance results by solving the SPN model.

A traditional and well-established task assignment problem is tailored to show the
applicability of our performance modeling framework (A different case study is
considered than in previous papers)

 65

Paper 5

A performance modeling framework incorporating cost efficient deployment
of multiple collaborating instances

This paper introduces several contributions that carry on the incremental development of
the framework while describing our performance modeling framework. The UML
specification style for multiple collaborating instances is initiated in a very general and
broad way to easily illustrate systems for different application domains using this
specification style. Furthermore, the UML models are annotated to incorporate non-
functional parameters according to the UML profile for MARTE: Modeling and Analysis
of real-time embedded systems for performing quantitative evaluation. This new profile is
intended to replace the existing UML Profile for Schedulability, Performance, and Time
to provide a common way to model both the hardware and software aspects of real-time
embedded systems. This paper also optimizes the model transformation rules so that
models can be easily transformed for a wide range of application domains in a scalable
and automated way. As a performance model, the SRN (extension of the SPN model)
model is generated to take advantage of several prominent and important properties, such
as the marking dependent arc multiplicity that can change the structure of the net,
marking dependent firing rate, and reward rate defined at the net level. Another important
focus of this paper is to describe methods for the parallel processing of a networked node
while utilizing the limited processing power of that node.

Unique contributions of Paper 5:

The stepwise description of a framework that transforms the UML specification
style for multiple collaborating instances into a SRN model (extension of SPN
model) for distributed system performance evaluation (This paper introduces a
different analytical model compared with the previous four papers)

UML models are annotated to incorporate non-functional parameters according to
the UML profile for MARTE: Modeling and Analysis of real-time embedded
systems for quantitative evaluation (Different UML profiles are considered than in
previous papers)

A new parameter is introduced in the cost function to assess the specific
deployment mapping of service components on the physical infrastructure.

A generalized set of model transformation rules to generate the SRN model from
the UML specification style is illustrated.

As a performance model, the SRN (extension of the SPN model) model is
generated to take advantage of several prominent and important properties, such
as the marking dependent arc multiplicity, marking dependent firing rate, and
reward rate defined at the net level

Chapter 3

 66

The paper also focuses on addressing the parallel processing of a physical node
while utilizing its limited processing power when generating a SRN model.

Paper 6

Derivation of Stochastic Reward Net (SRN) from UML specifications
considering cost-efficient deployment management of collaborating service
components

This paper introduces a new idea that focuses on another aspect of our performance
modeling framework. In this paper, a service-engineering approach is specified with
respect to a unidirectional graph while capturing the system functional behavior using the
UML model. This new UML specification style is utilized to generate the SRN
performance model. A new set of model transformation rules are introduced to support a
scalable and automated model transformation process to generate the SRN model from
the UML specification style. A general formula is derived to produce performance results
by solving the SRN model. A well-established task assignment problem is considered to
show the applicability of our performance modeling framework that utilizes the new
UML specification style.

Unique contributions of Paper 6:

A stepwise description of the framework that transforms the UML specification
style into the SRN model, by specifying a service engineering approach using the
UML with respect to a unidirectional graph (a different way of explaining service
functional behavior than in the previous five papers).

A new set of model transformation rules is introduced that utilizes the new UML
specification style.

A formula is derived to produce performance results by solving the SRN model.

A well-established task assignment problem is considered to show the
applicability of our performance modeling framework utilizing the new UML
specification style.

Paper 7

From UML to SRN: A performability modeling framework considering
deployment of service components

The following paper continues the incremental development of the modeling framework
that concentrates on the performability modeling and evaluation of the distributed system.
This paper considers the behavioral change of the system components due to failure and
repair events. It also reveals how this behavioral change affected the system performance.
The functionalities of the performability modeling framework are divided into two views:

 67

the performance modeling view and dependability modeling view. The performance
modeling view focuses on capturing the system’s dynamics through a UML collaboration
and activity-oriented approach. The performance information is incorporated into the
UML diagram according to the UML profile for MARTE. The SRN model is then
generated automatically from the system functional specification by utilizing the model
transformation rules. The resultant SRN model is called the performance SRN. The
dependability modeling view is responsible for capturing any changes in the system states
using UML STM because of failure and recovery events of the system components. A
dependability parameter is incorporated into the STM model according to the UML
profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms Specification. The SRN model is subsequently generated automatically from
the STM model by utilizing the model transformation rules. The resultant SRN model is
called the dependability SRN. After generating the performance and dependability SRN
models, the model synchronization is used as the glue between the performance SRN and
dependability SRN to generate the performability SRN model. The synchronization task
guides the performance SRN to synchronies with the dependability SRN by identifying
the transitions in the dependability SRN. The performance and dependability SRN are
synchronized using guard functions. Once the performance SRN model is synchronized
with the dependability SRN model, a merged SRN model known as the performability
SRN model is obtained, and various performability measures can be evaluated. The
applicability of our framework is demonstrated in the context of performability modeling
and evaluation of a distributed system.

Unique contributions of Paper 7:

A stepwise description of a framework that transforms the UML specification
style into a SRN model to evaluate the performability of a distributed system
(Previously mentioned papers consider the performance evaluation of a
distributed system at an early stage)

The functionalities of the performability modeling framework are divided into
two views: the performance modeling view (generates a performance SRN model
from UML specifications) and the dependability modeling view (generates a
dependability SRN model from UML specifications)

Performance information is incorporated into the UML diagram according to the
UML profile for MARTE, and a dependability parameter is incorporated according
to the UML profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms Specification.

New model transformation rules are defined to generate dependability SRN
models.

A model synchronization process is specified, in which the performance SRN
model was synchronized with the dependability SRN model using guard functions
to generate the performability SRN model.

Chapter 3

 68

The applicability of our framework is demonstrated in the context of
performability modeling and the evaluation of a distributed system.

Paper 8

A performability modeling framework considering deployment of service
components

This paper focuses on the tool support of the performability modeling framework. The
UML models are formally presented using cTLA to understand the precise semantics and
correctly model the transformation to generate a performability SRN model. The formal
semantics of UML models thus help to very efficiently implement the model and provide
the tool support of our framework. The partial input models for model transformation in
our framework are generated using the Arctis tool, which is integrated as plug-ins into the
eclipse IDE. The other input models of performance and dependability views are
generated as XML. The SHARPE tool is used on the evaluation side of our
performability modeling framework. The detailed algorithms for the automatic model
transformation are specified to generate a SRN performability model from the UML
specification style. A new case study is introduced to show the applicability of the
performability modeling framework.

Unique contributions of Paper 8:

The UML models utilized in the performability modeling framework are
formalized using the cTLA method to understand the precise semantics and
correctly transform the model (Paper 7 includes the standard description).

A complex case is considered while capturing the dependability behavior of
system components.

The detailed algorithms for the automatic model transformation from UML to
SRN model are specified to evaluate the performability.

The performability modeling framework is supported by the Arctis and SHARPE
tools.

A new and complex case study is introduced to show the applicability of the
performability modeling framework.

Paper 9

Software performance evaluation utilizing UML specification and SRN model
and their formal representation

This paper provides an extensive illustration of the development of the performance
modeling framework that defines the formal method representation of UML models,

 69

mapping between the UML model and SRN model, as well as a detailed description of
the tool support of the framework. The formalization of the UML collaboration model,
production rules to delineate the detailed behavior of collaborations with the help of
UML activity, and formalization of the UML deployment diagram using cTLA are the
main focus of this paper. This paper also mentions the mapping process that shows the
correspondence between the UML diagram and SRN model by utilizing their formal
representation. Detailed model transformation algorithms to automatically generate the
SRN model from the UML model are defined. Furthermore, the tool support of the
performance modeling framework including the model validation, is described in this
work. A new real case study, the Taxi Control System, is introduced to demonstrate the
stepwise execution of the performance modeling framework.

Unique contributions of Paper 9:

This paper provides a broad illustration of the development of the performance
modeling framework with a formal method representation of UML models using
the cTLA process.

The cTLA production rules are illustrated to delineate the detailed behavior of
collaborations with the help of the UML activity.

A mapping process is exposed that shows the correspondence between the UML
diagram and SRN model by utilizing their formal representations.

Detailed model transformation algorithms are defined to automatically generate
the SRN model from the UML model.

The performance modeling framework, including model validation activities, are
supported by tools.

A new real case study, the Taxi Control System, is introduced to demonstrate the
stepwise execution of the performance modeling framework.

Chapter 3

 70

CHAPTER 4

Related works

This chapter highlights a review of related studies that are aligned with the performance
and performability evaluation of a distributed system as well as associated with some
crucial parts of the solutions that have been considered in this work as research outcomes.
To introduce related studies, several categories based on our research approach are
defined below. Each category begins by with illustrating the relationship of the topic with
the research conducted in this thesis. This chapter is a summary with an overview of
related works that reflects the position of this thesis work.

UML model as main specification unit while generating analytical model

The UML collaboration was used as the main specification unit in this work to capture
the functional behavior of the system through our modeling framework. The novelty of
our approach compared to existing approaches lies in the utilization of collaborations to
specify services by encapsulating the local behavior of service components and their
interactions in self-contained reusable building blocks instead of separately considering
the behavior of components. However, we would like to refer to one significant work,
which is presented in [12], that provides the real motivation behind using UML
collaborations as the main specification unit of our work. Although UML collaborations
have been used in a service-engineering context [12], our approach extends the concept
so that it can be used as an input model to capture the functional behavior of a system
while generating analytical models. Moreover, several UML collaboration approaches
were considered to derive the functional behavior of the software while generating
analytical models: Kähkipuro developed a performance modeling framework to generate
a queuing network with simultaneous resource possessions from the high-level UML
notations; they used a UML collaboration diagram to visualize these networks [24]. King
and Pooly utilized UML collaboration and state-chart diagrams to systematically generate
GSPN models, which could be solved to find their throughput and other performance
measures. This mapping was demonstrated using the example of communication via the

 72

alternating bit protocol, and the resulting GSPN was solved using the SPNP package [25].
Saldhana and Shatz described a methodology to develop a Petri net model of a system by
deriving a form of the OPN called the “OPMs from UML state-chart diagrams” and
connecting these using UML collaboration diagrams. They used a collaboration diagram
as an interaction diagram that emphasizes the structural organization of the objects that
send and receive messages [26]. Abdullatif and Pooly presented a method of providing
computer support to extract performance models from a performance annotated UML
diagram. In this approach, a UML collaboration diagram was efficiently utilized as part
of an interaction diagram to demonstrate how a group of participants (objects and actors)
in a system collaborate in some behavior [27]. Pooly presented an approach to
demonstrate how simple UML designs could be systematically transformed into a process
algebra model and thus be used to provide performance estimate by suitable annotation.
UML collaboration diagrams describe the external interaction of objects, and state-charts
describe instances of the internal behavior of classes, particularly in response to external
stimuli [28]. Wet and Kitzinger demonstrated a methodology and tool called the
proSPEX (protocol Software Performance Engineering using XMI) to analyze the design
and performance of communication protocols specified with UML collaboration, class,
and state-chart diagrams [29]. Jasmine and Vashanta proposed UML-based performance
models to assess the design in a reuse-based software development scenario, where a
collaboration diagram was used to describe the interaction among software components
[30]. Verdikt et al. presented a MDA model transformation algorithm and tool to
transform a high-level PSM into a low-level PSM by including the structural changes and
the overhead of using CORBA as middleware. A UML collaboration diagram was used
to contain the architectural pattern used in the system [31]. Gomma and Menasce
proposed a method to performance engineer components based on distributed software
systems, where collaboration diagrams were used to depict the dynamic interactions
between the components and connector objects, i.e., instances of the classes depicted on
the class diagrams [32].

Activities for drawing the detailed behavior of elementary collaborations

As mentioned previously, our modeling framework uses UML activities to describe the
behavior of the collaborations and delineate the detailed behavior of the system, where
activities can be understood as token flows, similar to Petri nets. However, the activity
diagram has long been used to delineate the detailed functional behavior of distributed
system, much like in our approach. Lopez-Grao et al. proposed a conversion method
from an annotated UML AD to a stochastic petrinet model [33]. They developed a tool
that addresses every model element from activity diagrams and ensures an automatic
translation from ADs into GSPNs strictly following the process presented in their paper.
They based their interpretation of the AD on their suitability to internal flow process
modeling as expressed in [3]. Therefore, these models are relevant to describe activities
performed by the systems. Campos and Merseguer considered the quantitative analysis of
the behavior of software systems. They attempted to integrate the usual object oriented
methodology with a performance modeling formalism, namely SPN, in a very pragmatic
approach, which was supported with the UML language and widespread CASE tools.
They utilized an activity diagram to represent the internal control flow of processes and

 73

described the behavior of a model element of the systems [34]. Bocclarelli and
D’Amborgio proposed a method that exploits Q-WSDL to annotate reliability data onto a
BPEL-based UML model of the composite service. The UML model was used to predict
and describe the reliability of the composite web service. Specifically, the abstract model
consisted of an activity diagram that described the abstract workflow to facilitate service
discovery and retrieve a set of concrete services matching each abstract service interface
[35]. Distefano, Scarpa, and Puliafito presented an evaluation methodology to validate
the performance of a UML model and represented the software architecture. UML
specifications were collected in an intermediate model, called the PCM. The intermediate
model was translated into a subsequently evaluated performance model. The workflow
among the service components was delineated using an activity diagram [36]. Woodside,
Petriu, and Merseguer described a tool architecture called PUMA, which provides a
unified interface between different types of design information through UML and
different types of performance models. They utilized an activity diagram to demonstrate
the entire behavior of the system [37]. D’Amborgio introduced a framework that was
applied to the transformation of UML-type source models into target LQN-type models.
The proposed approach was founded on precepts introduced by model-driven
development MDA and utilized the set of related standards (MOF, QVT, and XMI). The
activity diagram meta-model was used to add LQN tasks and specify their details in terms
of entries, activities, and related calls [38]. Paci et al. represented a method that aimed to
automate a process to measure computing performance starting from a UML-specified
model. The proposed approach was based on open and well-known standards: UML to
model the software, the profile for schedulability, the performance, the time specification
to annotate the performance, and XMI to interchange metadata. The scenario contained in
the use case was detailed in the activity diagram in this following work [39]. The UML
activity diagram was utilized to realize the system dynamics in [40], where the authors
demonstrated a tool that was a compositional approach to translate several UML
diagrams into an analyzable Petri net model. Korherr et al. proposed a methodology to
extend the UML 2 activity diagram with business process goals and performance
measures and mapped it to BPEL. An activity diagram was used to model the business
process and describe the control flows in software [41]. Tribastone and Gilmore explored
the use of the stochastic process algebra PEPA as one such engine, providing a procedure
to systematically map activity diagrams onto PEPA models. In this approach, the activity
diagram was used as a behavioral element that models the coordination of both sequential
and concurrent lower-level behaviors to carry out a computational step [42]. Yosr, Andrei,
and Mourad described a mapping procedure of SysML activity diagrams to their
corresponding DTMC and used a PRISM model checker to assess and evaluate the
performance characteristics. SysML activity was mainly used here to highlight the inputs,
outputs, sequences, and conditions to coordinate the behaviors in the system. Particularly,
these behaviors might require time to execute and terminate [43]. Bharati and
Kulanthaivel considered the integration of a performance and specification model while
developing a tool to quantitatively evaluate software architectures at the design phase of
the software life cycle. The activity diagram was considered to provide the complete
detail of the execution system. Thus, any behavioral diagram given by the user was
finally reduced to activity diagrams [44]. Petriu proposed a method to automate the
derivation of LQN performance models from UML design models to fill the cognitive

Chapter 4

 74

gap between the software development domain and the performance analysis domain.
The activity diagrams were automatically derived by the graph transformations from a set
of interaction (sequence) diagrams that described the system behavior and were
partitioned in swim-lanes corresponding to different software components responsible for
various activities [45]. Balsamo and Marzolla proposed an approach based on queuing
network models to predict the performance of software systems at the software
architecture level specified by UML. Starting from an annotated UML use case, activity,
and deployment diagrams, a performance model was derived based on multi-chain and
multi-class queuing networks. Activity diagrams were used in this work to describe the
content of each use case in more detail; in particular, they described the computation
performed on the system [46]. Matameni et al. presented a method to obtain performance
parameters from a GSPN translated from a UML activity diagram to analyze the
stochastic behavior of the system. An activity diagram was used here to show the activity
and the event that caused the object to be in the particular state. The activity was
triggered by one or more events, and it might result in one or more events that may
trigger other activities or processes [47]. Bakshi et al. proposed a method to transform
activity diagrams created in fuzzy UML into a fuzzy Petri to formally evaluate and verify
the performance, rather than exact a visual analysis. Here, the activity diagram played an
important role in the design stage of the software because of its momentous efficiency; it
also helped to better define the operation [48] El-Desouky et al. proposed a framework
that applied the model-driven principles in the context of performance engineering, which
transformed UML software models into LQN performance models. Activity diagrams
were used to represent scenarios and illustrate the cooperation between several objects.
Activity diagrams provided more direct ways of modeling concurrent forks and joints as
well as hierarchal scenarios [49]. D’Amborgio et al. introduced a model-driven QoS
management framework that provided both a standard (UML-based) notation to describe
QoS-aware collaborative P2P service-based applications and a method for adaptive QoS
management based on the automated building of performance models. In this approach,
the activity diagram provided the behavior specification of the application by describing
the flow of activities carried out in a given execution scenario [50]. Kreische proposed a
method to model a business process using the UML in a way that facilitated the
computation of the results, like throughput and resource utilization. The described
activity diagrams are well suited to model the business process because the business task
can be described by the activities and the relationships between them using object flows
[51]. Antonio et al. proposed a method that used the MARTE profile to derive the
performance requirements of each action in a UML activity diagram from the
requirements of the containing activity and some local annotations [52]. Arpinen et al.
presented an efficient method to capture the abstract performance model of streaming
data real-time embedded systems, where UML 2 was used to model the performance and
serve as a front-end for a tool framework that enabled simulation-based performance
evaluation and design-space exploration. UML 2 activity diagrams were selected here as
the view for application workload models to present the control and data flow between
functional elements of the application [53].

 75

Reusability of software components

The reusability of collaborative building blocks is one of our important design issues.
Here, the local behavior of the software component is not only reused, but the interaction
among the components is also captured and reused in an encapsulated and self-contained
way. One approach presented by Frank Alexander Kraemer and Peter Herrmann in [12]
shows how to design reusable software components in a self-contained way in a service-
engineering context, which provided the main inspiration for capturing the functional
behavior of a system with the help of reusable software components while generating
analytical models using our framework to evaluate the performance and performability.
However, in most cases reusability is achieved for separate software components, which
makes the system development process inefficient and slow. For example, Moorsel et al.
discussed the software reusability strategies for performance and reliability modeling
tools. Special emphasis was placed on web-embedded tools and the potential interaction
between such tools. They presented an application programming interface for system
analysis tools, which allowed for the quick embedding of existing tools in the web and
generally simplified programming analysis tools by structured reuse [54]. Woodside
provided an approach for component-based modeling, which matched the capabilities of
component-based software engineering and generative programming. Here, a component
library will be specific to a domain, like web services, or to the elements of a single
product line [55]. Kappler et al. proposed a reverse engineering approach to derive
performance models from implemented software components. They focused on one
specific step of the reverse engineering approach, namely the static analysis of Java code
to derive abstract behavioral performance models of component services. In this approach,
software architects could reuse the resulting performance models in different architecture
models [56]. Wang et al. proposed a method to model the performance of integrated
embedded control software design, where they assumed that the functional model is to be
constructed by integrating existing reusable software components [57]. Kulanthaivel et al.
developed a performance evaluator for component based software architectures, in which
the software architecture model was formed using reusable software components [58].
Tawhid et al. proposed a method that aimed to automatically derive a product
performance model from a UML SPL model, where SPL contains all the possible
artifacts contained in all the products [59]. Bui et al. presented a component-based
infrastructure to model the performance and power of parallel scientific applications [60].
Hardung et al. reused software components in distributed embedded automotive systems
[61]. Gooma et al. investigated the design and performance modeling of component
interconnection patterns, which defined and encapsulated the way the client and server
components communicate with each other. They also aimed to eventually specify both
the architecture and performance of a large component-based distributed system in terms
of new components, as well as predefined components and inter-component
communication patterns that are stored in a reuse library [32]. Schmidt et al. presented a
technique to automatically compose reusable software components for mobile devices.
They described an automated variant selection engine based on a CLPFD solver that
could dynamically derive a valid configuration of reusable software components suitable
for a target device’s capabilities and resource constraints [62].

Chapter 4

 76

Annotation of UML model

To quantitatively analyze the UML model, it must be annotated because UML
specifications only accurately provide the modeling facility of the functional behavior of
the system. In fact, UML profiles have long been used to annotate UML models. Much
like in our study, several approaches have already considered UML profiles to annotate
UML models. Marzolla proposed to annotate the UML diagrams using a subset of
annotations defined in the UML Profile for Schedulability, Performance, and Time
specification to quantitatively evaluate the performance [5]. Gilmore et al. proposed to
annotate the UML diagram with the profiles for MARTE that were used to specify the
timing behavior of the actions and denote the output variables of concern to the modeler
[42]. The approach in [67] proposed a technique to analyze the performance effects of a
given aspect on the overall system performance after determining the composition of the
aspect model with the primary model of a system. The performance analysis of UML
models was enabled by the UML Performance Profile for Schedulability, Performance,
and Time, which defines a set of quantitative performance annotations to be added to a
UML model. In [46], UML- transformed annotated UML diagrams into a simulation
model, implemented the model using process-oriented simulation, and evaluated the
performance model. In this approach, the UML model must be annotated according to a
subset of the Profile for Schedulability, Performance, and Time Specification. In [76], the
authors described a plug-in for the Rhapsody tool, which demonstrated how UML models
with SPT annotations could be analyzed using the Times tool, which is a tool for
modeling and schedulability analysis, and code generation for timed systems. In [77], the
authors presented a new performance modeling approach for designing embedded real-
time systems using UML 2, where the existing UML meta-model had been extended by
defining stereotypes to include the message latency and execution time in UML state-
charts. The UML Performance Profile for Schedulability, Performance, and Time was
applied in [78] to define a performance engineering methodology for the performance
analysis of models designed using UML sequence diagrams. The approach used in [59]
included the PUMA transformation approach of annotated UML models with MARTE
annotations, where the variability expressed in the software product line model was
analyzed and bound to a specific product, and the generic performance annotations were
bound to concrete values for the product. The focus of the study performed by [79] was
on the analysis of performance effects of different security solutions modeled as aspects
in UML. For performance analysis, the authors used techniques that were previously
developed in the PUMA project, which provided input for the UML models annotated
with the standard UML Profile for Schedulability, Performance, and Time. The authors in
[80] introduced a new SPE tool that fit in the OMG framework and implemented most of
the features. The tool allowed designing UML diagrams annotated according to the UML
Performance Profile for Schedulability, Performance, and Time, and automatically
generates a performance model in terms of GSPN. In [81], the author examined the
problem within the UML context to show how performance anti-patterns could be
defined and detected in UML models by mean of OCL where UML model was annotated
with the MARTE profile. In [36], the author presented an evaluation methodology to
validate the performance of a UML model, representing software architecture. The
proposed approach was based on open and well-known standards: UML for software

 77

modeling and the OMG Profile for Schedulability, Performance, and Time specification
for the performance annotations into UML models. Booy et al. proposed a Method for
constructing performance annotation model based on architecture design of information
systems utilizing UML activity diagram and colored petri net where UML model was
annotated using Profile for Schedulability, Performance, and Time [82]. Shen et al.
proposed a graph-grammar based method for transforming automatically a UML model
annotated with performance information according to Profile for Schedulability,
Performance, and Time into a LQN performance model [83]. The work in [84] proposed
and implemented a method for transforming a UML 2.0 model with performance
annotations into an equivalent CSM. The input to the transformation algorithm was a
UML 2.0 model generated by a UML tool, either as an internal data structure, or as an
XML file according to the XMI standard. The software specifications models in UML 2.0
were annotated using the UML Profile for Schedulability, Performance, and Time or its
successor UML MARTE. Another modeling approach, known as TUT-Profile, for UML
2.0 together with System-on-Chip architecture exploration tools provided an explicit
control of real-time constraints at UML level and the transformation of the original UML
model using back-annotated results of SoC architecture exploration [85]. Using a
stochastic modeling approach, based on the UML, and enriched with annotations that
conform to the UML profile for Schedulability, performance, and time, the authors
proposed a method for assessing QoS in fault-tolerant distributed systems [86]. In [87],
author proposed using the MARTE profile to derive the performance requirements of
each action in an UML activity diagram from the requirements of the containing activity
and some local annotations. In [31], the author presented an MDA model transformation
algorithm and tool for transforming a high level performance specific model to a low-
level performance specific model where the performance specific model was a UML
model annotated with performance information using the UML performance profile. In
[65], the LQN model structure was generated from the high-level software architecture
showing the architectural patterns used in the system, and from deployment diagrams
indicating the allocation of software components to hardware devices. The LQN model
parameters were obtained from detailed models of key performance scenarios,
represented as UML interaction or activity diagrams annotated with performance
information according to the proposed UML performance profile. The design of the tool
AgroSPE followed the architecture proposed by OMG in the UML Profile for
Schedulability, Performance, and Time specification described in [88]. IMPACT is a
performance plug-in that makes use of the modeling capabilities of the Papyrus tool and
the relational QVT model transformation implementation of mediniQVT to produce an
LQN performance model of a MARTE annotated UML design [89].

UML deployment diagram and deployment decision-making

One of the primary focuses of this thesis was to examine the UML deployment diagram
to reveal the physical layout of the distributed system and to assess the deployment
mapping of software components that was closer to the optimal solution. The target of the
deployment decision-making was to achieve a reduced service turnaround time by
maximizing the utilization of resources while minimizing any communication between
the processing nodes, thus offering a high system throughput while taking into account

Chapter 4

 78

the expected execution and inter-node communication requirements of the service
components on the given hardware architectures. This fact has been completely ignored
by relevant approaches, where the deployment diagram was only accountable for
identifying the physical layout and assignment of the software artifacts to the physical
components without any indication of the manner to assess the solution. Marzolla
described a simulation-based performance model generation method, where the UML
deployment diagrams were used to describe the physical environment in which the
software system executes [5]. Merseguer proposed a model-based performance
evaluation of web service, where the deployment diagram was utilized to model the
deployment of the software components in the hardware platform [63]. In addition, Pooly
highlighted a technique used to generate an extended queuing network model from the
UML specification, where the MM was a basic model representing the components
consisting of the system and its relationship to the hardware platform, and the building of
the MM was dependent on the UML deployment diagram [64]. Petriu proposed a method
to derive performance models from the UML models using graph transformation, where
the UML deployment was used to delineate the physical configuration of the focused
system [65]. Kulanthaivel et al. developed a performance evaluator for component-based
software architectures, where the deployment diagram was used on the input side of the
evaluator to determine the interconnections between the processing nodes [58]. Balsamo
derived a performance model for component-based software engineering, where the
deployment diagram modeled the available resources and its characteristics [66]. Shen et
al. developed a performance analysis method of UML models using an aspect-oriented
modeling technique, where the deployment diagram highlighted the deployment of high-
level software components for hardware devices [67]. Tawhid et al. proposed a method of
automatic derivation of a product performance model from a UML SPL model, where the
SPL deployment diagram contained all the potential artifacts in all of the products [59].
Silva et al. introduced a new methodology that employed an architectural framework that
could be used to automatically generate simulation models on the basis of the UML
model diagrams, which were created by requirement engineers and software system
architects. The deployment diagrams employed here were used to map the software
components used in the sequence diagram model and the node types [68]. Mania et al.
proposed a methodology that automatically constructed analytical models and initiates
potential performance improvements for the systems under study, where the deployment
diagram presented the configuration of a set of run-time processing nodes and the
components running on each node [69]. Huang et al. proposed a framework to
automatically integrate the middleware component interactions and their performance
attributes to the application UML model, where the authors changed the original UML
deployment diagram to add a stub component to the client node and middleware service
components to the server node [70]. Merseguer et al. utilized a deployment diagram to
demonstrate the physical structure of the system, which was necessary to describe the
resources, where to allocate the modules of the architecture, and their connections via a
network [71]. Scarpa et al. discussed the implementation of the software performance
engineering development process, where the deployment diagram described the
deployment of the components on the elaboration infrastructure [72]. Klapiscak et al.
developed a model-driven approach for the construction, composition, and analysis of
services on sensor networks, where the deployment diagram was used to map the design

 79

of a set of fielded software and hardware assets of the sensor network [73]. Emmerich et
al. described a model driven performance analysis of the enterprise information system,
where the deployment diagram demonstrated the relationships between the application
components, architecture components (such as containers and database), infrastructure
(CPUs, network links) and the application clients [74]. Tsadimas et al. proposed using the
UML to model all aspects of distributed system configuration process by extending and
integrating different diagram types, where UML deployment diagrams are commonly
used to represent network architectures [75].

Formal method representation of UML models

The importance behind this task was to understand the semantics of the UML models that
were previously informally defined. This formalization provides accuracy in the model
transformation with the help of incremental model checking. Formalization of UML
models in this thesis was based on the temporal logic of action. Available approaches
might differ from our main concepts. A previous study [13] established the semantic
foundation of the collaborative building blocks and how they were constructed using
TLA. The specification style cTLA/c for collaborations had also been outlined.
Elementary collaborations were mapped to simple cTLA processes, and composite
collaborations were expressed using corresponding compositional cTLA processes. The
authors formulated a set of production rules that described how the graph of an activity
consisting of activity nodes and edges was transformed into cTLA actions, and provided
an example. To create entire systems, collaborations were constructed, which, gave the
semantics in cTLA/c, could be formalized as cTLA process compositions [13]. In [90],
the authors presented an overview of their aspect-oriented formal design analysis
framework and how it could be used to design and analyze performance properties. In
[91], the authors aimed to use the UML in the performance modeling process to introduce
the benefits of performance analysis with process algebras without the complexities and
conceptual challenges that were normally associated with formal description techniques.
In [64], the author introduced a methodology that included steps starting from gathering
the performance data needed to build the model to the algorithms used to convert the
design model into an EQN performance model. In [92], the author described the
annotation of UML class diagrams with fragments of the Object-Z specification
language. IBM proposed another approach, where the OCL language [93] was used as a
standard formal specification language to formalize the UML diagrams. In [94], the
author proposed the SHE method, which enabled the generation of formal executable
models on the basis of the expressive modeling language POOSL. Kähkipuro developed a
performance modeling framework to generate a queuing network with simultaneous
resource possessions from high level UML notations, such that the model could be solved
for the relevant performance metrics [24]. Lopez-Grao et al. proposed a conversion
method from an annotated UML activity diagram into a SPN model. They developed a
tool that interacted with every model element from the activity diagrams and ensured an
automatic translation from ADs into GSPNs [33]. In [95], formal methods were
introduced into the real-time embedded software testing field and a real-time extended
finite state machine. A reactive system-oriented testing method based on both state charts
and temporal logic was demonstrated in [96]. In [97], the author presented an approach

Chapter 4

 80

for the automatic generation of a performance evaluation model based on a queuing
network model from a software architecture specification described through a message
sequence chart. In [98], the author proposed a step towards formal semantics for the
interaction diagrams of UML by defining a partial order between messages and actions
and to generate a Petri net that defined the semantics of this diagram. The paper in [99]
established the basis for the development of a formal semantics for UML statechart
diagrams based on Kripke structures. In [100], the author discussed a complete
formalization of UML state machine semantics. The formalism was given in terms of
operational semantics, which was used for code generation, verification, and simulation
for the state machine diagram. The approach used in [101] proposed a revised semantic
interpretation of the UML statechart diagrams. In particular, hierarchical state machines
may be properly encapsulated to enable independent verification and compositional
testing in this work. The aim of this paper [102] was to describe an approach to integrate
the information in sequence diagrams and to check it for consistency and completeness
using additional information. In [103], the authors defined formal execution semantics for
UML activity diagrams that was appropriate for workflow modeling and focused on the
requirements level by assuming that the software state changes did not take time. The
paper [65] proposed a graph grammar based on transformation from UML design models
into LQN performance models. The paper in [104] defined how Activity Graphs can
enable process semantics in the CSP language. Gehrke et al. [105] provided semantics by
translating an activity diagram into a Petri net. The paper showed how activity graphs can
provide process semantics in the CSP language. In [106], the author provided rigorous
semantics of the UML activity diagrams for the description of dynamical system behavior.
In [107], the author defined formal execution semantics for UML activity diagrams that
were suitable for workflow modeling, where the goal was to support execution of
workflow models and analysis of the functional requirements that these models satisfied.
In [108], the authors provided a formal foundation of the distributed workflow executions,
where the statechart formalism was adapted to the need of the workflow model to
establish a basis for the correctness reasoning and run time support for complex and
large-scale workflow applications. The approach used in [109] introduced the language of
state-charts that presented only a brief discussion of how its semantics could be defined.
In fact, the works presented in [13] and [24] mainly affected and motivated our work of
formalizing UML models and mapping to analytical models to show the correspondence
between the two, which helped to provide a model that confirms the facility and tool
support of our framework.

Performance modeling framework

Several approaches have been considered to generate a performance modeling framework
from system design specification. However, we developed a complete and comprehensive
framework for performance modeling of a distributed system focusing on the key
characteristics mentioned in Chapter 2, where some ideas presented in this work are
analogous to earlier attempts to derive the concept and framework for a distributed
system performance evaluation, such as Kähkipuro, who developed a performance
modeling framework to generate queuing network using simultaneous resource
possessions from high level UML notations, such that the model could be solved for the

 81

relevant performance metrics [24]. Lopez-Grao et al. proposed a conversion method from
an annotated UML activity diagram into stochastic petrinet model [33]. Trowitzsch and
Zimmermann proposed the modeling of technical systems and their behavior by means of
UML, and a transformation into a SPN was established for the resulting models [110].
Abdullatif and Pooly also presented a method to provide computer support for extracting
Markov chains from a performance annotated UML sequence diagram [27].
Zimmermann and Hommel presented a SPN model of communication failure and
recovery behavior of future European train control systems with performance evaluations,
demonstrating the significant effect of packet delays and losses in the reliable operation
of high-speed trains [111]. Distefano et al. proposed a potential solution to address
software performance engineering that evolved via system specification using an
augmented UML notation, creation of an intermediate performance context model, and
generation of an equivalent SPN model whose analytical solution provided the required
performance measures [36]. D’Ambrogio proposed a framework to transform source
software models into target performance models using meta-modeling techniques to
define the abstract syntax of models, interrelationships between model elements, and the
model transformation rules [38]. In [112], StoCharts had been proposed as a UML
statechart extension for the performance and dependability evaluation, and had been
applied in the context of train radio reliability assessment to show the principal
tractability of real cases. In [113], the author proposed extensions to UML state diagrams
and activity diagrams to enable the association of events with exponentially distributed
and deterministic delays. The paper in [114] proposed a Meta modeling procedure
devoted in providing a reference model for use by decision makers in the performance
evaluation of ITN, where the case study UML model was translated into simulation
software and the performance measures were obtained by the simulation results. In [115],
the author presented a simulation framework that could be used to generate simulation
programs directly from UML notations. Moreover, a tool had been generated to
demonstrate the feasibility of using this framework to perform such a transformation
automatically.

Performability modeling framework

The extension of our performance-modeling framework was initiated to cover the
performability evaluation of the distributed system. The performability evaluation was
performed by generating analytical models from the system design specification using
reusable software components and the dependability behavior of system components.
Some early approaches have been considered to capture the essential requirements to
generate our performability modeling framework, such as work performed by Sato et al.,
who developed a set of Markov models to compute the performance and reliability of
web services and detecting bottlenecks [116]. Another initiative focused on model-based
analysis of performability of mobile software systems via a general methodology that
used design artifacts expressed in a UML-based notation. Inferred performability models
were generated based on the SAN notation [117]. Subsequent efforts proposed a
methodology for the modeling, verification, and performance evaluation of
communication components of the distributed application building software, which
translated UML 2.0 specifications into executable simulation models [118]. Gonczy et al.

Chapter 4

 82

also mentioned a method for high-level UML models of service configurations captured
by a UML profile dedicated to the service design; and then the performability models
were derived using automated model transformations for the PEPA toolkit to assess the
cost of the fault tolerance techniques in terms of performance [119]. Moorsel and
Haverkort constructed a framework, the so-called performability evaluation framework,
in which the quantitative evaluation of both types of systems could be discussed. The
author presented a general view, a systems view, and a modeling view on the
performability evaluation, resulting in a framework, which naturally fit the known
measure definitions, modeling methods, and solution techniques. The paper rather
described some general views of performability evaluation without any focus on the
applicability of their framework [120]. Dalibor et al. presented a performance and
dependability evaluation of fault-tolerant multiprocessors, where two specific
architectures were analyzed taking into account system functionality, actual workloads,
and the failures of system components as well as the inter-component dependencies.
Object-oriented software design and process-oriented simulation techniques were used
for model construction allowing sophisticated performance and dependability analysis of
massive parallel systems [121].

Summary of related works that reflect the position of this thesis work

Approaches presented in this chapter are summarized in Table 4.1, where the comparison
between our approach (2nd row in Table 4.1) and other approaches is mentioned based on
the key characteristics (1st row in Table 4.1 and also referring to the Chapter 2), resulting
in the main focus of our work. The comparisons are summarized in Table 4.1. The
detailed results are provided in Appendix A. Most of the existing approaches use the
UML model to define system or service functional behavior, with very few exceptions.
However, a few ([our approach, [12], 30, 32, 54, 55, 56, 57, 58, 59, 60, 61, 62])
approaches take the advantage of using the reusable software components to describe the
system functional behavior, where reusability is achieved only with respect to the local
behavior of the software components, although none (except our approach, [12]) of the
approaches describe or show how software components ensure reusability to delineate
system functional behavior with any concrete example. For annotation of the UML model,
we use the standard SPT and MARTE methods defined by OMG that have been well
established by the scientific community, which are also used in many current approaches
(shown in Table 4.1). Some of these approaches ([5, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75]) use the UML deployment diagram to describe the system physical
infrastructure, although none of these approaches discuss (except our approach) any
methods on how to specify and assess the deployment mapping of software components
on a physical infrastructure for a large distributed system. Some of the existing
approaches (shown in Table 4.1) confirm the formal representation of UML models,
which also exhibit very important characteristics to the UML, but does not convey the
formal representation of the model. However, very few of these approaches propose
(shown in Table 4.1) UML model validation to demonstrate the correctness of the model
generation while providing the tool support of the framework. Model validation is
important to accurately perform the model transformation. We mainly concentrate on
generating analytical models specifically Markov and Petri nets (SPN, SRN) for the

 83

References System/Service
specification
using UML

Annotation of
UML using

SPT/MARTE

Specifying
method for
deployment

mapping

Formalization
of

UML model

UML
model

validation

Markov/PN
Performance/
performability

model generation

Tool
support

This thesis
work

[33, 34, 40]

[36, 37, 39, 42,
80, 84, 86, 88,

110]

[38, 58]

[94, 100]

[5, 29, 35, 44,
46, 52, 53, 72,
76, 78, 79, 83,

89, 119]

[25, 43, 51, 54,
113, 117]

[27, 47, 59, 63,
82]

[55, 64, 91, 96,
112]

[95, 103, 108,
109]

[48, 98, 105]

[49, 68]

[90]

[24, 45, 92, 93,
97, 99, 101,

102, 104, 106,
107]

[31, 50, 65, 66,
67, 70, 71, 74,

77, 81]

[56, 60, 61, 62,
85, 115, 118]

[26, 28, 111]

[87]

[30, 32, 41, 57,
69, 73, 114]

[116]

[120]

Table 4.1 Summary of the existing approaches and comparison with our approach

Chapter 4

 84

performance and performability evaluation using our modeling framework because of the
advantages (mentioned in Chapter 1 and Section 2.6) provided by these models. Many of
the existing approaches are very similar with our approach and others differ (detailed list
in Appendix A). There are very few approaches that provide a performability evaluation
using a complete framework, such as that presented in ([54, 116, 117, 118, 119, 120,
121]). Tool support is an integral part of the performance and performability modeling
framework, which provides easy to handle, automation, and correct processing for model
transformation and generation. We use Arctis and SHARPE tools, which are mature and
well-established tools [10], [11]. Some of the existing approaches provide tool support of
their frameworks (although not all of the tools are mature and complete (detailed list in
Appendix A)).

CHAPTER 5

Concluding remarks

Studies performed in this thesis began with the development of a performance and
performability framework realizing the importance of the rapid and expressive
development of system functional behavior. Afterwards, establishment of an efficient
deployment configuration of software components was achieved by satisfying the non-
functional properties of the system. Subsequently, a scalable and automated method of
model transformation was attained to generate analytical models for performance and
performability evaluation of large and multifaceted distributed systems. Incremental
model checking is provided to confirm that the method of model development and model
transformation is correct and efficient.

Utilities and results of this conducted research are presented in the included papers and
are summarized in the following list:

I. Designing and applying reusable collaborative building blocks to delineate system
functional behavior, which is utilized as an input model for performance and
performability evaluation of the distributed system. The definition of the
collaborative building block is given as an encapsulated and self-contained method
to capture the local behavior of service components and its interaction. The way in
which we define the collaborative building block gives the opportunity of
reusability to draw the system functional behavior for particular application
domains using existing building blocks.

II. Incorporating non-functional properties that reflect the performance and

performability attributes of the system.

III. Applying cost functions that sufficiently solve the complex problem of deployment

mapping with respect to given requirements for large and multifaceted distributed
systems and provide a solution in a distributed manner, which is close to the
optimal one.

 86

IV. Developing model transformation rules and algorithms to generate performance and
performability models in a scalable and automated manner from the system design
specification while considering optimal deployment mapping.

V. Providing tool support with incremental and automated model checking facility for

both performance and performability evaluation.

Papers 1 – 9 contribute to the given 5 areas as shown in Table 5.1.

Contribution

Paper

I.
Applying reusable

collaborative
building block for
capturing system

functional
behavior

II.
Incorporating

non-
functional
parameters

III.
Deployment

decision
making

IV.
Automated
and scalable

model
transformation

V.
Tool support

of the
framework

1

2

3

4

5

6

7

8

9

To review our results, we recapitulate the research questions described in Section 1.2:

What is the method that will allow us to provide a rapid way to specify the
functional behavior of a distributed system that can easily be combined with a
model of physical infrastructure to represent deployment strategies?

The main approach was to use the UML collaboration to provide an abstract and
structural view of the service delivered by the distributed system, where the
collaboration was represented as functional, comprehensive, and self-contained
building blocks. The behavior of the collaboration was demonstrated using a
UML activity-oriented approach. This UML specification was presented in all 9
papers in terms of specific scenarios and later on, in a much more generalized

Table 5.1 Contributions of the included publications

 87

manner. Papers specified in part II describe the manner in which the
collaborations were utilized to capture the system functional behavior by
combining all of the sub-functionalities provided by different participants of the
system. This indicates that the service provided by the system consists of the sub-
services and their behaviors can be demonstrated using activity in a self-contained
form. Thus, the sub-service functionality is reflected in the system overall
functional behavior in a correct manner. Moreover, the composition of sub-
services functionalities defines the more complex service behavior very efficiently.
The developed collaborative building block was archived in a library for later use,
which provided a rapid and efficient method to apply building blocks for the
developing service of a particular application domain instead of starting the
development process from scratch. Papers 1 - 9 also provide a detailed description
of how the collaborative building blocks are reused to build services for a
particular application domain with the help of real and complex cases.

How can the deployment mapping of software components be specified
considering the QoS requirements such that the performance of a service or a
system over a particular physical infrastructure with resource constraints can
be assessed?

The distributed and dynamic nature of distributed systems make it difficult and
challenging to assess the efficient deployment mapping of service components on
the execution environment, which satisfies the non-functional requirements. This
problem of assessing the deployment mapping of software components over the
physical infrastructure has been recognized as an optimization problem. The
solution for this problem is described in Papers 4 – 9, which defines the cost
functions, where the first cost function was derived based on the communication
and execution cost. Subsequently, the cost function refined the targeting load
balance among the physical nodes in the system based on the overhead cost,
communication cost, and execution cost. The scenarios presented in these papers
are real case scenarios and a modified version of a well-known task assignment
problem, with a known optimum. Thus, the derived cost functions have been
validated by checking the solution using different scenarios.

How do we incorporate non-functional properties into UML models that reflect
the performance and performability attributes of the system?

Modeling of the system functional behavior is realized by UML models because
UML is a widely used modeling language that is accepted universally and is
commonly known by the scientific community [3]. When referring to the
quantitative evaluation of the distributed system modeled by UML, the UML
model incorporates performance and performability related parameters to perform
the quantitative analysis. To fulfill the requirements, it is essential to extend the
UML model to associate performance and the performability related parameters.
As a result, we annotated the UML model using the UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded System and UML profile for

Chapter 5

 88

Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms. These profiles provided stereotypes and tagged values that were
required for the quantitative prediction and assessment of systems considering
both the hardware and software characteristics [4] [9]. Papers 1 - 9 provide a
detailed description of how to incorporate non-functional properties into UML
models that reflects the performance and performability attributes of the system.

How can building blocks from the functional behavior models be translated to
building blocks in performance and performability models?

System functional behavior is modeled using UML collaborations in the form of
encapsulated building blocks in a self-contained manner that capture the local
behavior of the participating components as well as the necessary interactions
among them. The collaborative building block is the basic specification unit in our
work that combines with each other to provide the system overall behavior.
Because the system behavior is expressed as a composition of collaborative
building blocks, the collaborative building block is used as input for the model
transformation process to generate analytical models. The model transformation
process provides rules that convert the building blocks of the UML specification
style into the building blocks of performance and performability analytical models.
Section 2.6 and Papers 4, 5, 6, 7, and 9 focus on the model transformation rules.
The model transformation rules presented in the papers are not traditional rules
that only transform each element of the UML model into an element of the
analytical model instead of the rules that are defined in such a way that, the single
collaborative building block is directly transformed into a building block in the
performance and performability models.

How do we conduct the automated model transformation in a scalable way to
accomplish performance and performability evaluation of the system?

To conduct the performance and performability evaluation, the analytical model is
generated from the UML specification style, which captures the distributed
system functional behavior. Generating the analytical model from UML model
may be achieved in automated way following several model transformation rules,
which consider the reusable collaborative model specification, deployment
mapping decision that is realized by cost functions, and performance and
performability related parameters as input. Model transformation rules are
archived in a library for later use to perform the model transformation by applying
them instead of understanding the inner complexity. Papers 1 - 9 consider several
real and artificial case studies to show the scalability, rapidness, and automation
in the model transformation for large and complex distributed systems. The
transformation rules are defined in such a way that it ensures generality and
reusability while conducting the model transformation. Papers 8 and 9 define the
algorithms used for automated model transformation considering the model
transformation rules.

 89

How do we ensure that we obtain the complete set of model transformation
rules?

It is a challenging task to ensure that the set of model transformation rules we
presented in our framework are sufficient to conduct the model transformation
from UML models to analytical models. UML is utilized to capture the distributed
system functional behavior, which is sometimes very complex. Moreover, in
distributed systems, to achieve specific tasks, the software components need to
execute as well as communicate with each other over this highly distributed
environment, where interconnection exists among the hardware nodes. By
considering the above mentioned factors, we considered several real and artificial
case studies mentioned in Papers 1-9 and performed the model transformation for
these case studies. This demonstrated that the set of model transformation rules
were sufficient to consider the complex behavior of distributed systems and to
accomplish the model transformation process using our performance and
performability framework.

How can the correctness of the UML model specifications and model
transformations be ensured?

The UML collaboration oriented approach was used to compose the system
functional behavior from sub-functionalities provided by the service components.
Moreover, the UML model was formalized using cTLA mechanisms mentioned in
Papers 8 and 9, where the superposition rule assures that the properties of the
individual collaboration are reflected in the system because the system is the
composition of this individual collaboration. The following papers also mentioned
the algorithms, which were used to perform the automated model transformation
with the specified model transformations rules in the correct way. Moreover, the
correspondence between UML models and analytical models was demonstrated.
This correspondence was visualized using real, complex, and generalized case
scenarios and demonstrated the applicability of our framework.

In summary, the included papers present a rapid, scalable, and automated approach that
spans from capturing the system functional behavior to generating analytical models for
the performance and performability evaluation of the distributed systems in accordance
with the factors specified in the introduction section and with the specified research
questions. The approaches presented in this work are sufficiently general to illustrate a
wide variety of application scenarios to demonstrate the applicability of our developed
framework. We consider non-functional parameters which are very much realistic that
have been utilized to derive performance and performability results. The results generated
by our framework together with the validation of the approach rationalize the efficiency
of our solutions. Lastly, we were able to prove that our framework was not only confined
by the theoretical approach, but was also implemented with the tool support in a practical
setting. The scenarios we considered were sufficiently complex to justify the
functionality of our framework. Thus, this approach is scalable and can also handle a

Chapter 5

 90

variety of real system specifications to conduct a performance and performability
evaluation.

The same framework can be applied with simulations, though in this thesis, the focus is
on analytic models. The performance and performability models used in this thesis can be
solved both by analytic approaches and by simulations. Simulations under less restrictive
assumptions than the analytic model can be used for cross-validation of the results.

CHAPTER 6

Future directions

There are many interesting research paths that are identified in this section that can be
specified as future directions of the work presented in this thesis. The following items are
not in listed according to priority.

Development of the missing plug-ins for the Arctis tool

The Arctis tool does not have support to define the UML deployment diagram, UML
state machine diagram, and to incorporate performance and performability information
into UML models. The development process is ongoing to implement the missing plug-
ins for the Arctis tools to generate all of the input models for the performance and
performability evaluation of the distributed system.

Analysis of UML models

We have specified the formalization of collaborative building blocks and other UML
models. This enables automated model checking of the specified UML models. Further
extension of this work would be to derive additional theorems and specifications for the
extensive checking of error situations, which require additional investigation of the
semantics of the UML models depending on the different and complex application logic.

Complete profile for annotation of UML models

We annotated our UML models for the performance and performability evaluation
according to the UML SPT profile and subsequently, using the UML MARTE profile and
UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms. In addition, we also introduced several stereotypes and tagged values for

 92

annotating the UML models used in this work. Thus, we are working towards compiling
a complete profile that will help to annotate our UML models in accordance with the
performance and performability requirements.

Cost considerations regarding the migrating workload

The migrating workload is a demanding task and requires continuous investigation of the
system execution environment. The deployment logic presented in this thesis should be
capable of providing new configuration of the deployment mapping, when any change in
the execution environment or workload configuration is encountered. Thus, the new
deployment mapping might provide a better result. In that case, a new parameter in the
cost function is needed to be introduced as the migration cost because of the changing
deployment location of the software components in the execution environment.

Larger and complex problem sizes

One of the focuses on the results of this thesis was to build a method that ensured
scalability in model transformation for large and complex problems. However, there
remains a space for designing and implementing the model transformation for larger
problem sizes with respect to the UML models used in this work, assessment of the
deployment mapping, and generation of performance and performability models.
Extension of this method can be considered from two main directions: where the more
comprehensive scenarios might be considered for large networks, including more
physical nodes and clusters, and the other direction might be the simultaneous
deployment of a larger amount of services that can be encountered while designing cost
functions.

Considering real time properties

While capturing system functional behavior, it might be essential to focus on the real time
properties of some application domains. We already formalized the semantics of the
UML model by focusing on the system design specification using cTLA. However, this
solution can be used to specify the real time properties for some application domains with
an introduction of the necessary modeling elements.

Introducing dynamic configurations

In our work, we consider service properties in design time, which give a static view.
However, the properties of services in run time as well as the dynamic nature while
capturing the functional behavior should be considered. In some systems, it may be
desirable to deploy new functionality at runtime by exchanging existing components or
making new components available via some discovery mechanisms. Currently, this form
of dynamics is not directly addressed by our approach. As part of our future studies, we
will specify the semantics that will capture the system functional behavior in such a way
that it will be able to consider the internal behavior of collaborative building blocks in run
time.

 93

Procedure for deriving costs

Costs such as execution, communication, and overhead cost are mentioned instinctively
in the application scenario and are utilized for reasoning of the deployment logic. A
method that would be useful to derive the costs automatically and in realistic way is
needed. The probable applicable method could be from code analysis, constant transition
costs, various offline measurements, or other predication methods on expected demand
[2].

Migrating Load

The deployment logic we introduced considers deployment mapping of the service
components on the execution environment for a fixed topology. The target of the
deployment logic was to ensure load balancing taking into account a specific and fixed
number of physical nodes. However, in a real case, the topology is not static, but is very
dynamic, where it might be a scenario that consists of topology changes for any
constraint that requires an efficient method of load balancing among the physical nodes.
One of the potential extensions in the design of our deployment logic is to consider the
load balancing among the physical nodes because of the sudden change in execution
environmental topology.

Providing feedback to functional design

We performed functional changes in the system design process based on the early
assessment of software performance and performability evaluation. This process was not
automatically performed. Further extension of our work would be to make the process
automated to provide feedback to identify UML anti-patterns and to then change the
functional design accordingly.

Providing feedback to improve deployment mapping

The process of comparing numerous execution environments and determining the optimal
deployment mapping of the service components over the physical environments has not
yet been completed through our current work. This goal can be achieved using the fixed-
point iteration method, which provides feedback to the design alternatives of the
execution environment.

Chapter 6

 94

Bibliography

[1] Frank Alexander Kraemer, “Engineering Reactive Systems: A Compositional and

Model-Driven Method Based on Collaborative Building Blocks” PhD thesis,
Norwegian University of Science and Technology, 2008

[2] Mate J. Csorba, “Cost-Efficient Deployment of Distributed Software Services”,

PhD thesis, Norwegian University of Science and Technology, 2012

[3] OMG 2009, “UML: Superstructure”, Version-2.2

[4] OMG 2009, “UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded Systems”, V – 1.0

[5] Moreno Marzolla, “Simulation-Based Performance Modeling of UML Software

Architectures”, Phd thesis, Universit`a Ca’ Foscari di Venezia, 2004

[6] K. Efe, “Heuristic models of task assignment scheduling in distributed systems”,

Computer, 1982

[7] Peter Herrmann, “Problemnaher korrektheitssichernder Entwurf von

Hochleistungsprotokollen”, PhD thesis, Universitat Dortmund, 1997

[8] Peter Herrmann and Heiko Krumm, “A Framework for Modeling Transfer

Protocols”, Computer Networks, Vol.34, No.2, pp.317–337, 2000

[9] OMG 2009, “UML Profile for Modeling Quality of Service and Fault Tolerance

Characteristics and Mechanisms”, V-1.1

[10] Frank Alexander Kraemer, “ARCTIS”, Department of Telematics, NTNU,

http://arctis.item.ntnu.no, retrieved May 2011

[11] K. S. Trivedi and R. Sahner, “Symbolic Hierarchical Automated Reliability /

Performance Evaluator (SHARPE)”, Duke University, NC, 2002

[12] Frank Alexander Kraemer and Peter Herrmann, “Service specification by

composition of collaborations-an example”, Proceedings of Web Intelligence –
Intelligent Agent Technology workshops, pp. 129-133, IEEE computer society,
2006

 96

[13] Frank Alexander Kraemer and Peter Herrmann, “Formalizing Collaboration-
Oriented Service Specifications Using Temporal Logic”, Proceedings of the
International Conference on Networking and Electronic Commerce Research
Conference, p. 194-220, ATSMA Inc, 2007

[14] Lamport, “Specifying Systems”, Addison-Wesley, 2002

[15] Frank Alexander Kraemer, Peter Herrmann, and R. Bræk, “Aligning UML 2 state

machines and temporal logic for the effecient execution of services”, Published in
On the Move to Meaningful Internet Systems: CoopIS, DOA, GADA, and
ODBASE, pp. 1613-1632, Lecture Notes of Computer Science, Springer, 2006.

[16] Vidar Slåtten, “Model Checking Collaborative Service Specifications in TLA

with TLC”, Project Thesis, August 2007, Norwegian University of Science and
Technology, Trondheim, Norway.

[17] Yuan Yu, Panagiotis Manolios, and Leslie Lamport, “Model Checking TLA+

Specifications”, In L. Pierre and T. Kropf, editors, Proceedings of the 10th IFIP
WG 10.5 Advanced Research Working Conference on Correct Hardware Design
and Verification Methods (CHARME’99), volume 1703 of Lecture Notes in
Computer Science, pages 54–66. Springer-Verlag, 1999

[18] Frank Alexander Kraemer, Vidar Slåtten, and Peter Herrmann, “Engineering

Support for UML Activities by Automated Model-Checking – An Example”,
Proceedings of the 4th International Workshop on Rapid Integration of Software
Engineering Techniques, p. 51-66, 2007

[19] Mate J. Csorba, Poul E. Heegaard, and Peter Herrmann, “Cost-Efficient

Deployment of Collaborating Components”, Proceedings of the 8th IFIP
International Conference on Distributed Applications and Interoperable Systems,
pp. 253–268, Springer, 2008

[20] Razib Hayat Khan and Poul E. Heegaard, “A Performance modeling framework

incorporating cost efficient deployment of multiple collaborating components”
Proceedings of the 2nd International Conference on Software Engineering and
Computer Systems, pp. 31-45, Lecture Notes of Computer Science, Springer,
2011

[21] OMG 2005, “UML Profile for Schedulability, Performance, and Time

Specification”, V – 1.1

[22] G. Ciardo, J. Muppala, and K. S. Trivedi, “Analyzing concurrent and fault-

tolerant software using stochastic reward nets”, Journal of Parallel and Distributed
Computing, Vol. 15, 1992

 97

[23] K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer
Science application”, Wiley- Interscience publication, ISBN 0-471-33341-7, 2nd
Edition, 2001

[24] Pakke Kahkipru, “UML based performance modeling framework for object-

oriented distributed systems”, Proceedings of the 2nd international conference on
the unified modeling language: beyond the standard, pp. 356-371, Springer-
Verlag Berlin, Heidelberg, 1999

[25] Peter King and Rob Pooley, “Derivation of Petri Net Performance Models from

UML Specifications of Communications Software”, B.R. Haverkort et al. (Eds.):
TOOLS, pp. 262-276, Springer-Verlag Berlin, Heidelberg, 2000

[26] John Anil Saldhana and Sol M. Shatz, “UML Diagrams to Object Petri Net

Models: An Approach for Modeling and Analysis”, Proceedings of the
International Conference on Software Engineering and Knowledge Engineering,
pp. 103-110, 2003

[27] A Al Abdullatif and Rob Pooley, “A Computer Assisted State Marking Method

For Extracting Performance Models from Design Models”, International journal
of simulation, Vol. 8, No. 3, pp. 36-46, 2008

[28] Rob Pooley, “Using UML to Derive Stochastic Process Algebra Models”,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1058,retrieved April,
2012

[29] Nico De Wet and Pieter Kritzinger, “Using UML models for the performance

analysis of network systems”, The International Journal of Computer and
Telecommunications Networking - Telecommunications and UML languages,
Vol. 49, No. 5, pp. 627-642, 2005

[30] Jasemin K.S and R. Vashanta, “Derivation of UML Based Performance Models

for Design Assessment in a Reuse Based Software Development Approach”,
Annals. Computer Science Series, Vol. 7, No. 1, 2009

[31] Tom Verdickt, Bart Dohedt, and Frank Gielen, “Incorporating SPE into MDA:

including middleware performance details into system models”, Proceedings of
the 4th international workshop on Software and performance, pp. 120-124, ACM,
2004

[32] Hassan Gomaa and Daniel A. Menascé, “Performance Engineering of

Component-Based Distributed Software Systems”, R. Dumke et al. (Eds.):
Performance Engineering, pp. 44-55, Springer-Verlag Berlin Heidelberg, 2001

[33] Juan Pablo Lopez-Grao, Jose Merseguer, and Javier Campos, “From UML

activity diagrams to Stochastic Petri nets: application to software performance

Bibliography

 98

engineering”, Proceedings of the 4th international workshop on Software and
performance, pp. 25-36, ACM press, 2004

[34] José Merseguer and Javier Campos, “On the integration of UML and Petri nets in

software development”, Proceedings of the 27th international conference on
Applications and Theory of Petri Nets and Other Models of Concurrency, pp. 19-
36, Springer-Verlag Berlin, Heidelberg, 2006

[35] Paolo Bocciarelli and Andrea D’Ambrogio, “A model-driven method for

describing and predicting the reliability of composite services”, Journal of
Software and Systems Modeling, Vol. 10, No. 2, pp. 265-280, Springer-Verlag
New York, 2011

[36] Salvatore Distefano, Marco Scarpa, and Antonio Puliafito, “From UML to Petri

Nets: The PCM-Based Methodology”, IEEE Transactions on Software
Engineering, Vol. 37, No. 1, pp. 65-79, IEEE press, 2011

[37] Murray Woodside, Dorina C. Petriu, Dorin B. Petriu, Hui Shen, Toqeer Israr, and

Jose Merseguer, “Performance by Unified Model Analysis (PUMA)”,
Proceedings of the 5th international workshop on Software and performance, pp.
1-12, ACM press, 2005

[38] Andrea D'Ambrogio, “A model transformation framework for the automated

building of performance models from UML models”, Proceedings of the 5th

international workshop on Software and performance, pp. 75-86, ACM press,
2005

[39] Salvatore Distefano, Daniele Paci, Antonio Puliafito, and Marco Scarpa, “UML

Design and Software Performance Modeling”, Proceedings of the 19th

International symposium on Computer and Information Sciences, pp. 564-573,
Springer-Verlag Berlin Heidelberg, 2004

[40] Juan Pablo Lopez-Grao , Jose Merseguer , and Javier Campos, “Performance

Engineering based on UML and SPN’s: A software performance tool”,
Proceedings of the 17th International symposium on Computer and Information
Sciences, pp. 405-409, CRC press, 2002

[41] Birgit Korherr and Beate List, “Extending the UML 2 Activity Diagram with

Business Process Goals and Performance Measures and the Mapping to BPEL”,
Proceedings of the 2006 international conference on Advances in Conceptual
Modeling: theory and practice, pp. 7-18, Springer-Verlag, Heidelberg, 2006

[42] Mirco Tribastone and Stephen Gilmore, “Automatic Extraction of PEPA

Performance Models from UML Activity Diagrams Annotated with the MARTE
Profile”, Proceedings of the 7th international workshop on Software and
performance, pp. 67-78, ACM press, 2008

 99

[43] Yosr Jarraya, Andrei Soeanu, Mourad Debbabi, and Fawzi Hassaine, “Automatic
Verification and Performance Analysis of Time-Constrained SysML Activity
Diagrams”, Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, pp. 523-530, IEEE
computer society, 2007

[44] B. Bharathi and G. Kulanthaivel, “A tool for architectural design evaluations

using simplistic approach”, IJCA Special Issue on Computational Science - New
Dimensions and Perspectives, Vol. 4, No. 7, pp. 162–165, Foundation of
Computer Science, 2011

[45] Dorina C. Petriu, “Deriving Performance Models from UML Models by Graph

Transformations”, Tutorial in Workshop on Software and Performance, 2000

[46] Simonetta Balsamo and Moreno Marzolla, “Performance Evaluation of UML

Software Architectures with Multiclass Queueing Network Models”, Proceedings
of the 5th international workshop on Software and performance, pp. 37-42, ACM
press, 2005

[47] H. Motameni, A. Movaghar, and M. Fadavi Amiri, “Mapping Activity Diagram to

Petri Net: Application of Markov Theory for Analyzing Non-functional
Parameters”, IJE transactions, Vol.20, No. 1, pp. 65-76, 2007

[48] H. Motameni, A. Movaghar, I. Daneshfar, H. Nemat Zadeh, and J. Bakhshi,

“Mapping to Convert Activity Diagram in Fuzzy UML to Fuzzy Petri Net”, World
Applied Sciences Journal, Vol. 3, No. 3, pp. 514-521, IDOSI Publications, 2008

[49] Ali I. El-Desouky, Hesham A. Ali, and Yousry M. Abdul-Azeem, “LQN-Based

Performance Evaluation Framework of UML-Based Models for Distributed
Object Applications”, Proceeding of the INFOS, pp. 11-19, Cairo University
press, 2008

[50] Michele Angelaccio and Andrea D'Ambrogio, “A Model-driven Framework for

Managing the QoS of Collaborative P2P Service-based Applications”,
Proceedings of the 15th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pp. 95-102, IEEE Computer Society,
2006

[51] D. Kreische, “Performance and Dependability in Business Process Modeling”,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.5875, retrieved April
2012

[52] Antonio García-Domínguez and Inmaculada Medina-Bulo, “Model-Driven

Design of Performance Requirements with UML and MARTE”, Proceedings of
ICOSOFT, pp. 54-63, SciTePress, 2011

Bibliography

 100

[53] Tero Arpinen, Erno Salminen, Timo D. Hamalainen, and Marko Hannikainen,
“Performance Evaluation of UML2-Modeled Embedded Streaming Applications
with System-Level Simulation”, EURASIP Journal on Embedded Systems, Vol.
2009, Article ID 826296, pp. 1-16, Hindawi Publishing Corporation, 2009

[54] Aad P. A., Van Moorsel, and Yiqing Huang, “Reusable Software Components for

Performability Tools, and Their Utilization for Web-based Configurable Tools”,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.8730, retrieved April
2012, Springer, 1998

[55] Xiuping Wu and Murray Woodside, “Performance modeling from software

components”, Proceedings of the 4th international workshop on Software and
performance, pp. 290-301, ACM press, 2004

[56] T. Kappler, H. Koziolek, K. Krogmann, and R. H. Reussner, “Towards Automatic

Construction of Reusable Prediction Models for Component-Based Performance
Engineering”, Proceedings of Software Engineering, ser. LNI, K. Herrmann and B.
Brügge, editors, vol. 121, pp. 140–154, 2008

[57] Shige Wang and Kang G. Shin, “Early-stage performance modeling and its

application for integrated embedded control software design”, Proceedings of the
4th international workshop on Software and performance, pp. 110-114, ACM press,
2004

[58] B.Bharathi and G.Kulanthaivel, “Towards Developing A Performance Evaluator

for Component Based Software Architectures”, Indian Journal of Computer
Science and Engineering, Vol. 2, No. 1, pp. 136 – 142, 2011

[59] Rasha Tawhid and Dorina C. Petriu, “Towards automatic derivation of a product

performance model from a UML software product line model”, Proceedings of the
7th international workshop on Software and performance, pp. 91-102, ACM press,
2008

[60] Van Bui, Boyana Norris, Lois Curfman McInnes, Li Li, Oscar Hernandez, and

Barbara Chapman, “A component infrastructure for performance and power
modeling of parallel scientific applications”, Proceedings of the 2008
compFrame/HPC-GECO workshop on Component based high performance, ACM
press, 2008

[61] Bernd Hardung, Thorsten Kölzow, and Andreas Krüger, “Reuse of Software in

Distributed Embedded Automotive Systems”, Proceeding of the EMOSOFT, pp.
203-210, ACM press, 2004

[62] Shige Wang and Kang G. Shin, “Early-stage performance modeling and its

application for integrated embedded control software design”, Proceedings of the

 101

4th international workshop on Software and performance, pp. 110-114, ACM
press, 2004

[63] José Merseguer, “Web services UML modeling”, Tutorial on Web Services:

Architecture, Concepts and Standards, University of Zaragoza

[64] A Al Abdullatif and Rob Pooley, “UML to EQN: Studying System Performance

from an Early Stage of Systems Life Cycle”, Proceedings of the 25th UK
Performance Engineering, pp. 111-122, 2009

[65] Hoda Amer and Dorina C. Petriu, “Software Performance Evaluation: Graph

Grammar-based Transformation of UML Design Models into Performance
Models”, Proceedings of the 12th International conference, Tools, LNCS,
Springer-Verlag Berlin. 2002

[66] S. Balsamo, M. Marzolla, and R. Mirandola "Efficient Performance models in

Component-Based Software Engineering", Proccedings of the 32nd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
Component-Based Software Engineering track, pp. 64-71, IEEE computer society,
2006

[67] Hui Shen and Dorina C. Petriu, “Performance analysis of UML models using

aspect-oriented modeling techniques”, Proceedings of the 8th international
conference on Model Driven Engineering Languages and Systems, pp. 156-170,
Springer-Verlag Berlin, Heidelberg, 2005

[68] F. Duarte, W. Hasling, R. Leao, E. Silva, and V. Cortellessa, “Extending model

transformations in the performance domain with a node modeling library”,
Proceedings of the 7th international workshop on Software and performance, pp.
157-164, ACM press, 2008

[69] D. Mania and J. Murphy, “Framework for predicting performance of Component

based Systems”, Proceedings of the 7th International Conference on Software,
Telecommunications and Computer Networks, IEEE computer society, 2002

[70] Yong Zhang, Ningjiang Chen, Jun Wei, and Tao Huang, “Completing UML

model of component-based system with middleware for performance evaluation”,
Proceedings of the 2006 international conference on Emerging Directions in
Embedded and Ubiquitous Computing, pp. 72-82, Springer-Verlag Berlin,
Heidelberg, 2006

[71] Elena Gomez-Martinez and Jose Merseguer, “Performance Modeling and

Analysis of the Universal Control Hub”, Proceedings of the 7th European
Performance Engineering Workshop, pp. 160-174, Springer-Verlag Berlin,
Heidelberg, 2010

Bibliography

 102

[72] Salvatore Distefano, Antonio Puliafito, Marco scarpa, Salvatore Distefano,
Antonio Puliafito, and Marco Scarpa, “Implementation of the Software
Performance Engineering Development Process”, Journal of Software, Vol. 5, No.
8, pp. 872-882, Academy Publisher

[73] Joel Wright, John Ibbotson, Christopher Gibson, Dave Braines, Thomas Klapiscak,

Sahin Geyik, Boleslaw Szymanski, and David Thornley, “A Model-Driven
Approach to the Construction, Composition and Analysis of Services on Sensor
Networks”, Proceedings of the 3rd annual conference of international technology
aliance, pp. 1-10, 2010

[74] James Skene and Wolfgang Emmerich, “Model Driven Performance Analysis of

Enterprise Information Systems”, Electronic Notes in Theoretical Computer
Science, Vol. 82, No. 6, Elsevier Science B.V., 2003

[75] M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos1,

“Using UML to Model Distributed System Architectures”, Proceedings of the 18th
International Conference on Computer Applications in Industry and Engineering,
2005

[76] John Hakansson, Leonid Mokrushin, Paul Pettersson, and Wang Yi, “An Analysis

Tool for UML Models with SPT Annotations”, In online proceedings of
International Workshop on Specification and Validation of UML models for Real
Time and Embedded Systems (SVERTS), 2004

[77] Petri Kukkala, Marko Hannikainen, and Timo D. Hamalainen, “Performance

Modeling and Reporting for the UML 2.0 Design of Embedded Systems”,
Proceedings of the international symposium on System-on-Chip, pp. 50-53, IEEE
computer society, 2005

[78] A. J. Bennett, A. J. Field, and C. M. Woodside, “Experimental evaluation of the

UML profile for schedulability, performance, and times”, Lecture Notes in
Computer Science, Vol. 3273, pp. 143-157, Springer, 2004

[79] Dorina C. Petriu, C.M. Woodside, D.B. Petriu, J. Xu, T. Israr, Geri Georg, Robert

France, James M. Bieman, Siv Hilde Houmb, and Jan Jürjens, “Performance
analysis of security aspects in UML models”, Proceedings of the 6th international
workshop on Software and performance , pp. 91-102, ACM press, 2007

[80] Elena Gomez-Martinez and Jose Merseguer, “A Software Performance

Engineering Tool based on the UML-SPT” Proceedings of the Second
International Conference on the Quantitative Evaluation of Systems, pp. 247-248,
IEEE computer society, 2007

[81] Vittorio Cortellessa, Antinisca Di Marco, Romina Eramo, Alfonso Pierantonio,

and Catia Trubiani, “Digging into UML models to remove Performance

 103

Antipatterns”, Proceedings of the 2010 ICSE Workshop on Quantitative
Stochastic Models in the Verification and Design of Software Systems, pp.9-16,
ACM press, 2010

[82] H. Du, R. Gan, K. Liu, Z. Zhang, and D. Booy, “Method for Constructing

Performance Annotation Model Based on Architecture Design of Information
Systems”, Proceeding of the International Conference on Research and Practical
Issues of Enterprise Information Systems II, Vo. 2, pp. 1179-1189, 2007

[83] Dorina C. Petriu and Hui Shen, “Applying the UML Performance Profile: Graph

Grammar-based Derivation of LQN Models from UML Specifications”,
Proceedings of the Tools, pp. 159—177, Springer-Verlag, 2002

[84] Hui Liu, “Transformation of UML 2.0 models extended with MARTE to core

scenario models”, M.Sc. Thesis, University of Carleton, 2008

[85] Jouni Riihimäki, Petri Kukkala, Tero Kangas, Marko Hännikäinen, and Timo D.

Hämäläinen, “Interfacing UML 2.0 for Multiprocessor System-on-Chip Design
Flow” Proceedings of the international symposium on System-on-Chip, pp. 108-
111, IEEE computer society, 2005

[86] Simona Bernardi and José Merseguer, “QoS assessment via stochastic analysis”,

Proceedings of the IEEE Internet Computing, pp. 32-42, IEEE computer society,
2006

[87] Antonio García-Domínguez, Inmaculada Medina-Bulo, and Mariano Marcos-

Bárcena, “Model-Driven Design of Performance Requirements with UML and
MARTE”, Proceedings of the 6th International Conference on Software and Data
Technologies, 2011

[88] Elena Gomez-Martinez and Jose Merseguer, “ArgoSPE: Model-Based Software

Performance Engineering”, Proceedings of the 27th International Conference on
Applications and Theory of Petri Nets and Other Models of Concurrency, pp. 401-
410, LNCS, Springer-Verlag Berlin Heidelberg, 2006

[89] Reheb A. El-kaedy and Ahmed Sameh, “Performance Analysis and

Characterization Tool for Distributed Software Development”, International
Journal of Research and Reviews in Computer Science, Vol. 2, No. 3, pp. 906-915,
2011

[90] Kendra Cooper, Lirong Dai, and Yi Deng, “Modeling Performance as an Aspect:
a UML Based Approach”, Proceedings of the 4th AOSD Modeling with UML
Workshop, 2003

[91] Catherine Canevet, Stephen Gilmore, Jane Hillston, and Perdita Stevens,

“Performance modeling with UML and stochastic process algebras”, IEEE
Proceedings: Computers and Digital Techniques, pp. 107-120, 2003

Bibliography

 104

[92] P. Moura, R. Borges, and A. Mota, “Experimenting Formal Methods through
UML”, Proceedings of the Brazilian Workshop on Formal Methods, 2003

[93] J. Warmer and A. Kleppe. “The Object Constraint Language: Precise Modeling

with UML”, Addison-Wesley, 1999

[94] B.D. Theelen, P.H.A. van der Putten, and J.P.M. Voeten, “Using the SHE Method

for UML-based Performance Modeling”, System Specification and Design
Languages, pp. 143-160, 2004

[95] Yongfeng Yin, Bin Liu, Zhen Li, Chun Zhang, and Ning Wu, “The Integrated

Application Based on Real-time Extended UML and Improved Formal Method in
Real-time Embedded Software Testing” Journal of Networks, Vol. 5, No. 12, pp.
1410-1416, 2010

[96] Li Shuhao, Wang Ji, Dong Wei, and Qi Zhichang, “A framework of property-

oriented testing of reactive systems”, Chinese Journal of Electronics, Vol.32,
No.12A, pp.222-225, 2004

[97] Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi, “Deriving performance models

of software architectures from message sequence charts. In Proc. of 2nd

International Workshop on Software and Performance, pages 47-57, ACM Press,
2000

[98] J. Cardoso and C. Sibertin-Blanc, “Ordering actions in sequence diagrams of

UML”, Proceedings of 23rd International Conference on Information Technology
Interfaces (ITI2001), 2001

[99] D. Latella, I. Majzik, and M. Massink, “Towards a formal operational semantics

of UML statechart diagrams”, Proceedings of 3rd Int. Conference on Formal
Methods for Open Object-Based Distributed Systems, pp. 331-347, Kluwer, 1999

[100] J. Lilius and I.P. Paltor, “The semantics of UML state machines”, Technical report

no.273 - Turku Centre for Computer Science, Finland, May 1999

[101] A. J. H. Simons, “On the compositional properties of UML statechart diagrams”,

Proceedings of the Rigorous Object-Oriented Methods, 2000

[102] A. Tsiolakis, “Integrating model information in UML sequence diagrams”,

Proceedings of 2nd International Workshop on Graph Transformation and Visual
Modeling Techniques, Electronic Notes in Theoretical Computer Science,
Springer-Verlag, 2001.

[103] Rik Eshuis and Roel Wieringa, “A Real-Time Execution Semantics for UML

Activity Diagrams”, Proceedings of the 4th International Conference on

 105

Fundamental Approaches to Software Engineering, pp. 76-90, Springer-Verlag
London, 2001

[104] C. Bolton and J. Davies, “Activity graphs and processes” Proceedings of the

Integrated Formal Methods , LNCS 1945, Springer, 2000

[105] T. Gehrke, U. Goltz, and H. Wehrheim, “The dynamic models of UML: Towards

a semantics and its application in the development process”, Hildesheimer
Informatik-Bericht 11/98, 1998

[106] E. Borger, A. Cavarra, and E. Riccobene, “An ASM Semantics for UML Activity

Diagrams”, In T. Rus, editor, Proceedings of the Algebraic Methodology and
Software Technology, 8th International Conference, AMAST 2000, LNCS 1826.
Springer, 2000

[107] W. M .P . Van Der Aalst, “The application of Petri nets to work flow

management”, The Journal of Circuits, Systems and Computers, Vol.8, No.1,pp.
21-66, 1998

[108] Dirk Wodtke and Gerhard Weikum, “A Formal Foundation for Distributed

Workflow Execution Based on State Charts”, Proceedings of the 6th International
Conference on Database Theory, pp. 230-246, Springer-Verlag London,1997

[109] David Harel and Amnon Naamad, “The STATEMATE Semantics of Statecharts”,

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, pp.
293–333, 1996

[110] J. Trowitzsch and A. Zimmermann, “Using UML State Machine and Petri Nets

for the Quantitative Investigation of ETCS”, Proceedings of the 1st international
conference on Performance evaluation methodolgies and tools, ACM press, 2006

[111] A. Zimmermann and Gunter Hommel, “Towards modeling and evaluation of

ETCS real-time communication and operation”, The Journal of Systems and
Software, Vol.75, pp. 47-54, Elsevier, 2005

[112] H. Hermanns, D. N. Jansen, and Y. Usenko, “From stocharts to modest: a

comparative reliability analysis of train radio communications”, Proceedings of
the 5th international workshop on Software and performance, pages 13–23, ACM
Press, 2005

[113] C. Lindemann, A. Thummler, A. Klemm, M. Lohmann, and O. Waldhorst,

“Performance Analysis of Time-enhanced UML Diagrams Based on Stochastic
Processes”, Proceedings of the 3rd Workshop on Software and Performance,
pages 25–34, ACM press, 2002

Bibliography

 106

[114] Valentina Boschian, Mariagrazia Dotoli, Maria Pia Fanti, Giorgio Iacobellis, and
Walter Ukovich, “A metamodeling approach for performance evaluation of inter-
modal transportation networks”, European Transport \ Trasporti Europei, Vol. 46
pp. 100-113, 2010

[115] L.B. Arief and N.A. Speirs, “A UML Tool for an Automatic Generation of

Simulation Programs”, Proceedings of the 2nd international workshop on Software
and performance, pp. 71-76, ACM press, 2000

[116] N. Sato and K. S. Trivedi, “Stochastic Modeling of Composite Web Services for

Closed-Form Analysis of Their Performance and Reliability Bottlenecks”,
Proceedings of the International Conference on Service Oriented Computing, pp.
107-118, Springer, 2007

[117] P. Bracchi, B. Cukic, and Cortellesa, “Performability modeling of mobile software

systems”, Proceedings of the International Symposium on Software Reliability
Engineering, pp. 77-84, 2004

[118] N. D. Wet and P. Kritzinger, “Towards Model-Based Communication Protocol

Performability Analysis with UML 2.0”,
http://pubs.cs.uct.ac.za/archive/00000150/01/ No_10, retrieved May 2011

[119] Gonczy, Deri, and Varro, “Model Driven Performability Analysis of Service

Configurations with Reliable Messaging”, Proceedings of the Model-Driven Web
Engineering Workshop, 2008

[120] Aad P. A. Van Moorsel, and Boudewijn R. Haverkort, “A Unified Performability

Evaluation Framework for Computer and Communication Systems”, Proceedings
of the second International Workshop on Performability Modeling of Computer
and Communication Systems, INRIA Rennes, 1993

[121] S. Dalibor, A. Hein, and W. Hohl, “Application Dependent Performability

Evaluation of Fault-Tolerant Multiprocessors”, Proceedings of the 4th Euromicro
Workshop on Parallel and Distributed Processing, pp. 310-318, IEEE computer
society, 1996

[122] John F. Meyer, “On Evaluating the Performability of Degradable Computing

Systems ”, IEEE Transactions on Computers, Vol. 29, No. 8, pp. 720–731, 1980

[123] Yijie Hana, J. Richard Laa, M. Armand Makowskia, Seungjoon Lee, "Distribution

of path durations in mobile ad-hoc networks—Palm’s Theorem to the rescue",
Computer Networks, Vol. 50, No. 12, pp. 1887–1900, 2006

 107

Part II

Included Papers

Paper 1

Translation from UML to Markov model: A
performance modeling framework

Razib Hayat Khan, Poul E. Heegaard

Presented in International Joint Conferences on Computer, Information, and System Sciences, and
Engineering (CISSE), 2009, Bridgeport, USA

Published in Innovations in Computer Sciences and Engineering, p. 365-371, Springer Science+Business
Media V.B. 2010

Translation from UML to Markov model: A
performance modeling framework

Razib Hayat Khan, Poul E. Heegaard

Department of Telematics
Norwegian University of Science and Technology (NTNU)
Trondheim, Norway
{rkhan, poul.heegaard}@item.ntnu.no

Abstract- Performance engineering focuses on the quantitative investigation of the behavior of a software
system during the early phase of the system development life cycle. Bearing this concept, we delineate a
performance modeling framework of the application for communication system that proposes a translation
process from high level UML notation to Continuous Time Markov Chain model (CTMC) and solves the
model for relevant performance metrics. The framework utilizes UML collaborations, activity diagrams and
deployment diagrams to be used for generating performance model for a communication system. The
system dynamics will be captured by UML collaboration and activity diagram as reusable specification
building blocks, while deployment diagram highlights the components of the system. The collaboration and
activity show how reusable building blocks in the form of collaboration can compose together the service
components through input and output pin by highlighting the behavior of the components and later on, a
mapping between collaboration and system component identified by UML deployment diagram will be
delineated. Moreover, the UML models are annotated to associate performance related quality of service
(QoS) information, which is necessary for solving the performance model for relevant performance metrics
through our proposed framework. The applicability of our proposed performance modeling framework is
delineated in the context of modeling a communication system.

1 Introduction

Communication systems are complex systems. To meet functional requirements are
obviously important while designing applications for communication system, but they are
not the only concern. Performance evaluation to meet user requirement is another
important factor. Performance evaluation is the degree to which a system meets its
objectives and satisfies user expectation, which is important in many cases and is critical
in some real-time applications. It is necessary to take into account the performance issues
earlier in the system development lifecycle and treating these as an essential part of the
system development process. Therefore, finding a way to extract performance model
from design model at early stage of system development process and solves the model for
relevant performance metrics is a key issue in the perspective of system performance
engineering. So the developers will be able to make informed decisions within the design
process as well as readily explore 'what-if' scenarios and assessing the implication of
changing logic in execution of application by considering all the dynamics, interaction
among the system components as well as considering the system’s execution environment
(i.e. the deployment of network resources, network technology and network topology)
and workload factors of the system, which all have greater impact on a system's
performance. To consider all the above issues, our proposed framework utilizes UML
collaboration [1], activity [1] and deployment diagram [1] as UML is the most widely

 112

used modeling language, which models both the system requirements and qualitative
behavior through different notations. Collaboration and activity diagram will be specified
to capture system dynamics and interaction among service components as reusable
specification building blocks [2] by highlighting component’s behavior. To compose the
overall activity of the system in the form of collaboration events identified as input and
output pins on the activities are connected together [2]. Deployment diagram will identify
the system components, the process executes on the each component as well as considers
the execution platform and network topology of the system. A mapping is delineated
between system components and collaborations thereafter to show how the service is
defined by the joint behavior of the system components. Moreover, the UML models are
annotated incorporating performance related information. By the above specification
style of UML, probable states and the performance parameters for triggering the change
of the states of the performance model will be generated and solved by our proposed
performance modeling framework.

Markov model [3], queuing network [3] and stochastic petrinet [3] are probably the best
studied performance modeling techniques. Among all of them, we will choose Markov
model as the performance model generated by our proposed framework due to its
modeling generality, its well-developed numerical modeling analysis techniques, its
ability to preserve the original architecture of the system, to facilitate any modification
according to the feedback from performance evaluation and the existence of analysis
tools.

The objective of this paper is to provide an extensive performance modeling framework
that provides a translation process to generate performance model from system
specification description captured by the UML behavioral diagram [1] and solves the
model for relevant performance metrics at the early stage of system development life
cycle. The rest of this paper is organized as follows: Section 2 focuses on related works,
Section 3 presents our approach of specifying UML technique for performance modeling,
Section 4 describes our performance modeling framework and Section 5 delineates the
conclusion with work.

2 Related works

Related work includes a number of efforts are made generating a performance model
from the system specification. Kähkipuro developed a performance modeling framework
to generate queuing network with simultaneous resource possessions from the high level
UML notations so that model can be solved for the relevant performance metrics [4].
Lopez-Grao et al. proposed a conversion method from annotated UML activity diagram
to stochastic petrinet model [5]. Trowitzsch and Zimmermann proposed the modeling of
technical systems and their behavior by means of UML and for the resulting models a
transformation into a Stochastic Petri Net was established [6]. Abdullatif and Pooly
presented a method for providing computer support for extracting Markov chains from a
performance annotated UML sequence diagram [7]. The framework in this paper is the
first known approach that introduces a new specification style utilizing UML behavioral
diagrams as reusable specification building block that is used for generating performance

 113

model. The main focus here is to introduce reusable building blocks, from which systems
can be composed and performance model will be generated. These building blocks are
collaborations, which mean that one building block describes the behavior of several
system components. This makes it easier to reuse complete services, since all interactions
necessary to coordinate behavior among components can be encapsulated [8].

3 UML technique of performance modeling

In this paper, we utilize UML 2.2 collaboration, activity and deployment diagram to be
used for generating performance model from system design specification. We outline a
specification style using UML 2.2 collaboration and activity diagram, which is the part of
the tool suite Arctis [8]. Arctis focuses on the Collaboration and activity as reusable
specification building blocks describing the interaction between system components as
well as internal behavior of the components [2]. To mention the overall behavior of the
system by composing the reusable building blocks the events are identified as input and
output pins on the activities that are connected together [2]. Deployment diagram is
another integral part of our proposed framework that specifies a set of constructs that can
be used to define the execution architecture of the systems that represent the assignment
of software artifacts to the system components or physical nodes [1]. As an example, we
utilize a system description, where users are equipped with cell phone or PDA want to
receive weather information of the current location using his/her hand held devices. The
user request is first transferred to the location server through base transceiver station to
retrieve location information of the user. The location information is then transferred to
weather server for retrieving the weather information according to the location of the user.

Figure 1 shows the UML collaboration, which focuses on the formulation of building
block declaring the participants as collaboration role and connection between them [2].
User service request is generated from user’s hand held devices. The users are part of the
environment and therefore labeled as <<external>>. User service request is transferred
between the mobile terminal (MT) and base transceiver station (BTS) is highlighted by
collaboration t. BTS interacts with the location server (LS) for retrieving user location
information by using collaboration l. The LS retrieves the desired information from
databases (DB) using collaboration use d1. Then BTS interacts with the weather server
(WS) for weather information by using collaboration w according to the location
information of user supplied by the LS. The WS retrieves the desired information from
DB using collaboration use d2.

While UML collaboration describes the structural aspect of the composed service the
internal behavior of the collaboration is described by the UML activity [2]. Hereby,
collaborations of Figure 1 are modeled by a call behavior action referring to the activity
[9]. To deliver the requested information to the user through his/here mobile terminal,
BTS participates in the collaboration Request Location Info together with the LS and
Request Weather info together with WS. These are specified by the collaboration l:
Request Location Info and w: Request Weather info, where the BTS plays the role client
and the LS and WS play the role server. The behavior of the collaboration is described by
the UML activity in Figure 3, where activity is divided into two partition one for each

Paper 1

 114

collaboration role (Client and Server) [2]. The activity is started on the client side, when
the user request is provided as parameter u_req at the input pin. The u_req directly sent to
the LS, where it is converted into a database request by the call operation action
processing.

After that, it is the task of the collaboration between the server and the database to
provide the stored information. To get the information the request leaves the activity
Request Location info and the server waits for the reception of response. This is modeled
with the input and output pins request and response. After getting the response, the result

Figure 1. Collaboration diagram

 Figure 2. System activity to couple the collaboration

MT t:
Transfer

BTS
l:

Request
location

Info

USER
<<external>>

g:
Generate
request

LS

DB
d1:

DBRetrieve
w:

 Request
weather

Info

WS DB d2:
DBRetrieve

client

client
client

server

server

 115

is delivered to the corresponding output pin in the client side and the activity is
terminated. Here, we describe the behavior of collaboration Request Location info.
Likewise, we can describe the behavior of Request Weather info through activity partition
of client and server, where location information of user is forwarded by the client to
request server for retrieving the weather information of that particular user location.

We use activity in Figure 2 to describe how the events of the individual collaborations
between the system components are coupled with each other so that the desired overall
system behavior is obtained [2]. The initial node () marks the starting of the activities.
The activity is started on the client side. When a user service request is generated via MT,
g: Generate request will transfer the user service request as parameter u_req to the BTS
via collaboration t: Transfer. Once arrived at the BTS, request for location information is
forwarded to the LS represented by activity Request location info. LS makes a database
request, which is modeled by d1: DBRetrieve and terminates with result l_info (Location
information). After getting the location information, request for weather information
according to user current location is forwarded by the BTS to the WS represented by
activity Request weather info. WS makes a database request, which is modeled by d2:
DBRetrieve and terminates with result w_info (Weather information). After that, the final
result is transferred to the user hand held device by BTS via collaboration t: Transfer.
The structure of collaborations as well as the way to couple them facilitates the reuse of
activities. For example, both the collaboration d1 and d2 are identical and can be
instantiated from single collaboration type. Moreover, the collaboration l and w have very
similar behavior and can be based on the same UML template. Thus, systems of a
specific domain can often be composed of reoccurring building blocks by reusing them
[2].

The deployment diagram of the overall system is shown in Figure 4 highlighting the
physical resources of our system such as mobile terminal, base transceiver station,
location server, weather server. Service request is deployed on the user’s mobile terminal,
which is then transferred by the base transceiver station to the location server, where
process for retrieving the location information of user is deployed. After that, process for
retrieving the weather information of the user location is deployed in the weather server.

BTS LS

Request Location info

Figure 3. Structure (UML collaboration), Internal behavior (UML activity)

request

response

input

output

Request Location info

Processing

l_info

Client Server

Paper 1

 116

4 Steps for building and evaluating the performance model (CTMC)
from proposed modeling framework

Here, we describe how performance model will be generated and evaluated by our
proposed framework shown in Figure 9 by utilizing the above specification style of UML.
Steps 1 and 2 are the parts of the tool suite Arctis [8] and other steps are the extensions
we needed generating the performance model by our proposed framework. The steps are
as follows:

1) Construction of collaborative building block: This step defines the formulation of the
building blocks in form of collaboration as major specification unit of our framework
shown in Figure 1. The structure of the building block is defined by the UML
collaboration shown in Figure 3. The building block declares the participants as
collaboration role and connection between them. The internal behavior of the building
block is described by a UML activity shown in Figure 3. It is declared as the classifier
behavior of the collaboration and has one activity partition for each collaboration role in
the structural description.

2) Composition of building blocks: For composition of building blocks, UML
collaboration and activities are used complementary to each other. UML collaborations
alone do not specify any behavior but only show how functionalities may be decomposed.
Therefore, a UML activity is attached to a UML collaboration, which focuses on the
behavior of collaborations as well as how behaviors of subordinate collaboration are
composed. The activity in Figure 2 and the collaboration in Figure 1 show how reusable
specification building blocks in form of collaboration can be composed.

Figure 4. UML deployment diagram

<<deploy>>

<<deploy>>

<<PAhost>>
{PAschdPolicy = FIFO}

<<PAhost>>
Base Transceiver

Station

<<PAhost>>
Weather Server

Database

<<PAhost>>
Location Server

Database

<<artifact>>
 Weathersearchprocess.exe

<<artifact>>
 Locationsearchprocess.exe

<<PAhost>>
Mobile Terminal

 117

3) Designing the deployment diagram and stating relation between system component
and collaboration: Developing deployment diagram can be used to define the execution
architecture of systems by identifying the system components and the assignment of
software artifacts to those identified system components [1]. For our defined scenario the
identified system components are mobile terminal, base transceiver station, location
server and weather server shown in Figure 4. The artifact locationsearchprocess.exe is
deployed on the location server and artifact weathersearchprocess.exe is deployed on the
weather server. In our mentioned scenario, we consider single instance of location server
and weather server.

After designing the deployment diagram the relation between system components and
collaborations will be delineated describing the service delivered by the system. The
service is delivered by the joint behavior of the system components, which may be
physically distributed. The partial behavior of the component utilized to realize the
collaboration is represented by the collaboration role [10]. In our scenario description,
identified system components are mobile terminal, base transceiver station, location
server, weather server. The behavior of the components mobile terminal, base transceiver
station, location server, weather server is represented by collaboration roles MT, BTS, LS
and WS to utilize the collaboration t: transfer, l: request location info, w: request
weather info. Here, it is a one to one mapping between the system components and
collaboration roles shown in Figure 5.

4) Annotation of source models: Performance information is incorporated into the UML
activity diagram in Figure 2 and deployment diagram in Figure 4 according to the UML
Profile for Schedulability, Performance and Time [11] to enable system performance to
be evaluated by performance model solver for relevant performance metrics through our
proposed framework. We use the stereotypes PAcontext, PAopenLoad, PAhost, PAstep
and the tagged values PAoccurence, PAschdPolicy, PArespTime and PAinterval. A
PAcontext models a performance analysis context. A PAopenLoad is modeled as a
stream of requests that arrive at a given rate in predetermined pattern with PAoccurence.
A PAhost models a processing resource with tagged PAschdPolicy defining the policy by
which access to the resource is controlled. A PAstep models a scenario step with tagged

Figure 5. Relation between system components and collaborations

Paper 1

 118

PArespTime defining a step’s response time and PAinterval defines time interval between
successive repetitions of a step.

5) State marking and Reachability graph: Here, we will describe how the probable states
of the performance model will be generated. While generating the probable states for our
performance model we consider only those participants, which have greater impact on the
system performance and the states of the system will be generated based on the status of
these participants shown by their internal behavior. For our example scenario, we will
consider the participants location server and weather server as limiting factor for the
system performance and the performance model states will be generated from location
server and weather server status. The status of these servers is defined by their internal
behavior through collaboration request location info and request weather info. The status
of the both the servers are defined as idle, processing. When a step (annotated as
<<PAstep>> in Figure 2) will be executed the status of the servers will be marked as
performance model state as a whole from where a new state may be generated with a
transition rate or return back to a already marked state with a transition rate mentioned in
the annotated UML model in Figure 2. The states of the performance model are shown in
Table 1 based on the status of both the servers as a whole. The states are: (idle, idle),
(processing, idle), (idle, processing), (processing, processing), where the first part defines
the status of the location server and second part defines the status of the weather server. If
we assume initial marking such as the status of the location server and weather server is
idle that means participants have no user request to process then we can derive all the
reachable markings of the performance model from the initial marking. This can be done
according to the arrival or departure of requests by following the interaction among the
participants shown in the composition of building block through UML activity diagram in
Figure 2. If we now construct the reachability graph with each of this reachable marking
as a node and each edge between the nodes leveled with the trigger of their change by
transition rate, we have a state transition diagram of the performance model. Here, if we
assume system is stable, both servers buffer capacity are null and servers can process one
request at a time, the state transition diagram is shown in Figure 6, where system states
are generated from location server and weather server status shown in Table 1, where idle
means no job is in the servers to process and processing means 1 job (number of job in
the location server and weather server is mentioned by N and M and here, highest value

Location Server Weather Server

Idle Idle

processing Idle

Idle Processing

processing Processing

Table 1. states of performance model based on the
status of location server & weather server idle, idle processing, idle

idle, processing processing,
processing

Figure 6. State transition diagram of the Markov
model when number of request or job arrived and

serviced by the system is 1

 119

of N=M=1 in Figure 6) is processed by the servers. if we assume the system is stable,
both servers buffer capacity is infinite, follow Poisson arrival pattern and FIFO (First In
First Out) scheduling policy and servers can process one request at a time, the state
transition diagram is shown in Figure 7 (where (N, M) >1 to infinity), which shows more
states than the states generated from the status of both the servers. So if N=M=1 then the
state transition diagram will be mentioned in Figure 6, which just reflect the internal
behavior of the servers showing the change of system states mentioned in Table 1. If (N,
M) > 1 the state transition diagram will be mentioned in Figure 7 highlighting more
additional states including the states shown in Table 1 and Figure 6. The states will be
marked by the total number of job N and M in the server, where 1 job will be processed
by the servers and other remaining N-1 and M-1 job will be waiting in the buffer of
location server and weather server for being processed. The generalized state transition
diagram of our performance model is shown in Figure 8 including the boundary sates.

6) Generating the performance model: From the mentioned reachability graph and
annotated UML structure probable states (based on the value of N and M) and transition
rate of the trigger of the change between states will be found based on which performance
model will be generated, which can further be used as the input for the performance
model solver.

7) Solving the performance model: The generated performance model will be solved by
the SHARPE [12] performance model solver to generate performance results. Some of

Figure 8. Generalized state transition diagram of the Markov model

Figure 7. state transition diagram of the Markov model

μ1

μ1

μ2

μ2

N-1, M N+1, M

N-1, M+1

N, M-1

N, M+1

N+1, M-1

N, M

Paper 1

 120

the performance results generated by the tools have been shown in the graph form in
Figure 10.

 Single server instance

0
1
2
3
4
5
6
7
8
9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization

Ex
pe

ct
ed

 n
o

of
 jo

b

5 Conclusion

In this paper, our main contribution is delineated as presenting a performance modeling
framework of a software system by introducing a new specification style utilizing UML
collaboration and activity diagram as reusable specification building blocks to capture the
system dynamics, while UML deployment diagram identifies the physical resources or
components of the system. This specification style later generates the probable states
based on which our performance model will be generated and solved by our performance
modeling framework for relevant performance metrics captured by the annotated UML
models. However, the size of the underlying reachability set is major limitation for large
and complex system. Further work includes automating the whole process of translating
from our UML specification style to generate a performance model and the way to solve

Figure 9. Performance modeling framework

Figure 10. Expected number of jobs & average response time (sec)

Collaborative building
block construction

Composition of
building block using
UML collaboration
& activity

Arctis

1 2

Deployment diagram &
stating relation between
system component &
collaboration

3 Annotated UML
model

4

State marking,
Reachability graph

5

Markov
model

6

Evaluate
model

7

 Single server instance

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization

R
es

po
ns

e
tim

e

 121

the performance model through our proposed framework as well as tackling the state
explosion problems of reachability marking for large system.

References

[1] OMG 2009, “UML Superstructure”, Version-2.2
[2] F. A. Kraemer, P. Hermann, “Service specification by composition of

collaborations-an example”, Proceedings of 2006 WI-IAT workshops, Hong kong,
p. 129-133, IEEE, 2006

[3] K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer
Science application”, Wiley-Interscience publication, ISBN 0-471-33341-7

[4] Pakke Kahkipru, “UML based performance modeling framework for object oriented
distributed systems”, Proceedings of the 2nd international conference on the unified
modeling language: beyond the standard, pp. 356-371, Springer-Verlag Berlin,
Heidelberg, 1999

[5] J. P. Lopez, J. Merseguer, J. Campos, “From UML activity diagrams to SPN:
application to software performance engineering”, ACM SIGSOFT software
engineering notes, NY, USA, 2004

[6] J. Trowitzsch, A. Zimmermann, “Using UML state machines and petri nets for the
quantitative investigation of ECTS”, Proceeding of the 1st international conference
on performance evaluation methodologies and tools, ACM, USA, 2006

[7] Abdullatif, R. Pooly, “A computer assisted state marking method”, International
Journal of Simulation, Vol. 8, No. 3, ISSN – 1473-804x

[8] F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no.

[9] F. A. Kramer, “Engineering Reactive Systems: A Compositional and Model-Driven
Method Based on Collaborative Building Blocks”, Doctoral thesis, NTNU, Norway,
2008

[10] F. A. Kramer, R. Bræk, P. Herrmann, “Synthesizes components with sessions from
collaboration-oriented service specifications”, Proceedings of SDL 2007, V-4745,
Lecture notes of Computer Science, p.166-185.

[11] OMG 2005, “UML Profile for Schedulability, Performance, and Time
Specification”, Version – 1.1

[12] K. S. Trivedi, R. Sahner, “SHARPE: Symbolic Hierarchical Automated Reliability /
Performance Evaluator”, Duke University, Durham, NC

Paper 1

 122

Paper 2

Translation from UML to Markov model: A
performance modeling framework for

managing behavior of multiple collaborative
sessions and instances

Razib Hayat Khan, Poul E. Heegaard

Presented in IEEE International Conference in Computer Science and Information Technology (ICCSIT),
Chengdu, China, 2010

Published in the Proceedings of the IEEE International Conference in Computer Science and Information
Technology (ICCSIT), Vol. 1, p. 677-686, IEEE Computer Society Press, 2010

Translation from UML to Markov model: A
performance modeling framework for

managing behavior of multiple collaborative
sessions and instances

Razib Hayat Khan, Poul E. Heegaard

Department of Telematics
Norwegian University of Science and Technology (NTNU)
Trondheim, Norway
{rkhan, poul.heegaard}@item.ntnu.no

Abstract- Performance evaluation of a distributed system is always an intricate undertaking, where system
behavior is normally distributed among several components those are physically distributed. Bearing this
concept, we delineate a performance modeling framework for a distributed system that proposes a
translation process from high level UML notation to Markov model and solves the model for relevant
performance metrics. To capture the system dynamics through our proposed framework, we outline a
specification style that focuses on UML collaboration and activity as reusable specification building blocks.
To present the UML specification style, we focus on how to coordinate explicitly multiple collaborative
sessions occurring at the same time. Design alternatives of system architecture are considered to generate
the performance model to show how these design alternatives thus affect the system performance under
different work load. The proposed performance modeling framework provides prediction result of a system
such as mean response time and resource utilization. The applicability of our proposed framework is
demonstrated in the context of performance modeling of a distributed system.

1 Introduction

Distributed system is one of the main streams of information and communication
technology arena. Modeling, developing, and implementation of such complex systems
are always a difficult endeavor. Likewise, performance evaluation is also a great concern
of such complex system to evaluate whether the system meets the performance related
system requirements. However, in a distributed system, system behavior is normally
distributed among several objects. The overall behavior of the system is composed of the
partial behavior of the objects of the system. So it is obvious to capture the behavior of
the distributed objects of the system to evaluate the performance of the overall system.
We therefore, adopt UML collaboration and activity oriented approach as UML is the
most widely used modeling language, which models both the system requirements and
qualitative behavior through different notations. Collaboration and activity diagrams are
utilized to demonstrate the overall system behavior by defining both the structure of the
partial object behavior as well as the interaction between them as reusable specification
building blocks and later on, this UML specification style is applied to generate the
Markov model by our proposed performance modeling framework. UML collaboration
and activity provides a tremendous modeling framework containing several interesting
properties [1]. Firstly, collaborations and activity model the concept of service provided

 126

by the system very nicely. They define structure of partial object behaviors, the
collaboration roles and enable a precise definition of the overall system behavior. They
also delineate the way to compose services by means of collaboration uses and role
bindings [2].

In addition, the proposed modeling framework considers design alternatives of system
execution architecture to generate performance model of the system. This will help
showing the performance affect because of changing of the system execution architecture
and to help finding out the better system architecture candidate to fulfill certain
performance goal at the early stage of the system development process. Abstract view of
the system architecture is captured by the UML deployment diagram, which defines the
execution architecture of the systems by identifying the system components and the
assignment of software artifacts to those identified system components [1]. Considering
the system architecture while generating the performance model also resolves the
bottleneck of system performance by finding a better allocation of service components to
the physical components of the system.

The Unified Modeling Language (UML) is a widely accepted modeling language to
model the system behavior [1]. But it is indispensable to extend the UML model to
incorporate the performance related quality of service (QoS) information to allow
modeling and evaluating the properties of a system like throughput, utilization, mean
response time. So the UML models are annotated according to the UML Profile for
Schedulability, Performance, and Time (SPT) [3] to include quantitative system
parameters in the model.

Markov models, queuing networks, stochastic process algebras and stochastic petrinet are
probably the best studied performance modeling techniques [4]. Among all of them, we
will choose Markov model as the performance model generated by our proposed
framework for providing performance prediction result of a system due to its modeling
generality, its well-developed numerical modeling analysis techniques, its ability to
preserve the original architecture of the system, to facilitate any modification according
to the feedback from performance evaluation and the existence of analysis tools.

Numbers of efforts have been made already to generate a performance model from the
system design specification. Kähkipuro developed a performance modeling framework to
generate and solve queuing network with simultaneous resource possessions from the
high level UML notations [5]. Lopez-Grao et al. proposed a conversion method from
annotated UML activity diagram to stochastic petrinet model [6]. Abdullatif and Pooly
presented a method for providing computer support for extracting Markov chains from a
performance annotated UML sequence diagram [7]. The framework presented here is the
first known approach that introduces a new specification style utilizing UML behavioral
diagrams as reusable specification building block for managing multiple collaborative
sessions that executed at the same time, which is later on, used for generating
performance model to produce performance prediction result at early stage of the system
development process.

 127

The objective of the paper is to provide an extensive performance modeling framework
that provides a translation process to generate markov performance model from system
design specification captured by the UML behavioral diagram for multiple collaborative
sessions that executed at the same time. The framework also considers design alternatives
of the system architecture and later on, solves the model for relevant performance metrics
to demonstrate performance prediction results at early stage of the system development
life cycle. The paper is organized as follows: Section 2 introduces our proposed
performance modeling framework, application example is demonstrated in Section 3 and
Section 4 delineates the conclusion with future works.

2 Performance modeling framework

Our proposed performance modeling framework utilizes the tool suite Arctis, which is
integrated as plug-ins into the eclipse IDE [8]. The proposed framework is composed of 7
steps shown in Figure 1, where steps 1 and 2 are the parts of Arctis tool suite. Arctis
focuses on the abstract, reusable service specifications that are composed form UML 2.2
collaborations and activities. It uses collaborative building blocks as reusable
specification units to create comprehensive services through composition. To support the
construction of building block consisting of collaborations and activities, Arctis offers
special actions and wizards. In addition, a number of inspections ensure the syntactic
consistency of building blocks. A developer first consults a library to check if an already
existing collaboration block or a collaboration of several blocks solves a certain task.
Missing blocks can also be created from scratch and stored in the library for later reuse.
The building blocks are expressed as UML models. The structural aspect, for example the
service component and their multiplicity, is expressed by means of UML 2.2
collaborations. For the detailed internal behavior, UML 2.2 activities have been used.
They express the local behavior of each of the service components as well as their
necessary interactions in a compact and self-contained way using explicit control flows
[8]. Moreover, the building blocks are combined into more comprehensive service by
composition. For this composition, Arctis use UML 2.2 collaborations and activities as
well. While collaborations provide a good overview of the structural aspect of the
composition, i.e., which sub-services are reused and how their collaboration roles are
bound, activities express the detailed coupling of their respective behaviors. To reason
about the correctness of the specifications, we introduce formal reasoning on the level of
collaborative service specifications using temporal logic specification style cTLA/c(c for
collaborative), which is beyond the scope of the paper [8]. The step of our proposed
modeling framework is described as follows:

1) Construction of collaborative building block: The proposed framework utilizes
collaboration as main specification units. The specifications for collaborations are given
as coherent, self-contained reusable building blocks. The structure of the building block
is described by UML 2.2 collaboration. If the building block is elementary it only
declares the participants (as collaboration roles) and connection between them. If it is
composite, it may additionally refer to other collaborations between the collaboration
roles by means of collaboration uses. The internal behavior of building block is described
by UML activity. It is declared as the classifier behavior of the collaboration and has one
activity partition for each collaboration role in the structural description. For each

Paper 2

 128

collaboration use, the activity declares a corresponding call behavior action refereeing to
the activities of the employed building blocks.

Depending on the number of participants, connectivity to other blocks and level of
decomposition, we distinguish three different kinds of building blocks [8]:

The most general building block is collaboration with two or more participants
providing functionality that is intended to be composed with other functionality.
We refer to such a building block as service collaboration.
Building blocks that involve only local behavior of one participant are referred to
as activity blocks. They are represented by activities.
A special building block is system collaboration, which is collaboration on the
highest composition level. In contrast to a service, a system is closed and cannot
be composed with other building blocks.

2) Composition of building block using UML collaboration and activity: To generate the
performance model, the structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the detailed behavior of how the
different events of collaborations are composed so that the desired overall system
behavior can be obtained. For the composition, UML collaborations and activities are
used complementary to each other; UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by covering also the behavioral
aspect for composition. For this purpose, call behavior actions are used. Each sub-service
is represented by a call behavior action referring to respective activity of the building
blocks. Each call behavior action represents an instance of a building block. For each
activity parameter nodes of the referred activity, a call behavior action declares a
corresponding pin. Pins have the same symbol as activity parameter nodes to represent
them on the frame of a call behavior action. Arbitrary logic between pins may be used to
synchronize the events of the building block and transfer data between them. By
connecting the individual input and output pins of the call behavior actions, the events
occurring in different collaborations can be coupled with each other. There are different
kinds of pins described as follows [8]:

Starting pins activate the building block, which is the precondition of any internal
behavior.

Annotated UML
model

4

State marking,
Reachability graph

5

Markov
model

6

Evaluate
model

7

Figure 1. Performance modeling framework

UML Deployment diagram &
stating relation between system
component & collaboration

3

Collaborative building
block construction

Composition of
building block using
UML collaboration
& activity

Arctis

1 2

 129

Streaming pin may pass tokens throughout the active phase of the building block.
Terminating pins mark the end of the block’s behavior.

If collaborations is started and terminated via several alternative pins, they must belong to
different parameter sets. This is visualized in UML by an additional box around the
corresponding node.

To present the UML specification style, we focus on how to coordinate explicitly
multiple collaborative sessions occurring at the same time. To reflect the multiplicity of
the service components, their partitions are represented by several layers. This
multiplicity of partitions implies a certain multiplicity of collaborations that have to be
coordinated by the service component. A token arriving from any of the collaboration
instances simply enters the partition. Vice-versa, when a token should enter a specific
collaboration instance from the partition, we need to determine which instance should
receive the token. UML does not give any means to select such session. Therefore, we
include one selection operator in the execution profile. To represent the overall system
behavior for multiple session instances, the different sessions must be distinguished at run
time.

3) UML deployment diagram and stating relation between system component and
collaboration: Deployment diagram can be used to define the execution architecture of
systems by identifying the system components and the assignment of software artifacts to
those identified system components [1]. After designing the deployment diagram the
relations between system components and collaborations will be delineated to describe
the service delivered by the system. The service is delivered by the joint behavior of the
system components, which may be physically distributed. The partial behavior of the
components utilized to realize the collaborations is represented by the collaboration role.
In this way, it is possible to expose direct mapping between the collaboration roles to the
system components to show the probable deployment of service components in the
physical nodes of the system.

4) Annotating the UML model: Performance information is incorporated into the UML
activity diagram and deployment diagram according to the UML Profile for
Schedulability, Performance and Time [3]. UML model is needed to annotate for
evaluating system performance by performance model solver for relevant performance
metrics through our proposed framework.

5) State marking and reachability graph: To generate the reachability graph, we consider
the behavior of the system components, which are the subject of the bottleneck of the
system performance and the states of the system will be generated based on the activity
performed by those components, which are shown by their internal behavior explained in
step 1. This section involves a state marking procedure that will mark the states of the
system for each step executed and produce a reachability graph of the whole system.
Each of the marked state will represent a state of the overall Markov chain. The method
for state marking of the system is as follows: first an initial situation is marked, which is
defined as the initial state of the system before executing the first step. Then, when a step
will be executed the activity performed by the system component in this step will be
marked as a performance model state, from where a new state may be generated or return

Paper 2

 130

back to an already marked state with a transition rate. This procedure will be continued
until all the steps are executed. After that the reachability graph of the system will be
produced. The execution of steps will be outlined in the composition of building blocks
while describing the overall system behavior. The number and sequence of execution of
steps will differ according to the system design specification.

6) Generating markov model: If each of the reachable marking is represented as a node
and each edge between the nodes is leveled with the trigger of their change by the
transition rate (mentioned in annotated UML model), we can generate the markov model
of the system.

7) Evaluate model: Generated markov model will be used as input for the SHARPE tool
[9] to generate performance prediction result of the system.

3 Application example

As a representative example, we introduce a scenario description to show the
applicability of our proposed framework in designing, modeling and performance
evaluating of a distributed system. Several users are equipped with cell phones or PDAs
want to receive weather information of their current location using their hand held
devices. The user request is first transferred to location servers through base transceiver
station to retrieve the location information of the user. The location information is then
transferred to weather servers for retrieving the weather information according to the
location of the user. Figure 2 defines this scenario as UML 2.2 collaboration. Participants
in the system are users, mobile terminals, base transceiver stations, location servers,
weather servers, which are represented by the collaboration roles user, MT, BTS, LS, and
WS. The users are the part of the environment and therefore labeled as <<external>>.The
default multiplicity of the users, MT, BTS, LS, WS are many, which are denoted by [1..*].
The interactions between the collaboration roles are represented by the collaboration use
such as MT and BTS interact through t: transfer, BTS and LS, WS interact through
collaboration uses l: request location info, w: request weather info, while the user
interacts with the MT by collaboration use g: generate request.

1) Construction of collaborative building block: This step defines the formulation of the
building blocks in form of collaboration as major specification unit of our framework
shown in Figure 2. The structure of the building block is defined by the UML
collaboration shown in Figure 3(a). The building block declares the participants as
collaboration roles and connection between them. While the UML collaboration describes
the structural aspect of the composed service, the internal behavior of the collaboration is
described by the UML activity [2]. Hereby, collaborations of Figure 2 are modeled by a
call behavior action referring to the activity to describe the behavior of the corresponding
collaboration [10]. Activity diagram presents complete behavior in a quite compact form
and may define connections to other behaviors via input and output pins. We specify the
behavior of one user request to show how the request is generated from user’s MT and
processed by the BTS, LS and WS and later on, compose this behavior for multiple user
requests to show how the requests will be processed by the multiple BTS, multiple

 131

instance of LS and WS so that the overall system behavior can be delineated. To deliver
the requested information to the user through his/her MT, BTS participates in the
collaboration Request Location Info together with the LS and Request Weather info
together with WS. These are specified by the collaboration l: Request Location Info and
w: Request Weather info, where the BTS plays the role client and the LS and WS play the
role server. The behavior of the collaboration is described by the UML activity in Figure
3(b), where activity is divided into two partitions: one for each collaboration role (Client
and Server). The activity is started on the client side, when the user request is provided as
parameter u_req at the input pin. The u_req directly sent to the LS, where it is converted
into a database request by the call behavior action processing. After that, it is the task of
the collaboration between the server and the database to provide the stored information.
To get the information the request leaves the activity Request Location info and the server
waits for the reception of response. This is modeled with the input and output pins
request and response.

After getting the response the result l_info (location information) is delivered to the
corresponding output pin in the client side by the call behavior action delivery and the
activity is terminated. We describe the behavior of collaboration Request Location info.
Likewise, we can describe the behavior of Request Weather info through activity partition
of client and server, where location information of user is forwarded by the client to
request server to retrieve weather information of the user location.

2) Composition of building block: Figure 4 shows the activity diagram for our system to
highlight the overall behavior of the system by composing all the building blocks via

BTS LS

Request Location info

Figure 2. Collaboration diagram

Figure 3. Structure (UML collaboration), Internal behavior (UML activity)

request

response

input

output

Request location info
Client Server

Processing

l_info

MT
[1...*]

t:
Transfer

BTS
[1...*]

l:
Request
location

Info

USER
<<external>>

g:
Generate
request

LS
[1...*]

DB
d1:

DBRetrieve

w: Request weather Info

client server

WS
[1...*]

DB d2:
DBRetrieve

server

(a)
(b)

Paper 2

 132

several pins. The initial node () marks the starting of the activities. The activity is
started on the client side. When a user service request is generated via MT, g: Generate
request will transfer the user service request as parameter u_req to the BTS via
collaboration t: Transfer. Once arrived at the BTS request for location information is
forwarded to the LS represented by activity Request location info. LS makes a database
request, which is modeled by d1: DBRetrieve and terminates with result l_info (Location
information). After getting the location information, request for weather information
according to user current location is forwarded by the BTS to the WS represented by
activity Request weather info. WS makes a database request, which is modeled by d2:
DBRetrieve and terminates with result w_info (Weather information). After that, the final
result is transferred to the user hand held device by BTS via collaboration t: Transfer.
The structure of collaborations as well as the way to couple them facilitates the reuse of
activities. For example, both the collaboration d1 and d2 are identical and can be
instantiated from single collaboration type. Moreover, the collaboration l and w have very
similar behavior and can be based on the same UML template. Thus, systems of a
specific domain can often be composed of reoccurring building blocks by reusing them
[10].

From the viewpoint of one user, one location server and one weather server, there is
exactly one collaboration session for the collaboration use t, l and w towards the BTS at
certain time. This can be handled easily with the UML activity diagram in their standard
form. But one BTS has to maintain several sessions with each of the user and each of the
location and weather server at certain time. From the viewpoint of one BTS, several
instances of the collaboration use t, l and w are executed at the same time; one instance
for each user, location server and weather server. From the viewpoint of BTS, the
collaborations that it participates are called multi-session collaboration. We express this
by applying a stereotype <<multi-session>> to the call behavior actions and represents it
graphically by multiple borders in those partitions, where sessions are multiple shown in
Figure 4 [2]. One of the important issues is that how the different instances of
collaborations may be distinguished and coordinated, so that desired overall system
behavior is obtained. Therefore, we need a selection mechanism so that selection of
sessions must take place, whenever a token enters a multi-session sub-collaboration and
the overall system behavior can be reflected correctly for multiple instance of session for
users, location servers and weather servers. While in some cases we may want to address
all of the sessions, in other ones we like to select only a subset or one particular session.
The UML standard however does not elaborate this matter. This is too restrictive, as most
system exhibit patterns with several executions going on at a time that possibly need
coordination [2]. We therefore, added the new operators select to our execution profile.
To represent the overall system behavior for multiple session instances, the different
sessions must be distinguished at run time. This resembles the well-known session pattern
[11], which is found in client/server communication, where server has some kind of
identifier to distinguish different sessions. For our case, we can assign an ID to the each
request (req_id) to identify the session instance of the transfer, request location info and
request weather info collaboration. When BTS receives the response form the location
server about the location of the user, a token leaves output pin l_info and enters w:
request weather info. Here, we have to select the session instance of the user so that user

 133

request can be successfully processed. Likewise, selection of session instance of user
should be chosen to deliver the result to the user hand held devices. As they are
distinguished by the request id we leave this number as attribute req_id inside the token
and extract it by writing select one : id = req_id. The complete EBNF definition for
session selection is given in Figure 5.

select := ‘select’ mod ‘:’ [{filter}] [{‘/’ filter}].
mod := ‘one’ | ‘all’.

filter := name | ‘self’ | ‘active’| ‘id=’ variable.

3) UML deployment diagram and stating relation between system component and
collaboration: We consider two design alternatives of system architecture to demonstrate
the relationship between collaboration and system component. In the first case the
identified system components by our deployment diagram shown in Figure 6(a) are
mobile terminal, base transceiver station, location server and weather server. The artifacts
locationserverprocess.exe and weatherserverprocess.exe are assigned successively to
location server and weather server. After designing the deployment diagram the
relationship between system component and collaboration will be delineated to describe
the service delivered by the system. The service is delivered by the joint behavior of the

Figure 4. System activity to couple the collaboration

Figure 5. EBNF for select

Paper 2

 134

system components, which may be physically distributed. The partial behavior of the
component utilized to realize the collaboration is represented by the collaboration role.

For our defined system description the behavior of the components mobile terminal, base
transceiver station, location server, Weather server are represented by the collaboration
roles MT, BTS, LS and WS to utilize the collaboration t: transfer, l: request location info,
w: request weather info. Here, it is one to one mapping between system components and
collaboration roles shown in Figure 7.

Weather Server

Database

Figure 7. Relation between system components and collaborations for first variation
of deployment diagram

Figure 8. Relation between system components and collaborations for second variations
of deployment diagram

Figure 6. Two variations of UML deployment diagram

Mobile
Terminal

BTS Weathersearchprocess.exe

Locationsearchprocess.exe

Location Server

Database

Mobile
Terminal

Locationsearchprocess.exe

Weathersearchprocess.exe

BTS

(a)

(b)

Collaboration

Collaboration role

Composite Collaboration

Weather Server

Base Transceiver
station

LSBTS MT

WS

Location
Server

Mobile
Terminal Physical Component

Collaboration

Collaboration role

Composite Collaboration

Base Transceiver

station

LS

BTS MT

Application
Server

Mobile
Terminal

Physical Component

WS

<<PAhost>>
{PAschdPolicy = FIFO}

Application Server

Database

 135

Later on, we consider other variation of the deployment diagram for our mentioned
scenario, which is shown in Figure 6(b). In this variation of deployment diagram the
identified system components are mobile terminal, base transceiver station, application
server, where the artifact locationserverprocess.exe, weatherserverprocess.exe are
assigned jointly to application server. In this case, the behavior of the components mobile
terminal and base transceiver station is represented by the collaboration roles MT and
BTS to utilize collaboration t: transfer and the behavior of the component application
server is represented jointly by the collaboration role LS and WS to utilize collaboration l:
request location info and w: request weather info shown in Figure 8. In the second case,
the mapping between system components and collaboration roles is generalized into one
to many relations.

4) Annotating the UML model: Performance information is incorporated into the UML
activity diagram in Figure 4 and deployment diagram in Figure 6 according to the UML
Profile for Schedulability, Performance and Time [4] to enable system performance to be
evaluated by performance model solver for relevant performance metrics through our
proposed framework. We use the stereotypes PAcontext, PAopenLoad, PAhost, PAstep
and the tagged values PAoccurence, PAschdPolicy, PArespTime and PAinterval [3]. A
performance context can be modeled by an activity graph that is stereotyped as a
PAcontext. This means that all interactions specified in that activity graph represent
scenarios in the sense of this profile (shown in Figure 4). A PAopenLoad is modeled as a
stream of requests that arrive at a given rate in predetermined pattern with PAoccurence.
A PAhost models a processing resource with tagged PAschdPolicy defining the policy by
which access to the resource is controlled. A PAstep models a scenario step with tagged
PArespTime defining a step’s response time and PAinterval defines time interval between
successive repetitions of a step.

5) State marking and reachability graph: To generate the performance model by our
proposed framework, we will consider the above two design alternatives of the system
architecture, where the components have multiple instances. For our example scenario
and first variation of deployment diagram, we will consider the participants location
server and weather server as limiting factor for the system performance. The statuses of
these servers are defined by their internal behavior through collaboration request location
info and request weather info. The status of the both the servers are defined as idle and
processing. When a step (annotated as <<PAstep>> in Figure 4) will be executed the
status of the servers will be marked as performance model state, from where a new state
may be generated with a transition rate or return back to a already marked state with a
transition rate mentioned in the annotated UML model in Figure 4. The states of the
performance model are shown in Table 1 based on the status of both the servers. The
states are: (idle, idle), (processing, idle), (idle, processing), (processing, processing),
where the first part defines the status of the location server and second part defines the
status of the weather server. If we assume initial marking such as the status of the
location server and weather server is idle that means servers have no user request to
process then we can derive all the reachable markings to produce reachability graph of
the system from the initial marking according to the arrival or departure of client requests.

Paper 2

 136

6) Markov model generation: If each of the reachable marking is represented as a node
and each edge between the nodes level with the trigger of their change by the transition
rate (mentioned in annotated UML model by , μ1, μ2), we can generate the markov
model of the system. We consider the number of location server and weather server in
our system is 3, where each server can process one request at a time. We assume system
is stable and both servers buffer capacity are null, the state transition diagram is shown in
Figure 9, where system states are generated from location server and weather server
status shown in Table 1, where idle means no job is in the servers to process and
processing means 1 job (number of job in the location server and weather server is
mentioned by N and M and here highest value of N=M=1 in Figure 9) is processed by the
servers. if we assume the system is stable, both servers buffer capacity is infinite, follow
Poisson arrival pattern and FIFO (First In First Out) scheduling policy and servers can
process one request at a time, the state transition diagram is shown in Figure 10 (where
(N, M) >1 to infinity), which shows more states than the states generated from the status
of both the servers. So if N=M=1 then the state transition diagram will be mentioned in
Figure 9, which just reflect the internal behavior of the servers showing the change of
system states mentioned in Table 1. If (N, M) > 1 the state transition diagram will be
mentioned in Figure 10 highlighting more additional states including the states shown in
Table 1 and Figure 9, where the states will be marked by the total number of job N and M
in the server. In this case, if (N, M) (n, m), there are N, M customers in the system and
n-N, m-M servers are idle and If (N, M) (n, m) there are N, M customers in the system,
the n, m servers are busy and there are N-n, M-m customers in the queue (Here, n, m are
the number of location servers and weather servers).

Location Server Weather Server

 Idle Idle

processing Idle

Idle Processing

processing Processing

idle, idle processing, idle

idle, processing processing,
processing

.......

...............

.............

N, 0

N-1, 1

2, 0 1, 0 0, 0

0, 1 1, 1

2μ1μ1μ2 μ2

2μ2
μ1

Table1. States of performance model based on the
status of location server & weather server

Figure 9. State transition diagram of the Markov
model when number of request or job arrived and

serviced by the system is 1

Figure 10. State transition diagram of the Markov model for 1st variation of deployment diagram

μ1
μ2 μ2

0, 2

0, M

.............
mμ2

μ2 nμ1

(n-1)μ1

μ2

 137

The markov model for the second variation of deployment diagram can be generated by
following the above procedure as well, where application server will be considered as
performance limiting factor of the system. The performance model for this case is shown
in Figure 11.

7) Evaluate model: The generated performance model will be solved by the SHARPE
performance model solver [9] to generate performance prediction result. Some of the
performance evaluation results generated by the tool are shown in the graph form in
Figure 12 for both variations of the deployment diagrams, which highlight their affect on
the system performance.

We modeled and solved the system for both design alternatives of system architectures.
The performance prediction result such as mean response time and utilization of servers
are derived for the same arrival rate of the client requests and service rate of the servers
for both design alternatives of the system architecture. The comparison of the result is
demonstrated in the graph in Figure 12 for the servers of the both design alternatives. The
result clearly shows how the response time of the system varies with the same server
utilization for considering the different system architecture candidates that helps the
developers to resolve the bottleneck of system performance by finding a better allocation
of service components to the physical components of the system.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

Utilization

R
es

po
ns

e
tim

e

Location / Weather Server

4 Conclusion

Our main contribution is delineated as to present the UML collaboration and activity
oriented approach to capture the system dynamics that is utilized to sketch the

idle processing 2 M-1 M M+1 0 1

Figure 11. State transition diagram of the Markov model for 2nd variation of deployment diagram

Figure 12. Response time vs. Utilization (a) for the server of 1st (b) for the server of 2nd
variations of deployment diagram

(a) (b

μ μ 2μ (m-1)μ mμ mμ

0

1

2

3

4

5

6

7

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32
Uitilization

R
es

po
ns

e
tim

e

Application server

Paper 2

 138

performance model for a distributed system, where every collaboration performs separate
task. The behavior of the collaboration and the composition of collaboration to highlight
the overall system behavior are demonstrated by utilizing UML activity. To present the
behavior and composition of the collaboration using activity, we extend the notation to
handle the collaboration that is executed not only in the single session but also in multiple
sessions at the same time, where different instances of collaborations are distinguished
and coordinated by adding notation select to our execution profile. The select notation
can outline the relations between multiple sessions unambiguously on an abstract level.
Later a mapping between collaboration role and system component is outlined to show
how the service of the distributed system is realized by the joint behavior of the system
components that are physically distributed. Different variations of deployment diagram
are considered to generate the performance model to show how the variations in the
deployment diagram thus affect the system performance under different work load.
Further work includes automating the whole process of translation from our UML
specification style to generate a performance model and the way to solve the performance
model through our proposed framework as well as to tackle the state explosion problem
for large systems.

References

1. OMG 2009, “UML Superstructure”, Version-2.2
2. F. A. Kramer, R. Bræk, P. Herrmann, “Synthesizes components with sessions from

collaboration-oriented service specifications”, Proceedings of SDL 2007, V-4745,
Lecture notes of Computer Science, p.166-185, 2007.

3. OMG 2005, “UML Profile for Schedulability, Performance, and Time Specification”,
V – 1.1

4. K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer
Science application”, Wiley-Interscience publication, ISBN 0-471-33341-7

5. Abdullatif, R. Pooly, “A computer assisted state marking method”, International
Journal of Simulation, Vol. 8, No. 3, ISSN – 1473-804x

6. Pakke Kahkipru, “UML based performance modeling framework for object oriented
distributed systems”, Proceedings of the 2nd international conference on the unified
modeling language: beyond the standard, pp. 356-371, Springer- Verlag Berlin,
Heidelberg, 1999

7. J. P. Lopez, J. Merseguer, J. Campos, “From UML activity diagrams to SPN:
application to software performance engineering”, ACM SIGSOFT software
engineering notes, NY, 2004

8. F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no.

9. K. S. Trivedi, R. Sahner, “SHARPE: Symbolic Hierarchical Automated Reliability /
Performance Evaluator”, Duke University, Durham, 2002

10. F. A. Kraemer, P. Herrmann, “Service specification by composition of collaborations-
an example”, Proceedings of WI-IAT workshops, Hong kong, p. 129-133, 2006

11. Linda Rising, “Design patterns in Communications Software”, Cambridge University
Press, NY, USA, 2001

Paper 3

Translation from UML to SPN model: A
performance modeling framework for

managing behavior of multiple collaborative
sessions and instances

Razib Hayat Khan, Poul E. Heegaard

Presented in the International Conference on Computer Design and Application (ICDDA), 2010,
Qinhuangdao, China

Published in the Proceedings of the International Conference on Computer Design and Application
(ICDDA), Vol. 5, p. 72-80, IEEE Computer Society Press, 2010

Translation from UML to SPN model: A
performance modeling framework for

managing behavior of multiple collaborative
sessions and instances

Razib Hayat Khan, Poul E. Heegaard

Department of Telematics
Norwegian University of Science and Technology (NTNU)
Trondheim, Norway
{rkhan, poul.heegaard}@item.ntnu.no

Abstract- Performance evaluation of a distributed system is always an intricate undertaking, where system
behavior is normally distributed among several components those are physically distributed. Bearing this
concept, we delineate a performance modeling framework for a distributed system that proposes a
translation process from high level UML notation to SPN model and solves the model for relevant
performance metrics. To capture the system dynamics through our proposed framework, we outline a
specification style that focuses on UML collaboration and activity as reusable specification building blocks.
To present the UML specification style, we focus on how to coordinate explicitly multiple collaborative
sessions occurring at the same time. Design alternatives of system architectures are considered to generate
the performance model to show how these design alternatives thus affect the system performance under
different work load. The proposed performance modeling framework provides prediction result of a system
such as mean response time. The applicability of our proposed framework is demonstrated in the context of
performance modeling of a distributed system.

1 Introduction

Distributed system is one of the main streams of information and communication
technology arena. Modeling, developing and implementation of such complex systems
are always a difficult endeavor. Likewise, performance evaluation is also a great concern
of such complex system to evaluate whether the system meets the performance related
system requirements. However, in a distributed system, system behavior is normally
distributed among several objects. The overall behavior of the system is composed of the
partial behavior of the distributed objects of the system. So it is obvious to capture the
behavior of the distributed objects of the system to evaluate the performance of the
overall system. We therefore, adopt UML collaboration and activity oriented approach as
UML is the most widely used modeling language, which models both the system
requirements and qualitative behavior through different notations [2]. Collaboration and
activity diagram are utilized to demonstrate the overall system behavior by defining both
the structure of the partial object behavior as well as the interaction between them as
reusable specification building blocks and later on, this UML specification style is
applied to generate the SPN model by our proposed performance modeling framework.
UML collaboration and activity provides a tremendous modeling framework containing
several interesting properties. Firstly, collaborations and activity model the concept of

 142

service provided by the system very nicely. They define structure of the partial object
behavior, the collaboration roles and enable a precise definition of the overall system
behavior. They also delineate the way to compose services by means of collaboration
uses and role bindings [1].

In addition, the proposed modeling framework considers design alternatives of system
architecture to generate the performance model of the system to show the performance
affect because of the changing of system architecture and to help finding out the better
system architecture candidate to fulfill certain performance goal at the early stage of the
system development process. Abstract view of the system architecture is captured by the
UML deployment diagram, which defines the execution architecture of the system by
identifying the system components and the assignment of software artifacts to those
identified system components [2]. Considering the system architecture to generate the
performance model also resolves the bottleneck of system performance by finding a
better allocation of service components to the physical components.

The Unified Modeling Language (UML) is a widely accepted modeling language to
model the system behavior [2]. But it is indispensable to extend the UML model to
incorporate the performance-related quality of service (QoS) information to allow
modeling and evaluating the properties of a system like throughput, utilization, and mean
response time. So the UML models are annotated according to the Profile for
Schedulability, Performance, and Time (SPT) to include quantitative system parameters
[3].

Markov models, queuing networks, stochastic process algebras and stochastic petrinet
(SPN) are probably the best studied performance modeling techniques [4]. Among all of
them, we will choose SPN as the performance model generated by our proposed
framework for providing performance prediction result of a system due to its increasingly
popular formalism for describing and analyzing systems, its modeling generality, its
ability to capture complex system behavior concisely, its ability to preserve the original
architecture of the system, to facilitate any modification according to the feedback from
performance evaluation and the existence of analysis tools.

Numbers of efforts have been made to generate a performance model from the system
design specification. Lopez-Grao et al. proposed a conversion method from annotated
UML activity diagram to stochastic petrinet model [5]. Kähkipuro developed a
performance modeling framework to generate and solve queuing network with
simultaneous resource possessions from the high level UML notations [6]. Abdullatif and
Pooly presented a method for providing computer support for extracting Markov chains
from a performance annotated UML sequence diagram [7]. The framework presented
here is the first known approach that introduces a new specification style utilizing UML
behavioral diagrams as reusable specification building block for managing multiple
collaborative sessions that executed at the same time, which is later on, used for
generating performance model to produce performance prediction result at early stage of
the system development process.

 143

The objective of the paper is to provide an extensive performance modeling framework
that provides a translation process to generate SPN performance model from system
design specification captured by the UML behavioral diagram for multiple collaborative
sessions that executed at the same time and for design alternatives of the system
architecture and later on, solves the model for relevant performance metrics to
demonstrate performance prediction results at early stage of the system development life
cycle. The work presented here is the extension of our previous work described in [12],
where we presented our proposed framework with respect to the execution of single
collaborative session at certain time and considered single system architecture candidate
to describe the system behavior. The paper is organized as follows: Section 2 introduces
our proposed performance modeling framework, Section 3 demonstrates the application
example to show the applicability of our performance modeling framework, Section 4
delineates the conclusion with future works.

2 Performance modeling framework

Our proposed performance modeling framework utilizes the tool suite Arctis, which is
integrated as plug-ins into the eclipse IDE [8]. The proposed framework is composed of 6
steps shown in Figure 1, where steps 1 and 2 are the parts of Arctis tool suite. Arctis
focuses on the abstract, reusable service specifications that are composed form UML 2.2
collaborations and activities. It uses collaborative building blocks as reusable
specification units to create comprehensive services through composition. To support the
construction of building block consisting of collaborations and activities, Arctis offers
special actions and wizards. In addition a number of inspections ensure the syntactic
consistency of building blocks. A developer first consults a library to check if an already
existing collaboration block or a collaboration of several blocks solves a certain task.
Missing blocks can also be created from scratch and stored in the library for later reuse.
The building blocks are expressed as UML models. The structural aspect, for example the
service component and their multiplicity, is expressed by means of UML 2.2
collaborations. For the detailed internal behavior, UML 2.2 activities have been used.
They express the local behavior of each of the service components as well as their
necessary interactions in a compact and self-contained way using explicit control flows
[8]. Moreover, the building blocks are combined into more comprehensive service by
composition. For this composition, Arctis uses UML 2.2 collaborations and activities as
well. While collaborations provide a good overview of the structural aspect of the
composition, i.e., which sub-services are reused and how their collaboration roles are
bound, activities express the detailed coupling of their respective behaviors [8]. To reason
about the correctness of the specifications, we introduce formal reasoning on the level of
collaborative service specifications using temporal logic specification style cTLA/c(c for
collaborative), which is beyond the scope of this paper [8]. The steps of our proposed
modeling framework are described as follows:

(1) Construction of collaborative building block: The proposed framework utilizes
collaboration as main specification units. The specifications for collaborations are given
as coherent, self-contained reusable building blocks. The structure of the building block
is described by UML 2.2 collaboration. If the building block is elementary it only

Paper 3

 144

declares the participants (as collaboration roles) and connection between them. If it is
composite, it may additionally refer to other collaborations between the collaboration
roles by means of collaboration uses. The internal behavior of building block is described
by UML activity. It is declared as the classifier behavior of the collaboration and has one
activity partition for each collaboration role in the structural description. For each
collaboration use, the activity declares a corresponding call behavior action refereeing to
the activities of the employed building blocks.

Depending on the number of participants, connectivity to other blocks and level of
decomposition, we distinguish three different kinds of building blocks [10]:

The most general building block is collaboration with two or more participants
providing functionality that is intended to be composed with other functionality.
We refer to such a building block as service collaboration.
Building blocks that involve only local behavior of one participant are referred to
as activity blocks. They are represented by activities.
A special building block is system collaboration, which is collaboration on the
highest composition level. In contrast to a service, a system is closed and cannot
be composed with other building blocks.

(2) Composition of building block using UML collaboration and activity: To generate the
performance model, the structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the detailed behavior of how the
different events of collaborations are composed so that the desired overall system
behavior can be obtained. For the composition, UML collaborations and activities are
used complementary to each other; UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by covering also the behavioral
aspect for composition. For this purpose, call behavior actions are used. Each sub-service
is represented by a call behavior action referring to the respective activity of the building
blocks. Each call behavior action represents an instance of a building block. For each
activity parameter node of the referred activity, a call behavior action declares a
corresponding pin. Pins have the same symbol as activity parameter nodes to represent

Collaborative building
block construction

Composition of
building block using
UML collaboration
& activity

Arctis

1 2

UML Deployment diagram &
stating relation between system
component & collaboration

3

Annotated UML
model

4

SPN model

5

Evaluate
model

6

Figure 1. Performance modeling framework

 145

them on the frame of a call behavior action. Arbitrary logic between pins may be used to
synchronize the building block events and transfer data between them. By connecting the
individual input and output pins of the call behavior actions, the events occurring in
different collaborations can be coupled with each other. There are different kinds of pins
described as follows [10]:

Starting pins activate the building block, which is the precondition of any internal
behavior.
Streaming pin may pass tokens throughout the active phase of the building block.
Terminating pins mark the end of the block’s behavior.

If collaborations is started and terminated via several alternative pins, they must belong to
different parameter sets. This is visualized in UML diagram by an additional box around
the corresponding node.

To present the UML specification style we focus on how to coordinate explicitly multiple
collaborative sessions occurring at the same time. To reflect the multiplicity of the
service components, their partitions are represented by several layers. This multiplicity of
partitions implies a certain multiplicity of collaborations that has to be coordinated by the
service component. A token arriving from any of the collaboration instances simply
enters the partition. Vice-versa, when a token should enter a specific collaboration
instance from the partition, we need to determine, which instance should receive the
token. To represent the overall system behavior for multiple session instances, the
different sessions must be distinguished at run time. UML does not give any means to
select such session. Therefore, we include one selection operator in the execution profile.

(3) UML deployment diagram and stating relation between system component and
collaboration: Deployment diagram can be used to define the execution architecture of
system by identifying the system components and the assignment of software artifacts to
those identified system components [2]. After designing the deployment diagram the
relation between system component and collaboration will be delineated to describe the
service delivered by the system. The service is delivered by the joint behavior of the
system components, which may be physically distributed. The necessary partial behavior
of the component used to realize the collaboration is represented by the collaboration role.
In this way, it is possible to expose direct mapping between the collaboration roles to the
system components to show the probable deployment of service components in the
physical nodes of the system.

(4) Annotating the UML model: Performance information is incorporated into the UML
activity diagram and deployment diagram according to the UML Profile for
Schedulability, Performance and Time [3]. UML model is needed to annotate for
evaluating system performance by performance model solver for relevant performance
metrics through our proposed framework.

(5) Deriving SPN model: To generate the probable states of the SPN performance model
we consider the system components, which are the subject of the bottleneck of the system
performance. From the internal behavior of those system components and annotated
UML structure, probable states and transition rate for triggering the change between

Paper 3

 146

states will be found based on which our SPN performance model will be generated. To
generate the SPN model of the system, first the SPN model of each component will be
generated based on their internal behavior highlighted in step 1. After deriving individual
SPN model for each component, all the individual SPN models will be integrated
according to composite structure of the building blocks highlighted in step 2 to generate
SPN model of the system. This makes easier to depict the SPN model of the system
graphically under appropriate timing and probabilistic assumption.

(6) Evaluate model: SPN performance model will be used as input for SHARPE tool [9]
for generating performance prediction result of a system.

3 Application example

As a representative example, we introduce a scenario description to show the
applicability of our proposed framework in designing, modeling and performance
evaluating of a distributed system. Several users are equipped with cell phone or smart
phone want to receive weather information of their current location using his/her hand
held devices. The user request is first transferred to authentication server through base
transceiver station to ensure the authenticity of the user. Thereafter, the request of the
legitimate user is transferred to the location server to retrieve the location information of
the user. The location information is then transferred to weather server for retrieving the
weather information according to the location of the user. Figure 2 defines this scenario
as UML 2.2 collaboration. Participants in the system are users, mobile terminals, base
transceiver stations, authentication servers, location servers, weather servers, which are
represented by the collaboration roles user, MT, BTS, AuS, LS, and WS. The users are
the part of the environment and therefore labeled as <<external>>. The default

multiplicity of the users, MT, BTS, AuS, LS, WS are many, which are denoted by [1..*].
The interactions between the collaboration roles are represented by the collaboration use

Figure 2. Collaboration diagram

t: Transfer
MT

USER
<<external>> g: Generate request

l: Request location Info

w: Request weather Info

LS d2:
DBRetrieveDB

WS
DB

d3:
DBRetrieve

a: Authenticate AuS DB
d1:

DBRetrieveclient

server

server

server

[1...*]

[1...*]

[1...*]

[1...*]

[1...*]

BTS
[1...*]

 147

such as MT and BTS interact through t: transfer, BTS and AuS, LS, WS interact
successively through a: authenticate, l: request location info, w: request weather info,
while the user interacts with the MT by collaboration use g: generate request.

(1) Construction of collaborative building block: The structure of the building block is
defined by the UML collaboration shown in Figure 2. The building block declares the
participants as collaboration roles and connection between them. The internal behavior of
the collaboration is described by the UML activity [1]. Hereby, collaborations of Figure
2 are modeled by a call behavior action referring to the activity describing the behavior of
the corresponding collaboration [1]. Activity diagram presents complete behavior in a
quite compact form and may define connections to other behaviors via input and output
pins [12]. Here, we specify the behavior of one user request to show how the request is
generated from his/her MT and served by the BTS, AuS, LS, and WS and later on,
compose this behavior for multiple user requests to show how the requests will be
processed by the multiple instance of BTS, AuS, LS, and WS so that the overall system
behavior can be delineated.

The activity transfer describes the behavior of the corresponding collaboration shown in
Figure 3(a). It has one partition for each collaboration role: MT and BTS. Activities base
their semantics on token flow [1]. The system starts by placing a token in the initial node
of the MT, when one request is generated by the user through his/her MT. The token is
then transferred to the BTS, where it moves through the fork node generating two flows.

Transfer
 MT BTS

Figure 3. Internal behavior (UML activity)

j1

j2

input

nok

ok

User_req

nok

w_info

U_id

ok

U_req

nok

w_info
(a) (b)

(c)

w

request

response

Authenticate
 Client Server

Processing

Validate

U_id

request

response

input

output

Request Location info
 Client Server

Processing

Delivery
l_info

U_req

Paper 3

 148

One flow places a token in the waiting decision node w, which is the extension of a
decision node with the difference that it may hold a token similar to an initial node, as
defined in [1]. w is used in combination with join nodes j1 and j2 to explicitly model the
acceptance or rejection of the user request based on the user authenticity. The other flow
is forwarded as input to the AuS to check whether the user is legitimate to generate
service request. If the user is legitimate to generate the request a token is offered to the
join node j1. If w still has its token j1 can fire, which emits a token, which then forwarded
to the LS for further processing. If the user is not legitimate to generate the request, a
token is offered to the join node j2. If w still has its token j2 can fire notifying the user
upon the cancellation of request and then terminates the collaboration.

To validate the user identity (mobile number in this case) provided by a user who
requests for service, BTS participates in the collaboration authenticate together with the
AuS. This is specified by collaboration a: authenticate, where BTS plays the role client
and the AuS plays the role server. The behavior of the collaboration defined by the UML
activity, which is divided into two partitions, one for each collaboration role: client and
server shown in Figure 3(b). The activity is started on the client side, when user id is
provided as parameter u_id at the input pin. The input is then directly sent to server,
where it is converted into a database request in the call behavior action processing.
Thereafter, it is the task of the collaboration between the server and the database to
provide the stored user information. To get the information, the request leaves the activity
authenticate and the server waits for the reception of the response. This is modeled with
the input and output pins request and response. Depending on the validity of the user id,
the server may decide to report ok or nok (not ok) to the client by the call behavior action
validate. The result is then forwarded to the corresponding output pin in the client side
and the activity is terminated. The semantics of all the pins are given in [12].

Likewise, we can describe the behavior of collaboration l: Request Location info (shown
in Figure 3(c)) and w: Request Weather info through activity partition of client and server,
where BTS plays the role client and LS and WS play the role server to deliver the
requested information to the user through his/her mobile terminal.

(2) Composition of building blocks: Figure 4 shows the activity diagram for our system to
highlight the overall behavior of the system by composing all the building blocks. The
initial node () marks the starting of the activity. The activity is started on the client side.
When a user service request is generated via MT, g: Generate request will transfer the
user service request as parameter u_req to the BTS via collaboration t: Transfer. Once the
request arrived at the BTS, the user id as parameter u_id is transferred to the AuS to
check whether the user is authenticate to accept the service and the activity is represented
by a: authenticate. The activity authenticate initiates a database request, modeled by
collaboration d1: DBRetrieve and terminates with one of the alternative results ok or nok.
After arriving of the positive response at the BTS, request for location information is
forwarded to the LS represented by activity Request location info. LS makes a database
request, which is modeled by d1: DBRetrieve and terminates with result l_info (Location
information). After getting the location information, request for weather information
according to user current location is forwarded by the BTS to WS represented by activity

 149

Request weather info. WS makes a database request, which is modeled by d2:
DBRetrieve and terminates with result w_info (Weather information). After that, the final
result is transferred to the user hand held device by BTS via activity t: Transfer. But if
the user is failed to prove his identity then immediately a nok is sent to the user’s hand
held device.

From the viewpoint of one user, one authentication server, one location server and one
weather server, there is exactly one collaboration session for the collaboration use t, a, l,
w towards the BTS at certain time. This can be handled easily with the UML activity
diagram in their standard form. But one BTS has to maintain several sessions with each
of the user and each of the authentication server, location server and weather server at
certain time. From the viewpoint of one BTS, several instances of the collaboration use t,
a, l, w are executed at the same time; one instance for each user, authentication server,
location server and weather server. From viewpoint of BTS, collaborations that it
participates are called multi-session collaboration. We express these by applying a
stereotype <<multi-session>> to the call behavior action and represent them graphically
by multiple borders in those partitions, where sessions are multiple. One of the important
issues here is that how the different instances of collaborations may be distinguished and
coordinated, so that desired overall system behavior can be obtained. So we need
selection mechanism so that selection of sessions must take place whenever a token
enters a multi-session sub-collaboration and the overall system behavior can be reflected
correctly for multiple instances of session for users, authentication servers, location
servers and weather servers. While in some cases we may want to address all of the
sessions, in other ones we like to select only a subset or one particular session. The UML
standard however does not elaborate this matter. This is too restrictive, as most systems

Figure 4. System activity to couple the collaboration

Paper 3

 150

exhibit patterns with several executions going on at a time, that possibly need
coordination. We therefore, added the new operator select to our execution profile [1]. To
represent the overall system behavior for multiple session instances, the different sessions
must be distinguished at run time. This resembles the well-known session pattern [11],
which is found in client/server communication, where server has some kind of identifier
to distinguish different sessions.

For our case, we can use the ID of the user (mobile number of a user in this case) to
identify the session instance of the transfer, authenticate, request location info and
request weather info collaboration. When response form the authentication server about
the user authenticity is decided, a token leaves either output pin ok or nok and enters t:
transfer. Here, we have to select the session instance of the user so that user request can
be successfully processed. Likewise, selection of session instance of user should be
chosen properly to process the user’s request and to deliver the result successfully to the
user hand held devices. As they are distinguished by the user id number we leave this
number as attribute u_id inside the token and extract it by writing select one : id = u_id
[1]. The complete EBNF definition for session selection is given in Figure 5. It allows
specifying several filters that are applied in order of listings [1].

select := ‘select’ mod ‘:’ [{filter}] [{‘/’ filter}].
mod := ‘one’ | ‘all’.

filter := name | ‘self’ | ‘active’| ‘id=’ variable.

(3) UML deployment diagram and stating relation between system component and
collaboration: We consider two design alternatives of system architecture captured by
UML deployment diagram to demonstrate the relationship between collaboration and
system component. For our defined scenario the identified system components by the 1st
variation of deployment diagram are mobile terminal, base transceiver station,
authentication server, location server and weather server. After designing the deployment
diagram the relationship between system component and collaboration will be delineated
to describe the service delivered by the system. The service is delivered by the joint
behavior of system components, which may be physically distributed. The necessary
partial behavior of the component used to realize the collaboration is represented by the
collaboration role. For our defined system description behavior of the components mobile
terminal, base transceiver station, authentication server, location server, weather server
are represented by the collaboration roles MT, BTS, AuS, LS and WS to utilize the
collaboration t: transfer, a: authenticate, l: request location info, w: request weather info.
Here, it is one to one mapping between system component and collaboration role shown
in Figure 6(a).

Later on, we consider other variation of deployment diagram for mentioned scenario. In
this variation of deployment diagram the identified system components are mobile
terminal, base transceiver station, application server. In this case, the behavior of the
components mobile terminal and base transceiver station is represented by the
collaboration roles MT and BTS to utilize the collaboration t: transfer and the behavior

Figure 5. EBNF for select

 151

of the component application behavior is represented jointly by the collaboration role
AuS, LS and WS to utilize the collaboration a: authenticate, l: request location info, w:
request weather info. In second case, the mapping between system component and
collaboration role is generalized into one to many relations shown in Figure 6(b).

(4) Annotating the UML model: To annotate the UML activity diagram in Figure 4 we
use the stereotypes PAcontext, PAopenLoad, PAstep, PAhost and the tagged values
PAoccurence, PArespTime, PAinterval, PAprob and PAschdPolicy [3]. A performance
context can be modeled by an activity graph that is stereotyped as a PAcontext. This
means that all interactions specified in that activity graph represent scenarios in the sense
of this profile (shown in Figure 4). A PAopenLoad is modeled as a stream of requests that
arrives at a given rate in predetermined pattern with PAoccurence. A PAstep models a
scenario step with tagged PArespTime defining a step’s response time, PAinterval
defines time interval between successive repetitions of a step and PAprob defines the
probability of occurring a step. A PAhost models a processing resource with tagged
PAschdPolicy defining the policy by which access to the resource is controlled.

(5) Generating the SPN model: To generate the SPN performance model by our proposed
framework, we will consider the above two design alternatives of system architecture,
where the components have multiple instances. From the internal behavior of the system
components and annotated UML structure, probable states and transition rate for
triggering the change between states will be found based on which SPN model will be
generated. To generate the performance model for the 1st variations of deployment
diagram, we will consider the behavior of mobile terminal (as client), authentication
server, location server and weather server as performance limiting factors of the system.
The activities of the mobile terminal, authentication server, location server and weather
server are transfer, processing, validation and delivery identified from their internal
behaviors shown in Figure 3 are utilized as the states of the SPN performance model.
From the internal behavior of each component, we generate the individual SPN model for
each component and the individual SPN model for each component is then combined
according to composite structure shown in Figure 4 to produce the SPN performance
model for our system. The SPN performance model is shown in Figure 7, where states are

Figure 6. Relation between system components and collaborations

Paper 3

 152

defined as places. We consider the number authentication server, location server, weather
server in our system is 3, where each server can process one request at a time. So the
initially places Idle1, Idle2 and Idle3 in Figure 7 contain 3 tokens each.

The system starts by placing a token in the initial node of the client, when one request is
generated by the client through his/her mobile terminal. The token is then transferred to
the authentication server. The arrival rate of client request is mentioned by a timed
transition parameter . If the authentication server is in idle state, when the client request
will arrive the immediate transition It1 will be fired, which will offer a token to the place
processing1 and the processing of the client request will be started immediately by the
authentication server. The processing rate of the authentication server is mentioned by
timed transition parameter μ1. After completing the processing, token will be passed to
the place validate and instantly the immediate transition It2 will be fired. Firing of It2 will
create two flows. One flow will offer a token to the place idle1 indicating that the
authentication server is ready for serving the next request. Another flow will emit a token
that will be forwarded either to the place nok or ok under the probabilistic assumption It3
and It4. If a token is placed in the node nok the immediate transition It5 will be fired,
which emits a token to notify the client immediately upon the cancellation of request

Client

Weather Server

μ3

It8

It9

Location Server

μ2

It6

It7

Authentication Server

μ1

It1

It2

Figure 7. SPN model of our system while considering 1st design alternative of system architecture

It5

It10

It3

It4

idle

 transfer

idle1

processing1

validate

a

ok

nok

 idle2

 processing2

deliver1

 idle3

processing3

 deliver2

b

c

 153

because of the failing of verifying the client’s authenticity. On the other hand, if a token
is left to the place ok and if the location server is in idle state the immediate transition It6
will be fired, which will offer a token to the place processing2 and the location server will
start processing of user request immediately. The processing rate of the location server is
mentioned by a timed transition parameter μ2. When the processing will be done by the
location server a token will be placed in the node deliver1 and instantly, the immediate
transition It7 will be fired. Firing of It7 will create two flows. One flow will offer a token
to the place idle2 indicating that the location server is ready for serving the next request.
Another flow will emit a token that will be immediately forwarded to the weather server.
If the weather server remains in the idle state after getting the token from the location
server the immediate transition It8 will be fired, which will offer a token in the place
processing3. This indicates the starting of the processing of the client request by the
weather server immediately. The processing rate of the weather server is mentioned by a
timed transition parameter μ3. When the processing will be done by the weather server a
token will be placed in the node deliver2 and instantly, immediate transition It9 will be
fired. Firing of It9 will create two flows. One flow will then emit a token that will be
immediately forwarded to the client as final result, which indicates the finishing of the
processing of client request. Another flow will offer a token to the place idle3 indicating
that the weather server is ready for serving next request. The processing of the client
request will be delayed if any server remains busy just after arrival of client request. The
value of the timed transition and the probabilistic assumption will be derived from
annotated UML model shown in Figure 4.

To generate the performance model for the 2nd variation of deployment diagram, we will
consider the behavior of mobile terminal (as client) and application server as performance
limiting factor of the system. The SPN performance model (Figure 8) is generated in the
same way as mentioned above, where states are defined as places. We consider the

Client

μ1

It1

It2

μ2

μ3

Figure 8. SPN model of our system while considering 2nd design alternative of system architecture

Application Server

It3
It4

It5

It6

It7

It8

 idle1

processing1

validate

ok

nok

processing2 processing3 deliver1

deliver2

 idle

transfer

b

Paper 3

 154

number of application server in our system is 3, where server can process one request at a
time. So the place Idle1 in Figure 8 contains 3 tokens initially. In this case, there is one
server, which is responsible for completing all the processing to serve user’s requests.

(6) Evaluate Model: The generated model will be used as input for the SHARPE tool [9]
to generate performance prediction result. The performance result generated by the tool is
shown in a graph in Figure 9.

We modeled and solved the system for both design alternatives of system architecture.
The performance prediction result such as mean response time of the system is derived
against the increasing number of user requests for the same arrival rate of the client
request and service rate of the servers for both design alternatives of system architecture.
The comparison of the result is demonstrated in the graph, which clearly shows how the
mean response time of the system varies with the increasing number of user requests
because of considering the different system architecture candidates and deployment of the
service components on physical components. It thus helps the system developer to

0

5
10

15
20

25

30
35

40
45

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
No. of User

R
es

po
ns

e
Ti

m
e

 (s
)

M ultiple Servers

Single Server

resolve the bottleneck of system performance by finding a better allocation of service
component on the physical component of the system at the early stage of the system
development process.

4 Conclusion

Our main contribution is delineated as presenting the UML collaboration and activity
oriented approach to capture the system dynamics that is utilized to sketch the
performance model for distributed system, where each collaboration performs separate
task. The behavior of the collaboration and the composition of collaboration to highlight
the overall system behavior are demonstrated by utilizing UML activity. To present the
behavior and composition of the collaboration using activity, we extend the notation to
handle collaboration that is executed not only in the single session but also in multiple
sessions at the same time, where different instances of collaborations are distinguished
and coordinated by adding notation select to our execution profile. The select notation

Figure 9. Performance evaluation result

 155

can outline the relations between multiple sessions unambiguously on an abstract level.
Later on, a mapping between collaboration role and system component is outlined to
show how the service of the distributed system is realized by the joint behavior of the
system components that are physically distributed. Different variations of deployment
diagram are considered to generate the performance model showing how the variations in
the deployment diagram thus affect the system performance under different work load.
However, the size of the underlying reachability set to generate SPN model is major
limitation for large and complex systems. Further work includes automating the whole
translation process from our UML specification style to generate a performance model
and the way to solve the performance model through our proposed framework as well as
to tackle the state explosion problems of reachability marking for large systems.

References

1. F. A. Kramer, R. Bræk, P. Herrmann, “Synthesizes components with sessions from

collaboration-oriented service specifications”, Proceedings of SDL 2007, V-4745,
Lecture notes of Computer Science, 2007.

2. OMG 2009, “UML Superstructure”, Version-2.2
3. OMG 2005, “UML Profile for Schedulability, Performance, and Time Specification”,

V – 1.1
4. K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer

Science application”, Wiley-Interscience publication, ISBN 0-471-33341-7
5. J. P. Lopez, J. Merseguer, J. Campos, “From UML activity diagrams to SPN:

application to software performance engineering”, ACM SIGSOFT software
engineering notes, NY, 2004

6. Pakke Kahkipru, “UML based performance modeling framework for object oriented
distributed systems”, Proceedings of the 2nd international conference on the unified
modeling language: beyond the standard, pp. 356-371, Springer-Verlag Berlin,
Heidelberg, 1999

7. Abdullatif, R. Pooly, “A computer assisted state marking method for extracting
performance models from design models ”, International Journal of Simulation, Vol.
8, No. 3, ISSN – 1473-804x

8. F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no.

9. K. S. Trivedi, R. Sahner, “SHARPE: Symbolic Hierarchical Automated Reliability /
Performance Evaluator”, Duke University, Durham.

10. F. A. Kraemer, P. Herrmann, “Service specification by composition of collaborations-
an example”, Proceedings of WI-IAT workshops, Hong Kong, p. 129-133, 2006

11. Linda Rising, “Design patterns in Communications Software”, Cambridge University
Press, NY, USA, 2001.

12. R. H. Khan, P. E. Heegaard, “Translation from UML to SPN model: A performance
modeling framework”, Accepted in Networked services and Application- Engineering,
Control and Management (EUNICE), June 28-29, 2010, Trondheim, Norway.

Paper 3

 156

Paper 4

A performance modeling framework
incorporating cost efficient deployment of

collaborating components

Razib Hayat Khan, Poul E. Heegaard

Presented in the International Conference on Software Technology and Engineering (ICSTE), Puerto Rico,
USA, 2010

Published in the Proceedings of the International Conference on Software Technology and Engineering
(ICSTE), Vol. 1, P. 340-349, IEEE Computer Society Press, 2010

A performance modeling framework
incorporating cost efficient deployment of

collaborating components

Razib Hayat Khan, Poul E. Heegaard

Department of Telematics
Norwegian University of Science and Technology (NTNU)
7491, Trondheim, Norway
{rkhan, poul.heegaard }@item.ntnu.no

Abstract-Performance evaluation of a distributed system is always an intricate undertaking, where system
behavior is normally distributed among several components those are physically distributed. Bearing this
concept in mind, we delineate a performance modeling framework for a distributed system that proposes a
transformation process from high level UML notation to SPN model and solves the model for relevant
performance metrics. To capture the system dynamics through our proposed framework, we outline a
specification style that focuses on UML collaboration and activity as reusable specification building blocks,
while deployment diagram identify the physical components of the system and the assignment of software
artifacts to those identified system components. Optimal deployment mapping of the software artifacts on
the physically available system resources is investigated by deriving the cost function. The proposed
performance modeling framework provides transformation rules of UML elements into corresponding SPN
representations and also the prediction result of a system such as throughput. The applicability of our
proposed framework is demonstrated in the context of performance modeling of a distributed system.

1 Introduction

Distributed system poses one of the main streams of information and communication
technology arena with immense complexity. Designing and implementation of such
complex systems are always an intricate endeavor. Likewise, performance evaluation is
also a great concern of such complex system to evaluate whether the system meets the
performance related system requirements. Hence, modeling phase plays an important role
in the whole design process of the system for qualitative and quantitative analysis.
However, in a distributed system, system behavior is normally distributed among several
objects. The overall behavior of the system is composed of the partial behavior of the
distributed objects of the system. So it is obvious to capture the behavior of the
distributed objects of the system for appropriate analysis to evaluate the performance
related factors of the overall system. We therefore, adopt UML collaboration and activity
oriented approach as UML is the most widely used modeling language, which models
both the system requirements and qualitative behavior through different notations [2].
Collaboration and activity diagram are utilized to demonstrate the overall system
behavior by defining both the structure of the partial object behavior as well as the
interaction between them as reusable specification building blocks and later on, this UML
specification style is applied to generate the SPN model by our proposed performance
modeling framework. UML collaboration and activity provides a tremendous modeling
framework containing several interesting properties. Firstly, collaborations and activity

 160

model the concept of service provided by the system very nicely. They define structure of
the partial object behavior, the collaboration roles and enable a precise definition of the
overall system behavior. They also delineate the way to compose the services by means
of collaboration uses and role bindings [1].

In addition, the proposed modeling framework considers system execution architecture to
realize the deployment of the service components. Abstract view of the system
architecture is captured by the UML deployment diagram, which defines the execution
architecture of the system by identifying the system components and the assignment of
software artifacts to those identified system components [2]. Considering the system
architecture to generate the performance model resolves the bottleneck of system
performance by finding a better allocation of service components to the physical nodes.
This needs for an efficient approach to deploy the service components on the available
hosts of distributed environment to achieve preferably high performance and low cost
levels. The most basic example in this regard is to choose better deployment architectures
by considering only the latency of the service. The easiest way to satisfy the latency
requirements is to identify and deploy the service components that require the highest
volume of interaction onto the same resource or to choose resources that are at least
connected by links with sufficiently high capacity and spread the work load to the
available physical resources by maintaining equilibrium among them with respect to the
execution cost [3].

The Unified Modeling Language (UML) is a widely accepted modeling language to
model the system behavior [2]. But it is indispensable to extend the UML model to
incorporate the performance-related quality of service (QoS) information to allow
modeling and evaluating the properties of a system like throughput, utilization, and mean
response time. So the UML models are annotated according to the Profile for
Schedulability, Performance, and Time (SPT) to include quantitative system parameters
[4]. Thus, it helps to maintain consistency between system design and implementation
with respect to requirement specification.

Markov models, queuing networks, stochastic process algebras and stochastic petrinet
(SPN) are probably the best studied performance modeling techniques [5]. Among all of
them, we will choose stochastic petrinet as the performance model generated by our
proposed framework for providing performance prediction result of a system due to its
increasingly popular formalism for describing and analyzing systems, its modeling
generality, its ability to capture complex system behavior concisely, its ability to preserve
the original architecture of the system, to facilitate any modification according to the
feedback from performance evaluation and the existence of analysis tools.

Several approaches have been followed to generate the performance model from system
design specification. Lopez-Grao et al. proposed a conversion method from annotated
UML activity diagram to stochastic petrinet model [6]. Kähkipuro developed a
performance modeling framework to generate and solve queuing network with
simultaneous resource possessions from the high level UML notations [7]. Zimmermann
and Hommel presented a SPN model of communication failure and recover behavior of

 161

future European train control system with performance evaluation showing the significant
impact of packet delays and losses on the reliable operation of high-speed trains [8].
However, most existing approaches do not highlight more on the issue that how to
optimally conduct system modeling and performance evaluation. The framework
presented here is the first known approach that introduces a new specification style
utilizing UML behavioral diagrams as reusable specification building block, which is
later on, used for generating performance model to produce performance prediction result
at early stage of the system development process. Building blocks describe the local
behavior of several components and the interaction between them. This provides the
advantage of reusability of building blocks, since solution that requires the cooperation of
several components may be reused within one self-contained, encapsulated building
block. In addition, the resulting deployment mapping provided by our framework has
greater impact with respect to QoS provided by the system. Our aim here is to deal with
vector of QoS properties rather than restricting it in one dimension. Our presented
deployment logic is surely able to handle any properties of the service, as long as we can
provide a cost function for the specific property. The cost function defined here is flexible
enough to keep pace with the changing size of search space of available host in the
execution environment to ensure an efficient deployment of service components.
Furthermore, we aim to be able to aid the deployment of several different services at the
same time using the same proposed framework. The novelty of our approach is also
reflected in showing the optimality of our solution with respect to both deployment logic
and evaluation of performance metrics.

The objective of the paper is to provide an extensive performance modeling framework
that provides a translation process to generate SPN performance model from system
design specification captured by the UML behavioral diagram and later solves the model
for relevant performance metrics to demonstrate performance prediction results at early
stage of the system development life cycle. Incorporating cost functions to draw relation
between service component and available physical resource permit us to identify an
efficient deployment mapping in a fully distributed manner. The work presented here is
the extension of our previous work described in [9] [10], where we presented our
proposed framework with respect to the execution of single and multiple collaborative
session at certain time and considered alternatives system architecture candidate to
describe the system behavior and evaluate the performance factors. The paper is
organized as follows: Section 2 introduces our proposed performance modeling
framework, Section 3 demonstrates the application example to show the applicability of
our modeling framework, Section 4 delineates conclusion with future works.

2 Performance modeling framework

Our proposed performance modeling framework utilizes the tool suite Arctis, which is
integrated as plug-ins into the eclipse IDE [11]. The proposed framework is composed of
6 steps shown in Figure 1, where steps 1 and 2 are the parts of Arctis tool suite. Arctis
focuses on the abstract, reusable service specifications that are composed form UML 2.2
collaborations and activities. It uses collaborative building blocks as reusable
specification units to create comprehensive services through composition. To support the
construction of building block consisting of collaborations and activities, Arctis offers

Paper 4

 162

special actions and wizards. In addition, a number of inspections ensures the syntactic
consistency of building blocks. A developer first consults a library to check if an already
existing collaboration block or a collaboration of several blocks solves a certain task.
Missing blocks can also be created from scratch and stored in the library for later reuse.
The building blocks are expressed as UML models. The structural aspect, for example the
service component and their multiplicity, is expressed by means of UML 2.2
collaborations. For the detailed internal behavior, UML 2.2 activities have been used.
They express the local behavior of each of the service components as well as their
necessary interactions in a compact and self-contained way using explicit control flows
[11]. Moreover the building blocks are combined into more comprehensive service by
composition. For this composition, Arctis uses UML 2.2 collaborations and activities as
well. While collaborations provide a good overview of the structural aspect of the
composition, i.e., which sub-services are reused and how their collaboration roles are
bound, activities express the detailed coupling of their respective behaviors [11].

1) Construction of collaborative building block: The proposed framework utilizes
collaboration as main specification units. The specifications for collaborations are given
as coherent, self-contained reusable building blocks. The structure of the building block

is described by UML 2.2 collaboration. If the building block is elementary it only
declares the participants (as collaboration roles) and connection between them. If it is
composite, it may additionally refer to other collaborations between the collaboration
roles by means of collaboration uses. The internal behavior of building block is described
by UML activity. It is declared as the classifier behavior of the collaboration and has one
activity partition for each collaboration role in the structural description. For each
collaboration use, the activity declares a corresponding call behavior action refereeing to
the activities of the employed building blocks. For example, the general structure of the
building block t is given in Figure 2(a), where it only declares the participants A and B as
collaboration roles and the connection between them is defined as collaboration use t.
The internal behavior of the same building block is shown in Figure 3(b). The activity
transferAB describes the behavior of the corresponding collaboration. It has one activity
partition for each collaboration role: A and B. Activities base their semantics on token
flow [1]. The activity starts by placing a token, when there is response to transfer by
either participant A or B. The token is then transferred by the participant A to participant

Collaborative building
block construction

Composition of
building block using
UML collaboration
& activity

Arctis

1 2

UML Deployment diagram &
stating relation between system
component & collaboration

3 Annotated UML
model

4

Performance
model

5

Evaluate
model

6

Figure 1. Performance modeling framework

 163

B represented by the call behavior action transferA and/or participant B to Participant A
represented by the transferB after completion of the processing by the collaboration role A
and B. The composite structure of building t is shown in Figure 2(b), where it may
additionally refer to other collaborations s between the collaboration roles by means of
collaboration uses.

2) Composition of building block using UML collaboration and activity: To generate the
performance model, the structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the detailed behavior of how the
different events of collaborations are composed so that the desired overall system
behavior can be obtained. For the composition, UML collaborations and activities are
used complementary to each other; UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by covering also the behavioral
aspect for composition. For this purpose, call behavior actions are used. Each sub-service
is represented by call behavior action referring to the respective activity of building
blocks. Each call behavior action represents an instance of a building block. For each
activity parameter node of the referred activity, a call behavior action declares a
corresponding pin. Pins have the same symbol as activity parameter nodes to represent
them on the frame of a call behavior action. Arbitrary logic between pins may be used to
synchronize the building block events and transfer data between them. By connecting the
individual input and output pins of the call behavior actions, the events occurring in
different collaborations can be coupled with each other. Semantics of the different kinds
of pins are given in more detailed in [1]. For example, the detail behavior and
composition of the collaboration is given in following Figure 3(a). The initial node ()
indicates the starting of the activity. The activity is started at the same time from the each
participant A, B and C. The request for the execution of the task B is passed through a
decision node k and only one flow is activated at the certain time instance. The request
for the execution of the task A, B and C are mentioned by req_A, req_B and req_C. After
getting the input, each participant starts its processing of request, which is mentioned by
call behavior action ProcessingA, ProcessingB and ProcessingC. After completing the
processing, the responses are delivered to the corresponding participants. The response
for the execution of the task A and C are transferred to B and the response for the
execution of the task B is transferred to either A or C, which is mentioned by

Figure 2. Structure of building block

(a)

(b)

t

A B

t

A B

B t A

B t A

s s

A B

Paper 4

 164

collaboration t: transferAB and t´: transferBC. There are two responses for B, which are
connected by a merge node j, describing that outgoing flow is activated, when both or
either of the incoming flow arrives.

3) Designing UML deployment diagram and stating relation between system components
and collaborations: To solve the deployment problem we identify two types of input
required, profiles and provided property. Profile are used to specify the goals for the
deployment logic, while provided properties determine the search space and are to be
extracted from the net-map, which in turn describes the context or environment, where
the service is being executed. We model the system as collection of N interconnected
nodes. Our objective is to find a deployment mapping for this execution environment for
a set of service components C available for deployment that comprises a service. The
deployment mapping can be defined as (M : C N) between a number of components
instances c, onto nodes n. A component ci C can be a client process or a service
process, while a node, n N can be a transit node, e.g. a traditional IP router, a server
node, which is capable of accommodating a service component, a client node, which is
aggregation point for client components, or a mixed node that can accommodate both
client and service components.

In order to get an overview of our service deployment concept, we consider the basic
example in Figure 4. In the example, the service engineer has developed a service,
Servicek, which consists of three software components ServCompi, i = 1,..,3. The service
is expected to be accessed by two distinguishable set of users Client1 and Client2.

Figure 3(a). Detailed behavior of the event of the collaboration using activity
(b). Internal behavior of the collaboration

response

response

response

response

A B

t: transferAB

transferA

transferB

(a)

(b)

 165

Thereafter, the designer must provide the second input for the decision logic, which is the
net-map, specifying four possible types of nodes and the links. Generally, nodes can have
different responsibilities, such as providing services (S1), relaying traffic (R1),
accommodating clients (C1), or a mixture of these (SC1). Nodes accommodating the
client side of a particular service are considered as an aggregation point for the clients
accessing the given service. In case the components of a service are described as a
traditional client-server model, properties of the client side such as the expected amount
of clients, the expected service demand, etc. have to be taken into account within the
same logic we employ for deployment mapping. Constraints that will heavily impact the
optimal deployment can be assigned to nodes and links. In the case of links, constraints
might appear as costs of using the particular link (li) for example. Constraints assigned to
nodes of the net-map for instance can represent memory sizes restricting placement of
component instances to a certain number at a place. Using the above specified input, the
deployment logic provides an optimal deployment architecture taking into account the
QoS requirements for the components providing the specified services. The deployment
logic providing optimal deployment architecture is realized by the cost function F(M) that
is used to evaluate the current suggestion in several iterations. Often, however, the
components cannot be freely assigned to nodes but due to certain system constraints are
restricted to particular ones. This can be based on policies given by the service provider
(e.g. service level agreements of ISPs). Limitations can be further based on access
restrictions as well as on the provided and requested capabilities (soft costs) and on
capacity requirements (hard costs, e.g. bandwidth limitations). The cost function F(M)
has to consider these limitations, which on the other hand, restrict the search space and, in
consequence, support the efficiency of our deployment mapping. The evaluation of cost
function F(M) is mainly influenced by our way of service definition. Service is defined in
our approach as a collaboration of total E components labeled as ci (where i = 1…. E) to
be deployed and total K collaboration between them labeled as kj, (where j = 1 … K).
The execution cost of each service component can be labeled as

icf and the

communication cost between the service components is labeled as
jkf . Accordingly we

only observe the total load (n̂l , n = 1…N) of a given deployment mapping at each node.

 Figure 4. Component mapping example

Paper 4

 166

The communication cost between two components is considered significant only if it
appears between two separate nodes and we will strive for an optimal solution of equally
distributed load among the processing nodes and the lowest cost possible, while taking
into account the execution cost

icf , i = 1….E and communication cost
jkf , j =

1….K.
icf and

jkf are derived from the service specification, thus the offered execution

load can be calculated as | |

1

E

i icf . This way, the logic can be aware of the target load

[3]:
| |

1

| |

E

i icfT
N

Given a mapping M = {mn} (where mn is the set of components at node n) the total load
can be obtained as ˆ

ini
n cc m fl . Furthermore, the overall cost function F(M) becomes

[3]:

| | | |
1 1

ˆ| |
j

N K
n j kn j

F M l T I f (1)

4) Annotating the UML model: Performance information is incorporated into the UML
activity diagram and deployment diagram according to the UML Profile for
Schedulability, Performance and Time (SPT) [4] for evaluating system performance by
performance model solver.

5) Deriving the SPN model: Here, we define our rules for transforming into SPN model
by utilizing the specification of reusable building blocks. By considering the internal
behavior of the reusable building blocks (step 1), composition of different events of the
building blocks (step 2), the relation between system component and collaboration and
annotated UML structure, probable states and transition rate for triggering the change
between states will be found based on which our SPN performance model will be
generated. To generate the SPN model of the system, firstly, we generate the SPN model
of the individual system components and later on, compose them together to generate the
system level SPN model. The rules are based on decomposition of UML collaboration
and activity diagram into basic elements of SPN model like states as places, timed
transition and immediate transition. In addition, the rules are based on the rendezvous
synchronization, which means, when communication between two processes of two
interconnected nodes occur it follows the rendezvous synchronization [12]. Rendezvous
provides synchronization between two threads while they communicate. In rendezvous
synchronization, a synchronization and communication point called an entry is
constructed as a function call. One process defines its entry and makes it public. Any
process with knowledge of this entry can call it as an ordinary function call. The process
that defines the entry accepts the call, executes it and returns the results to the caller. The
issuer of the entry call establishes a rendezvous with the process that defined the entry
[12]. The rules are following:

Where jI = 1, if kj external
 0, if kj internal to a node

 167

1 Basic SPN model for a collaboration role of a building block is defined by the two
states such as processing (P) and processing_done (P_D) and the passing of token from
state processing to processing done is realized by the timed transition, which is derived
from the annotated UML model. One immediate transition is also associated from sate
processing_done to state processing to indicate the ending of the activity of the
collaboration role. For example, SPN model of collaboration role A in Figure 2 is shown
in the following:

2 Collaboration can connect only two collaboration roles and replaced by an immediate
transition while generating the SPN model, where collaboration roles deploy on the same
physical node.

3 Collaboration can connect only two collaboration roles and replaced by a timed
transition while generating the SPN model, where collaboration roles deploy on the
different physical node.

4 For a composite structure, if a collaboration role A connects with n collaboration roles
by n collaboration uses like a star graph (where n>1), where each collaboration connects
only two collaboration roles, then Only one instance of collaboration role A exists during
the it’s basic state transition and the single instance of collaboration role A connects with
all other collaboration roles by immediate or timed transitions based on their deployment
on the same or different physical components to generate the SPN model.

PA
P_DA

do exit

node

A Bt

node2 node1

A Bt

A

t

t

PB
do

P_DB

PA

P_DA
do

PB

do

P_DB

do

PA

P_DA

Bt C r A

s Du E node DE
A

C B

s u

r t

SPN model

Collaboration diagram
with deployment

mapping

Collaboration diagram
with deployment

mapping

Collaboration diagram with
deployment mapping

SPN model

SPN model

SPN model

Collaboration
role

Paper 4

 168

5 If combinations of n collaboration roles (where n>2) create one or more circuits among
them and each collaboration role satisfies the condition of rule 4 then only one instance of
each collaboration role exists and connects with other collaboration roles by immediate or
timed transitions based on their deployment on the same or different physical components
to generate SPN model.

6 This rule is applicable for n collaboration roles arrange like a path of Graph (where
n>3). Then only one instance of those collaboration roles exist that satisfies the condition
of rule 4 and connects with other collaboration roles by immediate or timed transitions
based on their deployment on the same or different physical components to generate SPN
model.

7 This rule is applicable for combinations of n collaboration roles those maintain both
circuit and path like structure (where n>3). Then only one instance of those collaboration
roles exist that satisfies the condition of rule 4 and connects with other collaboration roles
by immediate or timed transitions based on their deployment on the same or different
physical components to generate SPN model.

8 This rule is applicable for combinations of n collaboration roles those maintain both
star and circuit like structure (where n>4). Then only one instance of those collaboration
roles exist that satisfies the condition of rule 4 and connects with other collaboration roles

A B t

C s r

node

A t C B

s D

r

node

r

A
B

C
s

r

t

A
C B

D

t s

A Bt

C s r

u

D
D

A
B

C
node

s

r

t u

Collaboration diagram with
deployment mapping

Collaboration diagram with
deployment mapping

Collaboration diagram with
deployment mapping

SPN model

SPN model

SPN model

 169

by immediate or timed transitions based on their deployment on the same or different
physical components to generate SPN model.

9 This rule is applicable for combinations of n collaboration roles those maintain both
star and path like structure (where n>4). Then only one instance of those collaboration
roles exist that satisfies the condition of rule 4 and connects with other collaboration roles
by immediate or timed transition based on their deployment on the same or different
physical components to generate SPN model.

10 This rule is applicable for combinations of n collaboration roles those maintain star,
circuit and path like structure (where n>5). Then only one instance of those collaboration
roles exist that satisfies the condition of rule 4 and connects with other collaboration roles
by immediate or timed transitions based on their deployment on the same or different
physical components to generate SPN model.

6) Evaluate the model: We focus on measuring the throughput of the system from the
developed model. Before deriving formula for throughput estimation we consider several
assumptions in this regard. Firstly, when communication between two processes of two
interconnected nodes occur it follows the rendezvous synchronization. Secondly, all the
communications among the interconnected nodes occur in parallel. Moreover, the
communications between interconnected nodes will be started following the completion
of all the processing inside each physical node. By considering all the assumption we

 node

r

A Bt

C s

v

D u

E E

D
A

B

C

A Bt

C s

v

D u

E
node

E

D
A

B

C

 node
A Bt

C s

v

D u

E
w

F

E

D
A

B

C

F

s

u t

v r

s

t u

v

s

v

u t r

r

w

Collaboration diagram with
deployment mapping

Collaboration diagram with
deployment mapping

Collaboration diagram with
deployment mapping

SPN model

SPN model

SPN model

Paper 4

 170

define the throughput as function of total expected number of jobs, E(N) and cost of the
network, CNet:

Throughput ~ f (E(N), CNet)

The value of E(N) is calculated by solving the SPN model using SHARPE [14]. The
value of CNet is evaluated by considering a subnet, which is the performance limiting
factor of the whole network i.e., which posses maximum cost with respect to its own
execution cost and communication cost with other subnet. Execution cost of the network,
Excnet is defined as:
Excnet = | |

1

N

i
exc_subneti ; [N is the total no. of subnet that

comprises whole network, exc_subneti =
execution cost of ith subnet]

exc_subneti = | |

1

M

k kcf ; [M = total number

of service components deployed
on the subneti,

kcf = execution

cost of the kth component of
subneti]

c_subneti = exc_subneti +
| |

1

k

j
Ij

jkf ; [k K, c_subneti = cost of the ith

subnet,
 j= 1…k; which defines the total number of

collaborations in the ith subnet]
 = exc_subneti ; [Ij = 0 in this case according to (1) as kj

internal to a node]

Now we evaluate the cost between each pair of subnet (sbuneta and subnetb; where
(a,b) N, a b) with respect to the subnet’s own processing cost and the cost associated
with the communication with other subnet in the network. Cost of a subnet pair,
C_subnetpy is defined as:

C_subnetpy= max {max {c_subneta, c_subnetb} + Ij

jkf }; [j= 1…k; which defines

the total number of
collaborations between

subneta and subnetb,
 y=1…n, defines the total

subnet pair in the network,
 Ij = 1 according to (1) as kj

external to the nodes]
CNet = max {C_subnetp1,…..,….., C_subnetpn};

 Throughput =
Net

E(N)
C

 (2)

 171

3 Application example

As a representative example, we consider the scenario originally from Efe dealing with
heuristically clustering of modules and assignment of clusters to nodes [13]. This
scenario, even though artificial and may not be tangible from a designer’s point of view,
is sufficiently complex to show the applicability of our proposed framework. The
problem is defined in our approach as a service of collaboration of E = 10 components or

collaboration roles (labeled c1 . . . c10) to be deployed and K = 14 collaborations between
them depicted in Figure 5. We consider three types of requirements in this specification.
Besides the execution and communication costs, we have a restriction on components c2,
c7, c9 regarding their location. They must be bound to nodes n2, n1, n3 respectively. The
internal behavior of the collaboration Ki and composition of the collaboration role ci as
reusable building block is realized by the call behavior action through the same UML
activity diagram already demonstrated in Figure 3(b) and Figure 3(a). The call behavior
action is later on, utilized as the states of the performance model.

In this example, the target environment consists only of N = 3 identical, interconnected
nodes with a single provided property, namely processing power and with infinite
communication capacities depicted in Figure 6. The optimal deployment mapping can be
observed in Table 1. The lowest possible deployment cost, according to equation (1) is
17 + 100 = 117.

Figure 5. Collaborations and components in the example scenario

n3

n1

n2 c3 c2

c1
c4

c5

k3
k1

k8

k5

k2
k6

k7

k4

 Exec.
cost =30

 Exec.
cost =15 Exec.

cost =25

 Exec.
cost =10

 Exec.
cost =20

c7
k9

 Exec.
cost =20

k11

c10

c8
c9

k10

k13

k12

K14

 Comm.
cost =50

 Exec.
cost =35

 Exec.
cost =15

 Exec.
cost =25

 Comm.
cost =40 Comm.

cost =10

 Comm.
cost =15

 Comm.
cost =25

 Comm.
cost =20

 Comm.
cost =10

 Comm.
cost =20

 Comm.
cost =10

 Comm.
cost =15 Comm.

cost =20

 Comm.
cost =15

 Comm.
cost =20

 Comm.
cost =30

c6

 Exec.
cost =10

Paper 4

 172

To annotate the UML diagram in Figure 5 and 6 we use the stereotypes RTaction, PAhost
and the tagged values RTduration depicted in Table 2. RTaction models any action that
takes time. The duration of the time is mentioned by the tagged value RTduration. A
PAhost models a processing resource with tagged PAschdPolicy defining the policy by
which access to the resource is controlled. The annotation of service components and
collaboration of Figure 5 is shown in Table 2.

By considering the above deployment mapping and the transformation rule the analogous
SPN model of our example scenario is depicted in Figure 7. The states of the SPN model
are derived from the call behavior action of the corresponding collaboration role and
collaboration among them, where pi and di stand for processingi and donei of the ith
service components. According to the transformation rules 1, each collaboration role is
defined by the two states pi and di and the passing of token from state pi to di is realized
by the timed transition ti (stands for transitioni for the ith service component), which is
derived from the annotated UML model. For generating the SPN model, firstly, we will
consider the collaboration roles deployed on the processor node n1, which are c4, c7 and c8.
Components c7 are connected with c4 and c8 and maintains star graph like structure. So
according to rule 4, only one instance of collaboration role c7 is existed during the basic
state transition (p7 and d7) and connects with states of the components c4 (p4 and d4) and
c8 (p8 and d8)with immediate transition k8 and k9 to generate the SPN model.
Collaboration roles c2, c3 and c5 deploy on the processor node n2. Components c2 are
connected with c3 and c5 and maintains star graph like structure. So according to rule 4,

Node Components
nl ˆ| |nl T Internal

collaborations
n1 c4, c7, c8 70 2 k8, k9
n2 c2, c3, c5 60 8 k3, k4
n3 c1, c6, c9, c10 75 7 k11, k12, k14

 cost 17 100

C1 <<RTaction>>
{RTduration=10, s}

K1 <<RTaction>>
{RTduration=20, s}

Figure 6. The target network of hosts

Table 2. Annotating UML model according to SPT

Table 1. Optimal deployment mapping in the example scenario

n1: Processor
Node

n2: Processor
Node

<<PAhost>>
{PAschdPolicy = FIFO}

n3: Processor
Node

 173

only one instance of collaboration role c2 is existed during the basic state transition (p5
and d5) and connects with states of the components c3 (p3 and d3) and c5 (p5 and d5)with
immediate transitions k3 and k4 to generate the SPN model. Collaboration roles c6, c1, c9
and c10 deploy on the processor node n3. The components arrange like a path of graph. So
according to rule 6, one instance of component c1 and c9 (as c1 and c9 satisfy the
condition of rule 4) is presented during the basic state transition and state d1 and d9 is
connected with immediate transition k12, state d1 is connected with the d6 (state of
component c6) by the immediate transition k11 and state d9 is connected with the d10 (state
of component c10) by the immediate transition k14. In order to generate the system level
SPN model, we need to compose the entire three SPN models generated for three
processor nodes by considering the interconnection among them. To compose the SPN
models of processor node n1 and n2, state d4 and d3 connect by the timed transition k1 and
state d4 and d5 connect by the timed transition k2 according to rule 2. Likewise, to
compose the SPN models of processor node n2 and n3, state d2 and d1 connect by the
timed transition k5 and state d5 and d1 connect by the timed transition k6 according to rule
2. To compose the SPN models of processor node n1 and n3, state d7 and d1 connect by
the timed transition k7, state d8 and d6 connect by the timed transition k10 and state d8 and
d9 connect by the timed transition k13 according to rule 2. By the above way, the system
level SPN model is derived.

 Figure 7. SPN model of the example scenario

Reusable building block where collaboration roles
deploy on the different physical node

Reusable building block where collaboration roles
deploy on the same physical node

Paper 4

 174

The throughput calculation according to equation (2) for the different deployment
mapping including the optimal deployment mapping is shown in Table 3. The throughput
is 0.0723s-1 while considers the optimal deployment mapping, where E(N) = 6.877
(calculated using SHARPE [14]) and CNet = 95s. The optimal deployment mapping
according to equation (2) also show the optimality in case of throughput calculation. We
will not present here the throughput calculation of all the deployment mapping of the
software artifacts but obviously the approach presented here confirms the efficiency in
both deployment mapping and throughput calculation.

4 Conclusion

We present a novel approach for model based performance evaluation of distributed
system, which spans from capturing the system dynamics through UML diagram as
reusable building block to efficient deployment of service components in a distributed
manner by capturing the QoS requirements. System dynamics is captured through UML
collaboration and activity oriented approach. Furthermore, quantitative analysis of the
system is achieved by generating SPN performance model from the UML specification
style. The transformation from UML diagram to corresponding SPN elements like states,
different pseudostates and transitions is proposed. Performance related QoS information
is taken into account and included in the SPN model with equivalent timing and
probabilistic assumption for enabling the evaluation of performance prediction result of
the system. In addition, the logic, as it is presented here, is applied to provide the optimal,
initial mapping of components to hosts, i.e. the network is considered rather static.
However, our eventual goal is to develop support for run-time redeployment of
components, this way keeping the service within an allowed region of parameters defined
by the requirements. As the results with our proposed framework show our logic will be a
prominent candidate for a robust and adaptive service execution platform.

References

[1] F. A. Kramer, R. Bræk, P. Herrmann, “Synthesizes components with sessions from

collaboration-oriented service specifications”, Proceedings of SDL 2007, V-4745,
LNCS

Node Components Possible cost (s) Throughput (s-1)
{n1, n2, n3} {{c4, c7, c8}, {c2, c3, c5}, {c1, c6, c9, c10}} 117 0.0723
{n1, n2, n3} {{c4, c7},{c2, c3, c5, c6}, {c1, c8, c9, c10}} 162 0.0633
{n1, n2, n3} {{ c4, c5, c7, c8}, {c2, c3}, {c1, c6, c9, c10}} 162 0.0631
{n1, n2, n3} {{c5, c7, c8}, {c2, c3, c4}, { c1, c6, c9, c10}} 157 0.0623
{n1, n2, n3} {{c4, c6, c7, c8}, {c2, c3, c5}, {c1, c9, c10}} 148 0.0609
{n1, n2, n3} {{ c1, c6, c7, c8}, {c2, c3, c4}, {c5, c9, c10}} 177 0.0588
{n1, n2, n3} {{c4, c7, c8}, {c1, c2, c3, c5}, { c6, c9, c10}} 147 0.0568
{n1, n2, n3} {{ c1, c6, c7, c8}, {c2, c3, c5}, { c4, c9, c10}} 187 0.0553
{n1, n2, n3} {{c3, c6, c7, c8}, {c1, c2, c4, c5}, {c9, c10}} 218 0.0488
{n1, n2, n3} {{c6, c7, c8}, {c1, c2, c4, c5}, { c3, c9, c10}} 232 0.0488

Table 3. Possible cost and throughput for different deployment mapping

 175

[2] OMG 2009, “UML Superstructure”, Version-2.2
[3] M. Csorba, P. Heegaard, P. Herrmann, “Cost-Efficient Deployment of

Collaborating Components”, DAIS 2008
[4] OMG 2005, “UML Profile for Schedulability, Performance, and Time

Specification”, V – 1.1
[5] K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer

Science application”, Wiley-Interscience publication, ISBN 0-471-33341-7
[6] J. P. Lopez, J. Merseguer, J. Campos, “UML activity diagrams to SPN: application

to software performance engineering”, ACM SIGSOFT software engineering notes,
NY, 2004

[7] Pakke Kahkipru, “UML based performance modeling framework for object oriented
distributed systems”, Proceedings of the 2nd international conference on the unified
modeling language: beyond the standard, pp. 356-371, Springer-Verlag Berlin,
Heidelberg, 1999

[8] J. Trowitzsch, A. Zimmermann, “Using UML State Machines and Petri Nets for the
Quantitative Investigation of ETCS”, Valuetools, October 11-13, 2006, Pisa, Italy

[9] R. H. Khan, P. E. Heegaard, “Translation from UML to SPN model: A performance
modeling framework”, Proceeding of the EUNICE, Springer, Norway, 2010.

[10] R H Khan, P Heegaard, “Translation from UML to SPN model: Performance
modeling framework for managing behavior of multiple session and instance”
Proceedings of the ICCDA, IEEE computer society, China, 2010

[11] F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
[12] Rendezvoussynchronization,http://book.opensourceproject.org.cn/embedded/cmpr

ealtime/ opensource/ 5107final/lib0091.html, retrieved June, 2010
[13] Efe, K.: Heuristic models of task assignment scheduling in distributed systems.

Computer (June 1982)
[14] k. Trivedi, R. Sahner, “Symbolic Hierarchical Automated Reliability / Performance

Evaluator (SHARPE)”, Duke University, Durham, NC, 2002

Paper 4

 176

Paper 5

A performance modeling framework
incorporating cost efficient deployment of

multiple collaborating instances

Razib Hayat Khan, Poul E. Heegaard

Presented in the International Conference on Software Engineering & Computer System (ICSECS), Pahang,
Malaysia, 2011

Published in the Communications in Computer & Information Science, Vol. 179, p. 31-45, Springer-Verlag
Berlin Heidelberg, 2011

A performance modeling framework
incorporating cost efficient deployment of

multiple collaborating instances

Razib Hayat Khan, Poul E. Heegaard

Department of Telematics
Norwegian University of Science and Technology (NTNU)
7491, Trondheim, Norway
e-mail: {rkhan, poul.heegaard }@item.ntnu.no

Abstract- Performance evaluation of a distributed system is always an intricate undertaking, where system
behavior is distributed among several components those are physically distributed. Bearing this concept, we
delineate a performance modeling framework for a distributed system that proposes a transformation
process from high level UML notation to SRN model and solves the model for relevant performance
metrics. To capture the system dynamics through our proposed framework we outline a specification style
that focuses on UML collaboration and activity as reusable specification building blocks, while deployment
diagram identify the physical components of the system and the assignment of software artifacts to
identified system components. Optimal deployment mapping of software artifacts on the available physical
resources of the system is investigated by deriving the cost function. The way to deal with parallel thread
processing of the network nodes by defining the upper bound is precisely mentioned to generate the SRN
model.

1 Introduction

Modeling phase plays an important role in the whole design process of the distributed
system for qualitative and quantitative analysis. However in a distributed system, system
behavior is normally distributed among several objects. The overall behavior of the
system is composed of the partial behavior of the distributed objects of the system. So it
is obvious to capture the behavior of the distributed objects for appropriate analysis to
evaluate the performance related factors of the overall system. We therefore adopt UML
collaboration and activity oriented approach as UML is the most widely used modeling
language, which models both the system requirements and qualitative behavior through
different notations [2]. Collaboration and activity diagram are utilized to demonstrate the
overall system behavior by defining both the structure of the partial object behavior as
well as the interaction between them as reusable specification building blocks and later
on, this UML specification style is applied to generate the SRN model by our proposed
performance modeling framework. UML collaboration and activity provides a
tremendous modeling framework containing several interesting properties. Firstly,
collaborations and activity model the concept of service provided by the system very
nicely. They define structure of the partial object behavior, the collaboration roles and
enable a precise definition of the overall system behavior. They also delineate the way to
compose the services by means of collaboration uses and role bindings [1]. The proposed
modeling framework considers system execution architecture to realize the deployment

 180

of the service components. Considering the system architecture to generate the
performance model resolves the bottleneck of system performance by finding a better
allocation of service components to the physical nodes. This needs for an efficient
approach to deploy the service components on the available hosts of distributed
environment to achieve preferably high performance and low cost levels. The most basic
example in this regard is to choose better deployment architectures by considering only
the latency of the service. The easiest way to satisfy the latency requirements is to
identify and deploy the service components that require the highest volume of interaction
onto the same resource or to choose resources that are connected by links with
sufficiently high capacity [3].

It is indispensable to extend the UML model to incorporate the performance-related
quality of service (QoS) information to allow modeling and evaluating the properties of a
system like throughput, utilization and mean response time. So the UML models are
annotated according to the UML profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems to include quantitative system parameters [4].

We will focus on the stochastic reward net (SRN) [5] as the performance model
generated by our proposed framework due to its increasingly popular formalism for
describing and analyzing systems, its modeling generality, its ability to capture complex
system behavior concisely, its ability to preserve the original architecture of the system,
to allow marking dependency firing rates and reward rates defined at the net level, to
facilitate any modification according to the feedback from performance evaluation and
the existence of analysis tools.

Several approaches have been followed to generate the performance model from system
design specification. However, most existing approaches [6] [7] [8] do not highlight more
on the issue that how to optimally conduct the system modeling and performance
evaluation. The framework presented here is the first known approach that introduces a
new specification style utilizing UML behavioral diagrams as reusable specification
building block, which is later on, used for generating performance model to produce
performance prediction result at early stage of the system development process. Building
blocks describe the local behavior of several components and the interaction between
them. This provides the advantage of reusability of building blocks, since solution that
requires the cooperation of several components may be reused within one self-contained,
encapsulated building block. In addition, the resulting deployment mapping provided by
our framework has great impact with respect to QoS provided by the system. Our aim
here is to deal with vector of QoS properties rather than restricting it in one dimension.
Our presented deployment logic is surely able to handle any properties of the service, as
long as we can provide a cost function for the specific property. The cost function defined
here is flexible enough to keep pace with the changing size of search space of available
host in the execution environment to ensure an efficient deployment of service
components. Furthermore, we aim to be able to aid the deployment of several different
services at the same time using the same proposed framework. The novelty of our
approach is also reflected in showing the optimality of our solution with respect to both
deployment logic and evaluation of performance metrics.

 181

The objective of the paper is to provide an extensive performance modeling framework
that provides a translation process to generate SRN performance model from system
design specification captured by the UML behavioral diagram and later solves the model
for relevant performance metrics. To incorporate the cost function to draw relation
between service component and available physical resources permit us to identify an
efficient deployment mapping in a fully distributed manner. The way to deal with parallel
thread processing of the network node by defining the upper bound is precisely
mentioned while generating the SRN model through the proposed framework. The work
presented here is the extension of our previous work described in [9] [10] [14], where we
presented our proposed framework with respect to the execution of single and multiple
collaborative sessions and considered alternatives system architecture candidate to
describe the system behavior and evaluate the performance factors. The paper is
organized as follows: Section 2 introduces our proposed performance modeling
framework, Section 3 demonstrates the application example to show the applicability of
our modeling framework, Section 4 delineates conclusion.

2 Performance modeling framework

The framework is composed of 6 steps shown in Figure 1, where steps 1 and 2 are the
parts of Arctis tool suite [11]. Arctis focuses on the abstract, reusable service

Figure 1. Performance modeling framework

specifications that are composed form UML 2.2 collaborations and activities. It uses
collaborative building blocks as reusable specification units to create comprehensive
services through composition. To support the construction of building block consisting of
collaborations and activities, Arctis offers special actions and wizards. In addition, a
number of inspections ensure the syntactic consistency of building blocks. A developer
first consults a library to check if an already existing collaboration block or a
collaboration of several blocks solves a certain task. Missing blocks can also be created
from scratch and stored in the library for later reuse. The building blocks are expressed as
UML models. The structural aspect, for example the service component and their
multiplicity, is expressed by means of UML 2.2 collaborations. For the detailed internal
behavior, UML 2.2 activities have been used. They express the local behavior of each of

21

3

5

4

6
Composition of
building block

using UML
Collaboration

& Activity

UML Deployment diagram
& stating relation between

system component &
collaboration

SRN model

Annotated
UML model

Evaluate
model

Library of
Collaborative

building
blocks

Arctis

Paper 5

 182

the service components as well as their necessary interactions in a compact and self-
contained way using explicit control flows [11]. Moreover, the building blocks are
combined into more comprehensive service by composition. For this composition, Arctis
uses UML 2.2 collaborations and activities as well. While collaborations provide a good
overview of the structural aspect of the composition, i.e., which sub-services are reused
and how their collaboration roles are bound, activities express the detailed coupling of
their respective behaviors [11]. The steps are illustrated below:

1) Construction of collaborative building block: The proposed framework utilizes
collaboration as main specification units. The specifications for collaborations are given
as coherent, self-contained reusable building blocks. The structure of the building block
is described by UML 2.2 collaboration. The building block declares the participants (as
collaboration roles) and connection between them. The internal behavior of building
block is described by UML activity. It is declared as the classifier behavior of the
collaboration and has one activity partition for each collaboration role in the structural
description. For each collaboration use, the activity declares a corresponding call
behavior action refereeing to the activities of the employed building blocks. For example,
the general structure of the building block t is given in Figure 2(a), where it only declares
the participants A and B as collaboration roles and the connection between them is
defined as collaboration use tx (x=1…nAB (number of collaborations between
collaboration roles A and B)). The internal behavior of the same building block is shown
in Figure 2(b). The activity transferij (where ij = AB) describes the behavior of the
corresponding collaboration. It has one activity partition for each collaboration role: A
and B. Activities base their semantics on token flow [1]. The activity starts by placing a
token, when there is a response (indicated by the streaming pin res) to transfer by either
participant A or B.

After completion of the processing by the collaboration role A and B the token is
transferred from the participant A to participant B and from participant B to Participant A,
which is represented by the call behavior action forward.

2) Composition of building block using UML collaboration and activity: To generate the
performance model, the structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the detailed behavior of how the
different events of collaborations are composed so that the desired overall system

(a)

tx: transferAB

A B

B A tx: transferAB

res res

tx: transferAB

A B

(b)

forward

res res forward

Figure 2(a). Structure of the building block using collaboration diagram
(b). Internal behavior of the building block using activity diagram

 183

behavior can be obtained. For the composition, UML collaborations and activities are
used complementary to each other; UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by covering also the behavioral
aspect for composition. For this purpose, call behavior actions are used. Each sub-service
is represented by call behavior action referring the respective activity of building blocks.
Each call behavior action represents an instance of a building block. For each activity
parameter node of the referred activity, a call behavior action declares a corresponding
pin. Pins have the same symbol as activity parameter nodes to represent them on the
frame of a call behavior action. Arbitrary logic between pins may be used to synchronize

Figure 3. System activity to couple the collaboration

the building block events and transfer data between them. By connecting the individual
input and output pins of the call behavior actions, the events occurring in different
collaborations can be coupled with each other. Semantics of the different kinds of pins
are given in more detailed in [1]. For example the detailed behavior and composition of
the collaboration is given in following Figure 3. The initial node () indicates the starting
of the activity. The activity is started at the same time from each participant. After being
activated, each participant starts its processing of the request, which is mentioned by call
behavior action Pi (Processingi, where i = A, B, and C). Completions of the processing by
the participants are mentioned by the call behavior action di (Processing_donei, i = A, B
and C). After completion of the processing, the responses are delivered to the
corresponding participants indicated by the streaming pin res. When the processing of the
execution of the task by the participant B completes the result is passed through a
decision node k and only one flow is activated at the certain time instance. The response
of the collaboration role A and C are forwarded to B and the response of collaboration
role B is forwarded to either A or C, which is mentioned by collaboration t: transferij
(where ij = AB or BC).

3) Designing UML deployment diagram and stating relation between system components
and collaborations: We model the system as collection of N interconnected nodes. Our
objective is to find a deployment mapping for execution environment for a set of service
components C available for deployment that comprises service. Deployment mapping can
be defined as (M:C N) between a numbers of service components instances c, onto
physical nodes n. Components can communicate via a set of collaborations. We consider
four types of requirements in the deployment problem. Components have execution costs,

Paper 5

 184

collaborations have communication costs and costs for running of background process
and some of the components can be restricted in the deployment mapping to specific
nodes, which are called bound components. Furthermore, we consider identical nodes
that are interconnected in a full-mesh and are capable of hosting components with
unlimited processing demand. We observe the processing load that nodes impose while
host the components and also the target balancing of load between the nodes available in
the network. By balancing the load the deviation from the global average per node
execution cost will be minimized. Communication costs are considered if collaboration
between two components happens remotely, i.e. it happens between two nodes [3]. In
other words, if two components are placed onto the same node the communication cost
between them will not be considered. The cost for executing the background process for
conducting the communication between the collaboration roles is always considerable no
matter whether the collaboration roles deploy on the same or different nodes. Using the
above specified input, the deployment logic provides an optimal deployment architecture
taking into account the QoS requirements for the components providing the specified
services. We then define the objective of the deployment logic as obtaining an efficient
(low-cost, if possible optimum) mapping of component onto the nodes that satisfies the
requirements in reasonable time. The deployment logic providing optimal deployment
architecture is guided by the cost function F(M). The evaluation of cost function F(M) is
mainly influenced by our way of service definition. Service is defined in our approach as
a collaboration of total E components labeled as ci (where i = 1…. E) to be deployed and
total K collaboration between them labeled as kj, (where j = 1 … K). The execution cost
of each service component can be labeled as

icf ; the communication cost between the

service components is labeled as
jkf and the cost for executing the background process for

conducting the communication between the service components is labeled as
jBf .

Accordingly, we only observe the total load (nl , n = 1…N) of a given deployment
mapping at each node. We will strive for an optimal solution of equally distributed load
among the processing nodes and the lowest cost possible, while taking into account the
execution cost

icf , i = 1….E, communication cost
jkf , j = 1….K and cost for executing

the background process
jBf , j = 1….K.

icf ,
jkf and

jBf are derived from the service

specification, thus the offered execution load can be calculated as | |

1

E

i icf . This way, the

logic can be aware of the target load [3]:
| |

1

| |

E

i icfT
N

Given a mapping M = {mn} (where mn is the set of components at node n) the total load
can be obtained as ˆ

ini
n cc m fl . Furthermore, the overall cost function F(M) becomes

(where Ij = 1, if kj external or 0 if kj internal to a node):

| | | |
1 1

)ˆ| | (
j j

N K
n j k Bn j

f fF M l T I

(1)

(2)

 185

4) Annotating the UML model: Performance information is incorporated into the UML
activity diagram and deployment diagram according to UML profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems [4] for evaluating system
performance by performance model solver.

5) Deriving the SRN model: To generate the SRN model of the system, firstly, we
generate the SRN model of the individual system components and later compose them
together to generate the system level SRN model. The rules are based on decomposition
of UML collaboration, activity and deployment diagram into basic elements of SRN
model like states as places, timed transition and immediate transition. In addition, the
rules are based on the rendezvous synchronization, which means, when communication
between two processes of two interconnected nodes occur it follows the rendezvous
synchronization [12].

SRN model of the collaboration role of a reusable building block is mentioned by the 6-
tuple { , T, A, K, N, m0} in the following way [5]:

 = Finite set of the places (drawn as circles)
T = Finite set of the transition (drawn as bars)
A { × T} {T × } is a set of arcs connecting and T
K: T {Timed (time>0, drawn as thick transparent bar), Immediate (time = 0, drawn as

thin bar)} specifies the type of the each transition
N: A {1, 2, 3…} is the multiplicity associated with the arcs in A
m: {0, 1, 2...} is the marking that denotes the number of tokens for each place in .

The initial marking is denoted as m0.

The rules are the following:

Rule 1: The SRN model of the collaboration role of a reusable building block is
represented by the 6-tuple in the following way:

i = {Pi, di}; T = {do, exit}
A = {{(Pi × do) (do × di)}, {(di × exit) (exit × Pi)}}
K = (do Timed, exit Immediate)
N = {(Pi × do) 1, (do × di) 1, (di × exit) 1, (exit × Pi) 1}
mo = {(Pi 1}, (di 0)}.

Here, places are represented by Pi and di. Transitions are represented by do and exit,
where do is a timed transition and exit is an immediate transition. Initially place Pi
contains one token and place di contains no token. SRN model of the collaboration role is
graphically represented by the following way:

diPi

Collaboration
Role Equivalent Acitivity Diagram Equivalent SRN model

Pi

do

di exit
i

Paper 5

 186

Rule 2: The SRN model of a collaboration, where collaboration connects only two
collaboration roles is represented by the 6-tuple in the following way:

 = { i, j} = {Pi, di, Pj, dj}
T = {doi, doj, tij}; A = {{(Pi × doi) (doi × di)}, {(di × tij) (tij × Pi)}, {(Pj × doj)

(doj × dj)} {(dj × tij) (tij × Pj)}}
K = (doi Timed, doj Timed, tij Timed | Immediate)
N = {(Pi × doi) 1, (doi × di) 1, (di × tij) 1, (tij × Pi) 1, {{(Pj × doj) 1, (doj × dj)

1, (dj × tij) 1, (tij × Pj) 1}
mo = {(Pi 1, di 0, Pj 1, dj 0}

SRN model of the collaboration is graphically represented in the following way:

Here, places are represented by Pi, di, Pj, dj, transitions are represented by doi, doj and tij,
where doi and doj are timed transition and tij is a timed transition if the two collaboration
roles deploy on the different physical node (communication time > 0) or immediate
transition if the two collaboration roles deploy on the same physical node
(communication time = 0).

Rule 3: When the collaboration role of a reusable building block deploys onto a physical
node the equivalent SRN model is represented by 6-tuple in following way:

i = {Pi, di, P }
T= {do, exit}; A= {{(Pi × do) (do × di)}, {(P × do) (do × P)}, {(di × exit)

(exit × Pi)}}
K= (do Timed, exit Immediate)
N= {(Pi × do) 1, (do × di) 1, (P × do) 1, (do × P) 1(di × exit) 1, (exit ×

Pi) 1}
mo = {(Pi 1}, (di 0), (P q)}

Here, places are represented by Pi, di and P . Transitions are represented by do and exit,
where do is a timed transition and exit is an immediate transition. Initially place Pi
contains one token, place di contains no token and place P contains q (where q > 0)
tokens, which define the upper bound of the execution of the threads in parallel by the
physical node and the timed transition do will fire only, when there is a token available
in both the place Pi and P . The place P will again get back it’s token after firing of the

 187

timed transition do indicating that the node is ready to execute incoming threads. SRN
model of the collaboration role is graphically represented by the following way:

6) Evaluate the model: We focus on measuring the throughput of the system from the
developed SRN model. Before deriving formula for throughput estimation we consider
several assumptions. Firstly, if more than one service component deploy on a network
node the processing power of the network node will be utilized among the multiple
threads to complete the parallel processing of that node. There must be an upper bound of
the execution of parallel threads by a network node. Secondly, when communication
between two processes of two interconnected nodes occur it follows the rendezvous
synchronization. Moreover, all the communications among the interconnected nodes
occur in parallel. Finally, the communications between interconnected nodes will be
started following the completion of all the processing inside each physical node. By
considering the all the assumption we define the throughput as function of total expected
number of jobs, E(N) and cost of the network, CNet. The value of E(N) is calculated by
solving the SRN model using SHARPE [15]. The value of CNet is evaluated by
considering a subnet, which is performance limiting factor of the whole network i.e.,
which posses maximum cost with respect to its own execution cost, communication cost
with other subnet and cost for running background processes. Assume cost of the network,
CNet is defined as follows (where c_subneti = cost of the ith subnet, where i = 1,…, n; that
comprises the whole network,

mcf = execution cost of the mth component of subneti,
where m=1….n; which defines the total number of collaboration roles in the ith subnet, j=
1…n; which defines the total number of collaborations in the ith subnet and Ij = 0 in this
case as kj internal to a node):

c_subneti = max {
mcf + (Ij

jkf +
jBf)}

 = max {

mcf +
jBf } (3)

Now we evaluate the cost between each pair of subnet (sbuneta and subnetb; where
(a,b) N, a b) with respect to the subnet’s own processing cost, cost for running
background process and the cost associated with the communication with other subnet in
the network. Cost of a subnet pair, C_subnetpy is defined as (where j= 1…n; which
defines the total number of collaborations between subneta and subnetb, y= 1…n; which
defines the total number of subnet pair in the network and Ij = 1 as kj external to nodes):

 C_subnetpy = max {max {c_subneta, c_subnetb} + (Ij

jkf +
jBf)} (4)

 CNet = max {C_subnetp1,…,… C_subnetpn}; (5)

Paper 5

 188

 Throughput =
Net

E(N)
C

 (6)

3 Application example

As a representative example, we consider the scenario originally from Efe dealing with
heuristically clustering of modules and assignment of clusters to nodes [13]. This
scenario is sufficiently complex to show the applicability of our proposed framework.
The problem is defined in our approach as a service of collaboration of E = 10
components or collaboration roles (labeled C1 . . . C10) to be deployed and K = 14
collaborations between them depicted in Figure 4. We consider four types of
requirements in this specification. Besides the execution cost, communication costs and
cost for running background process, we have a restriction on components C2, C7, C9
regarding their location. They must be bound to nodes n2, n1, n3, respectively.

The internal behavior of the collaboration Ki of our example scenario is realized by the
call behavior action through the same UML activity model already mentioned in Figure
2(b). The composition of the collaboration role Ci is realized through UML activity
diagram shown in Figure 5. The initial node () indicates the starting of the activity. The
activity is started at the same time from the entire participants C1 to C10. After being
activated, each participant starts its processing of request, which is mentioned by call
behavior action Pi (Processing of the ith service component). Completions of the

Figure 4. Collaborations and components in the example scenario

 189

processing by the participants are mentioned by the call behavior action di (Processing
done of the ith service component). After completion of the processing, the responses are

delivered to the corresponding participants indicated by the streaming pin res. When any
participant is associated with more than one participant through collaborations the result
of the processing of that participant is passed through a decision node and only one flow
is activated at the certain time instance. For example, after completion of the processing

 K5

 K3K1

 K2 K4

d6

P6

d7

P7

d8

P8
 K8

 K9

 K10

 K7

 K11

 K13

 K6

 K12

d9 P9

 d1 P1

C3

C7
C4

C2

C5

C1

C6

C8 C9

C10

res res

res

res res

res

res

res

res

res

res res res
res

res

res res

res

res

res

res res res
res res

res

res

res

res

res

res
res

res

res

res

res res

res

res

res

res

res

res

res

res

res res res

res

res

res

res

res

res

res

x3

x2

x4

x7

x5

x1

x1

x9

x8

x6

Figure 5. Detailed behavior of the event of the collaboration using activity for our example scenario

P2

d2
d4

P4

d5

P5

res

 & ---- convey the same
meaning; just use here to
evaporate any ambiguity when
the two lines cross each other

P10 d10

P3

 d3

 K14

Paper 5

 190

of participant C2 the response will be passed through the decision node x2 and only one
flow (flow towards C1 or C3 or C5) will be activated.

In this example, the target environment consists only of N = 3 identical, interconnected
nodes with a single provided property, namely processing power and with infinite
communication capacities depicted in Figure 6 (a). The optimal deployment mapping can
be observed in Table 1. The lowest possible deployment cost, according to (2) is 17 +
(100 + 70) = 187.

Table. 1. Optimal deployment mapping in the example scenario

To annotate the UML diagram in Figure 5 and 6(a) we use the stereotypes SaStep,
ComputingResource, Scheduler and the tagged values execTime, deadline and
schedPolicy [4]. SaStep is a kind of step that begins and ends, when decisions about the
allocation of system resources are made. The duration of the execution time is mentioned
by the tagged value execTime, which is the average time in our case. deadline defines the
maximum time bound on the completion of the particular execution segment that must be
met. A ComputingResource represents either virtual or physical processing devices
capable of storing and executing program code. Hence, its fundamental service is to
compute. A Scheduler is defined as a kind of ResourceBroker that brings access to its
brokered ProcessingResource or resources following a certain scheduling policy tagged
by schedPolicy. Collaboration Ki is associated with two instances of deadline (Figure
6(b)) as collaborations in example scenario are associated with two kinds of cost:
communication cost and cost for running background process.

By considering the above deployment mapping and the transformation rule the analogous
SRN model of our example scenario is depicted in Figure 7. The states of the SRN model
are derived from the call behavior action of the corresponding collaboration role and

Node Components l | l – T |
Internal collaborations

n1 c4, c7, c8 70 2 k8, k9

n2 c2, c3, c5 60 8 k3, k4
n3 c1, c6, c9, c10 75 7 k11, k12, k14

 cost 17 100

n2: Processor
Node <<Scheduler>>

{schedPolicy = FIFO}

n1: Processor
Node

n3: Processor
Node

<<ComputingResource>>
C1

<<SaStep>
 {execTime=10, s}

K1
<<SaStep>>

{deadline1=20, s}
 {deadline2=5, s}

(a) (b)

n n

Figure 6. (a)The target network of hosts
(b) annotated UML model using MARTE profile

 191

collaboration among them. While generating the SRN model of the system if more than
one service component deploy on a network node the processing power of the network
node will be utilized among the multiple threads to complete the parallel processing of
that node. This can be achieved through marking dependency firing rate defined as the
following way in SRN model:

 i /
n

i 1
 (# (Pi)) (7)

Where i = processing rate of the ith service component deploys in a network node and
i=1…n that means total n service components deploy on a network node. (# (Pi)) returns
the number of tokens in the place Pi.

Initially, there will be a token in the place p1 to p10. For generating the SRN model firstly
we will consider the collaboration roles deploy on the processor node n1, which are C4, C7
and C8. Here, components C7 are connected with C4 and C8. The communication cost
between the components is zero but there is still some cost for execution of the
background process. So according to rule 2, after the completion of the state transition
from p7 to d7 (states of component C7), from p4 to d4 (states of component C4) and from
p8 to d8 (states of component C8) the states d7, d4 and d7, d8 are connected by the timed
transition k8 and k9 to generate the SRN model. Collaboration roles C2, C3 and C5 deploy
on the processor node n2. Likewise, after the completion of the state transition from p2 to
d2 (states of component C2), from p3 to d3 (states of component C3) and from p5 to d5
(states of component C5) the states d2, d3 and d2, d5 are connected by the timed transition
k3 and k4 to generate the SRN model according to rule 2. Collaboration roles C6, C1, C9
and C10 deploy on the processor node n3. In the same way, after the completion of the
state transition from p1 to d1 (states of component C1), from p6 to d6 (states of component
C6), p9 to d9 (states of component C9) and from p10 to d10 (states of component C10) the
states d1, d6; d1, d9 and d9, d10 are connected by the timed transition k11, k12 and K14 to
generate the SRN model following rule 2. To generate the system level SRN model, we
need to combine the entire three SRN model generated for three processor nodes by
considering the interconnection among them. To compose the SRN models of processor
node n1 and n2, states d4 and d3 connect by the timed transition k1 and states d4 and d5
connect by the timed transition k2 according to rule 2. Likewise, to compose the SRN
models of processor node n2 and n3, states d2 and d1 connect by the timed transition k5
and states d5 and d1 connect by the timed transition k6 according to rule 2. To compose
the SRN models of processor node n1 and n3, states d7 and d1 connect by the timed
transition k7, states d8 and d6 connect by the timed transition k10 and states d8 and d9
connect by the timed transition k13 according to rule 2. By the above way, the system
level SRN model is derived. According to rule 3, to define the upper bound of the
execution of parallel threads by a network node we introduce three places PP1, PP2 and
PP3 in the SRN model for the three network nodes and initially, these three places will
contain q (q = 1, 2, 3,…….) tokens, where q will define the maximum number of the
threads that will be handled by a network node at the same time. To ensure the upper
bound of the parallel processing of a network node n1, we introduce arcs from place PP1
to transition t4, t7 and t8. That means components C4, C7 and C8 can start their processing
if there is token available in place PP1 as the firing of transitions t4, t7 and t8 not only
depend on the availability of the token in the place p4, p7 and p8 but also depend on the

Paper 5

 192

availability of the token in the place PP1. Likewise, to ensure the upper bound of the
parallel processing of a network node n2 and n3 we introduce arcs from place PP2 to
transition t2, t3 and t5 and from place PP3 to transition t1, t6, t9, t10.

The throughput calculation according to (6) for the different deployment mapping
including the optimal deployment mapping is shown in Table 2. The throughput is
0.107s-1 while considers the optimal deployment mapping, where E(N) = 6.96 (calculated
using SHARPE [15]) and C_Net = 65s. The optimal deployment mapping presented in
Table 1 also ensures the optimality in case of throughput calculation. We

Table 2. Optimal deployment mapping in the example scenario

Node Components Possible cost Throughput
{n1, n2, n3} {{c4, c7, c8}, {c2, c3, c5}, {c1, c6, c9, c10}} 187 0.107
{n1, n2, n3} {{c4, c6, c7, c8}, {c2, c3, c5}, {c1, c9, c10}} 218 0.106
{n1, n2, n3} {{ c4, c7}, {c2, c3, c5, c6,}, {c1, c8, c9, c10}} 232 0.102
{n1, n2, n3} {{c5, c7, c8}, {c2, c3, c4}, { c1, c6, c9, c10}} 227 0.086
{n1, n2, n3} {{ c3, c7, c8}, {c2, c4, c5}, {c1, c6, c9, c10}} 252 0.084
{n1, n2, n3} {{ c1, c6, c7, c8}, {c2, c3, c5}, { c4, c9, c10}} 257 0.083
{n1, n2, n3} {{c1, c6, c7, c8}, {c2, c3, c4}, {c5, c9, c10}} 247 0.075

{n1, n2, n3} {{c4, c7, c8}, { c1, c2, c3, c5}, { c6, c9, c10}} 217 0.073
{n1, n2, n3} {{c3, c6, c7, c8}, {c1, c2, c4, c5}, {c9, c10}} 302 0.072
{n1, n2, n3} {{c6, c7, c8}, { c1, c2, c4, c5}, {c3, c9, c10}} 288 0.071

Figure 7. SRN model of our example scenario

 193

present here the throughput calculation of some of the deployment mappings of the
software artifacts but obviously the approach presented here confirms the efficiency in
both deployment mapping and throughput calculation for all the cases.

4 Conclusion

We present a novel approach for model based performance evaluation of distributed
system, which spans from capturing the system dynamics through UML diagram as
reusable building block to efficient deployment of service components in a distributed
manner by capturing the QoS requirements. System dynamics is captured through UML
collaboration and activity oriented approach. Furthermore, quantitative analysis of the
system is achieved by generating SRN performance model from the UML specification
style. The transformation from UML diagram to corresponding SRN elements like states,
different pseudostates and transitions is proposed. Performance related QoS information
is taken into account and included in the SRN model with equivalent timing and
probabilistic assumption for enabling the evaluation of performance prediction result of
the system at the early stage of the system development process. In addition, the logic, as
it is presented here, is applied to provide the optimal, initial mapping of components to
hosts, i.e. the network is considered rather static. However, our eventual goal is to
develop support for run-time redeployment of components, this way keeping the service
within an allowed region of parameters defined by the requirements. As the results with
our proposed framework show our logic will be a prominent candidate for a robust and
adaptive service execution platform.

References

1. F. A. Kramer, R. Bræk, P. Herrmann, “Synthesizes components with sessions from

collaboration-oriented service specifications”, SDL 2007, V-4745, LNCS, 2007.
2. OMG 2009, “UML Superstructure”, Version-2.2
3. M. Csorba, P. Heegaard, P. Herrmann, “Cost-Efficient Deployment of

Collaborating Components”, Proceedings of the DAIS, LNCS, pp. 253–268,
Springer, 2008

4. OMG 2009, “UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems”, V – 1.0

5. K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer
Science application”, Wiley- Interscience publication, ISBN 0-471-33341-7

6. J. P. Lopez, J. Merseguer, J. Campos, “From UML activity diagrams to SPN:
application to software performance engineering”, ACM SIGSOFT software
engineering notes, NY, 2004

7. S. Distefano,M. Scarpa, A. Puliafito, “Software Performance Analysis in UML
Models”, FIRB-PERF, 2005

8. A. D’Ambrogio, “A Model Transformation Framework for the Automated Building
of Performance Models from UML Models”, ACM SIGSOFT software engineering
notes, NY, 2005

9. R. H. Khan, P. E. Heegaard, “Translation from UML to SPN model: A performance
modeling framework”, Proceedings of the EUNICE, Springer, Norway, 2010

Paper 5

 194

10. R H Khan, P Heegaard, “Translation from UML to SPN model: Performance
modeling framework for managing behavior of multiple session and instance”
Proceedings of the ICCDA, IEEE computer society, China, 2010

11. F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no

12. Rendezvous synchronization, http://book.opensourceproject.org.cn/embedded/
cmprealtime/opensource/5107final/lib0091.html, retrieved June, 2010

13. Efe, K., “Heuristic models of task assignment scheduling in distributed systems”,
Computer (June 1982)

14. R H Khan, P Heegaard, “ A Performance modeling framework incorporating cost
efficient deployment of collaborating components”, Proceedings of the ICSTE,
IEEE computer society, USA, 2010

15. K. S. Trivedi, R Sahner, “Symbolic Hierarchical Automated Reliability /
Performance Evaluator (SHARPE)”, Duke University, Durham, NC, 2002

Paper 6

Derivation of Stochastic Reward Net (SRN)
from UML specification considering cost

efficient deployment management of
collaborative service components

Razib Hayat Khan, Poul E. Heegaard

Published in the International Journal of New Computer Architectures and Their Applications
(IJNCAA), Volume – 1, Issue – 3, 2011, p. 721-742, 2011

Derivation of Stochastic Reward net (SRN)
from UML specification considering cost

efficient deployment management of
collaborative service components

Razib Hayat Khan, Poul E. Heegaard

Department of Telematics
Norwegian University of Science and Technology (NTNU)
7491, Trondheim, Norway
{rkhan, poul.heegaard }@item.ntnu.no

Abstract- Performance evaluation of a distributed system is always an intricate undertaking, where system
behavior is distributed among several components those are physically distributed. Bearing this concept, we
delineate a performance modeling framework for a distributed system that proposes a transformation
process from high level UML notation to SRN model and solves the model for relevant performance
metrics. To capture the system dynamics through our proposed framework we outline a specification style
that focuses on UML collaboration and activity as reusable specification building blocks, while deployment
diagrams identify the physical components of the system and the assignment of software artifacts to
identified system components. Optimal deployment mapping of software artifacts on the available physical
resources of the system is investigated by deriving the cost function. The way to deal with parallel thread
processing of the network nodes by defining the upper bound is precisely mentioned to generate the SRN
model. The proposed performance modeling framework provides transformation rules of UML elements
into corresponding SRN representations and also the prediction result of a system such as throughput. The
applicability of our proposed framework is demonstrated in the context of performance modeling of a
distributed system.

1 Introduction

Distributed system poses one of the main streams of information and communication
technology arena with immense complexity. Designing and implementation of such
complex systems are always an intricate endeavor. Likewise, performance evaluation is
also a great concern of such complex system to evaluate whether the system meets the
performance related system requirements. Hence, modeling phase plays an important role
in the whole design process of the system for qualitative and quantitative analysis.
However, in a distributed system, system behavior is normally distributed among several
objects. The overall behavior of the system is composed of the partial behavior of the
distributed objects of the system. So it is obvious to capture the behavior of the
distributed objects for appropriate analysis to evaluate the performance related factors of
the overall system. We therefore, adopt UML collaboration and activity oriented
approach as UML is the most widely used modeling language, which models both the
system requirements and qualitative behavior through different notations [2].
Collaboration and activity diagram are utilized to demonstrate the overall system
behavior by defining both the structure of the partial object behavior as well as the
interaction between them as reusable specification building blocks and later on, this UML

 198

specification style is applied to generate the SRN model by our proposed performance
modeling framework. UML collaboration and activity provides a tremendous modeling
framework containing several interesting properties. Firstly, collaborations and activity
model the concept of service provided by the system very nicely. They define structure of
partial object behavior, the collaboration roles and enable a precise definition of the
overall system behavior. They also delineate the way to compose the services by means
of collaboration uses and role bindings [1].

The modeling framework considers system execution architecture to realize the
deployment of the service components. Abstract view of the system architecture is
captured by the UML deployment diagram, which defines the execution architecture of
the system by identifying the system components and the assignment of software artifacts
to those identified system components [2]. Considering the system architecture to
generate the performance model resolves the bottleneck of system performance by
finding a better allocation of service components to the physical nodes. This requires an
efficient approach to deploy the service components on the available hosts of distributed
environment to achieve preferably high performance and low cost levels. The most basic
example in this regard is to choose better deployment architectures by considering only
the latency of the service. The easiest way to satisfy the latency requirements is to
identify and deploy the service components that require the highest volume of interaction
onto the same resource or to choose resources that are connected by links with
sufficiently high capacity [3].

It is indispensable to extend the UML model to incorporate the performance related
quality of service (QoS) information to allow modeling and evaluating the properties of a
system like throughput, utilization, and mean response time. So the UML models are
annotated according to the UML profile for MARTE: Modeling & Analysis of Real-Time
Embedded Systems to include quantitative system parameters [4]. Thus, it helps to
maintain consistency between system design and implementation with respect to
requirement specification.

Markov models, stochastic process algebras, stochastic petri net and stochastic reward net
(SRN) are probably the best studied performance modeling techniques [5]. Among all of
them, we will focus on the stochastic reward net (SRN) as the performance model
generated by our proposed framework due to its increasingly popular formalism for
describing and analyzing systems, its modeling generality, its ability to capture complex
system behavior concisely, its ability to preserve the original architecture of the system,
to allow marking dependency firing rates and reward rates defined at the net level, to
facilitate any modification according to the feedback from the performance evaluation
and the existence of analysis tools.

Several approaches have been followed to generate the performance model from system
design specification. Lopez-Grao et al. proposed a conversion method from annotated
UML activity diagram to stochastic petrinet model [6]. Distefano et al. proposed a
possible solution to address software performance engineering that evolves through
system specification using an augmented UML notation, creation of an intermediate

 199

performance context model, generation of an equivalent stochastic petri net model whose
analytical solution provides the required performance measures [7]. D’Ambrogio
proposed a framework for transforming source software models into target performance
models by the use of meta-modeling techniques for defining the abstract syntax of models,
the interrelationships between model elements and the model transformation rules [8].
However, most existing approaches do not highlight more on the issue that how to
optimally conduct the system modeling and performance evaluation. The framework
presented in this work is the first known approach that introduces a new specification
style utilizing UML behavioral diagrams as reusable specification building block, which
is later on, used for generating performance model to produce performance prediction
result at early stage of the system development process. Building blocks describe the
local behavior of several components and the interaction between them. This provides the
advantage of reusability of building blocks, since solution that requires the cooperation of
several components may be reused within one self-contained, encapsulated building
block. In addition, the resulting deployment mapping provided by our framework has
great impact with respect to QoS provided by the system. Our aim is to deal with vector
of QoS properties rather than restricting it in one dimension. Our presented deployment
logic is surely able to handle any properties of the service, as long as we can provide a
cost function for the specific property. The defined cost function is flexible enough to
keep pace with the changing size of search space of available host in the execution
environment to ensure an efficient deployment of service components. Furthermore, we
aim to be able to aid the deployment of several different services at the same time using
the same framework. The novelty of our approach also reflected in showing the
optimality of our solution with respect to both deployment logic and evaluation of
performance metrics.

The objective of the paper is to provide an extensive performance modeling framework
that provides a translation process to generate SRN performance model from system
design specification captured by UML behavioral diagrams and later on, solves the model
for relevant performance metrics to demonstrate performance prediction results at early
stage of the system development life cycle. To incorporate the cost function to draw
relation between service components and available physical resources permit us
identifying an efficient deployment mapping in a fully distributed manner. The way to
deal with parallel thread processing of the network node by defining the upper bound is
precisely mentioned while generating the SRN model through the proposed framework.
The work presented in this paper is the extension of our previous work described in [9]
[10] [14], where we presented our framework with respect to the execution of single and
multiple collaborative sessions and considered alternatives system architecture candidates
to describe the system behavior and evaluate the performance factors.

The paper is organized as follows: Section 2 introduces our proposed performance
modeling framework, Section 3 demonstrates the application example to show the
applicability of our modeling framework, Section 4 delineates conclusion with future
works.

Paper 6

 200

2 Performance modeling framework

Our performance modeling framework utilizes the tool suite Arctis, which is integrated as
plug-ins into the eclipse IDE [11]. The proposed framework is composed of 6 steps
shown in Figure 1, where steps 1 and 2 are the parts of Arctis tool suite.

Arctis focuses on the abstract, reusable service specifications that are composed form
UML 2.2 collaborations and activities. It uses collaborative building blocks as reusable
specification units to create comprehensive services through composition. To support the
construction of building blocks consisting of collaborations and activities, Arctis offers
special actions and wizards. In addition, a number of inspections ensure the syntactic
consistency of building blocks. A developer first consults a library to check if an already
existing collaboration block or a collaboration of several blocks solves a certain task.
Missing blocks can also be created from scratch and stored in the library for later reuse.
The building blocks are expressed as UML models. The structural aspect, for example
service components and their multiplicity, is expressed by means of UML 2.2
collaborations. For the detailed internal behavior, UML 2.2 activities have been used.
They express the local behavior of each of the service components as well as their
necessary interactions in a compact and self-contained way using explicit control flows
[11]. Moreover, the building blocks are combined into more comprehensive service by
composition. For this composition, Arctis uses UML 2.2 collaborations and activities as
well. While collaborations provide a good overview of the structural aspect of the
composition, i.e., which sub-services are reused and how their collaboration roles are
bound, activities express the detailed coupling of their respective behavior [11].

The steps are illustrated below:

1) Construction of collaborative building block: The framework utilizes collaboration as
main specification units. The specifications for collaborations are given as coherent, self-
contained reusable building blocks. The structure of the building block is described by

3

UML Deployment diagram
& stating relation between

system component &
collaboration

Arctis

21
Composition of building

block using UML
Collaboration &

Activity

Library of
collaborative

building
blocks

5

4

6

SRN model

Annotated
UML model

Evaluate
model

Figure 1. Performance modeling framework

 201

UML 2.2 collaboration. The building block declares the participants (as collaboration
roles) and connection between them. The internal behavior of building block is

described by UML activity. It is declared as the classifier behavior of the collaboration
and has one activity partition for each collaboration role in the structural description. For
each collaboration use, the activity declares a corresponding call behavior action
refereeing to the activities of the employed building blocks. For example, the general
structure of the building block t is given in Figure 2, where it only declares the
participants A and B as collaboration roles and the connection between them is defined as
collaboration use tx (x=1…nAB (number of collaborations between collaboration roles A
& B)). The internal behavior of the same building block is shown in Figure 3(b). The
activity transferij (where ij = AB) describes the behavior of the corresponding
collaboration. It has one activity partition for each collaboration role: A and B. Activities
base their semantics on token flow [1]. The activity starts by placing a token, when there
is a response (indicated by the streaming pin res) to transfer by either participant A or B.
After completion of the processing by the collaboration role A and B the token is
transferred from the participant A to participant B and from participant B to Participant A,
which is represented by the call behavior action forward.

2) Composition of building block using UML collaboration and activity: To generate the
performance model, the structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the detailed behavior of how the
different events of collaborations are composed so that the desired overall system
behavior can be obtained. For the composition, UML collaborations and activities are
used complementary to each other; UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by covering also the behavioral
aspect for composition. For this purpose, call behavior actions are used. Each sub-service
is represented by call behavior action referring to the respective activity of building
blocks. Each call behavior action represents an instance of a building block. For each
activity parameter node of the referred activity, a call behavior action declares a
corresponding pin. Pins have the same symbol as activity parameter nodes to represent
them on the frame of a call behavior action. Arbitrary logic between pins may be used to
synchronize the building block events and transfer data between them. By connecting the
individual input and output pins of the call behavior actions, the events occurring in
different collaborations can be coupled with each other. Semantics of the different kinds
of pins are given in more detailed in [1].

tx: transferAB

A B

B A tx: transferAB

Figure 2. Structure of the building block using collaboration diagram

Paper 6

 202

To delineate the overall system behavior we will consider two sorts of activity diagram,
where activities base their semantics on the token flow. In first case, each collaboration
role contains one token and the processing realized by the collaboration role is
independent of each other and in second case one token will be passed through the each
collaboration role to realize the processing done by the collaboration role, which
symbolizes the dependency among the execution of collaborations roles’ activity as there
is an order in which collaboration roles are selected for completing the execution of their
activity. For example, the detailed behavior and composition of the collaboration for the
first case is given in Figure 3(a).The initial node () indicates the starting of the activity.
The activity is started at the same time from each participant. After being activated, each
participant starts its processing of the request, which is mentioned by call behavior action
Pi (Processingi, where i = A, B, and C). Completion of the processing by the participants
are mentioned by the call behavior action di (Processing_donei, i = A, B, and C). After
completion of the processing, the responses are delivered to the corresponding
participants indicated by the streaming pin res. When the execution of the task by the
participant B completes the result is passed through a decision node k and only one flow
is activated at the certain time instance. The response of the collaboration role A and C
are forwarded to B and the response of collaboration role B is forwarded to either A or C,
which is mentioned by collaboration t: transferij (where ij = AB or BC). In the above way,
the detailed behavior and composition of the collaboration as well as the internal behavior
of the collaboration for the second case can be illustrated, which are portrayed in Figure
4(a) and 4(b).

Figure 3. System activity to couple the collaboration

Figure 4. System activity to couple the collaboration when there is an order
in which collaboration roles are selected for completing the processing

 203

3) Designing UML deployment diagram and stating relation between system components
and collaborations: Our deployment logic is launched with the service model enriched
with the requirements specifying the search criteria and with a resource profile of the
hosting environment specifying the search space. In our view, however, the logic we
develop is capable of catering for any other types of non-functional requirements too, as
long as a suitable cost function can be provided for the specific QoS dimension at hand.
In this paper, costs in the model are constant, independent of the utilization of underlying
hardware [3]. Furthermore, we get benefit from using collaborations as design elements
as they incorporate local behavior of all participants and all interactions between them.
That is, a single cost value can describe communication between component instances,
without having to care about the number of messages sent, individual message sizes, etc.

We model the system as collection of N interconnected nodes shown in Figure 5. Our
objective is to find a deployment mapping for this execution environment for a set of
service components C available for deployment that comprises service. Deployment
mapping can be defined as M: C N between a numbers of service components
instances c, onto nodes n. A components ci C can be a client process or a service
process, while a node, n N is a physical resource. Generally, nodes can have different
responsibilities, such as providing services (S1), relaying traffic (R1), accommodating
clients (C1), or a mixture of these (SC1). Components can communicate via a set of
collaborations. We consider four types of requirements in the deployment problem.

Components have execution costs, collaborations have communication costs and costs for
running of background process and some of the components can be restricted in the
deployment mapping to specific nodes, which are called bound components. Furthermore,
we consider identical nodes that are interconnected in a full-mesh and are capable of
hosting components with unlimited processing demand. We observe the processing load

Figure 5. Components mapping example

Paper 6

 204

that nodes impose while hosting the components and also the target balancing of load
between the nodes available in the network.

By balancing the load the deviation from the global average per node execution cost will
be minimized. Communication costs are considered if collaboration between two
components happens remotely, i.e. it happens between two physical nodes [3]. In other
words, if two components are placed onto the same physical node the communication
cost between them will not be considered. The cost for executing the background process
for conducting the communication between the collaboration roles is always considerable
no matter whether the collaboration roles deploy on the same or different physical nodes.
Using the above specified input, the deployment logic provides an optimal deployment
architecture taking into account the QoS requirements for the components providing the
specified services. We then define the objective of the deployment logic as obtaining an
efficient (low-cost, if possible optimum) mapping of components onto the nodes that
satisfies the requirements in a reasonable time. The deployment logic providing optimal
deployment architecture is guided by the cost function F(M). The evaluation of cost
function F(M) is mainly influenced by our way of service definition. Service is defined in
our approach as a collaboration of total E components labeled as ci (where i = 1…. E) to
be deployed and total K collaboration between them labeled as kj, (where j = 1 … K).
The execution cost of each service component can be labeled as

icf , the communication

cost between the service components is labeled as
jkf and the cost for executing the

background process for conducting the communication between the service components
is labeled as

jBf . Accordingly we only observe the total load (nl , n = 1…N) of a given

deployment mapping at each physical node. We will strive for an optimal solution of
equally distributed load among the processing nodes and the lowest cost possible, while
taking into account the execution cost

icf , i = 1….E, communication cost
jkf , j = 1….K

and cost for executing the background process
jBf , j = 1….k.

icf ,
jkf , and

jBf are

derived from the service specification, thus the offered execution load can be calculated

as | |

1

E

i icf . This way, the logic can be aware of the target load [6]:
| |

1

| |

E

i icfT
N

To cater for the communication cost

jkf , of the collaboration kj in the service, the

function 0 (,)q M c is defined first [21]:

0 , { | }q M c n N c n M

This means that 0 (,)q M c returns the node n that host component in the list mapping M.
Let collaboration 1 2,jk c c . The communication cost of kj is 0 if components c1 and c2

are collocated, i.e. 0 1 0 2(,) (,)q M c q M c , and the cost is
jkf if components are otherwise

(i.e. the collaboration is remote). Using an indicator function I(x), which is expressed

(1)

 205

as 0 1 0 2((,) (,)) 1I q M c q M c , if the collaboration is remote and 0 otherwise. To
determine which collaboration kj is remote, the set of mapping M is used. Given the
indicator function, the overall communication cost of service, Fk(M), is the sum [21]

| |
K 0 ,1 0 ,21

F ((,) (,))K
j jj jkfI q k q kM M M

Given a mapping M = {mn} (where mn is the set of components at node n) the total load
can be obtained as ˆ

in cc mni
fl . Furthermore, the overall cost function F(M) becomes

(where Ij = 1, if kj external or 0 if kj internal to a node):

| | | |

1 1
ˆ() | |N K
n Kn j jBF M l T F M f

4) Annotating the UML model: Performance information is incorporated into the UML
activity diagram and deployment diagram according to the UML profile for MARTE:
Modeling & Analysis of Real-Time Embedded Systems [4] for evaluating system
performance by performance model solver.

5) Deriving the SRN model: Since SRN model is based on a Petri net; the introduction of
Petri net is described in brief [5]. A Petri net is represented by a bipartite directed graph
with two types of node: places and transitions. Each place may contain zero or more
tokens in a marking. Marking represents the state of the Petri net at a particular instant. A
transition is enabled if all of its input places have at least as many tokens as required by
the multiplicities of the input arcs. A transition may fire, when it is enabled and according
to the multiplicities of the arcs, tokens in each input place are removed and new tokens
are deposited in each output place. In a SPN, each transition has firing time that
represents the time to fire the transition after it is enabled. Generalized stochastic Petri net
(GSPN) extends SPN by introducing the immediate transition, which has zero firing time
[5]. A marking in a GSPN is called vanishing if at least one immediate transition is
enabled in the marking; otherwise the marking is called tangible. GSPN also introduces
inhibitor arcs that disable the transition unless the number of tokens in input place is as
many as the multiplicity of the inhibitor arc. An inhibitor arc is represented by a line
terminated with a small hollow circle. SRN is based on the GSPN and extends them
further by introducing prominent extensions such as guard functions, reward functions
and marking dependent firing rates [5]. A guard function is assigned to a transition. It
specifies the condition to enable or disable the transition and can use the entire state of
the net rather than just the number of tokens in places. Reward function defines the
reward rate for each tangible marking of a Petri Net based on which various quantitative
measures can be done in the net level. Marking dependent firing rate allows using the
number of token in a chosen place multiplied by the basic rate of the transition.

By considering the internal behavior of the reusable building blocks (step 1), composition
of different events of the building blocks (step 2), deployment mapping between system
components and collaborations (step 3) and annotated UML structure (step 4), probable
states and transition rate for triggering the change between states will be found based on

(2)

Paper 6

 206

which the SRN performance model will be generated. To generate the SRN model of the
system, firstly, we generate the SRN model of the individual system components and
later on, compose them together to generate the system level SRN model. The rules are
based on decomposition of UML collaboration, activity and deployment diagram into
basic elements of the SRN model like states as places, timed transition and immediate
transition. In addition, the rules are based on the rendezvous synchronization that means,
when communication between two processes of two interconnected nodes occur it
follows the rendezvous synchronization [12]. Rendezvous provides synchronization
between two threads while they communicate. In rendezvous synchronization, a
synchronization and communication point called an entry is constructed as a function call.
One process defines its entry and makes it public. Any process with knowledge of this
entry can call it as an ordinary function call. The process that defines the entry accepts the
call, executes it and returns the results to the caller. The issuer of the entry call establishes
a rendezvous with the process that defined the entry [12]. SRN model of the collaboration
role of a reusable building block is mentioned by the 6-tuple { , T, A, K, N, m0} [5]:

 = Finite set of the places (drawn as circles)
T = Finite set of the transition (drawn as bars)
A { × T} {T × } is a set of arcs connecting and T,
K: T {Timed (time>0, drawn as transparent bar), Immediate (time = 0, drawn as thin

bar)} specifies the type of the each transition
N: A {1, 2, 3…} is the multiplicity associated with the arcs in A,
m: {0, 1, 2...} is the marking that denotes the number of tokens for each place in .

The initial marking is denoted as m0.

The rules are following:

Rule 1: The SRN model of the collaboration role of a reusable building block is
represented by the 6-tuple in the following way:

i = {Pi, di}
T = {do, exit}
A = {{(Pi × do) (do × di)}, {(di × exit) (exit × Pi)}}
K = (do Timed, exit Immediate)
N = {(Pi × do) 1, (do × di) 1, (di × exit) 1, (exit × Pi) 1}
mo = {(Pi 1}, (di 0)}

The Figure 6(a) highlights the SRN model of the collaboration role A, where A has its
own token to start the execution of the SRN model and the Figure 6(b) highlights the
SRN model of the collaboration role A, where the starting of the execution of the SRN
model of A depends on the token received from other element.

Figure 6. Graphical representation of Rule 1

 207

Rule 2: The SRN model of a collaboration, where collaboration connects only two
collaboration roles are represented by the 6-tuple in the following way (In this case, each
collaboration role has its own token and the processing realized by the collaboration role
is independent of each other):

 = { i, j} = {Pi, di, Pj, dj}
T = {doi, doj, tij}
A = {{(Pi × doi) (doi × di)}, {(di × tij) (tij × Pj)}, {(Pj × doj) (doj × dj)} {(dj × tij)

 (tij × Pi)}}
K = (doi Timed, doj Timed, tij Timed | Immediate)
N = {(Pi × doi) 1, (doi × di) 1, (di × tij) 1, (tij × Pi) 1, {{(Pj × doj) 1, (doj × dj)

1, (dj × tij) 1, (tij × Pj) 1}
mo = {(Pi 1, di 0, Pj 1, dj 0}

Here, tij is a timed transition if the two collaboration roles deploy on the different physical
nodes (communication time > 0) or immediate transition if the two collaboration roles
deploy on the same physical node (communication time = 0). SRN model of the
collaboration is graphically represented in Figure 7.

Rule 3: The SRN model of a collaboration, where collaboration connects only two
collaboration roles is represented by the 6-tuple in the following way (In this case, one
token will be passed through the each collaboration role to realize the processing done by
the collaboration role, which symbolizes the dependency among the execution of
collaborations roles activity):

 = { i, j} = {Pi, di, Pj, dj}
T = {doi, doj, tij}
A = {{(Pi × doi) (doi × di)}, {(di × tij) ((tij × Pi), (tij × Pj))}, {(Pj × doj) (doj × dj)}
{(dj × exit) (Ø)}}
K = (doi Timed, doj Timed, tij Timed | Immediate)
N = {(Pi × doi) 1, (doi × di) 1, (di × tij) 1, (tij × Pi) 1, (tij × Pj) 1, (Pj × doj) 1,
(doj × dj) 1, (dj × exit) 1}
mo = {(Pi 1, di 0, Pj 1, dj 0}

Here, tij is an immediate transition if the two collaboration roles deploy on the same
physical node (communication time = 0) or timed transition if the two collaboration roles

Figure 7. Graphical representation of Rule 2

Paper 6

 208

deploy on the different physical nodes (communication time > 0). SRN model of
collaboration is represented graphically in Figure 8.

Rule 4: When the collaboration role of a reusable building block deploys onto a physical
node the equivalent SRN model is represented by 6-tuple in following way:

i = {Pi, di, P }
T= {do, exit}
A= {{(Pi × do) (do × di)}, {(P × do) (do × P)}, {(di × exit) (exit × Pi)}}
K= (do Timed, exit Immediate)
N= {(Pi × do) 1, (do × di) 1, (P × do) 1, (do × P) 1(di × exit) 1, (exit ×
Pi) 1}
mo = {(Pi 1}, (di 0), (P q)}

Here, place P contains q (where q > 0) tokens, which define the upper bound of the
execution of the threads in parallel by the physical node and the timed transition do
will fire only, when there is a token available in both the place Pi and P . The place P
will again get back it’s token after firing of the timed transition do indicating that the
node is ready to execute other incoming threads. SRN model of the collaboration role
deploys onto a physical node is graphically represented in the Figure 9.

Rule 5: For a composite structure, if a collaboration role A connects with n collaboration
roles by n collaborations like a star graph (where n=2, 3, 4, …..), where each
collaboration connects only two collaboration roles, then only one instance of
collaboration role A exists during the it’s basic state transition and the single instance of
collaboration role A connects with all other collaboration roles by immediate or timed
transitions based on their deployment on the same or different physical components to
generate the SRN model. This rule can be demonstrated through 6-tuple in the above

Figure 9. Graphical representation of Rule 4

 i j

A Bt

Timed (if time > 0)
Immediate (if time=0)

Equivalent Acitivity Diagram

Collaboration
Diagram

Equivalent SRN model

Pi
doj

di
tij exit

Pj

dj

Figure 8. Graphical representation of Rule 3

Pi

di

Pj

dj
tij

req res

doi

 209

same way. The graphical representations of the SRN model for composite structures are
shown in the Figure 10.

6) Evaluate the model: We focus on measuring the throughput of the system from the
generated SRN model. Before deriving formula for throughput estimation, we consider
several assumptions. Firstly, if more than one service component deploy on a network
node the processing power of the network node will be utilized among the multiple
threads to complete the parallel processing of that node. There must be an upper bound of
the execution of parallel threads by a network node. Secondly, when communication
between two processes of two interconnected nodes occur it follows the rendezvous
synchronization. Moreover, all the communications among the interconnected nodes
occur in parallel. Finally, the communications between interconnected nodes will be
started following the completion of all the processing inside each physical node. By
considering the all the assumption we define the throughput as function of total expected
number of jobs, E(N) and cost of the network, CNet. The value of E(N) is calculated by
solving the SRN model using SHARPE [15]. The value of CNet is evaluated by
considering a subnet, which is performance limiting factor of the whole network i.e.,
which posses maximum cost with respect to its own execution cost, communication cost
with other subnet and cost for running background processes. Assume cost of the network,
CNet is defined as follows (where c_subneti = cost of the ith subnet, where i = 1,…, n; that
comprises the whole network,

mcf = execution cost of the mth component of subneti, where

m=1….n; which defines the total number of collaboration roles in the ith subnet, j= 1…n;
which defines the total number of collaborations in the ith subnet and Ij = 0 in this case as
kj internal to a node):

c_subneti = max {
mcf + (Ij

jkf +
jBf };

 = max {
mcf +

jBf };

Figure 10. Graphical representation of Rule 5

Paper 6

 210

Now we evaluate the cost between each pair of subnet (sbuneta and subnetb; where
(a,b) N, a b) with respect to the subnet’s own processing cost, cost for running
background process and the cost associated with the communication with other subnet in
the network. Cost of a subnet pair, C_subnetpy is defined as (where j= 1…n; which
defines the total number of collaborations between subneta and subnetb, y= 1…n; which
defines the total number of subnet pair in the network and Ij = 1 as kj external to nodes):

C_subnetpy = max {max {c_subneta, c_subnetb} + (Ij
jkf +

jBf)}

CNet = max {C_subnetp1,…, C_subnetpn}

 Throughput =
Net

E(N)
C

Equation (3) for conducting the throughout calculation is considered, when each
collaboration role has its own token and the processing realized by the collaboration role
is independent of each other. The below equation (4) is considered for throughput
calculation, when there is an order in which collaboration roles are selected for
completing the execution.

Throughput =
Net

E(N)
C

Value of CNet´ will be derived from equation (5).

| | | |
Net 1 1

ˆC ()
N K

n jn j j jk Bl I f f

where Ij = 1, if kj external or 0, if kj internal to a node.

3 Application example

As a representative example, we consider the scenario originally from Efe dealing with
heuristically clustering of modules and assignment of clusters to nodes [13]. This
scenario is sufficiently complex to show the applicability of our framework. The problem
is defined in our approach as a service of collaboration of E = 10 components or
collaboration roles (labeled C1 . . . C10) to be deployed and K = 14 collaborations between
them depicted in Figure 11. We consider four types of requirements in this specification.
Besides the execution cost, communication costs and cost for running background
process, we have a restriction on components C2, C7, C9 regarding their location. They
must be bound to nodes n2, n1, n3, respectively. Moreover, collaboration and components
in the example scenario are shown in Figure 12 as an order in which components are
selected for completing the execution of their activity.

(5)

(3)

(4)

 211

The internal behavior of the collaboration Ki of our example scenario is realized by the
call behavior action through same UML activity diagram already mentioned in Figure
3(b). The composition of the collaboration role C is realized through UML activity
diagram shown in Figure 13. The initial node () indicates the starting of the activity. The
activity is started at the same time from the entire participants C1 to C10. After being
activated, each participant starts its processing of request, which is mentioned by call
behavior action Pi (Processing of the ith service component). Completions of the
processing by the participants are mentioned by the call behavior action di (Processing
done of the ith service component).

n3

n1

n2

 Run BP
cost =5

 Run BP
cost =5

 Run BP
cost =5

 Run BP
cost =5 c1

c4

c5

k1

k8

k5

k6

k7

k4

 Exec.
cost =30

 Exec.
cost =15 Exec.

cost =25

 Exec.
cost =10

 Exec.
cost =20

c7 k9

 Exec.
cost =20

c10
c8

k10

k13

k12

 Comm.
cost =50

 Exec.
cost =15

 Exec.
cost =25

 Exec.
cost =10

 Comm.
cost =40

 Comm.
cost =10

 Comm.
cost =15

 Comm.
cost =25

 Comm.
cost =20

 Comm.
cost =10

 Comm.
cost =20

 Comm.
cost =10

 Comm.
cost =15 Comm.

cost =20

 Comm.
cost =15

 Comm.
cost =20

 Comm.
cost =30

k2

c6

k11

c9

K14

 Exec.
cost =35

 Run BP
cost =5

 Run BP
cost =5

c3 k3 c2

Figure 11. Collaborations and components in the example scenario

Paper 6

 212

After completion of the processing, the responses are delivered to the corresponding
participants indicated by the streaming pin res. When any participant is associated with
more than one participant through collaborations the result of the processing of that
participant is passed through a decision node and only one flow is activated at the certain
time instance. For example after completion of the processing of participant C2 the
response will be passed through the decision node X2 and only one flow (flow towards C1
or C3 or C5) will be activated. In the same way, the composition of the collaboration role
Ci is also realized through UML activity diagram (Figure 14), where there is an order in
which collaboration roles are selected for completing the execution of their activity. In
this case, the internal behavior of the collaboration Ki of our example scenario is realized
by the call behavior action through same UML activity diagram already mentioned in
Figure 4(b).

k10

c3

c2c4

c5
c1

c7
c6

c8

c9
c10

k3k1

k2 k4 k5

k8

k11

k12

k9

k6

k7

k13

K14

Figure 12. Collaborations and components in the example
scenario when there is an order in which components are

selected for completing the processing

n3

n2

n1

 213

In this example, the target environment consists only of N = 3 identical, interconnected
physical nodes with a single provided property, namely processing power and with
infinite communication capacities depicted in Figure 15(a). The optimal deployment
mapping can be observed in Table 1. The lowest possible deployment cost, according to
(2) is 17 + (100 + 70) = 187.

 K5

 K3K1

 K2 K4

d6

P6

d7

P7

d8

P8
 K8

 K9

 K10

 K7

 K11

 K13

 K6

 K12

d9 P9

 d1 P1

C3

C7
C4

C2

C5

C1

C6

C8 C9

C10

res res

res

res res

res

res

res

res

res

res res res
res

res

res res

res

res

res

res res res
res res

res

res

res

res

res

res
res

res

res

res

res res

res

res

res

res

res

res

res

res

res res res

res

res

res

res

res

res

res

x3

x2

x4

x7

x5

x1

x1

x9

x8

x6

P2

d2
d4

P4

d5

P5

res

 & ---- convey the same
meaning; just use here to
evaporate any ambiguity when
the two lines cross each other

P10 d10

 P3

 d3

 K14

Figure 13. Detailed behavior of the event of the collaboration using activity for example scenario

Paper 6

 214

To annotate the UML diagram in Figure 13, 14 and 15(a) we use the stereotypes SaStep
ComputingResource, Scheduler and the tagged values execTime, deadline and
schedPolicy [4]. SaStep is a kind of step that begins and ends, when decisions about the
allocation of system resources are made. The duration of the execution time is mentioned
by the tagged value execTime, which is the average time in our case. deadline defines the

Node Components l | l – T | Internal
collaborations

n1 c4, c7, c8 70 2 k8, k9

n2 c2, c3, c5 60 8 k3, k4
n3 c1, c6, c9, c10 75 7 k11, k12, k14

 cost 17 100

Figure 14. Detailed behavior of the event of the collaboration using activity for our example scenario
where there is an order in which collaboration roles are selected for completing the processing

Table 1. Optimal deployment mapping in the example scenario

n n

 215

maximum time bound on the completion of the particular execution segment that must be
met. A ComputingResource represents either virtual or physical processing devices
capable of storing and executing program code. Hence, its fundamental service is to
compute. A Scheduler is defined as a kind of ResourceBroker that brings access to its
brokered ProcessingResource or resources following a certain scheduling policy tagged
by schedPolicy. Collaboration Ki is associated with two instances of deadline (Figure
15(b)) as collaborations in example scenario are associated with two kinds of cost:
communication cost and cost for running background process.

By considering the above deployment mapping and the transformation rules, the
analogous SRN model of our example scenario is depicted in Figure 16, where each
collaboration role has its own token and the processing realized by collaboration roles is
independent of each other. The states of the SRN model are derived from the call
behavior action of the corresponding collaboration role and collaboration among them.
While generating the SRN model of the system if more than one service component
deploy on a network node the processing power of the network node will be utilized
among the multiple threads to complete the parallel processing of that node. This can be
achieved through marking dependency firing rate defined as the following way in SRN
model:

 i =
1

n

i

Where i = processing rate of the ith service component deploys in a network node and
i=1…n defines the number of service components deploy on a network node. (#(Pi))
returns the number of tokens in the place Pi.

According to the transformation rules 1, each collaboration role is defined by the two
states pi and di and the passing of token from state pi to di is realized by the timed
transition ti, which is derived from the annotated UML model. Initially, there will be a
token from place p1 to p10. For generating the SRN model (Figure 16) firstly, we will
consider the collaboration roles deploy on the processor node n1, which are C4, C7 and C8.
Here, components C7 are connected with C4 and C8. The communication cost between the
components is zero but there is still some cost for execution of the background process.
So according to rule 2, after the completion of the state transition from p7 to d7 (states of
component C7), from p4 to d4 (states of component C4) and from p8 to d8 (states of
component C8) the states d7, d4 and d7, d8 are connected by the timed transition k8 and k9

Figure 15. (a)The target network of hosts (b) annotated UML model using MARTE profile

n2: Processor
Node <<Scheduler>>

{schedPolicy = FIFO}

n1: Processor
Node

n3: Processor
Node

<<ComputingResource>>
C1

<<SaStep>
 {execTime=10, s}

K1
<<SaStep>>

{deadline=20, s}
 {deadline=5, s}

(a) (b)

(6) (#(Pi))

Paper 6

 216

to generate the SRN model. Collaboration roles C2, C3 and C5 deploy on the processor
node n2. Likewise, after the completion of the state transition from p2 to d2 (states of

component C2), from p3 to d3 (states of component C3) and from p5 to d5 (states of
component C5) the states d2, d3 and d2, d5 are connected by the timed transition k3 and k4
to generate the SRN model according to rule 2. Collaboration roles C6, C1, C9 and C10
deploy on the processor node n3. In the same way, after the completion of the state
transition from p1 to d1 (states of component C1), from p6 to d6 (states of component C6),
p9 to d9 (states of component C9) and from p10 to d10 (states of component C10) the states
d1, d6; d1, d9 and d9, d10 are connected by the timed transition k11, k12 and K14 to generate
the SRN model following rule 2. To generate the system level SRN model we need to
combine the entire three SRN model generated for three processor nodes by considering
the interconnection among them. To compose the SRN models of processor node n1 and
n2, states d4 and d3 connect by the timed transition k1 and states d4 and d5 connect by the
timed transition k2 according to rule 2. Likewise, to compose the SRN models of
processor node n2 and n3, states d2 and d1 connect by the timed transition k5 and states d5
and d1 connect by the timed transition k6 according to rule 2. To compose the SRN
models of processor node n1 and n3, states d7 and d1 connect by the timed transition k7,
states d8 and d6 connect by the timed transition k10 and states d8 and d9 connect by the
timed transition k13 according to rule 2. By the above way, the system level SRN model is
derived. According to rule 4, to define the upper bound of the execution of parallel
threads by a network node we introduce three places PP1, PP2 and PP3 in the SRN model
for the three network nodes and initially these three places will contain q (q > 0) tokens,
where q will define the maximum number of the threads that will be handled by a

Figure 16. SRN model of our example scenario

 217

network node at the same time. To ensure the upper bound of the parallel processing of a
network node n1, we introduce arcs from place PP1 to transition t4, t7 and t8. That means
components C4, C7 and C8 can start their processing if there is token available in place
PP1 as the firing of transitions t4, t7 and t8 not only depend on the availability of the token
in the places p4, p7 and p8 but also depend on the availability of the token in the place PP1.
Likewise, to ensure the upper bound of the parallel processing of a network node n2 and
n3, we introduce arcs from place PP2 to transitions t2, t3 and t5 and from place PP3 to
transitions t1, t6, t9, t10.

In the same way, by considering the above same deployment mapping and the
transformation rules 1, 3 and 5, the analogous SRN model of our example scenario is
depicted in Figure 17, where there is an order in which collaboration roles are selected for
completing the execution of their activity, which symbolizes the dependency among the
execution of collaborations roles’ activity.

The throughput calculation according to (3) for the different deployment mapping
including the optimal deployment mapping is shown in Table 2. The throughput is
0.107s-1 while considers the optimal deployment mapping, where E(N) = 6.96 (calculated
using SHARPE [15]). The throughput calculation according to (4) for the different

Figure 17. SRN model of our example scenario where there is an order
in which components are selected for completing the processing

Paper 6

 218

deployment mapping including the optimal deployment mapping is shown in Table. 3.
The throughput is 2.33×10-4 s-1 while considers the optimal deployment mapping, where
E(N) = 0.0435 (calculated using SHARPE [15]).

The optimal deployment mapping presented in Table 1 also ensures the optimality in case
of throughput calculation for both the SRN performance model shown in Figure 16 and
17. We present here the throughput calculation of some of the deployment mappings of
the software artifacts but obviously the approach presented here confirms the efficiency
in both deployment mapping and throughput calculation for all the possible cases.

Node Components Possible cost (s) Throughput (s-1)

{n1, n2, n3} {{c4, c7, c8}, {c2, c3, c5}, {c1, c6, c9, c10}} 187 0.107

{n1, n2, n3} {{c4, c6, c7, c8}, {c2, c3, c5}, {c1, c9, c10}} 218 0.106

{n1, n2, n3} {{ c4, c7}, {c2, c3, c5, c6,}, {c1, c8, c9, c10}} 232 0.102

{n1, n2, n3} {{c5, c7, c8}, {c2, c3, c4}, { c1, c6, c9, c10}} 227 0.086

{n1, n2, n3} {{ c3, c7, c8}, {c2, c4, c5}, {c1, c6, c9, c10}} 252 0.084

{n1, n2, n3} {{ c1, c6, c7, c8}, {c2, c3, c5}, { c4, c9, c10}} 257 0.083

{n1, n2, n3} {{c1, c6, c7, c8}, {c2, c3, c4}, {c5, c9, c10}} 247 0.075

{n1, n2, n3} {{c4, c7, c8}, { c1, c2, c3, c5}, { c6, c9, c10}} 217 0.073

{n1, n2, n3} {{c3, c6, c7, c8}, {c1, c2, c4, c5}, {c9, c10}} 302 0.072

{n1, n2, n3} {{c6, c7, c8}, { c1, c2, c4, c5}, {c3, c9, c10}} 288 0.071

Node Components Possible cost (s) Throughput (s-1)

{n1, n2, n3} {{c4, c7, c8}, {c2, c3, c5}, {c1, c6, c9, c10}} 187 2.33×10-4

{n1, n2, n3} {{c4, c7, c8}, { c1, c2, c3, c5}, { c6, c9, c10}} 217 2.00×10-4

{n1, n2, n3} {{c4, c6, c7, c8}, {c2, c3, c5}, {c1, c9, c10}} 218 1.99×10-4

{n1, n2, n3} {{c5, c7, c8}, {c2, c3, c4}, { c1, c6, c9, c10}} 227 1.92×10-4

{n1, n2, n3} {{ c4, c7}, {c2, c3, c5, c6,}, {c1, c8, c9, c10}} 232 1.87×10-4

{n1, n2, n3} {{ c4, c5, c7, c8}, {c2, c3}, { c1, c6, c9, c10}} 232 1.87×10-4

{n1, n2, n3} {{c1, c6, c7, c8}, {c2, c3, c4}, {c5, c9, c10}} 247 1.76×10-4

{n1, n2, n3} {{ c1, c6, c7, c8}, {c2, c3, c5}, { c4, c9, c10}} 257 1.69×10-4

{n1, n2, n3} {{ c6, c7, c8}, {c1, c2, c4, c5}, { c3, c9, c10}} 288 1.51×10-4

{n1, n2, n3} {{ c3,c6, c7, c8}, { c1, c2, c4, c5}, {c9, c10}} 302 1.44×10-4

Table. 3. Optimal deployment mapping in the example scenario when there is an
order in which components are selected for completing their activity

Table 2. Optimal deployment mapping in the example scenario

 219

4 Conclusion

We present a novel approach for model based performance evaluation of distributed
systems, which spans from capturing the system dynamics through UML diagram as
reusable building block to efficient deployment of service components in a distributed
manner by capturing the QoS requirements. System dynamics is captured through UML
collaboration and activity oriented approach. The behavior of the collaboration and the
composition of collaboration to highlight the overall system behavior are demonstrated
by utilizing UML activity. Furthermore, quantitative analysis of the system is achieved
by generating SRN performance model from the UML specification style. The
transformation from UML diagrams to corresponding SRN elements like states, different
pseudostates and transitions is proposed. Performance related QoS information is taken
into account and included in the SRN model with equivalent timing and probabilistic
assumptions for enabling the evaluation of performance prediction result of the system at
the early stage of the system development process. In addition, the logic, as it is presented
here, is applied to provide the optimal, initial mapping of components to hosts, i.e. the
network is considered rather static. However, our eventual goal is to develop support for
run-time redeployment of components, this way keeping the service within an allowed
region of parameters defined by the requirements. As the results with our proposed
framework show our logic will be a prominent candidate for a robust and adaptive service
execution platform. However, the size of the underlying reachability set to generate SRN
model is major limitation for large and complex systems. Further work includes
automating the whole translation process, the way to solve the performance model and to
tackle state explosion problems of reachability marking.

References

1. F. A. Kramer, R. Bræk, P. Herrmann, “Synthesizes components with sessions from

collaboration-oriented service specifications”, SDL 2007, V-4745, LNCS, 2007.
2. OMG 2009, “UML Superstructure”, Version-2.2
3. M. Csorba, P. Heegaard, P. Herrmann, “Cost-Efficient Deployment of Collaborating

Components”, DAIS 2008, LNCS, pp. 253–268.
4. OMG 2009, “UML Profile for MARTE: Modeling & Analysis of Real-Time

Embedded Systems”, V – 1.0
5. K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer

Science application”, Wiley- Interscience publication, ISBN 0-471-33341-7
6. J. P. Lopez, J. Merseguer, J. Campos, “From UML activity diagrams to SPN:

application to software performance engineering”, ACM SIGSOFT software
engineering notes, NY, 2004

7. S. Distefano,M. Scarpa, A. Puliafito, “Software Performance Analysis in UML
Models”, FIRB-PERF, 2005

8. A. D’Ambrogio, “A Model Transformation Framework for the Automated Building
of Performance Models from UML Models”, WOSP, 2005

9. R. H. Khan, P. E. Heegaard, “Translation from UML to SPN model: A performance
modeling framework”, EUNICE, 2010

Paper 6

 220

10. R H Khan, P Heegaard, “Translation from UML to SPN model: Performance
modeling framework for managing behavior of multiple session & instance” ICCDA
2010

11. F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU, http://arctis.item.
ntnu.no

12. Rendezvous synchronization, http://book.opensourceproject.org.cn/embedded/
cmprealtime/opensource/5107final/lib0091.html, retrieved June, 2010

13. Efe, K., “Heuristic models of task assignment scheduling in distributed systems”,
Computer (June 1982)

14. R H Khan, P Heegaard, “ A Performance modeling framework incorporating cost
efficient deployment of collaborating components” ICSTE, 2010

15. K. S. Trivedi, R Sahner, “Symbolic Hierarchical Automated Reliability / Performance
Evaluator (SHARPE)”, Duke University, Durham, NC

Paper 7

From UML to SRN: A performability
modeling framework considering service

components deployment

Razib Hayat Khan, Fumio Machida, Poul E. Heegaard, Kishor S. Trivedi

Presented in International Conference on Networking and Services (ICNS), St. Maarteen, Netherlands
Antiles, 2012

Published in the Proceedings of International Conference on Networking and Services (ICNS), p. 118-127,
IARIA, 2012

From UML to SRN: A performability
modeling framework considering service

components deployment

Razib Hayat Khan1, Fumio Machida2, Poul E. Heegaard1, Kishor S. Trivedi3

1Department of Telematics
Norwegian University of Science and Technology (NTNU)
7491, Trondheim, Norway
{rkhan, poul.heegaard }@item.ntnu.no

2Service Platform Research
NEC, Japan
h-machida@ab.jp.nec.com

3Department of ECE
Duke University, NC, USA
kst@ee.duke.edu

Abstract- Conducting performance modeling of a distributed system separately from the dependability
modeling fails to asses the anticipated system performance in the presence of system components failure
and recovery. System dynamics is affected by any state changes of system components due to failure and
recovery. This introduces the concept of performability that considers the behavioral changes of the system
components due to failures and also reveals how this behavioral change affect the system performance. But,
to design a composite model for a distributed system, perfect modeling of the overall system behavior is
crucial and sometimes very cumbersome. Additionally, evaluation of the required measures by solving the
composite model are also intricate and error prone. Bearing this concept, we delineate a performability
modeling framework for a distributed system that proposes an automated transformation process from high
level UML notation to SRN model and solves the model to generate various numerical results. In order to
capture system dynamics through our framework, we outline a specification style that focuses on UML
collaboration and activity as reusable specification building blocks, while deployment diagram identifies
the physical components of the system and the assignment of software artifacts to the identified system
components. Optimal deployment mapping of software artifacts on the available physical resources of the
system is investigated by deriving the cost functions. State machine diagram is utilized to capture state
changes of system components such as failure and recovery. Later on, model composition is achieved by
assigning guard functions.

1 Introduction

The analysis of the system behavior from the pure performance viewpoint tends to be
optimistic since it ignores the failure and repair behavior of the system components. On
the other hand, pure dependability analysis tends to be too conservative since
performance considerations are not taken into account [3]. When the service is deployed
it might be the case that something goes wrong in the system because of performance or
dependability bottlenecks of the resources and that might adversely affects the service
request completion. This bottleneck is an impediment to assure the effectiveness and
efficiency requirements to achieve the purpose of system to deliver services proficiently

 224

and in timely manner [2]. Therefore, in real systems, availability, reliability and
performance are important QoS indices, which should be investigated in a combined
manner that introduces the concept of performability. Performability considers the effect
of state changes because of failure and recovery of the system components and their
impact on the overall performance of the system [1]. Bearing the above concept, we
therefore, introduce a performability modeling framework for distributed system to allow
modeling of the performance and dependability related behavior in a combined way not
only to model functional attributes of the service provided by the system but also to
investigate dependability attributes to reflect how the changes in the dependability
attributes affect the system performance. For easily understanding the complexity behind
the modeling of performability attributes, the proposed modeling framework works in
two different layers such as performance modeling layer and dependability modeling
layer. The proposed framework achieves its objective by maintaining harmonization
between performance and dependability modeling layer with the assist of model
synchronization.

However, in a distributed system, system behavior is normally distributed among several
objects. The overall behavior of the system is composed of the partial behavior of the
distributed objects of the system. So it is obvious to model the behavior of the distributed
objects perfectly for appropriate demonstration of the system dynamics. Hence, we adopt
Unified Modeling Language (UML) collaboration, state machine and activity oriented
approach as UML is the most widely used modeling language, which models both the
system requirements and qualitative behavior through different notations [4].
Collaboration and activity diagram are utilized in the performance modeling layer to
demonstrate the overall system behavior by defining both the structure of the partial
object behavior as well as the interaction between them. State machine (STM) diagram is
employed in the dependability modeling layer to capture system components behavior
with respect to failure and repair events. Later on, the UML specification styles are
applied to generate the Stochastic Reward Net (SRN) model automatically by our
modeling framework. SRN models generated in both performance and dependability
modeling layer are synchronized by the model synchronization role using guard functions
(a special property of the SRN model [5]) to properly model the system performance
behavior with respect to any state change in the system due to components failure [1].
The framework considers system architecture to realize the deployment of the service
components. Abstract view of the system architecture is captured by the UML
deployment diagram, which defines the execution architecture of the system by
identifying the system components and the assignment of software artifacts to those
identified system components [4]. Considering the system architecture to design the
proposed framework resolves the bottleneck of system performance by finding a better
allocation of service components to the physical nodes. This needs for an efficient
approach to deploy the service components on the available hosts of distributed
environment to achieve preferably high performance and low cost levels. Moreover,
UML models are annotated according to the UML profile for MARTE [7] and UML
profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms to include quantitative system parameters [12].

 225

Markov model, Stochastic Petri Nets (SPN) and SRN are probably the best studied
performability modeling techniques [3]. Among all of them, we will focus on the SRN
model generated by our framework due to its some prominent and interesting properties
such as priorities assignment in transitions, presence of guard functions for enabling
transitions that can use entire state of the net rather than a particular state, marking
dependent arc multiplicity that can change the structure of the net, marking dependent
firing rates, and reward rates defined at the net level [5].

Several approaches have been followed to conduct the performability analysis model
from system design specification [8] [9] [10] [11]. However, most existing approaches do
not highlight more on the issues that how to optimally conduct the system modeling to
capture system dynamics and to conduct performability evaluation. The framework
presented here is the first known approach that introduces a new specification style
utilizing UML behavioral diagrams as reusable specification building block to
characterize system dynamics. Building blocks describe the local behavior of several
components and the interaction between them. This provides the advantage of reusability
of building blocks, since solution that requires the cooperation of several components
may be reused within one self-contained, encapsulated building block. This reusability
provides the opportunity to design new system’s behavior rapidly utilizing the existing
building blocks according to the specification rather than starting the design process from
the scratch. In addition, the resulting deployment mapping provided by our framework
has greater impact with respect to QoS provided by the system. Our aim here is to deal
with vector of QoS properties rather than restricting in one dimension. Our presented
deployment logic is surely able to handle any properties of the service, as long as we can
provide a cost function for the specific property. The cost function defined here is flexible
enough to keep pace with the changing size of search space of available hosts in the
execution environment to ensure an efficient deployment of service components.
Furthermore, we aim to be able to aid the deployment of several different services at the
same time using the same framework. Moreover, the introduction of model
synchronization activity relinquishes the complexity and unwieldy affects in modeling
and evaluation task of large and multifaceted systems. Model synchronization hides the
intricacy behind demonstration of composite model behavior by designing guard
functions [5]. Guard functions take charge of the proper functioning of the composite
model by considering any changes in the dependability model.

The paper is organized as follows: Section 2 introduces our proposed modeling
framework, Section 3 depicts UML based model description, Section 4 explains service
component deployment issue, Section 5 clarifies model annotation, Section 6 delineates
model translation rules, Section 7 introduces the model synchronization mechanism,
Section 8 describes the fault tree model, Section 9 demonstrates the application example
to show the applicability of our modeling framework and Section 10 delineates the
conclusion with future directions.

Paper 7

 226

2 Overview of the performability framework

Our performability framework is composed of 2 layers: performance modeling layer and
dependability modeling layer. The performance modeling layer mainly focuses on
capturing the system’s dynamics to deliver certain services deployed on a distributed
system. The performance modeling layer is divided into 5 steps shown in Figure 1, where
the first 2 steps are the parts of Arctis tool suite, which is integrated as plug-ins into the
eclipse IDE [14]. Arctis focuses on the abstract, reusable service specifications that are
composed form UML 2.2 collaborations and activities [14]. It uses collaborative building
blocks to create comprehensive services through composition. To support the
construction of building block consisting of collaborations and activities, Arctis offers
special actions and wizards.

In the first step of performance modeling layer, a developer consults a library to check if
an already existing basic collaboration role block or collaboration between several blocks
solve a certain task. Missing blocks can also be created from existing building blocks and
stored in the library for later reuse. The building blocks are expressed as UML models.
The structural aspect, for example the service components and their multiplicity, is
expressed by means of UML 2.2 collaborations. For the detailed internal behavior, UML
2.2 activities have been used. In the second step, the building blocks are combined into
more comprehensive service by composition to specify the detailed behavior of how the
different events of collaborations are composed so that the desired overall system
behavior can be obtained. For this composition, UML collaborations and activities are
used complementary to each other [14]. In the third step, the deployment diagram of our
proposed system is delineated and the relationship between system component and
collaboration is outlined to describe how the service is delivered by the joint behavior of
the system components. In the fourth step, performance information is incorporated into
the UML activity diagram and deployment diagram according to the UML profile for
MARTE [7]. The next step is devoted to automate generation of SRN model following the
transformation rules. The SRN model generated in this layer is called performance SRN.

The dependability modeling layer is responsible for capturing any state change in the
system because of failure and recovery behavior of system components. The

Figure 1. Performability modeling framework

 227

dependability modeling layer is composed of three steps shown in Figure 1. In the first
step, UML STM is used to describe the state transitions of software and hardware
components of the system to capture the failure and recovery events. In the next step,
dependability parameter is incorporated into the STM diagram according to the UML
profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms Specification [12]. The last step reflects the automated generation of the
SRN model from the STM diagram following the defined transformation rules. The SRN
model generated in this layer is called dependability SRN.

The model synchronization is used as glue between performance SRN and dependability
SRN. The synchronization task guides performance SRN to synchronize with the
dependability SRN by identifying the transitions in the dependability SRN. The
synchronization between performance and dependability SRN is achieved by defining
guard functions. Once the performance SRN model synchronized with dependability
SRN model, a merged SRN model will be obtained and various performability measures
can be evaluated from the merged model using the software package such as SHARPE
[15].

3 UML based system description

Construction of collaborative building blocks: The framework utilizes collaboration as
main entity. Collaboration is an illustration of the relationship and interaction among
software objects in the UML. Objects are shown as rectangles with naming label inside.
The relationships between the objects are shown as line connecting the rectangles [4].
The specifications for collaborations here are given as coherent, self-contained reusable
building blocks. The structure of the building block is described by UML 2.2
collaboration. The building block declares the participants (as collaboration roles) and
connection between them. The internal behavior of building block is described by UML
activity. It is declared as the classifier behavior of the collaboration and has one activity
partition for each collaboration role in the structural description. For each collaboration,
the activity declares a corresponding call behavior action refereeing to the activities of the
employed building blocks. For example, the general structure of the building block t is
given in Figure 2, where it only declares the participants A and B as collaboration roles
and the connection between them is defined as collaboration tx (x=1…nAB (number of
collaborations between collaboration roles A and B)). The internal behavior of the same
building block is shown in Figure 3(b). The activity transferij (where ij = AB) describes
the behavior of the corresponding collaboration. It has one activity partition for each
collaboration role: A and B. Activities base their semantics on token flow [1]. The activity

 Figure 2. Structure of the building block

B A tx: transferAB

A B

tx: transferAB

Paper 7

 228

starts by forwarding a token, when there is a response (indicated by the streaming pin res)
to transfer from the participant A to B. The token is then transferred by the participant A
to participant B represented by the call operation action forward after completion of the
processing by the collaboration role A. After getting the response of the participant A the
participant B starts the processing of the request (indicated by the streaming pin req).

Composition of building block using UML collaboration and activity: To generate the
performability model, the structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the detailed behavior of how the
different events of collaborations are composed so that the desired overall system
behavior can be obtained. For the composition, UML collaborations and activities are
used complementary to each other. UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by covering also the behavioral
aspect for composition. Therefore, the activity contains a separate call behavior action for
all collaboration of the system. Collaboration is represented by connecting their input and
output pins. Arbitrary logic between pins may be used to synchronize the building block
events and transfer data between them. By connecting the individual input and output
pins of the call behavior actions, the events occurring in different collaborations can be
coupled with each other. Semantics of the different kinds of pins are given in more
detailed in [14]. For example, the detailed behavior and composition of the collaboration
is given in following Figure 3(a). The initial node () indicates the starting of the activity.
The activity is started from the participant A. After being activated, each participant starts
its processing of request, which is mentioned by call operation action Pri (Processingi,
where i = A, B and C). Completion of the processing by the participants are mentioned by
the call operation action Prdi (Processing_donei, where i = A, B and C). After completion
of the processing, the response is delivered to the corresponding participant. When the
processing of the task by the participant A completes, the response (indicated by
streaming pin res) is transferred to the participant B mentioned by collaboration t:
transferij (where ij = AB) and participant B starts the processing of the request (indicated
by streaming pin req). After completion of processing participant B transfers the response
to the participant C mentioned by collaboration t: transferij (where ij = BC). Participant C
starts the processing after getting the response form B and activity is terminated after
completion of the processing, which is illustrated by the terminating node ().

req res

t: transferAB

forward

Figure 3(a). Detailed behavior of the event of the collaboration using activity
 (b). Internal behavior of the collaboration

A B

(a) (b)

 229

Modeling failure and repair behavior of software and hardware components using
STM: State transitions of a system element are described using STM diagram. In an STM,
a state is depicted as a rectangle and a transition from one state to another is represented
by an arrow. In this paper, STM is used to describe the failure and recovery events of
software and hardware components. The STM of software process is shown in Figure
4(a). The initial node () indicates the starting of the operation of software process. Then
the process enters Running state. Running is the only available state in the STM. If the
software process fails during the operation, the process enters Failed state. When the
failure is detected by the external monitoring service the software process enters
Recovery state and the repair operation will be started. When the failure of the process is
recovered the software process returns to Running state. The STM of hardware node is
shown in Figure 4(b). States of the hardware node start from the Running state. Running
is the only available state here. If the node fails during the operation, the node enters
Failed state. When the failure is detected the repair operation of the hardware node is
started. When the failure of the node is repaired the node returns to Running state. The
hardware node operation is terminated by the off operation and enters Stop state. The
hardware node starts the operation, when the on command is invoked and the node enters
Running state.

4 Deployment diagram and stating relation between system and service
component

We model the system as collection of N interconnected nodes. Our objective is to find a
deployment mapping for this execution environment for a set of service components C
available for deployment that comprises the service. Deployment mapping can be defined
as (M:C N) between a numbers of service components instances C, onto nodes N. We
consider four types of requirements in the deployment problem: (1) Components have
execution costs, (2) collaborations have communication costs and (3) costs for running of
background process known as overhead cost (4) some of the components can be restricted
in the deployment mapping to specific physical nodes, which are called bound
components. We observe the processing cost that nodes impose while host the
components and also the target balancing of cost among the nodes available in the
network. Communication costs are considered if collaboration between two components
happens remotely, i.e., it happens between two nodes [6]. In other words, if two
components are placed onto the same physical node the communication cost between
them will not be considered. The cost for executing the background process for
conducting the communication between the components is always considerable no matter

Stop

Recovery

Running

Failed

Figure 4(a). STM of software process (b). STM of hardware component

(a) (b)

Fail

Detect

Repair

Recovery

Running

Failed

Fail

Detect

Repair

Off

Paper 7

 230

whether the components deploy on the same or different physical nodes. Using the above
specified input, the deployment logic provides an optimal deployment architecture taking
into account the QoS requirements for the components providing the specified service.
We then define the objective of the deployment logic as obtaining an efficient (low-cost,
if possible optimum) mapping of components onto the nodes that satisfies the
requirements in reasonable time. The deployment logic providing optimal deployment
architecture is guided by the cost function F(M). The cost function is designed here to
reflect the goal of balancing the execution cost and minimizing the communications cost
[6]. This is in turn utilized to achieve reduced task turnaround time by maximizing the
utilization of resources while minimizing any communication between processing node.
That will offer a high system throughput, taking into account the expected execution and
inter-node communication requirements of the service components on the given hardware
architectures, which is already highlighted in [13]. The evaluation of cost function F(M)
is mainly influenced by our way of service definition. Service is defined in our approach
as a collaboration of total E components labeled as ci (where i = 1…. E) to be deployed
and total K collaboration between them labeled as kj, (where j = 1 … K). The execution
cost of each service component can be labeled as

icf , the communication cost between

the service components is labeled as
jkf and the cost for executing the background

process for conducting the communication between the service components is labeled
as

jBf . Accordingly, we only observe the total cost (n̂l , n = 1…N) of a given deployment

mapping at every node. We will strive for an optimal solution of equally distributed cost
among the processing nodes and the lowest cost possible, while taking into account the
execution cost

icf , i = 1….E, communication cost
jkf , j = 1….K and cost for executing

the background process
jBf , j = 1….k.

icf ,
jkf and

jBf are derived from the service

specification, thus the offered execution cost can be calculated as | |

1

E

i icf . This way, the

logic can be aware of the target cost T [6]:

| |

1

1
| |

E

i icT f
N

To cater for the communication cost

jkf , of the collaboration kj in the service, the

function 0 (,)q M c is defined first [16]:

0 , { | }q M c n N c n M

This means that 0 (,)q M c returns the node n that host component in the list mapping M.
Let collaboration 1 2,jk c c . The communication cost of kj is 0 if components c1 and c2

are collocated, i.e. 0 1 0 2(,) (,)q M c q M c , and the cost is
jkf if components are otherwise

(i.e. the collaboration is remote). Using an indicator function I(x), which is 1 if x is true
and 0 otherwise, this expressed as 0 1 0 2((,) (,)) 1I q M c q M c , if the collaboration is

 (1)

 (2)

 231

remote and 0 otherwise. To determine which collaboration kj is remote, the set of
mapping M is used. Given the indicator function, the overall communication cost of
service, FK(M), is the sum [16]:

| |
K 0 ,1 0 ,21

F ((,) (,))K
j jj jkfI q k q kM M M

Given a mapping M = {mn} (where mn is the set of components at node n and) the total
cost can be obtained as ˆ

in cc mni
fl . Furthermore, the overall cost function F(M)

becomes [16]:
| | | |

1 1
ˆ() | |N K
n Kn j jBF M l T F M f

5 Annotation

In order to annotate the UML diagram, the stereotypes SaStep, ComputingResource,
scheduler, QoSDimension and the tagged values execTime, deadline, mean-time-to-repair,
mean-time-between-failures and schedPolicy are used according to the UML profile for
MARTE and UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics [7],[12]. SaStep is a kind of step that begins and ends, when decisions
about the allocation of system resources are made. The duration of the execution time is
mentioned by the tagged value execTime, which is the average time in our case. deadline
defines the maximum time bound on the completion of the particular execution segment
that must be met. A ComputingResource represents either virtual or physical processing
devices capable of storing and executing program code. Hence, its fundamental service is
to compute. A Scheduler is defined as a kind of ResourceBroker that brings access to its
brokered ProcessingResource or resources following a certain scheduling policy tagged
by schedPolicy. The ResourceBroker is a kind of resource that is responsible for
allocation and de-allocation of a set of resource instances (or their services) to clients
according to a specific access control policy [7]. QoSDimension provides support for the
quantification of QoS characteristics and attributes mean-time-to-repair and mean-time-
between-failures [12]. We also introduce a new stereotype Transition and three tagged
values mean-time-to-stop, mean-time-to-start and mean-time-to-failure-detect. Transition
induces a state transition of a scenario. mean-time-to-stop defines the mean time required
to stop working of a hardware instance, mean-time-to-start states the mean time required
to start working of a hardware instance, mean- time-to-failure-detect defines the mean
time required to detect failures in the system.

6 Model translation

This section highlights the rules for the model translation from various UML models into
SRN models. Since all the models will be translated into SRN we will give a brief
introduction about SRN model. SRN is based on the Generalized Stochastic Petri net
(GSPN) [3] and extends them further by introducing prominent extensions such as guard
function, reward function and marking dependent firing rate [5]. A guard function is
assigned to a transition. It specifies the condition to enable or disable the transition and

 (3)

 (4)

Paper 7

 232

can use the entire state of the net rather than just the number of tokens in places [5].
Reward function defines the reward rate for each tangible marking of Petri Net based on
which various quantitative measures can be done in the Net level. Marking dependent
firing rate allows using the number of token in a chosen place multiplying the basic rate
of the transition. SRN model has the following elements: Finite set of the place (drawn as
circle), Finite set of the transition defined as either timed transition (drawn as thick
transparent bar) or immediate transition (drawn as thick black bar), set of the arc
connecting places and transition, multiplicity associated with the arcs, and marking that
denotes the number of token in each place.

Before introducing the translation rules different types of collaboration roles as reusable
basic building blocks are demonstrated with the corresponding SRN model in Table 1
that can be utilized to form the collaborative building blocks.

Table 1. Specification of reusable unites and their SRN model

 233

The rules are the following:

Rule1: The SRN model of a collaboration (Figure 5), where collaboration connects only
two collaboration roles, is formed by combining the basic building blocks type 2 and type
3 from Table 1. Transition t in the SRN model is only realized by the overhead cost if
service components A and B deploy on the same physical node as in this case
communication cost = 0, otherwise t is realized by both the communication and overhead
cost.

In the same way, SRN model of the collaboration can be demonstrated, where the starting
of the execution of the SRN model of collaboration role A depends on the token received
from the external source.

Rule 2: For a composite structure, when a collaboration role A connects with n
collaboration roles by n collaborations like a star graph (where n>1), where each
collaboration connects only two collaboration roles, the SRN model is formed by the
utilizing the basic building block of Table 1, which is shown in Figure 6. In the first
diagram in Figure 6, if component A contains its own token equivalent SRN model of the
collaboration role A will be formed using basic building block type 1 from Table 1. The
same applies to the component B and C in the second diagram in Figure 6.

STM can be translated into a SRN model by converting each state into place and each
transition into a timed transition with input/output arcs, which is reflected in the
transformation Rules 3.

Figure 5. Graphical representation of Rule 1

Figure 6. Graphical representation of Rule 2

Paper 7

 234

Rule 3: Rule 3 demonstrates the equivalent SRN model of the STM of hardware and
software components, which are shown in the Figure 7.

7 Model synchronization

The model synchronization is achieved hierarchically. Performance SRN is dependent on
the dependability SRN. Transitions in the dependability SRN may change the behavior of
the performance SRN. Moreover, transitions in the dependability SRN model for the
software process also depend on the transitions in the dependability SRN model of the
associated hardware component. These dependencies in the SRN models are handled by
the model synchronization by incorporating the guard functions [5].

The model synchronization is focused in details here:

Synchronization between the dependability SRN models in the dependability
modeling layer: SRN model for the software process (Figure 7(a)) is expanded by
incorporating one additional place Phf, three immediate transitions thf, thsfl, thfr and one
timed transition Trecv to synchronize the transitions in the SRN model for the software
process with the SRN model for the hardware component. The expanded SRN model

Figure 7(a). SRN of software process (b). SRN of hardware component

Figure 9. (a) Synchronized transition in the SRN model of the software
process with the (b) SRN model of the hardware component

(a) (b)

Psrec

Psrun

Psfail

Tsrec

Tsdet
Tsfail

Phrun
Poff

Ton

Toff

Prec

Pfail

Tdet

Trec

Tfail

(a) (b)

Prec

Tdet

Pfail

Phrun
Trec

Tfail

Ton

Toff

Poff
Trecv

[g4]

thf
[g1]

Phf
Psrun

thsfl [g2]

thfr
[g3]

Tsdet

Psrec

Psfail

Tsrec

Tsfail

Figure 8: Model synchronization hierarchy

 235

(Figure 9(a)) is associated with four additional arcs such as (Psfail × thsfl) (thsfl × Phf),
(Psrec × thfr) (thfr × Phf), (Psrun × thf) (thf × Phf) and (Phf × Trecv) (Trecv × Psrun). The
immediate transitions thf, thfl, thfr will be enabled only, when the hardware node (in Figure
9 (b)) fails as failure of hardware node will stop the operation of software process. The
timed transition Trecv will be enabled only, when the hardware node will again start
working after being recovered from failure. Four guard functions g1, g2, g3, g4 allow the
four additional transitions thf, thsfl, thfr and Trecv of software process to work consistently
with the change of states of the hardware node. The guard functions definitions are given
in the Table 3.

Synchronization between the dependability SRN and performance SRN: To
synchronize the collaboration role activity, performance SRN model is expanded by
incorporating one additional place Pfl and one immediate transition fA shown in Figure 10.
After being deployed, when collaboration role A starts execution a checking will be
performed to examine whether both software and hardware components are running or
not. If both the components work the timed transition doA will fire, which represents the
continuation of the execution of the collaboration role A. But if software resp. hardware
components fail the immediate transition fA will be fired, which represents the quitting of
the operation of collaboration role A. Guard function grA allows the immediate transition
fA to work consistently with the change of states of the software and hardware
components.

Performance SRN model of parallel execution of collaboration roles are expanded by
incorporating one additional place Pfl and immediate transitions fBC, wBC shown in Figure
10. In our discussion, during the synchronization of the parallel processes it needs to
ensure that failure of one process eventually stop providing service to the users. This
could be achieved by immediate transition fBC. If software resp. hardware components
(Figure 9) fail immediate transition fBC will be fired, which symbolizes the quitting of the
operation of both parallel processes B and C rather than stopping either process B or C,
thus postponing the execution of the service. Stopping only either the process B or C will
result inconsistent execution of the whole SRN and produce erroneous result. If both the
software and hardware components work fine the timed transition wBC will fire to

Figure 10. Synchronize the performance SRN model with dependability SRN

Paper 7

 236

continue the execution of parallel processes B and C. Guard functions grBC, grwBC allow
the immediate transition fBC, wBC to work consistently with the change of the states of the
software and hardware components. The guard function definitions are shown in the
Table 3.

8 Hierarchical model for MTTF calculation

It is very demanding and not efficient with respect to execution time to consider behavior
of all the hardware components during the SRN model generation. SRN model becomes
very cumbersome and inefficient to execute. In order to solve the problem, we evaluate
the mean time to failure (MTTF) of system using the hierarchical model in which a fault
tree is used to represent the MTTF of the system by considering MTTF of every hardware
component in the system. Later on, we consider this MTTF of the system in our
dependability SRN model for hardware components (Figure 7(b)) rather than considering
failure behavior of all the hardware components individually. The below Figure 11
introduces one example scenario of capturing failure behavior of the hardware
components using fault tree, where system is composed of different hardware devices
such as one CPU, two memory interfaces, one storage device and one cooler. The system
will work, when CPU, one of the memory interfaces, storage device, and cooler will run.
Failure of both memory interfaces or failure of either CPU or storage device or cooler
will result in system unavailability.

9 Case study

As a representative example, we consider the scenario dealing with heuristically
clustering of modules and assignment of clusters to nodes [16]. This scenario is
sufficiently complex to show the applicability of our framework. The problem is defined
in our approach as collaboration of E = 10 service components or collaboration roles
(labeled C1 . . . C10) to be deployed and K = 14 collaborations between them depicted in
Figure 12. We consider four types of requirements in this specification. Besides the
execution cost, communication costs and cost for running background process, we have a
restriction on components C2, C7, C9 regarding their location. They must be bound to
nodes n2, n1, n3 respectively. In this scenario, new service is generated by integrating and
combining the existing service components that will be delivered conveniently by the
system. For example, one new service is composed by combining the service components
C1, C6, C7, C8, and C9 shown in Figure 12 as thick dashed line.

Figure 11. Fault tree model of system failure

 237

The internal behavior of the collaboration Ki is realized by the call behavior actions
through UML activity like structure already demonstrated in Figure 3(b). The
composition of the collaboration role Ci of the delivered service by the system is
demonstrated in Figure 14. The initial node () indicates the starting of the activity. After
being activated, each participant starts its processing of request, which is mentioned by
call behavior action Pri (Processing of the ith service component). Completions of the
processing by the participants are mentioned by the call behavior action Prdi (Processing
done of the ith service component). The activity is started from the component C1, where
the semantics of the activity is realized by the token flow. After completion of the
processing of the component C1 the response is divided into two flows, which are shown
by the fork node f1. The flows are activated towards component C7 and C6. After getting
the response from the component C1, processing of the components C7 and C6 will be

Figure 12. Collaboration & components in the example scenario

Figure 13. The target network of hosts

Figure 14. Service composition & detail behavior
of the event of the collaboration using activity

<<ComputingResource>>

<<Scheduler>>
{schedPolicy = FIFO}

n3: Processor
Node

n2: Processor
Node

n1: Processor
Node

Paper 7

 238

started. The response and request are mentioned by the streaming pin res and req. The
processing of the Component C8 will be started after getting the responses from both
component C7 and C6, which is realized by the join node j8. After completion of the
processing of component C8 component C9 starts its processing and later on, activity is
terminated, which is mentioned by the end node ().

In this example, the target environment consists of N = 3 identical, interconnected nodes
with no failure of network link, with a single provided property, namely processing
power, and with infinite communication capacities depicted in Figure 13. The optimal
deployment mapping can be observed in Table 2. The lowest possible deployment cost,
according to equation (4) is: 17 + 100 + 70 = 187.

 In order to annotate the UML diagrams in Figure 13 and 14 we use the stereotypes
<<SaStep>> <<computingResource>>, <<scheduler>> and the tagged values
execTime, deadline and schedPolicy, which are already explained in Section 5.
Collaboration Ki (Figure 14) is associated with two instances of deadline as
collaborations in example scenario are associated with two kinds of cost: communication
cost and cost for running background process (BP). To annotate the STM UML diagram
of software process (shown in Figure 15) we use the stereotype <<QoSDimension>>,
<<transition>> and attributes mean-time-between-failures, mean-time-to-failure-detect
and mean-time-to-repair already mentioned in Section 5. Annotation of the STM of
hardware component can be demonstrated in the same way as STM of software process.

By considering the deployment mapping and the transformation rules the analogous SRN
model of our example service (in Figure 14) is depicted in Figure 16. In our discussion,

Node Components l | l – T |
Internal

collaborations
n1 c4, c7, c8 70 2 k8, k9
n2 c2, c3, c5 60 8 k3, k4
n3 c1, c6, c9, c10 75 7 k11, k12, k14

 cost 17 100

Figure 15. Annotated STM diagram of software

Table 2. Optimal deployment mapping

n n

Recovery

Running

Failed

 mean-time-between-failure-detect = {4, ‘s’}
<<Transition>>

<<QoSDimension>>
mean-time-between-failure=
{14, ‘hr’}

<<QoSDimension>>

mean-time-to-repair
= {200, ‘s’}

 239

we consider M/M/1/n queuing system so that at most n jobs can be in the system at a time
[3]. For generating the SRN model, firstly, we will consider the starting node ().
According to rule 1, it is represented by timed transition (denoted as start) and the arc
connected to place Pr1 (states of component C1). When a token is deposited in place Pr1,
immediately, a checking is done about the availability of both software and hardware
components by inspecting the corresponding SRN models (Figure 9). The availability of
software and hardware components allow the firing of timed transition t1 mentioning the
continuation of the further execution. Otherwise, immediate transition f1 will be fired
mentioning the ending of the further execution because of software resp. hardware
component failure. The enabling of immediate transition f1 is realized by the guard
function gr1. After the completion of the state transition from Pr1 to Prd1 (states of
component C1) the flow is divided into two branches (denoted by the immediate
transition It1) according to rule 2. The token will be deposited to place Pr7 (states of
component C7) and Pr6 (states of component C6) after the firing of transitions K7 and K11.
The collaboration K7 is realized both by the communication cost and cost for running
background process as C1 and C7 deploy on the two different nodes n3 and n1. According
to rule 1, collaboration K11 is realized only by the cost for running background process as
C1 and C6 deploy on the same processor node n3. When a token is deposited into place
Pr7 and Pr6, immediately, a checking is done about the availability of both software and
hardware components by inspecting the corresponding dependability SRN models
(Figure 9). The availability of software and hardware components allow the firing of
immediate transition w76, which eventually enables the firing of timed transition t7 and t6

mentioning the continuation of the further execution. The enabling of immediate
transition w76 is realized by the guard function grw76. Otherwise, immediate transition f76
will be fired mentioning the ending of the further execution because of failure of software
resp. hardware component. The enabling of immediate transition f76 is realized by the
guard function gr76. After the completion of the state transition from Pr7 to Prd7 (states of
component C7) and from Pr6 to Prd6 (states of component C6) component C8 starts
processing. The merging of result is realized by the immediate transition It2 after the
firing of transitions K9 and K10. Collaboration K9 is realized only by the cost for running
background process as C7 and C8 deploy on the same processor node n1. K10 is translated
by the timed transition, which is realized both by the communication cost and cost for
running background process as C6 and C8 deploy on the two different nodes n3 and n1.
When a token is deposited in place Pr8, immediately a checking is done about the
availability of both software and hardware components by inspecting the corresponding
SRN models (Figure 9). The availability of software and hardware components allow the
firing of timed transition t8 mentioning the continuation of the further execution.
Otherwise, immediate transition f8 will be fired mentioning the ending of the further

Function Definition

g1, g2, g3 if (# Phrun == 0) 1 else 0

g4 if (# Phrun == 1) 1 else 0

grA, grBC, gr1, gr76, gr8, gr9 if (# Psrun == 0) 1 else 0

grwBC,grw76 if (# Psrun == 1) 1 else 0

Table 3. Guard functions definitions

Paper 7

 240

execution because of software resp. hardware component failure. The enabling of
immediate transition f8 is realized by the guard function gr8. After the completion of the
state transition from Pr8 to Prd8 (states of component C8) the token is passed to place Pr9
by firing of timed transition K13. K13 is realized by both communication cost and cost for
running background process as C8 and C9 deploy on the two different nodes n1 and n3.
When a token is deposited in place Pr9, immediately a checking is done about the
availability of both software and hardware components by inspecting the corresponding
SRN models (Figure 9). The availability of software and hardware components allow the
firing of timed transition t9 mentioning the continuation of the further execution.
Otherwise, immediate transition f9 will be fired mentioning the ending of the further
execution because of software resp. hardware component failure and the ending of the
execution of the SRN model is realized by the timed transition Exit2. The enabling of
immediate transition f9 is realized by the guard function gr9. After the completion of the
state transition from Pr9 to Prd9 (states of component C9) the ending of the execution of
the SRN model is realized by the timed transition Exit1. The definition of guard functions
are shown in Table 3 (Phrun and Psrun are shown in Figure 9).

We use SHARPE [15] to execute the obtained model and calculate the system’s
throughput. The throughput of successful jobs can be computed by checking the
throughput of the transition Exit1 by SHARPE [15]. The throughput result is summarized
in Table 4 and graph in Figure 17 shows throughput variation of the system against the
change of failure rate (sec-1) of both hardware and software components.

10 Conclusion and future work

We presented a novel approach for model based performability evaluation of a distributed
system. The approach spans from system’s dynamics demonstration and capturing
behavior of system components through UML diagram as reusable building blocks to
efficient deployment of service components in a distributed manner by focusing the QoS
requirements. We put emphasis to establish some important concerns relating to the
specification and solution of performability models emphasizing the analysis of the
system’s dynamics. We design the framework in a hierarchical and modular way, which
has the advantage to introduce any modification or adjustment at a specific layer in a
particular submodel rather than in the combined model according to any change in the
specification. Among the important issues that come up in our development is flexibility
of capturing the system’s dynamics using our new reusable specification of building

Figure 16. SRN model of the example service

 241

blocks and ease of understanding the intricacy of combined model generation and
evaluation from that specification by proposing transformation from UML diagram to
corresponding SRN elements like states, different pseudostates and transitions. However,
our eventual goal is to develop support for runtime redeployment of components, this
way keeping the service within an allowed region of parameters defined by the
requirements. As a result, with our modeling framework we can show that our logic will
be a prominent candidate for a robust and adaptive service execution platform. However,
the size of the underlying reachability set to generate SRN model is major limitation for
large and complex systems. Further work includes tackling the state explosion problems
of reachability marking of large distributed systems.

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.000005 0.000009 0.00003 0.00007 0.0001 0.0005

Failure rate

Th
ro

ug
hp

ut

References

[1] F. A. Jawad and E. Johnsen, “Performability: the vital evaluation method for

degradable systems and its most commonly used modeling method, Markov reward
modeling”, http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/eaj2/report.html,
<retrieved May 2011>

[2] E. de Souza e. Silva and H. R. Gali, “Performability analysis of computer systems:
from model specification to solution”, Performance evaluation 14, pp. 157-196,
1992

[3] K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer
Science application”, Wiley- Interscience publication, ISBN 0-471-33341-7, 2001

[4] OMG 2009, “UML Superstructure”, Version-2.2
[5] G. Ciardo, J. Muppala, and K. S. Trivedi, “Analyzing concurrent and fault-tolerant

software using stochastic reward nets”, Journal of Parallel and Distributed
Computing, Vol. 15, 1992

[6] M. Csorba, P. Heegaard, and P. Herrmann, “Cost-Efficient Deployment of
Collaborating Components”, Proceedings of the DAIS, LCNS, pp. 253–268,
Springer, 2008

 Throughput

Performability model 0.0095
Performance model 0.01385

Figure 17. Numerical result of our example
scenario

Table 4. Throughput calculation

Paper 7

 242

[7] OMG 2009, “UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems”, V – 1.0

[8] N. Sato and Trivedi, “Stochastic Modeling of Composite Web Services for Closed-
Form Analysis of their Performance and Reliability Bottlenecks”, Proceedings of
the ICSOC, pp. 107-118, Springer, 2007

[9] P. Bracchi, B. Cukic, and Cortellesa, “Performability modeling of mobile software
systems”, Proceedings of the ISSRE, pp. 77-84, 2004

[10] N. D. Wet and P. Kritzinger, “Towards Model-Based Communication Protocol
Performability Analysis with UML 2.0”,
http://pubs.cs.uct.ac.za/archive/00000150/01/No_10, <retrieved May 2011>

[11] Gonczy, Deri, and Varro, “Model Driven Performability Analysis of Service
Configurations with Reliable Messaging”, Proceedings of the MDWE, 2008

[12] OMG 2009, “UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics Specification”, V-1.1

[13] R. H. Khan and P. Heegaard, “A Performance modeling framework incorporating
cost efficient deployment of multiple collaborating components”, Proceedings of
the ICSECS, pp. 31-45, Springer, 2011

[14] F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no, <retrieved May 2011>

[15] K. S. Trivedi and R. Sahner, “Symbolic Hierarchical Automated Reliability /
Performance Evaluator (SHARPE)”, Duke University, NC, 2002

[16] Mate J. Csorba, “Cost efficient deployment of distributed software services”, PhD
Thesis, NTNU, Norway, 2011

Paper 8

A performability modeling framework
considering service components deployment

Razib Hayat Khan, Fumio Machida, Poul E. Heegaard, Kishor S. Trivedi

Internal Journal on Advances in Networks and Services, Volume – 5, Number – 3&4, p. 346-366, 2012

A performability modeling framework
considering service components deployment

Razib Hayat Khan1, Fumio Machida2, Poul E. Heegaard1, Kishor S. Trivedi3

1Department of Telematics
Norwegian University of Science and Technology (NTNU)
7491, Trondheim, Norway
{rkhan, poul.heegaard }@item.ntnu.no

2Service Platform Research
NEC, Japan
h-machida@ab.jp.nec.com

3Department of ECE
Duke University, NC, USA
kst@ee.duke.edu

Abstract- The analysis of the system behavior from the pure performance viewpoint tends to be optimistic
since it ignores failure and repair behavior of the system components. On the other hand, pure
dependability analysis tends to be too conservative since performance considerations are not taken into
account. The ideal way is to conduct the modeling of performance and dependability behavior of the
distributed system jointly for assessing the anticipated system performance in the presence of system
components failure and recovery. However, design and evaluation of the combined model of a distributed
system for performance and dependability analysis is burdensome and challenging. Focusing on the above
contemplation, we introduce a framework to provide tool based support for performability modeling of a
distributed software system that proposes an automated transformation process from the high level Unified
Modeling Language (UML) notation to the Stochastic Reward Net (SRN) model and solves the model for
early assessment of a software performability parameters. UML provides enhanced architectural modeling
capabilities but it is not a formal language and does not convey formal semantics or syntax. We present the
precise semantics of UML models by formalizing the concept in the temporal logic compositional temporal
logic of actions (cTLA). cTLA describes various forms of actions through an assortment of operators and
techniques, which fit excellently with UML models applied in this work and also provides the support for
incremental model checking. The applicability of our framework is demonstrated in the context of
performability modeling of a distributed system to show the deviation in the system performance against
the failure of system components.

1 Introduction

Conducting performance modeling of a distributed system separately from the
dependability modeling fails to asses the anticipated system performance in the presence
of system components failure and recovery. System dynamics is affected by any state
changes of the system components due to failure and recovery. This introduces the
concept of performability that considers the behavioral change of the system components
due to failures and also reveals how this behavioral change affects the system
performance. But to design a composite model for a distributed system, perfect modeling
of the overall system behavior is essential and sometimes very unwieldy. A distributed
system behavior is normally realized by the several objects that are physically

 246

disseminated. The overall system behavior is maintained by the partial behavior of the
distributed objects of the system [14]. So it is essential to model the distributed objects
behavior perfectly for appropriate demonstration of the system dynamics and to conduct
the performability evaluation [14]. Hence, we adopt UML collaboration, state machine,
deployment, and activity oriented approach as UML is the most commonly used
specification language, which models both the system requirements and qualitative
behavior through an assortment of notations [5] [14]. The way we utilize the UML
collaboration and activity diagram to capture the system dynamics, provides the
opportunity to reuse the activities of software components. The specifications of
collaboration are given as coherent, self-contained building blocks [14]. Reusability of
the software component is achieved by designing the collaborative building block, which
is used as main specification unit in this work. Collaboration with help of activity
diagram illustrates the complete behavior of a software system, which includes both the
local behavior among the participants and necessary interactions among them. Moreover,
for specifying deployment mapping of service components, the performability modeling
framework considers system execution architecture through UML deployment diagram.
Considering system execution architecture while designing the framework resolves the
bottleneck of the deployment mapping of service components by revealing a better
allocation of service components to the physical nodes [13]. This requires an efficient
approach to deploy the service components on the available hosts of a distributed
environment to achieve preferably high performance and low cost levels [14]. Later on,
UML State machine (STM) diagram is employed in this framework to capture system
components behavior with respect to failure and repair events.

In order to guarantee the precise understanding and correctness of the model, the
approach requires formal reasoning on the semantics of the language used and to
maintain the consistency of the models specification. Temporal logic is a suitable option
for that. In particular, the properties of super position supported by cTLA [19] make it
possible to describe systems from different view points by individual processes that are
superimposed. In this work, we focus on the cTLA that allows us formalizing the
collaborative service specifications given by UML activities and also to define the formal
semantics of the UML deployment diagram and STM model precisely. By expressing
collaborations as cTLA processes, we can ensure that a composed service maintains the
properties of the individual collaborations it is composed of. The semantic definition of
collaboration, activity, deployment, and STM model in the form of temporal logic is
implemented as a transformation tool [20], which produces TLA+ modules. These
modules may then be used as input for the model checker TLC for syntactic analysis [20].

Furthermore, UML models are annotated according to the UML profile for MARTE [7]
and UML profile for Modeling Quality of Service and Fault Tolerance Characteristics
[13] to include quantitative system parameters necessary for performability evaluation.
UML specification styles are applied to generate the SRN model automatically following
the model transformation rules, where model synchronization between the performance
and dependability SRN model is achieved by defining guard functions (a special property
of the SRN model [6]). This synchronization thus helps to properly model the system

 247

performance with respect to any state changes in the system due to components failure [1]
[2].

Over decades several performability modeling techniques have been considered such as
Markov models, SPN (Stochastic Petri Nets), and SRN [4]. Among all of these, we will
focus on the SRN as performability model generated by our framework due to its
prominent and interesting properties such as priorities assignment in transitions, presence
of guard functions for enabling transitions that can use entire state of the net rather than a
particular state, marking dependent arc multiplicity that can change the structure of the
net, marking dependent firing rates, and reward rates defined at the net level [6].

Several approaches have been pursued to accomplish a performability analysis model
from a system design specification. Sato et al. develop a set of Markov models, for
computing the performance and the reliability of Web services and detecting bottlenecks
[9]. Another initiative focuses on model-based analysis of performability of mobile
software systems by proposing a general methodology that starts from design artifacts
expressed in a UML-based notation. Inferred performability models are formed based on
the Stochastic Activity Networks (SAN) notation [10]. Subsequent effort proposes a
methodology for the modeling, verification, and performance evaluation of
communication components of distributed application building software, which translates
UML 2.0 specifications into executable simulation models [11]. Gonczy et al. mentioned
a method for high-level UML models of service configurations captured by a UML
profile dedicated to service design; performability models are derived by automated
model transformations for the PEPA toolkit in order to assess the cost of fault tolerance
techniques in terms of performance [12]. However, most of the existing approaches do
not consider the fact of how to conduct the system modeling to delineate system
functional behavior while generating the performability model using reusable software
components. The framework introduced in this work is superior to the existing
approaches that have been realized by UML specification style as reusable building block
to characterize a system dynamics. The purpose of the reusable building block is twofold:
to express the local behavior of several components and to capture the interaction
between them. This provides the excellent opportunity to reuse the building blocks, as the
interaction among the several components can be encapsulated within one self-contained
building block [14]. This reusability provides the means to design a new system’s
behavior rapidly utilizing the existing building blocks according to the specification. This
helps to start the development process from scratch, which in turn facilitates the swelling
of productivity and quality in accordance with the reduction in time and cost [2].
Moreover, the ensuing deployment mapping given by our framework has greater impact
to satisfy QoS requirements provided by the system. The target in this work is to deal
with vector of QoS instead of confining them in one dimension. Our provided
deployment logic is definitely capable of handling any properties of the service as long as
a cost function for the specific property can be produced. The defined cost function is
able to react in accordance with the changing size of search space of available hosts
presented in the execution environment to assure an efficient deployment mapping [14].
In addition, the separation of performance and dependability modeling view and the
introduction of model synchronization to synchronize the two views activities using

Paper 8

 248

guard functions relinquishes the complex and unwieldy affect in performability modeling
and evaluation of large and multifaceted systems [1].

The objective of this paper is to provide a tool based support for the performability
modeling of a distributed system to allow modeling of the performance and dependability
related behavior in a combined and automated way. This in turn allows not only to model
functional attributes of the service provided by the system but also to investigate
dependability attributes to reflect how the changes in the dependability attributes affect
the system overall performance. For ease of understanding the complexity behind the
modeling of performability attributes, our modeling framework works in two different
views such as performance modeling view and dependability modeling view. The
framework achieves its objective by maintaining harmonization between performance
and dependability modeling view with the support of model synchronization. The paper is
organized as follows: Section 2 introduces our performability modeling framework,
Section 3 depicts UML model description, Section 4 describes formalization of UML
models, Section 5 explains service components deployment issue, Section 6 clarifies
UML models annotations, Section 7 delineates model transformation rules, Section 8
introduces the model synchronization mechanism, Section 9 describes the hierarchical
method for mean time to failure (MTTF) calculation, Section 10 indicates the tool based
support of the modeling framework, Section 11 illustrates the case study, and Section 12
delineates the concluding remarks with future directions.

2 Overview of the performability framework

Our performability framework is composed of 2 views: performance modeling view and
dependability modeling view. The performance modeling view mainly focuses on
capturing the system’s dynamics to deliver certain services deployed on a distributed
system. The performance modeling view is divided into 4 steps shown in Figure 1, where
the service specification step is the part of Arctis tool suite, which is integrated as plug-
ins into the eclipse IDE [15]. Arctis focuses on the abstract, reusable service
specifications that are composed of UML 2.2 collaborations and activities [15]. It uses
collaborative building blocks to create comprehensive services through composition. In
order to support the construction of building block consisting of collaborations and
activities, Arctis offers special actions and wizards.

In the first step of performance modeling view, a developer consults a library to check if
an already existing basic building block or collaboration between several blocks solves a
certain task. Missing blocks can also be created from existing building blocks and stored
in the library for later reuse. The building blocks are expressed as UML models. The
structural aspect, for example the service components and their multiplicity, is expressed
by means of UML 2.2 collaborations. For the detailed internal behavior, UML 2.2
activities have been used. The building blocks are combined into more comprehensive
service by composition to specify the detailed behavior of how the different events of
collaborations are composed. For this composition, UML collaborations and activities are
used complementary to each other [15]. In the deployment phase, the deployment
diagram of our proposed system is delineated and the relationship between system

 249

components and collaborations is outlined to describe how the service is delivered by the
joint behavior of the system components. In the model annotation phase, performance
information is incorporated into the UML activity diagram and deployment diagram
according to the UML profile for MARTE [8]. The model transformation phase is devoted
to automate generation of a SRN model following the model transformation rules. The
SRN model generated in this view is called performance SRN.

The dependability modeling view is responsible for capturing any state changes in the
system because of failure and recovery behavior of system components. The
dependability modeling view is composed of three steps shown in Figure 1. In the first
step, UML STM diagram is used to describe the state transitions of software and
hardware components of the system to capture the failure and recovery events. In the
model annotation phase, dependability parameters are incorporated into the STM diagram
according to UML profile for Modeling Quality of Service and Fault Tolerance
Characteristics & Mechanisms Specification [13]. The model transformation phase
reflects the automated generation of the SRN model from the STM diagram following the
model transformation rules. The SRN model generated in this view is called
dependability SRN.

The model synchronization is used as glue between performance SRN and dependability
SRN. The synchronization task guides the performance SRN model to synchronize with
the dependability SRN model by identifying the transitions in the dependability SRN.

Figure 1. Performability modeling framework

Paper 8

 250

The synchronization between performance and dependability SRN is achieved by
defining the guard functions. Once the performance SRN model is synchronized with
dependability SRN model, a merged SRN model will be obtained and various
performability measures can be evaluated from the merged model using the software
package SHARPE [16].

3 UML based system description

Construction of collaborative building blocks: The performability modeling
framework utilizes collaboration as main entity. Collaboration is an illustration of the
relationship and interaction among software objects in the UML. Objects are shown as
rectangles with naming label inside. The relationships between the objects are shown in a
oval connecting the rectangles [5]. The specifications for collaborations are given as
coherent, self-contained reusable building blocks. The structure of the building block is
described by UML 2.2 collaboration. The building block declares the participants (as
collaboration roles) and connection between them. The internal behavior of building
block is described by the UML activity. It is declared as the classifier behavior of the
collaboration and has one activity partition for each collaboration role in the structural
description. For each collaboration, the activity declares a corresponding call behavior
action referring to the activities of the employed building blocks. For example, the
general structure of the building block t is given in Figure 2, where it only declares the
participants A and B as collaboration roles and the connection between them is defined as
collaboration tx (x=1…nAB (number of collaborations between collaboration roles A & B)).
The internal behavior of the same building block is shown in Figure 3(b). The activity
transferij (where ij = AB) describes the behavior of the corresponding collaboration. It has
one activity partition for each collaboration role: A and B. Activities base their semantics
on token flow [2]. The activity starts by forwarding a token, when there is a response

(indicated by the streaming pin res) to transfer from participant A to B. The token is then
transferred by the participant A to participant B (represented by the call operation action
forward) after completion of the processing by the collaboration role A. After getting the
response of the participant A, the participant B starts the processing of the request
(indicated by the streaming pin req).

In order to generate the performability model, the structural information about how the
collaborations are composed is not sufficient. It is necessary to specify the detailed

Figure 2. Structure of the building block

B A tx: transferAB

A B

tx: transferAB

 251

behavior of how the different events of collaborations are composed so that the desired
overall system behavior can be obtained. For the composition, UML collaborations and

activities are used complementary to each other. UML collaborations focus on the role
binding and structural aspect, while UML activities complement this by covering also the
behavioral aspect for composition. Therefore, the activity contains a separate call
behavior action for all collaborations of the system. Collaboration is represented by
connecting their input and output pins. Arbitrary logic between pins may be used to
synchronize the building block events and transfer data between them. By connecting the
individual input and output pins of the call behavior actions, the events occurring in
different collaborations can be coupled with each other. Semantics of the different kinds
of pins are given in more details in [14]. For example, the detail behavior and
composition of the collaboration is given in following Figure 3(a). The initial node ()
indicates the starting of the activity. The activity is started from the participant A. After
being activated, each participant starts its processing of request, which is mentioned by
call operation action Pri (Processingi, where i = A, B & C). Completion of the processing
by the participants are mentioned by the call operation action Prdi (Processing_donei,
where i = A, B & C). After completion of the processing, the response is delivered to the
corresponding participant. When the processing of the task by the participant A completes,
the response (indicated by streaming pin res) is transferred to the participant B mentioned
by collaboration t: transferij (where ij = AB) and participant B starts the processing of the
request (indicated by streaming pin req). After completion of the processing, participant
B transfers the response to the participant C mentioned by collaboration t: transferij
(where ij = BC). Participant C starts the processing after receiving the response from B
and activity is terminated after completion of the processing, which is illustrated by the
terminating node ().

Modeling failure & repair behavior of software & hardware component using UML
STM: State transitions of a system element are described using UML STM diagram. In
an STM, a state is depicted as a rectangle and a transition from one state to another is
represented by an arrow [5]. In this work, STM is used to describe the failure and
recovery behavior of software and hardware components.

req res

t: transferAB

forward

Figure 3. (a) Detailed behavior of the event of the collaboration using activity (b) internal
behavior of the collaboration

A B

(a) (b)

Paper 8

 252

The STM of software process is shown in Figure 4(a). The initial node () indicates the
starting of the operation of software process. Then the process enters Running state.
Running is the only available state in the STM. If the software process fails during the
operation, the process enters Failed state. When the failure is detected by the external
monitoring service the software process enters Recovery state and the repair operation
will be started. When the failure of the process is recovered the software process returns
to Running state. The STM of hardware component is shown in Figure 4(b). The initial
node () indicates the starting of the operation of hardware component. Then the
component enters Running state. Running is the only available state here. If the active
component fails during the operation and the hot standby component is available, the
standby component will take charge and the component operation will be continued.
When any failure (whether active component or standby component) incurs, the recovery
operation will be performed.

4 Formalizing UML diagram

So far we introduced the UML diagrams in a descriptive and informal way. In order to
understand the precise formalism of the UML models and for the correct way of model
transformation, we need to present the UML models with the help of formal semantics.
The formal semantics of UML models thus help us implementing the models very
efficiently for providing the tool based support of our framework. Before introducing the
formalization of the UML models, at first, we illustrate the temporal logic, more
specifically compositional Temporal Logic of Actions (cTLA) that will be applied to
formalize the UML models. We illustrate in this paper the formal representation of the
state machine model. Formalization of other UML models such as collaboration, activity,
and deployment diagram and the alignment between UML models and cTLA (which is
beyond the scope of this paper) have already been mentioned in [22].

Compositional Temporal Logic of Action (cTLA): Lamport’s Temporal Logic of
Actions (TLA, [21]) is a linear-time temporal logic modeling the system behavior, where
the system behavior is realized by a set of considerably large number of state sequences
[s0, s1, s2 . .] [23]. Thus, the TLA formalisms are applied nicely to define the state
machines formally produced by our framework, which at the end, also models
considerably long sequences of states si starting with an initial state s0. Compositional
TLA (cTLA, [22]) was originated from TLA to offer more easily comprehensible

Figure 4. (a) STM of software process (b) STM of hardware component

(a)

Fail

Detect

Repair

Recovery

Running

Failed

(b)

Fail

Detect
Repair

Standby

Recovery

Running

Failed

Fail

Switch when active instance failed

 253

formalisms and proposes a more supple composition of specifications. The concept of
process is basically introduced by a cTLA. A cTLA process describes system behavior as
the notion of state transition systems [23].

Formalizing state machine diagram using cTLA: We sketch the cTLA model of STM
in Figure 5 by the specification of software process dependability behavior illustrated in
Figure 4(a) [23]. The header Software declares the name of the process type. Events is an
expression defined as constant record type. The state space is modeled by a set of
variables like state or Queue. Predicate INIT specifies the subset of initial states. The
state transition systems are mentioned by actions (e.g., enqueue, dequeu), which are
realized as pairs of current and next states describing a set of transitions each. The current
state is defined as a variable in simple form (e.g., state), while the next state is mentioned
by the prime form (e.g., state´). Variables, which won’t be changed by an action are listed
by the statement UNCHANGED [23]. State transition system is defined by the body of a
cTLA process type. One cTLA process represents one state machine that mentions a set
of TLA state sequences. The first state s0 of each modeled state sequence has to fulfill the
initial condition INIT. The state changes [si, si+1] either correspond with a process action
or with a so-called stuttering step in which the current and the next states are equal (i.e., si
= si+1) [23]. Incoming events are inserted into the data structure addEvent, which is a

Figure 5. cTLA process of software component

Paper 8

 254

sequence of events. The operator denotes the concatenation of queue elements. Events
are added to the queue by the action enqueue, which takes incoming events as action
parameters [23]. Retrieving events are modeled by the data structure fetchEvent, where
the first element is obtained by the operations FIRST(). Events are retrieved from the
queue by the action dequeue, which takes retrieving events as action parameters. An
initial transition initiates from an initial pseudo state (initState) and its execution is
associated with the starting of the state machine. Exactly one initial transition is linked
with each state machine [23]. A cTLA variable state describes the control state by
expressing them through the control state identifiers. Stateseq captures the current and
next state and starts from initial state of the STM diagram. In order to conduct an action
in a lively manner, we can associate actions with weak and strong fairness properties. In
particular, weak fairness forces the execution of an activity as if it were enabled
continuously. Strong fairness forces the execution even if the action is sometimes
disabled [23]. The last statement WF: dequeue, initial ... lists the actions that have to be
carried out in a way which ensures week fairness property [23].

5 Deployment diagram & stating relation between system & service

component

We model the system as collection of N interconnected physical nodes. Our objective is
to find a deployment mapping for this execution environment for a set of service
components available for deployment that comprises the service. Deployment mapping M
can be defined as [M=(C N)] between a number of service components instances C,
onto physical nodes N. We consider three types of requirements in the deployment
problem, where the term cost is introduced to capture several non-functional
requirements; those are later on, utilized to conduct performance evaluation of the
systems: (1) Service components have execution costs, (2) Collaborations have
communication costs and costs for running of background process known as overhead
cost, (3) Some of the service components can be restricted in the deployment mapping to
specific physical nodes, which are called bound components.

Furthermore, we consider identical physical nodes that are interconnected in a full-mesh
and are capable of hosting service components with unlimited processing demand. We
observe the processing cost that physical nodes impose while hosting the service
components and also the target balancing of cost among the physical nodes available in
the network. Communication costs are considered if collaboration between two service
components happens remotely, i.e. it happens between two physical nodes [18]. In other
words, if two service components are placed onto the same physical node the
communication cost between them will be ignored. This holds for the case study that is
conducted in this paper. This is not generally true, and it is not a limiting factor of our
framework. The cost for executing the background process for conducting the
communication between the collaboration roles is always considerable no matter whether
the collaboration roles deploy on the same or different physical nodes. Using the above
specified input, the deployment logic provides an optimal deployment architecture taking
into account the QoS requirements for the service components providing the specified
services. We then define the objective of the deployment logic as obtaining an efficient

 255

(low-cost, if possible optimum) mapping of service components onto the physical nodes
that satisfies the requirements in a reasonable time. The deployment mapping providing
optimal deployment architecture is mentioned by the cost function F(M), that is a
function that expresses the utility of deployment mapping of service components on the
physical resources with their constraints and capabilities by satisfying non-functional
requirements of the system. The cost function is designed to reflect the goal of balancing
the execution cost and minimizing the communication cost. This is in turn utilized to
achieve reduced task turnaround time by maximizing the utilization of system resources
while minimizing any communication between processing nodes. That will offer a high
system throughput, taking into account the expected execution and inter-node
communication requirements of the service components on the given hardware
architecture [14]. The evaluation of cost function F(M) is mainly influenced by our way
of service definition. A service is defined in our approach as a collaboration of total E
service components labeled as ci (where i = 1…. E) to be deployed and total K
collaborations between them labeled as kj, (where j = 1 … K). The execution cost of each
service component can be labeled as

icf , the communication cost between the service

components is labeled as
jkf and the cost for executing the background process for

conducting the communication between the service components is labeled as
jBf .

Accordingly, we will strive for an optimal solution of equally distributed cost among the
processing nodes and the lowest cost possible, while taking into account the execution
cost

icf , i = 1….E, communication cost
jkf , j = 1….K, and cost for executing the

background process
jBf , j = 1….K.

icf ,
jkf , and

jBf are derived from the service

specification, thus the offered execution cost can be calculated as | |

1

E

i icf . This way, the

logic can be aware of the target average cost T per physical node (X= total number of
physical nodes) [18]:

| |

1

1
| |

E

i icT
X

f

In order to cater for the communication cost
jkf , of the collaboration kj in the service, the

function 0 (,)q M c is defined first [20]:

0 , { | }q M c n N c n M

This means that 0 (,)q M c returns the physical node n from a vector of physical nodes N
available in the network that host component in the list mapping M. Let
collaboration

1 2,jk c c . The assumption in this paper is that, the communication cost of
kj is 0 (in general, it can be non-zero) if components c1 and c2 are collocated, i.e.

0 1 0 2(,) (,)q M c q M c and the cost is
jkf if service components are otherwise (i.e., the

collaboration is remote). Using an indicator function I(x), which is 1 if x is true and 0
otherwise, this is expressed as 0 1 0 2((,) (,)) 1I q M c q M c , if the collaboration is remote
and 0 otherwise. In order to determine which collaboration kj is remote, the set of

(2)

(1)

Paper 8

 256

mapping M is used. Given the indicator function, the overall communication cost of
service, FK(M), is the sum [20]:

| |
0 ,1 0 ,21

((,) (,))K
K j jj k j

F M I q M k q M k f

Given a mapping M = {mn} (where mn is the set of service components at physical node n)
the total load can be obtained as ˆ

in c m cni
fl . Furthermore, the overall cost function

F(M) becomes [20] (where Ij = 1, if kj external or 0 if kj internal to a node):
| | | |

1 1
ˆ() | |X K

n Kn j B j
F M l T F M f

The absolute value ˆ| |nl T is used to penalize the deviation from the desired average load
per node.

6 Annotation

In order to annotate the UML diagrams, the stereotype SaStep, ComputingResource,
Scheduler, QoSDimension, and the tagged value execTime, deadline, mean-time-to-repair,
mean-time-between-failures, and schedPolicy are used according to the UML profile for
MARTE and UML Profile for Modeling Quality of Service & Fault Tolerance
Characteristics [8] [13]. The stereotypes are the following:

SaStep defines a step that begins and ends, when decisions about the allocation of
system resources are made.
ComputingResource represents either virtual or physical processing devices capable of
storing and executing program code. Hence, its fundamental service is to compute.
Scheduler is a stereotype that brings access to a resource following a certain scheduling
policy mentioned by tagged value schedPolicy.
QoSDimension provides support for the quantification of QoS characteristics and
attributes mean-time-to-repair and mean-time-between-failures [13].

The tagged values are the following:

execTime: The duration of the execution time is mentioned by the tagged value
execTime, which is the average time in our case.
deadline defines the maximum time bound on the completion of the particular
execution segment that must be met.
mean-time-between-failures defines the mean time of occurring a software and
hardware instance failure
mean-time-to-repair defines the mean time that is required to repair a software or
hardware instance failure

We also introduce a new stereotype Transition and three tag values mean-time-to-stop,
mean-time-to-start, and mean-time-to-failure-detect.

Transition induces a state transition of a scenario.

(4)

(3)

 257

mean-time-to-stop defines the mean time that is required by a hardware instance to stop
working
mean-time-to-start states the mean time that is required by a hardware instance to start
working
mean- time-to-failure-detect defines the mean time that is required to detect failures in
the system.

Figure 6 illustrates an example annotated UML model using the activity diagram, where
the flow between PA and dA is annotated using stereotype SaStep and tagged value

execTime, which defines that after being deployed in an execution environment the
collaboration role A needs t1 seconds and collaboration role B needs t2 seconds to
complete their processing by the physical node. After completing the processing,
communication between A and B is achieved in t3 sec while the overhead time to conduct
this communication is t4 sec, which is annotated using stereotype SaStep and two
instances of deadline – deadline1 defines the communication time and deadline2 is for
overhead time.

7 Model translation

This section highlights the rules for the model translation from various UML models into
SRN models. Since all the models will be translated into the SRN model, we will give a
brief introduction about SRN model. SRN is based on the Generalized Stochastic Petri
Net (GSPN) [4] and extends them further by introducing prominent extensions such as
guard function, reward function, and marking dependent firing rate [6]. A guard function
is assigned to a transition. It specifies the condition to enable or disable a transition and
can use the entire state of the net rather than just the number of tokens in places [6].
Reward function defines the reward rate for each tangible marking of Petri Net based on
which various quantitative measures can be done in the Net level. Marking dependent
firing rate allows using the number of tokens in a chosen place multiplied by the basic
rate of the transition. SRN model has the following elements: Finite set of the place
(drawn as circles), Finite set of the transition defined as either a timed transition (drawn

Figure 6. Annotated UML

Paper 8

 258

as thick transparent bar) or a immediate transition (drawn as thick black bar), set of the
arc connecting the place and transition, multiplicity associated with the arc, and marking
that denotes the number of token in each place.

Before introducing the model translation rules, different types of collaboration roles as
reusable basic building blocks are demonstrated with the corresponding SRN model in
Table I that can be utilized to form the collaborative building blocks.

The rules are the following:

Rule 1: The SRN model of a collaboration (Figure 7), where collaboration connects only
two collaboration roles, is formed by combining the basic building blocks type 2 and type
3 from Table 1. Transition t in the SRN model is only realized by the overhead cost if
service components A and B deploy on the same physical node as in this case,
communication cost = 0, otherwise t is realized by both the communication & overhead
cost.

Table 1. Specification of reusable unites and their SRN model

 259

In the same way, SRN model of the collaboration can be demonstrated, where the starting
of the execution of the SRN model of collaboration role A depends on the token received
from the external source.

Rule 2: For a composite structure, when a collaboration role A connects with n
collaboration roles by n collaborations like a star graph (where n > 1), where each
collaboration connects only two collaboration roles, the SRN model is formed by
combining the basic building block of Table 1, which is shown in Figure 8. In the first
diagram of Figure 8, if component A contains its own token, equivalent SRN model of
the collaboration role A will be formed using basic building block type 1 from Table 1.
The same applies to the component B and C in the second diagram in Figure 8.

STM can be translated into a SRN model by converting each state into place and each
transition into a timed transition with input/output arcs, which is reflected in the
transformation Rule 3.

Rule 3: Rule 3 demonstrates the equivalent SRN model of the STM of hardware and
software components, which are shown in the Figure 9.

Figure 7. Graphical representation of Rule 1

Figure 8. Graphical representation of Rule 2

Paper 8

 260

The SRN model for hardware component is shown in Figure 9(b). A token in the place
Prun represents the active hardware component and a token in Pstb represents a hot standby
hardware component. When the transition Tfail fires, the token in Prun is removed and the
transition Tswt is enabled. By the Tswt, which represents the failover, hot standby hardware
component becomes an active component.

8 Model synchronization

The model synchronization is achieved hierarchically, which is illustrated in Figure 10.
Performance SRN is dependent on the dependability SRN. Transitions in dependability
SRN may change the behavior of the performance SRN. Moreover, transitions in the
SRN model for the software process also depend on the transitions in the SRN model of
the hardware component. These dependencies in the SRN models are handled through
model synchronization by incorporating guard functions [6].

Figure 9 (a) SRN of Software process (b) SRN of hardware component

(a)

(b)

Psrec

Psrun

Psfaild

Tsrec

Tsdet

Tsfail

Prun

Pstb
Tstbfl

Tswt

Prec

Pfail

Tdet Trec

Tfail

Figure 10. Model synchronization hierarchy

Fail

Detect

Repair

Recovery

Running

Failed

Fail Fail

STM of software component
SRN model

STM of hardware component SRN model

Detect
Repair

Standby

Recovery

Running

Failed

Switch when active instance failed

 261

The model synchronization is focused in detail below:

Synchronization between the dependability SRN models in the dependability
modeling layer: SRN model for the software process (Figure 9(a)) is expanded by
incorporating one additional place Phf, three immediate transitions thf, thsfl, thfr, and one
timed transition Trecv to synchronize the transitions in the SRN model for the software
process with the SRN model for the hardware component. The expanded SRN model

(Figure 11(a)) is associated with four additional arcs such as (Psfail × thsfl) (thsfl × Phf),
(Psrec × thfr) (thfr × Phf), (Psrun × thf) (thf × Phf) and (Phf × Trecv) (Trecv × Psrun). The
immediate transitions thf, thsfl, thfr will be enabled only, when the hardware node (in Figure
11 (b)) fails as failure of hardware node will stop operation of the software process. The
timed transition Trecv will be enabled only, when the hardware node will again start
working after being recovered from failure. Four guard functions g1, g2, g3, g4 allow the
four additional transitions thf, thsfl, thfr and Trecv of software process to work consistently
with the change of states of the hardware node. The guard functions definitions are given
in the Table 2.

Synchronization between the dependability SRN & performance SRN: In order to
synchronize the collaboration role activity, performance SRN model is expanded by
incorporating one additional place Pfl and one immediate transition fA shown in Figure 12.
After being deployed, when collaboration role “A” starts execution, a checking will be
performed to examine whether both software and hardware components are running or
not. If both the components work the timed transition doA will fire, which represents the
continuation of the execution of the collaboration role A. But if software resp. hardware
components fail the immediate transition fA will be fired, which represents the quitting of
the operation of collaboration role A. Guard function grA allows the immediate transition
fA to work consistently with the change of states of the software and hardware
components.

Performance SRN model of parallel execution of collaboration roles are expanded by
incorporating one additional place Pfl and immediate transitions fBC, wBC shown in Figure
12. In our discussion, during the synchronization of the parallel processes it needs to
ensure that failure of one process eventually stops providing service to the users. This
could be achieved by immediate transition fBC. If software resp. hardware components

Function Definition

g1, g2, g3 if (# Prun = = 0) 1 else 0

g4 if (# Prun = = 1) 1 else 0

Figure 11. (a) Synchronized transition in the SRN model
of the software process with the (b) SRN model of the

hardware component

(a) (b)

Prec
Tdet

Pfail

Prun

Trec

Tfail

Tstbfl

Tswt

Pstb

Trecv [g4]

thf
[g1]

Phf

Psrun

thsfl [g2]

thfr [g3]

Tsdet

Psrec

Psfail

Tsrec

Tsfail

Table 2. Guard functions definitions

Paper 8

 262

(Figure 11) fail immediate transition fBC will be fired, which symbolizes the quitting of
the operation of both parallel processes B and C rather than stopping either process B or
C, thus postponing the execution of the service. Stopping only either the process B or C
will result in inconsistent execution of the whole SRN and produce erroneous result. If
both software and hardware components work fine the timed transition wBC will fire to
continue the execution of parallel processes B and C. Guard functions grBC, grwBC allow

the immediate transition fBC, wBC to work consistently with the change of the states of the
software and hardware components. The guard function definitions are shown in the
Table 3. Algorithms for model transformation rules and model synchronization process
have been mentioned in Appendix A.

9 Hierarchical model for MTTF calculation

System is composed of different types of hardware devices such as CPU, memory,
storage device, cooler. Hence, to model the failure behavior of a hardware node
absolutely, we need to consider failure behavior of all the hardware devices. But it is very
demanding and not efficient with respect to execution time to consider behavior of all the
hardware components during the SRN model generation. SRN model becomes very
cumbersome and inefficient to execute. In order to solve the problem, we evaluate the
mean time to failure (MTTF) of system using the hierarchical model in which a fault tree
is used to represent the MTTF of the system by considering MTTF of every hardware
component in the system. Later on, we consider this MTTF of the system in our
dependability SRN model for hardware components (Figure 9(b)) rather than considering
failure behavior of all the hardware components individually. The below Figure 13
introduces one example scenario of capturing failure behavior of the hardware
components using fault tree, where system is composed of different hardware devices
such as one CPU, two memory interfaces, one storage device and one cooler. The system
will work, when CPU, one of the memory interfaces, storage device and cooler will run.
Failure of both memory interfaces or failure of either CPU or storage device or cooler
will result in the system unavailability.

Function Definition

grA, grBC if (# Psrun = = 0) 1 else 0

grwBC if (# Psrun = = 1) 1 else 0

Figure 12. Synchronize the performance SRN model with
dependability SRN

Table 3. Guard functions definitions

 263

10 Tool based support of the performability modeling framework

The theoretical foundation of the approach is described in details in the above sections.
We highlight the tool support of our performability modeling framework in Figure 14.
The partial input model of our framework is generated using Arctis tool, which is
integrated as plug-in into the eclipse IDE. In the evaluation side, SHARPE tool is used.
We generate the annotated UML model from the UML collaboration diagram,
deployment diagram, STM diagram, and the performance and dependability related

Figure 13. Fault tree model of system failure

Figure 14. Tool support of our performability modeling framework

Paper 8

 264

parameters. From Figure 14, it is evident that we need to define 4 inputs accordingly: in
the performance modeling view, the first input UML collaboration diagram and the detail
behavior of collaborative building block will be generated using the GUI (Graphical User
Interface) editor of Arctis tool, which will be saved as XML file and the other two inputs
of performance modeling view will be generated as XML file such as deployment
diagram and performance attributes incorporated UML model after deployment mapping.
The inputs of the dependability modeling view such as STM diagram and dependability
attributes incorporated UML model will be generated as XML file as well. We also
define one output file in text format, which is generated as a result of the model
annotation phase denoting the annotated UML model. The annotated UML model file is
then further used as an input for the model transformation phase to achieve automation in
model transformation. In the model transformation phase, we automate the
transformation process from annotated UML model to the SRN performability model
following the model transformation rules and afterwards, merging of SRN performance
and dependability model using guard functions. The input files are specified in XML
formats. This is because of the fact that XML gives benefits to guarantee the robustness,
flexibility to extend the existing file, and data validation. The output files are all in text
format as the SHARPE tool, that evaluates the performance of the system, accepts the
input as text format.

11 Case study

As a representative example, we consider a scenario dealing with heuristically clustering
of modules and assignment of clusters to nodes [17]. This scenario is sufficiently
complex to show the applicability of our performability framework. The problem is
defined in our approach as collaboration of E = 10 service components or collaboration
roles (labeled C1 . . . C10) to be deployed and K = 14 collaborations between them
illustrated in Figure 15. We consider three types of requirements in this specification.

Figure 15. Collaboration & components in the example scenario

 265

Besides the execution cost, communication cost, and cost for running background process,
we have a restriction on components C2, C7, C9 regarding their location. They must be
bound to nodes n2, n1, n3 respectively. In this scenario, new service is generated by
integrating and combining the existing service components that will be delivered
conveniently by the system. For example, one new service is composed by combining the

service components C1, C2, C4, C5, C7 shown in Figure 15 as thick dashed line. The
internal behavior of the collaboration Ki is realized by the call behavior actions through
the same UML activity diagram already demonstrated in Figure 3(b). The composition of
the collaboration role Ci of the delivered service by the system is demonstrated in Figure
16. The initial node () indicates the starting of the activity. After being activated, each
participant starts its processing of request, which is mentioned by call behavior action Pri
(Processing of the ith service component). Completions of the processing by the
participants are mentioned by the call behavior action Prdi (Processing done of the ith
service component). The activity is started from the component C7, where the semantics
of the activity is realized by the token flow. After completion of the processing of the
component C7, the response is divided into two flows, which are shown by the fork node
f7. The flows are activated towards component C1 and C4. After getting the response from
the component C1, processing of the components C2 will be started. The response and
request are mentioned by the streaming pin res and req. The processing of the component
C5 will be started after getting the responses from both component C4 and C2, which is
realized by the join node j5. After completion of the processing of component C5, the
activity is terminated, which is mentioned by the end node ().

In this example, the target environment consists of N = 3 identical, interconnected nodes
with no failure of network link, with a single provided property, namely processing
power, and with infinite communication capacities shown in Figure 17. The optimal
deployment mapping can be observed in Table 4. The lowest possible deployment cost,
according to equation (4) is: 17 + 100 + 70 = 187.

Figure 17. The target network of hosts

<<ComputingResource>>

<<Scheduler>>
{schedPolicy = FIFO}

n3: Processor
Node

n2: Processor
Node

n1: Processor
Node

C1
<<SaStep>

 {execTime=10, s}

K1
<<SaStep>>

{deadline1=20, s}
 {deadline2=5, s}

Figure 18. Annotated UML model

Figure 16. Composition of collaboration

Paper 8

 266

In order to annotate the UML diagrams in Figure 16 and 17, we use the stereotypes
<<SaStep>> <<ComputingResource>>, <<Scheduler>> and the tagged values
execTime, deadline and schedPolicy, which are already explained in Section 6.
Collaboration Ki (Figure 18) is associated with two instances of deadline as
collaborations in example scenario are associated with two kinds of cost: communication
cost and cost for running background process (BP). In order to annotate the STM UML
diagram of software process (shown in Figure 19), we use the stereotype
<<QoSDimension>>, <<Transition>> and attributes mean-time-between-failures, mean-
time-between-failure-detect and mean-time-to-repair, which are already mentioned in
Section 6. Annotation of the STM of hardware component can be demonstrated in the
same way as STM of software process.

By considering the specification of reusable collaborative building blocks, deployment
mapping, and the model transformation rule, the corresponding SRN model of our
example scenario is illustrated in Figure 20. In our discussion we consider M/M/1/n
queuing system so that at most n jobs can be in the system at a time [3]. For generating
the SRN model, firstly, we will consider the starting node (). According to rule 1, it is
represented by timed transition (denoted as start) and the arc connects to place Pr7 (states
of component C7). When a token is deposited in place Pr7, immediately a checking is
done about the availability of both software and hardware components by inspecting the
corresponding SRN models shown in Figure 11. The availability of software and
hardware components allows the firing of timed transition t7 mentioning the continuation
of the further execution. Otherwise, immediate transition f7 will be fired mentioning the
ending of the further execution because of software resp. hardware component failure.
The enabling of immediate transition f7 is realized by the guard function gr7. After the

Node Components l | l – T |
Internal

collaborations
n1 c4, c7, c8 70 2 k8, k9
n2 c2, c3, c5 60 8 k3, k4
n3 c1, c6, c9, c10 75 7 k11, k12, k14

 cost 17 100

Recovery

Running

Failed

 mean-time-between-failure-detect = {4, ‘s’}
<<Transition>>

<<QoSDimension>>
mean-time-between-failure=
{14, ‘hr’}

<<QoSDimension>>

mean-time-to-repair
= {200, ‘s’}

Figure 19. Annotated STM diagram of software component

Table 4. Optimal deployment mapping

n n

 267

completion of the state transition from Pr7 to Prd7 (states of component C7), immediately,
the flow is divided into two branches (denoted by the immediate transition It1) according

to model transformation rule 2 (Figure 8). The token is passed to place Pr1 (states of
component C1) and Pr4 (states of component C4) after the firing of transitions K7 and K8.
According to rule 1, collaboration K8 is realized only by overhead cost as C4 and C7
deploy on the same processor node n1 (Table 4). The collaboration K7 is realized both by
the communication cost and overhead cost as C1 and C7 deploy on the two different nodes
n3 and n1 (Table 4). When a token is deposited into place Pr1 and Pr4, immediately, a
checking is done about the availability of both software and hardware components by
inspecting the corresponding dependability SRN models illustrated in Figure 11. The
availability of software and hardware components allows the firing of immediate
transition w14, which eventually enables the firing of timed transition t1 mentioning the
continuation of the further execution. The enabling of immediate transition w14 is realized
by the guard function grw14. Otherwise, immediate transition f14 will be fired mentioning
the ending of the further execution because of software resp. hardware component failure.
The enabling of immediate transition f14 is realized by the guard function gr14. After the
completion of the state transition from Pr1 to Prd1 (states of component C1) the token is
passed to Pr2 (states of component C2) according to rule 1, where timed transition K5 is
realized both by the communication and overhead cost. When a token is deposited into
place Pr2, immediately a checking is done about the availability of both software and
hardware components by inspecting the corresponding dependability SRN models shown
in Figure 11. The availability of software and hardware components allows the firing of
the immediate transition w24, which eventually enables the firing of timed transition t2 and
t4 mentioning the continuation of the further execution. The enabling of immediate
transition w24 is realized by the guard function grw24. Otherwise, immediate transition f24
guided by guard function gr24 will be fired mentioning the ending of the further execution
because of software resp. hardware component failure. Afterwards, the merging of the
result is realized by the immediate transition It2 following the firing of transitions K2 and
K4. Collaboration K2 is realized both by the overhead cost and communication cost as C4
and C5 deploy on the different processor nodes n1 and n2 (Table 4). K4 is replaced by the
timed transition, which is realized by the overhead cost as C2 and C5 deploy on the same
node n2 (Table 4). When a token is deposited in place Pr5 (state of component C5),
immediately, a checking is done about the availability of both software and hardware
components by inspecting the corresponding SRN models illustrated in Figure 11. The
availability of software and hardware components allows the firing of timed transition t5

Figure 20. SRN model of the example service

Paper 8

 268

mentioning continuation of the further execution. Otherwise, immediate transition f5 will
be fired mentioning the ending of the further execution because of software resp.
hardware component failure and the ending of the execution of the SRN model is realized
by the timed transition Exit2. The enabling of immediate transition f5 is realized by the
guard function gr5. After the completion of the state transition from Pr5 to Prd5 (states of
component C5) the ending of the execution of the SRN model is realized by the timed
transition Exit1. The definitions of guard functions gr7, grw14, gr14, grw24, gr24, and gr5
are mentioned in Table 5, which is dependent on the execution of the SRN model of the
corresponding STM of software and hardware instances illustrated in Figure 11.

We use SHARPE [16] to execute the obtained synchronized SRN model and calculate the
system’s throughput and job success probability against failure rate of system
components. Graphs in Figure 21 show the throughput and job success probability of the
system against the changing of the failure rate (sec-1) of hardware and software
components in the system.

12 Conclusion and future work

We presented a novel approach for model based performability evaluation of a distributed
software system. The approach spans from system’s dynamics demonstration through
UML diagram as reusable building blocks to efficient deployment of service components
in a distributed manner focusing on the QoS requirements. The main advantage of using
the reusable software components allows the cooperation among several software
components to be reused within one self-contained, encapsulated building block.
Moreover, reusability thus assists in creating the distributed software systems from
existing software components rather than developing the system from scratch, which in
turn facilitates the improvement of productivity and quality in accordance with the
reduction in time and cost. We put emphasis to establish some important concerns

Function Definition

gr7, gr14, gr24, gr5 if (# Psrun = = 0) 1 else 0

grw14, grw24 if (# Psrun = = 1) 1 else 0

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0,000005 0,00001 0,00007 0,0003

Failure rate

Th
ro

ug
hp

ut

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,000005 0,00001 0,00007 0,0003
Failure rate

Jo
b

su
cc

es
s

pr
ob

ab
ili

ty

Figure 21. Numerical result of our example scenario

Table 4. Guard functions definition

 269

relating to the specification and solution of performability models emphasizing the
analysis of the system’s dynamics. We design the framework in a hierarchical and
modular way, which has the advantage of introducing any modification or adjustment at a
specific layer in a particular submodel rather than in the combined model according to
any change in the specification. Among the important issues that come up in our
development are flexibility of capturing the system’s dynamics using our new reusable
specification of building blocks, ease of understanding the intricacy of combined model
generation, and evaluation from that specification by proposing model transformation.
However, our eventual goal is to develop support for runtime redeployment of
components, this way keeping the service within an allowed region of parameters defined
by the requirements. As a result, with our proposed framework we can show that our
logic will be a prominent candidate for a robust and adaptive service execution platform.
The special property of SRN model like guard function keeps the performability model
simpler by applying logical conditions that can be expressed graphically using input and
inhibitor arcs, which are limited by the following semantics: a logical “AND” for input
arcs (all the input conditions must be satisfied), a logical “OR” for inhibitor arcs (any
inhibitor condition is sufficient to disable the transition) [18]. However, the size of the
underlying reachability set to generate a SRN model is major limitation for large and
complex systems. Further work includes tackling the state explosion problems of
reachability marking for large distributed systems. In addition, developing GUI editor is
another future direction to generate UML deployment and state diagram and to
incorporate performability related parameters. The plug-ins can be integrated into the
Arctis tool, which will provide the automated and incremental model checking while
conducting model transformation.

References

[1] R H Khan, F Machida, P. Heegaard, and K S Trivedi, “From UML to SRN: A

performability modeling framework considering service components deployment”,
Proceeding of the ICNS, pp. 118-127, IARIA, 2012

[2] F. A. Jawad and E. Johnsen, “Performability: the vital evaluation method for
degradable systems and its most commonly used modeling method, Markov reward
modeling”, http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/eaj2/report.html,
<retrieved May 2011>

[3] E. de Souza e. Silva, and H. R. Gali, “Performability analysis of computer systems:
from model specification to solution”, Performance evaluation 14, pp. 157-196,
1992

[4] K. S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer
Science application”, Wiley- Interscience publication, ISBN 0-471-33341-7, 2001

[5] OMG 2009, “OMG UML Superstructure”, Version-2.2
[6] G. Ciardo, J. Muppala, and K. S. Trivedi, “Analyzing concurrent and fault-tolerant

software using stochastic reward nets”, Journal of Parallel and Distributed
Computing, Vol. 15, 1992

[7] M. Csorba, P. Heegaard, and P. Herrmann, “Cost-Efficient Deployment of
Collaborating Components”, Proceedings of the DAIS, pp. 253–268, Springer, 2008

Paper 8

 270

[8] OMG 2009, “UML Profile for MARTE: Modeling & Analysis of Real-Time
Embedded Systems”, V – 1.0

[9] N. Sato and Trivedi, “Stochastic Modeling of Composite Web Services for Closed-
Form Analysis of Their Performance and Reliability Bottlenecks”, Proceedings of
the ICSOC, pp. 107-118, Springer, 2007

[10] P. Bracchi, B. Cukic, and Cortellesa, “Performability modeling of mobile software
systems”, Proceedings of the ISSRE, pp. 77-84, 2004

[11] N. D. Wet and P. Kritzinger, “Towards Model-Based Communication Protocol
Performability Analysis with UML 2.0”,
http://pubs.cs.uct.ac.za/archive/00000150/01/No_10, <retrieved May 2011>

[12] Gonczy, Deri and Varro, “Model Driven Performability Analysis of Service
Configurations with Reliable Messaging”, Proceedings of the MDWE, 2008

[13] OMG 2009, “UML Profile for Modeling Quality of Service & Fault Tolerance
Characteristics Specification”, V-1.1

[14] R. H. Khan and P. Heegaard, “A Performance modeling framework incorporating
cost efficient deployment of multiple collaborating components”, Proceedings of
the ICSECS, pp. 31-45, Springer, 2011

[15] F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no, <retrieved May 2011>

[16] K. S. Trivedi and R. Sahner, “Symbolic Hierarchical Automated Reliability /
Performance Evaluator (SHARPE)”, Duke University, NC, 2002

[17] Mate J. Csorba, “Cost efficient deployment of distributed software services”, PhD
Thesis, NTNU, Norway, 2011

[18] Muppala, Ciardo and K. Trivedi, Stochastic reward nets for reliability prediction”,
Communications in Reliability, Maintainability and Serviceability, SAE
International, 1994

[19] P. Herrmann and H. Krumm, “A Framework for Modeling Transfer Protocols”,
Computer Networks, Vol - 34, No - 2, pp.317–337, 2000

[20] Vidar Slåtten, “Model Checking Collaborative Service Specifications in TLA with
TLC”, Project Thesis, Norwegian University of Science and Technology,
Trondheim, Norway, August 2007

[21] Lamport, “Specifying Systems”, Addison-Wesley, 2002
[22] R. H. Khan and Poul E. Heegaard, “Software Performance evaluation utilizing

UML Specification and SRN model and their formal representation”, Submitted to a
journal for reviewing.

[23] F. Kræmer, P. Herrmann, and R. Bræk, “Aligning UML 2 state machines &
temporal logic for the effecient execution of services”, Proceedings of the DOA,
Springer, 2006

 271

Appendix A

Algorithm 1: rule_1 (ExecCost, CommCost, Ovrhdcost, Mappings, CollaborationRoles)

1 If CollaborationRoles A self token generator then

2 Places += “PrA 1”
3 else (A has a external token generator)

4 Places += “PrA 0”
5 Places += “PrdA 0”
6 Places += “PrB 0”
7 Places += “PrdB 0”
8 Timed_Transitions += “doA ind” + 1/ execution cost for collaborationRole A
9 Timed_Transitions += “doB ind” + 1/ execution cost for collaboration role B
10 Timed_Transitions += “exit ind” + 1/ rate for the end transition
11 If CollaborationRoles A and B are deployed on the same node then

12 Timed_Transitions += “t ind” + 1/ overhead cost
13 else

14 Timed_Transitions += “t ind” + 1/ (overhead cost + communication cost)
15 If CollaborationRole A has a external token generator then

16 Timed_Transitions += “Start ind” + 1/ rate of the token generator
17 Inhibitor_Arcs += “PrA Start 1”
18 Inhibitor_Arcs += “PrdA doA 1”
19 Inhibitor_Arcs += “PrB t 1”
20 Inhibitor_Arcs += “PrdB doB 1”
21. Input_Arcs += “PrA doA 1”
22 Input_Arcs += “PrdA t 1”
23 Input_Arcs += “PrB doB 1”
24 Input_Arcs += “PrdB exit 1”
25 Output_Arcs += “doA PrdA 1”
26 Output_Arcs += “doB PrdB 1”
27 Output_Arcs += “t PrB 1”
28 if CollaborationRole A self token generator then

29 Output_Arcs += “t PrA 1”
30 else

31 Output_Arcs += “Start PrA 1”
32 Print Places, Timed_Transitions, Input_Arcs, Output_Arcs, Inhibitor_Arcs
33 return

Paper 8

 272

Algorithm 2: rule_2_a (ExecCost, CommCost, Ovrhdcost, Mappings, CollaborationRoles)

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “PrB 0”
4 Places += “PrdB 0”
5 Places += “PrC 0”
6 Places += “PrdC 0”
7 Places += “Xc 0”
8 Places += “Xb 0”
9 Immediate_Transitions += “it ind 1”
10 Timed_Transitions += “Start ind” + 1 / rate of the external token generator
11 Timed_Transitions += “doA ind “+ 1 / execution cost of collaboration role A
12 Timed_Transitions += “doB ind “+ 1 / execution cost of collaboration role B
13 Timed_Transitions += “doC ind “+ 1 / execution cost of collaboration role C
14 if CollaborationRoles A and B are deployed on the same node then

15 Timed_Transitions += “tB ind” + 1/ overhead cost

16 else

17 Timed_Transitions += “tB ind” + 1/ (overhead cost + communication cost)

18 if CollaborationRoles A and C are deployed on the same node then

19 Timed_Transitions += “tC ind” + 1/ overhead cost

20 else

21 Timed_Transitions += “tC ind”+1/ (overhead cost + communication cost)
22 Input_Arcs += “PrA doA 1”
23 Input_Arcs += “PrdA it 1”
24 Input_Arcs += “PrB doB 1”
25 Input_Arcs += “PrC doC 1”
26 Input_Arcs += “XB tB 1”
27 Input_Arcs += “XC TC 1”
28 Output_Arcs += “Start PrA 1”
29 Output_Arcs += “doA PrdA 1”
30 Output_Arcs += “it Xb 1”
31 Output_Arcs += “it Xc 1”
32 Output_Arcs += “tB PrB 1”
33 Output_Arcs += “tC PrC 1”
34 Output_Arcs += “doB PrdB 1”
35 Output_Arcs += “doC PrdC 1”
36 Inhibitor_Arcs += “PrA Start 1”
37 Inhibitor_Arcs += “PrdA doA 1”
38 Inhibitor_Arcs += “Xb it 1”
39 Inhibitor_Arcs += “Xc IT 1”
40 Inhibitor_Arcs += “PrB tB 1”
41 Inhibitor_Arcs += “PrC tC 1”
42 Inhibitor_Arcs += “PrdB doB 1”
43 Inhibitor_Arcs += “PrdC doC 1”
44 Print Places, Immediate_Transitions, Timed_Transitions, Input_Arcs, Output_Arcs, Inhibitor_Arcs
45 return

 273

Algorithm 3: rule_2_b (ExecCost, CommCost, Ovrhdcost, Mappings, CollaborationRoles)

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “PrB 0”
4 Places += “PrdB 0”
5 Places += “PrC 0”
6 Places += “PrdC 0”
7 Places += “Xb 0”
8 Places += “Xc 0”
9 Immediate_Transitions += “it ind 1”
10 Timed_Transitions += “StartB ind ” + 1 / rate of the external token generator for B
11 Timed_Transitions += “StartC ind ” + 1 / rate of the external token generator for C
12 Timed_Transitions += “doA ind “ + 1 / execution cost of CollaborationRoles A
13 Timed_Transitions += “doB ind “ + 1 / execution cost of CollaborationRoles B
14 Timed_Transitions += “doC ind “ + 1 / execution cost of CollaborationRoles C
15 if CollaborationRoles A and B are deployed on the same node then

16 Timed_Transitions += “tB ind” + 1/ overhead cost

17 else
18 Timed_Transitions += “tB ind” + 1/ (overhead cost + communication cost)
19 if CollaborationRoles A and C are deployed on the same node then

20 Timed_Transitions += “tC ind” + 1/ overhead cost

21. else
22 Timed_Transitions += “tC ind” + 1/ (overhead cost + communication cost)
23 Input_Arcs += “PrA doA 1”
24 Input_Arcs += “PrB doB 1”
25 Input_Arcs += “PrdB tB 1”
26 Input_Arcs += “Xb it 1”
27 Input_Arcs += “PrC doC 1”
28 Input_Arcs += “PrdC tC 1”
29 Input_Arcs += “Xc it 1”
30 Output_Arcs += “it PrA 1”
31 Output_Arcs += “doA PrdA 1”
32 Output_Arcs += “StartB PrB 1”
33 Output_Arcs += “doB PrdB 1”
34 Output_Arcs += “tB Xb 1”
35 Output_Arcs += “StartC PrC 1”
36 Output_Arcs += “doC PrdC 1”
37 Output_Arcs += “tC Xc 1”
38 Inhibitor_Arcs += “PrB StartB 1”
39 Inhibitor_Arcs += “PrdB doB 1”
40 Inhibitor_Arcs += “Xb tB 1”
41 Inhibitor_Arcs += “PrC StartC 1”
42 Inhibitor_Arcs += “PrdC doC 1”
43 Inhibitor_Arcs += “Xc tC 1”
45 Inhibitor_Arcs += “PrA it 1”
46 Inhibitor_Arcs += “PrdA doA 1”
47 Print Places, Immediate_Transitions, Timed_Transitions, Input_Arcs, Output_Arcs, Inhibitor_Arcs
48 return

Paper 8

 274

Algorithm 4: rule_3_ hardware_srn()

1 Places += “H_run 1”
2 Places += “H_fail 0”
3 Places += “H_recover 0”
4 Places += “H_backup 1”
5 Timed_Transitions += “T_fl ind” + 1/ cost for the
 transition between H_run and H_fail
6 Timed_Transitions += “T_dt ind” + 1/ cost for the
 transition between H_fail and H_recover
7 Timed_Transitions += “T_rcv ind” + + 1/ cost for
 the transition between H_recover and H_backup
8 Timed_Transitions += “T_bfl ind” + 1/ cost for the
 transition between H_backup and H_fail
9 Timed_Transitions += “T_sw ind” + 1/ cost for the
 transition between H_backup and H_run
10 Input_Arcs += “H_run T_fl 1”
11 Input_Arcs += “H_fail T_dt 1”
12 Input_Arcs += “H_recover T_rcv 1”
13 Input_Arcs += “H_backup T_sw 1”
14 Input_Arcs += “H_backup T_bfl 1”
15 Output_Arcs += “T_fl H_fail 1”
16 Output_Arcs += “T_dt H_recover 1”
17 Output_Arcs += “T_rcv H_backup 1”
18 Output_Arcs += “T_sw H_run 1”
19 Output_Arcs += “T_bfl H_fail 1”
20 Inhibitor_Arcs += “H_run T_sw 1”
21 Print Places, Timed_Transitions, Input_Arcs,
 Output_Arcs, Inhibitor_Arcs
22 return

Algorithm 5: rule_3_software_srn()

1 Places += “S_run 1”
2 Places += “S_fail 0”
3 Places += “S_recover 0”
4 Timed_Transitions += “T_sfl ind ” + 1/ cost for the
 transition between S_run and S_fail
5 Timed_Transitions += “T_sdt ind ” + 1/ cost for the
 transition between S_fail and S_recovery
6 Timed_Transitions += “T_srcv ind ” + + 1/ cost for
 the transition between S_recover and S_run
7 Input_Arcs += “S_run T_sfl 1”
8 Input_Arcs += “S_fail T_sdt 1”
9 Input_Arcs += “S_recover T_srcv 1”
10 Output_Arcs += “T_sfl S_fail 1”
11 Output_Arcs += “T_sdt S_recover 1”
12 Output_Arcs += “T_srcv S_backup 1”
13 Print Places, Timed_Transitions, Input_Arcs,
 Output_Arcs
14 return

 275

Algorithm 6: software_sync_srn()

1 Places += “S_run 1”
2 Places += “S_fail 0”
3 Places += “S_recover 0”
4 Places += “P_hf 0”
5 Timed_Transitions += “T_sfl ind” + 1/ cost for the transition between S_run and S_fail
6 Timed_Transitions += “T_sdt ind” + 1/ cost for the transition between S_fail and S_recover
7 Timed_Transitions += “T_srcv ind” + 1/ cost for the transition between S_recover and S_run
8 Timed_Transitions += “T_recv ind” + 1/ cost for the transition between P_hf and S_run + “guard hd_up()”
9 Immediate_Transitions += “t_hfl ind 1 guard hd_down()”
10 Immediate_Transitions += “t_hf ind 1 guard hd_down()”
11 Immediate_Transitions += “t_hfr ind 1 guard hd_down()”
12 Input_Arcs += “S_run T_sfl 1”
13 Input_Arcs += “S_fail T_sdt 1”
14 Input_Arcs += “S_recover T_srcv 1”
15 Input_Arcs += “S_run t_hf 1”
16 Input_Arcs += “S_fail t_hfl 1”
17 Input_Arcs += “S_recover t_hfr 1”
18 Output_Arcs += “T_sfl S_fail 1”
19 Output_Arcs += “T_sdt S_recover 1”
20 Output_Arcs += “T_srcv S_run 1”
21 Output_Arcs += “t_hfl P_hf 1”
22 Output_Arcs += “t_hf P_hf 1”
23 Output_Arcs += “t_hfr P_hf 1”
24 Output_Arcs += “T_recv S_run 1”
25 Print Places, Timed_Transitions, Immediate_Transitions,
 Input_Arcs, Output_Arcs
26 return

hd_up()

1 if place H_run has one token then
2 return TRUE
3 else
4 return FALSE
5 return

hd_down()

1 if place H_run has zero token then
2 return TRUE
3 else
4 return FALSE
5 return

Paper 8

 276

Algorithm 7: collaboration_role_sync_srn()

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “P_fl 0”
4 Immediate_Transitions += “fA ind 1 guard sw_down()”
5 Timed_Transitions += “Start ind” + 1 / rate of the external token generator
6 Timed_Transitions += “doA ind” + 1 / execution cost of collaboration role A
7 Timed_Transitions += “End1 ind” + 1 / rate of the End1 transition
8 Timed_Transitions += “End2 ind” + 1 / rate of the End2 transition
9 Input_Arcs += “PrA doA 1”
10 Input_Arcs += “PrA fA 1”
11 Input_Arcs += “PrdA End1 1”
12 Input_Arcs += “fA End2 1”
13 Output_Arcs += “Start PrA 1”
14 Output_Arcs += “doA PrdA 1”
15 Output_Arcs += “fA P_fl 1”
16 Inhibitor_Arcs += “PrA Start 1”
17 Inhibitor_Arcs += “PrdA doA 1”
18 Inhibitor_Arcs += “P_fl fA 1”
19 Print Places, Timed_Transitions, mmediate_Transitions, Input_Arcs, Output_Arcs, Inhibitor_Arcs
20 return

sw_down()

1 if place H_run has zero token then
2 return TRUE
3 else
4 return FALSE
5 return

 277

Algorithm 8: parallal_process_sync_srn()

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “Xa1 0”
4 Places += “Xa2 0”
5 Places += “P_fl 0”
6 Places += “PrB 0”
7 Places += “PrdB 0”
8 Places += “PrC 0”
9 Places += “PrdC 0”
10 Places += “XB 0”
11 Places += “XC 0”
12 Immediate_Transitions += “it ind 1”
13 Immediate_Transitions += “fBC ind 1 guard sw_up ()”
14 Immediate_Transitions += “f´BC ind 1 guard sw_down ()”
15. Timed_Transitions += “Start ind” + 1 / Start transition rate
16 if CollaborationRoles A and B are deployed on the same node then
17 Timed_Transitions += “TB ind” + 1/ overhead cost
18 else
19 Timed_Transitions += “TB ind” + 1/ (overhead cost + communication cost)
20 if CollaborationRoles A and C are deployed on the same node then
21 Timed_Transitions += “TC ind” + 1/ overhead cost
22 else
23 Timed_Transitions += “TC ind” + 1/ (overhead cost + communication cost)
24 Timed_Transitions += “End ind” + 1 / End transition rate
25 Input_Arcs += “PrA doA 1”
26 Input_Arcs += “PrdA it 1”
27 Input_Arcs += “Xa1 TB 1”
28 Input_Arcs += “Xa2 TC 1”
29 Input_Arcs += “PrB fBC 1”
30 Input_Arcs += “PrB f´BC 1”
31 Input_Arcs += “PrC fBC 1”
32 Input_Arcs += “PrC f´BC 1”
33 Input_Arcs += “P_fl End 1”
34 Input_Arcs += “XB doB 1”
35 Input_Arcs += “XC doC 1”
36 Output_Arcs += “Start PrA 1”
37 Output_Arcs += “doA PrdA 1”
38 Output_Arcs += “it Xa1 1”
39 Output_Arcs += “it Xa2 1”
40 Output_Arcs += “TB PrB 1”
41 Output_Arcs += “TC PrC 1”
42 Output_Arcs += “fBC XB 1”
43 Output_Arcs += “fBC XC 1”
44 Output_Arcs += “f´BC P_fl 1”
45 Output_Arcs += “doB PrdB 1”
46 Output_Arcs += “doC PrdC 1”
47 Inhibitor_Arcs += “PrA Start 1”
48 Inhibitor_Arcs += “PrdA doA 1”
49 Inhibitor_Arcs += “Xa1 it 1”
50 Inhibitor_Arcs += “Xa2 it 1”
51 Inhibitor_Arcs += “PrB TB 1”
52 Inhibitor_Arcs += “PrC TC 1”
53 Inhibitor_Arcs += “P_fl f´BC 1”
54 Inhibitor_Arcs += “XB fBC 1”
55 Inhibitor_Arcs += “XC fBC 1”
56 Inhibitor_Arcs += “PrdB doB 1”
57 Inhibitor_Arcs += “PrdC doC 1”
58 Print Places, Timed_Transitions, Immediate_Transitions, Input_Arcs, Output_Arcs, Inhibitor_Arcs
59 return

Paper 8

 278

sw_up()

1 if place S_run has one token then
2 return TRUE
3 else
4 return FALSE
5 return

sw_down()

1 if place S_run has zero token then
2 return TRUE
3 else
4 return FALSE
5 return

Algorithm 9: basic_bulding_block_srn()

1 if CollaborationRoles A has a self token generator then
2 Places += “Pri 1”
3 else
4 Places += “Pri 0”
5 Places += “Prdi 0”
6 Timed_Transitions += “do ind ” + 1/execution cost for collaboration role i
7 if i is getting token from external token generator then

8 Timed_Transitions += “Start ind” + 1 / Start rate
9 Output_Arcs += “Start Pri 1”
10 Inhibitor_Arcs += “Pri Start 1”
11 Inhibitor_Arcs += “Prdi do 1”
12 else if i is getting token from another CollaborationRoles

13 Timed_Transitions += “Enter ind” + 1 / cost of the transition
14 Output_Arcs += “Enter Pri 1”
15 else

16 Output_Arcs += “Exit Pri 1”
17 Input_Arcs += “Pri do 1”
18 if i is passing its token then

19 Timed_Transitions += “Exit ind ” + 1 / rate for Exit
20 Input_Arcs += “Prdi Exit 1”
21 Output_Arcs += “do Prdi 1”
22 Print Places, Timed_Transitions, Input_Arcs, Output_Arcs, Inhibitor_Arcs
23 return

Paper 9

Software performance evaluation utilizing
UML specification and SRN model and their

formal representation

Razib Hayat Khan, Poul E. Heegaard

Submitted to a journal for reviewing

Is not included due to copyright

 342

Part III

Thesis Appendix

 345

 Appendix A

List of related research approaches

Approach System/
Service

specification
model

Specifying
method for
deployment

mapping
(Yes/No)

Formalization
of

UML model
(Yes/No)

UML
model

validation
(Yes/No)

Annotation of
system/service

specification model
using MARTE/SPT

(Yes/No)

Performance/
performability

model generation
(Yes/No)

Tool
support

(Yes/No)

Our
Approach

Y Y Y Y Y Y Y

[5] UML N(d)* N N SPT Simulation based UML-

[24]

UML N Y N Workload diagram Queuing network

N

[25] UML N N N N GSPN

SPNP

[26] UML N N N N OPNM N

[27] UML N N N SPT Markov N

[28] UML N N N N Stochastic porcess
algebra, Markov

N

[29] UML N N N SPT Simulation model Simmcast

[30] UML (r)** N N N N Simulation N

[31] UML N N N SPT Simulation based N

[32] UML (r) N N N XML based
annotation

Queieng model N

[33] UML N Y N SPT LGSPN ArgoUML,
GreatSPN

[34] UML N Y N SPT LGSPN ArgoSPE

[35] UML N N N QoS and Fault
tolerance, SPT

Fault tree ArgoUML

[36] UML N N N SPT SPN ArgoUML,
WebSPN

[37] UML N N N SPT LQN, PN PUMA

[38] UML N Y N SPT LQN ArgoUML,
LQNS

[45] UML N N N SPT SPN ArgoUML,
WebSPN

[40] UML N Y N SPT LGSPN GreatSPN

[41] UML N N N UML 2 Profile BPEL N

[42] UML N N N MARTE CTMC RSA

[43] SysUML N N N N DTMC PRISM

[44] UML N N N SPT LQN Tool
developed
by authors

[45] UML N Y N N LQN N

[46] UML N N N SPT QN UML-

[47] UML N N N SPT GSPN, CTMC N

[48] Fuzzy UML N Y N N Fuzzy PN N

[49] UML N N Y N LQN RRE,
LQSim

Approach System/
Service

specification
model

Specifying
method for
deployment

mapping
(Yes/No)

Formalization
of

UML model
(Yes/No)

UML
model

validation
(Yes/No)

Annotation of
system/service

specification model
using MARTE/SPT

(Yes/No)

Performance/
performability

model generation
(Yes/No)

Tool
support

(Yes/No)

 346

Approach System/
Service

specification
model

Specifying
method for
deployment

mapping
(Yes/No)

Formalization
of

UML model
(Yes/No)

UML
model

validation
(Yes/No)

Annotation of
system/service

specification model
using MARTE/SPT

(Yes/No)

Performance/
performability

model generation
(Yes/No)

Tool
support

(Yes/No)

[50] UML N N N SPT LQN N

[51] UML N N N Defined by author GSPN PANDA

[52] UML N N N MARTE Simulation based Papyrus

[53] UML N N N MARTE Simulation based Tool
developed
by authors

[54] UML (r) N N N N Markov/PetriNet
(performability)

NetSolve

[55] UML (r) N Y N N LQN LQCompos
er

[56] UML(r) N N N CoCoMe profile Palladio
performance

model

Java2PCM

[57] UML(r) N N N N Transaction graph N

[58] UML N Y N SPT LQN Tool
developed
by authors

[59] UML N N N MARTE LQN,PN N

[60] UML(r) N N N N Simulation based PerfENplor
er

[61] UML(r) N N N N Simulations based SimuLink

[62] UML(r) N N N N Simulation based FMP

[63] UML N(d) N N SPT Petri Nets N

[64] UML N(d) Y N Performance data
card

EQN UML-JMT

[65] UML N(d) N N SPT LQN N

[66] UML N(d) N N SPT QN N

[67] UML N(d) N N SPT LQN N

[68] UML N(d) N Y(for
XML)

XML based
annotation

Simulation based Tangram-II,
Mosquito,
Omondo

[69] UML N(d) N N Defined by author LQN N

[70] UML N(d) N N SPT LQN N

[71] UML N(d) N N SPT GSPN PUMA

[72] UML N(d) N N SPT Simulation based ArgoPerfor
mance tool

[73] UML N(d) N N Defined by author Process algebra
model

N

[74] UML N(d) N N SPT QN N

[75] UML N(d) N N UML profile for
distributed system

modeling

Simulation based Rational
Rose

[76] UML N N N SPT Network of timed
automata

TIMES

[77] UML N N N SPT Simulation based N

[78] UML N N N SPT Simulation based LTSA

[79] UML N N N SPT LQN PUMA

[80] UML N N N SPT GSPN GreatSPN

 347

Approach System/

Service
specification

model

Specifying
method for
deployment

mapping
(Yes/No)

Formalization
of

UML model
(Yes/No)

UML
model

validation
(Yes/No)

Annotation of
system/service

specification model
using MARTE/SPT

(Yes/No)

Performance/
performability

model generation
(Yes/No)

Tool
support

(Yes/No)

[81] UML N N N MARTE QN N

[82] UML N N N SPT Coloured Petri
Nets

N

[83] UML N N N SPT LQN ArgoUML,
PROGRES

[84] UML N N N SPT / MARTE LQN, PN PUMA

[85] UML N N N UML-TUT profile Simulation based Telelogic
TAU G2,

Koski
[86] UML N N N SPT GSPN ArgoSPE

[87] UML N N N MARTE Simulation based Papyrus

[88] UML N N N SPT SPN ArgoSPE

[89] UML N N N MARTE LQN IMPACT,
mediniQVT

[90] UML N Y(ADL) Rapide N SPT Simulation based N

[91] UML N Y N Defined by authors Stochastic process
algebra

ArgoUML,
PEPA

Workbench
[92] UML N Y (object-Z) N Object-Z Simulation based RoZe

[93] UML N Y(OCL) N N N N

[94] UML N Y (POOSL) Y SHE method Simulation based SHESim

[95] UML N Y (rt_EFSM) Y OCL N N

[96] UML N Y (temporal logic) N N N Developed
by authors

[97] UML N Y N N QN Model N

[98] UML N Y(ordering
action)

N N PN N

[99] UML N Y (extended
hierarchical
automata)

N N N N

[100] UML N Y Y N N Vuml

[101] UML N Y N N N N

[102] UML N Y N N N N

[103] UML N Y (STATEMATE
statechart
semantics)

partial N N N

[104] UML N Y(CSP) N N N N

[105] UML N Y N N Petri Nets N

[106] UML N Y(ASM) N N N N

[107] UML N Y N N N N

[108] UML N Y Y N N N

[109] UML N Y(STATEMATE
statechart
semantics)

partial N N N

[110] [UML] N N N SPT SPN TimeNET

Appendix

 348

*r = reusable software components
**d = deployment diagram

Approach System/
Service

specification
model

Specifying
method for
deployment

mapping
(Yes/No)

Formalization
of

UML model
(Yes/No)

UML model
validation
(Yes/No)

Annotation of
system/service
specification
model using

MARTE/SPT
(Yes/No)

Performance/
performability

model
generation
(Yes/No)

Tool support
(Yes/No)

[111] [UML] N N N N SPN,
Rare event
simulation

N

[112] UML N (MODEST) N Defined by
authors

Simulation
based

MOTOR

[113] UML N N N Extension of
UML defined

by authors

GSMP Rational Rose,
DSPN eNpress

2000
[114] UML N N N Defined by

authors
Simulation

based
N

[115] UML N N N N Simulation
based

Tool developed
by author

[116] BPEL N N N N CTMC
(performability)

N

[117] UML N N N Extension of
UML

SAN
(performability)

Mobius

[118] UML N N N Worklaod
diagram

Simulation
based

(performability)

ProSPEN

[119] UML N N N SPT Stochastic
process algebra
(performability)

RSA, PEPA

[120] Defined by
authors

N N N Defined by
authors

Simulation
based

(performability)

N

[121] Defined by
authors

N N N N Simulation
based

(performability)

SimPar

