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H I G H L I G H T S

• Air cooling results in heterogenous
nucleation of b-Mg2Si and g-MgZn2

on grain boundaries and dispersoids.
• Artificial ageing temperature influ-

ences the Mg-Zn (g) hardening phases
orientation relationship with the alu-
minium matrix.

• 6xxx type hardening phases are
found to coexist with the 7xxx type
hardening in the T7 temper if water
quenched.
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A B S T R A C T

Precipitation behavior in an industrially extruded AA7003 alloy has been studied using Transmission Elec-
tron Microscopy (TEM) together with Differential Scanning Calorimetry (DSC). Air Cooling (AC) after solution
heat treatment results in quench induced heterogeneous precipitation of both b-Mg2Si and g-MgZn2 phases.
Detailed TEM characterisation of resulting nanoscale precipitates after AC, or Water Quenching (WQ), and
subsequent artificial ageing demonstrate that g′ and g2 hardening precipitates dominate in T6, whereas the
overaged T7 state contains g2 and g1, where the latter accounts for approximately 50% of the relative phase
fraction. The T7 state in addition forms 6xxx-type hardening precipitates only after WQ. Results presented
here are expected to be relevant for any Si containing 7xxx alloy and open new possibilities for development
of hybrid 6xxx- and 7xxx series aluminium alloys. This is discussed with respect to potential influence on
mechanical- and corrosion properties.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Age hardenable Al-Zn-Mg alloys are of great importance in
automotive- and aerospace applications due to their high strength

* Corresponding author.
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to weight ratio [1-4]. High Zn/Mg ratio alloys, such as AA7003, are
of particular interest due to increased extrusion speed while main-
taining a yield strength of ∼330 MPa [4-7]. These alloys are generally
subjected to a Solution Heat Treatment (SHT) after extrusion, fol-
lowed by a quench to room temperature, before Artificial Ageing (AA)
at temperatures between 100 and 200 ◦C. Variations in mechanical
processing, SHT- and AA temperatures, along with alloy composi-
tion and potential quench-induced precipitation, strongly influence
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the resulting mechanical- and corrosion properties. Balancing these
parameters has been a challenge for decades and generally one sac-
rifices mechanical properties to increase Stress Corrosion Cracking
(SCC) resistance in 7xxx alloys, by AA to tempers other than the
maximum strength yielding condition [8].

One way of measuring quench sensitivity in aluminium alloys is
by Differential Scanning Calorimetry (DSC) measurement of excess
specific heat capacity curves for precipitation reactions over a wide
range of cooling rates [9,10]. The minimum cooling rate at which
no precipitation enthalpy is detected gives the Critical Cooling Rate
(CCR). All solute will thus remain in Supersaturated Solid Solution
(SSSS) upon reaching room temperature, and not be precipitated on
e.g. Al3Zr dispersoids [11-16], and grain boundaries [14,15,17], which
both are reported nucleation sites for the hexagonal equilibrium
phase g-MgZn2. DSC, in combination with Transmission Electron
Microscopy (TEM), can be used to construct Continuous Cooling
Precipitation (CCP) diagrams, predicting domains in which certain
phases form with respect to temperature and cooling rates [18]. One
example from an alloy (AA7020) with nearly similar composition
to the one in the present study, revealed quench-induced precipita-
tion of equilibrium g-MgZn2 and b-Mg2Si phases, both along grain
boundaries and within the grains, by Scanning Electron Microscopy
(SEM) after DSC-cooling experiments [17]. b-Mg2Si was deduced
to be the high temperature reaction occurring during slow cooling
rates, disappearing when cooling >0.3 K/s. The g-MgZn2 particles,
observed at slightly lower temperatures disappear at cooling rates
>3 K/s, thus indicating the CCR for this alloy.

In the beginning of the subsequent AA stage, coherent solute-
rich Guinier-Preston (GP) zones are formed from the SSSS [19-22].
GP(I) zones, made up from Al, Mg and Zn, are fully coherent with
the aluminium matrix and described as an elongated anti-phase
structure with alternating arrangement of Zn and Mg rich planes
[21,23,24]. GP(II) zones are described as ordering of Zn-rich layers
on {111}Al with internal ordering as elongated 〈110〉Al domains [21].
Maximum hardness is achieved by the formation of nanoscale semi-
coherent metastable Mg-Zn precipitates, denoted g′, while further
ageing results in decreasing hardness due to coarsening, and a corre-
sponding depletion in volume fraction of g′.

All together, there are thirteen reported orientation relationships
which the nanoscale g-phase may form with the Al matrix [25-30].
The ones relevant for this study are summarised in Table 1. g′ and
g2, which are plates on {111}Al, were explained in detail as the Type
1 and Type 2 precipitate by Marioara et al. [30]. Type 1 consists
of a rhomobohedral- (R) and an orthorombic unit (O), while Type
2 plates consist of R-units stacked pairwise or rotated 180◦ with
respect to one another [30]. Similar stacking of R-units has been
observed in the plate shaped g1 precipitate [29,31,32]. It has recently
been demonstrated that the g-precipitates may incorporate an addi-
tional flattened hexagonal sub-unit giving rise to internal stacking
faults [29,31]. This sub-unit can also be described through the O-
and R-units [33]. It is identical to a sub-unit found within the mono-
clinic Mg4Zn7 phase in Mg-Zn-X alloys [32,34], if the O-unit replaces
its internal Zn sites with Mg. This was calculated to be as ener-
getically favourable [30]. Incorporation of these sub-units results in
a quasi-crystal like internal structure giving uncommon morpholo-
gies, making it difficult to classify their habit planes in a Bright Field
(BF)-TEM image. High-Angle Annular Dark Field (HAADF) Scanning
Transmission Electron Microscopy (STEM) has proven to be a more
accurate method for determining the structure of these small-scale
precipitate structures [29-33,35].

The general precipitation sequence may be written as:

SSSS → GP(I)/GP(II) → g′ + g(1−13) → g(MgZn2), (1)

Table 1
Orientation relationships between nanoscale g-precipitates and the Al matrix demon-
strated in this study. These notations are used throughout the article.

Orientation relationship Habit plane

g′ (Type 1) [100]g//[112̄]Al,
[120]g//[1̄10]Al

(001)g//(111)Al

g2 (Type 2) [100]g//[112̄]Al,
[120]g//[1̄10]Al

(001)g//(111)Al

g1 [100]g//[11̄0]Al,
[120]g//[001]Al,

(001)g//(110)Al

(010)g//(001)Al

g4 [100]g//[1̄11̄]Al,
[120]g//[1̄12]Al,
(001)g//(110)Al

(21̄0)g//(1̄11̄)Al

where the exact phase fraction heavily depends on the applied ther-
momechanical treatment. More in-depth summaries related to the
nanoscale g-precipitates can be found elsewhere [29,31].

In this work, we aim for a systematic study of the microstruc-
ture in an industrially extruded AA7003. Microstructural response to
variation in quench rate and AA temperature is investigated, with
particular emphasis on bulk (within the grain) precipitation.

2. Material and methods

2.1. Material

The composition of the investigated AA7003 alloy, provided by
Benteler Automotive Raufoss AS, is given in Table 2. The alloy
was extruded into hollow rectangular profiles with dimensions
68 × 85 mm and wall thickness of 2.4 mm. The profiles were there-
after SHT at 480 ◦C for 30 min, followed by either a aWater Quench
(WQ) or Air Cooling (AC) to room temperature. Cooling rates during
AC were measured to drop from 4 to 2 K/s and 2 to 1 K/s in the temper-
ature ranges 480–300 ◦C and 300–100 ◦C, respectively. The samples
were subsequently AA at 140 ◦C for 17 h or 170 ◦C for 6 h, which are
designated as the T6 and T7 tempers, respectively. Vickers hardness
(HV10) values for AC-T6, AC-T7, WQ-T6 and WQ-T7 are 121, 112, 127
and 118, respectively.

2.2. Transmission electron microscopy

TEM specimens were prepared by grinding with SiC abrasive
paper to ∼100 l m foil thickness, punched into 3 mm discs and
thereafter electropolished with a Struers TenuPol-5 machine. An
electrolyte consisting of 1/3 HNO3 and 2/3 CH3OH was used, and kept
at temperatures between −30 and −20 ◦C with an applied potential
of 18 V.

Precipitate crystal structures were studied in high-resolution
HAADF-STEM mode using an image- and probe Cs-corrected JEOL
ARM200CF operated at 200 kV, with 0.08 nm probe size, convergence
semi-angle of 28 mrad and 35 mrad inner collector angle. High-
resolution HAADF-STEM images were acquired using Smart Align,
which involves acquiring a stack of successive low-dose images and
afterwards aligning them to correct both rigid- and non-rigid scan
distortions in the microcraphs [36]. Energy-Dispersive X-ray Spec-
troscopy (EDS) spectrum imaging was performed with an Oxford
X-max 80 silicon drift detector with a detector solid angle of 0.23 sr on

Table 2
Alloy composition of the investigated alloy (in wt% and at.%) measured using optical
emission spectroscopy.

Fe Mg Si Zn Cu Zr Ti Al Zn/Mg

wt% 0.20 0.68 0.11 5.56 0.01 0.17 0.02 Bal. 8.20
at.% 0.10 0.78 0.11 2.37 0.00(4) 0.05 0.01 Bal. 3.04
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a JEOL JEM-2100F operated at 200 kV in analytical STEM mode with
a 1.0 nm probe size.

2.3. Differential scanning calorimetry

The precipitation behavior during cooling from solution anneal-
ing was analysed by DSC as described by Milkereit et al. [9]. Two
DSC devices were used, namely a Setaram Sensys heat flux DSC for
cooling rates of 0.01 to 0.1 K/s and a PerkinElmer Pyris DSC for cool-
ing rates of 0.3 to 3 K/s. In the first device, two sample scans and
one related baseline scan were measured, while in the PerkinElmer
four and two sample and baseline scans were measured, respectively.
The measured heat flow signal was normalised by the scanning rates
and sample masses. Measured curves were averaged and the scatter
plotted as introduced in Ref. [37].

3. Results

3.1. Precipitation during quenching

Fig. 1 shows excess specific heat curves for AA7003 after cooling
from 480 ◦C with linear cooling rates from 0.01 K/s to 3 K/s. A high
temperature reaction, denoted A, starts immediately at the onset of
cooling in the two slowest cooling rates and is visible until ∼430 ◦C.
The peak labeled C at ∼400 ◦C shifts towards lower temperatures and
becomes increasingly suppressed with higher cooling rates. There is
hint of another reaction, seen as a shoulder on its high temperature
side labeled B. B & C are visible in all cooling conditions up to 1 K/s
and may still be present at the highest cooling rate of 3 K/s.

At least two overlapping peaks (D & E) are observed in the
region 315–150 ◦C. These also become suppressed at higher cooling
rates and seem to nearly disappear already at 1 K/s. The peaks shift
towards higher temperatures with increasing cooling rates and, con-
sequently, overlap with the previously mentioned high temperature
peaks. A low temperature peak, F, is observed at <100 ◦ C.

TEM observations of AC cooled samples before AA reveal quench
induced precipitates, of both g-MgZn2 and b-Mg2Si, nucleating het-
erogeneously on grain boundaries, Al3Zr dispersoids and Al-Fe-Si
particles. Representative BS-STEM micrographs are shown in Fig. 2.
Fig. 2A and B shows precipitation on two grain boundaries. In Fig. 2A,
there are two b-Mg2Si particles present together with Al3Zr disper-
soids, while in Fig. 2 B there is a fine population of small g-MgZn2

precipitates. Fig. 2 C and D shows typical observations made in the

Fig. 1. DSC cooling curves for AA7003 with varying cooling rates from 0.01 to 3 K/s.
The alloy was subjected to a solution heat treatment at 480 ◦C for 30 min prior to
cooling.

bulk where Fig. 2C shows nucleation of b-Mg2Si on an Al-Fe-Si par-
ticle and Fig. 2D shows a complex nucleation cluster, where Al3Zr,
b-Mg2Si, g-MgZn2 and dislocations are present. It is not clear which
are the nucleation sites for each phase in Fig. 2 D. Notice the low
contrast from the b-Mg2Si particle. The chemical compositions of the
phases present were verified using EDS (not shown). No evidence of
homogeneous nucleation of hardening phases was observed during
AC.

3.2. Microstructure in aged tempers

Similar to the AC-T4 temper, the final AC-T6/T7 tempers have
significant amounts of heterogeneous nucleated precipitates. Fig. 3
shows an example of a typical bulk microstructure acquired by
HAADF-STEM. Multiple heterogeneous nucleation sites amid the
bulk hardening phases are observed. Precipitate Free Zones (PFZ) are
found to form around these nucleation sites. In Fig. 3, taken in the
AC-T6 temper, both b-Mg2Si and g-MgZn2 are found together with
two Al3Zr particles. It is not clear whether Al3Zr is the primary nucle-
ation site, or if g-MgZn2 can serve as a nucleation site for b-Mg2Si,
or vice versa. Another example, from the overaged AC-T7 condi-
tion, is shown in Fig. 4, where three g-particles and one b-Mg2Si are
nucleated onto a Al-Fe-Si particle. In both Figs. 3 and 4, the b-Mg2Si
particles are not distinguishable solely from the HAADF- and BF-
STEM micrographs. This emphasises the difficulty of observing this
phase in this system, unless it is explicitly searched for.

Bulk microstructures in T6 and T7 after WQ appear similar to
the AC and aged tempers, as in Fig. 3, apart from the heterogeneous
nucleation. No observations of b-Mg2Si were made on the typical
nucleation sites demonstrated in Fig. 2. However, g-MgZn2 particles
were occasionally observed on Al3Zr and Al-Fe-Si dispersoids. It is
possible that these have formed during AA as they were not observed
in the as-WQ samples. On grain boundaries, g-MgZn2 particles were
observed in a similar manner as for the AC tempers.

Only the g-precipitates described in Table 1 were observed in
the present work. BF-TEM micrographs along [110]Al are shown for
all four final tempers in Fig. 5. In this projection, 2/4, 1/3 and 1/6
of the precipitates with habit planes {111}Al, {100}Al and {110}Al,
respectively, are observed edge on. The remaining precipitates are
projections of equivalent precipitates on similar family planes, unde-
fined faulted phases and in some rare cases the cross-section of g4.
In order to obtain a relative fraction of phases present, the num-
ber of precipitates with habit planes {111}Al, {100}Al and {110}Al
were counted and multiplied by 2, 3 and 6, respectively. This means
only counting the edge-on precipitates and multiplying in order to
account for the identical precipitates lying on equivalent planes not
observed in the zone axis. As summarised in Table 3, both the T6 tem-
pers are dominated by g′ and g2, while the T7 tempers are dominated
by g1 and g2. Due to uncertainties when measuring the dimensions
of particles from BF-TEM images, such as in Fig. 5, an upper thresh-
old for the minor dimension (thickness) of measured particles with
{111}Al habit plane was set to 20 Å, slightly higher than its distinct
thickness of 7×{111}Al (≈16.4 Å) as shown in Fig. 6A [30], in order to
separate g′ from g2. It is then observed that in both T7 states, g′ is
non-existent. Several authors have suggested the reaction g′ → g2 as
a possible transformation [26,38-40]. Furthermore, from Table 3 and
Fig. 5 it is clear that both dimensions of the precipitates are larger
when aged at 170 ◦C.

The phase with habit plane {110}Al, marked with question marks
in Fig. 5B and D, was not observed by high-resolution HAADF-STEM
when imaging along [110]Al or [100]Al axis. It is likely to be another
orientation relation which g may form with aluminium or a faulted
structure growing along the [100]Al direction.

g′ hardening precipitates with structures similar to those
reported before were observed in all conditions. An example is
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Fig. 2. BF-STEM micrographs from the AC-T4 condition, showing typical heterogeneous nucleation sites. A) Two b-Mg2Si phases on a grain boundary, with an Al3Zr particle in the
nucleation site. B) A grain boundary with fine population of small g-MgZn2 precipitates. C) Two b-Mg2Si particles nucleated on a Al-Fe-Si particle. D) A nucleation site including
Al3Zr dispersoids, g-MgZn2, b-Mg2Si and dislocation lines. Notice the low contrast from the b-Mg2Si phase. The chemical composition of the phases in all micrographs has been
verified using EDS.

shown in Fig. 6A, and is the g′ (Type 1) precipitate [30]. This pre-
cipitate can also incorporate defects, such as a roto-inversion center,
shown in Fig. 6B. g2 (Type 2) is also frequently observed, although
not shown here.

g1 was observed along the two axis: [001]g//[110]Al and
[100]g//[11̄0]Al, shown in Fig. 6C and D, respectively. Fig. 6C and D
shows the habit interface created by the (010)g plane aligned with
the (001)Al plane, rotated 90◦ across [001]Al. This phase is a plate
shaped precipitate with habit plane (010)g//(001)Al.

Furthermore, cross-sections with orientation relationship corre-
sponding to those reported for g4 [26], were observed in the T7
tempers, and one is shown in Fig. 6E. It has been proposed as a
rod/lath with habit planes on {111}Al with the following orientation
relationship: (21̄0)g//(1̄11̄)Al and [001]g//[110]Al, which is in agree-
ment with the presented micrograph. Two {111}Al planes enriched
with high Z elements (Zn or Cu) are observed on both sides of the
precipitate.

A range of faulted structures were observed in the present work,
and one is shown Fig. 6F. Orientation relationships for these precip-
itates cannot be simply defined. They do however stack the same
R-unit, but do addition incorporate the flattened hexagonal sub-units
indicated as the white hexagon, separating regions of well ordered
structures. In the given example, there is a previously unreported
semi-coherent interface present along the [11̄4̄]Al direction, which
connects to the unfaulted structure marked in the figure. The orien-
tation can thus be written as [100]g//[110]Al and (010)g//(22̄1)Al. This

has never been observed for a free-standing non-faulted precipitate.
Similar faulted structures have been observed within the g1 and g2

precipitates [29,31-33].

3.3. Observation of 6xxx hardening phases

As no Mg2Si-phases were observed in the T6 and T7 tempers
at the typical heterogeneous nucleation sites after WQ, this would
suggest that Si still remains in solid solution. However, STEM-EDS
of WQ-T7 revealed a fine population of small Mg-Si precipitates
between the slightly larger g precipitates. This is shown in Fig. 7,
where EDS spectrum images are obtained across a grain boundary.
The Si signal correlates with some Mg sites, but not with Zn. They
do however appear close to each other, since the Mg-Si particles are
observed to occasionally nucleate on the g-particles, or vice-versa, as
demonstrated by HAADF-STEM in Fig. 7.

High-resolution observations along [100]Al reveal Mg-Si phases
with disordered crystal structures, similar to what has been observed
in the 6xxx aluminium system [41,42]. These are small needles, dis-
tributed homogeneously within a grain. The cross-section of one
example is shown in Fig. 8. It consists of Q′ and U2 building blocks
connected by a near hexagonal Si network [43], demonstrated by the
overlaid atomic positions in Fig. 8. Furthermore, there are indications
of either Zn or Cu enrichment at the interface which gives localised
bright atomic columns. Based on the atomic overlay the composition
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Fig. 3. HAADF-STEM micrograph showing heterogeneous nucleation in the bulk microstructure of the AC-T6 temper. The corresponding EDS spectrum images for Mg, Si, Zn and
Zr from the indicated area are shown. b-Mg2Si, g-MgZn2 and Al3Zr are observed in the particle agglomerate.

of the precipitate in Fig. 8 results in Al0.27(Cu,Zn)0.17Mg0.29Si0.27 giv-
ing a Mg/Si ratio close to 1 which is typical for 6xxx type hardening
phases [33,44].

Fig. 4. STEM-BF micrograph of a Al-Fe-Si particle in the AC-T7 condition. Three g-
MgZn2 precipitates can clearly be observed in the micrograph and the corresponding
EDS map. A smaller b-Mg2Si particle is also nucleated on the particle, but cannot be
seen in the STEM image. As indicated, this is only revealed in the corresponding Mg
and Si EDS spectrum images.

4. Discussion

During AC from solution annealing, there are multiple heteroge-
neous precipitation reactions occurring. Observed nucleation sites
are grain boundaries in addition to Al3Zr and Al-Fe-Si dispersoids.
Both g-MgZn2 and b-Mg2Si were found on these sites, as demon-
strated in Fig. 2. These precipitation events must be related to the
observed peaks in the DSC cooling curves in Fig. 1, where at least 6
precipitation reactions are occurring.

A complete understanding of the peaks denoted A–F in Fig. 1,
would require extensive TEM investigations following interrupted
quenching. However, a qualitative discussion is possible based on
previous work. The origin of peak A, directly visible at the onset
of cooling in the two slowest cooling rates, is unclear. It may be
related to the formation of Al-Fe-Si dispersoids or b-Mg2Si. Kemsies
et al. demonstrated that the previously described “stable” Al-Fe-Mn-
Si dispersoids can partially dissolve at temperatures above ∼450 ◦C,
giving a substantial signal in the DSC curves [37]. As the reaction
is diffusion driven, it may become suppressed with higher cooling
rates, which is similar to what is observed in present work.

Two peaks, B & C, are observed in the region 430–320 ◦C, with B
appearing as a shoulder on the high temperature side in the range
430–400 ◦C. These may correspond to b-Mg2Si, which is suggested
to occur in this temperature region in AA7020 [17]. The formation
enthalpies of b-Mg2Si and g-MgZn2 are about one order of mag-
nitude apart [10,45]. This might suggest that b-Mg2Si can appear
significant in the DSC cooling curves, although it is lower in volume
fraction. In the region 350–170 ◦C, there are two peaks, D & E, where
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Fig. 5. BF-TEM micrographs of bulk precipitates oriented along the [110]Al direction with the same indicated coordinate system. (A) AC sample in T6 and T7 (B). (C) WQ sample
in T6 and T7 (D). The precipitates are generally larger in the T7 conditions which contains ∼50% g1 precipitates growing on the {100}Al planes, in addition to g′/g2 on {111}Al. ‘?’
with habit plane {110}Al has not been identified.

at least one should correspond to g-MgZn2, as has been reported to
precipitate within a very similar temperature range in other Al-Zn-
Mg alloys [15,10,17,46]. The reason for the two peaks in this region is
unclear. The final peak observed at <100 ◦ C most likely corresponds
to homogeneous distribution of cluster nucleation [47].

As discussed, there are more peaks in the DSC cooling curves than
observed phases. One possible explanation for this is the undetected
presence of other phases such as T-Al2Mg3Zn3. Another explana-
tion could be that the same phase may yield different peaks in the
DSC curves owing to different nucleation sites and/or morphology.
In binary Al-Si, it was demonstrated that the same Si-phase resulted
in two observable peaks in the DSC curves due to different aspect
ratios [48]. Similar observations were made for Mg2Si in a ternary
Al-Mg-Si alloy [49].

It is evident from the DSC curves that precipitation may occur
if the cooling rate is insufficient to suppress all the reaction events
occurring. In this alloy it is made clear by TEM, and supported by DSC,
that the material is quench sensitive during AC. From Fig. 1, precipi-
tation enthalpy is still detected at the highest measured cooling rate
of 3 K/s, indicating that the CCR for our alloy is higher than this.

With regard to the nanoscale g-phases it seems that the artificial
ageing temperature is the controlling parameter for both precipitate
orientation and size. The hardness in the T7 tempers is 9 (HV10)
less than for their T6 counterparts due to coarser precipitates. The
two prior cooling conditions seem to have minimal influence on bulk

precipitate size and orientation, although some solute is consumed
in heterogeneous precipitation during AC reducing the hardness by 6
(HV10) when comparing the AC and WQ tempers. As shown in Fig. 6,
there are many orientations which the nanoscale g precipitates can
form with respect to the aluminium matrix. Introducing exact 3D
models for g1 and g4 is outside the scope of present work, but should
be conducted in future and calculated using Density Functional Theory
(DFT) calculations in a similar manner as for g′ and g2 [30].

A homogeneous distribution of 6xxx hardening phases were only
observed in the WQ-T7 state. Extensive STEM work was carried
out to determine if these phases were present in WQ-T6 (ageing
at 140 ◦C), but none were observed. This could indicate that these
phases only form when ageing at relatively high temperatures with
respect to what is typical in 7xxx alloys. In alloys subjected to
Retrogression and Reageing (RRA), this may be important when per-
forming the retrogression stage at elevated temperatures if the alloy
contains Si. More work needs to be done in order to understand the
kinetics of the observed concurrent precipitation and its influence
on hardness. Comparing hardening kinetics in a similar alloy like the
present but with 0.0 wt.% Si is a possible approach.

To the authors knowledge, there is only one report on precipitation
of nanoscale 6xxx type hardening phases in 7xxx alloys. Hansen et al.
studied Cu-free high Zn/Mg ratio 7xxx alloys with varying Si amounts
and compared microstructures after SHT at 450 and 550 ◦C [50]. The
higher SHT temperature dissolved primary Mg2Si-phases resulting
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Fig. 6. HAADF-STEM micrographs of g type precipitates in the WQ samples. A–B: g′

(Type 1) precipitate along [112̄]Al, showing a defect free (A) and a faulted variant (B).
C–D: g1 along [001]g//[110]Al and [010]g//[1̄10]Al in (C) and (D), respectively. (E) is a
micrograph of the cross-section of g4 with the interface relation as (21̄0)g//(1̄11̄)Al.
(F) Shows a highly disordered g precipitate. Notice the similar R- and O-units as in
g′ , in addition to the flattened hexagon which can be described in two ways. A and
B are obtained in WQ–T6, while the rest are from WQ–T7.

in precipitation of Mg-Si hardening phases during the subsequent
AA, contributing to the overall hardness.

There are, on the other hand, reports on the effect of adding Zn
to 6xxx alloys. Saito et al. demonstrated that Zn can be incorporated
into 6xxx hardening phases without disrupting the underlying Si-
network [51]. Partial substitution both on and between Si-network
columns was observed, as well as a tendency for Zn to segregate at
particle/matrix interfaces. No g-phases were observed in the bulk
microstructure, even with up to 1 wt.% Zn addition. By adding up to



8 A. Lervik, C. Marioara, M. Kadanik, et al. / Materials and Design 186 (2020) 108204

Fig. 7. BF-STEM image of a grain boundary in WQ-T7. The yellow square indicate where the corresponding Si, Zn and Mg EDS spectrum images are obtained. There are small
regions in which Mg correlates with Si, but not with Zn. The Si and Zn signal may overlap since the 6xxx type hardening precipitate often are observed together with an g-type
precipitate as shown by the high-resolution HAADF-STEM micrograph taken along [100]Al.

3 wt.% Zn in an Al-Mg-Si alloy, Ding et al. were able to precipitate g

in the bulk microstructure [52].
With respect to material properties, Gong et al. reported improve-

ments in fatigue strength with increasing Si content in a 7xxx
alloy [53]. She et al. reported a decrease in SCC susceptibility and
decrease in tensile strength with increasing Si content [54]. The role
of 6xxx precipitates on such properties could be explored further by
optimising composition and thermal treatments. In relation to SCC,
authors have claimed hardening phases (or their interfaces), as well
as b-Mg2Si, as important hydrogen trapping sites [55-58]. Modelling
of these properties requires accurate knowledge of the precipitates
present in the microstructure. However, it is unclear how the g-
phase(s), b-Mg2Si and 6xxx hardening phases compare with respect
to hydrogen trapping energies and this should be explored further.
Understanding hydrogen partition within the microstructure may
suggest ways to reduce hydrogen concentration at grain boundaries
and alleviate SCC susceptibility.

Optimising thermomechanical treatments could make use of the
excess Si commonly found in 7xxx alloys by ensuring complete dis-
solution of the b-Mg2Si with respect to the SHT and limiting quench
induced precipitation. This may open possibilities for development
of new hybrid 6xxx/7xxx series aluminium alloys.

5. Conclusion

An industrially extruded AA7003 alloy is investigated after
different thermal treatments following either air cooling or water
quenching from solution heat treatment. The main findings are:

1. Air cooling results in heterogeneous nucleation of b-Mg2Si and
g-MgZn2 particles on grain boundaries and dispersoids.

2. The critical cooling rate for this alloy is higher than 3 K/s.
3. Bulk microstructures are dominated by g′ & g2 and g1 &

g2 hardening precipitates after artificially ageing at 140 and
170 ◦C, respectively. This is independent of the prior water- or
air cooling.

4. In the WQ-T7 state, 6xxx-type hardening precipitates coexist
with the 7xxx hardening precipitates.

The results presented provide important fundamental insight
into bulk microstructures, which are important for optimisation of
thermomechanical treatments in 7xxx alloys containing Si.
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Fig. 8. HAADF-STEM micrograph of a disordered 6xxx type precipitate (top) and
suggested atomic overlay (bottom). The micrograph has been fast Fourier transformed
with a circular mask removing periods shorter than 0.15 nm. The micrograph is
obtained in the WQ–T7 condition along the [100]Al direction.
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