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Abstract. We compute the Hochschild cohomology ring of the algebras A = k〈X,Y 〉/(Xa, XY −
qY X, Y a) over a field k where a ≥ 2 and where q ∈ k is a primitive a-th root of unity. We find the the

dimension of HHn(A) and show that it is independent of a. We compute explicitly the ring structure of

the even part of the Hochschild cohomology modulo homogeneous nilpotent elements.

1. Introduction

Let k be a field, and let 0 6= q ∈ k. Quantum complete intersections originate from work of Manin [8].

Here we focus on the algebras

Aq = k〈X,Y 〉/(Xa, XY − qY X, Y a).

Such algebras have provided several examples giving answers to homological conjectures and questions.

Perhaps most spectacular amongst these is Happel’s question. In [6] Happel asked whether an algebra

whose Hochschild cohomology is finite-dimensional, must have finite global dimension. The main result of

[3] gave a negative answer: It shows that the Hochschild cohomology of the quantum complete intersection

Aq as above, when a = 2 and q not a root of unity, is finite-dimensional. However the algebra Aq is

selfinjective, hence has infinite global dimension. Already earlier, R. Schulz discovered unusual properties

for these algebras Aq, see [11] and [10].

Furthermore, there is a theory of support varieties in terms of Hochschild cohomology provided the

algebra satisfies suitable finite generation properties, known as condition (Fg) (see [5] and [13]). For Aq,

this condition is satisfied precisely when q is a root of unity. The general theory of these support varieties

has now been well established in several papers. However, in order to actually compute the varieties

over a given algebra, one needs to determine the ring structure of the Hochschild cohomology, or at least

modulo homogeneous nilpotent elements.

The results in this paper will be a contribution towards this goal. We determine the ring structure of

the even part of HH∗(Aq) (which will be denoted HH2∗(Aq)) modulo the ideal of homogeneous nilpotent

elements for Aq when q is a primitive a-th root of unity. The proofs are quite technical, but this illustrates

the typical difficulties and computations one is faced with when trying to compute Hochschild cohomology.

First we present an unpublished result by P. Bergh and K. Erdmann which determines the dimensions

of the Hochschild cohomology groups; this is done via exploiting Hochschild homology. Surprisingly, the

answer is independent of a (see Theorem 3.1 and Corollary 3.2). This suggests that perhaps also the ring

structure might not depend too much on the parameter a. We determine explicit bases of HH2∗(A) (see

Section 5.2).

Furthermore, we compute the algebra structure of HH2∗(A) modulo the largest homogeneous nilpotent

ideal. We show that it is Z2-graded, with degree zero part isomorphic to the polynomial ring in two

variables, generated in degree 2. The explicit description is given in 4.2 when a = 2, and in 5.4 when

a ≥ 3.
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An explicit description when a = 2 was also given in [3, Section 3.4]. We include this case (in Section

4), as it shows that it is part of the general pattern.

S. Oppermann gave also a description of the Hochschild cohomology and homology of more general

quantum complete intersections in [9]. The products are, however, not computed completely explicitly,

though it discusses a more general setting. However, in this paper we calculate products explicitly by

liftings along a minimal projective resolution (which will be discussed in Section 2). This illustrates

techniques that might be of independent interest.

In a larger context, there is even more structure in some classes of Hochschild cohomology than the

well known Gerstenhaber algebra structure. In [7] T. Lambre, G. Zhou and A. Zimmermann prove

that the Hochschild cohomology ring of quantum complete intersections is a so called Batalin–Vilkovisky

algebra (Corollary 5.8). Roughly speaking a Batalin–Vilkovisky algebra is a Gerstenhaber algebra with

an additional operation ∆ : HHn → HHn−1 which squares to zero and which, together with the cup

product, can express the Lie Bracket.

2. Preliminaries

More generally, let A be any finite-dimensional algebra over a field k, and let Ae = A⊗k Aop de-

note the enveloping algebra. We view bimodules over A as left modules over Ae. In this setting, the

Hochschild cohomology of A can be taken as HHn(A) = ExtnAe(A,A), the n-th cohomology of the complex

HomAe(P, A), i.e.

ExtnAe(A,A) = ker d∗n+1/im d∗n,(2.1)

where d∗n = HomAe(dn, A) and where dn are the maps in a minimal projective resolution:

P : · · · → P2
d2−→ P1

d1−→ P0
µ−→ A→ 0.(2.2)

Then the Hochschild cohomology

HH∗(A) = Ext∗Ae(A,A)(2.3)

is a k-algebra which is graded-commutative. There are various equivalent ways to define the product;

here we will work with the Yoneda product.

We specialize now to the quantum complete intersections. Let a be an integer such that a ≥ 2. We

also let q ∈ k be a primitive a-th root of unity, and A is the k-algebra defined by

A = k〈X,Y 〉/(Xa, XY − qY X, Y a).(2.4)

We write x and y for the residue classes of X and Y , respectively.

In [2], for arbitrary parameter q 6= 0, an explicit minimal projective bimodule resolution P as in (2.2)

was constructed. The nth bimodule in P is

Pn =

n⊕
i=0

Aefni ,(2.5)

the free Ae-module of rank n + 1 having generators {f0
n, f

1
n, ..., f

n
n }. For each s ≥ 0 define the following

four elements of Ae:

τ1(s) = qs(1⊗x)− (x⊗ 1)(2.6)

τ2(s) = (1⊗ y)− qs(y⊗ 1)(2.7)

γ1(s) =

a−1∑
j=0

qjs(xa−1−j ⊗xj)(2.8)

γ2(s) =

a−1∑
j=0

qjs(yj ⊗ ya−1−j)(2.9)
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The maps dn : Pn → Pn−1 in P are given by

d2t : f2t
i 7→

{
γ2

(
ai
2

)
f2t−1
i + γ1

(
2at−ai

2

)
f2t−1
i−1 for i even

−τ2
(
ai−a+2

2

)
f2t−1
i + τ1

(
2at−ai−a+2

2

)
f2t−1
i−1 for i odd

(2.10)

d2t+1 : f2t+1
i 7→

{
τ2
(
ai
2

)
f2t
i + γ1

(
2at−ai+2

2

)
f2t
i−1 for i even

−γ2

(
ai−a+2

2

)
f2t
i + τ1

(
2at−ai+a

2

)
f2t
i−1 for i odd

(2.11)

where the convention fn−1 = fnn+1 = 0 has been used. So far, q is arbitrary. Later in our setting we will

simplify these expressions.

We will wish to identify nilpotent elements of Hochschild cohomology. This can be done by exploiting

the following result of N. Snashall and Ø. Solberg, see Proposition 4.4 in [12].

Proposition 2.1. Assume k is a field and A is a finite-dimensional k-algebra. Suppose η is a map into

A representing an element of HHn(A). If im(η) is in the radical of A then η is nilpotent in HH∗(A).

3. Dimensions of Hochschild cohomology groups

We recall an unpublished result by Petter A. Bergh and Karin Erdmann which determines the dimen-

sions.
By viewing A as a left Ae-module, it follows from [4, p. VI.5.3] that D(HH∗(A,A)) is isomorphic

to TorA
e

∗ (D(A), A) as a vector space, where D denotes the usual k-dual i.e. D(−) := Homk(−, k). In

particular, we see that dim HHn(A) = dim TorA
e

n (D(A), A) for all n ≥ 0. Moreover, it follows from [2]

that A is a Frobenius algebra with Nakayama automorphism ν : A→ A defined by

ν :

{
x 7→ q1−ax

y 7→ qa−1y.
(3.1)

The bimodules D(A) and νA1 are isomorphic; here the left action on νA1 is taken as a · m := ν(a)m.

Consequently the dimensions of the Hochschild cohomology of A are given by

dim HHn(A) = dim TorA
e

n (νA1, A)(3.2)

for all n ≥ 0.

To compute TorA
e

n (νA1, A), we tensor the deleted projective bimodule resolution P with the right

Ae-module νA1. We then obtain an isomorphism

· · · νA1 ⊗Ae Pn+1 νA1 ⊗Ae Pn νA1 ⊗Ae Pn−1 · · ·

· · · ⊕n+1
i=0 (νA1)en+1

i ⊕ni=0(νA1)eni ⊕n−1
i=0 (νA1)en−1

i · · ·

1⊗ dn+1 1⊗ dn

δn+1 δn

∼= ∼= ∼=

of complexes, where {en0 , en1 , . . . , enn} is the standard generating set of n+ 1 copies of νA1. Now given an

element α ∈ k and a positive integer t, define an element Kt(α) ∈ k by

Kt(α) :=

t−1∑
j=0

αj .(3.3)
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The map δn is then given by

δ2t : yuxve2t
i 7→{

qKa(qv+1)yu+a−1xve2t−1
i +Ka(qu+1)yuxv+a−1e2t−1

i−1 for i even

[qv+1 − qa−1]yu+1xve2t−1
i + [qu+2 − 1]yuxv+1e2t−1

i−1 for i odd
(3.4)

δ2t+1 : yuxve2t+1
i 7→{

[qa−1 − qv]yu+1xve2t
i +Ka(qu+2)yuxv+a−1e2t

i−1 for i even

−qKa(qv+2)yu+a−1xve2t
i + [qu+1 − 1]yuxv+1e2t

i−1 for i odd
(3.5)

where we use the convention en−1 = enn+1 = 0. This was proved in [2] in a more general setting, and by

specializing q and using that x, y have the same nilpotency index, we obtain the above formulae (correcting

an unimportant sign error in [2]).

For the following result we use this complex to compute the Hochschild cohomology of our algebra

A, in the case when q is a primitive a-th root of unity. The result shows that the dimensions of the

cohomology groups do not depend on the characteristic of the field, except that the characteristic of k

does not divide a since k contains a primitive a-th root of unity.

Theorem 3.1. If q is a primitive a-th root of unity, then dimk HHn(A) = 2n+ 2 for all n ≥ 0.

Proof. Since HH0(A) is isomorphic to the centre of A, we see immediately that HH0(A) is 2-dimensional.

To find the dimension of HHn(A) for n > 0, we compute ker δ2t for t ≥ 1 and ker δ2t+1 for t ≥ 0.

Since k contains a primitive q-th root of unity, the characteristic of k does not divide a. The equalities

0 = 1− (qm)a = (1− qm)Ka(qm), valid for any integer m, show that Ka(qm) = 0 if and only if m is not

divisible by a. We will use this fact throughout.

We first compute ker δ2t for t ≥ 1. By the previous observation, Ka(qv+1) = 0 if and only if 0 ≤ v ≤
a− 2, whereas Ka(qu+1) = 0 if and only if 0 ≤ u ≤ a− 2. Therefore

δ2t(y
uxve2t

i ) = 0⇔



u ∈ {1, 2, . . . , a− 1}, v ∈ {1, 2, . . . , a− 1}, i even, , 0 ≤ i ≤ 2t

u ∈ {0, 1, . . . , a− 2}, v = 0, i even, 0 ≤ i ≤ 2t

u = 0, v ∈ {0, 1, . . . , a− 2}, i even, , 0 ≤ i ≤ 2t

u = 0, v = a− 1, i = 2t

u = a− 1, v = 0, i = 0

u = a− 2, v = a− 2, i odd, 1 ≤ i ≤ 2t− 1

u = a− 1, v = a− 1, i odd, 1 ≤ i ≤ 2t− 1

(3.6)

and there are a2t+ a2 such elements.

Let B := {yuxve2t
i : 0 ≤ u, v ≤ a−1, 0 ≤ i ≤ 2t}, a basis for νA1⊗Ae P2t. We split this basis into three

parts. Let X be the set of basis vectors which are in the kernel of δ2t, so that X is given by the above list.

Next, let

Y := {yuxve2t
i : i odd, , 0 ≤ u, v < a− 2}

One checks directly that ker(δ2t) ∩ Sp(Y) = {0}. Let Z := B \ (X ∪ Y). We find that Z is equal to

{xa−1e2t
2j : 0 ≤ j < t} ∪ {ya−1e2t

2j : 0 < j ≤ t}

∪ {ya−2xa−1e2t
2j+1 : 0 ≤ j < t} ∪ {ya−1xa−2e2t

2j+1 : 0 ≤ j < t}.

The map δ2t takes each member of Z to a non-zero scalar multiple of ya−1xa−1e2t−1
i , and each of these

occurs, for 0 ≤ i ≤ 2t − 1. Hence the image of δ2t restricted to the span of Z has dimension 2t, and the

size of Z is 4t. This means that the restriction of δ2t to the span of Z has kernel of dimension 2t, by the

rank-nullity formula. Hence we get 2t further linearly independent elements of the kernel of δ2t. In total,

this shows that dimk ker δ2t = (a2 + 2)t+ a2.
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Next we compute ker δ2t+1 for t ≥ 0, recall that the characteristic of k does not divide a. We see that

δ2t+1(yuxve2t+1
i ) = 0⇔

{
u = a− 1, v ∈ {0, . . . , a− 1}, i arbitrary

u ∈ {0, . . . , a− 2}, v = a− 1, i arbitrary
(3.7)

and there are (2a− 1)(2t+ 2) such elements.

Let B := {yuxve2t+1
i : 0 ≤ u, v ≤ a− 1, 0 ≤ i ≤ 2t+ 1}, a basis for νA1 ⊗Ae P2t+1. We split this basis

into three parts. Let X be the set of basis vectors which are in the kernel of δ2t+1, that is X is given by

the above list. Next, consider

Y = {ya−2xve2t+1
i : i even, 0 ≤ v ≤ a− 2} ∪ {yue2t+1

i : i even, 0 ≤ u ≤ a− 3}

∪ {yuxa−2e2t+1
i : i odd, 0 ≤ u ≤ a− 2} ∪ {xve2t+1

i : i odd, 0 ≤ v ≤ a− 3}.

One checks that Sp(Y) ∩ Ker(δ2t+1) = {0}. Now let Z := B \ (X ∪ Y). This is the disjoint union of two

sets, Z = Ze ∪ Zo where

Ze := {yuxve2t+1
i : i even, 0 ≤ u ≤ a− 3, 1 ≤ v ≤ a− 2}

Zo := {yuxve2t+1
i : i odd , 1 ≤ u ≤ a− 2, 0 ≤ v ≤ a− 3}

both of size (a− 2)2(t+ 1). Then δ2t+1(k〈Ze〉) = k〈Z̃〉 and δ2t+1(k〈Zo〉) = k〈Z̃〉 where

Z̃ := {yuxve2t
j : j even, 1 ≤ u ≤ a− 2, 1 ≤ v ≤ a− 2}

which also has size (a − 2)2(t + 1). By the rank-nullity formula, the kernel of δ2t+1 restricted to Z has

dimension (a − 2)2(t + 1). (Note that, if a = 2, then Z = ∅). In total we get that dimk ker δ2t+1 =

(a2 + 2)(t+ 1).

We have now computed ker δ2t for t ≥ 1 and ker δ2t+1 for t ≥ 0. Using the equalities

dimk im δn + dimk ker δn = dimk ⊕ni=0(νA1)eni = (n+ 1)a2,(3.8)

we see that dimk im δ2t+1 = dimk im δ2t+2 = (a2 − 2)(t+ 1). Consequently

dimk HH2t+1(A) = dimk ker δ2t+1 − dimk im δ2t+2(3.9)

= 4t+ 4(3.10)

dimk HH2t+2(A) = dimk ker δ2t+2 − dimk im δ2t+3(3.11)

= 4t+ 6(3.12)

for t ≥ 0, and the proof is complete. �

This result implies immediately the following:

Corollary 3.2. The dimension of the cohomology groups HHn(A) is independent of a.

4. Hochschild cohomology when a = 2

In this section we let a = 2 and q = −1 (and char(k) 6= 2), so we have that

A = k〈X,Y 〉/(X2, XY + Y X, Y 2).(4.1)

We write x, y again for the images of X,Y in A. We also mention related work by P. A. Bergh in [1]

where the main objective is to compute the homology and cohomology of A with coefficients in the twisted

bimodule 1Λφ for any k-linear automorphism φ of the algebra Λ.

We will simplify the differentials of the minimal projective resolution, before studying the even part of

cohomology ring for this case.
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4.1. Minimal projective resolution when a = 2. We introduce the following notation:

βy = (1⊗ y) + (y⊗ 1) βx = (1⊗x) + (x⊗ 1)(4.2)

αy = (1⊗ y)− (y⊗ 1) αx = (1⊗x)− (x⊗ 1)(4.3)

Now we can rewrite the differentials for the minimal projective resolution P in Equation 2.10 and 2.11;

we get:

dn(fni ) =

{
(−1)i(βyf

n−1
i + βxf

n−1
i−1 ) when n is even

(−1)i(αyf
n−1
i − αxfn−1

i−1 ) when n is odd .
(4.4)

4.2. Description of cohomology groups. In Section 3 we have seen that dim HHn(A) = 2n + 2.

Knowing this, we will determine a basis for HHn(A) for arbitrary even degrees n. We write δir as usual

for the Kronecker symbol.

Lemma 4.1. Let n = 2t. For r = 0, 1, . . . , 2t define maps ξr, ηr : P2t → A as follows.

ξr(f
2t
i ) = δir · 1A, ηr(f

2t
i ) = δir · xy.(4.5)

(a) The classes of these maps form a basis for HH2t(A).

(b) The classes of the ηr give nilpotent elements in HH∗(A).

Proof. Part (b) will follow from Proposition 2.1. We prove now part (a). Note that these are 2n + 2

elements, so we only have to show that the maps are in the kernel of d∗2t+1, and that they are linearly

independent modulo the image of d∗2t.

(1) We apply ξr to d2t+1(f2t+1
i ), this gives

ξr[(−1)i(αyf
2t
i − αxf2t

i−1)] = (−1)i[αy[δir · 1A]− αx[δi−1,r · 1A]] = 0(4.6)

(we view A as a left Ae module, and αy · 1A = 0 = αx · 1A). Similarly we apply ηr to d2t+1(f2t+1
i )

and get

ηr[(−1)i(αyf
2t
i − αxf2t

i−1)] = (−1)i[αy[δir · xy]− αx[δi−1,r · xy]] = 0(4.7)

(since xy is in the socle of A we see that αy · xy = 0 and αx · xy = 0).

(2) Let cr, dr ∈ K and ρ : P2t−1 → A such that

2t∑
r=0

crξr + drηr = ρ ◦ d2t ∈ im(d∗2t).(4.8)

We must show that cr = 0 = dr for all r. Write ρ(f2t−1
i ) = pi = ai + bix+ ciy + dixy ∈ A. Then

we have

ρ ◦ d2t(f
2t
i ) = (−1)i[βypi + βxpi−1] = (−1)i[2aiy + 2ai−1x](4.9)

which are elements in A. On the other hand if we apply the map given by the sum to f2t
i then

we get

ci + dixy,(4.10)

also elements in A. We assume these are equal, and it follows that all scalars are zero.

�
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4.3. Products in even degrees of HH∗(A). Recall that the even part HH2∗(A) is a subring of the

Hochschild cohomology, and it is commutative. The aim of this section is to prove the following:

Theorem 4.2. Let k be a field with char(k) 6= 2, and let A = k〈X,Y 〉/(X2, XY + Y X, Y 2). Assume

R = Sp{ξ2t
i : t ≥ 0, and 0 ≤ i ≤ 2t}.(4.11)

Then R is a subalgebra of HH2∗(A). It is Z2-graded, with

R0 := k〈ξ2t
i : i even 〉, and R1 := k〈ξ2t

i : i odd 〉.(4.12)

We have ξ2m
l ξ2t

r = ξ2m+2t
l+r . The subalgebra R0 is isomorphic to the polynomial ring k[z0, z1] where we

identify ξ2
0 with z0 and ξ2

2 with z1. Moreover, R1 = R0ξ
2
1 and ξ2

1 · ξ2
1 = ξ4

2 .

Corollary 4.3. Let N be the largest homogeneous nilpotent ideal of HH2∗(A). Then

HH2∗(A)/N ∼= R.(4.13)

We fix a degree 2t, and we will compute the product of a general element ξ of degree 2t with an element

χ of degree 2m, and we let 2m vary. We take representatives ξ : P2t → A and χ : P2m → A which are

k-linear combinations of the basis. Let

ξ(f2t
i ) = pi ∈ A with 0 ≤ i ≤ 2t(4.14)

χ(f2m
i ) = pi ∈ A with 0 ≤ i ≤ 2m.(4.15)

By (4.5), the elements pi and p̄i are then in the centre of A, we will use this freely.

Definition 4.4. The Yoneda product χ • ξ is the residue class of χ ◦ h2m where the family (hs) with

hs : P2t+s → Ps is a lifting of ξ. That is, we have the following diagram:

P2t+2m P2t+2m−1 · · · P2t+s P2t+s−1 · · · P2t+1 P2t

P2m P2m−1 · · · Ps Ps−1 · · · P1 P0 A

A

d2t+2m d2t+s d2t+1

d2m ds d1 µ

h2m h2m−1 hs hs−1 h1 h0

ξ

χ

where ξ = µ ◦ h0 and where all squares commute. We define maps hs (0 ≤ s ≤ 2m), and will show that

they are a lifting.

hs(f
2t+s
i ) =

{∑s
j=0 pi−jf

s
j when s even

(−1)i
(∑s

j=0(−1)jpi−jf
s
j

)
when s odd

(4.16)

Proposition 4.5. The maps hs for 0 ≤ s ≤ 2m make the lifting diagram commutative, that is ds ◦ hs =

hs−1 ◦ d2t+s.

Proof. When 2t is fixed the proof of this result is an examination when s is even and when s odd, and

the result follows from explicit calculations.
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Case s even: We have

(ds ◦ hs)(f2t+s
i ) = ds

 s∑
j=0

pi−jf
s
j

 =

s∑
j=0

pi−jds(f
s
j )(4.17)

=

s∑
j=0

pi−j(−1)j
(
βyf

s−1
j + βxf

s−1
j−1

)
.

(hs−1 ◦ d2t+s)(f
2t
i ) = hs−1

(
(−1)i

(
βyf

2t+s−1
i + βxf

2t+s−1
i−1

))
(4.18)

= βyhs−1(f2t+s−1
i ) + βxhs−1(f2t+s−1

i−1 )

=

s−1∑
j=0

(−1)jβypi−jf
s−1
j + (−1)i−1

s∑
j=0

(−1)jβxpi−(j+1)f
s−1
j

=

s∑
j=0

(−1)jpi−j(βyf
s−1
j + βxf

s−1
j−1 ).

We observe that the expressions are equal, hence ds ◦ hs = hs−1 ◦ d2t+s.

Case s odd: We calculate

(ds ◦ hs)(f2t+s
i ) = ds

(−1)i
s∑
j=0

(−1)jpi−jf
s
j

 =

s∑
j=0

(−1)jpi−jdsf
s
j(4.19)

= (−1)i
s∑
j=0

(−1)jpi−j(−1)j(αyf
s−1
j − αxfs−1

j−1 )

= (−1)i
s∑
j=0

pi−j(αyf
s−1
j − αxfs−1

j−1 ).

(hs−1 ◦ d2t+s)(f
2t
i ) = hs−1

(
(−1)i

(
αyf

2t+s−1
i − αxf2t+s−1

i−1

))
(4.20)

= (−1)i
s∑
j=0

(−1)jpi−j(αyf
s−1
j − αxfs−1

j−1 ).

The expressions are equal, which deals with the odd case. In total, these show that (hs)s≥0 defines a

lifting map. �

4.4. Description of Yoneda products. In Section 4.2 we have described a basis for HH2t+2m(A). Now

we compute the Yoneda product of ξ ∈ HH2t(A) and χ ∈ HH2m(A).

Corollary 4.6. Let ξ(f2t
r ) = pr ∈ A and χ(f2m

r ) = p̄r ∈ A. Then

χ ◦ h2m(f2t+2m
i ) =

∑
0≤j≤2m and 0≤i−j≤2t

pi−j p̄j .(4.21)

In particular if we let ξ2m
u and ξ2t

v denote the basis elements of Lemma 4.1 then we have

ξ2m
u · ξ2t

v = ξ2t+2m
u+v(4.22)

showing that R is closed under multiplication.

Proof. We apply the lifting formula and obtain the first part directly. If we take χ = ξ2m
u and ξ = ξ2t

v

then pv = 1 and pr = 0 for r 6= v and similarly p̄u = 1 and p̄r = 0 otherwise. So we get that the image of

f2t+2m
ν is 1 if ν = u+ v and is zero otherwise. The last part follows. �
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4.5. Completing the proof of Theorem 4.2. We are left to show that R0 is isomorphic to the

polynomial ring k[z0, z1], the rest follows from (4.22). We define z0 7→ ξ2
0 and z1 7→ ξ2

2 ; this extends to an

algebra map (recall that R0 is commutative). This takes zr0z
s
1 to (ξ2

0)r(ξ2
2)s = ξ2r

0 ξ2s
2s = ξ2r+2s

2s . The map

is bijective: namely a general basis vector ξ2t
2r, where we must have r ≤ t, factorizes uniquely as

ξ2t
2r = ξ

2(t−r)
0 ξ2r

2r .

Corollary 4.3 is a direct consequence: The intersection of R with N is zero, and as we have observed,

any element in the span of maps ηr is in N. 2

5. Cohomology for a ≥ 3

Now we study the cohomology when a ≥ 3. Still let q be an a-th root of unity and assume the algebra

is

A = k〈X,Y 〉/(Xa, XY − qY X, Y a).(5.1)

We write again x, y for the images of X,Y in A.

5.1. Differentials. We assume a ≥ 3, then we can simplify the differentials defined in 2.10 and 2.11. We

observe that the elements in A introduced in 2.6 to 2.9 depend only on the parity of s modulo a, and the

arguments in 2.10 and 2.11 make only use of the cases where s ≡ 0 or s ≡ 1 modulo a. Using this the

differentials take the following form which we will use from now:

d2t : f2t
i 7→

{
γy(0)f2t−1

i + γx(0)f2t−1
i−1 for i even

−τy(1)f2t−1
i + τx(1)f2t−1

i−1 for i odd
(5.2)

d2t+1 : f2t+1
i 7→

{
τy(0)f2t

i + γx(1)f2t
i−1 for i even

−γy(1)f2t
i + τx(0)f2t

i−1 for i odd
(5.3)

where we have replaced

τ1 = τx τ2 = τy γ1 = γx γ2 = γy(5.4)

5.2. A basis for HH2t(A) for a ≥ 3. As observed the dimension of the degree 2t part is always 4t + 2

which is independent of a. We therefore expect that there should be a basis when a ≥ 3 which is not so

different from the one we had for a = 2.

Definition 5.1. Let ζj : P2t → A be the map

ζj(f
2t
i ) =

{
1 i = j

0 else.
(5.5)

Let j be even, then define

η+
j (f2t

i ) =

{
xa−1ya−1 i = j

0 else.
(5.6)

Now let j be odd, then define

η−j (f2t
i ) =

{
xy i = j

0 else.
(5.7)

Lemma 5.2. We fix a degree 2t.

(a) The classes of the elements ζi and η±j as defined above form a basis of HH2t(A).

(b) The classes of the elements η±j give nilpotent elements of HH∗(A).
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Proof. Part (b) will follow again from Proposition 2.1. We prove now part (a). These are in total 4t+ 2

maps, so we only have to show that the maps lie in the kernel of d∗2t+1, and that they are linearly

independent modulo the image of d∗2t.

(1) Let ξ be one these maps. We write ξ(f2t
i ) = pi ∈ A, so that pi is either 0 or 1 or one of xa−1ya−1 or

xy depending on the parity of i. We need to check that ξ(d2t+1(f2t+1
i )) = 0.

(a) Assume i is even, then this is equal to

ξ(d2t+1(f2t+1
i )) = ξ(τy(0)f2t

i + γx(1)f2t
i−1) = τy(0)pi + γx(1)pi−1.(5.8)

This has to be calculated in A which is viewed as an Ae left module. We have

τy(0)pi = piy − ypi(5.9)

This is zero if pi = 1. Otherwise since i is even we only need to consider pi = xa−1ya−1 and then

piy = 0 and ypi = 0. Next, if pi−1 = 1 then

γx(1)pi−1 =

a−1∑
j=0

qjxa−1−j · 1 · xj = (

a−1∑
j=0

qj)xa−1(5.10)

and this is zero, note that 1 + q+ . . .+ qa−1 = 0 since q is an a-th root of 1. Otherwise pi−1 = xy

and then

γx(1)pi−1 =

a−1∑
j=0

qj(xa−1−jxyxj)(5.11)

and this is a scalar multiple of xay and hence is zero.

(b) Let i be odd, we get

ξ(−γy(1)f2t
i + τx(0)f2t

i−1) = −γy(1)pi + τx(0)pi−1.(5.12)

By calculations similar to part (a) we see that this is zero in all cases to be considered.

(2) We consider a linear combination of the above elements and assume that it lies in the image of d∗2t.

Explicitly let

2t∑
j=0

cjζj +
∑
j even

s+
j η

+
j +

∑
j odd

s−j η
−
j = ξ ◦ d2t(5.13)

where ξ : P2t−1 → A, with cj and s±j in k. We must show that this is only possible, as ξ varies, with all

cj and s±j equal to zero.

(a) Apply the LHS to f2t
i with i even, this gives

ci + s+
i (xa−1ya−1).(5.14)

On the other hand,

ξ ◦ d2t(f
2t
i ) = γy(0)ξ(f2t−1

i ) + γx(0)ξ(f2t−1
i−1 ).(5.15)

This is an element in A viewed as an Ae left module. For any element z ∈ A, γx(0)z or γy(0)z

can never have a non-zero constant term since γx(0) and γy(0) are in the radical of Ae. Hence

the Equation (5.15) does never have a non-zero constant term and ci = 0.

We claim that we also cannot get a term which is a multiple of xa−1ya−1. Namely if so this

could only come from either γy(0)xa−1 or from γx(0)ya−1. Now,

γy(0)xa−1 =

a−1∑
j=0

yjxa−1ya−1−j =

a−1∑
j=0

(q−1)j(a−1)xa−1ya−1 = 0(5.16)

since
∑a−1
j=0 q

j = 0. Hence s+
i = 0. Similarly one sees that γx(0)ya−1 = 0.
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(b) Apply the LHS to f2t
i with i odd, this gives

ci + s−i (xy).(5.17)

On the other hand,

ξ ◦ d2t(f
2t
i ) = −τy(1)ξ(f2t−1

i ) + τx(1)ξ(f2t−1
i−1 ).(5.18)

As before, since τy(1) and τx(1) are in the radical of Ae, this cannot have non-zero constant terms.

Hence ci = 0.

We must check that we cannot get xy. If xy should occur in τy(1) this can only come from

τy(1)x but this is equal to xy − qyx = 0. Similarly τx(1)y = 0 and we do not get xy. Hence

s−i = 0.

We have proved that the 4t+ 2 maps are linearly independent modulo the image of d∗2t. By dimensions,

they are a basis of HH2t(A). �

The aim of this section is to prove the following.

Theorem 5.3. Let k be a field, a ≥ 3 an integer, q ∈ k a primitive a-th root of unity, and A the quantum

complete intersection k〈X,Y 〉/(Xa, XY − qY X, Y a). Assume

R := Sp{ζ2t
i : t ≥ 0 and 0 ≤ i ≤ 2t}.(5.19)

Then R is a subalgebra of HH2∗(A). It is Z2-graded with R0 := k〈ζ2t
i : i even 〉 and R1 := k〈ζ2t

i : i odd 〉.
Moreover

ζ2m
l · ζ2t

r =

{
0 l, r odd
ζ2m+2t
l+r otherwise.

(5.20)

As for the case a = 2 we can see:

Corollary 5.4. The even part R0 of R is isomorphic to the polynomial ring in two variables.

Corollary 5.5. Assume A is as in the Theorem, and let N be the largest homogeneous nilpotent ideal of

HH2∗(A). Then HH2∗(A)/N is isomorphic to R0.

5.3. Lifting. We compute the Yoneda product χ • ξ where χ, ξ are k-linear combinations of maps ζj as

in Definition 5.1.
For ξ in the span of the ζj , the values of ξ are scalars and therefore they commute with elements of

Ae. Luckily, we are only interested in the even Hochschild cohomology modulo homogeneous nilpotent

elements.
Similar as for the case where a = 2 we use liftings along the minimal projective resolution to define

the Yoneda products in the cohomology ring. Let ξ : P2t → A where

ξ(f2t
i ) := pi(5.21)

and we assume pi is a scalar multiple of 1, for all i. Consequently the values pi commute with all elements

in Ae. As usual we set pi = 0 if i > 2t or if i < 0.

The map h0 : P2t → P0 is defined by

h0(f2t
i ) := pif

0
0 (0 ≤ i ≤ 2t).(5.22)

Moreover, we search explicit formulae for maps

hs : P2t+s → Ps.(5.23)

For s ≥ 1 we require

hs−1 ◦ d2t+s = ds ◦ hs.(5.24)

If so, then (hs)s≥0 lifts ξ along the minimal projective resolution.
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5.3.1. Some formulae in Ae. In order to define such lifting maps hs for s > 0 we establish some formulae

in Ae. Let

ci = 1 + q + . . .+ qi for 0 ≤ i ≤ a− 2.(5.25)

Definition 5.6. For an integer s we define

βx(s) =

a−2∑
i=0

ciq
si(xa−2−i ⊗ xi)(5.26)

βy(s) =

a−2∑
i=0

ciq
si(yi ⊗ ya−2−i)(5.27)

Recall now the elements in Ae which occur in the definition of the differentials:

γy(s) =

a−1∑
j=0

qjs(yj ⊗ ya−1−j)(5.28)

γx(s) =

a−1∑
j=0

qjs(xa−1−j ⊗ xj)(5.29)

At the end we will only need s = 0 and s = 1. Recall also

τy(1) = (1⊗ y)− q(y ⊗ 1)(5.30)

τx(1) = q(1⊗ x)− (x⊗ 1)(5.31)

τy(0) = (1⊗ y)− (y ⊗ 1)(5.32)

τx(0) = (1⊗ x)− (x⊗ 1).(5.33)

With this notation, we will define maps hs : P2t+s → Ps, defined on the generators f2t+s
i of the free

Ae module P2t+s, and we will show below that they lift ξ:

Definition 5.7.
Assume s is even. For an integer i we define the following elements in the algebra,

ω(j) =

{
βx(−1)βy(1) j odd

1 j even
(5.34)

With this, we define for s even

hs(f
2t+s
i ) :=

{∑s
j=0 pi−jω(j)fsj i even∑s
j=0 pi−jf

s
j i odd.

(5.35)

Now assume s is odd. Here we need two parameters in Ae, one for x and one for y. We set

εx(j) =

{
−βx(0) j odd

1 j even
εy(j) =

{
1 j odd

−βy(0) j even.
(5.36)

With these, we define for s odd,

hs(f
2t+s
i ) :=

{∑s
j=0 pi−jεx(j)fsj i even∑s
j=0 pi−jεy(j)fsj i odd.

(5.37)

We will show that (hs)s≥0 is a lifting for ξ. For this, we need some formulae.
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Lemma 5.8. We have that the following relations hold:

βy(1)τy(1) = γy(2)(a)

βx(−1)γy(2) = γy(0)βx(0)(b)

βx(−1)βy(1) = βy(−1)βx(1)(c)

βx(1)τx(1) = −γx(2)(d)

βy(−1)γx(2) = γx(0)βy(0)(e)

βy(0)τy(0) = γy(1)(f)

βx(0)τx(0) = −γx(1)(g)

τy(1)βy(0) = γy(0)(h)

τx(0)βx(−1) = −γx(−1)(i)

γx(−1)βy(1) = βy(0)γx(1)(j)

τy(0)βy(−1) = γy(−1)(k)

τx(1)βx(0) = −γx(0)(l)

βx(0)γy(1) = γy(−1)βx(1)(m)

Proof. We prove (a) and (b), and the other relations follows from the same kind of reasoning. Start with

(a), we have

βy(1)τy(1) =

(
a−2∑
i=0

ciq
i(yi⊗ ya−2−i)

)
((1⊗ y)− q(y⊗ 1))(5.38)

=

a−2∑
i=0

(
ciq

i(yi⊗ ya−1−i)− ciqi+1(yi+1⊗ ya−2−i)
)

(5.39)

= c0(1⊗ ya−1) + c1q(y⊗ ya−2) + · · ·+ ca−2q
a−2(ya−2⊗ y)(5.40)

− c0q(y⊗ ya−2)− · · · − ca−3q
a−2(ya−2⊗ y)− ca−2q

a−1(ya−1⊗ 1)(5.41)

= c0(1⊗ ya−1) + q(c1 − c0)(y⊗ ya−2) + q2(c2 − c1)(y2⊗ ya−3)+(5.42)

· · ·+ qa−2(ca−2 − ca−3)(ya−2⊗ y)− qa−1ca−2(ya−1⊗ 1)(5.43)

where we have that c0 = 1, c1 − c0 = 1 + q − 1 = q, . . .

ci+1 − ci = (1 + q + · · ·+ qi+1)− (1 + q + · · ·+ qi) = qi+1(5.44)

We also observe

ca−2 = 1 + q + · · ·+ qa−2 = −qa−1(5.45)

since a is a root of unity and hence 1 + q + · · ·+ qa−2 + qa−1 = 0. Then we have,

βy(1)τy(1) = (1⊗ ya−1) + q2(y⊗ ya−2) + · · ·+ q2(a−1)(ya−1⊗ 1) = γy(2)(5.46)

For the relation (b) we inspect a typical element in this sum:

ciq
−i(xa−2−i⊗xi)q2j(yj ⊗ ya−1−j) = ciq

−iq2j(xa−2−iyj ⊗xi ∗ ya−1−j)(5.47)

(where ∗ denotes the multiplication in Aop). Now we recall that xy = qyx (and x ∗ y = q−1y ∗ x) hence

xa−2−iyj = qj(a−2−i)yjxa−2−i and xi ∗ ya−1−j = q−i(a−1−j)ya−1−j ∗ xi. We get

ciq
−iq2jqj(a−2−i)q−i(a−1−j)(yjxa−2−i⊗ ya−1−j ∗ xi) = (yj ⊗ ya−2−j)ci(x

a−2−i⊗xi)(5.48)

which is the most typical element in the sum γy(0)βx(0). �
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The relations (a) to (m) in Lemma 5.8 can be used to prove that the maps hs are liftings for the given

map ξ:

Proposition 5.9. The lifting formulas make the suggested squares commutative, that is hs−1 ◦ d2t+s =

ds ◦ hs when s ≥ 1 and ξ = µ ◦ h0.

Proof. We give details when s and i are even, the other cases are similar. The strategy is to apply both

sides to f2t+s
i and express the answer in terms of the basis {fs−1

j }, with coefficients in Ae and then show

that the coefficients of the fs−1
j in the two expressions are equal.

We have

(ds ◦ hs)(f2t+s
i ) =ds

 s∑
j=0

pi−jω(j)fsj

(5.49)

=
∑

j even, 0≤j≤s

pi−jω(j)
[
γy(0)fs−1

j + γx(0)fs−1
j−1

]
(5.50)

+
∑

j odd, 0≤j≤s

pi−jω(j)
[
−τy(1)fs−1

j + τx(1)fs−1
j−1

]
(5.51)

We split each of the two sums, and when the index is j − 1 we change variables, setting l = j − 1 so

that j = l+ 1 and noting that l has opposite parity as j. As well we recall ω(j) = 1 for j even. Then this

becomes

=
∑

j even, 0≤j≤s

pi−jγy(0)fs−1
j +

∑
l odd , −1≤l≤s−1

pi−l−1γx(0)fs−1
l(5.52)

+
∑

j odd , 0≤j≤s

−pi−jω(j)τy(1)fs−1
j +

∑
l even, −1≤l≤s−1

pi−l−1ω(l + 1)τx(1)fs−1
l(5.53)

The range of summation can be unified since fsj = 0 for j = −1 or j = s. We write this now as a

combination in the Ae-basis fs−1
j for 0 ≤ j ≤ s− 1, (writing j for l) and we get

=
∑

j even, 0≤j≤s−1

[pi−jγy(0) + pi−j−1ω(j + 1)τx(1)]fs−1
j

+
∑

j odd, 0≤j≤s−1

[pi−j−1γx(0)− pi−jω(j)τy(1)]fs−1
j(5.54)

On the other hand

(hs−1 ◦ d2t+s)(f
2t+s
i ) =hs−1(γy(0)f2t+s−1

i + γx(0)f2t+s−1
i−1 )(5.55)

=γy(0)[

s−1∑
j=0

pi−jεx(j)fs−1
j ] + γx(0)[

s−1∑
j=0

pi−1−jεy(j)fs−1
j ](5.56)

=

s−1∑
j=0

[pi−jγy(0)εx(j) + pi−1−jγx(0)εy(j)]fs−1
j .(5.57)

We must show that for each j the coefficients of fs−1
j in (5.54) and in (5.57) are equal.

(a) Assume first j is even. We require

pi−jγy(0) + pi−j−1ω(j + 1)τx(1) = pi−jγy(0)εx(j) + pi−j−1γx(0)εy(j)(5.58)

For j even, εx(j) = 1 and the first terms agree. The second terms agree provided

ω(j + 1)τx(1) = γx(0)εy(j)(5.59)
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Consider the LHS, by identities (c), (d) and (e) it is equal to

βy(−1)βx(1)τx(1) = −βy(−1)γx(2) = −γx(0)βy(0) = γx(0)εy(j)(5.60)

from the definition of εy(j) in this case. Hence the second terms agree as well.

(b) Now assume j is odd. We require

pi−j−1γx(0)− pi−jω(j)τy(1) = pi−jγy(0)εx(j) + pi−1−jγx(0)εy(j)(5.61)

For j odd, εy(j) = 1 and the terms with pi−j−1 agree. For the other two terms to agree we need

γy(0)εx(j) = −ω(j)τy(1)(5.62)

We have using the definition and identities (a) and (b) that

−ω(j)τy(1) = −βx(−1)βy(1)τy(1) = −βx(−1)γy(2) = −γy(0)βx(0) = γy(0)εx(j)(5.63)

as required.

�

Similar as for the case a = 2 we define the Yoneda product of the residue classes represented by ξ of

degree 2t and χ of degree 2m to be the residue class represented by the composition

ξ • χ = χ ◦ h2m.(5.64)

5.4. Description of Yoneda products of basis elements when a ≥ 3. In the definition 5.7 of the

lifting maps, we have the term ω(j) = βx(−1)βy(1) ∈ Ae (for j odd). When this is evaluated in A, it

becomes ω(j) · 1A. We claim that this is always zero, in fact βy(1) · 1A = 0.

Namely, we must view A as an Ae bimodule and then

βy(1) · 1A =

a−2∑
i=0

ciq
iya−2 =

(
a−2∑
i=0

ciq
i

)
ya−2(5.65)

The following shows that this is zero:

Lemma 5.10. Let q be a primitive a-th root of unity for a ≥ 3. Let ci = 1 + q + . . .+ qi for i ≥ 0, then

a−2∑
i=0

ciq
i = 0(5.66)

Proof. Set also c−1 := 0. Then we have for i ≥ 0 that ci − ci−1 = qi. We get

a−2∑
i=0

ciq
i =

∑
i

ci(ci − ci−1)(5.67)

Therefore (all summations are from i = 0 to a− 2)

(1 + q)(
∑
i

ciq
i) =

∑
i

ciq
i +
∑
i

ciq
i+1

=
∑
i

ci(ci − ci−1) +
∑
i

ci(ci+1 − ci)

=
∑
i

(cici+1 − cici−1)

=ca−2ca−1 − c0c−1

=0

since ca−1 = 1 + q + . . . + qa−1 = 0 and c−1 = 0. But q 6= −1, so we can cancel by (1 + q) and get the

claim. �
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We analyse now the products, and this will complete the proof of Theorem 5.3. Define

R = Sp{ζ2t
i : t ≥ 0, 0 ≤ i ≤ 2t}.(5.68)

We compute products of elements in R.

Let χ be of degree 2m and ξ of degree 2t, both in R. Let ξ(f2t
i ) = pi ∈ K for 0 ≤ i ≤ 2t and

χ(f
2m
j ) = p̄j ∈ K for 0 ≤ j ≤ 2m. As before we set pi = 0 for i < 0 or i > 2t, and similarly we define p̄j

for any j ∈ Z.

Then χ • ξ is the class of χ ◦ h2m where (hs) is a lifting of ξ, with the formula computed above. Note

that we only need the case when s = 2m is even. We have

χ ◦ hs(f2t+s
i ) = χ(

s∑
j=0

pi−jω(j)fsj ) =

{ ∑s
j=0 pi−jω(j)p̄j i even∑s
j=0 pi−j p̄j i odd.

(5.69)

Now assume χ = ζl for some 0 ≤ l ≤ s, so p̄l = 1 and p̄j = 0 otherwise. Then the above simplifies to

f2t+s
i 7→

{
pi−lω(l) · 1 i even
pi−l · 1 i odd

(5.70)

Now take ξ = ζr for some 0 ≤ r ≤ 2t. Then pi−l = 1 if i− l = r, and 0 otherwise.

Note that ω(l) · 1A is zero for l odd and is equal to 1 otherwise. The zero occurs precisely when l is

odd and i = l + r is even, i.e. if both l, r are odd. So we get

ζ2m
l · ζ2t

r =

{
ζ2m+2t
l+r l, r not both odd

0 l, r odd.
(5.71)

As for the case a = 2 we see that R0 is isomorphic to the polynomial ring in two variables.

Furthermore, we see that elements in R1 are nilpotent. The subalgebra R0 intersects the largest

homogeneous nilpotent ideal N trivially, and the span of the η± is contained in N.
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