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Abstract

We propose optimization strategies for cooperating households equipped with

renewable energy assets and storage devices. We consider two system configu-

rations: In the first configuration, households share access to an energy farm,

where electricity is generated from renewable sources and stored in battery

banks. In the second configuration, households are equipped with their own

renewable energy sources and storage devices, and are allowed to share energy

through the grid. The developed optimization model takes into account location

and time-varying energy prices as well as energy transfer fees. To design our

strategies, we first establish performance bounds, and compare the two configu-

rations in terms of achievable savings and usability of renewable energy. Then,

we devise real-time energy management algorithms by incorporating forecasting

techniques in the proposed framework. Simulation results show that the pro-

posed strategies outperform existing solutions by up to 10%. It is also shown

that cooperative strategies outperform greedy approaches by up to 6.8%.
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1. Introduction

Renewable energy generators can be deployed by end users to lower their

electricity bills [1–3], support load balancing applications [4], and reduce their

carbon footprint. To handle the intermittency of the renewable energy source,

energy storage devices can be used to enhance the utility of the renewable energy5

over specific planning periods [5–7]. Storage devices can also be used to solve

over-voltage issues caused by a high renewable energy penetration [8].

To further enhance the utility of local renewable energy, cooperative schemes,

such as Shared Solar1 can be used to leverage geographic diversity and mini-

mize the upfront investment. In a cooperative environment, where participants10

share energy to minimize their collective expenditure and/or carbon emissions,

renewable energy generators and storage devices can be deployed in different

configurations [10].

In this paper, we propose cooperative strategies that minimize the energy

expenditure incurred by the participating households over a finite planning hori-15

zon. The novelty of the approach proposed in this paper in comparison to ex-

isting methods is as follows: First, we develop and compare two approaches

to cooperative energy management, namely centralized and distributed renew-

able energy generation. We approach the problem from the perspective of the

consumers, not the utility company. Second, our modelling framework focuses20

on optimizing renewable energy allocation across cooperating households and

energy consumption over time. Moreover, the households’ loads are assumed

non-deferrable (inflexible), thus ensuring full user satisfaction over the entire

planning period. Third, our proposed real-time algorithms have the following

advantages over existing strategies:25

1Community Shared Solar is a “solar-electric system that provides power and/or financial

benefit to multiple community members” [9].
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• The computational complexity of the proposed forecasting-based real-time

algorithms can be controlled by varying the rate at which the forecasts

and decision variables are updated.

• The proposed forecasting-based real-time algorithms are not restricted to

a particular renewable energy generation model, or a particular energy30

consumption model. Contrarily, different statistical models can be con-

sidered and hence, the algorithm can be applied in different scenarios.

• By using the proposed forecasting-based real-time algorithms, we can im-

prove the prediction accuracy on a continuous basis. Measurements are

acquired in each time slot and they can be used for model identification,35

which in turn can enhance the statistical understanding of the stochastic

processes that model renewable energy generation and household power

consumption.

• The proposed algorithms allow us to exploit seasonality effects, trends,

and other characteristics of non-stationary stochastic processes that model40

renewable energy generation and power consumption. For example, his-

torical records can be used to build time series models which can capture

characteristics such as seasonality in renewable energy generation data.

This paper is organized as follows. The literature review is presented in Sec.

2. The system model is explained in Sec. 3. We derive the optimal energy45

management strategy for the configuration with centralized renewable energy

generation (CREG) in Sec. 4. The proposed strategy for the configuration

with distributed renewable energy generation (DREG) is presented in Sec. 5.

A comparison between the two renewable energy production configurations is

presented in Sec. 6. The proposed real-time algorithms are presented in Sec. 7.50

Numerical results are discussed in Sec. 8, and conclusions are presented in Sec.

9.
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Nomenclature

Table 1: Main variables and their notation

`m Power consumed by the mth household

pm Energy prices offered to the mth household

dm Renewable power drawn by the mth household

j Renewable energy available at the energy farm

jm Renewable energy available at the mth household

rm Renewable power generated at the mth household

πorig,des(n) Renewable power transferred from household orig to household des, nth time slot

γm Total renewable power received by household m from others

θm Total renewable power transferred from household m to others

α Charging efficiency rate, battery bank at energy farm

β Discharging efficiency rate, battery bank at energy farm

αm Charging efficiency rate, battery at household m

βm Discharging efficiency rate, battery at household m

∆t Time step, time difference between consecutive samples

Ψ Storage capacity, battery bank at energy farm

Ψm Storage capacity, battery at household m

qC Maximum charging rate, battery bank at energy farm

qD Maximum discharging rate, battery bank at energy farm

qC,m Maximum charging rate, battery at household m

qD,m Maximum discharging rate, battery at household m

r Renewable power generated at the energy farm over time

rm Renewable power generated at household m over time

χ Total energy cost incurred by participating households

⊗ Kronecker product

AN N ×N lower triangular matrix of ones

1N,M N ×M matrix of ones

0N,M N ×M matrix of zeros

� Element-wise less than or equal to

Π(:, :, :) Power transfer tensor, with Π(n, orig, des) = πorig,des(n)

ε Cost of transferring energy within planning horizon

φ Parameter used to represent different transfer fees

REUC Renewable energy left unused, centralized configuration

REUD Renewable energy left unused, distributed configuration
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In this paper column vectors are presented with lower case bold letters.

Matrices are represented with upper case bold letters. Scalars are represented55

by regular fonts. The nth element of vector j is denoted by j(n). The N ×M

matrices of zeros and ones are respectively denoted by 0N,M and 1N,M . The

N×N identity matrix is denoted by IN . Also, ⊗ denotes the Kronecker product,

� denotes element-wise ≤, and a(n) is the nth element of vector a. The notation

of the most important variables in the system model is presented in Table 1.60

2. Related Works

Energy management in buildings and households has been studied exten-

sively. Most of the recent works in this area focus on scheduling deferrable

appliances to minimize the household’s energy cost incurred over specific plan-

ning periods, see, e.g., [11–15]. In [11] and [13] comfort constraints are imposed65

to ensure a satisfactory user experience. Some works consider loads that are

not always present in the building/house such as electrical vehicles [12]. Works

such as [14] and [15] account for storage devices as well.

Strategies that enable integration of renewable energy into the grid through

storage management, demand response,2 or power balancing can be found in70

[17, 18] and [19]. Papers [3] and [20] propose suboptimal energy management

strategies based on evolutionary algorithms. Similarly, a battery management

strategy based on neural3 networks and dynamic programming4 is presented

in [21]. The proposed strategy aims at minimizing the energy cost through

renewable energy and storage management. However, the solution presented in75

[21] is approximate and only converges in a few scenarios.

Solutions based on game theory are proposed in several works, e.g., see [22]

2Demand response programs seek to modify energy consumption patterns through eco-

nomic incentives [16].
3A neural network is a parametrized model, which is used to make predictions. Its param-

eters are optimized to maximize its accuracy on a training set.
4Dynamic programming is an optimization framework, which breaks problems into simpler

subproblems and uses recurrence to find a solution.
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and [23]. These solutions are meant to balance the priorities of game participants

such as utility companies and consumers. A renewable energy trading system

is studied in [24], where strategies are proposed to maximize the profit of an80

energy harvesting company through renewable energy management.

Energy management solutions for microgrids5 are proposed in [25–28] and

[29]. Most of these strategies are designed to minimize the operational cost

of microgrids over finite planning horizons. Some works, e.g. [25], develop

strategies to maximize the utility of the energy consumed over the specified85

optimization period. Works such as [26] take into consideration the maintenance

cost of the storage device. The physical aspects of the energy management

problem are investigated in [30] and [31], where the authors propose schemes to

enhance the deployment of energy management strategies in practical scenarios.

Related works on cooperative energy management include [10, 32–40]. In90

[32], a technique is proposed to solve the economic dispatch problem in a de-

centralized manner assuming information cooperation across distributed power

systems. Works such as [33] and [35] present strategies to reduce grid losses

by scheduling loads (among participating households) or power flows (among

microgrids). In [34], a strategy is proposed to reduce load disconnection. The95

cooperative strategies proposed for microgrids in [10, 36, 37, 40] only consider

a configuration with distributed renewable energy generation. In general, these

strategies are designed to optimize the operation of the grid/distribution sys-

tem, or reduce the generation cost incurred by the utility.

Real-time energy management strategies have been proposed in works such100

as [41–52], and [53], where the authors develop frameworks to optimize energy

assets in real time. In [42], the proposed strategies aim at minimizing both the

energy costs and the thermal discomfort. In [41, 42, 47] and [48] the proposed

strategies are meant to optimize the average performance of the system. The

algorithms proposed in [46] and [53] are meant for use in data centers, while105

5A microgrid is an energy ecosystem composed of energy sources and loads, and confined

to a defined geographical area.
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Figure 1: Left: CREG. Right: DREG. REMU stands for renewable energy management unit.

the framework in [52] is meant to optimize the charging operations in electrical

vehicles.

The strategy proposed in [49] is based on game theory and does not account

for time-varying electricity prices. In [50], the strategy proposed aims at min-

imizing both energy costs and polluting gas emissions. However, the strategy110

developed in [50] is not cooperative in nature, as it only assumes a single energy

source. In [54] the authors propose an architecture for real-time management

that accounts for renewable energy assets. However, the proposal developed in

[54] only concerns economic optimization for generation-side management, and

as such, it targets utility companies and grid operators.115

Unlike existing solutions, in this paper we consider location- and time-

varying electricity prices, loads, and renewable energy generation profiles. The

energy prices are dynamic and made known in advance to the users, as part of

a demand response program [55]. The developed optimization framework also

accounts for parameterized energy transfer fees, thus allowing utilities and grid120

operators charge for power transferring operations across households. Finally,

our framework accounts for non-deferrable (inflexible) loads, thus ensuring full

user satisfaction over the entire planning period.
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3. System Model

3.1. Loads, Planning Horizon, Objective, and Design Variables125

We consider a set of M grid-tied households, and seek to minimize their

collective energy expenditure over a finite planning horizon of N time slots,

each one of duration ∆t. Each household is permanently connected to the grid,

and is subject to different energy consumption patterns. The power consumed

by the mth household in the nth time slot is denoted by `m(n), n ∈ {1, . . . , N},130

and is non-deferrable in order to ensure total user satisfaction over the planning

period. The decision variables are the charging/discharging schedules of the

storage devices. They thus determine the optimal power that should be drawn

from the grid in order to minimize the total cost incurred by the participating

households.135

3.2. Renewable Energy Production and Storage Configurations

We consider two system configurations, namely a system with centralized

renewable energy generation (CREG), and a system with distributed renewable

energy generation (DREG). These two configurations are illustrated in Fig. 1.

As seen in Fig. 1, each configuration requires a different storage arrangement.140

That is, in CREG the storage devices are all placed in a single location (the

generation site), whereas, in DREG, the storage devices are placed across differ-

ent households. The configuration with distributed renewable energy generation

can be found in most countries around the world, whereas the configuration with

centralized renewable energy generation is becoming popular among households145

with insufficient space to deploy renewable energy generators and in communi-

ties where consumers want to reduce capital investment.

3.2.1. CREG

In this configuration, the households share access to an energy farm, where

renewable energy is generated and stored. The energy farm is composed of

energy harvesting devices such as solar panels or windmills, and energy storage

devices such as battery banks. The renewable power drawn from the energy
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farm by the mth household is denoted by dm ∈ RN+ . Hence, the power drawn

from the grid by the mth household is `m − dm, where dm must satisfy:

dm(n) ≤ `m(n), ∀ n. (1)

3.2.2. DREG

In this configuration, each household is equipped with its own renewable

energy generator and storage device. To minimize their collective energy ex-

penditure, households share renewable energy through the grid thus incurring

transfer fees. The renewable power transferred from the storage device at house-

hold orig ∈ {1, . . . ,M} to the storage device at household des ∈ {1, . . . ,M} is

denoted by πorig,des(n), the total renewable power received by household des from

others is denoted by γdes ∈ RN+ . Similarly, the total renewable power trans-

ferred from household orig to other households is denoted by θorig ∈ RN+ . The

vectors γdes and θorig can be written in terms of πorig,des(n) as follows:

γdes(n) =

M∑
orig 6=des

πorig,des(n), θorig(n) =

M∑
des 6=orig

πorig,des(n), ∀ n. (2)

By the energy conservation principle, we have the following balancing require-

ment for γm and θm:

M∑
m=1

γm(n) =

M∑
m=1

θm(n), ∀ n, (3)

which states that the energy delivered is equal6 to the energy received by the150

households in each time slot.

3.3. Energy Storage Devices

The storage devices7 in both configurations are characterized by the follow-

ing properties:

6The transfer losses are absorbed by the grid operator or utility, and are accounted for in

the transfer fee.
7In this paper we use the term storage device to refer to a system composed of potentially

multiple energy storage devices, such as a battery bank.
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3.3.1. Charging/discharging losses155

Each storage device in the system is subject to charging/discharging losses,

which are proportional to the power charged to or discharged from the storage

device. The storage device charging/discharging efficiency rates at the energy

farm are respectively denoted by α and β, and satisfy 0 < α ≤ 1 and 0 < β ≤ 1.

A lossless charging (discharging) operation takes place when α = 1 (β = 1). The160

storage device charging/discharging efficiency rates at the mth household are

respectively αm and βm, which also satisfy 0 < αm ≤ 1 and 0 < βm ≤ 1. Again,

a lossless charging (discharging) operation happens when αm = 1 (βm = 1).

3.3.2. Storage device dynamics

The energy available in the storage device at the energy farm is denoted by

j ∈ RN+ , and satisfies:

j(η) = j(0) + ∆t

η∑
n=1

[
αc(n)− 1

β

M∑
m=1

dm(n)

]
, (4)

where j(0) ≥ 0 is the energy initially available in the storage device, η ∈

{1, . . . , N}, and c(n) is the total renewable power charged into the storage device

during the nth time slot. Similarly, the energy available in the storage device

at the mth household is denoted by jm ∈ RN+ , and evolves according to:

jm(η) = jm(0) + ∆t

η∑
n=1

[
αmcm(n)− 1

βm
[dm(n) + θm(n)]

]
, (5)

where jm(0) ≥ 0 is the energy initially available in the mth storage device, and165

cm ∈ RN+ and dm ∈ RN+ are, respectively, the renewable power charged to,

and discharged from the mth storage device.

3.3.3. Limited storage capacity

The capacity of the storage device at the energy farm is denoted by Ψ ∈ R+,

and the capacity of the storage device at the mth household is denoted by

Ψm ∈ R+. Therefore, c(n), cm(n), and dm(n), m ∈ {1, . . . ,M} must be such

that:

0 ≤ j(n) ≤ Ψ,∀ n ∈ {1, . . . , N}, (6)
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and

0 ≤ jm(n) ≤ Ψm,∀ n ∈ {1, . . . , N}. (7)

3.3.4. Limited charging/discharging rate

Each storage device has a limited charging/discharging rate, expressed as the

maximum amount of energy that can be injected to, or drawn from the storage

device in each time slot. The maximum charging (discharging) rate that the

storage device at the energy farm can handle is qC (qD) power units. These lim-

itations impose the following constraints on c(n) and d(n) ,
∑M
m=1 dm(n),∀ n:

c(n) ≤ qC , d(n) ≤ qD, ∀ n ∈ {1, . . . , N}. (8)

Similarly, the maximum charging (discharging) rate that the storage device at

the mth household can handle is qC,m (qD,m) power units. Therefore,

cm(n) ≤ qC,m, dm(n) + θm(n) ≤ qD,m, ∀ m, ∀ n. (9)

3.4. Renewable Energy Generation170

The total renewable energy generated at the energy farm is denoted by

r ∈ RN+ , whereas the renewable energy generated at the mth household is

rm ∈ RN+ . Therefore, the power charged into the storage device at the energy

farm satisfies:

c(n) ≤ min{qC , r(n)}, ∀ n. (10)

Similarly, the power charged into the storage device at the mth household sat-

isfies:

cm(n) ≤ min{qC,m, rm(n) + γm(n)}, ∀ n,∀ m, (11)

where γm(n), defined in (2), is the total renewable power received by the mth175

household from other cooperating households.
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3.5. Pricing Scheme

To ensure generality, we consider location- and time-varying electricity prices.

That is, each household is subject to potentially different pricing signals. The

cost of the energy consumed by the mth household over the N -slot planning

period is

ξm =

N∑
n=1

pm(n) [`m(n)− dm(n)] ∆t, (12)

where pm ∈ RN+ denotes the energy prices, and dm satisfies (1). The cost of

the energy consumed by the entire group of households is thus

χ =

M∑
m=1

ξm. (13)

In the following sections we formulate two optimization problems, which we180

solve to determine the energy management strategy that minimizes χ in the

configurations described in Sec. 3.2. The savings obtained can be allocated

to participants following different policies, e.g., in proportion to their initial

investment or their renewable energy generation capacity.

4. Centralized renewable energy Generation (CREG)185

In this section we analyse the configuration with CREG. We start by formu-

lating an optimization problem to minimize the energy cost incurred by all the

participating households. Then we solve the optimization problem by assuming

full knowledge of the renewable energy generation and the energy consumption

profiles over the entire planning horizon. The obtained energy management190

strategy is thus genie-aided and serves as a performance benchmark for any

real-time algorithm. In Sec. 7 we will explain how forecasting techniques can

be incorporated in the proposed strategy for its implementation in real time.

4.1. Problem Formulation

With CREG, the decision variables are the power discharged from the energy

farm by each household, and denoted by dm’s, and the power charged into
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the centralized storage device, and denoted by c. Therefore, the optimization

problem can be formulated as follows:

P0: min
c, d1, ... ,dM

χ

s.t. (1), (6), (8), and (10).

(14)

In P0, j and the dm’s are connected through (4). P0 is a convex optimiza-195

tion problem because the objective is linear and the design space is convex.

Moreover, P0 can be cast as a standard linear programming problem by using

appropriate substitutions as shown in Sec. 4.2.

4.2. Solution Strategy

In this section we show how P0 can be formulated as a standard linear200

program. We first introduce some definitions to simplify notation. Let

G = [α∆tAN − 1

β
∆t11,M ⊗AN ], (15)

where AN is the N × N lower triangular matrix of ones. Clearly, G is an

N × (N + NM) matrix. By using G, constraint (6) can be written compactly

as follows:

0N,1 � G



c

d1

d2

...

dM


� [Ψ− j(0)] 1N,1. (16)

After introducing the definitions described above, P0 can be cast as a linear

programming problem and solved by using standard techniques such as the

Karmarkar’s algorithm. P0 can be cast as a linear programming problem be-

cause its feasibility space is determined by linear inequalities, and its objective205

is an affine function of the decision variables. Karmarkar’s algorithm can solve

linear programming problems in polynomial time [56], and is implemented in

programming packages for numerical computation such as Scilab [57].
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5. Distributed renewable energy Generation (DREG)

In this section we analyse the configuration with DREG. We first formu-210

late an optimization problem to minimize the energy cost incurred by all the

participating households over the specified planning horizon. Given the com-

plexity of the problem, we derive alternative formulations and use a combination

of techniques to solve the original optimization problem. The obtained energy

management strategy is genie-aided, as it requires full knowledge of the variables215

involved in the problem. The strategy proposed can then be used to benchmark

real-time algorithms. In Sec. 7 we will incorporate forecasting techniques to

enable the practical implementation of the proposed strategy.

5.1. Power Transfer Tensor

With DREG, the decision variables are the cm’s, the dm’s, and the power

transfer tensor Π ∈ RN×M×M+ , which is defined as follows:

Π(n, :, :) =


π1,1(n) π1,2(n) . . . π1,M (n)

π2,1(n) π2,2(n) . . . π2,M (n)
...

...
. . .

...

πM,1(n) πM,2(n) . . . πM,M (n)

 , (17)

where n ∈ {1, . . . , N}. Recall that πorig,des(n) is the renewable power trans-

ferred in the nth time slot from the storage device at household orig to the

storage device at household des. Since the power exchange cannot happen si-

multaneously in both directions, the elements of Π(n, :, :) must satisfy:

πorig,des(n)πdes,orig(n) = 0, ∀ n, ∀ orig 6= des. (18)

In addition, the elements of Π are all non-negative. We can interpret the di-220

agonal elements of the matrix Π(n, :, :) as the renewable power that the mth

household transfers to itself, or, in other words, uses locally. Hence, we can let

πm,m(n) = dm(n) ∀ m, ∀ n.
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5.2. Transfer Charges

To ensure generality in our model, any grid-enabled energy transference can225

be subject to a charge. The utility bears the power loss resulting from the

operation, and hence, it can impose a transfer fee on the users. To ensure

generality, we consider transfer fees ranging from 0 to [pdes(n)− porig(n)], where

pdes(n) and porig(n) denote the prices at the destination and the origin, with

des, orig ∈ {1, . . . ,M}.8 Therefore, the cost incurred by the set of households230

in moving ∆t
∑N
n=1

∑M
m=1 θm(n) energy units across the network is

ε = φ∆t

M∑
orig=1

M∑
des=1

N∑
n=1

[pdes(n)− porig(n)]πorig,des(n), (19)

where 0 ≤ φ ≤ 1 is a parameter used to represent different pricing scenarios.

If φ = 0, then the transfer fee is zero, and the monetary value of the energy

transferred from household orig to household des changes from porig(n) to pdes(n).

On the other hand, if φ = 1, then the transfer fee is pdes(n) − porig(n), and235

hence, given the battery inefficiencies, transferring energy is not cost-effective.

Between these two extremes there is an infinite range of possibilities, which are

all captured by the model proposed.

5.3. Problem Formulation

With the considerations explained in Secs. 5.1 and 5.2, the optimization

problem can be cast as follows:

P1A: min
c1, ... ,cM , Π

χ+ ε

s.t. (1), (3), (7), (9), (11), and (18),

(20)

where ε was defined in (19). In P1A, the objective function is the energy cost240

incurred by the entire group of households (χ), plus the cost incurred due to

renewable energy transfers among its members. Quantities jm’s and Π are

8No energy transfer will take place if it costs more than buying the same amount of energy

at the destination.
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connected through (5). Quantities γm(n) and θm(n) are defined in terms of Π

in (2).

P1A is not a convex optimization problem because (18) states that there are

sets of decision variables whose product must be zero at all times. Such equality

constraints are not affine, and hence, P1A is not a convex optimization problem

[58]. We can then find an alternative formulation, which we can later relax to a

linear programming problem, and use in combination with other optimization

techniques to find the optimal solution. We can thus cast the problem directly

in terms of the cm’s, the dm’s, the θm’s, and the γm’s as follows:

P1B: min
cm, dm, θm, γm, m ∈ {1,...,M}

χ+ ε

s.t. (1), (3), (7), (9), and (11).

(21)

As defined in Eq. (19), ε is a function of the tensor Π. Hence, to solve P1B,

we write ε in terms of the θm’s and γm’s, which can be done by noting the

following:

M∑
orig=1

M∑
des=1

N∑
n=1

[pdes(n)− porig(n)]πorig,des(n) =

M∑
des=1

N∑
n=1

pdes(n)

M∑
orig=1

πorig,des(n)

−
M∑

orig=1

N∑
n=1

porig(n)

M∑
des=1

πorig,des(n).

(22)

Moreover, since γdes(n) =
∑M

orig=1 πorig,des(n) and θorig(n) =
∑M

des=1 πorig,des(n), ε

can be written in terms of the γdes(n)’s and θorig(n)’s as follows:

ε = φ∆t

M∑
des=1

N∑
n=1

pdes(n)γdes(n)−
M∑

orig=1

N∑
n=1

porig(n)θorig(n), (23)

The tensor Π can be determined from P1B’s solution by using algorithms245

to solve non-negative least squares problems [59]. A detailed discussion on this

procedure is presented in Appendix 9.

5.4. Solution Strategy

Our approach to solve problem P1B is to introduce a matrix formulation

and to relax constraint (3). Specifically, in order to cast P1B in standard linear
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programming form, (3) is relaxed to an inequality-type constraint. To solve

P1B we introduce the following definition:

Gm = [αm∆tAN − 1

βm
∆tAN − 1

βm
∆tAN 0N,N ], (24)

where AN is the N × N lower triangular matrix of ones. Clearly, Gm is an

N × 4N matrix. By using Gm, constraint (7) can be rewritten compactly as

follows:

0N,1 � Gm


cm

dm

θm

γm

 � [Ψm − jm(0)] 1N,1, ∀ m. (25)

Let v1 = [(Ψ1 − j1(0))11,N , . . . , (ΨM − jM (0))11,N , 01,NM ] and v2 = [qD11,NM ,01,N ].

Then, the constraints in P1B can be written as Be � f , where

B =



IM ⊗Gm

−IM ⊗Gm

IM ⊗ [IN 0N,2N − IN ]

IM ⊗ [0N,N IN IN 0N,N ]

11,M ⊗ [0N,2N − IN IN ]


, e =



c1

d1

θ1

γ1

...

cM

dM

θM

γM



, (26)

and f = [v1, r
T
1 , . . . , r

T
M ,v2]T . As seen, e ∈ R4MN

+ , B ∈ R(4MN+N)×(4MN), and

f ∈ R4MN+N
+ . If we relax (3) to

M∑
m=1

γm(n) ≤
M∑
m=1

θm(n), ∀ n, (27)

then, the optimization problem P1B can be cast as a linear program by using the

definitions given above. Introducing this relaxation does not affect the solution250

17



because a necessary9 condition for optimality is that the γm’s and the θm’s

must satisfy (27) with equality. Therefore, constraint (3) will be automatically

satisfied by the solution simply by enforcing its relaxed version in (27).

6. Comparative Analysis

This section is divided in three parts. In the first part we introduce two255

alternative performance criteria, which aim at quantifying the renewable energy

utilization rate in each of the studied configurations. In the second part we

outline the main differences between the two configurations. In the third part

we show how the proposed framework can be used to devise real-time renewable

energy management algorithms by incorporating forecasting of renewable energy260

production and load.

6.1. Alternative Performance Criteria

The proposed strategies can be compared in terms of the achievable cost

savings and the renewable energy remaining unused due to battery limitations.

In the following we quantify the renewable energy left unused in each strategy.

Renewable energy is left unused when the power delivered by the generator

is above the maximum charging rate allowed, or, when the batteries are fully

charged. Let d1
∗, . . . ,dM

∗ and d̃1
∗
, . . . , d̃M

∗
denote the optimal discharging

profiles obtained by solving P0 and P1B respectively. Then, the renewable

energy left unused in the configuration with CREG is

REUC = ∆t

N∑
n=1

[
r(n)−

M∑
m=1

d∗m(n)

]
. (28)

Similarly, the renewable energy left unused in the configuration with DREG is

REUD = ∆t

M∑
m=1

N∑
n=1

[
rm(n)− d̃∗m(n)

]
. (29)

9This can be proved by contradiction. An intuitive explanation is the following: A nec-

essary condition for optimality is to minimize energy waste. Therefore, the energy transfer

process should be such that, ignoring losses, the total energy drawn from the sourcing house-

holds must be equal to the total energy received by the destination households.
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By the principle of conservation of energy we must have REUC ≥ 0 and REUD ≥

0. The proposed strategies can be compared to a baseline scheme in which no

optimization is performed, i.e., the renewable energy is used while it is being265

generated. In the baseline strategy the excess renewable energy is discarded

and no storage device is needed. The households in the configuration with

DREG can opt for using a greedy strategy, in which they selfishly minimize

their own energy expenditure, without sharing renewable energy with others.

In the greedy approach, each household solves the following problem to minimize270

its own energy cost:

P2: min
cm, dm, m ∈ {1,...,M}

ξm

s.t. (1), (7), (9), (11)

(30)

and θm(n) = 0, γm(n) = 0, ∀ m, ∀ n. As seen, P2 is a special case of P1A, and

hence, it can be solved by using the strategy proposed in Sec. 5.4.

6.2. CREG vs. DREG

Given their distinct characteristics, the strategies proposed in Secs. 4 and 5275

will have different performance. To establish a baseline for comparison purposes,

we first derive the conditions under which both strategies achieve the same

performance.

The strategies proposed in Secs. 4 and 5 will achieve the same performance

if the following conditions are satisfied:280

• Zero power transfer fees are enforced in the configuration with DREG, i.e.

φ = 0. As a result, renewable energy can be allocated across households at

no cost in both configurations.

• Both configurations offer the same level of energy management flexibility when

the charging/discharging rates are such that:

qC,m ≥ max

{∑M
m=1 Ψm

∆t
,

M∑
m=1

rm(n)

}
, ∀ m, ∀ n. (31)
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qD,m ≥ max

{∑M
m=1 Ψm

∆t
,

M∑
m=1

`m(n)

}
, ∀ m, ∀ n. (32)

qC ≥ max

{
Ψ

∆t
,

M∑
m=1

rm(n)

}
, ∀ n, (33)

qD ≥ max

{
Ψ

∆t
,

M∑
m=1

`m(n)

}
, ∀ n. (34)

Conditions (31) and (33) allow full battery charging within a single time slot,

and enable zero renewable energy waste. Similarly, (32) and (34) allow full285

battery depletion within a single time slot, and enable full load serving in all

time slots.

• Both configurations incur the same power loss:

(1− α)

N∑
n=1

c∗(n) =

M∑
m=1

(1− αm)

N∑
n=1

c∗m(n). (35)

1− β
β

N∑
n=1

M∑
m=1

d∗m(n) =

M∑
m=1

1− βm
βm

N∑
n=1

[
π∗m,m(n) + θ∗m(n)

]
. (36)

Condition (35) states that the energy losses incurred in the charging opera-

tions are the same in both CREG and DREG configurations. Condition (36)

states that the energy losses incurred in the discharging operations are the290

same in both CREG and DREG configurations.

• Both configurations have the same energy storage capacity:

Ψ =

M∑
m=1

Ψm. (37)

• The renewable energy left unused is the same in both configurations:

N∑
n=1

[r(n)− c∗(n)] =

M∑
m=1

N∑
n=1

[rm(n)− c∗m(n)]. (38)

If αm = α, ∀ m, then (38) reduces to
∑N
n=1 r(n) =

∑M
m=1

∑N
n=1 rm(n). Simi-

larly, if βm = βj , ∀ m, j, and

N∑
n=1

M∑
m=1

d∗m(n) =

M∑
m=1

N∑
n=1

[
π∗m,m(n) + θ∗m(n)

]
, (39)
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then (36) reduces to βm = β, ∀ m. This is thus a particular set of requirements

which suffice to satisfy (35), (36), and (38).

Finally, we list the following structural differences between CREG and DREG:

• Geographical diversity: The location of the renewable energy generators295

has an impact on the statistical variability of the total renewable energy

generation in each configuration, which in turn, will lead to performance

differences. This issue is discussed in Sec. 8.

• Storage devices: The configuration with CREG requires larger batter-

ies and higher discharging rates. Such devices may be more expensive300

than the storage devices used in the configuration with DREG, which

can be smaller. However, the configuration with CREG offers a higher

level of flexibility because only the total power charged or discharged is

constrained. Contrarily, in the configuration with DREG, each charg-

ing/discharging operation is constrained by the limitations of the local305

storage device.

• Capital cost: In the configuration with CREG, power lines connecting

the households and the energy farm need to be deployed. Contrarily, the

configuration with DREG uses the grid as a means for cooperation among

the participants. This distinction raises the question how energy transfer310

fees and energy farm investment impact the choice of configuration. This

problem will be investigated in future works.

7. Real-time renewable energy Management Algorithm

7.1. Real-Time renewable energy Management

In this section we show how the proposed framework can be used to devise315

real-time renewable energy management algorithms. We denote the estimates

of rm, r and `m by using r̂m, r̂, and ˆ̀
m, respectively.10 The proposed real-

10The forecasts r̂, r̂m, and ˆ̀
m can be determined by using techniques based on time series

analysis, weather forecasts, or machine learning methods.
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time renewable energy management strategy, applied to the configuration with

centralized renewable energy generation, is shown in Algorithm 1. Similarly, the

real-time renewable energy management strategy proposed for the configuration320

with distributed renewable energy generation is shown in Algorithm 2.

As observed in Algorithms 1 and 2, we use the framework developed in Secs.

4 and 5 to update the decision variables in response to new measurements and

estimates. As seen, forecasting techniques are used to estimate future renewable

energy generation and load. To improve the accuracy of the estimations, the325

statistical models of energy generation and load can be updated as new mea-

surements are recorded. Moreover, the frequency at which the decision variables

are updated can be decreased to reduce the computational complexity of the

proposed algorithms. This can be implemented by conditioning the update to

deviations between the observations and the forecasts, in which case a new in-330

stance of the optimization problem is solved only when the forecasts significantly

deviate from the observations.

Algorithm 1 Forecasting-based real-time renewable energy management algo-

rithm, configuration with centralized renewable energy generation

1: Estimate parameters of statistical models of r and `m, m ∈ {1, . . . ,M}.

2: Initialize the estimates r̂ and ˆ̀
m.

3: Solve optimization problem by using r̂ and ˆ̀
m. Determine the dm(1)’s.

4: Estimate j(1).

5: for n = 2 to N do

6: Measure r(n) and `m(n).

7: Update r̂ and ˆ̀
m.

8: Solve the optimization problem (P0) by using updated estimates and

recorded observations (measurements).

9: Update estimate of j: j(n) = j(n− 1) + ∆t
[
αc(n)− 1

β

∑M
m=1 dm(n)

]
.

10: Adjust the dm(n)’s if j(n) > Ψ or j(n) < 0.

11: end for
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Algorithm 2 Forecasting-based real-time renewable energy management algo-

rithm, configuration with distributed renewable energy generation

1: Estimate parameters of the statistical models of rm and `m, m ∈

{1, . . . ,M}.

2: Initialize the estimates r̂m and ˆ̀
m.

3: Solve optimization problem by using r̂m and ˆ̀
m. Determine the dm(1)’s,

the θm(1)’s and the γm(1)’s.

4: Estimate the jm(1)’s.

5: for n = 2 to N do

6: Measure rm(n) and `m(n).

7: Update r̂m and ˆ̀
m.

8: Solve the optimization problem (P1B) by using updated estimates and

recorded observations (measurements).

9: Update estimate of jm: jm(n) = jm(n − 1) + ∆tαmcm(n) −
1
βm

[dm(n) + θm(n)].

10: Adjust the dm(n)’s if jm(n) > Ψm or jm(n) < 0.

11: end for
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The proposed algorithms approach the genie-aided solution when the esti-

mates r̂, r̂m, and ˆ̀
m are close to the actual renewable energy generation and

load profiles. To complete Step 8 in Algorithms 1 and 2, the optimization335

problem can be solved by restricting the time horizon to the period [n∆t, T ].

Therefore, the time required to complete each of the N − 1 executions of Step

8 decreases as n approaches N . The frequency at which the decision variables

dm’s are updated can also be decreased to reduce the computational complex-

ity of the algorithms. We can also reduce the rate at which the estimates r̂ and340

ˆ̀
m are updated in order to avoid invoking the forecasting algorithm in each of

the N − 1 executions.

8. Numerical Results

We provide simulation results to verify the analysis developed in the pa-

per, and compare the performance of the proposed strategies. Unless otherwise345

stated, throughout this section we consider the simulation parameters shown in

Table 2, where minPrice, maxPrice, minLoad, maxLoad, minGen, and maxGen are

all real numbers chosen to study different simulation scenarios. The uniform

distribution is chosen for the prices, the renewable energy generation, and the

load, because it reflects total uncertainty about a random quantity given that350

we know its lower and upper limit.11 The optimization problems are solved by

using Scilab’s linpro() function. The results shown in this section are obtained

by averaging over ten thousand realizations. Storage capacity is measured in

energy units [EU] and energy expenditure in monetary units [MU].

8.1. Sensitivity to renewable energy Distribution355

We consider the simulation scenario shown in Table 2, except for r(n), which

we choose uniformly distributed between minGen, and MmaxGen. Other param-

eters are set as follows minLoad = 1, maxLoad = 1, minGen = 0, maxGen = 2,

11In practice, prices, loads and renewable energy generation are all upper bounded, more-

over, their natural lower bound is 0.
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Table 2: Simulation Scenarios

Parameter Value/Property

{N, ∆t, M, φ} {24, 1, 2, 0, ∀ m}

pm(n) ∼ U(minPrice,maxPrice)

`m(n) ∼ U(minLoad,maxLoad)

rm(n)

∼ U(minGen,maxGen), n ∈ {1, dN/2e}

0 n > dN/2e

r(n)
∑M

m=1 rm(n)

qC max
{

Ψ
∆t
,MmaxGen

}
qD max

{
Ψ
∆t
,MmaxLoad

}
qC,m max

{
M Ψm

∆t
,MmaxGen

}
qD,m max

{
M Ψm

∆t
,MmaxLoad

}
Ψm, jm(0) Ψ1, 0, ∀ m

{α, β, Ψ, j(0)} {1, 1, MΨm, 0}

minPrice = 0, maxPrice = 1. Then, in Fig. 2 we plot the average energy cost

incurred in the N -slot planning period, and the average amount of renewable en-360

ergy unused, both against the storage size Ψm, which ranges from 1 to 10 [EU].

As observed, in this scenario, DREG outperforms CREG. This follows because

the variability in the renewable energy generation is different in each config-

uration. In the configuration with DREG, the independence of the random

variables r1(n) and r2(n) models geographical diversity. Although the average365

renewable energy generation is the same in both configurations, the variance of

r(n) is larger than the variance of r1(n) + r2(n). The gap between the two re-

sults is small because other simulation parameters have been chosen to comply

with the conditions explained in Sec. 6.2. Hence, these tests are only meant to

evaluate the impact of the statistical distribution of the renewable energy gen-370

eration in both configurations. It is also observed that the gap between the two

configurations decreases as the storage capacity increases, which may be due to

a reduced amount of renewable energy left unused when Ψm > 6 [EU].
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Figure 2: Energy cost vs. storage capacity per household. Distributed renewable energy

generation outperforms centralized renewable energy generation due to geographical diversity.

8.2. Sensitivity to Charging/Discharging Rates

We consider the simulation scenario shown in Table 2, except for qC,m, qD,m,375

qC and qD, which we set as follows: qC,m = 0.2Ψm

∆t , qD,m = 0.2Ψm

∆t , qC = 0.2Ψm

∆t

and qD = 0.2Ψm

∆t . Moreover, we let minLoad = 1, maxLoad = 1, minGen = 0,

maxGen = 2, minPrice = 0, and maxPrice = 1. Then, in Fig. 3 we plot the

average energy cost incurred in the N -slot planning period, and the average

amount of renewable energy unused, both against the storage size Ψm, which380

ranges from 1 to 10 [EU]. As observed, in this scenario, DREG outperforms

CREG because the maximum charging and discharging rates are higher in the

configuration with DREG, since qC,1 + qC,2 > qC and qD,1 + qD,2 > qD. As seen

in Fig. 3, lower charging/discharging rates lead to lower usability of renewable

energy, and smaller cost savings.385

We now consider the simulation scenario shown in Table 2, except for qC,m,

qD,m, qC and qD, which we set as follows: qC,m = 0.2Ψm

∆t , qD,m = 0.2Ψm

∆t , qC =

0.2M Ψm

∆t and qD = 0.2M Ψm

∆t . Other parameters are set as follows: minLoad = 1,

maxLoad = 1, minGen = 0, maxGen = 2, minPrice = 0, and maxPrice = 1. Then,

in Fig. 4 we plot the average energy cost incurred in the planning period,390

and the average amount of renewable energy unused, both against the storage
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Figure 3: Energy cost vs. storage capacity. DREG outperforms CREG because in this scenario

CREG has lower charging/discharging rates.

size Ψm, which ranges from 1 to 10 [EU]. As observed, in this scenario, the

configuration with CREG outperforms the configuration with DREG. However,

the gap between the two strategies reduces as the storage capacity increases.

This result follows because the maximum charging and discharging rates are395

the same in both configurations, i.e. qC,1 + qC,2 = qC and qD,1 + qD,2 = qD, and

the configuration with CREG has a higher level of flexibility to move renewable

energy to the location with the highest prices, while the configuration with

DREG is constrained by the limit in the charging/discharging rates (qC,m =

0.2Ψm

∆t , qD,m = 0.2Ψm

∆t ) which are, respectively, below the thresholds (31) and400

(32) established to ensure the same performance in both configurations.

8.3. Equal-Performance Scenarios

We reproduce the conditions described in Sec. 6.2 to verify that they lead

to the same performance in both configurations. We consider the simulation

parameters shown in Table 2 with minLoad = 1, maxLoad = 1, minGen = 0,405

maxGen = {1, 2}, minPrice = 0, maxPrice = 1, and plot the average results

obtained after ten thousand realizations in Fig. 5. As shown in Fig. 5, the

two strategies lead to similar results when the conditions stated in Sec. 6.2
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Figure 4: Energy cost vs. storage capacity. CREG outperforms DREG if it features higher

charging/discharging rates.

Table 3: Unoptimized vs. Optimized Cost

maxGen Unoptimized Optimized, Ψ = 1 Optimized, Ψ = 10

1 18[MU] 14.6[MU] 13.6[MU]

2 12[MU] 10.7[MU] 6.2[MU]

are enforced. Table 3 shows the cost reduction achieved by using the proposed

strategies in the same simulation scenarios. As seen, the proposed strategies410

are able to reduce the households’ energy expenditure by up to 48%. The gap

between the proposed strategies and the baseline strategy increases with the

generation capacity (maxGen).

8.4. Cooperative vs. Greedy Approach

We compare the strategy proposed for households with DREG, and the415

greedy approach explained in Sec. 6.1. We consider the simulation scenario

shown in Table 2, with minLoad = 1, maxLoad = 1, minGen = 0, maxGen =

{1, 2}, minPrice = 0, maxPrice = 1, and in Fig. 6 we plot the average energy cost

incurred, and the average amount of renewable energy unused, both against the

storage size Ψm. As observed, the cooperative solution outperforms the greedy420

strategy, especially for small values of Ψm. Moreover, the greedy strategy leads
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Figure 5: Energy cost vs. storage capacity. Both configurations achieve the same performance

if conditions are satisfied. Top: maxGen = 1, bottom: maxGen = 2.
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Figure 6: Energy cost vs. storage capacity per household. Cooperative strategy outperforms

greedy approach. Top: maxGen = 1, bottom: maxGen = 2.

to a lower utilization of renewable energy, especially when the storage capacity

is small. If the generation capacity increases, i.e. if maxGen = 2, then the

amount of renewable energy remaining unused is larger in the greedy approach,

especially when the storage capacity is below 4 [EU].425
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8.5. Real-time renewable energy Management Algorithm

We consider the simulation parameters shown in Table 2, except for r(n),

which we set as

r(n) =

∼ U(minGen,MmaxGen), n ∈ {1, dN/2e}

0 n > dN/2e
. (40)

The rest of parameters are set as minGen = minLoad = minPrice = 0, maxPrice =

1, maxGen ∈ {1, 2}, and maxLoad ∈ {1, 2}.

To show the robustness of the proposed algorithms we choose a simple

stochastic model for the renewable energy generation and power consumption.

The chosen statistical model is simple and disregards the intertemporal corre-

lation in r and `. As a result, the forecasting errors will be large, but suitable

to show the robustness of the algorithm. Given the statistical model considered

for r and `m, the best estimates that we can use are

r̂(n) =
minGen + maxGen

2
(41)

and

ˆ̀
m(n) =

minLoad + maxLoad

2
, ∀ m, (42)

which are meant to minimize the mean-squared error.

We average over the results of ten thousand experiments and obtain the430

plots of Fig. 7. As seen, there is a performance gap between the real-time

algorithm and the genie aided strategy. The gap grows with the variance of r

and `m, which, leads to larger forecasting errors. This gap can be reduced by

using more accurate forecasts.

Although the forecasting errors can be as high as 50% of the maximum435

renewable energy generation or power consumption, the worst observed perfor-

mance gap corresponds to only 15% of the optimized cost. This demonstrates

the ability of the proposed real-time algorithms to handle uncertainty. It is

important to highlight that the genie aided strategy is an essential part of our

real-time algorithms, and which ultimately allows us to evaluate its performance440

by establishing the corresponding benchmark.
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Figure 7: Performance of Algorithm 1. Top: maxGen = maxLoad = 1. Bottom: maxGen =

maxLoad = 2.
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Table 4: Simulation Setup Real Time Energy Management.

Feature Approach

Stochastic programming Forecasting-based

Energy generation model r1(n) ∼ N (ρ1(n), σ2), ∀ n

r2(n) ∼ N (ρ2(n), σ2), ∀ n

Estimated energy generation r̂1(n) = ρ1(n), ∀ n

r̂2(n) = ρ2(n), ∀ n

Errors due to: Inaccurate identification Inaccurate forecasting

8.6. Comparison with Existing Works

We now compare the proposed real-time renewable energy management al-

gorithms with existing strategies. Works such as [41, 42, 47] use stochastic

programming techniques to optimize the average energy cost incurred by re-445

newable energy systems. Since most of the existing strategies are designed for

non-cooperative households, we restrict our simulations to scenarios with a sin-

gle household, i.e., in this section we consider M = 1.

Existing strategies such as the ones presented in [41, 42, 47] aim at optimiz-

ing the average energy cost incurred by the system. The performance of such450

strategies depends on the accuracy of the statistical model employed. Similarly,

the performance of the proposed strategies depend on the forecasting errors.

The considerations undertaken to perform such a comparison are summarized

in Table 4 and explained in more detail as follows:

• Stochastic model: We consider two average renewable energy generation455

profiles ρ1 ∈ RN and ρ2 ∈ RN , each with a 50% probability of oc-

currence. The actual renewable energy generation will follow a Gaussian

random process whose mean could be either ρ1 or ρ2, and whose standard

deviation is σ.

• In the approach based on stochastic programming, performance degrada-460

tion is incurred after wrongly identifying the average renewable energy
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generation profile. The probability of identifying the correct renewable

energy generation profile is denoted by δ and satisfies δ < 1.

• In the forecasting-based algorithm, performance degradation is incurred

as a result of forecasting errors. Specifically, the point forecasts are given465

by the mean value of the process, i.e., the chosen estimation performance

measure is the mean-squared error. Hence, the forecasting error will be

proportional to the variance of the Gaussian process.

With the considerations described above and summarized in Table 4, we em-

ploy the following simulation scenario: ρ1(n) = 5 cos
(
π
12 (n− 12)

)
+ 5, ρ2(n) =470

1.5 cos
(
π
12 (n− 12)

)
+1.5, σ = 0.1, p1(n) = sin

(
π
12 (n− 12)

)
+1, N = 24, ∆t = 1,

and the battery parameters listed in Table 2. Then, we compare the proposed

forecasting-based approach with the existing strategies based on stochastic pro-

gramming. Ten thousand experiments are run and the results are shown in

Fig. 8, where we have plotted the average cost savings against energy storage475

capacity per household. It is seen that the proposed real-time algorithms out-

perform the existing approach by up to 10%. As expected, this performance gap

grows as the value of δ increases. The proposed algorithms outperform existing

strategies because they allow us to leverage correlations in the renewable energy

generation process across time, so as to enhance the accuracy of the predictions.480

It also responds to observations in real time by adjusting the statistical model,

the forecasts, and the decision variables.

8.7. Practical Case Study

We now use realistic system parameters to evaluate the optimization frame-

work in a practical scenario. We consider the time-varying electricity prices485

offered by Southern California Edison to its medium size customers on a hot

summer day [60]. We also consider the typical renewable energy generation pro-

file of a solar panel with characteristics listed in Table 5, which was computed

by using the PVWatts calculator provided by the National Renewable Energy

Lab [61]. Furthermore, we consider the average power consumption profile of a490
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Figure 8: The proposed real-time energy management algorithms outperform the existing

approach. The performance gap is larger for smaller δ.

Table 5: Photovoltaic system (Southern California)

Latitude,

Longitude

System

size

Tilt,

Azimuth

Inverter

efficiency

DC to AC

size ratio
Losses

32.7◦ N,

117.2◦ W
4 kW (DC) 20◦, 180◦ 96% 1.2 14%

household in September, which we denote by ¯̀, and was taken from [62], where

authors develop techniques to estimate the hourly electricity consumption of

Japanese households. The overall characteristics of the simulation scenario are

presented in Table 6 and in Fig. 9, where we also illustrate the optimal renew-

able energy consumption schedule for the plotted power consumption profiles.495

Both, CREG and DREG configurations are considered under the conditions for

even performance explained in Sec. 6.2.

We implemented the simulation scenario described in Table 6 with the bat-

tery parameters listed in Table 2, with Ψ1 = ∆t
∑N
n=1 r(n), and the pricing and

renewable energy generation profiles plotted in Fig. 9. The average cost in-500
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Figure 9: Practical case. The optimal renewable energy consumption schedules are plotted

for the shown realizations of the power consumption profile.
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Table 6: Simulation Scenario Practical Case

Parameter Value/Property

{N, ∆t, M, φ} {24, 1, 2, 0, ∀ m}

`m(n)
∼ N

(
¯̀(n), σ2

)
, ∀ m

and E [`1(n)`2(n)] = 0, ∀ n

curred when using the proposed optimization framework is $0.3. The average

cost incurred without any12 optimization was $1.9.

9. Conclusions

We have proposed cooperation methods with different energy production and

storage configurations. In the first configuration, a group of households share505

access to an energy farm, whereas in the second configuration, each household

is equipped with its own energy generator and storage device. We have then

proposed strategies to minimize the energy expenditure incurred by the partic-

ipating households in each configuration. The proposed strategies account for

location- and time-varying energy prices, and have been obtained by solving510

constrained optimization problems through a combination of techniques.

Simulation results have demonstrated that the proposed strategies can lead

to significant cost savings in both configurations. Moreover, we have established

the conditions under which the two configurations lead to the same results, and

shown that the best performing configuration is the one with the highest energy515

management flexibility. Similarly, through simulations we have shown that, in

the configuration with distributed generation, the proposed cooperative strategy

outperforms the greedy approach, especially when the energy storage capacity

is limited.

12When no optimization is performed, the available renewable energy is evenly allocated

across households. Excess renewable energy generation is discarded.
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We have also proposed real-time renewable energy management strategies520

based on forecasting techniques. These strategies are based on a continuous re-

computation of the decision variables, whose update rate can be adjusted in

accordance with the available computational resources. Simulations have been

used to show that the proposed algorithms outperform the existing approach

and are robust to forecasting errors.525

Appendix A: Power Transfer Tensor from P1B’s Solution

By solving the alternative problem P1B, we seek to optimize the quantities

θm, γm, and dm. Consequently, we claim that the power transfer tensor can

be determined from the optimized θm, γm, and dm, thus solving the original

P1A. In the following we explain the procedure to determine the power transfer530

tensor from the vectors θm, γm, and dm.

First, we note that the diagonal elements of the matrix Π(n, :, :) are opti-

mized directly, they indeed correspond to the dm’s, i.e., πm,m(n) = dm(n) ∀m, ∀ n,

as stated in Sec. 5.1. Therefore, there are only M(M − 1) unknown quantities,

and there are 2M linear equations, M of them involving θ1(n), . . . , θM (n) and535

M of them involving γ1(n), . . . , γM (n), as stated in Eq. (2).

Since a linear system with 2M equations and M(M − 1) variables is under-

determined (unless M ≤ 3), we need to impose additional constraints13 to find

the solution. We thus make the following observation: If household orig receives

renewable energy during the nth time slot, i.e., if γorig(n) > 0, then θorig(n) = 0,540

since it cannot send and receive power at the same time. If θorig(n) = 0, or

equivalently,
∑M

des6=orig πorig,des(n) = 0, then πorig,des(n) = 0 for des 6= orig, be-

cause πorig,des(n) ≥ 0, ∀ orig, des. This means that the linear equations that are

homogeneous (i.e., the ones with 0 in their right hand side) allow us to elimi-

nate some of the variables by setting the corresponding elements of the power545

13We can use the non-linear constraints πorig,des(n)πdes,orig(n) = 0 directly. However, we

would have to examine 2
M(M−1)

2 candidate solutions, which can be computationally expensive.
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transfer matrix Π(n, :, :) to 0. In fact, after considering all14 the M homoge-

neous equations, we are left with M2

4 variables at most. This result is presented

in the following Proposition:

Proposition 1. Let M ∈ N, and A be an M ×M matrix. Then, the largest

number of elements left in the matrix after removing x ∈ {0, 1, . . . ,M} columns550

and M − x rows is M2

4 .

Proof. Let x denote the number of removed columns, and M −x be the number

of removed rows. The total number of elements left in the matrix after removing

x columns and M − x rows is κ(x) = M2 −Mx− (M − x)2, since each column

removes M elements, and each row removes (M − x) new elements (x elements555

were removed when the x columns were crossed-out). κ(x) is concave in x and

equals 0 when x = 0 or x = M . The maximum value of κ(x) can be obtained

by setting d
dxκ(x) = 0. Therefore, the number of elements left in the matrix is

the largest when x = M
2 . Moreover, κ

(
M
2

)
= M2

4 . �

The variables eliminated by the conditions γorig(n)θorig(n) = 0, ∀ orig are

the same πorig,des(n)’s which should be set to zero, following the constraint

πorig,des(n)πdes,orig(n) = 0. The resulting system may still be under-determined.

However, under the non-negativity constraint (i.e. πorig,des(n) ≥ 0, ∀ orig, des)

we can determine the solution by solving:

PR0: min
x

‖Ax− b‖2

s.t. x � 0,
(43)

where A is the matrix that captures the interactions between the remaining560

variables πorig,des(n)’s, which are stacked in the column vector x. The non-zero

γm(n) and θm(n) are stacked in the column vector b. PR0 can be solved by

using any of the available non-negative least squares algorithms (NNLS), for

example, the fast NNLS (FNNLS) [59].

14There are 2M linear equations, half of which are homogeneous.
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