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Abstract—Internet of Things (IoT) technologies will enable
smart energy planning, which in turn will expedite the adop-
tion of renewable energy (RE). In this paper, we propose a
mathematical framework to optimize the use of RE in a shared
solar environment featuring households with access to several RE
generators. We consider location and time-dependent electricity
prices, and formulate an optimization problem to minimize the
energy cost incurred by the households over a finite planning
horizon. The proposed framework accounts for transmission
losses and battery inefficiencies. We then proposed two ap-
proaches to solve the formulated optimization problem. The first
approach is based on quadratic programming, and is used to
obtain a precision-controllable solution, requiring discretization
in time and convex relaxation. The second approach is based
on variational methods, which are used to tackle the problem
directly in continuous time, thus obtaining a solution in closed
form after introducing reasonable simplifications. To ensure full
cooperation, we finally derive a fair energy allocation policy,
which allocates RE to each household in proportion to its capital
investment. The obtained analytical results allow us to evaluate
the relationship between achievable performance, RE production,
transmission losses and price variability. Extensive simulations
are used to verify the derived analytical results, illustrate the
characteristics of the proposed strategies and compare their
achievable performance.

Index Terms—Storage management, shared solar, quadratic
programming, variational methods, heating loss.

I. INTRODUCTION

INTERNET OF THINGS (IoT) technologies will enhance
the current data collection infrastructure, which will allow

us to optimize resources and eliminate inefficiencies. For
example, IoT-enabled decision making can be used for smart
energy planning. Within buildings, IoT technologies can be
used for energy monitoring and automation [1]. At a city-
scale, IoT technologies can help to reduce pollution and traffic
congestion [2], modernize the power grid [3], and expedite the
adoption of renewable energy (RE) [4], [5].

By increasing the use of RE, cities can reduce their depen-
dency on contaminating power sources such as fossil fuels.
However, not every household is able to afford the deployment
of wind turbines or solar panels in their rooftops. As a
result, sharing RE generation facilities has gained popularity
in recent years [6]. Through models such as Shared Solar
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[7], households unable to afford their own RE generators
can team up with their neighbors to share RE infrastructure,
thus establishing localized distribution systems, often referred
to as microgrids [8]. In this context, optimization strategies
can be devised to ensure that participants meet their energy
requirements at the lowest economical and environmental costs
[9]–[11].

In this paper we develop a mathematical framework to
devise RE management strategies for cooperating households
with shared access to RE generation sites. We specifically
consider a geographical region with M > 0 households
and N > 0 RE generation sites, where each household
is potentially connected to all the RE generation sites. The
proposed framework accounts for distance- and resistance-
dependent power losses in the transmission lines, and battery
charging and discharging inefficiencies at each RE generation
site. By assuming location- and time-dependent electricity
prices, we formulate an optimization problem to minimize the
energy cost incurred by all the participating households over
a finite planning horizon.

Given the nature of the constraints involved, the formulated
problem is non-convex. We thus propose a convex relaxation
and two approaches to solve the simplified optimization prob-
lem. The first approach is based on quadratic programming
(QP) techniques and discretization in time. We then refer to
this approach as the QP-based RE optimization (QP-REO)
strategy. The second approach is based on the theory of
calculus of variations (CoV). We refer to this approach as
the CoV-based RE optimization (CoV-REO) strategy.

A. Related Works

There are several works on RE management in the literature.
However, very few of them account for power losses in
connecting lines, multiple households and RE generation sites,
time- and location-dependent electricity prices, and battery
charging/discharging inefficiencies. In this section we com-
ment on some of the most prominent works on the topic.

Energy management strategies targeted at associations of
users have been proposed in [9], [12]–[25]. Some of these
works assume full cooperation from participating users, e.g.,
[12], [14], while others use game theory to account for
participants with conflicting objectives [9], [16], [20]. In some
of these works, the RE generation and storage operations
take place at the users’ site [9], [12], [14], [16], [20], while
others assume centralized RE generation [21], or centralized
energy storage [15], [17]. Most of these works ignore power
transmission losses [9], [12], [13], [15]–[17], [20], while few
of them use the well established quadratic [22], [24], or
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linear [23] models to estimate heating loss. Some of these
works assume a microgrid environment, where loads and RE
generation are aggregated [13], [24].

The works listed above propose energy management strate-
gies from the end-user perspective. Works such as [26] and
[27] investigate the energy management problem from the
perspective of the utility company, i.e., targeting to minimize
generation costs. In [28] and [29] social welfare maximization
strategies are proposed. These strategies account for both,
utility’s and consumer’s goals. Among these, only [27] and
[28] account for transmission losses in their models. Other RE
management strategies available in the literature include [30]–
[34], where greedy RE management strategies are proposed at
an individual level.

To the best of our knowledge, there are not works in the
literature proposing energy management strategies for house-
holds with shared RE generators, which are aware of time-
varying electricity prices, and power loss dissipation through
connecting lines and in energy storage devices (ESDs). Many
of the works on multi-user energy management use game
theory to determine the actions of the participants and the
corresponding equilibrium point. Our perspective in this paper
is different because we first optimize the RE consumption rate
of each household. Then we propose a fair energy allocation
policy to ensure full household cooperation. Finally, we dis-
cuss the ownership distribution that optimizes performance.

B. Contributions and Organization

The contributions of this work are the following: First, we
propose a mathematical framework to optimize the use of
RE across households featuring location- and time-varying
electricity prices and loads. The proposed framework takes
into account the power loss incurred when the energy is
transported from the generation site to the loads. These power
losses are distance- and resistance-dependent. The model is
general, as it accounts for an arbitrary number of households
and generation sites.

Second, we propose two approaches to solve the formu-
lated optimization problem: The first approach is based on
quadratic programming techniques and can be used to obtain
a precision-controllable solution in the discrete-time domain.
The second approach is based on variational methods and
results from applying the Euler-Lagrange optimality condition
to the original problem formulation in continuous time. This
method provides a solution in closed form, which allows us to
get a deeper insight into the optimal RE consumption strategy.
Specifically, by using the results obtained through variational
methods in continuous time, we determine the optimal RE
generation capacity in each site. The result is provided in
closed form, and illustrates the trade-off between maximizing
the use of RE and minimizing the power loss incurred in the
transmission.

Third, we propose a fair energy allocation strategy which
seeks to ensure full cooperation among the participating house-
holds. The proposed energy allocation strategy is described
as fair because it seeks to allocate RE in proportion to each
household’s initial investment in the shared infrastructure.

Enforcing this energy allocation policy incurs a performance
degradation,1 which we then minimize by establishing the op-
timal ownership distribution across participating households.
The proposed ownership allocation is based on the concept
of dynamic asset allocation [35], which seeks to adjust own-
ership share across households in response to predicted RE
generation and load.

The results presented in this paper can be used for energy
planning purposes. For example, the results obtained reveal
an RE generation threshold,2 above which no further cost
reduction can be achieved due to transmission loss. Moreover,
the expressions derived with the CoV-REO strategy can be
used to reduce the computational complexity of forecasting-
based online RE management algorithms [36].

This paper is organized as follows: Sec. II presents the
system setup describing each of its elements and the as-
sumptions behind the models used. We formulate the main
optimization problem in Sec. III. In Sec. IV we describe
the proposed solutions. In Sec. V we present our proposed
energy allocation strategy and the ownership distribution that
minimizes performance degradation. In Sec. VI we analyze
numerical results and in Sec. VII we discuss the conclusions
of this study.

C. Notation

Vectors are presented with lower case bold letters. The ith
element of vector a is denoted by a(i). Matrices are denoted
by using upper case bold letters. The row vector of M ones is
denoted by 1M . The transpose of matrix A is written as Aᵀ.
Lm(·), `m Power consumed by the mth household
Pm(·), pm Energy prices offered to the mth household
Dm,n(·), dm,n Renewable power drawn by the mth house-

hold from the nth generator
Jn(·), jn Renewable energy (RE) available at the nth

RE generation site
� Element-wise ≤
⊗ Kronecker product
dg(v) Diagonal matrix with v in its diagonal

II. SYSTEM MODEL

A. Power Connectivity, Planning Horizon, and Design Vari-
ables

We consider a set of M grid-connected households deployed
across a finite geographical area. The planning horizon is [0, S]
where S > 0 is an arbitrary positive real number. The power
consumed by the mth household at time τ ∈ [0, S] is denoted
by Lm(τ) : [0, S] → [0, Lmax], where Lmax denotes the
maximum power that the household can consume.

We consider a set of N RE generators, which are deployed
across different locations to ensure statistical diversity [37].
Each generation site is equipped with a single ESD.

1Adding constraints to an existing optimization problem restricts its feasible
space. Therefore, the performance obtained within the more restricted feasible
set is lower than that obtained in the less restricted space.

2This threshold is established in terms of the duration of the planning
period, the resistance and length of the connecting lines, and the operational
voltage.
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Fig. 1. Cooperative RE sharing system with N = 2 generation sites and
M = 3 households.

The power drawn by the mth household from the nth RE
generator is denoted by Dm,n(τ) : [0, S]→ [0, Lm(τ)]. Each
household may potentially have access to all the available RE
generators. Power connectivity between a household m and
an RE generation site n is established when the resistance
per unit length of the connecting power line, and denoted by
ρm,n, is finite, i.e., ρm,n < ∞. The RE generation sites are
not directly connected to each other. For illustration purposes,
a network of M = 3 households and N = 2 RE generation
sites is shown in Fig. 1.

B. Objective Function and Transmission Losses

The power transmission losses are caused by the resistance
of the connecting lines. Let ρm,n denote the resistance of
the lines per unit length, hence the resistance of the line
connecting the mth household and the nth RE generator
is ρm,ndism,n, where dism,n is the corresponding distance
between the two points. The current flowing through the line
is Dm,n(τ)

V , where V is the operating voltage. Hence, the total
power loss PL, incurred over the time interval [0, S] can be
written in terms of the Dm,n(τ)’s as follows:

PL =

N∑
n=1

M∑
m=1

ρm,n

∫ S

0

dism,n

(
Dm,n(τ)

V

)2

dτ. (1)

The objective of our proposed strategies is to minimize the cost
incurred by all the participating households over the specified
planning horizon. To achieve this, we define the objective of
our optimization problem as follows:

(2)
χ =

M∑
m=1

∫ S

0

Pm(τ)

{
Lm(τ)−

N∑
n=1

[
Dm,n(τ)

− ρm,ndism,n
(
Dm,n(τ)

V

)2
]}

dτ,

where Pm(τ) denotes the prices offered to the mth households.
The pricing functions Pm(t) take on non-negative values for
all t ∈ [0,∞), and for all m ∈ N. The pricing functions
can be defined in advance by the utility company following
the policies that they deem appropriate. For example, in a
demand response scenario, these prices can be chosen to
encourage certain energy consumption habits, e.g., reducing
power consumption during peak hours, etc. Price variations

across location are considered to ensure generality. Our objec-
tive will thus be to minimize the cost function χ by carefully
designing the Dm,n(τ)’s.

C. Energy Storage Devices

All the ESDs in the system are characterized by:
1) Charging/discharging losses: The charging/discharging

losses are proportional to the power charged to or discharged
from the ESD. The charging/discharging efficiency rates of the
nth ESD are respectively αn and βn, which satisfy 0 < αn ≤
1 and 0 < βn ≤ 1. A lossless charging (discharging) operation
happens when αn = 1 (βn = 1).

2) ESD dynamics: The energy available at the nth ESD is
denoted by Jn(τ), and evolves according to:

Jn(τ) = Jn(0) +

∫ τ

0

[
αnRn(x)− 1

βn

M∑
m=1

Dm,n(x)

]
dx,

(3)
where Jn(0) ≥ 0 is the energy initially available in the
battery, and Rn(τ) is the renewable power charged to the
ESD, which is within the charging rate allowed.3 The term
1
βn

∑M
m=1Dm,n(x) denotes the total power discharged from

the nth ESD. As seen in (3), the ESD acts as an energy
accumulator, as it integrates the net power flowing through
its terminals.

3) Limited storage capacity: The capacity of the nth ESD
is denoted by Ψn ∈ R+. Therefore, the Dm,n(τ)’s must be
such that 0 ≤ Jn(τ) ≤ Ψn,∀ τ, ∀ n.

4) Limited charging/discharging rates: Each ESD has a
limited charging/discharging rate, expressed as the maximum
amount of energy that can be injected-to/drawn-from the ESD
in each time instant. The maximum discharging rate that the
nth ESD can handle is qD,n power units. Therefore,

M∑
m=1

Dm,n(τ) ≤ qD,n, ∀ τ, ∀ n. (4)

The renewable power charged to the ESD, and denoted by
Rn(t) is within the charging rate allowed. This means that
RE generation above the maximum charging rate is discarded.

5) Continuous energy level: To account for future planning
periods, we can optionally let:

Jn(0) = Jn(S), ∀ n, (5)

which ensures continuity of the energy level across optimiza-
tion periods. Constraints (5) restrict the consumption of RE
so that it matches the amount of energy generated over the
optimization period [0, S]. This type of constraint has been
enforced in [38].

D. Information Requirements, Decision Making and House-
hold Participation

The strategies proposed in this paper rely on information
exchange infrastructure. In particular, participating households

3That is, Rn(τ) = min{qC,n, R̃n(τ)}, ∀ τ , where qC,n is the largest
charging rate allowed at the nth RE generation site, and R̃n(τ) is the
produced power at the nth RE generation site.
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and RE generation sites need to share information concerning
power consumption and RE production. This information
exchange is realized through a communication architecture
composed of a control center (CC) and several smart meters
deployed across households and RE generation sites. The
function of each of these components is explained in [39],
[40]. Moreover, the smart meters have communication and
controlling capabilities over power switching devices [41].
That is, the CC is able to read the power consumption
and RE generation readings directly from the meters, and is
able to control power switching devices in all participating
households.

Smart meter

Cloud

Information 

Control center

Household

RE production

Fig. 2. Communication architechture for a shared-solar environment with
N = 2 generation sites and M = 3 households. Biderctional arrows represent
two-way information flows.

Forecasts
Smart meter readings
ESD states
Prices

RE consumption sched.
Control signals} }

RE Consumption sched.
Control signals

Smart meter readings
ESD states}}

RE consumption sched.
Control signals

Smart meter readings} }
Fig. 3. Information flow requirements for a shared-solar environment. List
of items on the left represents required inputs by each element of the system.
List on the right represents outputting information.

The CC is in charge of the decision making throughout
the planning period. As such, it receives real-time information
from each household and RE production center. The informa-
tion flows and the required infrastructure are shown in Figs.
2 and 3. The communication links shown in Fig. 2 do not
necessarily represent connecting wires, as the information can
be transmitted through the cloud.

As shown in Fig. 3, the CC requires the following infor-
mation: 1) Forecasts: They are used to estimate the total RE
production at each generation site over the planning period.
They can be computed by using weather data and dedicated
models. 2) Smart meter readings: This information comes
from all the participating households and RE generation sites.
They are used to assess the current load requirements and RE
production. They can also be used to refine the forecasting
models used to estimate future RE production and energy

consumption. 3) ESD states: This information comes from
the RE generation sites and is used to estimate the amount
of RE currently available in the system, also, to prevent
battery overflow or undesired full depletion. 4) Prices: In a
demand response setting, this information comes from the
utility company. In general, prices may be forecast from
current market indicators and other relevant variables. In our
framework, they are assumed known to the CC.

As shown in Fig. 3, the CC computes the RE consumption
schedules and broadcasts the results to all the participating
households and the RE production sites. Moreover, several
control signals are issued by the CC to activate power switch-
ing mechanisms when necessary, prevent battery overflow or
full depletion, and release relevant warnings to participating
households.

Households agree to participate in the optimization scheme
from the beginning of the planning period. To ensure their full
collaboration, households are rewarded with a share of the cost
savings. Different savings allocation criteria can be used. In
this paper we explained a fairness-based criterion, which seeks
to allocate cost savings in proportion to the share of ownership
that each household has in the RE production infrastructure.
This scheme is discussed in Sec. V.

Finally, by participating in the proposed cooperation
scheme, households do not compromise their own comfort
standards or energy bills. This result follows from the fact
that the power consumed by each household (i.e., its load)
is not subject to optimization. Therefore, ignoring capital
investments, the energy bill incurred through cooperation is
at most the same as the one incurred when the households
refuse to cooperate.

III. PROBLEM STATEMENT

In this section we formulate the main optimization prob-
lem and discuss its properties. The formulated optimization
problem seeks to minimize the total cost incurred by all the
M participating households in [0, S], while accounting for
power transmission losses, battery inefficiencies, and energy
generation across the N RE generation sites.

A. Decision Variables and Constraints

The decision variables are the discharging schedules
Dm,n(τ) which will determine the optimal RE consumption
patterns. There are thus two kinds of constraints involved in
the optimization problem. The first set of constraints follows
from the bounded storage capacity of the ESDs, which are
denoted respectively by Ψ1, Ψ2, . . . ,ΨN , and the causality
condition, according to which only RE readily available in the
ESDs can be dispatched. These constraints can be compactly
stated as follows:

Jn(0)+

τ∫
0

[
αnRn(x)− 1

βn

M∑
m=1

Dm,n(x)

]
dx ≤ Ψn, ∀ τ, ∀ n,

(6)
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and

Jn(0)+

τ∫
0

[
αnRn(x)− 1

βn

M∑
m=1

Dm,n(x)

]
dx ≥ 0, ∀ τ, ∀ n.

(7)
Constraints (6) and (7) were obtained by using the definition
of Jn(τ), presented in (3), and are introduced to ensure that
all the Jn(τ)’s are within the range [0,Ψn]. A second type
of constraints arises when the distributed RE generation is
exclusively used by the participating households, i.e., when
no RE can be injected into the grid. These constraints can be
formally written as follows:

N∑
n=1

[
Dm,n(τ)−Km,n (Dm,n(τ))

2
]
≤ Lm(τ), ∀ τ, ∀ m,

(8)
where the loss coefficient Km,n , ρm,ndism,n

1
V2 has been

introduced to simplify notation. As seen, the loss coefficient
increases with the distance and the resistance of the connecting
line, and decreases with the operational voltage.4

B. Problem Formulation and Characteristics

We formulate the following mathematical problem to op-
timize the discharging schedules across households and RE
generation sites:

P0: min
Dm,n(τ), m∈{1,...,M}, n∈{1,...,N}, τ∈[0,S]

χ

s.t. (4), (5), (6), (7), and (8).

P0 is a very challenging problem because of the following rea-
sons: Its objective is not a function, but a sum of functionals.
Its decision variables are not scalar or vectors, but trajectories
(functions defined in continuous time). Equations (6), (7)
and (8) represent an infinite number of constraints, which
must hold in all the realizations of the stochastic processes
L1(τ), . . . , LM (τ) and R1(τ), . . . , RN (τ).

C. Feasibility

P0 is infeasible when the Dm,n(τ)’s are upper bounded in
such a way that constraint (5) cannot hold. This will happen
when the power consumed by the household is lower than the
total production of RE in the network, i.e., when

M∑
m=1

∫ S

0

Lm(τ)dτ <

N∑
n=1

αnβn

∫ S

0

Rn(τ)dτ,

or when the maximum discharging rate permitted is insuffi-
cient to allow the consumption of the RE generated in [0, S]
by any generator within the network, i.e., when

qD,nS < αnβn

∫ S

0

Rn(τ)dτ, n ∈ {1, . . . , N}.

In practice, local RE generation is often insufficient to match
the load. Hence, the above feasibility condition can be satisfied
in many practical scenarios.

4A higher operational voltage leads to lower transmission currents.

IV. PROPOSED SOLUTIONS

In this section we propose two strategies to solve prob-
lem P0. The first approach uses quadratic programming and
requires discretization in time. The second approach uses
variational methods and provides a solution directly in con-
tinuous time. The second approach is introduced to reduce
the computational complexity of the first strategy and obtain
deeper insight into the solution. The two proposed methods
are genie-aided, and hence, they can be used to benchmark
suboptimal strategies, and to devise real-time RE management
algorithms based on forecasts.

A. QP-REO Solution Strategy

We propose a method to solve P0 by using quadratic
programming techniques. For tractability, we will introduce a
discrete-time version of the model, and determine the optimal
Dm,n(τ) at a finite number of points in [0, S]. After intro-
ducing discretization, we cast the problem as a quadratically-
constrained quadratic programming problem.

1) Formulation in Discrete Time: We divide the plan-
ning horizon into T − 1 subintervals, and sample the func-
tions Pm(τ), Dm,n(τ), Lm(τ) and Rn(τ), ∀ m, ∀ n,
at T equally-spaced points, e.g., pm(t) = Pm(t∆t). The
vectors obtained after the sampling are denoted by pm,
dm,n, `m, and rn, respectively. Let ∆t denote the sam-
pling interval, t ∈ {1, . . . , T} be the time index, and
x ∈ RMNT denote the MNT variables to be optimized
over the entire planning horizon stacked as follows: x =
[x1,x2, . . . ,xM ]ᵀ, where xm = [ym,1, . . . ,ym,T ] and ym,t =
[Dm,1(t∆t), Dm,2(t∆t), . . . , Dm,N (t∆t)].

We now simplify notation by introducing the following
definition km = 1T ⊗ [Km,1,Km,2, . . . ,Km,N ]. Then, the ob-
jective in P0 can be approximated by using a quadratic form as
χ ≈ ∆t [ε− 1MPx + xᵀQKx], for ε ∈ R, P ∈ RM×MNT ,
Q, K ∈ RMNT×MNT presented in Appendix A.

Constraints (4), (6) and (7) imply that x must satisfy

M1x � v1, M2x � v2, M3x � v3, (9)

for matrices M1, M2 and M3, and vectors v1, v2 and v3,
which are derived from (4), (6) and (7) in Appendix B.
Constraints (5) imply

M4x = v4, (10)

for matrix M4 and vector v4 derived accordingly in Appendix
B. Constraints (8) imply that x must satisfy the following
quadratic form

1MUm,tx− xᵀVm,tx ≤ Lm(t∆t), ∀ m, ∀ t, (11)

for some matrices Um,t and Vm,t. Optimization problem P0
has a discrete-time domain counterpart formulated as follows:

P1: max
x

1MPx− xᵀQKx

s.t. (9), (10) and (11).

In P1 we have removed the first term, i.e.,
∆t
∑M
m=1

∑T
t=1 pm(t)`m(t), because it does not depend

on the design variable x. Similarly, the constant ∆t has
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been omitted from the objective function for simplicity, as
removing it does not affect the result of the optimization.

Remark 1: P1 is a quadratically-constrained quadratic pro-
gramming problem in which we want to maximize a concave
function of x. P1 is not a convex optimization problem because
the matrices Vm,t are positive definite and preceded by a
negative sign in constraints (11). To show that Vm,t is a
positive definite matrix, we note that it is a diagonal matrix,
since no cross-terms appear in (11), and all its elements are
non-negative because the coefficients of the quadratic terms
[Dm,n(τ)]

2 are all positive, i.e., the resistance per unit length
ρm,n, the distance between the generators and the households
dism,n, and the voltage V, are all non-negative.

2) Convex Relaxation: To tackle P0, we propose to substi-
tute constraints (11) with

1MUm,tx ≤ Lm(t∆t), ∀ m, ∀ t. (12)

Note that the solution obtained by enforcing (12) will satisfy
the original constraint (11) because (12) is more stringent
than the original constraint. The relaxed optimization problem
is convex because it is formulated to maximize a concave
objective and all its constraints are affine. Hence, this problem
can be solved by using existing techniques to tackle quadratic
programming problems [42].

The performance loss incurred as a result of introducing the
relaxed constraint (12) instead of (11) can be assessed in the
following manner. P1 can be solved without constraint (11) as
an ordinary quadratic programming problem with no quadratic
constraints. The result obtained will be a performance upper
bound for the original problem P1, since it has a larger feasible
space, which allows for a wider search. That is, the solution
obtained after removing constraint (11) is at least, as good as
the solution to the original problem. On the other hand, the
solution obtained when (12) is accounted for in the problem
is at most as good as the solution of the original problem.
This follows because replacing (11) with (12) constrains the
feasible space further. Given that the feasible space of the
original problem is smaller than the feasible space obtained
after removing (11), but larger than the search space that
results after introducing (12), we can say that the performance
loss incurred by this relaxation is at most, as large as the gap
between the solutions obtained with and without constraint
(12). In formal language:

Let P1a denote the proposed relaxed version of P1, and P1b
denote P1 without constraint (12), that is:

P1a: max
x

1MPx− xᵀQKx

s.t. (9), (10) and (12),

and
P1b: max

x
1MPx− xᵀQKx

s.t. (9) and (10).

Moreover, let sol(P ) denote the solution to a maximization
problem denoted by P . Then, for P1a, P1 and P1b, as defined
above, it follows that:

sol(P1a) ≤ sol(P1) ≤ sol(P1b). (13)

Following (13), we can bound the solution to P1 by solving
P1a and P1b. This inequality will allow us to assess the quality
of the solution found through relaxation.

B. CoV-REO Solution Strategy
In the following we propose a solution based on variational

methods. We will first introduce reasonable simplifications
to the optimization problem. Then we will apply the Euler-
Lagrange optimality condition to find candidate solutions,
which we will adjust to comply with required constraints.
Finally, we will analyze the solution and determine its ap-
plication range.

1) Simplifications: When the discharging rates across the
ESDs in the system are unrestricted, the existence of a feasible
solution is guaranteed. Studying such a case allows us to:
1) Find a closed-form solution. 2) Obtain valuable insights,
which are not provided by the solution based on quadratic
programming. 3) Simplify online algorithms based on model
predictive control, given that decision variables can be updated
faster than when using quadratic programming.

2) Euler-Lagrange Optimality Condition: To obtain a solu-
tion based on CoV, we first consider the objective function in
P0, and determine the conditions under which the functionals
in (2) are stationary. We start by introducing the following
notation: Let Θn be the total RE delivered by the nth generator
in [0, S]. Then, following constraint (5), the decision variables
Dm,n(τ) must satisfy:

M∑
m=1

∫ S

0

Dm,n(τ)dτ = Θn, ∀ n. (14)

Thus, by introducing the artificial constraint written above, we
can write the Euler-Lagrange equations [43], which will allow
us to establish the necessary conditions for the Dm,n(τ)’s to
minimize the sum of functionals in (2):

∂

∂Dm,n

[
χ+ λn

[
M∑
m=1

∫ S

0

Dm,n(τ)dτ −Θn

]]
= 0, ∀ n,

(15)
where λn ∈ R≥0 are the Lagrange multipliers. The condition
(15) leads to:

−Pm(τ)+2ρm,ndism,n
Dm,n(τ)

V2
Pm(τ)+λn = 0, ∀ n. (16)

Hence, the optimal Dm,n(τ) should satisfy:

Dm,n(τ) =
1

2Km,n

[
1− λn

Pm(τ)

]
. (17)

3) Constraints Satisfaction: The constants λn’s in (17)
can be chosen to comply with the artificial constraint (14).
Specifically, after substituting (17) in (14), we obtain:

λn =

∑M
m=1

S
2Km,n

−Θn∑M
m=1

1
2Km,n

∫ S
0

1
Pm(τ)dτ

, ∀ n. (18)

To satisfy constraint (5), we set Θn = αnβn
∫ S

0
Rn(τ)dτ ,

and to comply5 with constraint (7) we set Jn(0) = Θn, ∀ n.
Finally, constraint (6) is satisfied when Ψn ≥ 2Θn, which will
ensure that Jn(τ) ≤ Ψn, ∀ τ, ∀ n.

5This can be shown by using the principle of conservation of energy.
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4) Concavity of the Cost Savings Function: By replacing
the obtained schedules in the objective function χ, we can
investigate the relationship between the energy cost and the
total RE delivered by each generation site, denoted by Θn. To
simplify notation, we introduce the following definition

ξ ,
M∑
m=1

∫ S

0

Pm(τ)Lm(τ)dτ − χ, (19)

which can be interpreted as the cost savings obtained through
RE management. Note that if Rn(τ) = 0, ∀ τ, ∀ n, then
ξ = 0, and the energy cost incurred by the M households is
simply

∑M
m=1

∫ S
0
Pm(τ)Lm(τ)dτ .

The cost saving ξ is a function of the Θn’s, hence, we
can write this explicitly by using the notation ξ [Θ1, . . . ,ΘN ].
Moreover, we can make the following claim regarding the
concavity of the cost function ξ [Θ1, . . . ,ΘN ] with respect to
each of the Θn’s:

Theorem 1. Let D∗m,n(τ) = 1
2Km,n

[
1− λn

Pm(τ)

]
with

λn =

∑M
m=1

S
2Km,n

−Θn∑M
m=1

1
2Km,n

∫ S
0

1
Pm(τ)

dτ
, Km,n > 0, ∀ m ∈

{1, . . . ,M}, n ∈ {1, . . . , N}. If Dm,n(τ) =
D∗m,n(τ), ∀m, ∀ n, ∀ τ , then, ξ, as defined in (19) is concave
in Θn, ∀ n.

Proof. See Appendix C. �

Corollary 1. Since ξ [λ1(Θ1), . . . , λN (ΘN )] is concave in
Θn, it attains its maximum at

Θn = Θ∗n ,
S

2

M∑
m=1

1

Km,n
, ∀ n. (20)

Proof. To obtain this result we set ∂
∂λn

ξ = 0, which in turn
implies that λn = 0, ∀ n. Hence, from (18) we obtain Θn =
S
2

∑M
m=1

1
Km,n

. �

Remark 2: Following Theorem 1, if the optimal RE con-
sumption schedules satisfy (17), then the optimal RE gen-
eration at each site is directly proportional to the length of
the planning horizon S, and the sum

∑M
m=1

1
Km,n

. When
Θn > Θ∗n the value of ξ is less than or equal to the value of ξ
when Θn = Θ∗n. This result follows because larger discharging
rates incur higher transportation losses thus making them
suboptimal. Interestingly, the turning point is determined by
the length of the planning horizon and characteristics of the
line such as resistance and length. Specifically, the smaller
the resistance is, i.e., the product ρm,ndism,n, the farther is
the stationary point. The stationary point increases with the
transmission voltage V.

Remark 3: The optimal RE generation at the nth site, and
denoted by Θ∗n, specifies the largest amount of energy that the
site can deliver, before power transmission losses significantly
undermine the optimization gain. We can thus use Θ∗n to
determine an upper bound in the RE production capacity and
the required size of the ESD at each generation site.

5) Range of Applicability: The result in (17) is applied
when

[
1− λn

Pm(τ)

]
≥ 0, which implies

Θn ≥
M∑
j=1

S

2Kj,n
−min
m,t

Pm(τ)

M∑
j=1

1

2Kj,n

S∫
0

1

Pj(τ)
dτ

 . (21)

Moreover, given that λn ≥ 0, ∀ n, we have:

Θn ≤
S

2

M∑
m=1

1

Km,n
. (22)

These two inequalities determine the range of applicability of
the proposed CoV-REO strategy.

C. Complexity Analysis of the Proposed Strategies

In this section we discuss the time and space complexity of
the QP-REO and the CoV-REO strategies.

1) Time Complexity: We first investigate the number of
mathematical operations that are needed in CoV-REO. A
breakdown of these operations is shown in Tables I and II.
As seen, the total number of operations needed in CoV-REO
is 3MNT +3MN+4N+M . If each of these operations can
be completed in constant time, then the time complexity of
CoV-REO scales up linearly with T , the number of samples
considered in the planning horizon.

The arithmetic cost of solving quadratically-constrained
quadratic programming (QCQP) problems has been investi-
gated in [44], where the authors showed that path-following
methods can reach a solution within O(1)(mn2 + n3) op-
erations, where O(1) represents absolute constant, m is the
number of quadratic constraints, and n is the size of the ma-
trices used to express the quadratic forms in both constraints
and objective function. For the specific case of P1, and after
the convex relaxation of Sec. IV-A-2, we have m = 0, and

TABLE I
OPERATIONS REQUIRED TO COMPUTE Dm,n(t∆t) IN EACH

t ∈ {1, . . . , T}, AND ∀m, ∀ n.

Operation Description Quantity
λn

Pm(t∆t)
Division MN

1− λn
Pm(t∆t)

Subtraction MN

1
2Km,n

[
1− λn

Pm(τ)

]
Multiplication MN

TABLE II
OPERATIONS REQUIRED TO COMPUTE THE λn’S.

Operation Description Quantity∑T
0

1
Pm(t∆t)

∆t Integration M
1

2Km,n
Division MN

1
2Km,n

∑T
0

1
Pm(t∆t)

∆t Multiplication MN∑M
m=1

1
2Km,n

∑T
0

1
Pm(t∆t)

∆t Sum N
S

2Km,n
Division MN∑M

m=1
S

2Km,n
Sum N∑M

m=1
S

2Km,n
−Θn Subtraction N∑M

m=1
S

2Km,n
−Θn∑M

m=1
1

2Km,n

∑T
0

1
Pm(t∆t)

∆t
Division N
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n = MNT . Hence, the number of operations required to solve
P1 in its relaxed form scales up with M3N3T 3. As seen, both
strategies are able to obtain a solution in polynomial time.
However, the strategy based on calculus of variations is faster,
as the number of operations is a multiple of MNT , and not
M3N3T 3, as in the case of QP-REO.

2) Space Complexity: In terms of memory requirements,
both QP-REO and CoV-REO are similar, since they both
rely on the same amount of information. The memory space
requirements in both strategies are expected to grow linearly
with the number of samples in the planning period. This can
be seen from the sizes of the vector x and the matrices P,
Q and K. Memory release may be more efficient in the CoV-
REO strategy, given that the decision variables can be updated
one sample at a time. This also allows us to use this strategy
in a faster way for computing decision variables in real time,
e.g., in response to changing conditions and updated forecasts.

V. ENERGY ALLOCATION POLICY AND OWNERSHIP
DISTRIBUTION

In this section we propose strategies to ensure the full
cooperation of the participating households. The first strategy
is a fair energy allocation policy, which seeks to limit the
amount of RE used by each household, in proportion to its con-
tribution towards infrastructure investment. In this strategy the
ownership distribution is fixed. The second strategy seeks to
establish the optimal ownership distribution so as to minimize
the energy cost incurred by all the participating households,
while ensuring a fair energy allocation. By using the second
strategy, we show how the optimal ownership distribution
is determined by the electricity prices, the RE production
capacity of each generation site, and the characteristics of the
transmission lines connecting generators and households.

A. Fair Energy Allocation Policy

To ensure full cooperation among the participating house-
holds we now derive a fairness-maximizing energy allocation
policy. The proposed energy allocation policy complements
the result derived in Sec. IV-B, and ensures that each house-
hold uses a share of RE which is proportional to its initial
investment in any given generation site. Let 0 ≤ γm,n ≤ 1
denote the share of ownership that household m has of the
nth RE generation site. Since all the participating households
collectively own each of the RE generation sites, the γm,n’s
satisfy

∑M
m=1 γm,n = 1, ∀ n.

To ensure that each household uses a fraction γm,n of
the energy generated by the nth RE generation site, we add
the following set of constraints to the original optimization
problem (P0):∫ S

0

Dm,n(τ)dτ = γm,nαnβn

∫ S

0

Rn(τ)dτ, ∀ n. (23)

Hence, the optimization problem becomes:

P2: min
Dm,n(τ), m∈{1,...,M}, n∈{1,...,N}, τ∈[0,S]

χ

s.t. (4), (5), (6), (7), (8), and (23).

The added constraints are all affine, and hence, they can
be handled by using both, the QP-REO and the CoV-REO
strategies. However, adding these constraints may render the
problem infeasible when:∫ S

0

Lm(τ)dτ <

N∑
n=1

γm,n

∫ S

0

Rn(τ)dτ, (24)

for any m ∈ {1, . . . ,M}. The condition (24) refers to
situations in which the RE assigned to any household is above
its load requirement in [0, S]. If the conditions explained in
Sec. IV-B hold, then we can use the result (17) to determine
the solution to P2 as follows:

Dm,n(τ) = D′m,n(τ) ,
1

2Km,n

[
1−

λ′m,n
Pm(τ)

]
, ∀ τ, (25)

where λ′m,n ∈ R can be obtained by substituting (25) in (23),
yielding:

λ′m,n =

1
2Km,n

S − γm,nαnβn
∫ S

0
Rn(τ)dτ

1
2Km,n

∫ S
0

1
Pm(τ)dτ

, ∀ n. (26)

This solution applies when the RE produced by the nth
generator satisfies∫ S

0

Rn(τ)dτ ≤ min
m

1

2αnβnKm,nγm,n
S. (27)

Similarly, the solution (25) is applied when λ′m,n <
Pm(τ), ∀ m, t, which implies

(28)

∫ S

0

Rn(τ)dτ ≥ max
m,t

1

2αnβnKm,nγm,n

[
S

− Pm(τ)

∫ S

0

1

Pm(τ)
dτ

]
.

B. Optimal Ownership Distribution

Imposing the added constraints (23) will result in perfor-
mance degradation. Hence, we now want to know what are
the values of γm,n that minimize such a performance loss.
The set of γm,n values determine the ownership distribution
across households of each RE generator in the system. To min-
imize the performance degradation incurred after introducing
constraints (23) we now formulate a mathematical problem to
choose the optimal share of ownership across households, i.e.,
the values of γm,n.

1) Problem Formulation: The mathematical problem which
seeks to optimize RE consumption schedules, RE allocation
policy, and ownership distribution is:

P3: min
Dm,n(τ), γm,n, m∈{1,...,M}, n∈{1,...,N}, τ∈[0,S]

χ

s.t. (4), (5), (6), (7), (8), (23), and
M∑
m=1

γm,n = 1, ∀ n.
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2) Solution Approach: P3 is a very challenging optimiza-
tion problem and, to the best of our knowledge, cannot be
tackled directly. Hence, we propose breaking P3 into two
subproblems. A natural decomposition is thus to initially
determine the optimal RE consumption schedules and the
allocation policy, and then choose the ownership distribution
so as to minimize the performance degradation. The first
subproblem can be tackled by using either the QP-REO or the
CoV-REO strategy. A solution to the second subproblem can
be worked out from the optimal RE consumption schedules.
Indeed, an insightful solution can be derived if results in closed
form are available from the first stage, as we show in Sec.
V-B3.

Let D∗m,n(τ) denote the optimal RE consumption schedules,
obtained by solving P0. Then, the ownership ratios that
minimize the collective energy cost and ensure full cooperation
across households are given by:

γ∗m,n =

∫ S
0
D∗m,n(τ)dτ

Θn
. (29)

3) Special Cases: If the conditions explained in Sec. IV-B
hold, then a more insightful solution can be obtained by using
the results (17) and (18). Specifically, replacing (17) in (29)
yields:

γ∗m,n =
1

2Km,nΘn

[
S − λn

∫ S

0

1

Pm(τ)
dτ

]
. (30)

By replacing (18) into (30), it can easily be shown that∑M
m=1 γ

∗
m,n = 1. Moreover, following Corollary 1, the op-

timal ownership distribution is:

γ∗m,n =

1
Km,n∑M
j=1

1
Kj,n

. (31)

The ownership distribution stated in (30) does not depend
on the energy consumed by each household because Lm(τ)
is large, and hence unable to restrict the RE consumption
schedules. The investment allocation given in (30) depends
on the RE generation capacity of each site, the electricity
prices offered to each household, and the characteristics of
the transmission lines connecting households and generators.
Implementing this ownership distribution thus involves re-
balancing the investment allocation at the start of each plan-
ning period.

Contrarily, the optimal ownership distribution stated in
(31) depends on the characteristics of the transmission lines
connecting households and generators. To implement this
ownership allocation all the RE generation sites should deliver
exactly Θ∗n energy units. When Θn = Θ∗n, ∀ n, the trans-
mission losses dominate the RE allocation and consumption
policies, thus making the pricing functions Pm(τ) irrelevant.

VI. NUMERICAL RESULTS

We provide numerical results to analyze the proposed
strategies. Several simulation scenarios (load, RE generation
profiles and prices) are considered in this section in order
to illustrate the characteristics of the proposed strategies. We
divide this section into five parts. In the first part we investigate

the characteristics of the solution based on quadratic pro-
gramming. The quadratic programming problems are solved
by using CVX on Matlab. In the second part we compare
the solution obtained with the variational method and the
conventional quadratic programming approach. In the third
part we verify the analysis presented in Sec. V, regarding
the energy allocation policy and the ownership distribution.
In the fourth part we present a practical case with real life
parameters. Finally, we provide additional simulations and
consider other cases in part five.

In sections VI-A, VI-B, VI-C, and VI-E, storage capacity
is measured in energy units [EU], and energy expenditure
in monetary units [MU]. Similarly, time, power, and electric
potential are measured in time units [TU], power units [PU],
and electric potential units [EPU]. In these sections we use
generic measurement units because we want to verify the
analytical results presented in the paper by comparing them
against numerical solutions in arbitrary simulation scenarios.
Moreover, the numerical results need to be interpreted in
relative terms, as they illustrate the performance gap between
the proposed strategies under the same scenario.

To simplify notation, in this section we will use Dm(τ) to
denote the total renewable power drawn by the mth household
at time τ , i.e., Dm(τ) =

∑N
n=1Dm,n(τ), ∀ τ . Moreover,

to avoid repetition, the system parameters that are consistent
throughout sections VI-A, VI-B, VI-C, and VI-E, are presented
in Table III.

TABLE III
SYSTEM PARAMETERS

Parameter Value
{T, ∆t, M, N, V} {20[TU], 1[TU], 3, 2, 1[EPU]}
qD,n ∆t

∑T
t=1 rn(t)[PU ], ∀ n

{αn, βn, Ψn, Jn(0)} {1, 1, ∆t
∑T
t=1 rn(t)[EU], 0, ∀ n}

A. Solution based on Quadratic Programming

We start by illustrating the characteristics of the RE con-
sumption schedule. We thus consider time-varying electricity
prices and loads, and fixed resistances across connecting lines
of equal length. Specifically, we consider the price and load
profiles illustrated in Fig. 4, and let K1,1 = K1,2 = 0.01,
K2,1 = K2,2 = 0.01, and K3,1 = K3,2 = 0.01. In Fig. 4
we can see that, when the lines connecting the households
and the RE generators have the same characteristics (length
and resistance), the RE consumption rate is influenced by the
price variations across time, and the loads. When the load is
above the RE generation at all times, then the optimal schedule
responds to price variations across time. When the load is
below the RE generation at all times, then the optimal schedule
is determined by the loads, since the consumption of RE is
upper bounded by the load in each household.

We now investigate the effect of the power loss factor
in the RE consumption pattern. We thus consider constant
prices, loads and RE generation profiles, but varying dis-
tances and line resistances. Specifically, we consider the price,
load and RE generation profiles illustrated in Fig. 5, and
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Fig. 4. Time-variation of RE consumption rate. Top: Influenced by price.
Bottom: Influenced by the load.

let K1,1 = K1,2 = 0.005, K2,1 = K2,2 = 0.008, and
K3,1 = K3,2 = 0.01. In Fig. 5 we illustrate both, the
RE consumption rates across time, and the result of the RE
allocation strategy. As seen, the RE consumption rates are
nearly constant. The variations across time are of 0.1% at most,
and follow inaccuracies produced by the employed numerical
Software. Since Km,1 = Km,2, ∀m, in this scenario the share
of RE that goes to the mth household from the nth generator

is given by the ratio
1

Km,n∑M
j=1

1
Kj,n

.
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Fig. 5. Effect of power loss in RE allocation across households. The share

of RE allocated to each household is given by
1

Km,n∑M
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.

When the power loss is high, e.g., when K11 = K12 =
K21 = K22 = K31 = K32 = 0.02, prices will have a
diminished impact on the RE allocation policy. As seen in
Fig. 6, all households get the same share of RE use, despite
the price differences across locations. This result follows
because the load is above the RE generation at all times, the
lines connecting households and RE generators have the same
characteristics (length and resistance), and the quadratic term
dominates the objective function in P0.

As expected, prices will dominate the RE allocation policy
when households and RE generators have similar character-
istics, and when the power loss is not as dominant as in the

scenario considered in Fig. 6. This can be seen in Fig. 7, where
we considered a scenario in which prices vary across locations
and connecting lines offer less than significant resistance, i.e.,
K11 = K12 = K21 = K22 = K31 = K32 = 0.002.
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Fig. 7. Price dominates RE allocation across households. K11 = K12 =
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B. Solution based on Variational Methods and Comparison

In this section we compare the solutions obtained with the
quadratic programming approach and the variational method.
For simplicity, we consider 30 samples over the normalized
time scale [0, 1]. We consider four simulation scenarios as
follows:
• Scenario 1: P1(τ) = sin(7τ) + 2, P2(τ) = cos(7τ) + 2,
P3(τ) = sin(8τ) + 2, K1,1 = 0.05, K1,2 = 0.06, K2,1 =
0.07, K2,2 = 0.08, K3,1 = 0.09, K3,2 = 0.1.

• Scenario 2: P1(τ) = sin(7τ) + 2, P2(τ) = cos(7τ) + 2,
P3(τ) = sin(8τ) + 2, K1,1 = 0.0471, K1,2 = 0.0561,
K2,1 = 0.0269, K2,2 = 0.0749, K3,1 = 0.0504 K3,2 =
0.0647.

• Scenario 3: P1(τ) = sin(10τ) + 2, P2(τ) = cos(5τ) + 2,
P3(τ) = sin(18τ) + 2, K1,1 = 0.0904, K1,2 = 0.0667,
K2,1 = 0.0118, K2,2 = 0.1482, K3,1 = 0.1014 K3,2 =
0.04.

• Scenario 4: P1(τ) = sin(10τ) + 2, P2(τ) = cos(5τ) + 2,
P3(τ) = sin(18τ) + 2, K1,1 = 0.144, K1,2 = 0.0694,
K2,1 = 0.1034, K2,2 = 0.1113, K3,1 = 0.0313 K3,2 =
0.1124.

In all these scenarios, M = 3, N = 2, S = 1, T = 30,
∆t = 0.0345, and the battery parameters are set as in Table III,
except for the Jn(0)’s which are set according to the require-
ments stated in Sec. IV-B, i.e., Jn(0) =

∫ S
0
Rn(τ)dτ, ∀ n.
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As seen in Fig. 8, the strategy based on calculus of
variations is able to approximate the result obtained through
quadratic programming whenever λn

Pm(τ) < 1, ∀ m, ∀ n. That
is, whenever the conditions considered in Sec. IV-B hold, the
result (17) is close to the one obtained numerically through
quadratic programming.
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Fig. 8. Time-variation of RE consumption rate. Top-Left: Scenario 1. Top-
Right: Scenario 2. Bottom-Left: Scenario 3. Bottom-Right: Scenario 4.

We now compare the performance of the proposed strategies
in terms of achievable cost savings. In Fig. 9, we plot ξ against
Θ1 while setting Θ2 to half its optimal value, according to
(20), in each of the simulation scenarios described above. As
seen, the cost saving function is concave in Θ1 and attains
its maximum when Θ1 = S

2

∑M
m=1

1
Km,n

, according to (20).
Similarly, in Fig. 10, we plot ξ against Θ2 while letting Θ1 =
Θ∗1, where Θ∗1 is given by (20). Again, we consider the four
simulation scenarios described above. Figs. 10 verify the fact
that the cost saving function is concave in Θ2 and attains its
maximum when Θ2 = S

2

∑M
m=1

1
Km,n

, according to (20). The
performance gap shown in Figs. 9 and 10 for small and large
values of Θ1 and Θ2 follows from the range of applicability
determined in Sec. IV-B5.

C. Ownership Distribution

We now verify some of the results presented in Sec. V.
We thus consider the simulation scenarios described in Sec.
VI-B, as well as varying ownership shares of the first and
second households, while we set the ownership share of the
third household to its optimal value. That is, we set γ1,2 =
γ∗1,2, γ2,2 = γ∗2,2, γ3,1 = γ∗3,1, γ3,2 = γ∗3,2, and let γ1,1 vary
between 0 and 1−γ∗3,1 and γ2,1 vary between 0 and 1−γ1,1−
γ∗3,1. Then, we plot the achievable cost savings ξ against γ1,1

in Fig. 11 for the four simulation scenarios described in Sec.
VI-B. The optimal value of γ1,1, computed by using (30), is
marked in the plots. As observed, the cost savings function ξ
is concave in γ1,1, and the expression (30) is able to estimate
its optimized value within reasonable accuracy.
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Fig. 9. Comparative performance: QP-REO vs. CoV-REO. Cost savings
plotted against RE production at first generation site. Top-Left: Scenario 1.
Top-Right: Scenario 2. Bottom-Left: Scenario 3. Bottom-Right: Scenario 4.
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4.

D. Practical Case

We consider two RE generation sites, each with 10 solar
panels and a maximum output power of 320[W] per panel,
as described in [45]. Each generation site is equipped with
a battery bank composed of 6 lead acid batteries, each with
a capacity of 210[Ah] and an operating voltage of 12[V], as
described in [46]. We consider two simulation scenarios: In the
first scenario, 3 houses are located 443.07 metres from each
generation site. In the second simulation scenario, the three
houses are located 553,84 metres from each generation site. In
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Fig. 11. Comparative performance: QP-REO vs. CoV-REO. Cost savings
plotted against household one’s ownership share of first generation site. Top-
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both scenarios, we assume connecting wires with a resistance
of 1.3mΩ per meter, which corresponds to AWG 6 [47].
Moreover, in both scenarios the households are subject to the
same real-time energy prices offered by Southern California
Edison to its medium-size customers on a hot summer day
[48]. In both scenarios, we consider a 24-hour long planning
period, and initialize the battery bank at generation site 1 as
Θ1 = Θ∗1, while we let 0.4Θ∗2 ≤ Θ2 ≤ Θ∗2. We have plotted
the achievable cost savings against the RE generation at site 2
in Fig. 12. As seen, daily savings of up to 1.37$ are achievable
when the households are about 440m from the RE generation
sites. Similarly, daily savings of up to 1.1$ are achievable when
the households are about 550m from the generation sites.
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Fig. 12. Comparative performance: QP-REO vs. CoV-REO in a practical
case. Cost savings plotted against RE generation at site 2. Left: Scenario 1
(households located 443.07 metres from each generation site). Right: Scenario
2 (households located 553,84 metres from each generation site).

The RE consumption schedules for the practical cases
considered are shown in Fig. 13, where we have allowed
Θ1 = 0.7Θ∗1 and Θ2 = 0.7Θ∗2. As observed, the RE
consumption schedules are the same across households, this,
given that the prices and power loss parameters are the same
for all the participants. It is observed a fair similarity be-

tween the schedules obtained through QP-REO and CoV-REO.
Moreover, the expected correlation of the RE consumption
schedule with the prices offered is observed.
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Fig. 13. Time-variation of RE consumption rate. Left: Scenario 1. Right:
Scenario 2.

E. Additional Simulation Results
In this section we provide numerical results of various

simulated scenarios in which 6 households share access to 2
RE generation sites. The simulation scenarios considered differ
from each other in the power loss parameters of the connecting
lines. Cases involving different distances between households
and RE generation sites are considered. This, ultimately re-
flects on the choice of K1,1, . . . ,K6,1 and K1,2, . . . ,K6,2. The
pricing signals in all the simulation scenarios are P1(τ) =
sin(7τ) + 2, P2(τ) = cos(7τ) + 2, P3(τ) = sin(8τ) + 2,
P4(τ) = sin(7τ) + 2, P5(τ) = cos(7τ) + 2, P6(τ) =
sin(8τ) + 2. Moreover, in all scenarios, M = 6, N = 2,
S = 1, T = 30, ∆t = 0.0345, and the battery parameters
are set as in Table III, except for the Jn(0)’s which are
set according to the requirements stated in Sec. IV-B, i.e.,
Jn(0) =

∫ S
0
Rn(τ)dτ, ∀ n. With these considerations, the

simulation scenarios to consider are defined as follows:
• Scenario 1: K1,1 = 0.05, K1,2 = 0.054545, K2,1 =

0.059091, K2,2 = 0.063636, K3,1 = 0.068182, K3,2 =
0.072727, K4,1 = 0.077273, K4,2 = 0.081818, K5,1 =
0.086364, K5,2 = 0.090909, K6,1 = 0.095455, K6,2 =
0.1.

• Scenario 2: K1,1 = 0.05, K1,2 = 0.063636, K2,1 =
0.077273, K2,2 = 0.090909, K3,1 = 0.104545, K3,2 =
0.118182, K4,1 = 0.131818, K4,2 = 0.145455, K5,1 =
0.159091, K5,2 = 0.172727, K6,1 = 0.186364, K6,2 =
0.2.

• Scenario 3: K1,1 = 0.01, K1,2 = 0.027273, K2,1 =
0.044545, K2,2 = 0.061818, K3,1 = 0.079091, K3,2 =
0.096364, K4,1 = 0.113636, K4,2 = 0.130909, K5,1 =
0.148182, K5,2 = 0.165455, K6,1 = 0.182727, K6,2 =
0.2.
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• Scenario 4: K1,1 = 0.01, K1,2 = 0.018182, K2,1 =
0.026364, K2,2 = 0.034545, K3,1 = 0.042727, K3,2 =
0.050909, K4,1 = 0.059091, K4,2 = 0.067273, K5,1 =
0.075455, K5,2 = 0.083636, K6,1 = 0.091818, K6,2 =
0.1.

The achievable savings obtained with the proposed strate-
gies in the above mentioned scenarios are plotted against the
RE production at the second generation site in Fig. 14. As
observed, the scenario with the highest cost savings is Scenario
4, given that it features the smallest Km,n values. The scenario
with the smallest cost savings is Scenario 2, as it has the largest
values of Km,n.
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Fig. 14. Comparative performance: QP-REO vs. CoV-REO. Cost savings
plotted against RE production at second generation site. Top-Left: Scenario
1. Top-Right: Scenario 2. Bottom-Left: Scenario 3. Bottom-Right: Scenario
4.

VII. CONCLUSIONS

We have proposed energy management strategies to mini-
mize the cost incurred by a cooperating group of households
over a finite planning horizon. The households share access to
a group of RE generators and ESDs. In our framework we
have taken into account the distance-dependent power loss
incurred when transmitting energy from the RE generators
to the loads. We have cast the optimization problem as a
non-convex quadratically-constrained quadratic programming
problem. We have then proposed solutions based on discretiza-
tion, relaxation and variational methods. The approach based
on variational methods has allowed us to obtain analytic results
in closed form. We have presented a fair energy allocation
policy to ensure full household cooperation over the entire
planning horizon. Finally, we have discussed an ownership
distribution which seeks to minimize the performance degra-
dation incurred after imposing fairness-ensuring constraints.

The analytical results presented in this paper illustrate
the relationship between the optimal RE consumption policy
and system parameters such as the resistance of the lines

connecting generators and loads, the distance between gen-
erators and loads, price variations across time and location,
and RE generation capacity. These results can be used for
energy planning purposes, while the proposed strategies can be
used to benchmark and devise real-time energy management
algorithms by incorporating forecasting techniques to estimate
future RE generation and power consumption.

APPENDIX A
COST FUNCTION AS A QUADRATIC FORM

The cost function χ can be approximated in terms of the
vector x as χ ≈ ∆t [ε− 1MPx + xᵀQKx], where:

ε = 1M

 pᵀ
1`1

...
pᵀ
M`M

 ,

P =


(p1 ⊗ 1N ) 0 . . . 0

0 (p2 ⊗ 1N ) . . . 0
...

...
. . .

...
0 0 . . . (pM ⊗ 1N )

 ,

Q =


dg (p1 ⊗ 1N ) 0 . . . 0

0 dg (p2 ⊗ 1N ) . . . 0
...

...
. . .

...
0 0 . . . dg (pM ⊗ 1N )

 ,

and
K = dg ([k1,k2, . . . ,kM ]) .

APPENDIX B
CONSTRAINTS IN MATRIX FORM

In this appendix we determine matrices M1, . . . ,M4 and
vectors v1, . . . ,v4, which were introduced in Sec. IV-A to
simplify the problem formulation.

From Eq. (4), it can be shown that M1 is given as follows:

M1 = 1M ⊗ INT ,

where 1M is the vector of ones of length M , ⊗ denotes
Kronecker product, and INT is the identity matrix of size
NT ×NT .

Similarly, it follows from Eq. (4) that the vector v1 should
be:

v1 =



qD,1
...

qD,N
...

...
qD,1

...
qD,N


,

where the sequence qD,1, . . . , qD,N repeats itself T times. To
see how M1x � v1 is a discrete representation of Eq. (4),
consider the example shown in Table IV, where M = 4, N =
3, T = 2. As seen, the first row implies:

D1,1(∆t) +D2,1(∆t) +D3,1(∆t) +D4,1(∆t) ≤ qD,1,
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TABLE IV
EXAMPLE OF M1 AND v1 WITH M = 4, N = 3, T = 2.


1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1





D1,1(∆t)
D1,2(∆t)
D1,3(∆t)
D1,1(2∆t)
D1,2(2∆t)
D1,3(2∆t)
D2,1(∆t)
D2,2(∆t)
D2,3(∆t)
D2,1(2∆t)
D2,2(2∆t)
D2,3(2∆t)
D3,1(∆t)
D3,2(∆t)
D3,3(∆t)
D3,1(2∆t)
D3,2(2∆t)
D3,3(2∆t)
D4,1(∆t)
D4,2(∆t)
D4,3(∆t)
D4,1(2∆t)
D4,2(2∆t)
D4,3(2∆t)



�


qD,1
qD,2
qD,3
qD,1
qD,2
qD,3



which is the same as Eq. (4) with τ = ∆t, and M = 4, N = 3.
As stated in Sec. IV-A, constraint (6) can be writ-

ten in matrix form as M2x � v2, where M2 =
−∆t [1M ⊗ (AT ⊗BN )], with:

AT =


1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1


T×T

,

BN =



1
β1

0 0 . . . 0

0 1
β2

0 . . . 0

0 0 1
β3

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
βN

 , (32)

and

v2 =



Ψ1 − α1∆t (R1(∆t))− J1(0)
Ψ2 − α2∆t (R2(∆t))− J2(0)

...
ΨN − αN∆t (RN (∆t))− JN (0)

Ψ1 − α1∆t (R1(∆t) +R1(2∆t))− J1(0)
Ψ2 − α2∆t (R2(∆t) +R2(2∆t))− J2(0)

...
ΨN − αN∆t (RN (∆t) +RN (2∆t))− JN (0)

...

Ψ1 − α1∆t
(∑T

t=1R1(t∆t)
)
− J1(0)

Ψ2 − α2∆t
(∑T

t=1R2(t∆t)
)
− J2(0)

...

ΨN − αN∆t
(∑T

t=1RN (t∆t)
)
− JN (0)



To visualize why M2x � v2 is a valid discrete represen-
tation of constraint (6), readers are referred to the example
shown in Table V, where we consider the case M = 4, N = 3,
T = 2.

Given the similarities between constraints (6) and (7), it
follows that M3 = −M2. The vector v3 is given as follows:

v3 =



α1∆t (R1(∆t)) + J1(0)
α2∆t (R2(∆t)) + J2(0)

...
αN∆t (RN (∆t)) + JN (0)

α1∆t (R1(∆t) +R1(2∆t)) + J1(0)
α2∆t (R2(∆t) +R2(2∆t)) + J2(0)

...
αN∆t (RN (∆t) +RN (2∆t)) + JN (0)

...

α1∆t
(∑T

t=1R1(t∆t)
)

+ J1(0)

α2∆t
(∑T

t=1R2(t∆t)
)

+ J2(0)

...

αN∆t
(∑T

t=1RN (t∆t)
)

+ JN (0)



Again, to visualize why M3x � v3 is a valid discrete
representation of constraint (7), readers are referred to the
example shown in Table VI, where we consider the case
M = 4, N = 3, T = 2.

As stated in Sec. IV-A, constraint (5) can be writ-
ten in matrix form as M4x = v4, where M4 =
−∆t [1M ⊗ (1T ⊗BN )], with BN as defined in (32), and
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TABLE V
EXAMPLE OF M2 AND v2 WITH M = 4, N = 3, T = 2.

−∆t



1
β1

0 0 0 0 0 1
β1

0 0 0 0 0 1
β1

0 0 0 0 0 1
β1

0 0 0 0 0

0 1
β2

0 0 0 0 0 1
β2

0 0 0 0 0 1
β2

0 0 0 0 0 1
β2

0 0 0 0

0 0 1
β3

0 0 0 0 0 1
β3

0 0 0 0 0 1
β3

0 0 0 0 0 1
β3

0 0 0
1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0

0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3





D1,1(∆t)
D1,2(∆t)
D1,3(∆t)
D1,1(2∆t)
D1,2(2∆t)
D1,3(2∆t)
D2,1(∆t)
D2,2(∆t)
D2,3(∆t)
D2,1(2∆t)
D2,2(2∆t)
D2,3(2∆t)
D3,1(∆t)
D3,2(∆t)
D3,3(∆t)
D3,1(2∆t)
D3,2(2∆t)
D3,3(2∆t)
D4,1(∆t)
D4,2(∆t)
D4,3(∆t)
D4,1(2∆t)
D4,2(2∆t)
D4,3(2∆t)



�


Ψ1 − α1∆t (R1(∆t))− J1(0)
Ψ2 − α2∆t (R2(∆t))− J2(0)
Ψ3 − α3∆t (R3(∆t))− J3(0)

Ψ1 − α1∆t (R1(∆t) +R1(2∆t))− J1(0)
Ψ2 − α2∆t (R2(∆t) +R2(2∆t))− J2(0)
Ψ3 − α3∆t (R3(∆t) +R3(2∆t))− J3(0)



TABLE VI
EXAMPLE OF M3 AND v3 WITH M = 4, N = 3, T = 2.

∆t



1
β1

0 0 0 0 0 1
β1

0 0 0 0 0 1
β1

0 0 0 0 0 1
β1

0 0 0 0 0

0 1
β2

0 0 0 0 0 1
β2

0 0 0 0 0 1
β2

0 0 0 0 0 1
β2

0 0 0 0

0 0 1
β3

0 0 0 0 0 1
β3

0 0 0 0 0 1
β3

0 0 0 0 0 1
β3

0 0 0
1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0

0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3





D1,1(∆t)
D1,2(∆t)
D1,3(∆t)
D1,1(2∆t)
D1,2(2∆t)
D1,3(2∆t)
D2,1(∆t)
D2,2(∆t)
D2,3(∆t)
D2,1(2∆t)
D2,2(2∆t)
D2,3(2∆t)
D3,1(∆t)
D3,2(∆t)
D3,3(∆t)
D3,1(2∆t)
D3,2(2∆t)
D3,3(2∆t)
D4,1(∆t)
D4,2(∆t)
D4,3(∆t)
D4,1(2∆t)
D4,2(2∆t)
D4,3(2∆t)



�


α1∆t (R1(∆t)) + J1(0)
α2∆t (R2(∆t)) + J2(0)
α3∆t (R3(∆t)) + J3(0)

α1∆t (R1(∆t) +R1(2∆t)) + J1(0)
α2∆t (R2(∆t) +R2(2∆t)) + J2(0)
α3∆t (R3(∆t) +R3(2∆t)) + J3(0)
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v4 given as follows:

v4 =


α1∆t

(∑T
t=1R1(t∆t)

)
α2∆t

(∑T
t=1R2(t∆t)

)
...

αN∆t
(∑T

t=1RN (t∆t)
)


To visualize why M4x = v4 is a valid discrete representation
of constraint (5), readers are referred to the example shown
in Table VII, where we consider the case M = 4, N = 3,
T = 2.

APPENDIX C
PROOF OF THEOREM 1

Proof. First, we will show that ξ is concave in λn by comput-
ing the second order derivative ∂2

∂λ2
n
ξ, which is always negative

whenever Km,n > 0 and Pm(τ) > 0, ∀ m, ∀ n, ∀ τ . The
first derivative of ξ with respect to λn can be computed from
Eq. (18) in the paper:

∂

∂λn
ξ =

∂

∂λn

M∑
m=1

S∫
0

N∑
n=1

Pm(τ)
[
Dm,n(τ)−Km,nD

2
m,n(τ)

]
dτ,

which yields:

∂

∂λn
ξ = 2

M∑
m=1

S

4Km,n
− λn

1

4Km,n

∫ S

0

1

Pm(τ)
dτ − S

4Km,n
.

The quantity ∂2

∂λ2
n
ξ can be obtained by differentiating the

expression above with respect to λn:

∂2

∂λ2
n

ξ = −
M∑
m=1

1

2Km,n

∫ S

0

1

Pm(τ)
dτ.

Now note that λn is a linear and decreasing function of Θn,
which can be written as λn = a − bΘn for some a ∈ R and
b ∈ R. The composition with affine functions preserves con-
cavity [49], as a result, the function ξ [λ1(Θ1), . . . , λN (ΘN )]
is concave in Θn. �
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TABLE VII
EXAMPLE OF M4 AND v4 WITH M = 4, N = 3, T = 2.

∆t


1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0 1
β1

0 0

0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0 0 1
β2

0

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3

0 0 1
β3





D1,1(∆t)
D1,2(∆t)
D1,3(∆t)
D1,1(2∆t)
D1,2(2∆t)
D1,3(2∆t)
D2,1(∆t)
D2,2(∆t)
D2,3(∆t)
D2,1(2∆t)
D2,2(2∆t)
D2,3(2∆t)
D3,1(∆t)
D3,2(∆t)
D3,3(∆t)
D3,1(2∆t)
D3,2(2∆t)
D3,3(2∆t)
D4,1(∆t)
D4,2(∆t)
D4,3(∆t)
D4,1(2∆t)
D4,2(2∆t)
D4,3(2∆t)



=
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α3∆t (R3(∆t) +R3(2∆t))
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