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Abstract
Image down/upsampling can give significant bit rate reduction with hardly
noticeable quality degradation. This is attractive to our vision of real-
time multiparty collaboration from distributed places with video data at HD
resolution that must guarantee maximum end-to-end delay of 11.5ms to
enable musical synchronization. Based on the Distributed Multimedia Plays
architecture, this paper compares the performances of bicubic and Lanczos
techniques as well as one recently proposed for image upsampling in terms
of computing time, level of blur, and objective image quality in PSNR and
SSIM. The effects of image blur and edges to resampling are also examined.
The results show that the classic Lanczos-2 and bicubic techniques perform
the best and thus are suitable for the vision due to their potential for efficient
parallel processing in hardware. We also show that composite images with
different downsampling factors can achieve 4dB increase in PSNR.

1 Introduction
The fields of electronics and communication technology have been growing rapidly and
opening new and more creative ways of real-time multiparty collaborations limited only
by time and space. Our vision is to realize such collaboration in the future with near-
natural quality of experience using networked collaboration spaces that enable seamless
integration of virtual (taped) and live scenes from distributed sites on the continents
despite different technical specifications. Figure 1 depicts a simple exemplary scenario
where an audience in Oslo (A) are enjoying a concert featuring two opera singers in a
specially designed room, namely a collaboration space. The quality of experience is
expected to be near-natural, meaning that they hardly realize that the two singers are
performing live from two different cities, say Trondheim (B) and Tromsø (C), each in
their own collaboration space. As both simultaneous performances are so harmonious
with life-like multimedia quality, the audience feel that they are enjoying a live opera
concert and being in the very same room with the two singers. Furthermore each opera
singer singing live also experiences performing together with the other one displayed in
his or her own collaboration space, as if they were on the same stage.

This paper was presented at the NIK-2010 conference; see http://www.nik.no/.
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Figure 1: A simple example of the envisioned collaboration (left) and the combined
networked collaboration spaces (middle). All surfaces of the collaboration space consist
of arrays of multiview autostereoscopic 3D display, dynamic cameras, speakers and
microphones. The multimedia output data is handled by the proposed three-layer DMP
architecture shown from a user’s perspective (right).

Table 1 lists the main technical requirements on the important aspects for the
envisioned collaborations. Guaranteeing the maximum end-to-end delay ≤ 10-20ms to
enable good synchronization in musical collaboration is the most challenging. Chafe et
al. [2] reported experimental results on the effect of time delay on ensemble accuracy
by placing pairs of musicians apart in isolated rooms and asking them to clap a rhythm
together. Longer delays were reported to produce increasingly severe tempo deceleration
while shorter ones yield a modest yet surprising acceleration. The study found that the
observed optimal delay for synchronization is 11.5ms which equates with a physical
radius of 2,400 km (assuming signals traveling at approximately 70% the speed of light
and no routing delays).

Table 1: The main technical requirements for the envisioned collaborations derived from
the aimed quality of experience.

Nr. Main technical requirements

1. Guaranteed maximum end-to-end delay≤ 10-20ms (cf. 400ms for videoconference [1])
2. Near-natural video quality
3. Autostereoscopic multi-view 3D vision
4. High spatial and temporal resolution due to life-size object dimension (mostly humans)
5. Accurate representation of physical presence cues e.g. eye contact and gesture
6. Real 3D sound
7. Quality allowed to vary with time and network load due to different technical

specifications and behaviors among collaboration spaces
8. Minimum quality guarantee using admission control
9. Graceful quality degradation due to traffic overload or failure
10. Privacy provided by defined security level

Realizing such collaborations with very high quality and complexity is possible only
if all requirements can be fulfilled within 11.5ms. We observe that current standards are
still unable to realize this vision and it leads to our proposal of the three-layer Distributed
Multimedia Plays (DMP) architecture [3], as illustrated in Figure 1. Along with the
proposed architecture, we also introduce the concept of Quality Shaping built upon the
concept of Traffic Shaping [4] that degrades the video quality in graceful manner when
traffic overloads or system malfunctions occur [3].



The traffic generated from near-natural scenes at high-definition (HD) resolution from
the arrays of cameras is estimated to be extremely high which may be up to 103 – 104

higher than that of today’s videoconferencing systems. Near-natural quality requires
an extreme resolution with data rates in Gbps, even to represent a human face alone.
Applying block-based video coding to the video data will incur more processing delays
particularly for encoding that exploits interframe redundancies. Therefore DMP system
favors full independence between frames and between objects within a frame in the
video data to facilitate fully parallel video processing in hardware. Novel techniques
for that purpose are under current investigation in our research. However, as additional
phase prior to that, it is attractive to downsample HD images at the transmitter and
upsample them at the receiver to considerably reduce more bit rate with hardly noticeable
quality reduction. The resampling techniques must show promising potential for parallel
hardware implementation for ultrafast operations.

This paper presents our study of the latter resampling idea based on the two following
objectives. First, we compare four resampling techniques considered promising from
literature in four comparison criteria: computational time, objective image quality
assessment using Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM)
index [5], and quantified resulting blur. SSIM is used due to its close approximation
to subjective image quality assessment and its widespread use. The four techniques are
Lanczos technique with two and three lobes, bicubic technique [6] and that proposed by
Shan et al. [7]. In the rest of this paper, the first three and the latter are respectively
called the classic techniques and the new technique. Second, as blur and edges are often
present in major regions in natural images, we examine their effects to the best performing
techniques from the experiments on the first objective. Our goal is to exploit blur and
edges in applying the resampling techniques to attain further bit saving for transmission
without remarkable video-quality reduction.

The organization of the paper is as follows. Section 2 briefly presents the examined
resampling techniques and elaborates the setup of the experiments. Section 3 presents the
experimental results with evaluations that lead to our conclusions in Section 4.

2 Image Resampling Techniques and Experimental Setup
An in-depth formal explanation on image interpolation and resampling can be found
for example in [8] where the authors define interpolation as a model based recovery
of continuous data from discrete data within a known range of abscissa. Among
many interpolation and resampling techniques for images, the Lanczos-windowed sinc
functions offer the best compromise in terms of reduction of aliasing, sharpness, and
minimal ringing [9]. Lanczos kernels with two and three lobes are widely used, as shown
in Figure 2. They are respectively called Lanczos-2 and Lanczos-3 in the subsequent
text. It is also a common fact that bicubic technique is widely used for most images due
to its good trade-off between accuracy and speed. These explain why we select these
techniques in this study.

In addition to these, most recent years have seen proposals of novel techniques for
upsampling natural images, for example [7] and [10]. Although the output visual quality
in the latter is promising, it is unacceptably slow for HD images. The first claims better
visual quality than that of the latter and also presents possibilities for parallel hardware
implementation, yet without clear indication of the required computing time. Thus it is
included in our study only for image upsampling.



Figure 2: The kernels of Lanczos-2 (left) and Lanczos-3 (right) techniques.

Table 2: DFs and the output resolutions relative to 1920×1080 pixels.

DF Output resolutions DF Output resolutions

1.2 1600×900 4.0 480×270
1.5 1280×720 5.0 384×216
2.0 960×540 6.0 320×180
2.5 768×432 7.5 256×144
3.0 640×360 8.0 240×135

To achieve the two objectives aforementioned, two experiments namely Experiment
A and B are conducted in Matlab on a PC with 3GHz processor and 3.46GB RAM,
respectively. As one exception, the image upsampling by the new technique employs
the application provided online [7]. The details of the experiments are as follows.
In Experiment A we assume that the test images are captured by a digital camera at
1920×1080 resolution and then they are downsampled with a number of downsampling
factors (DFs). Afterward the output images from the downsampling are upsampled
with the same DF by using the four techniques. The same classic technique is used
for both downsampling and upsampling. For simplicity, in the rest of the text, the
process of downsampling continued with upsampling the result with a DF is called
down/upsampling. As the resolutions of the downsampled images must be integers, the
selected DFs in Experiment A are 1.2, 1.5, 2.0, 2.5, 3.0, and 4.0, as shown in Table 2 with
the resulting downsampled resolutions. DFs can denote approximate bit savings from the
original test images. Figure 3 illustrates the comparison of the downsampled resolutions
of images for transmission to show clearly the magnitude of the possible data reduction.
The blur caused by resampling with increasing DF will be quantified by means of an
objective blur metric [12, 13].

Experiment B examines the effects of image blur and edges to resampling. The level
of blur is quantified as in Experiment A. The objective image quality will be presented
as a function of DFs and the blur metric. The used DFs include those in Experiment A
with extension to 4.0, 5.0, 6.0, 7.5 and 8.0, as listed in Table 2 with the corresponding
downsampled resolutions. Different DFs are also applied in down/upsampling an image
with clear and blurred regions. The quality of the resulting images will be quantified as a
function of increasing DFs. Exemplary resulting images from both experiments will be
provided for subjective assessment by the readers.



Figure 3: A sample image captured from [14] with original resolution (left) and, next to
the right, those downsampled with DF equals 2.0, 4.0 and 8.0, respectively, to graphically
illustrate the magnitude of the data reduction achieved by resampling.

Figure 4: Typical test images with frontal (left) and non-frontal sides.

3 Experimental Results and Evaluations
This section presents more details on the two experiments with the results and evaluations
as the main contributions from this work.

Experiment A: Comparison of Resampling Techniques
We used HD images of human faces from [11] in this experiment since collaboration
spaces support live collaboration between humans and thus human faces are the most
important object to process. All test images show human faces either from frontal or non-
frontal sides, as shown in Figure 4. This suits the design of the collaboration space which
arrays of cameras can capture the face of the persons within from both sides.

Our experimental results indicate that each resampling technique shows relatively
constant performance in all comparison criteria not only in all test images, despite
different positions of the faces, but also in natural images such as depicted in Figure 3.
Thus it suffices to present the results from any test image as a general representation
to compare the performances of the four resampling techniques. Figure 5 exhibits the
experimental results for the test image at left in Figure 4. Sample images of the area
around the right eye of the man in the test image are shown in Figure 6 to illustrate
the effects of resampling for subjective assessment by the readers. This area is selected
because it contains regions with and without many edges and high frequency contents. All
images for assessment are to be seen on screen for best viewing quality. All the test images
have plain background that fits our assumption that human faces and other important
objects in a collaboration space can be efficiently segmented prior to downsampling.

All diagrams in Figure 5 confirm that Lanczos-2 and bicubic techniques deliver very
similar performances in all comparison criteria. Although Lanczos-3 technique yields
better image quality and causes less blur, they come at the expense of more processing



1 1.5 2 2.5 3 3.5 4
36

38

40

42

44

46

48

50

52
PSNR v. Downsampling factor for man01.bmp

P
S

N
R

 (
dB

)

Downsampling factor

 

 

Lanczos−2
Lanczos−3
Bicubic
Shan et al

1 1.5 2 2.5 3 3.5 4
0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1
SSIM index  v. Downsampling factor for man01.bmp

S
S

IM
 in

de
x

Downsampling factor

 

 

Lanczos−2
Lanczos−3
Bicubic
Shan et al

1 1.5 2 2.5 3 3.5 4
60

80

100

120

140

160

180

200

220
Processing time (ms) v. Downsampling factor for man01.bmp

P
ro

ce
ss

in
g 

tim
e 

(m
s)

Downsampling factor

 

 

Down Lanczos−2
Up Lanczos−2
Down Lanczos−3
Up Lanczos−3
Down Bicubic
Up Bicubic

1 1.5 2 2.5 3 3.5 4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Blur metric  v. Downsampling factor for man01.bmp

B
lu

r 
m

et
ric

Downsampling factor

 

 

Lanczos−2
Lanczos−3
Bicubic
Shan et al

Figure 5: Image quality in PSNR (top left) and SSIM (top right), processing times (bottom
left) and blur metrics (bottom right) for the test image at left in Figure 4.

time, particularly for upsampling process. Surprisingly, the worst performance in image
quality and computing time goes to the new technique. Despite the high-end computing
power for this experiment, the technique fails to work for DF < 2.0. For DF ≥ 2.0 the
technique operates within several minutes and it clarifies the absence of the technique in
the diagram on computing time. At DF = 3.0 the output image quality of the technique
behaves strangely and we are yet unable to explain the phenomena. Nevertheless it is
clear from the results that Lanczos-2 and bicubic techniques perform the best.

There might be a question: what if the image is already captured by the camera at the
downsampled resolution? If the output is then upsampled by the resampling techniques,
what is the effect in terms of the four criteria? These are interesting questions because if
the camera can do that, no downsampling is necessary after image acquisition which thus
saves more time. We attempted to examine this by comparing the images sequentially
captured in different resolutions at the same aspect ratio by a high-end camera with a
remote control. Despite the use of remote control in the image acquisitions, shifts of
pixels always occur in those images which cause considerable reduction in image quality
when comparing an image at a low resolution and that downsampled to that resolution
from a higher one. However those images look almost the same from subjective point
of view. This study is saved for further work as it requires a more advanced device that
can capture a scene and save it into images in different resolutions with the same aspect



Figure 6: Sample images from the test image at left in Figure 4. The top, middle and
bottom rows respectively refer to DF equals 2.0, 3.0, and 4.0. The columns from left to
right refer to bicubic, Lanczos-2, Lanczos-3 and the new techniques, respectively. Images
are to be seen on screen for best perception quality.

ratio in one go. It is aligned to our research since dynamic cameras in the collaboration
space imply that their parameters, including image resolution and aspect ratio, can be
fully controlled on the fly by the DMP system.

Experiment B: The Effects of Blur and Edges to Resampling
Artifacts caused by image upsampling have been categorized as ringing, aliasing,
blocking, and blurring [8]. The latter is more apparent in sample images shown in Figure 6
as the DFs are increased. However, if we take the reverse direction, an interesting question
arises: what will be the effect to the result after down/upsampling if the original image is
more blurred? Experiment B attempts to provide a quantitative answer to the question.

We induce more blur into the test images from [11] by applying a Gaussian low-pass
filter with standard deviation 10 and increasing size. Then we down/upsample the blurred
test images using Lanczos-2 technique with all ten DFs in Table 2. As in Experiment A,
the resulting image quality in PSNR and SSIM from the test images are typically similar,
as shown in Figure 7 for the same test image. The legend in Figure 7 denotes the level of
blur objectively quantified in the blurred test images where higher values indicates more
blur. Figure 8 depicts sample images of the right eye area of the man as in Figure 6,
cropped from the blurred test images.

Comparing the diagrams in Figure 7 and the sample images in Figure 8 shows some
interesting insights. First, the more blurry the original image, the higher the DF for
down/upsampling the image with unobjectionable quality of the output image. This is
clear as images with more blur have lighter tails in SSIM than those of clearer ones. The
initial values of PSNR and SSIM for DF = 1.2 are also higher for test images with more
blur. Second, ringing artifact will appear when the DF is already too high and this occurs
more likely to clearer images. This artifact is mainly caused by overshoot and oscillations
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Figure 7: Image quality in PSNR (left) and SSIM (right) for the test image at left in
Figure 4 using Lanczos-2 technique.

Figure 8: Sample images from the test image at left in Figure 4. The top, middle and
bottom rows respectively refer to blur index 0.24947, 0.42999, and 0.60378. The left
column presents the original test images with initial blur, while those next to the right are
the output images with DF equals 2.0, 4.0, and 8.0, respectively. Images are to be seen
on screen for best perception quality.

by the lobes of the Lanczos-2 filter. The presence of ringing artifact can be potentially
exploited to indicate the limit of acceptable DFs. Third, the PSNR values for two most
blurred images at DF > 2.0 are very interesting for further analysis.

It is common that an image has regions of different levels of blur, for example the
background is much more blurry than the clear focused object in the foreground. The
above results lead us to another interesting question: how will the result look like when
such different regions in an image are down/upsampled with different DFs as a function
of their level of blur? We attempt to answer it by exercising the idea to natural HD images
of selected scenes captured from [14].



Figure 9: Original image (top left), overall image with DF = 4.0 (top right), composite
image which ROI and overall images are down/upsampled with DF equals 2.0 and 4.0,
respectively (bottom left), and that with DF equals 2.0 and 8.0, respectively (bottom
right). The ROI is 26% of the image. Images are to be seen on screen for best quality.

Table 3: Objective quality of the sample images in Figure 9 (PSNR in dB).

ROI Overall Composite

Image DFROI PSNR SSIM DFI PSNR SSIM PSNR SSIM

2 4 41.3662 0.97507 4 45.3855 0.99791 45.3528 0.99782
3 2 44.8048 0.99563 4 45.3855 0.99791 47.2685 0.99917
4 2 44.8048 0.99563 8 41.6313 0.9906 45.5645 0.99765

Let us assume a test image with a region of interest (ROI) defined in a bounding box.
First, the test image and the ROI are down/upsampled with downsampling factors DFI and
DFROI , respectively, where DFROI ≤DFI . The image resulting from down/upsampling the
test image with DFI is denoted as overall image while the ROI image refers to the resulting
ROI which quality is compared with the luminance values of the ROI in the test image.
Finally, the resulting ROI is patched to the same location in the overall image and the
eventual output image is called a composite image.

Figure 9 shows an original HD image and three output images from three
configurations of DFs using Lanczos-2 technique as detailed in the figure caption. In
the original test image, the background is very blurry without strong edges and the face
in the foreground is very clear and rich in details. The objective quality of the different
regions in PSNR and SSIM from Figure 9 is presented in Table 3. Another test image
which background region is also blurry but with many strong edges is examined with the
same configurations and the results are shown in Figure 10 and Table 4.

Images (3) in Tables 3 and 4 clearly have the best quality relative to the others of
the same scene. The improvement in the quality of the composite images with respect to



Figure 10: Original image (top left), overall image with DF = 4.0 (top right), composite
image which ROI and overall images are down/upsampled with DF equals 2.0 and 4.0,
respectively (bottom left), and that with DF equals 2.0 and 8.0, respectively (bottom
right). The ROI is 26% of the image. Images are to be seen on screen for best quality.

Table 4: Objective quality of the sample images in Figure 10 (PSNR in dB).

ROI Overall Composite

Image DFROI PSNR SSIM DFI PSNR SSIM PSNR SSIM

2 4 37.3468 0.95513 4 40.0571 0.99584 40.0403 0.99585
3 2 41.8998 0.99405 4 40.0571 0.99584 41.6801 0.9982
4 2 41.8998 0.99405 8 35.6731 0.97292 37.468 0.98599

that of the corresponding overall images is contributed by that of the ROI. Considerable
2-4db and 1.5-2dB increase in PSNR can be achieved by composite images (3) and (4)
in Figures 9 and 10, respectively. Although composite image (4) in Figure 9 and Table 3
still has acceptable quality shown by very high PSNR and SSIM values, the quality of
composite image (4) in Figure 9 and Table 3 is the worst for that scene. This shows the
effect of edges in an image to how far an image can be down/upsampled.

As obvious in composite image (4) in Figure 9, unacceptable DF causes not only
more blurring but also ringing artifacts, particularly in the areas where the edges are
strong, as depicted in Figure 11 and also by the images in the fourth column of Figure 8.
Nevertheless, the quality of composite image (3) in Figure 10 is still acceptable, as shown
by the values of PSNR and SSIM. These results lead to a safe recommendation that for an
image with clear region as ROI and blurry region, the first can be down/upsampled with
DF = 2.0 and the latter with DF = 4.0, although strong edges are present in the blurry
region. The level of blur must certainly be quantified beforehand. Composite images are
expected to perform better in quality and bit rate than overall images. If the density of
the edges in the blurry region can be quantified such as in [15], more bits can be saved by
applying DF > 4 to the blurry area.



Figure 11: Images extracted from Figure 9: original (left), with DF = 4.0 causing blur
(middle), and with DF = 8.0 causing more blur and ringing artifact (right). Images are to
be seen on screen for best perception quality.

4 Conclusion
We have presented our examination on four resampling techniques for down/upsampling
HD images. Our experimental results show that the performances of each technique
are relatively constant not only in the tested images showing human faces but also
in other natural images. Lanczos-2 and bicubic techniques comparatively perform the
best in terms of computing time, objective image quality and the level of introduced
blur. Computing time is very critical in our comparison since this study is driven by
our vision of future musical collaboration with maximum end-to-end delay of 11.5ms
to guarantee good synchronization between collaborating musicians. Lanczos-2 and
bicubic techniques are based on convolutions that are suitable for parallel implementation
in hardware, for example using systolic approach in field-programmable gate arrays
(FPGAs) [16, 17], making them good candidates for next pursuit in our research.

The results from our second experiment reveal that blur and edges are important
factors when down/upsampling HD images. Higher downsampling factors (DFs) can
be applied to an image or a region in an image that is more blurry than the others with
unobjectionable quality of the output image. Ringing artifact in the result is potential
to be exploited as an indicator when a used DF is already too high. If an image has
major clear and blurry regions, usually as foreground and background, respectively, the
latter can be down/upsampled with higher DF than that applied in down/upsampling the
first. Combining the results from the two down/upsampling processes yields a composite
image that is expected to give a better image quality with less bit rate than that from
applying a DF to down/upsample the entire image. Our experimental results point that
the improvement of image quality in PSNR can reach up to 4dB in composite images.
This increase is attributed to the clear region down/upsampled with a lower DF .

As edges limit the (DFs) in down/upsampling due to unwanted ringing artifact, our
safe recommendation is to down/upsample the clear and blurry regions with DF = 2.0 and
DF = 4.0, respectively, assuming strong edges present in the blurry region. This should be
preceded by applying available metrics to quantify the level of blur and the edge density
in the blurry region. If the region is very blurry with few weak edges detected, it can be
down/upsampled with higher DFs, even up to 8.0 without making the resulting quality
reduction very apparent. However if the down/upsampling is applied to the whole HD
image without ROI, using DF = 2.0 is a safe recommendation.
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