Postprint Springer-Verlag. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering 2013 ;Volum 114. s. 283-301

Detection of Masqueraded Wireless Access
Using 802.11 MAC Layer Fingerprints

Christer Idland, Thomas Jelle, and Stig F. Mjglsnes

Department of Telematics
Norwegian University of Science and Technology,
Trondheim
{christer.idland, thomas. jelle,sfm}@item.ntnu.no

Abstract. Many wireless Internet access operators prefer open local
area network (WLAN) access because this reduces the need for user
assistance for a variety of smaller devices. A 802.11 MAC spoofer mas-
querades as an authorized user and gains access by using an already
whitelisted MAC address. We consider the scenario where the spoofer
waits until the authorized user has finished the session, and then uses
the still whitelisted MAC address for the network access. We propose
and experiment with “implementation fingerprints” that can be used to
detect MAC layer spoofing in this setting. We include eight different tests
in the detection algorithm, resulting in 2.8 in average Hamming distance
of the tests. Eleven different STA devices are tested with promising de-
tection results. No precomputed database of fingerprints is needed.

Keywords: WLAN, 802.11, wireless, media access layer, masquerading,
intrusion detection, network forensics, communication fingerprints.

1 Introduction

1.1 The Problem

Many wireless Internet access operators choose to provide a cryptographically
unprotected wireless local area network (WLAN) link because this simplifies the
user configurations for a variety of smaller devices, makes the wireless association
faster, and reduces the cost of the user help-desk. Still, connecting to a wireless
local area network for the first time may not be hassle-free for the user, because
the setup also depends on user input for authentication, service selection, and
payment. The operator can use a so-called captive portal for the purpose of user
access control. A captive portal responds to any Hypertext Transfer Protocol
(HTTP) client request (normally a web browser) with a special user authen-
tication web page. All other uplink packets from the client will be blocked by
the portal. The response page will give information about the internet access
service, the operator, the access policy and accepted payment services. Once the
client submits the proper credentials, then the Medium Access Control (MAC)

address of the user’s WLAN network interface card (NIC) is whitelisted in the
portal and subsequent packets are routed normally.

IEEE distributes and manages the allocation of the MAC addresses on a
global basis. The manufacturers of the 802.11 NICs manage the assignment of
a unique MAC to each device produced. This MAC identifier is stored in the
hardware or firmware of the NIC, but can in many instances be modified by an
attacker for the purpose of masquerading as an authorized user, for instance in
the simple access control based on checking the MAC address performed by a
captive portal. This is often called MAC spoofing attack.

Theoretically, this threat of masqueraded attacks does not come as a sur-
prise, because only the user is authenticated by the captive portal, whereas the
communicating devices and all their subsequent data communication are left
without any authentication at all. The IEEE 802.11 standard provides security
mechanisms for establishing a common symmetric authentication key between
the client station (STA) and the access point (AP), where each link data frame
is protected by a message authentication code that enables verification by the
receiver. If a MAC spoofer attacker does not have access to the secret authentica-
tion key, then it will become computationally impossible to generate the correct
message authentication codes, and the data frames from the spoofer will be re-
jected by the AP. In practice, the setup of the cryptographic keys will require
extra user input, which works against user convenience and operator preferences.

Several techniques have been proposed for detecting a spoofing attack while
the victim of the spoofing attack is actively connected to a cryptographically
unprotected WLAN. It is an open problem whether it is possible to detect a
MAC spoofing attack when the victim is no longer connected to the AP. The
problem addressed in this paper is how to detect MAC spoofing when only the
masquerading NIC is actively accessing the AP. An automatic detection of this
type of spoofing attacks requires new algorithms for distinguishing between the
authorized user and the masquerading attacker. Our distinguisher algorithms
presented here are based on observing the heterogeneity of different implemen-
tation characteristics of the 802.11 protocol. We investigate how distinctive fea-
tures of the various 802.11 implementations create NIC fingerprints, and how
these can be used in the detection of MAC spoofing.

1.2 Motivation

The Internet access network Wireless Trondheim is a city wide wireless access
network, mainly based on the IEEE 802.11a/b/g technologies (Wi-Fi). Currently,
the network consists of approximately 500 access points. The geographical cov-
erage is in the Trondheim city center outdoor area of about 1.5 km?. In addition,
the indoor area of all the buildings of the Municipality of Trondheim plus the
coverage area of other central buildings. Wireless Trondheim provides Internet
access service to about 15.000 unique users each month. Typically, 50% of the
client terminals will use the WPA2 Enterprise solutions, while the other half will
use the captive portal solution with authentication but with no encryption.

The main goal of Wireless Trondheim is to provide easy wireless Internet
access for its users on a wide range of wireless equipment, including simple
low-end devices, such as music players and simple mobile phones. Moreover,
the wireless network shall provide an arena for testing new services in a real
environment (Living Lab). This implies that access control mechanisms must be
as simple to operate and use as possible, keeping minimal requirements of the
hardware and software of the wireless terminal.

On the other hand, cyber crime activities may be carried out by stealing
user names and network addresses (IP, MAC) copied from other terminals. If
a criminal act has been carried out and becomes investigated, then we want to
make sure that the culprit is found and accused, and not some innocent third
person. This implies the need for a strong authentication system, and works
against the requirement of easy access for any user device.

Wireless Trondheim’s motivation for finding solutions to the identity theft
problem is to avoid that innocent users are wrongly accused of serious crime. A
possible scenario is if the police or other authority requests information about the
identity and activity of users during the process of serious crime investigations,
where Wireless Trondheim can only provide possibly incriminating information
about customers that in reality are innocent. This can obviously happen if an
attacker hijacks the session of a user to hide his identity while doing criminal
activity. A successful impersonator could perform criminal activities under an-
other innocents users identity and access. The innocent user will be prosecuted
and could eventually be found guilty in serious crime. The prime motivation of
Wireless Trondheim for deploying a spoofing detection service is therefore to be
able to check whether it is likely that there has been an identify theft before
handing over user information to the police or other authorities. The algorithms
presented here can also be used in an intrusion detection system (IDS) may
block the attack, but this blocking will require reliable digital evidence because
the costs of refusing a legitimate user are potentially high, the commercial and
reputational risks for the service provider, as well as the denial-of-service and
possible false allegations against the subscribed user.

2 Background and Related Work

The Norwegian University of Science and Technology and the company Wire-
less Trondheim started a research collaboration in 2008 taking on the practical
problem of detection of masqueraded wireless access in the 802.11 networks.
This research activity has spurred several master projects and theses at Depart-
ment of Telematics, NTNU. In previous work, techniques have been proposed
and tested for detecting MAC spoofing while the victim is active. In particular,
we based the detection techniques on MAC sequence numbers and other logical
properties of the 802.11 MAC layer [1].

This paper considers the scenario where the spoofer waits until the authorized
user has finished the session, and then take advantage of the still whitelisted
MAC address for the network access. Many of the results reported in this paper

are based on the master thesis work and supervision of Idland [2]. Here we publish
the main results, and put them in the wider problem context of operational
architecture and practice.

Franklin et al. [4] exploit the fact that the channel scanning algorithm search-
ing for available APs is not explicitly defined in the 802.11 protocol. They develop
a method based on statistical analysis of the interframe timing of transmitted
probe requests in order to identify a specific driver, and the conclusion is that
the majority of wireless drivers do have a distinct fingerprint.

There are important differences in the processing of the Null Data frames
in various implementations and we make good use of this observation. Gu et
al. [7] create seven rules to identify different behavior regarding the Null Data
frames. They focus on the fact that this distinguishing implementation feature
may allow an attacker to recognize and determine the location of a client station.
Location is in this case limited to an AP, for instance at a coffee shop, at home,
or at school. These rules form a basis for the algorithm we present here, but we
will use the rules to detect, and not aid attacks.

There exists several commercially available wireless intrusion detection sys-
tems (IDSs) that claim to detect and even prevent MAC spoofing attacks. One
product in particular, the HSMX from fdXtende [8], uses a captive portal func-
tionality. The manufacturer claims that HSMX will detect MAC address spoofing
and prevent hijacking. It turns out that the hijacking prevention is based on an
active SSL window technique that might not run on low-end devices. Further-
more, the MAC spoofing detection algorithm is based on not accepting more
than one single IP address for a given MAC address, thus it does not defend
against attacks where the victim is no longer online.

3 The Threat Model

3.1 The Wireless Access Network

Wireless Trondheim manages an open 802.11 access network where 802.11a/b/g
are supported. The Wi-Fi Multimedia feature is enabled. Figure 1 presents a
simplified overview of the network structure, depicting the relevant components
for our purposes here. The AP functionality is split into two separate devices,
which are the Lightweight Access Point (LAP) and the Wireless LAN Controller
(WLC). One WLC entity can control several LAPs entities. The captive portal
functionality is integrated in an Internet Gateway entity (Nomadix). The IDS
server can receive the fingerprinting parameter values possibly from the WLC,
or make the acquisition itself by eavesdropping on the wireless link directly. A
whitelisted MAC address in the captive portal will remain whitelisted for up to
60 minutes after traffic has ceased. Obviously, a shorter time to white list flush
will reduce the user’s convenience by having to repeat a log-in after a break, and
reduce the time available for the attacker.

The Internet

Attacker STA

Internet Gateway
23

Captive Portal
Legitimate STA

IDS server @

(5)

(@)

Wireless LAN Controller

Fig. 1. The main network elements of the wireless access network. Several lightweight
access points (LAP) are connected to a wireless LAN controller (WLC). The IDS
server can receive fingerprinting properties from the WLC, or monitor the wireless
links directly.

3.2 MAC Spoofing

An easy way to fool an access control system based on whitelisting of MAC ad-
dresses is by performing a MAC spoofing attack. The theory is that the attacker
masquerades as a legitimate client, that is, a client that already has his MAC
address whitelisted. Thereby the attacker gains access to the network. A suitable
MAC address is easily obtained through eavesdropping of the victim’s wireless
communications.

Several methods for detecting attacks based on simultaneous access exists.
The focus of this paper is on the MAC spoofing attack where the attacker and the
victim do not need to be connected simultaneously. The main problem focus is on
the wait-for-availability attack as it is the easiest to perform from the attacker’s
viewpoint. One can also argue that it is the most difficult attack to detect because
the attacker does not force the legitimate client off the network. An attacker
can force a victim off the network connection by sending a deauthenticate or
channel switch frame to the client [3]. These MAC management frames can
easily be observed by an IDS, ergo it can easily be detected. Our attack scenario
is where the attacker waits until there has not been any frame coming from the
victim’s station (STA) for a significant period of time. Then, inferring that the
victim has left, the attacker takes on the MAC address and tries to continue
using the wireless access network.

4 Algorithms

4.1 Distinctive Features

The behavior of MAC layer STAs differs in many ways due to implementation
differences of the 802.11 protocol. Most of these differences exist because the
standard is not explicit, and therefore open to alternative interpretations. Some
distinctive features are a result of different options and capabilities of the specific
NIC in question. These distinctive features, called fingerprinting properties, are
based on the rules for Null Data frame behavior found in Ref. [7]. We augment
their list with several other distinctive features found during our research. Our
list is presented in Table 1.

4.2 The Tests

The pseudocode for all algorithms described can be found in Appendix and
Ref [2].

Test 1, PS-Poll Test 1 is based on the reported feature that some NICs use
Null Data frames and others use PS-poll frames for power management. That
is somewhat imprecise in relation to what we observed in the experiments. All
STAs in the experiment used Null Data for changing power mode, but one STA
used PS-Poll frames when the AP had buffered frames to send.

Therefore, the test is whether a STA use PS-Poll or not. If a STA use PS-
Poll then the fingerprinting algorithm should observe a PS-Poll frame from the
STA after the AP has announced that it has buffered frames for it. This PS-Poll
frame should be observed within the Listen interval of that STA.

If the frame is a Beacon frame and the bit in the TIM corresponding to the
STA in question is set then the beacon_count is incremented. If the beacon_count
exceeds the Listen interval then the algorithm concludes that PS-Poll is not
in use and returns suspect attack if it previously was in use. When a PS-Poll

Table 1. Fingerprinting properties and their possible values for 802.11 network inter-
face implementations [2].

Fingerprinting Property Possible Values

PS-Poll True / False

Keep Alive True / False

Null before Probe True / False

Mode changing Null Data True / False

Fixed Interval True / False

Null Data Type Regular/QoS including TID
Duration Calculation Pairs of (rate, duration) for each rate
Association Request Duration {0...32767}

Listen Interval {0...256}

Supported Rates Set of up to eight integers € {2...127}
Extended Supported Rates Set of up to 255 integers € {2...127}
QoS Capability Present / Not Present

Vendor Specific Type of vendor specific element

frame is observed the beacon_count is reset and the algorithm naturally con-
cludes that PS-Poll is in use, if that was not the case before the algorithm will
return “suspect attack.”

Test 2, Keep Alive This algorithm tests whether a STA sends a Null Data
frame if it has been idle for 10 seconds in order to keep the session alive. The
timestamps are in milliseconds and thus testing for exactly 10 seconds would
yield very few hits, therefore the test is implemented with a buffer, currently set
to 0.15 seconds.

First the time_delta is calculated from the timestamp of the previous frame
and the current frame. Then the algorithm checks if the time_delta is within
the range of 10 seconds £ the buffer of 0.15 second and in addition if the frame
is a Null Data frame. If both of these conditions are true then the algorithm
concludes that keep alive is in use and returns suspect attack if keep alive was
not in use prior to this frame.

If the first if-conditions fail then a new if-statement checks if the time_delta
is larger than 10.15 seconds (10 + buffer). If true then this indicates that the
STA is not using keep alive, and thus the algorithm concludes so and returns
suspect attack.

Test 3, Null before Probe The rationale behind this test is that some STA sends
a Null Data frame and enters PS mode before starting the channel scanning with
Probe Request frames while other STAs do not do this.

First a set size and a minimum limit are defined. The set size is the number
of probe request bursts that will be observed before any conclusion is made. The
minimum limit is a number € [0, 1] representing the percentage of probe request

bursts where the STA first sends a Null Data frame required in order for the
algorithm to conclude that null before probe is in use.

If the current frame is a Probe Request frame then the algorithm continues.
If the previous frame was a Null Data frame then null before probe is in use and
the algorithm increments the using_count as well as the total_count. On the
other hand, if the previous frame was not a Null Data frame or a Probe Request
frame then null before probe is not in use and the algorithm only increments the
total_count.

The last part of the algorithm checks if the percentage of times null before
probe was in use is over the minimum threshold in order to conclude if it in fact
is in use. Suspect attack is returned whenever the current conclusion differs from
the previous conclusion.

Test 4, Mode changing Null Data Test 4 checks if the STA, when it has data
frames to send, uses a Null Data frame to change mode or if it directly sends
a regular data frame when changing power mode. Note that some STAs always
use mode changing Null Data except when they have been in PS mode for a
duration equal to their own Listen interval, this is therefore included in the
test.

First a set size and a minimum limit are defined. The set size is the number
of power mode changes that will be observed before any conclusion is made. The
minimum limit is a number € [0, 1] representing the percentage of power mode
changes that must be done by using Null Data frames in order for the algorithm
to conclude that mode changing Null Data is in use.

The first if-statement checks whether the STA has been in PS mode longer
than its Listen interval, and if so changes the recorded power mode of the
STA to AM.

The next if-statement checks if the chk_nxt_pkt variable is set. The first
time the algorithm is executed this is not the case and the algorithm continues
to check if the STA is in PS mode. If the STA is in PS mode (before the current
frame) the algorithm checks if the current frame is a Null Data frame that
changes the power mode to AM. If this is the case, the chk_nxt_pkt variable is
set. If it is not a Null Data frame with pwr_mgt bit == 0, but a regular data
frame with pwr_mgt bit == 0, then the algorithm interprets this as the STA is
not using null before probe and therefore increments the total_count without
incrementing the using_count.

The reason for having the chk_nxt_pkt variable is that we are only interested
in the power mode changes made when the next packet is a data packet. So, when
the next packet is processed in the algorithm the chk_nxt_pkt variable is set and
the algorithm checks if the current packet is a regular data packet. If this is the
case the using_count is incremented as well as the total_count.

The last part of the algorithm works the same way as in Test 3, by returning
suspect attack if the overall conclusion has changed since last time.

Test 5, Fized Interval This test checks the duration between Null Data frames
with different values in the Power Management bit. If the STA is using mode

changing Null Data then this interval would translate into the time the STA was
in PS mode. The idea behind this test is that some STA stays in PS mode for a
fized interval, regardless of which data to transmit.

First a new Null Data frame is detected. If the pwr_mgt bit of the previous
Null Data frame was 1 (PS) and the value in the current frame is 0 (AM) then
this pair of Null Data frames will be examined further. If the measured time
interval value between these two frames is within a preset normality range, then
the counter for successful detection of pairs (pair_ok_count) is incremented.
The pair_total_count is incremented regardless of the result of the outcome
of this comparison. In the experiments, the time interval average was computed
from the first 10 time intervals of Null Data frames measured, and the normality
range was heuristically set to +20% of this average. The last part of the algorithm
computes the fraction of set_size Null Data frame pairs where the time interval
falls within the normality range. If this fraction is greater than a threshold
parameter then the algorithm concludes that the STA does use a fixed time
interval for the Null Data frames. The algorithm returns “suspect attack” if the
result of the previous test run was the opposite of this run.

Test 6, Null Data Type Test 6 is based on observations regarding Null Data
behavior. Recall that the 802.11 standard has two types of Null Data frames; the
regular one and the QoS Null Data frame. It turns out that in a network where
QoS is enabled (as it is in Wireless Trondheim) some STAs use the QoS Null
Data while others do not use it. Amongst those who use the QoS enabled there is
differences in which QoS priority (TID class) they utilize. These implementation
differences make Test 6 viable.

The algorithm for Test 6 is relative simple compared to the other test algo-
rithms. Nevertheless, it identifies a viable fingerprinting property. The algorithm
basically identifies the type of Null Data frame in use and its priority class (TID)
if it was a QoS frame. The algorithm then returns suspect attack if the identified
frame differs from the previous identified Null Data frame.

Test 7, Duration Calculation Test 7 was motivated by the paper by Gopinath et
al. [5]. The theory is that Null Data frames have the exact same size, and thus
should have the same duration when the data rate is the same. A difference in the
Duration/ID field would indicate different implementations in the calculation
algorithm that again indicates two different STA.

It basically works by recording the duration taken from the Duration/ID
field in the Null Data frames for each data rate used. Recall that the data rate is
available in the radiotap header. If an inconsistency is found then the algorithm
outputs suspect attack.

Test 8, Association Request Vendor specific extensions as a fingerprinting source
is mentioned in the paper by Gopinath et al. [5]. This was the motivation to
further investigate the Association Request frame looking for possible sources for
fingerprinting. Several potential fields were identified and they are: Duration/ID,

Listen interval, Supported Rates, Extended Supported Rates, QoS Capability
and Vendor Specific.

When the input frame is an Association Request frame, the relevant fields
mentioned above, called implicit identifiers, are recorded. If an Association Re-
quest has been recorded for this MAC address before a check on each individual
field is done and suspect attack is returned in case of any inconsistencies.

4.3 Creating a Compound Fingerprint

In order to avoid a high false reject rate when using fingerprinting it is important
to rely on several different properties and tests that can flag suspicious behav-
ior. The fingerprints created in our experiments are a composition of properties
determined by the eight tests explained above. The first six tests result in one
fingerprinting property each, while to two latter results in several properties.
Each of the properties from the two latter tests can be used to detect suspicious
behavior in their own right. See Table 1 for an exhaustive list of fingerprinting
properties and their possible values that make up the compound fingerprint. For
a more in-depth explanation of the possible values and their usage consult the
802.11 standard [6].

Our MAC spoof detection algorithm comprises a combination of each of the
eight tests described above, and some additional logic. The logic to determine
whether we are dealing with an attack based on the output from the tests has
not been described. We want to do fingerprinting on the fly and not necessarily
generate a complete fingerprint. The question of how many properties that are
needed, and a selection of optimal parameters in order to achieve acceptable
low false positive and negative rates is open for further work. Some of the tests
might prove to be sufficient by itself, while others require at least one other
test in combination in order to conclude attack with a high probability. The
experiments and the following results will shed some light on these questions.

5 Experiments and Results

5.1 The Terminal Equipment Test

We implemented the fingerprinting algorithm in Perl in order to test the different
distinctive features of the STAs. Table 2 shows an overview of the STAs that
were used in the experiments. The list includes laptops, smartphones and music
players, in addition to a typical attacker setup (laptop with Backtrack 5), and
are all included in the test.

5.2 Test Scenarios

Scenario 1. General Usage This scenario is constructed to test a browsing be-
havior. Two behavioral patterns were considered important to include when
creating this scenario. First, the STA should continuously generate data traffic

Table 2. Overview of the STA devices used in the experiments.

No. Name and Model OS NIC Browser

S-1 Dell XPS Windows 7 Intel Wi-Fi 1000bgn IE 8

S-2 Lenovo S10-3S Windows 7 Broadcom 802.11n Opera 11
S-3 Acer Aspire 5745G Windows 7 Broadcom 802.11n IE 8

S-4 Dell Inspiron 9400 Windows 7 Intel P/W 3945abg Chrome 11
S-5 iPhone 1. gen. iOS 3.0.1 Not available Safari

S-6 iPhone 4. gen. iO0S 4.3 Not available Safari

S-7 Dell Latitude D610 Windows 7 Intel P/W 2915abg IE 8

S-8 Acer Aspire 5670 Win. XP SP3 Intel P/W 3945abg Firefox 3.6
S-9 iPod touch 1. gen iOS 3.1.3 Not available Opera Mini 5
S-10 HTC Hero Android 2.2.1 Not available ” Internet”
S-11 Dell Inspiron 9400 Backtrack 5 Intel P/W 3945abg Firefox 4

for a period of time, resulting in little or no idle time. Second, the STA should
have longer periods where there is no traffic to send. The rationale is that this
is a realistic usage pattern, such as browsing the web, start reading or watching
something, then continue the web browsing. A scenario including these patterns
should also be able to elicit different power management and Null Data behavior.
All STAs of Table 2 were tested in this scenario.

Scenario 2. Wait-for-availability Attack Here the user is operating for approxi-
mately eight minutes, with some periods of high traffic, and other periods with
little or no traffic, similar to the behavior of Scenario 1. Then the user logs
off and the attacker spoofs the user’s MAC address and performs the wait-for-
availability attack. One pair of STA devices were randomly chosen, S-5 and S-7,
and tested in this scenario.

Scenario 3. Concurrent Usage This scenario is similar to Scenario 2. The main
difference is that now there are five additional STAs connected to the LAP, all
generating concurrent traffic. In other words, a total of seven STAs are connected
and generating traffic. The scenario is also shortened down to a total of eight
minutes (four minutes before the attack and four minutes after). This fact cer-
tainly makes it harder for the algorithm to determine the fingerprints as it will
be less communication data available for analysis. The question is whether four
minutes of monitoring in an active network is enough, or if longer monitoring
period, ssuch as the ones in Scenario 1 and 2, are required.

5.3 Results

Each of the 7 first distinctive features corresponds to one test, the next 4 features
are gathered in a single test because they all depend on the association request
frame. That leaves us with 8 different test/ distinctive features. Figure 2 shows

the hamming distance between any two of the STAs used in the experiments,
note that the maximal distance of 8 could be obtained if two STAs differed on
every single test.

51 5-2 53 5-4 55 56 57 58 59 510 511

Avg. distance 3,5 2,2 2,5 27 3,2 2,2 3,2 31 3,0 3,1 2,3

Fig. 2. Hamming Distance for the fingerprints in Scenario 1 [2].

Scenario 1 The results from each of the eight tests performed are presented in
Table 3 and Table 4. The first column presents the different fingerprinting prop-
erties, each of the other columns represents one STA. The first five fingerprinting
features are either present (T') or not (F). Algorithms 1-5 determine these values.

Scenario 2 The eight distinctive features or fingerprints determined for each STA
were identical to the ones determined in Scenario 1, with the exception of ”Fixed
Interval” for S-7. The fingerprints from this scenario are shown in Table 5.

Scenario 8 In both Scenario 2 and 3 the attacker’s Authentication Request frame

was observed, making it easy to identify exactly when the attack occurred. The
fingerprints from this scenario can be seen in Table 6.

6 Discussion and Conclusion

We have identified and experimented with some communication fingerprints of
the IEEE 802.11 MAC layer that may serve to distinguish user stations. Our

Table 3. Results from Scenario 1 on tests 1-8 for S-1 to S-6. Undetermined entries are

shown as "—.
Fingerprinting Property S-1 S-2 S-3 S-4 S-5 S-6
PS-Poll F F F F F F
Keep Alive T F F — F F
Null before Probe T — T T T —
Mode changing Null F F F T F F
Fixed Interval F F F F F F
Null Data Type QoS0 Reg. Reg. QoS0 QoS7 Regular
Duration Calculation 314 44 44 314 258 44
Ass. Req. Duration 60 314 213 314 314 314
Listen Interval 10 10 10 10 10 10
Supported Rates sl s2 s3 s3 s3 s2
Ext. Sup. Rates el e2 el el el e2
QoS Capability F F F F F F
Vendor Specific vl-vd vli,vb vl-vdvl vl vl vH

Table 4. Results from Scenario 1 on tests 1-8 for S-7 to S-11. Undetermined entries

”

are shown as ”

Fingerprinting Property S-7 S-8 S-9 S-10 S-11
PS-Poll F F F T F
Keep Alive F F F F F
Null before Probe T T F — F
Mode changing Null T T F F —
Fixed Interval T F — F —
Null Data Type Reg. QoS0 QoS7 Reg. Regular
Duration Calculation 44,314 44,314 258 44,213,223,258 44
Ass. Req. Duration 314 213 314 258 314
Listen Interval 10 10 10 3 5
Supported Rates s3 sl s3 s4 sl
Ext. Sup. Rates el el el e3 el
QoS Capability F F F T F
Vendor Specific vl vl-vd vl vl vl

algorithms are able to detect spoofing attacks where the victim is not connected
simultaneously with the attacker, something commercial IDS cannot do today.
We have shown the feasibility of passively measuring the MAC layer fingerprints
without specialized equipment, and that this can be done efficiently under re-
alistic network access conditions. No precomputed database of fingerprints is
necessary. The test data were acquired under realistic access scenario setups of
8-10 minutes, using 11 different devices. The communication fingerprints exhib-
ited an average Hamming distance of 2.82. Even in the case of severely reduced
communication data available (scenario 3), the tests show that the proposed al-

Table 5. Results from Scenario 2 on tests 1-8 for S-5 and S-7.

Fingerprinting Property S-5 S-7
PS-Poll F F

Keep Alive F F

Null before Probe T T
Mode changing Null F T
Fixed Interval F F

Null Data Type QoS7 Regular

Duration Calculation 258 44,223,258,314
Ass. Req. Duration 314 314

Listen Interval 10 10
Supported Rates s3 s3
Ext. Sup. Rates el el
QoS Capability F F
Vendor Specific vl vl

Table 6. Results from Scenario 3 on tests 1-8 for S-5 and S-7.

Fingerprinting Property S-5 S-7
PS-Poll F F
Keep Alive F F
Null before Probe — T

Mode changing Null — —
Fixed Interval — —

Null Data Type QoS7 Regular
Duration Calculation 258 314
Ass. Req. Duration 314 314

Listen Interval 10 10
Supported Rates s3 s3
Ext. Sup. Rates el el
QoS Capability F F
Vendor Specific vl vl

gorithms are still able to distinguish between devices. The level of attacker skills
required to avoid detection and evidence of session hijacking attacks in 802.11
can be raised considerably by using techniques presented here.

It remains to find out how to fine tune the selection of parameter values in
the algorithms to gain optimal detection efficiency. Also, some of the fingerprints
used are not easily altered as they are hard-coded in the firmware and drivers
of the devices, while other fingerprints might be easier to alter or conceal, so
assessing the difficulty of modifying or concealing a fingerprint are future work.

References

1. Eirik Holgernes. Detecting Identity Thefts in Open 802.11e Enabled Wireless Net-
works. Masters thesis, Department of Telematics, NTNU, June 2010. 109 pages.
http://daim.idi.ntnu.no/masteroppgave?id=5476

2. Christer Idland. Detecting MAC Spoofing Attacks in 802.11 Networks through Fin-
gerprinting on the MAC Layer. Masters thesis, Department of Telematics, NTNU,
June 2011. 96 pages. http://daim.idi.ntnu.no/masteroppgave?id=6260

3. Martin Eian and Stig F. Mjglsnes. The modeling and comparison of wireless net-
work denial of service attacks. In Proceedings of the 3rd ACM SOSP Workshop on
Networking, Systems, and Applications on Mobile Handhelds, 2011, ACM.

4. Jason Franklin, Damon McCoy, Parisa Tabriz, Vicentiu Neagoe, Jamie Van Rand-
wyk, and Douglas Sicker. Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting. In Proceedings of the 15th conference on USENIX Security Sym-
posium. Volume 15, 2006.

5. K. N. Gopinath, Pravin Bhagwat, and K. Gopinath. An empirical analysis of het-
erogeneity in IEEE 802.11 MAC protocol implementations and its implications. In
Proceedings of the 1st international workshop on wireless network testbeds, experi-
mental evaluation & characterization, 2006.

6. IEEE. IEEE Standard for Information Technology—Telecommunications and In-
formation Exchange Between Systems— Local and Metropolitan Area Networks—
Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. Technical Report, IEEE, 2007.

7. Wenjun Gu, Zhimin Yang, Can Que, Dong Xuan, and Weijia Jia. On Security
Vulnerabilities of Null Data Frames in IEEE 802.11 based WLANSs. In Proceedings
of The 28th International Conference on Distributed Computing Systems, pp. 28—
35, 2008, IEEE.

8. fdXtended. HSMX - Internet Access Platform, Datasheet. Retrieved June 9, 2011
from http://www.fdxtended.com/datasheets/HSMX-datasheet.pdf

Appendix: The Algorithms

Input: frame

if frame == Beacon frame and bit in TIM is set then
beacon_count++
if beacon_count > listen_interval then
use_PSPoll = false
if use_PSPoll was true then
return suspect attack
end if
end if
end if

if frame == PS-Poll frame then

beacon_count = 0

use_PSPoll = true

if use_PSPoll was false then

return suspect attack

end if

end if
Algorithm 1: Test 1, PS-Poll

Input: frame

time_delta = timestamp previous frame - timestamp current frame
buffer is 0.15 sec
within_buf fer = 9.85 < time_delta < 10.15

if within_buf fer and frame == Null Data then
use_keep_alive = true
if use_keep_alive was false then
return suspect attack
end if

else if time_delta > 10.15 then
use_keep_alive = false
if use_keep_alive was true then
return suspect attack
end if
end if
Algorithm 2: Test 2, Keep Alive

Input: frame

set_size = 5
main_limit = 0.80

if frame == Probe Request then

if previous frame was Null Data then
using_count+-+
total _count++
else if previous frame was not Probe Request then
total_count++
end if
end if

if total_count == set_size then
use_null_be fore_probe = using_count > set_size X min_limit
if use_null_before_probe changed value then
return suspect attack
end if
using_count = 0
total_count = 0
end if

Algorithm 3: Test 3, Null before Probe

Input: frame

set_size = 30
min_limit = 0.9

if frame == Beacon frame then
if number of Beacons since data > listen_interval then
pwr_mode = AM
end if
end if

if chk_nxt_pkt == true then
if frame type is data and fame # Null Data then
using_count+-+
total _count++
end if
chk_nxt_pkt = false
else
if pwr_mode == PS then
if frame == Null Data and pwr_mgt bit == 0 then
chk_nxt_pkt = true
else if frame is DATA and pwr_mgt bit == 0 then
total _count++
end if
end if
end if

pwr-mode = pwr.mgt bit (1 = PS, 0 = AM)

if total_count == set_size then
use_mode_chng_null = using_count > set_size X min_limit
if use_mode_chng_null changed value then
return suspect attack
end if
using_count = 0
total_count = 0
end if

Algorithm 4: Test 4, Mode changing Null Data

Input: frame

set_size = 50
threshold = 0.8

if frame == Null Data then
time_delta = time elapsed since previous Null Data frame

if pwr_mgt_previous == PS and pwr_mgt_current == AM then
if average exists then
if time_delta is within range(average) then
pair_ok_count++
end if
pair_total_count++

else
calculate average from first 10 pairs

end if
end if

if pair_total_count == set_size then
use_fized_interval = (pair_ok_count/set_size) > threshold

if use_fixed_interval changed value then
return suspect attack
end if
pair_ok_count = 0
pair_total count = 0
end if
end if

Algorithm 5: Test 5, Fixed Interval

Input: frame

if frame == Null Data then
categorize frame as QoS or regular
if frame was QoS type then
identify the priority class (TID)
end if
if frame differs from the previous Null Data frame then
return suspect attack
end if
end if

Algorithm 6: Test 6, Null Data Type

Input: frame

if frame == Null Data then
get the duration value from the Duration/ID field
get the data rate from the radiotap header

compare duration for given data rate with previous value

if differences in duration value for same data rate then
return suspect attack
end if
end if

Algorithm 7: Test 7, Duration Calculation

Input: frame

if frame == Association Request then
record implicit identifiers
if Ass. Req. for same MAC address is recorded before then
compare implicit identifiers from current and previous frame
if inconsistencies in implicit identifiers then
return suspect attack
end if
end if
end if

Algorithm 8: Test 8, Association Request

Input: frame

run Test 1, PS-Poll

run Test 2, Keep Alive

run Test 3, Null before Probe

run Test 4, Mode changing Null Data
run Test 5, Fixed Interval

run Test 6, Null Data Type

run Test 7, Duration Calculation

run Test 8, Association Request

evaluate outputs from tests 1-8

return attack / no attack based on evaluation

Algorithm 9: The Fingerprinting Algorithm.

