
Master thesis
Towards robust autonomy of underwater vehicles

in Arctic operations

Jens E. Bremnes
July 12, 2019

Supervisor: Asgeir J. Sørensen

Norwegian University of Science and Technology
Department of Marine Technology



 NTNU Trondheim 

 Norwegian University of Science and Technology 
 Department of Marine Technology  

 
MASTER THESIS IN MARINE CYBERNETICS 

 

SPRING  2019 

 

FOR 

 
M.SC. STUDENT JENS EINAR BREMNES 

 

Towards robust autonomy of underwater vehicles in Arctic operations 
 

Work description 

Autonomous systems are emerging and essential for allowing new and challenging operations, such as 

mapping and monitoring of oceans and areas on land in harsh conditions, inspections and interventions 
of structures difficult to access, and autonomous transportation, both land-based and at sea. As the 

level of autonomy in systems increases, and the missions become more complex, stricter requirements 

related to safe system performance and robustness are imposed.  
 

The aim of this Master thesis is to investigate tools and methods for developing more robust autonomy 

solutions for AUVs operating under the sea ice in the Arctic. This work is a continuation of the 

candidate’s previous work. This thesis will consist of a resume and two scientific conference papers. 
The first paper proposes a method for the design of a sensor-based hybrid translational observer for 

underwater navigation, accounting for noisy, asynchronous and sporadically available sensor 

measurements. The second paper will investigate methods for altitude estimation and control for 
under-ice operations of AUVs, in conjunction with Artificial Intelligence-based methods for online 

risk-based reasoning and decision-making for autonomous altitude setpoint selection. 

 

Scope of work 

Resume: 

1. Describe the motivation for using AUVs as sensor platforms for Arctic marine research, and 

the research challenges related to navigation, autonomy and online risk management 
2. Present the case; Arctic operations of AUVs, including details about the missions. 

3. Review relevant literature related to guidance, navigation and control of AUVs operating 

under ice, hybrid dynamical systems, Bayesian risk modelling and decision networks. 
4. Describe the hybrid dynamical system framework proposed by Sanfelice, Goebel and Teel. 

5. Describe methods for probabilistic reasoning and decision-making over time, and how this 

may be applicable to under-ice operations of AUVs. 
Paper one: 

1. Design of a hybrid translational observer accounting for asynchronous and sporadically 

available sensor measurements using the framework proposed by Sanfelice, Goebel and Teel. 

2. Simulate using MATLAB/Simulink and discuss results. 
Paper two: 

1. Implementation of altitude estimation and control algorithms for under-ice tracking. 

2. Develop a risk-based Bayesian network, allowing for online probabilistic reasoning over the 
risk of a situation. 

3. Extend the Bayesian network to a decision network for online risk-based selection of altitude 

setpoints, and if necessary, abortion of the mission. 

4. Simulate using MATLAB/Simulink and discuss results. 
 

The report shall be written in English and edited as an article collection with a resume in front, in the 

format of a report. It is supposed that Department of Marine Technology, NTNU, can use the results 
freely in its research work, unless otherwise agreed upon, by referring to the student’s work. The 

thesis should be submitted by July 12th, 2019. 

 



 NTNU Trondheim 

 Norwegian University of Science and Technology 
 Department of Marine Technology 

 

 

 

2 

 

 

 

Co-supervisor: Professor Ingrid B. Utne 
 
 

 

 
 

Professor Asgeir J. Sørensen 

Supervisor 



Abstract

This Master thesis investigates tools and methods for developing more robust auton-
omy solutions for autonomous underwater vehicles (AUV) in Arctic under-ice operations.
AUVs are effective platforms for multi-disciplinary scientific research in the polar oceans.
However, operations of AUVs in these areas involve a substantial risk of losing the vehicle.
The environment under the sea ice is unstructured and unknown, and is further compli-
cated by harsh environmental conditions and reduced capabilities of navigation sensors.

Under the sea ice AUVs are reliant on an acoustic positioning system, as they are not able
to surface for position fixes from a global positioning system (GPS). Position measure-
ments from acoustic positioning systems are noisy and may drop out temporarily. Other
navigation sensors, such as pressure gauges and Doppler velocity logs (DVL) may also
temporarily drop out, and the signals are obtained at an asynchronous sampling rate.
Given the nature of asynchronicity and sporadic availability of the navigational signals,
the framework of hybrid dynamical systems is used to design and analyze a sensor-based
hybrid observer.

A method for the design of a sensor-based hybrid translational observer for underwa-
ter navigation is proposed, accounting for noisy, asynchronous and sporadically available
sensor measurements. Here, acceleration measurements are assumed readily available.
Position and velocity estimates are updated discretely, asynchronous and sporadically as
new measurements are obtained. Between measurements, the estimates are continuously
predicted forwards in time by integration of kinematic relationships. High-frequency noisy
is filtered by taking a weighted discounted average of a finite number of previous states
predicted forwards to the current time. Simulations of a six degree of freedom observer
which relies on acceleration, velocity and position measurements are conducted.

There is often a trade-off between the scientific reward of a mission plan and the risk
involved. For instance, optical mapping of algae and phytoplankton closer to the surface
yields higher quality of the acquired data, however, also increases the risk of losing the
vehicle under the ice. By including an online risk model, the vehicle may take calculated
risks by weighing the potential rewards of an action and the risk involved.

A method for intelligent risk-based under-ice altitude control for AUVs is presented. An
altitude guidance law for following a contour of the ice surface via pitch control using
measurements from a Doppler velocity log (DVL) is proposed. Furthermore, an online
risk model for probabilistic reasoning of the risk of vehicle loss is developed using the
framework of Bayesian networks. This network is extended to a decision network for
online autonomous risk-based selection and reselection of the setpoint for the altitude
controller, and if necessary, send a signal to abort the mission. This will improve safety
and robustness of under-ice operations for AUVs.
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Sammendrag

Denne masteroppgaven undersøker verktøy og metoder for å utvikle mer robuste au-
tonomiløsninger for autonome undervannsfarkoster (AUV) i arktiske underisoperasjoner.
AUVer er effektive plattformer for tverrfaglig vitenskapelig forskning i polarhavene, men
operasjoner av AUVer i disse omr̊adene medfører en betydelig risiko for å miste fartøyet.
Miljøet under sjøisen er ustrukturert og ukjent, og er ytterligere komplisert av tøffe
miljøforhold og reduserte kapabilitier av navigasjonssensorer.

Under sjøis er AUVer avhengige av et akustisk posisjoneringssystem, da de ikke er i stand
til å g̊a til overflaten for posisjonsoppdateringer fra et globalt posisjoneringssystem (GPS).
Posisjonsmålinger fra akustiske posisjoneringssystemer inneholder støy og kan droppe ut
midlertidig. Andre navigasjonssensorer, for eksempel trykkmålere og Doppler velocity
loger (DVL), kan ogs̊a midlertidig feile, og signalene innhentes ved en asynkron sam-
plingsfrekvens. I lys av dette, er rammeverket for hybride dynamiske systemer brukt til
å designe og analysere en sensorbasert hybrid observer.

En metode for design av en sensorbasert hybrid translasjonsobserver for undervannsnav-
igering er foresl̊att, og tar h̊and om støyende, asynkrone og sporadisk tilgjengelige sen-
sormålinger. Her antas at akselerasjonsmålinger er til en hver tid tilgjengelig. Posisjons-
og hastighetsestimater oppdateres diskret, asynkront og sporadisk n̊ar nye målinger f̊as.
Mellom m̊alinger blir estimatene kontinuerlig predikert fremover i tid ved integrasjon av
kinematiske forhold. Høyfrekvent støy filtreres ved å ta et vektet diskontert gjennom-
snitt av et endelig antall tidligere m̊alinger som predikeres fremover til n̊aværende tid.
Simuleringer av en observer med seks frihetsgrader som er avhengig av akselerasjons-,
hastighets- og posisjonsm̊alinger utføres.

Det er ofte en avveining mellom den vitenskapelige belønningen til en oppdragsplan og
den involverte risikoen. Optisk kartlegging av alger og fytoplankton nærmere overflaten
gir for eksempel høyere kvalitet p̊a de innhentede dataene, men øker ogs̊a risikoen for å
miste fartøyet under isen. Ved å inkludere en online risikomodell kan fartøyet ta bereg-
nede risikoer ved å veie potensielle fordeler av en handling mot risikoen.

En metode for intelligent risikobasert underisaltitudekontroll for AUVer er presentert. En
altitudegaidingslov for å følge en kontur av isunderflaten via pitchkontroll ved hjelp av
målinger fra en Doppler velocity log (DVL) er foresl̊att. Videre er en online risikomodell
for probabilistisk resonnering av risikoen for tap av fartøy utviklet ved hjelp av rammev-
erket for Bayesianske nettverk. Dette nettverket er s̊a utvidet til et avgjørelsesnettverk
for online autonom risikobasert utvelgelse av setpunktet til altitudekontrolleren, og hvis
nødvendig, sende et signal om å avbryte oppdraget. Dette vil øke sikkerheten og robus-
theten til underisoperasjoner av AUVer.
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Preface

This Master thesis is written during the spring of 2019 as the final part of the Master of
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title Sensor-based hybrid translational observer for underwater navigation is accepted and
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1 Introduction

Autonomous underwater vehicles (AUV) are effective platforms for multi-disciplinary sci-
ence research and monitoring in the polar oceans. However, operations in polar oceans
and under sea ice involve significant risk to the vehicle. The aim of this thesis is to
investigate tools and methods for developing more robust autonomy solutions for AUVs
in Arctic operations, with focus on navigation, guidance and control, as well as online
reasoning and decision-making.

This thesis is twofold. The first part is an introduction with background and motivation
for research in the polar oceans and how AUVs are used as sensor platforms, followed
by relevant background theory and mathematical modeling. The second part consists of
two scientific papers, where the first is related to navigation, and the second to intelligent
risk-based control for under-ice operations of AUVs.

1.1 Background and motivation

The Arctic has seen a dramatic decrease in sea-ice extent, and greenhouse gases emitted
through human activity is thought to be the main cause. Recorded Arctic sea-ice extent
in October shows a decline of 9.3% per decade [1], and the mean Arctic sea-ice thickness
has decreased from 3.64 m to 1.89 m in the period 1980-2008 [2]. Further, the rate of
warming in the Arctic is more than twice the rate of globally averaged warming [3]. Ice
has higher albedo than water and land surfaces, i.e. is more reflective in terms of solar
radiation. The decrease in sea-ice extent is thus a positive feedback loop; as global ice
cover decreases, the reflectivity of Earth’s surface decreases, more incoming solar radiation
is absorbed by the surface, resulting in increased global temperatures, and hence, even
more ice melts [4]. Figure 1 shows a map of the nations with land within the Arctic region.

Traditionally, the Arctic marine ecology has been treated as a biological desert, as it was
believed that the absence of light reduces biological processes to a minimum. In Berge et
al. [5], an entirely different view is presented, where high levels of biological activity were
recorded at Arctic latitudes during the darkest months. Increased understanding of the
Arctic ecology and the effects of the changing climate in the Arctic will be of importance
for future environmental management.

This motivates using autonomous underwater vehicles (AUVs) as sensor platforms for
Arctic marine research. AUVs are less dependent on support vessels and will therefore
reduce the costs of Arctic operations. They also provide high spatial resolution data
over large areas [7], are less vulnerable to weather conditions, reduce exposure of crew to
cold climate conditions and enables accessibility to areas previously too difficult to access.

However, operations at Arctic latitudes are complicated by harsh environmental condi-
tions, severely limited communication, as well as the possibility of drifting sea ice entering
the operational area. As AUV operations extend further under the ice, robust control, au-
tonomous decision-making and online risk management becomes increasingly important.
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Figure 1: A map of the nations with land within the Arctic region. Image courtesy of the
U.S. state department [6].

1.2 Towards autonomous systems

Increasing the level of autonomy in control systems may improve overall efficiency, safety
and operation window, and may reduce cost of operation. In the case of AUVs, increasing
the level of intelligence will make the survey and mapping operations more efficient, either
by optimizing the available range or optimizing the entire survey including prioritizing
the instruments [7].

1.2.1 Definition of agent

When talking about autonomous entities, the word agent is frequently used. An agent can
be defined as anything that can perceive and influence its environment by using sensors
and actuators [8]. In general, agents can be classified into four different types, in order of
increasing generality:

• Simple reflex agents: These agents select actions on the basis of the current
percept, ignoring the rest of the percept history. In other words, they are memoryless
agents.

• Model-based reflex agents: By including some sort of internal state that depends
on the percept history, the agent is to some extent able to reflect on some of the
unobserved aspects of the current state.

• Goal-based agents: Goal-based agents have some goal information, and utilizes
searching and planning in order to achieve its goal(s). They are more flexible be-
cause the knowledge that supports its decisions is represented explicitly and can be
modified.
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• Utility-based agents: By utilizing utility functions, the agent is able to search
and plan for a set of actions that maximizes the agent’s utility. Utilities provide
a spectrum of performance, rather than the crude binary distinctions provided by
goals.

By increasing the generality, the agent’s flexibility and possibly performance also increases.
However, it also increases the complexity and uncertainty of the agent’s decision-making.

1.2.2 Definition of autonomy

The definition of the word autonomy in the robotics and vehicle communities can be rather
vague. Some argue that an autonomous vehicles require that the vehicles are unmanned.
Others emphasizes the ability of self-decision based on situational awareness, ability of
handling unexpected events and operating in unknown environments. Some examples of
how autonomous vehicles have been defined in the literature are:

• To avoid a prolonged debate over how much “intelligence” is required for a vehicle
to be considered “autonomous,” the committee elected to include within the scope
of this report all relevant vehicles that do not have a human onboard [9].

• Capable of operating without operator input for extended periods of time. Implicit
in this description is the requirement that the UUV’s sortie accomplishes its assigned
goal and makes the appropriate rendezvous for a successful recovery [10].

• A system’s or sub-systems’s own ability of integrated sensing, perceiving, decision-
making and acting, to achieve its goals as assigned by its human operator(s) through
designed human-machine interface.[11].

Rather than saying that an agent is autonomous or not, it may be more reasonable to
describe autonomy as a spectrum of autonomy levels; an agent can be somewhere between
non-autonomous, partially autonomous and fully-autonomous. The Uninhabited Combat
Air Vehicle Program defines four levels of autonomy [12], which later was modified by [11]
as follows:

1. Automatic operation (remote control) means that the system operates auto-
matically. The human operator directs and controls all high-level mission planning
functions, often preprogrammed.

2. Management by consent (teleoperation) means that the system automatically
makes recommendations for mission actions related to specific functions, and the
system prompts the human operator at important points in time for information
or decisions. At this level the system may have limited communication bandwidth
including time delay, due to i.e. distance. The system can perform many functions
independently of human control when delegated to do so.

3. Semi-autonomous (management by exception) means that the system auto-
matically executes mission-related functions when response times are too short for
human intervention. The human may override or change parameters and cancel or
redirect actions within defined time lines. The operators attention is only brought
to exceptions for certain decisions.
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4. Highly autonomous means that the system automatically executes mission re-
lated functions in an unstructured environment with ability to plan and re-plan the
mission. The human may be informed about the progress. The system is indepen-
dent and ”intelligent”.

It can be noted that the different levels of autonomy is comparable to the increasing
generality of agents, ranging from simple reflex agents to utility-based agent.

1.2.3 Robust autonomy

As the level of autonomy increases in systems, more responsibility in the operation is
shifted from human operators to the system itself. Faults, accidents and other hazardous
events in operation of autonomous systems may lead to significant economic losses, and
in the worst case, human fatalities. Robustness is an important aspect of autonomous
systems, and is a central topic of this thesis. In the Cambridge Dictionary [13] robustness
is defined as ”the quality of being strong, and healthy or unlikely to break or fail”. Some
definitions and descriptions of robust autonomy found in the literature are:

• Robust autonomy describes the ability of an autonomous system to either continue
its operation in the presence of faults or safely shut down [14].

• Robust autonomy on the part of software agents requires, at least in part, the ability
to deal intelligently with novel and unexpected situations [15].

• Robust autonomous systems will need to be adaptable to changes in the environment
and changes in the underlying physical system [16].

As seen, robust autonomy is generally considered as the ability of the system to adapt
to and handle changes in the environment, unexpected situations, abnormal events and
fault-tolerant control. For mission-critical and safety-critical operations of autonomous
systems, robustness needs to be safeguarded - that is, we must ensure that the system
has a high degree of dependability in its operation.

Robustness in the control theory community is defined as the control system’s ability to
perform as specified in the presence of disturbances and modeling errors. Both definitions
have clear similarities. Where robust control deals with system performance through con-
trol efforts subject to uncertain input disturbances, robust autonomy also deals with how
well the system’s decision-making capabilities is able to intelligently handle uncertainties
in the environment.

1.3 Case study: AUV operations in the Arctic

In this thesis, case studies using the Kongsberg REMUS 100 AUV are presented, where
operations under sea ice in the Arctic are investigated. We assume that the AUV operates
in an area with pre-installed subsea acoustic positioning system infrastructure consisting
of transducers. Oceanographers and marine biologists are interested in collecting data
close to the ice surface. Hence, a robust altitude control system for ice surface following
is required. Due to the unpredictability and the occasional unavailability of the acoustic
position measurements, the vehicle also relies on a robust navigational system. The
Arctic under-ice environment is unknown, unstructured and hazardous. Therefore, the
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AUV should also be equipped with some artificial intelligence (AI) capabilities allowing
for online reasoning and decision-making. Figure 2 shows typical under-ice operations of
AUVs where acoustic positioning systems are present.

Figure 2: Under-ice operation of AUV with different communication systems. Image
courtesy of Woods Hole Oceanographic Institution [17].

1.3.1 Unmanned underwater vehicles

Unmanned underwater vehicles (UUVs) are vehicles able to operate in underwater envi-
ronments without a human occupant. They are typically divided into two subcategories;
remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). ROVs
are tethered underwater vehicles, operated remotely by humans onshore or aboard a sup-
port vessel, often equipped with manipulator arms for intervention tasks. This thesis will
focus on AUVs; untethered vehicles that operates autonomously with minimal human
intervention and with limited communication capabilities.

AUVs can provide high spatial and temporal resolution and coverage when gathering data.
They may carry sensors that provide unique 3D mapping capabilities. AUV operations
are used in several areas and industries such as scientific research, defense, oil and gas,
offshore renewable energy and aquaculture. Some applications are oceanography, hydrog-
raphy, marine biology, marine archeology, mine counter measures, bathymetric surveys
and pipeline inspections.

However, operations of AUVs include a substantial risk of vehicle, especially under ice.
Also, online control and power supply is limited, which imposes stronger demands to
autonomy compared to ROVs.

1.3.2 Sensor capabilities for AUVs

In general, sensors for underwater vehicles can be divided into two categories: payload
sensors and navigation sensors.
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Payload sensors
Payload sensors are measurement units that are carried by a platform for collecting data
either by remote sensing or by direct measurements [7]. Some examples are video cam-
eras for high-resolution images, underwater hyperspectral imagers (UHI), conductivity
temperature depth (CTD) sensors, magnetometers and active sonars. CTD sensors mea-
sure conductivity, temperature and pressure, which can further be used to calculate the
salinity, density and the speed of sound. These are key parameters for oceanography.
UHIs are able to quantify colour information at all wave lengths, which can be used to
characterize substances, such as chlorophyll and pigments by their reflection spectrum.
Magnetometers can be used for localization of shipwrecks in marine archeology. Active
sonars, such as multibeam echosounders (MBE), transmit acoustic impulses and measure
the reflected signals, which can be used for bathymetric surveys and identification of ob-
jects of archeological interest.

Navigation sensors
Navigation sensors are measurement units used for monitoring the motion and location
of the vehicle. Due to the degradation of electromagnetic wave signals in underwater
environments, GPS is not applicable for underwater navigation. Typically, two types
of navigational systems are common in underwater vehicles: inertial navigation systems
(INS) and acoustic positioning systems. For acoustic positioning, long base line (LBL)
or ultra-short base line (USBL) are typically used. By using a transducer placed on the
vehicle, it is able to obtain position measurements through triangulation or quadlatera-
tion by communicating with at least three or four transponders, respectively. However,
acoustic positioning systems require external subsea infrastructure. The inertial naviga-
tion systems use inertial measurement units (IMU), i.e. gyroscopes and accelerometers,
in order to provide estimates of the vehicle’s position, orientation and linear and angular
velocities. However, due to integration of measurement bias, the navigation uncertainty
grows unbounded unless position fixes are acquired by either GPS or acoustic positioning
systems. Heading sensors, such as magnetic compasses, provide heading estimates for
the vehicle, whereas pressure sensors provide an estimate of the vehicle depth. Doppler
velocity logs (DVL) measure water current velocities over a depth range using the Doppler
effect of sound waves scattered back from particles within the water column. It may also
measure the relative velocity and distance to the seabed, which can be used for bottom-
tracking. If the AUV is equipped with upwards-looking DVL, it is also be possible to
estimate the relative velocity between the AUV and ice surface, as well as the distance.

1.3.3 Risk of autonomous agents in the Arctic marine environment

In order to achieve safe system performance of higher-level autonomy and intelligence
in systems operating in the Arctic, supervisory risk control and online risk modelling is
required. Autonomous systems must for instance be able to identify and isolate failures
and reconfigure to handle any deviations from normal operation [11].

In a risk analysis, the objective is to answer three questions: 1) what can go wrong, 2)
what is the likelihood of that happening and 3) what are the consequences. Thus, the
risk of a hazardous event ei can be described by a triplet [18]:

r = {ei, ci, q}|k (1)

where ci is the consequence(s) of ei, q is a measure of the uncertainty involved, and k
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is the background knowledge used for determining ei, ci and q. Risk models related to
mission success are important for AUVs, as they are costly and may carry expensive
payload. According to Utne et al. [11], in operations with high levels of autonomy, risk
reduction is completely dependent on a robust and resilient design of the system, but also
on an online risk management system. The system should also possess efficient and high
integrity machine learning and adaptive functionality.

Operations in the Arctic marine environment offer many unique challenges not found
elsewhere. Some of the typical challenges in the Arctic are extremely low temperatures,
marine icing, snow, polar lows, dark periods and remoteness [19]. Moving ice may impact
the AUV during its operation, and the AUV may in the worst case get stuck under ice.
The AUV should not plan to surface in areas with high probability of sea ice, as surfacing
in ice may damage the AUV’s communication systems and prevent recovery. Additionally,
there are navigational challenges at Arctic latitudes. The near vertical magnetic field in
the Arctic causes magnetic compasses to become unreliable, whereas the uncertainty of
North-seeking gyrocompasses will increase due to the low horizontal component in the
rotation of Earth.

1.3.4 Performance, environment, actuators and sensors

An important aspect of autonomous agents is the specification of the task environment,
which essentially are the ”problems” to which the agents are the ”solutions”. In Russel
et al. [8], the task environment is specified according to the PEAS (performance, envi-
ronment, actuators, sensors) measure: i) what is the performance measure to which the
agent should strive for, ii) what is the environment the agent will face, iii) what kind of
actuators does the agent possess, and iv) what kind of sensors does the agent have in
order to perceive the environment. The PEAS specification of this case study is:

Performance: The AUV should sample data as close to the ice surface for better data
quality, but not at the risk of losing the vehicle.

Environment: The AUV will operate under Arctic sea ice. The under-ice environment
is a priori unknown and unstructured. Obstacles, such as icebergs, ice ridges and
ice floes may be encountered.

Actuators: The AUV is equipped with propellers for generating surge motion, rudders
for generating yaw motion and fins for generating pitch motion. Additionally, a
human-machine interface is included for displaying and communicating relevant in-
formation to the human operators.

Sensors: For navigation, the AUV is equipped with a GPS, an IMU, a DVL, a transpon-
der and a pressure gauge. For data collection, the AUV is equipped with CTD
sensors, an UHI, a MBE and a battery meter. Human operators are also able to
communicate to the AUV via the human-machine interface.

1.4 Research questions

The scientific goal of this thesis is to assess methods for robust guidance, navigation, con-
trol, reasoning and decision-making of AUVs for Arctic under-ice operations. Specifically,
this thesis aims to answer the following questions:
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1. How can the AUV navigate relative to the ice surface?

2. How can the altitude of AUVs under the ice be controlled such that it is able to
safely follow a contour of the ice surface?

3. How can we design and analyze navigation systems for under-ice operations account-
ing for noisy, asynchronous and sporadically available sensor measurements?

4. How can we increase the robustness of under-ice operations through online risk
modeling and risk control?

These research questions may further be summarized into one question, in which this
Master thesis aims to answer:

How can we increase the robustness of autonomous under-
water vehicles in Arctic operations?

1.5 Main contributions

There are two main contributions of this thesis. Firstly, the hybrid system framework
proposed by Goebel et al. [20] is investigated for the design of sensor-based observers.
Secondly, AI-based methods for reasoning and decision-making under uncertainty are
integrated with under-ice altitude control in order to achieve intelligent risk-based control.
These contributions are captured by the two appended papers. Below, the individual
contributions of the papers are summarized.

Paper 1 : Sensor-based hybrid translational observer for underwater navigation.
Accepted and to be published at the 12th IFAC Conference on Control Applica-
tions in Marine Systems (CAMS2019), Daejeon, Korea. A sensor-based hybrid
translational observer for underwater navigation is designed, accounting for noisy,
asynchronous and sporadically available sensor measurements. A method for filter-
ing high-frequency noise is proposed, where the estimated states are obtained by
taking a weighted discounted average of a finite number of previous measurements
predicted forwards to the current time. Results from simulations are presented to
demonstrate the performance of the proposed method.

Paper 2 : Intelligent risk-based under-ice altitude control for autonomous underwater
vehicles. Draft paper submitted to the OCEANS 2019 Seattle Conference, Seat-
tle, USA. A method for intelligent risk-based under-ice altitude control for AUVs
is presented. An altitude guidance law for following a contour of the ice surface is
proposed. A desired pitch angle is calculated based on the estimated altitude error
and the estimated slope of the ice surface in the vehicle heading direction. Further-
more, a Bayesian network is created for the purpose of online probabilistic reasoning
over the current state of risk during operation. This network is then extended to
a decision network for online risk-based selection and reselection of the setpoint for
the altitude controller. Results from simulations are presented to demonstrate the
performance of the method.
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1.6 Organization of thesis

The outline of this Master thesis if as follows:

Chapter 2 presents the theories and methods used in the papers more thoroughly. Cov-
ered topics include mathematical modeling of AUVs, kinematics, motion control
systems, under-ice altitude control, hybrid dynamical systems and probabilistic rea-
soning and decision-making.

Chapter 3 describes the simulator environment setups used in the two appended papers.

Chapter 4 summarizes the findings and contributions of the two scientific papers, con-
cludes the Master thesis and presents recommendations for further work.

Paper 1 Sensor-based hybrid translational observer for underwater navigation

Paper 2 Intelligent risk-based under-ice altitude control for autonomous underwater ve-
hicles

Appendix A gives numerical values used for the mathematical models in the simulator.
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2 Background and mathematical modeling

In this chapter, background theory used further in this thesis, such as mathematical mod-
elling of AUVs, kinematics, motion control systems, under-ice altitude control, hybrid
dynamical systems and probabilistic reasoning and decision-making, is covered.

In the mathematical modelling of AUVs, the notation that complies with the Society of
Naval Architects and Marine Engineers (SNAME) for the 6 degree of freedom (DOF)
motion components with its corresponding forces and moments has been adapted. For
details regarding this notation, see Table 1.

DOF
Forces and
moments

Linear and
angular velocities

Position and
Euler angles

1 translations in the x direction (surge) X u x
2 translations in the y direction (sway) Y v y
3 translations in the z direction (heave) Z w z
4 rotations about the x axis (roll) K p φ
5 rotations about the y axis (pitch) M q θ
6 rotations about the z axis (yaw) N r ψ

Table 1: SNAME notation for marine craft

2.1 Kinematics

When analyzing the motion of a marine craft in 6 DOF, it is convenient to define several
reference frames. In this thesis, four reference frames have been used:

• NED {n}: The NED (North-East-Down) reference frame {n} = (xn, yn, zn) is
defined relative to the Earth’s reference ellipsoid. In this frame, the x axis points
towards true North, the y axis points towards true East and the z axis points
downwards normal to the Earth’s surface.

• BODY {b}: The body-fixed reference frame {b} = (xb, yb, zb) is a moving coor-
dinate frame fixed to the marine craft. The axes in this frame coincides with the
principal axes of inertia.

• DVL {d}: The DVL-frame {d} = (xd, yd, zd) is a reference frame fixed to the center
of the DVL sensor in the DVL’s body-frame.

• CO {co}: The CO-frame {co} = (xco, yco, zco) is a reference frame parallel with {n},
but fixed to the center of origin (CO) of the AUV.

In order to transform vectors between the NED-frame and body-frame, Euler angle trans-
formation is used. The linear velocity transformation from {b} to {n} can be described
by three principal rotations about the z, y and x axes by

Rn
b (Θ) = Rz,ψRy,θRx,φ (2)

with

Rx,φ =




1 0 0
0 cψ −sψ
0 sψ cψ


 , Ry,θ =



cθ 0 sθ
0 1 0
−sθ 0 cθ


 , Rz,ψ =



cψ −sψ 0
sψ cψ 0
0 0 1


 (3)
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where s · = sin(·) and c · = cos(·). Further, the angular velocity transformation from {b}
to {n} is given by

Θ̇ = TΘ(Θ)ω (4)

with

TΘ(Θ) =




1 sφtθ cφtθ
0 cφ −φ
0 sφ/cθ cφ/cθ


 (5)

where t · = tan(·). Note that TΘ(Θ) has a singularity for θ = ±90◦. The position and
orientation of the AUV are given in {n} as

η =
[
p Θ

]T
=
[
N E D φ θ ψ

]T ∈ R6. (6)

The linear and angular velocities of the AUV are given in {b} as

ν =
[
v ω

]T
=
[
u v w p q r

]T ∈ R6. (7)

The kinematic relationship between the Earth-fixed velocities and the body-fixed velocities
can thus be expressed by

η̇ = JΘ(η)ν (8)

where

JΘ(η) =

[
Rn
b (Θ) 03×3

03×3 TΘ(Θ)

]
. (9)

2.1.1 DVL kinematics

The AUV is equipped with an upwards-looking DVL with four beams in a Janus config-
uration. Numbering of the DVL beams are depicted in Figure 3 below. Each DVL beam
has an offset γj = βj = ±20◦ along the vehicle’s longitudinal and transversal direction,
respectively.

Figure 3: Numbering of DVL beams. u points in positive surge direction, and v points in
positive sway direction.

The jth beam of the DVL can in the dvl-frame {d} be expressed as

rddvl,j =



xdj
ydj
adj


 = rdvl,j




sin(γj) cos(βj)
sin(γj) sin(βj)
− cos(γj)


 (10)

where rdvl,j = ||rddvl,j||2 is the range of the jth beam, γj is the jth beam’s offset angle from

the z axis, and βj is the jth beam’s offset angle from the x axis. This is transformed and
shifted to the body-fixed frame {b} in (11a), and further transformed to {n} in (11b):

rbdvl,j = Rb
d(Θbd)r

d
dvl,j + rbdvl/b (11a)
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rndvl,j = Rn
b (Θ)rbdvl,j (11b)

where rbdvl/b is the vector from the CO of the AUV to the center of the DVL expressed in

{b}, and Θbd is the orientation of {d} relative to {b}.

Thus, we have obtained four vectors from the CO of the AUV to the ice surface in {n}:

rndvl,j =



xnj
ynj
anj


 , j = 1, 2, 3, 4. (12)

2.1.2 Altitude kinematics

Definition 1. The altitude of the AUV is the z component of the vector from the CO of
the AUV to the point on the ice surface with the same horizontal coordinates as the CO
of the AUV expressed in {n}.

This definition of altitude might be slightly misleading, as the term altitude most often
is used as the length of the vector from the CO of a vehicle to the point on the sea bed
with the same horizontal coordinates as the CO of the vehicle. This will, however, not
distinguish between the direction of the vector. Note that the altitude under the ice with
this thesis’ definition will be negative.

Let zice = f(x, y) denote the depth of the ice surface at position (x, y). The altitude can
then be expressed as

a = f(x, y)− z. (13)

2.1.3 Altitude rate of change

The altitude rate of change can be found by differentiating (13) with respect to time.
Using partial differentiation and the chain rule, this becomes

ȧ =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
− dz

dt
. (14)

This may be simplified by introducing an expression for the submerged ice as a surface
given by the equation

F (x, y, z) = f(x, y)− z = 0,
∂F

∂t
= 0 (15)

where F is a time-invariant function with continuous first-order partial derivatives. In
general, F is an unknown function, however, only the gradient of F is of importance. The
gradient is, evaluated at the position of the AUV, given by

OF (p) =

[
∂f

∂x

∣∣∣∣
p

,
∂f

∂y

∣∣∣∣
p

,−1

]
. (16)

The expression for the altitude rate of change (14) can then be rewritten as [21]
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ȧ = OF (p) · ṗ

=

[
∂f

∂x

∣∣∣∣
xp,yp

,
∂f

∂y

∣∣∣∣
xp,yp

,−1

]
Rn
b (Θ)



u
v
w


 . (17)

2.2 Kinetics

A general 6 DOF kinematic equation of motion can be expressed with Fossen’s robot-like
vectorial model for marine craft [22]:

η̇ = JΘ(η)ν

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ
(18)

where νr is the relative body-fixed velocities, M = MRB +MA is the rigid-body inertia
and added mass matrix, C(νr) = CRB +CA is the Coriolis and centripetal matrix due
to the rotation of {b} about the inertial frame {n}, D(νr) is the hydrodynamic damping
matrix and g(η) are the restoring forces and moments. The generalized control forces
expressed in {b} are given as

τ =
[
Xp Yr Zs Kp Ms Nr

]T ∈ R6. (19)

Here, the subscript p denotes the propeller, r the rudder fins and s the stern fins of the
AUV. The force in surge and moment in roll due to the propeller have been derived by
Carlton [23], and are given as

Xp = KTρD
4
propn|n| (20)

Kp = KQρD
5
propn|n| (21)

where KT and KQ are the thrust and torque coefficients, respectively, Dprop is the propeller
diameter and n is the propeller shaft speed. The control surfaces, i.e. the forces and
moments from the rudder and stern fins, have been derived by Prestero [24], and are
given as

Yr =
1

2
ρCL,αSfin[u2δr − uv − xfin(ur)] (22)

Zs = −1

2
ρCL,αSfin[u2δs + uw − xfin(uq)] (23)

Ms =
1

2
ρCL,αSfinxfin[u2δs + uw − xfin(uq)] (24)

Nr =
1

2
ρCL,αSfinxfin[u2δr − uv − xfin(ur)] (25)

where ρ is the density of water, CL,α is the fin lift coefficient estimated from an empirical
formula as function of the angle of attack α, Sfin is the fin area and xfin is the x-coordinate
of the fin with respect to the CO. The control variables δs and δr are the stern and rudder
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fin angles relative to the x axis in {b}, respectively.

The three control variables, one for speed control, one for pitch control and one for heading
control, can thus be described by

ξ =
[
n δs δr

]T
. (26)

2.3 Environmental modelling

As the AUV operates under water, it will not be subject to any wind forces. It is also
assumed that the effects of wave-induced hydrodynamic pressure under the sea ice are
negligible. Therefore, the only environmental loads considered in this thesis are those from
the ocean current. In the Arctic, ice may take many forms, and this creates obstacles
that the AUV should avoid. A brief ice glossary is also included in this section.

2.3.1 Ocean current

It assumed that the ocean current has constant speed Vc, is irrotational and does not have
any vertical component. The ocean current velocity vector in {b} can thus be expressed
as

νc =
[
Vc cos(ψc) Vc sin(ψc) 0 0 0 0

]T ∈ R6 (27)

where ψc = βc + ψ is the current direction relative to the heading of the AUV and βc is
the current direction in {n}.

2.3.2 Ice

In the Arctic, an AUV will face ice of different types. This will create obstacles for the
AUV to avoid. An extensive ice glossary is provided by Environment and Climate Change
Canada in [25]. Some of the ice types the AUV may meet in the Arctic are:

• Icebergs: ”A massive piece of ice of greatly varying shape, protruding 5 m or more
above sea level, which has broken away from a glacier and which may be afloat or
aground. They may be described as tabular, domed, pinnacled, wedged, drydocked
or blocky. Sizes of icebergs are classed as small, medium, large and very large.”

• Ice ridges: ”A line or wall of broken ice forced up by pressure. It may be fresh or
weathered. The submerged volume of broken ice under a ridge, forced downwards
by pressure, is termed an ice keel.”

• Level ice: ”Ice unaffected by deformation.”

• Ice floes: ”Any relatively flat piece of ice 20 m or more across. Floes are subdivided
according to horizontal extent as follows: 1) Small: 20-100 m across, 2) Medium:
100-500 m across, 3) Big: 500-2,000 m across, 4) Vast: 2-10 km across, 5) Giant:
Greater than 10 km across.”

• Slush: ”Snow which is saturated and mixed with water on land or ice surfaces or
as a viscous floating mass in water after a heavy snowfall.”
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2.4 Control systems

In the following section, background theory on motion control system architectures is
presented, including details regarding the implemented control and guidance systems.

A motion control system is usually constructed as three independent blocks, namely the
guidance, navigation and control (GNC) blocks [22], see Figure 4. The task of the guid-
ance block is to continuously compute the reference positions, velocities and accelerations
of the vehicle. The task of the navigation block is to determine the vehicle’s position
and orientation, as well as linear and angular velocities and accelerations. This is done
by processing raw data from motion sensors such as global navigation satellite systems
(GNSS) and inertial measurement units (IMU). The observer in the navigation block is
responsible of filtering out undesired frequencies, reconstructing unmeasured states and
prediction of states when signals are lost (dead reckoning). The task of the control block
is to determine the necessary control forces and moments in order to satisfy the control
objective as assigned by the guidance system. Further, it allocates efforts to each actuator
in order to achieve the desired control forces and moments.

Figure 4: GNC signal flow. Image courtesy of Fossen [22].

2.4.1 Control system architectures

A general system architecture for autonomous systems combining reactive and deliberate
control is given in Figure 5. As seen, the architecture can be divided into three layers,
from high to low level:

1. Mission planning layer: In the mission planner level, the mission objective is
defined and planned (and possibly re-planned). Risk reducing preventive measures
are of importance.

2. Guidance and optimization layer: Here, the waypoints and reference commands
to the controller are handled. Optimized model-predictive control may also be used
accounting for varying references and forecasted variations in environmental and
operational conditions.

3. Control execution layer: In this layer, the plant control, actuator control and
navigation occur at the highest bandwidth.
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Figure 5: System architecture for autonmous systems combining reactive and deliberate
control. Image couresty of Utne et al. [11].

2.4.2 Motion control system for the AUV

The implemented motion control system in the simulator consists of three individual con-
trollers; a speed controller, a depth controller and a heading controller.

The speed controller is a PI controller on the vehicle speed error. The desired shaft speed
is found by mapping the desired vehicle speed to shaft revolutions per minute:

n = kp,n(U − Ud) + ki,n

∫ t

0

(U − Ud)dt (28)

In the depth controller, the desired depth is achieved by altering the pitch of the vehicle.
This is done with two separate feedback loops. The first loop is a proportional-integral
(PI) controller on the depth error, which generates a desired pitch angle. The second
loop is a proportional-integral-derivative (PID) controller that tracks the desired pitch by
controlling the stern planes of the AUV. The depth controller can be expressed as

θd = kp,θ(z − zd) + ki,θ

∫ t

0

(z − zd)

δs = kp,δs(θ − θd) + ki,δs

∫ t

0

(θ − θd)dt+ kd,δsq.

(29)

The heading controller is a PID controller that tracks the desired heading by controlling
the rudder fins of the AUV:

δr = kp,δr(ψ − ψd) + ki,δr

∫ t

0

(ψ − ψd)dt+ kd,δrr (30)
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In all three controllers, the setpoints are first passed through reference models in order to
avoid excessive changes in the control commands. A block diagram of the motion control
system is depicted in Figure 6 below.

Figure 6: Block diagram showing details of the motion control system. Here, zr denotes
the reference depth, ψr the reference heading, U the speed, δs the aileron angle and δr
the rudder angle. The system input x est is the estimated states and the system output
u is a vector containing the desired control actuations.

2.4.3 Guidance system for the AUV

The implemented guidance system in the simulator is a line-of-sight (LOS) lookahead-
based steering law for path following of piece-wise linear segments composed of a list of

3D waypoints WPk =
[
xk yk zk

]T
. The steering law calculates a desired course angle

χd(t) online, which is then sent as a reference course to the low-level heading controller.
The desired depth is acquired using a separate depth controller. The desired course angle
χd can be expressed as the sum of the path-tangential angle χp and the velocity-path
relative angle χr:

χd = χp + χr(e). (31)

The path-tangential angle χp = αk is the angle of the linear path segment relative to the
NED frame, which can be expressed as

αk := atan2(yk+1 − yk, xk+1 − xk). (32)

The velocity-path relative angle χr ensures that the velocity is directed toward an inter-
section point on the path, some lookahead distance ∆(t) > 0 ahead of the vehicle. This
can be expressed as

χr(e) := arctan

(−e
∆

)
(33)

where e(t) is the cross-track error normal to the path. The cross-track error is found from

e(t) = −[x(t)− xk] sin(αk) + [y(t)− yk] cos(αk). (34)
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This guidance scheme ensures that the vehicle is forced to converge to the path, i.e.
limt→∞ e(t) = 0. Further, a switching mechanism is included such that the next way-
point is chosen if the vehicle lies within a circle of acceptance with radius Rk+1 around
(xk+1, yk+1). In other words, if the vehicle position (x, y, z) at time t satisfies

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2
k+1, (35)

the next waypoint (xk+1, yk+1, zk+1) should be selected. For details regarding this guidance
law, the reader is referred to Fossen [22].

2.5 Altitude estimation

In this section, altitude estimation for under-ice applications using a methodology inspired
by Dukan et al. [21], originally developed for approximation of the sea floor geometry,
is presented. Using four DVL beams, the geometry of the ice surface above the AUV is
approximated as a linear surface.

In the simplified case where the DVL is located at the CO of the AUV, the vectors
rbdvl,j = rddvl,j will be equal. Thus, the jth DVL measurement can in {b} be expressed as

rbdvl,j = rdvl,j




sin(γj) cos(βj)
sin(γj) sin(βj)
− cos(γj)


 . (36)

2.5.1 Local ice surface approximation

A local approximation of the ice surface geometry may be given by a linear surface
f(x, y) = a + bx + cy, in which three points are required. The jth local approxima-
tion of the ice surface f̂ coj = aj + bjx + cjy in {co} can be found by solving the linear
system [21]




1 xnj ynj
1 xnj+1 ynj+1

1 xnj+2 ynj+2





aj
bj
cj


 =



anj
anj+1

anj+2


 (37)

where f̂ coj is the ice surface geometry in {co}, and rndvl,j = [xnj , y
n
j , a

n
j ] is the jth DVL beam

vector in {n}. The corresponding approximated sea floor gradient vector is given by

OF̂j =

[
∂f̂j
∂x

∣∣∣∣
p

,
∂f̂j
∂y

∣∣∣∣
p

,−1

]
= [bj, cj,−1]. (38)

In order to improve the accuracy of the ice surface geometry approximation, least squares
method regression utilizing all four DVL beams is used. The ice surface is then at each
time step approximated as a linear surface f̂ co(x, y) = am + bx+ cy by solving

[am, b, c] = argminam,b,c

4∑

i=1

[ani − (am + bxni + cyni )]2. (39)
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This is done by including the 4th DVL measurement in the linear system in (37). Thus,
we get a new linear system Ax = b:




1 xn1 yn1
1 xn2 yn2
1 xn3 yn3
1 xn4 yn4






am
b
c


 =




an1
an2
an3
an4


 . (40)

The solution x = [am, b, c]
T of (39) is found by solving the system ATAx = ATb. The

approximated altitude of the AUV is then am, and the approximated ice surface gradient
vector is

OF̂ =

[
∂f̂

∂x

∣∣∣∣
p

,
∂f̂

∂y

∣∣∣∣
p

,−1

]
= [b, c, −1]. (41)

The approximated altitude rate of change αm is then given by

αm =

[
∂f̂

∂x

∣∣∣∣
p

,
∂f̂

∂y

∣∣∣∣
p

,−1

]
Rn
b (Θ̂)



û
v̂
ŵ


 (42)

where (̂·) denotes an estimated value. In this thesis, we assume that the attitude and
velocity of the vehicle are known, i.e. Θ̂ = Θ and v̂ = v.

2.5.2 Altitude observer

When using only the method explained in section 2.5.1, where a local ice surface approx-
imation was done, discontinuous altitude estimates will be obtained. This is because the
four DVL beams are affected by noise, and may experience sudden drops in values, e.g.
when meeting a wall of ice or measuring roughness in the ice surface. In order to ensure
a continuous and smooth estimated altitude suitable for feedback, an altitude observer
using a Kalman filter is implemented. The inputs to the altitude observer are the approx-
imated altitude am and the approximated altitude rate of change αm.

The discrete-time measured altitude am(k) and altitude rate of change αm(k) at time step
k can be expressed as the sum of the true value and some noise processes v(k) and w(k):

am(k) = a(k) + v(k) (43a)

αm(k) = ȧ(k) + w(k) (43b)

Here, a and ȧ represent the true altitude and altitude rate of change, respectively. Using
Euler integration with time step h, the discrete-time control plant model can be expressed
as:

a(k + 1) = a(k) + ȧ(k)h

= a(k) + αm(k)h− w(k)h

y(k) = am(k)

= a(k) + v(k)

(44)
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This can be reformulated to the notation used in Fossen [22]:

x(k + 1) = Φx(k) + ∆u(k) + Γw(k)

y = Hx(k) + v(k)
(45)

where x = am, u = αm, Φ = 1, ∆ = h, Γ = −h, H = 1 and h is the timestep. Fur-
thermore, a discrete Kalman filter copying the dynamics of (45) is implemented. The
algorithm of a general discrete-time Kalman filter is given as:

Predictor:

x̂(k) = x̄(k) +K(k)[y(k)−H(k)x̄(k)]

P̂ (k) = [I −K(k)H(k)]P̄ (k)[I −K(k)H(k)]T +K(k)R(k)KT (k)
(46)

Update

K(k) = P̄ (k)HT (k)[H(k)P̄ (k)HT (k) +R(k)]−1

x̄(k + 1) = Φ(k)x̂(k) + ∆(k)u(k)

P̄ (k + 1) = Φ(k)P̄ (k)ΦT (k) + Γ(k)Q(k)ΓT (k)

(47)

where K(k) denotes the Kalman gain, x̂(k), x̄(k), P̂ (k) and P̄ (k) denote the apriori and
aposteriori state estimates and error covariances, respectively, and Q and R denote the
process and measurement covariance.

2.6 Altitude control

The main control objective of altitude control is for the vehicle to follow a contour of the
ice surface with a constant desired altitude. We propose a line-of-sight (LOS) guidance
law with lookahead-based steering in the vertical plane, where the vehicle pitch is con-
trolled in order to obtain the desired altitude.

We want to do a prediction of the change in the ice depth in the vehicle heading direction
along a lookahead distance ∆z, and utilize this in the guidance law. The approximated
slope of the ice surface in the heading direction is given as

$ =
∂f̂ψ
∂x

∣∣∣∣
p

= [1, 0, 0]R−1
z,ψ(ψ̂)

[
∂f̂

∂x

∣∣∣∣
p

,
∂f̂

∂y

∣∣∣∣
p

, 0

]T
(48)

where R−1
z,ψ(ψ̂) is the principal rotation matrix about the z axis from {n} to {b}. The

first-order prediction of the ice depth change along ∆z is then calculated as $∆z. Because
the approximated ice surface slope may $ may differ from the real ice surface slope and
may contain high values of noise, one might downscale the effect that the prediction will
have in the guidance law. The downscaled ice surface slope used in the guidance law is
given as

$s = [kdive, kascend]

[
sat+($)
sat−($)

]
(49)
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where kdive, kascend ∈ [0, 1] are constant parameters determining the downscale factor of
positive and negative ice surface slopes, respectively, and

sat+(s) =

{
x, ifx > 0

0, otherwise,
sat−(s) =

{
x, ifx < 0

0, otherwise

are saturation functions only letting through positive and negative numbers, respectively.
The motivation for using two different downscale parameters, is that one may wish that
the vehicle is more sensitive to positive slopes as they impose a probability of colliding
with the ice, i.e. choose the factors such that kdive ≥ kascend.

The proposed altitude guidance law is given by

θd : = −arctan

(
â− ad +$s∆z

∆z

)

= −arctan

(
â− ad

∆z

+$s

) (50)

where θd is the desired pitch, which is sent as input to a reference model, and then a pitch
controller. The altitude LOS guidance law is depicted in Figure 7.

Figure 7: Altitude LOS guidance law with kdive = kascent = 1.0.

The steering law in (50) may be interpreted as a saturating proportional feedback con-
troller with a feedforward term:

θd = arctan (kp(a− ad) + vff ) (51)

where kp = 1/∆z is the proportional gain, and vff = $s is the feedforward term. The
feedforward term will ensure that the vehicle responds instantly to changes in the ice
surface slope.

The main advantages of the feedforward term is that it improves the tracking performance
and it reacts instantly to changes in the ice surface slope. By using upwards-looking DVL
with angles inclined slightly forwards, some collision avoidance properties are also ob-
tained, as it will react instantly to changes in the ice surface slope in front of the vehicle.

A block diagram of the altitude observer and guidance system is shown in Figure 8.
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Figure 8: Block diagram of altitude observer and guidance system

2.7 Modeling of hybrid dynamical systems

Most often, a dynamical system is characterized as either a continuous-time system or a
discrete-time system. Some systems, however, exhibit characteristics that are typical of
both continuous-time systems and discrete-time systems. We call these hybrid systems.
Some examples of hybrid systems are given in [26]. For more extensive details regarding
the hybrid system framework, the reader is referred to [20].

2.7.1 The modeling framework

The hybrid dynamical system framework presented in [20] use a combination of differential
inclusions to describe the continuous-time dynamics, referred to as flow, and difference in-
clusions to describe the discrete-time events, referred to as jumps. A general mathematical
model of a hybrid system using this framework is given by

H =

{
x ∈ C
x ∈ D

ẋ ∈ F (x)

x+ ∈ G(x)
(52)

where x is the hybrid state, C ⊂ Rn is the flow set, F : Rn ⇒ Rn is the flow map, D ⊂ Rn

is the jump set and G : Rn × Rm ⇒ Rn is the jump map. When the hybrid state x is in
the flow set C, the system will flow according to the differential inclusion F (x), and when
the hybrid state x is in the jump set D, the system will jump according to the difference
inclusion G(x).

The advantage of this framework is that it allows modeling and stability analysis of
many types of hybrid systems, e.g. systems with logic variables, mechanical systems with
impacts, and computer sampled systems.

2.7.2 Example: Sample-and-hold control

To illustrate this framework of hybrid system modeling, we give an example of sample-
and-hold control [20].

Given a continuous-time state-feedback controller, a sample-and-hold implementation of
the feedback control law consists of two steps: i) sample: measure the state of the system,
and use the feedback control law to compute the control signal, and ii) hold : apply the
computed constant control signal for a certain amount of time. This procedure is then
repeated indefinitely. Suppose that the plant is given by

ż = f̃(z,u) (53)

where z ∈ Rnp is the state of the plant, u ∈ Rnc is the control variable and f̃ : Rnp×Rnc →
Rnp is the function describing the dynamics of the plant. Let u = κ(z) be the state-
feedback control law.
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In order to implement this as a sample-and-hold strategy, we model the system using
the hybrid system framework. In this model, the flow represents the continuous-time
dynamics of the plant, and the jumps represent the sampling update process. We define
the hybrid state variable

x =



z
u
τ


 ∈ Rnp+nc+1. (54)

where τ i a timer variable keeping track of the flow time. Let T denote the sampling
time of the sample-and-hold control strategy, such that flow occurs when τ belongs to the
interval [0, T ). During flow, the state of the plant z evolves according to the dynamics in
(53), the control variable u is held constant, and τ keeps track of the elapsed time. Thus,
the flow set and flow map may be given as

C = Rnp × Rnc × [0, T ), f(x) =



f̃(z,u)

0
1


 . (55)

During a jump, the state of the plant remains unchanged, the control variable is updated
according to the state-feedback control law u = κ(z) and the timer τ is reset to zero.
Jumps occur when τ reaches T . The jump set and jump map may then be formulated as

D = Rnp × Rnc × T, g(x) =



z
κ(z)

0


 . (56)

2.8 Probabilistic reasoning and decision-making over time

Agents operating in the real world need to handle uncertainty due to partial observability
and non-determinism in the environment. An agent at a given time does not know for
certain its states, or where it will end up after a sequence of actions.

The most common tool for dealing with uncertainty is probability theory. Probability
provides a way of summarizing the uncertainty that comes from theoretical and prac-
tical ignorance and incompetence in modeling the environment. This section presents
background theory on probabilistic reasoning and decision-making.

2.8.1 Bayesian networks

A Bayesian network is a probabilistic graphical model that represents a set of variables
and their conditional dependencies in the form of a directed acyclic graph, where each
node is annotated with quantitative probability information. The syntax of Bayesian
networks is defined as follows:

1. A set of chance nodes representing random and uncertain variables.

2. A set of arcs representing direct influence between a pair of nodes, forming a directed
acyclic graph. If there is an arc from node X to node Y , X is said to be the parent
of Y , and Y the child of X.

3. A conditional probability distribution P (Xi|Parents(Xi)) quantifying the influence
of the parents on each node.
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The global semantics of Bayesian networks defines the full joint distribution as the product
of the local conditional distributions. A joint distribution is the probability of a conjunc-
tion of particular assignments to each variable P (X1 = x1 ∧ ... ∧ Xn = xn), shortened
P (x1, ..., xn). A specific joint distribution is given by the formula

P (x1, ..., xn) =
n∏

i=1

P (xi|parents(Xi)), (57)

where parents(Xi) denotes the values of the parents of the variable Xi that appear in
x1, ..., xn.

The local semantics of Bayesian networks specifies that: i) a node is conditionally indepen-
dent of its non-descendants given its parents, and ii) a node is conditionally independent
of all other nodes in the network given its Markov blanket - that is, its parents, children
and childrens’ parents.

Inference in a Bayesian network refers to the computation of the posterior probability
distribution for a set of query variables, given some event - that is, some assignment
of values for a set of observable variables. There exist algorithms for both exact and
approximate inference. Typical methods for exact inference are inference by enumeration
and the variable elimination algorithm. For large, multiply connected networks where
exact inference is intractable, approximate inference methods are used. Typical methods
for approximate inference includes randomized sampling algorithms, also called Monte
Carlo algorithms.

2.8.2 Dynamic Bayesian networks

A dynamic Bayesian network is a Bayesian network that represents a temporal probability
model [8]. They can be seen as a generalization of hidden Markov chains and Kalman
filters. A simple dynamic Bayesian network for two-dimensional robot navigation with
battery monitoring is shown in Figure 9.
The four main inference tasks for dynamic Bayesian networks are filtering, prediction,
smoothing and most likely explanation:

Filtering: The task of computing the posterior distribution over the most recent state,
given all evidence to data - that is, computing P (Xt|e1:t).

Prediction: The task of computing the posterior distribution over a future state, given
all evidence to data - that is, computing P (Xt+k|e1:t) for some k > 0.

Smoothing: The task of computing the posterior distribution a past state, given all
evidence to data - that is, computing P (Xk|e1:t) for some k such that 0 ≤ k < t.

Most likely explanation: The task of computing the most likely sequence of states to
have generated a set of observations - that is, computing argmaxx1:t

P (x1:t|e1:t).

2.8.3 Bayesian networks for risk modeling

Bayesian networks have been used for risk assessments in various domains, e.g. prediction
of risk of vehicle loss of AUVs during their missions [27], autonomous subsea intervention
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Figure 9: Simple dynamic Bayesian network for two-dimensional robot navigation with
two time steps. Here the position, velocity and battery are not directly observable, but
noisy measurements of position and battery are available. Image courtesy of [8].

operations [28] and risk assessment of human-autonomy collaboration for autonomous
marine systems.

We propose a generic structure for modeling risk with Bayesian networks. In this model,
we define a root node for risk of an accidental event with two parents, namely the proba-
bility of that event occuring and the consequence(s) of that event. The root node may, if
wished, be replaced with a utility node, supporting different kinds of definitions of risk,
e.g. probability times consequence. Also, a series of these trees may be connected to a
new root node when including multiple accidental events. Figure 10 shows the generic
Bayesian network structure following this idea.

Dynamic Bayesian networks may be useful for autonomous decision-making when taking
the temporal aspect of risk into consideration. Filtering may be used to improve the
current risk estimate by incorporating more evidence. Prediction is particularly useful
for mission planning, as the predicted future evolution of risk may be taken into account
when replanning the mission. Smoothing is important for learning, as it provides better
estimates of past states than was available at the time by incorporating more evidence.

2.8.4 Decision networks

Decision networks are graphical representations of a system involving a decision [8]. Deci-
sion networks are created by extending a Bayesian network to also include decision nodes
and utility nodes. Decision nodes represent points where the agent has a choice of actions,
whereas utility nodes represent the agent’s utility function. The utility nodes’ parents are
all variables describing the outcome state that directly affects the utility. This may pro-
vide a substrate for implementing utility-based AUV agents, as introduced in section 1.2.1.

In decision networks, actions are traditionally selected by evaluating the decision network
for each possible setting of the decision nodes, and choosing the decisions yielding the
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Figure 10: Generic structure of Bayesian network for calculating the risk of a hazardous
event. Note that one risk influencing factor may influence both the probability and the
consequence(s) of an accidental event.

highest expected utility. This is often called the principle of maximum expected utility
(MEU). After an action for a decision node has been set, it behaves like a chance node
with acquired evidence. The algorithm for for choosing an action given a decision network
by unconstrained maximization of utility is as follows [8]:

1. Set the evidence variables for the current state.

2. For each possible value of the decision node:

(a) Set the decision node to that value.

(b) Calculate the posterior probabilities for the parent nodes of the utility node,
using a standard probabilistic inference algorithm.

(c) Calculate the resulting utility for the action.

3. Return the action giving the highest utility.

2.8.5 Markov decision processes

Most decision problems are sequential by nature, where the agent’s utility depends on a
sequence of decisions. Sequential decision problems incorporate utilities, uncertainty and
sensory information, and include search and planning problems as special cases [8].

A Markov decision process (MDP) is a mathematical framework for modeling a sequential
decision problem for a fully observable, stochastic environment with additive rewards and
a Markovian transition model - that is, the probability of reaching a new state s′ depends
only on the current state s, and not on the previous history of states. Formally, an MDP
is represented by the tuple (S,A, T ,R), where:

• S is a set of states {s1, ..., sn},
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• A is a set of actions {a1, ..., an},

• T : S ×A×S → [0, 1] is a transition function that represents conditional transition
probabilities between states s and s′ when executing action a - that is, T (s, a, s′) =
P (s′|a, s),

• R : S ×A → R is a reward function.

The solution of an MDP is a policy π(s) - that is, the recommended action by the policy
π for state s. Due to the stochastic nature of the environment, executing a given policy
starting from an initial state s0 may lead to a different history of states. An optimal
policy π∗(s) is therefore a policy that yields the highest expected utility. The expected
utility obtained by executing a policy π starting in state s when using discounted utilities
with infinite horizons is given by

Uπ(s) = E

[ ∞∑

t=0

γtR(St)

]
(58)

where St is a random variable denoting the state the agent reaches at time t when per-
forming some policy π. The optimal policy is found from solving

π∗(s) = argmaxa∈A(s)

∑

s

P (s′|a, s)U(s′). (59)

The true utility of a state is then given by Uπ∗
(s), and is the expected sum of discounted

rewards if the agents executes an optimal policy π∗ starting in s. The value iteration
algorithm and policy iteration algorithm may be used for iteratively calculating an optimal
policy.

2.8.6 Partially observable Markov decision processes

A partially observable Markov decision process (POMDP) is an MDP with a partially
observable environment; the agent does not know for sure which state it is in. Therefore,
it does not make sense to talk about a state-dependent policy π(s). As the underlying
state is not directly observable, the agent instead maintains a probability distribution over
all possible state based on a set of observations and observation probabilities, namely a
belief state b. Formally, a POMDP is represented by the tuple (S,A, T ,R,Z,O), where:

• S is a set of states {s1, ..., sn},

• A is a set of actions {a1, ..., an},

• T : S ×A×S → [0, 1] is a transition function that represents conditional transition
probabilities between states s and s′ when executing action a - that is, T (s, a, s′) =
P (s′|a, s),

• R : S ×A → R is a reward function,

• Z is a set of observations {e1, ..., en},

• O : S × Z → [0, 1] is a sensor function that represents conditional observation
probabilities between observation e and state s - that is, O(e, s) = P (e|s).
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A belief state summarizes all relevant infomation in the observation, and is updated as
new observations are made. A new belief state b′(s′) is updated according to

b′(s′) = αP (e|s′)
∑

s

P (s′|a, s)b(s) (60)

where b(s) is the previous belief state, and α is a normalizing constant that makes the
probability distribution of the belief state sum to 1. This is essentially the filtering task
as described in 2.8.2.

The solution of a POMDP is an optimal policy π∗(b) mapping belief states to actions.
An optimal policy over an infinite horizon can be found by maximizing the expected
cumulative discounted reward Rt at time t with discount factor γ, when executing π
starting from the initial belief state b0,

π∗ = argmaxπE

[ ∞∑

t=0

γtR(St)|b0

]
. (61)

One way of solving POMDPs is by conversion to an MDP in the continuous belief-state
space and using either a value iteration or a policy iteration algorithm. Large POMDPs
may be solved by approximation using Monte Carlo tree search.

2.8.7 Chance-constrained POMDPs

Agents operating in partially observable stochastic environments often face the problem
of optimizing the expected cumulative discounted reward while bounding the probability
of violating safety constraints. Such problems may be modeled as chance-constrained
POMDPs (CC-POMDP). The objective of a CC-POMDP is to find an optimal policy π∗

according to

π∗ = argmaxπE

[ ∞∑

t=0

γtR(St)|b0

]
, s.t. P

(
n∨

t=1

St /∈ C
)
≤ δ (62)

where C ⊆ S is a set of safe states and δ is a bound on the probability of some event
happening during policy execution. The RAO* algorithm, a heuristic forward search
algorithm, may be used to obtain optimal, deterministic, finite-horizon policies for CC-
POMDPs [29].

2.8.8 Application of POMDPs for Arctic operations of AUVs

Ocean processes are subject to large spatial and temporal variability, and often, it is not
possible to examine the examine entire environment in detail [30]. The lack of sufficient
observations is the largest source of error in our understanding. This is the sampling prob-
lem of oceanography [31]. Also, due to poor knowledge about the environment beneath
the Arctic sea ice, offline planning prior to the mission may be inefficient with respect to
data gathering. This forms the motivation for development of information-driven sam-
pling strategies in Arctic operations of AUVs. Through online intelligent decision-making
based on in-situ sensory information, allows sampling efforts to be concentrated to regions
with high scentific interest, but at the same time, take into account the associated risks.
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Recent studies have shown that Markovian approaches show promise for the application
of information-driven sampling, taking into account uncertainty in the environment. This
may prove to be relevant for improving the robustness, as well as the effeciency, of Arctic
operations of AUVs in ocean research applications. Below follow some applications of
Markovian approaches in online planning of mobile agents:

• In [32], sequential Bayesian optimization is used within a POMDP (BO-POMDP)
for environment monitoring with UAVs. Here, the pose of the agent is assumed fully
observable, whereas the studied phenomenon is described by a (partially observable)
Gaussian process (GP).

• In [33] considers time-varying MDPs (TVMDP), decision problems in which the
environment varies in both space and time. This framework is able to adapt to
future time-varying transition dynamics over some horizon. They examplify with a
marine robotics motion planning application, where the discrete MDP state space
is converted to a continuous state space.

• In [34], measurement maximizing adaptive sampling is framed as a chance-constrained
MDP (CC-MDP) with a risk bounding function. Here, a mobile agent with uncer-
tain position taking measurements in a Gaussian process with known mean and
covariance kernel is tasked with maximizing the expected sum of future measure-
ments while bounding the probability it collides with the environment.

Using the framework of CC-POMDPs, one may model the temporal probability of vehicle
loss under the sea ice using dynamic Bayesian networks, and constrain this probability
with a bound. Further, one may use sequential Bayesian optimization for adaptive sam-
pling of phenomena modeled by GP in Arctic oceans, and make decisions by solving for
an optimal policy in the CC-POMDP online. This is topic for future research.
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3 Simulator setup and validation

In this chapter, details regarding the case study, simulation environment and setup are
presented.

3.1 Hybrid observer simulation

In the first appended paper, a hybrid observer concept was implemented and simulated
in MATLAB/Simulink using the Hybrid Equations Toolbox v2.04 [35]. This toolbox was
developed for simulation of hybrid dynamical systems as described in section 2.7.

3.2 Arctic AUV simulator

The simulator environment used in this thesis is an Arctic AUV simulator created by
Norgren [19] in MATLAB/Simulink and C++. This simulator was created mainly for
testing AUV guidance systems for iceberg detection and iceberg mapping using simulta-
neous localization and mapping (SLAM). The simulated DVL beam ranges in conjunction
with the AUV dynamics have been implemented by Holsen in [36], and further developed
by Norgren [19]. The Bayesian network risk model was implemented in Simulink with
C++ using the dlib package [37].

The vehicle dynamics implemented in the simulator is based on the REMUS-100 AUV,
following the mathematical models presented in chapter 2. The numerical values for the
mathematical model can be found in Appendix A. An image of the REMUS-100 AUV is
showed in Figure 11.

Figure 11: REMUS-100 AUV. Image courtesy of Kongsberg Maritime [38].

3.3 Ice data

In the simulator, three-dimensional floe-scale map of sea-ice drafts compiled from expidi-
tions by an AUV to the near-coastal regions of the Weddel, Bellingshausen and Wilkes
Land sectors of Antarctica, developed by Williams et al. [39] and [40], was used. The
compiled ice data was modified such that it was compatible by the Arctic AUV simulator
described in section 3.2.
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4 Conclusions

In this thesis, tools and methods for developing robust autonomy of underwater vehicles
in Arctic operations have been evaluated. This chapter summarizes the major findings
and contributions of the two appended papers, presents recommendations for further work
and concludes this thesis.

4.1 Concluding remarks

The main conclusions of the appended papers are summarized as follows:

Paper 1: A method for the design of a six DOF sensor-based hybrid translational ob-
server is proposed, accounting for noisy, asynchronous and sporadically available
sensor measurements. High-frequency noise it filtered out by taking a weighted dis-
counted average of a finite number of previous measurements predicted forwards
to the current time. It is successfully able to estimate the states, filter out high-
frequency noise, and showed robustness in terms of larger maximum update rates
and acceleration measurement noise. The performance depended on the number of
observer states and the values of the discount factors. The values of these param-
eters should be tuned according to the relative uncertainty in the measurements
governing the jump dynamics and the flow dynamics.

Paper 2: A method for intelligent risk-based under-ice altitude control for AUVs is pre-
sented. An altitude guidance law for following a contour of the ice surface using
DVL measurements is proposed, where a desired pitch angle is computed based on
the estimated altitude error and the estimated slope of the ice surface in the vehicle
heading direction. Furthermore, a method for online probabilistic reasoning over
the current state of risk using Bayesian networks for AUVs operating under ice is
developed. The model captures the probability of vehicle loss through a suscepti-
bility node, and the consequences of vehicle loss through a recovery ineffectiveness
node, which together constitute the risk of vehicle loss. The network is then ex-
tended to a decision network for autonomously selecting the setpoint for the altitude
controller yielding the highest reward while subject to a constraint on the risk. Sim-
ulations shows that the AUV successfully follows a contour of the ice undersurace,
and adapts to the varying level of risk throughout its mission by reselecting the
altitude setpoint.

The framework of hybrid dynamical systems seems promising for the design and analysis of
navigational systems for autonomous vehicles. It is able to handle the continuous nature
of predictions and the discrete nature of sampling updates, with noisy, asynchronous
and sporadically available sensor measurements, in a unified framework. It also allows
for rigorous mathematical stability analysis. In order to implement intelligent control,
situation awareness and decision-making capabilities for improved robustness and safety
of autonomous systems, integrating methods from the control theory with methods from
the AI community, such as Bayesian and Markovian approaches, seems promising.
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4.2 Suggestions for further work

During the course of this work, a number of interesting topics for further studies have
been identified. The following issues are recommended for further studies:

Paper 1: The performance of the proposed sensor-based hybrid observer concept should
be evaluated in closed-loop with a feedback controller, an attitude observer, a gravity
model and a guidance scheme. Rigorous stability analysis using the stability theory
of hybrid systems and cascaded systems should be done for more formal proofs of
stability. Establishing certain recurrence properties of the observer when including
stochastic effects of noise in the position and velocity measurements are also of
interest.

Paper 2: A thorough comparison of the proposed altitude guidance law with and without
the feedforward on the estimated slope of the ice surface is of interest. A more
extensive Bayesian network risk model should be developed. Extending the network
to a dynamic Bayesian network, allowing for prediction of the future evolution of
risk if also of interest. Also, the risk-bound in paper 2 was static. A topic for
future research is to include a dynamic risk-bound. The risk-bound may e.g. be
a function of the reward, such that higher rewards justifies accepting higher risks,
or be a function of the uncertainty in the estimates, such that more uncertain risk
estimates are accommodated with more conservative risk-bounds.

Other: By using a dynamic risk model in the form of a dynamic Bayesian network, the
frameworks of chance-constrained MDPs/POMDPs seem promising for calculating
optimal policies while constraining the probability of entering unsafe states. Using
a Markovian approach, uncertainty in the environment and the future evolution of
states is incorporated in the decision-making. These frameworks are also compatible
with sequential Bayesian optimization over a Gaussian process, with applications
such as risk-constrained adaptive robotic sampling.
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Abstract: Accurate underwater navigation systems are required for closed-loop guidance
and control of unmanned underwater vehicles (UUV). This paper proposes a method for the
design of a six degrees-of-freedom (DOF) sensor-based hybrid translational observer concept
for underwater navigation using the hybrid dynamical systems framework, accounting for noisy,
asynchronous and sporadically available sensor measurements. Sensor measurements from an
acoustic positioning system, a Doppler Velocity Log (DVL), an Inertial Measurement Unit (IMU)
and a pressure gauge are used in the proposed observer. A method for filtering high-frequency
noise is proposed, where the estimated states are obtained by taking a weighted discounted
average of a finite number of previous measurements predicted forwards to the current time.
The attitude of the vehicle is assumed known, and acceleration measurements are assumed to be
continuously available. Measurements of position, depth and linear velocity are assumed to be
available sporadically with asynchronous sampling rates. Results from simulations are presented
to demonstrate the performance of the proposed method.

Keywords: Hybrid dynamical systems, observers, underwater navigation

1. INTRODUCTION

Accurate underwater navigation systems are required for
closed-loop guidance and control of UUVs. Most UUVs
today use model-based observers. By including a kinetic
model of the vehicle, these observers are able to filter out
noise, reconstruct unmeasured states, estimate biases, and
in the case of signal loss, do dead reckoning. Steinke and
Buckham (2005) propose a Kalman filter for Remotely
Operated Vehicles (ROV). Drawbacks of Kalman filters
are the large number of parameters to be tuned, and
the unproved mathematical stability proofs for certain
applications. On the contrary, nonlinear passive filters are
able to provide proof of global stability. Refsnes et al.
(2007) propose a nonlinear passive observer for UUVs.
A shortcoming of model-based observers is that the bias
estimate is not able to capture rapidly changing loads and
environmental conditions, making them perform poorly
during transients.

Sensor-based observers on the other hand, often called
a strap-down approach, rely purely on the sensor mea-
surements and kinematic relationships. Thus, all unknown
forces acting on the vehicle are captured in the observer
instantaneously by the accelerometers. In Dukan (2014) a
sensor-based integration filter for the estimation of transla-

? This work was supported by the Research Council of Norway
through the Centre of Excellence funding scheme, NTNU AMOS,
project number 90311502, and the UNLOCK project, through the
Research Council of Norway FRINATEK scheme, project number
223254.

tional motion of UUVs is proposed. A drawback of strap-
down approaches is that these solutions are sensitive to
the accuracy of the attitude estimation, and, in the case of
signal loss, are not able to predict the states in a satisfying
manner. A good model of the gravity and centripetal
accelerations is also required.

Most approaches to observer design assume that sensor
measurements are continuously available, or that the sam-
pling rates remain constant. In Brodtkorb et al. (2016),
a 3 DOF observer combining measurements of different
fidelities for estimation of translational motion for marine
vessels is proposed. However, here it is assumed that both
the position and velocity measurements are obtained to-
gether at a non-constant sampling rate.

The main contribution of this paper includes the devel-
opment of a method for the design of a 6 DOF sensor-
based translational observer using the framework of hy-
brid dynamical systems proposed by Goebel et al. (2012)
applied to UUVs, accounting for noisy, asynchronous and
sporadically available sensor measurements. The attitude
of the UUV is assumed known, and the acceleration mea-
surements are assumed to be continuously available. The
observer is modeled as a cascaded system of three hybrid
observers, where acceleration measurements and velocity
estimates are continuously integrated in order to obtain
velocity and position predictions, corrected by occasional
discrete measurement updates. Each hybrid observer keeps
a finite number of the most recent measurements, pre-
dicted forward to the current time using the flow dynamics.
A method for filtering high-frequency measurement noise



is proposed, where the position and velocity estimates are
obtained by taking a weighted discounted average of the
observer states, giving higher trust to more recent predic-
tions. Results from simulations presented to demonstrate
the performance of the proposed methods. Robustness
with respect to acceleration measurement noise and in-
creased sampling time is also evaluated.

The paper is organized as follows: In Section 2, the
kinematic equations of the observer is presented, as well
as the hybrid dynamical systems framework. The observer
design is proposed in Section 3. The observer is tested
in simulations using MATLAB/Simulink in Section 4.
Section 5 concludes the paper.

2. MATHEMATICAL MODELING

2.1 Kinematics of an underwater vehicle

The 6 DOF equation of motion for an underwater vehicle is

expressed by the Earth-fixed position vector η = [p Θ]
T

=

[N E D φ θ ψ]
T ∈ R6 and the body-fixed velocity vector

ν = [v ω]
T

= [u v w p q r]
T ∈ R6, where the three first

elements in the vectors correspond to the linear part of the
motion, and the three latter elements correspond to the
angular part of the motion. The signal-based translational
observer is based on the kinematic relationship between
the Earth-fixed linear velocities ṗ and the body-fixed
linear velocities v through the transformation

ṗ = Rn
b (Θ)v (1)

where Rn
b (Θ) denotes the Euler angle transformation

given by

Rn
b (Θ) =

[
cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcθsφ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

]

and s · = sin(·), c · = cos(·) and t · = tan(·).

2.2 Hybrid Dynamical Systems

The hybrid dynamical system framework presented in
Goebel et al. (2012) can be used to model and analyze
systems with both continuous and discrete dynamics. In
general, this can be modeled as

H =

{
x ∈ C
x ∈ D

ẋ ∈ F (x)

x+ ∈ G(x)
(2)

where C ⊂ Rn is the flow set, F : Rn ⇒ Rn is the flow
map, D ⊂ Rn is the jump set and G : Rn × Rm ⇒ Rn is
the jump map.

2.3 Measurements

UUVs typically navigate using four different sensors: in-
ertial measurement units (IMU), Doppler Velocity Logs
(DVL), pressure gauges and hydroacoustic transponders
(Ludvigsen and Sørensen, 2016). IMUs combine accelerom-
eters for linear acceleration measurements and gyroscopes
for angular velocity measurements, DVLs are used to mea-
sure linear velocities, pressure gauges measure depth, and
transponders, part of an acoustic positioning system, mea-
sure position relative to a transducer. These measurements
are taken at different sampling rates, ranging from 100 −

200 Hz for IMU linear acceleration and angular velocity
measurements, 0.5−5 Hz for DVL linear velocity measure-
ments, 0.8−8 Hz for pressure gauges depth measurements,
and 0.1− 2 Hz for acoustic positioning measurements.

It is assumed that the position, depth and velocity mea-
surements are obtained with a non-constant sample time in
the interval [T

¯ j
, T̄j ] with Gaussian distributed noise with

variance σ2
j for j ∈ {1, 2, 3}, where the index j = 1 repre-

sents acoustic positioning measurements, j = 2 represents
pressure gauge depth measurements, and j = 3 represents
DVL velocity measurements.

In the design of the observer, it is assumed that the
measured acceleration a is equal to the real acceleration
of the vehicle - that is, the measurements do not contain
any noise or biases. However, in the numerical simulations,
noise is included. Also, it is assumed that the vehicle’s
attitude Θ is known.

3. HYBRID OBSERVER DESIGN

A method for the design of a cascaded sensor-based hybrid
translational observer H consisting of a hybrid sub-system
H3 in cascade with two other hybrid sub-systems H1 and
H2, where H3 is a velocity observer, H1 is a position
observer, and H2 is a depth observer, is proposed. A block
diagram of the cascaded hybrid observer structure is shown
in Figure 1.

Velocity observer
Position observer

Depth observer

Fig. 1. Block diagram showing the cascade structure of the
hybrid observer.

Each observer has Nj observer states, denoted (·)i for i ∈
{1, ..., Nj}, j ∈ {1, 2, 3}, representing copies of position,
depth and velocity measurements predicted forwards to
the current time using the flow dynamics by integration.
The observer states work as a first-in-first-out (FIFO)
queue. New measurements are stored in the first observer
state (·)1, while the remainder of the states are shifted
one place back. The last observer state (·)Nj with the most
outdated prediction is pushed out of the queue and deleted.
The time before a new measurement is randomly selected
from an interval [T

¯ j
, T̄j ], where T

¯ j
and T̄j represent the

lower and upper bound for the sampling time characterized
by sensor j, respectively.

For filtering high-frequency noise, a method inspired by
a weighting scheme in Sørensen (2013) is proposed. The
observer estimates are obtained by taking a weighted
discounted average of the observer states, given by

p̂ :=

∑N1

i=1 γ
i
1pi∑N1

i=1 γ
i
1

, ẑ :=

∑N2

i=1 γ
i
2zi∑N2

i=1 γ
i
2

, v̂ :=

∑N3

i=1 γ
i
3vi∑N3

i=1 γ
i
3

(3)



where γj ∈ (0, 1], j ∈ {1, 2, 3}, is a constant discount
factor. The motivation for using a weighted discounted
average is that we have a higher trust in more recent
predictions, as these states have integrated possible errors
for a shorter time. Note that when γj = 1, we get
the mean value of the observer states. In Figure 2, an
example of a time series of the evolution of the observer
states in the position observer with N1 = 3 is shown. A
large variance and a constant sampling rate of T3 = 5
seconds on the position measurement was included for
better visualization. The observer is initialized at the true
position.
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Fig. 2. Time series of the evolution of the position observer
states with N1 = 3. The estimated position at a
given time is found by taking the weighted discounted
average of the three observer states.

In the velocity observerH3, the dynamics flow with the ac-
celeration measurements in between the velocity measure-
ments - that is, when τ3 ∈ [0, T̄3]. The observer states are
then updated discretely when new velocity measurements
are available. The counter variable τ3 counts backwards
in time, such that jumps are triggered when τ3 = 0. The
velocity observer is, for i ∈ {1, ..., N3}, given by

H3 :=





v̇i = a

τ̇3 = −1

}
(vi, τ3) ∈ R3 × [0, T̄3]

v+i = vi−1

τ+3 ∈ [T
¯3, T̄3]

}
(vi, τ3) ∈ R3 × {0}

(4)

where v0 = v is the DVL linear velocity measurement.

In the position observer H1, the position states flow with
the velocity estimate in (3), and are similarly updated
discretely when new position measurements are available.
The position observer is, for i ∈ {1, ..., N1}, given by

H1 :=





ṗi =

[
1 0 0

0 1 0

]
Rn
b (Θ)v̂

τ̇1 = −1



 (pi, τ1) ∈ R2 × [0, T̄1]

p+i = pi−1

τ+1 ∈ [T
¯1, T̄1]

}
(pi, τ1) ∈ R2 × {0}

(5)

where p0 = p is the acoustic position measurement.

The vertical position is measured by a pressure gauge, as
it provides higher accuracy and sampling rate than the
acoustic positioning system. Therefore, we utilize these
measurements for the depth estimate, encapsulated by the
depth observer H2, for i ∈ {1, ..., N2}:

H2 :=





żi =
[
0 0 1

]
Rn
b (Θ)v̂

τ̇2 = −1

}
(zi, τ1) ∈ R× [0, T̄2]

z+i = zi−1

τ+2 ∈ [T
¯2, T̄2]

}
(zi, τ2) ∈ R× {0}

(6)
where z0 = z is the pressure gauge depth measurement.

4. SIMULATION RESULTS AND DISCUSSION

This Section presents the setup of the simulations, and
discusses the results.

4.1 Setup

The observer was implemented in MATLAB/Simulink us-
ing the Hybrid Equations Toolbox v2.04 (Sanfelice et al.,
2013). Open-loop zig-zag motions in the horizontal plane
and yo-yo motions in the vertical plane with zero sway and
heave velocities were simulated, while the surge velocity is
accelerated from 0 to 1 meters per second. This gives an
indicator of the observer performance, however, the per-
formance may be different in closed-loop with a feedback
control system, an attitude observer and a gravity model.
The simulated motion of the vehicle is for simplicity and
without loss of generality prescribed and given by

θ(t) = 0.4 sin(0.05t)

ψ(t) = 0.03 sin(0.2t)

u(t) = 1− exp(−0.5t)

The initial conditions of the UUV are zero for all states,
except for an initial depth of 50 m.

The observer is simulated for different values of the number
of observer states N1, N2 and N3, the discount factors
γ1, γ2 and γ3, maximum sampling time T̄1, T̄2 and T̄3,
and different levels of noise σimu on the acceleration
measurements. All observer states are initialized at zero,
not at the current state of the vehicle.

For the sake of order, a reference simulation case is
established. All other simulations are small perturbations
on one of the parameters of the reference simulation case.
The numerical values of the reference simulation cases are
given below in Table 1.

Observer type
Position (j = 1) Depth (j = 2) Velocity (j = 3)

Nj [-] 10 10 10
γj [-] 0.85 0.85 0.85
T
¯ j [s] 0.5 0.125 0.2

T̄j [s] 10 1.250 2.0

Table 1. Numerical values for the reference
simulation case.

Measurement noise with standard deviations σimu = 0.007
[m/s2], σ1 = 0.5 [m], σ2 = 0.001 [m] and σ3 = 0.003
[m/s] were added on the IMU, acoustic positioning system,
pressure gauge and DVL measurements, respectively.



4.2 Simulation results and discussions

Fig. 3. Position observer performance for different number
of observer states N1, N2 and N3.

Fig. 4. Velocity observer performance for different number
of observer states N1, N2 and N3.
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Fig. 5. Stationary variance of the North position and surge
velocity estimate error for different values of N1, N2

and N3.

Figures 3-4 show the estimated positions and velocities
for different numbers of observer states N1, N2 and N3.
In general, we see that the variance of the estimate
decreases with increasing number of states. However this
also increases the transient time. In Figure 5, where the
corresponding stationary variance of the North position
and surge velocity estimate errors is shown, we see that
the variance of the position error estimates decrease by
increasing the number of states in the observer up to a
certain point, before it increases again. The rapid decrease
in variance for low values of N1, N2 and N3 is due to
the high variance of the position measurements. However,
when the number of states is too large, the estimates are to
a larger extent based on older predictions where possible
errors have been integrated for a longer time. The same
trend is not so obvious for the surge velocity estimate error
variance. This is due to the low uncertainty in the velocity
measurements, in contrast to the high uncertainties in
the acoustic position measurements. The results will also
suffer from random effects differing from simulation to
simulation.

Fig. 6. Position observer performance for different values
of the discount factors γ1, γ2 and γ3.

Fig. 7. Velocity observer performance for different values
of the discount factors γ1, γ2 and γ3.
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Fig. 8. Stationary variance on the North position and
surge velocity estimate error for different values of
the discount factors.

Figures 6-7 show the observer estimates for different values
of the discount factors γ1, γ2 and γ3. The correspond-
ing stationary variance of the North position and surge
velocity error estimate is shown in Figure 8. As can be
seen, decreasing the discount factor increases the variance
of the position estimate errors. This is due to the high
uncertainty in the position measurements; lower values of
the discount factor results in neglect of the older predic-
tions, thus reducing its noise mitigation properties. For the
velocity estimates, however, reducing the discount factor
reduces the variance of the velocity estimate errors up to a
certain point, before it is increased again. This is because
the velocity measurements have low uncertainty relative to
the uncertainty introduced by integration of acceleration
noise.

There seems to be optimal values for the number of ob-
server states and the discount factors with respect to po-
sition and velocity estimation error variance. These values
should be chosen with basis in the relative uncertainty in
the measurements governing the jump dynamics and the
flow dynamics.

Figures 9-10 show the performance of the observer with
increased values of the maximum sampling time; the
sampling time is increased by a factor ranging up to 10.
As seen, the observer is quite robust in terms of slow
update rates. Figure 11 shows the stationary variance of
the North position and the surge velocity estimate for the
same results. As seen, the estimation error variance seems
to grow exponentially with increased sampling periods.
The position estimate is particularly sensitive to increased
sampling times.

Figures 12-13 show the performance of the observer for
different levels of acceleration measurement noise. As can
be seen, the performance is alao quite robust with respect
to acceleration measurement noise. It is not until the
noise is in the order of 30 the normative value that the
estimated states get considerably noisy. Figure 14 shows
the corresponding stationary estimation error variance.
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Fig. 9. Position observer performance with different values
of the maximum sampling rates.

Fig. 10. Velocity observer performance with different val-
ues of the maximum sampling rates.
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Fig. 11. Stationary variance of the North position and
surge velocity estimate error for different values of
the maximum sampling time.



Fig. 12. Position observer performance for different levels
of the acceleration measurement noise.

Fig. 13. Velocity observer performance for different levels
of the acceleration measurement noise.

It should be noted that the estimated state is discontin-
uous during jumps; after each measurement update, the
estimate will experience a jump. When using the estimated
states in a feedback control system, the estimated state
trajectory should be smooth. It will therefore be necessary
to filter out the discontinuities using e.g. a low-pass filter.

For future work, the observer performance should be eval-
uated in closed-loop with a feedback controller, an attitude
observer, a gravity model and a guidance scheme. Due
to the cascaded structure, errors in the velocity estimate
output from the velocity observer H3 will affect the esti-
mates of the position observer H1 and the depth observer
H2. Rigorous stability analyses using stability theory of
hybrid systems and cascaded systems, providing more
formal proofs of stability, is needed. Also, establishing
certain robustness and recurrence properties when taking
into account the effect of noise in the measurements, as
well as errors in the attitude estimation, is of interest.
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Fig. 14. Stationary variance of the North position and
surge velocity estimate error for different levels of
acceleration measurement noise.

5. CONCLUSIONS

The proposed sensor-based hybrid translational observer
performed well in the simulations. The performance de-
pended on the number of states N1, N2 and N3 in the
observers and the discount factors γ1, γ2 and γ3. The
value of these parameters should be tuned according to
the relative uncertainty in the measurements governing
the jump dynamics and the flow dynamics. The observer
also showed robustness in terms of larger values of the
maximum update rates T̄1, T̄2 and T̄3 and the acceleration
measurement noise.
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Abstract—Autonomous underwater vehicles (AUVs) are effec-
tive platforms for mapping and monitoring under the sea ice in
polar oceans. However, under-ice operations impose demanding
requirements to the system, as it must deal with uncertain and
unstructured environments, harsh environmental conditions and
reduced capabilities of navigational sensors. This paper presents
a method for intelligent risk-based under-ice altitude control for
AUVs. Firstly, an altitude guidance law for following a contour
of the ice surface via pitch control using measurements from a
Doppler velocity log (DVL) is proposed. Furthermore, a Bayesian
network for probabilistic reasoning over the current state of risk
during the operation is developed. This network is then extended
to a decision network for autonomous risk-based selection and
reselection of the setpoint for the altitude controller, balancing the
trade-off between the reward of the setpoint and the risk involved.
This will improve the system safety and reliability during under-
ice operations. Results from a simulation study is presented in
order to demonstrate the performance of the proposed method.

Index Terms—underwater robotics, guidance, control,
Bayesian networks, decision-making, risk modeling, probabilistic
reasoning, artificial intelligence

I. INTRODUCTION

Intelligent autonomous vehicles composed of advanced
control, decision and sensor systems are emerging, and are
essential for allowing new and challenging operations, such
as mapping and monitoring of the oceans, inspections and
interventions of structures difficult to access, and autonomous
transportation, both land based and at sea. As the level
of autonomy in systems increase, and the missions become
more complex, stricter requirements related to safe system
performance are imposed. The vehicle must be able to navi-
gate through unknown and unstructured environments, handle
unforeseen hazardous situations and faults, and make informed
decisions.

Autonomous underwater vehicles (AUVs) are effective plat-
forms for ocean research and monitoring. However, as opera-
tions of AUVs move towards challenging environments such
as under sea ice, under shelf ice or along rocky coasts, the risk
increases. AUV operations at Arctic latitudes and under the ice
are complicated by harsh environmental conditions, uncertain

This work was supported by the Research Council of Norway through
the Centre of Excellence funding scheme, NTNU AMOS, project number
90311502, and the UNLOCK project, through the Research Council of
Norway FRINATEK scheme, project number 223254.

and unstructured ice environments and reduced capabilities
of navigation sensors. For example, Australian and British
AUVs have been lost under ice sheets [1]. Therefore, increased
situational awareness and decision-making capabilities are
required for safe system performance. One of the tools for
achieving this is online risk management through intelligent
risk-based control, reasoning and decision-making.

Risk management is constituted by risk assessment, mon-
itoring, control and follow-up of risk [2]. Utne et al. [3]
clarify, categorize and classify risk related to autonomous
marine systems, and establish a foundation for risk manage-
ment of such systems. They discuss that risk management
should become a driver in the design and operation of highly
automated intelligent systems. An autonomous system should
be able to determine if it can continue with possible degraded
performance, assess the level of tolerable risk by improving
situational awareness capabilities, and carry out decisions
based on perception, comprehension and projection of the
future situation that we today leave to a human operator [3].

Brito and Griffiths [4] and [5] use Bayesian networks to
predict risk of vehicle loss of AUVs during their missions,
including under the sea ice. Their approach was more focused
on offline prediction prior to the mission.

Optical mapping closer to the ice surface is often considered
more scientifically rewarding due to the existance of algae and
phytoplankton and other biological phenomena here. However,
this is also associated with higher risks. There is therefore a
balance between the reward of flying closer to the surface,
and the risk involved in doing so. The main contribution of
this paper is a method for intelligent risk-based under-ice
altitude control. The altitude under the ice is controlled to
an altitude setpoint via pitch control. A risk model in the
form of a Bayesian network is developed for online reasoning
over the current state of risk, ranging from low to high risk,
during operation. Using sensor data, evidential reasoning is
used for online update of the posterior probability distribution
of the current state of risk. This information is then used for
autonomously selecting and reselecting the altitude setpoint,
and whether or not to abort the mission.

The paper is organized as follows: In Section 2, background
theory on risk, Bayesian networks and decision networks is de-
scribed. Section 3 presents the methods for altitude estimation



and under-ice altitude control. Section 4 describes the method
for developing the Bayesian network risk model. In Section 5,
the network is extended to a decision network for autonomous
risk-based decision-making. Simulation results and discussions
are given in Section 6. Section 7 concludes this paper and
presents the scope for future work.

II. RISK MODELING USING BAYESIAN NETWORKS

This section presents background theory on risk, probabilis-
tic modeling using Bayesian networks, and how this may be
extended to a decision problem using decision networks.

A. Definition of risk

In [6], the risk related to an hazardous event ei may be
represented by a triplet

r = {ei, ci, q}|k (1)

where ci is the consequence(s) of ei, q is a measure of
the uncertainty involved, and k is the background knowledge
used for determining ei, ci and q. For autonomous systems
operating in an unstructured environment, with little or no
apriori information, q may be assumed to be high and k low
[3]. We adopt this definition in this paper.

B. Risk management of AUVs

According to Utne et al. [3], risk control of autonomous
systems can occur in two, complementary ways: i) risk control
of the autonomous system, mostly relevant for systems with
low levels of autonomy, and ii) risk control by the autonomous
system, mostly relevant for systems with high levels of auton-
omy. In this paper, we consider risk control done by the system
itself.

C. Bayesian networks

Bayesian networks have been used for risk assessments in
various domains.

Bayesian networks are directed acyclic graphs where nodes
represent uncertain variables, and the arcs represent direct
causal dependencies between a child node and a parent node.
Each node has a conditional probability table (CPT) that
determines the probability distribution of a child’s states based
on the parents’ states. In most available Bayesian network
software tools, the embedded inference algorithms can support
four types of reasoning: predictive, diagnostic, combined and
intercausal reasoning [7]. Predictive reasoning algorithms may
be applied to the network to calculate the posterior probability
distributions of uncertain variables based on new evidence.
Such predictions may be factual, e.g. based on new evidence,
or hypothetical, e.g. predicting the effect of an intervention.

A Bayesian network is typically composed of target nodes,
intermediate nodes and observable nodes. Target nodes are
the nodes in which the joint probability distributions are to
be calculated. Intermediate nodes are mainly defined to help
manage the size of the CPTs, as well as making the model
more transparent. The observable nodes represent variables
that are measurable or directly observable.

Bayesian networks presents a natural framework for situa-
tional awareness, information fusion and human-like reasoning
for autonomous systems. It provides the systems with the abil-
ity to interpret situations based on incomplete and uncertain
information, detect abnormal behaviours and patterns, self-
diagnosis and performance monitoring, which in turn may
support the system in online decision-making.

For underwater robotics, Bayesian networks have been
applied for risk modeling of, for example, vehicle loss during
their missions [4], human-autonomy collaboration [8] and
subsea intervention operations [9]. Some other common risk
modeling frameworks, such as fault trees, may be mapped into
a Bayesian network.

D. Decision networks

Decision networks, also called influence diagrams, combine
Bayesian networks with additional node types for decisions
and utilities [10]. Chance nodes represent the random vari-
ables, i.e. the nodes that constitute the Bayesian networks.
Decision nodes represents points where the decision maker
has a choice of actions. Utility nodes represents the decision
maker’s utility as function of the parent attributes.

III. ALTITUDE ESTIMATION AND CONTROL

In this case study, we want the AUV to follow a contour
of the ice surface, which is achieved by altitude control. We
consider an AUV equipped with an upwards-looking DVL
with four beams in a Janus configuration. This section presents
a method for altitude estimation and pitch control for tracking
the ice surface.

A. Kinematics

The position of the AUV in the Earth-fixed North-East-
Down reference frame {n} is p = [x, y, z]T . The velocity
vector in {n} is expressed as

ṗ = Rn
b (Θ)v (2)

where Θ = [φ, θ, ψ] is the attitude vector, Rn
b (Θ) is the

rotation matrix from the body-fixed reference frame {b} to
{n}, and v = [u, v, w] is the velocity vector in {b} [11].

In the simplified case where the DVL is located at the
center of origin of the AUV, the ith DVL measurement can
be expressed in {b} as

rbi = ri




sin(γi) cos(βi)
sin(γj) sin(βi)
− cos(γi)


 (3)

where ri is the ith DVL beam range, and γi and βi are
the offset angles for the DVL beams along the vehicle’s
longitudinal and transversal direction, respectively. The ith

DVL measurement can then be expressed in {n} from the
rotation rni = Rn

b (Θ)rbi .



B. Approximation of ice surface geometry, altitude and alti-
tude rate

We define the altitude as the z component of the vector from
the center of origin of the AUV to the point on the ice surface
with the same horizontal coordinates expressed in {n}. Note
that the altitude under the ice will be negative.

A method from Dukan et al. [12], originally developed for
sea floor tracking, is used to approximate the geometry of the
ice surface, the altitude and altitude rate of change.

We assume that the submerged ice surface in {n} can be
expressed by the equation

F (x, y, z) = f(x, y)− z = 0,
∂F

∂t
= 0 (4)

where F is a time-invariant function with continuous first-
order partial derivatives. The altitude can then be written as

a = f(x, y)− z. (5)

The altitude rate of change is found by differentiating (5) with
respect to time

ȧ =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
− dz

dt
. (6)

This may be rewritten as [12]

ȧ = OF (p)ṗ

=

[
∂f

∂x

∣∣∣∣
p

,
∂f

∂y

∣∣∣∣
p

,−1

]
Rn
b (Θ)



u
v
w


 . (7)

The ice surface is at each time step approximated as a linear
surface f(x, y) = am + bx + cy by using least squares
regression utilizing all four DVL beams by solving

[am, b, c] = argminam,b,c

4∑

i=1

[ani − (am + bxni + cyni )]2. (8)

The approximated altitude of the AUV is then am, and the
corresponding approximated ice surface gradient vector is

OF̂ =

[
∂f̂

∂x

∣∣∣∣
p

,
∂f̂

∂y

∣∣∣∣
p

,−1

]
= [b, c, −1]. (9)

The approximated altitude rate of change ȧm is then given by

ȧm =

[
∂f̂

∂x

∣∣∣∣
p

,
∂f̂

∂y

∣∣∣∣
p

,−1

]
Rn
b (Θ̂)



û
v̂
ŵ


 (10)

where (̂·) denotes an estimated value. In order to ensure a
continuous and smooth estimate â of the altitude, a Kalman
filter using the Euler integration method with state am and
input ȧm is used, see [12] for details. In this paper, we assume
that the attitude and the velocity of the vehicle are known -
that is, Θ̂ = Θ and v̂ = v.

C. Altitude control

During altitude control, the control objective is to make the
vehicle follow a contour of the ice surface while the horizontal
trajectories are controlled independently. In this paper, we
propose a line-of-sight (LOS) guidance law with lookahead-
based steering in the vertical plane, where the vehicle pitch is
controlled in order to obtain the desired altitude.

The slope of the ice surface in the vehicle heading direction
may used to predict changes in the ice surface depth. This
may be utilized in the altitude guidance law. The slope is
approximated as

$ =
∂f̂ψ
∂x

∣∣∣∣
p

= [1, 0, 0]R−1
z,ψ(ψ̂)

[
∂f̂

∂x

∣∣∣∣
p

,
∂f̂

∂y

∣∣∣∣
p

, 0

]T
(11)

where R−1
z,ψ(ψ̂) is the principal rotation matrix about the z axis

from {n} to {b}. Due to errors and noise in the estimation of
$, one might downscale it’s effect in the guidance scheme.
The downscaled ice surface slope used in the guidance law is
given as

$s = [kdive, kascend]

[
sat+($)
sat−($)

]
(12)

where kdive, kascend ∈ [0, 1] are constant parameters determin-
ing the downscale factor of positive and negative ice surface
slopes, respectively, and

sat+(s) =

{
x, ifx > 0

0, otherwise,
sat−(s) =

{
x, ifx < 0

0, otherwise.

are saturation functions only letting through positive and
negative numbers, respectively. The motivation for using two
different downscale parameters, is that one may wish that the
vehicle is more sensitive to positive slopes as they increase
the probability of collision, i.e. choose the factors such that
kdive ≥ kascend.

The proposed altitude guidance law is given by

θd : = −arctan
(
â− ad +$s∆z

∆z

)

= −arctan
(
â− ad

∆z
+$s

) (13)

where θd is the desired pitch, ∆z > 0 is a lookahead distance
ahead of the vehicle, and $s∆z is the first-order prediction
of the change in the ice surface depth along ∆z . The desired
pitch θd is then sent as input to a reference model and then
to a pitch controller. The general idea of the altitude LOS
guidance law is shown in Figure 1.

The steering law in (13) may be interpreted as a saturating
proportional feedback controller with a feedforward term:

θd = −arctan (kp(a− ad) + vff ) (14)

where kp = 1/∆z is the proportional gain, and vff = $s is
the feedforward term. The feedforward term will ensure that
the vehicle responds instantly to changes in the ice surface
slope.



Fig. 1. Altitude LOS guidance law with kdive = kascent = 1.0.

IV. DEVELOPMENT OF BAYESIAN RISK MODEL

This section presents the development of the Bayesian
network risk model for online reasoning over the current state
of risk. This will later be used for autonomous risk-based
decision-making.

Thieme and Utne [8] follow a well-structured five steps pro-
cess to develop Bayesian networks for autonomous systems:

1) Describe aim and context of the Bayesian network.
2) Gather and group information relevant for the context

into nodes.
3) Connect the nodes with directional arcs.
4) Determine the conditional probability tables and quan-

tify the model.
5) Test and validate the model.

This process has been adapted in this paper for developing the
Bayesian network.

A. Aim and context of Bayesian network

In this case study, the AUV operates under the sea ice
with the objective of following a contour of the ice surface
(under-ice altitude control). We assume that the AUV oper-
ates in an area with pre-installed subsea acoustic positioning
system infrastructure consisting of transducers, which it uses
to determine its reference positions in a reliable manner. The
navigational uncertainty from the acoustic positioning system
is assumed to be dependent on the distance between the AUV
and the transducers. The AUV uses an upwards-looking DVL
to estimate its altitude relative to the ice surface.

We want to reason over the current state of the risk during
the mission, or more specifically, the risk of losing the vehicle.
The decision problem is to autonomously select and reselect
the altitude setpoint, given its belief about the current state of
risk.

By gathering in-situ sensor data, the posterior distribution
of the risk state is updated online. The posterior probability
distribution of the risk state should provide some information
about the probability of something going wrong, and the
consequences of that happening. Figure 2 shows a generic
Bayesian network structure following this idea.

Risk of
accidental

event i

Probability of
accidental

event i

Consequences
of accidental

event i

Risk 
influencing

factor1

Risk 
influencing

factork+1

Risk 
influencing

factorn

Risk 
influencing

factork

Fig. 2. Generic structure of Bayesian network for calculating the risk of
a hazardous event. A series of these trees may be connected to a new
root node when including multiple hazardous events. Note that one risk
influencing factor may influence both the probability and the consequence(s)
of an accidental event.

B. Grouping of relevant information

The risk of losing the vehicle is captured in the Bayesian
network by the target node risk state. The risk state is
influenced by the probability of losing the vehicle and the
consequences of losing the vehicle, captured by the two
intermediate nodes susceptibility and recovery ineffectiveness,
respectively.

In Huang et al. [13], the Performance Measures Framework
for Unmanned Systems (PerMFUS) is proposed, which is
a multiple-axis performance metrics model for unmanned
systems. This framework characterizes the system performance
requirements by: i) the mission that are to be carried out, ii)
the environment in which the missions are to be performed,
and iii) the characteristics of the system itself. In this paper,
we adopt this framework in order to further group the rele-
vant information for the susceptibility of the vehicle. This is
captured by the three intermediate nodes system degradation,
environmental complexity and mission complexity, which are
the parents of the susceptibility node.

Further, we group information that is measurable or directly
observable, e.g. from algorithms processing sensor data, into
observable nodes. These variables will be the leaf nodes of
the network.

For simplicity, all variables in the Bayesian network are
given three discrete states, 0, 1 and 2, representing low,
medium and high severity, respectively. In order to be strin-
gent, note that all nodes have been defined with negative
attributes.

C. Connecting the nodes with directional arcs

We now provide a structural description of the proposed
Bayesian network. For simplicity, we have decided to restrict
each intermediate node with two observable parent nodes each.

1) System degradation: After discussions with experts on
AUVs, particularly two observable variables are thought to



influence the integrity of the system itself, namely the navi-
gational uncertainty and the remaining power capacity. These
have been added as parent nodes of the system degradation
node.

2) Environmental complexity: According to Brito and Grif-
fiths [4] objects, seabed slope, underwater hazards, metocean
conditions, ice concentration and ice thickness can affect the
probability of vehicle loss in open sea, around coastal waters
and under ice covers. The gradient of the ice surface may,
in addition to give information about the ice surface slope,
give an indication of the presence of unstructured ice and
obstacles. Also, the ocean current velocity is thought to be the
most important metocean condition. Therefore, the ice surface
gradient and ocean current velocity have been chosen as the
observable nodes influencing the environmental complexity.

3) Mission complexity: Many factors may influence the
mission complexity. In this model, we have added what we
believe are the two most important factors: the total path
length, and the setpoint for the altitude controller, which
maintains a desired distance to the ice.

4) Recovery ineffectiveness: Recovery ineffectiveness says
something about the severity of vehicle loss, i.e. how difficult
it will be to recover the vehicle again. Ice thickness will
influence the recovery ineffectiveness, as a hole must typically
be drilled in the ice in order to recover the vehicle. Intuitively,
the severity of vehicle loss will also increase with the distance
to the base. These two variables have been added as observable
parent nodes.

Figure 3 shows the proposed Bayesian network online risk
model.

D. Quantification of conditional probability distributions

Quantifying the CPTs of the variables is a difficult task. It
is possible to learn the causalities from data, but often, the
amount of data is too scarce for such approaches. Therefore,
expert elicitation is the preferred approach in this case.

The process of CPT assessment was adapted from [8], where
either a high or low strength of influence from a parent node
to a child node is given in order to calculate the CPT. The
strength of influence defines the spread in the template for
a given parent state. Table I shows the CPT templates for
assessment of the child nodes.

Parent’s state Child’s
states

Low strength
template

High strength
template

Worst
Worst
Intermediate
Best

0.60
0.30
0.10

0.90
0.09
0.01

Intermediate
Worst
Intermediate
Best

0.20
0.60
0.20

0.05
0.90
0.05

Best
Worst
Intermediate
Best

0.10
0.30
0.60

0.01
0.09
0.90

TABLE I
DISCRETIZED CPT TEMPLATES FOR LOW AND HIGH STRENGTH OF

INFLUENCE. WORST, INTERMEDIATE AND BEST REPRESENT THE STATES
GENERICALLY.

All arcs from the child nodes to its parent nodes are assessed
with a low or high strength of influence. The strength of
influence will then determine the weight of each arc: a weight
of 1 and 3 are associated with a low strength of influence and a
high strength of influence, respectively. The resulting weights
are then normalized with the total sum of all weights. A child
node’s CPT is then calculated by multiplying the template
of all arcs with their respective normalized weights, for all
combinations of the parent nodes’ and child node’s states.

In Table II, the assigned strength of influence of each node
is shown.

Parent name Child name Influence strength
Navigational uncertainty System degradation High
Power capacity System degradation Low
Ice surface gradient Environmental complexity High
Ocean current velocity Environmental complexity High
Desired altitude Mission complexity High
Total path length Mission complexity Low
System degradation Susceptibility High
Environmental complexity Susceptibility High
Mission complexity Susceptibility High
Ice thickness Recovery ineffectiveness High
Distance to base Recovery ineffectiveness High
Susceptibility Risk state High
Recovery ineffectiveness Risk state Low

TABLE II
CAUSAL STRUCTURE OF BAYESIAN NETWORK AND THE ASSIGNED

STRENGTHS OF INFLUENCE.

V. RISK-BASED DECISION-MAKING

In this section, we extend the Bayesian network risk model
to a decision network for autonomous risk-based selection and
reselection of the altitude setpoint.

A. Risk index

In the decision network, we want to represent the risk with a
real number rather than a probability distribution over discrete
states. We define the risk index ri ∈ [0, 1] as the estimated
value of the risk state, ranging from low risk at 0 to high
risk at 1. This is captured by a utility node in the decision
network. Figure 4 shows the relation between the value of the
risk index and the discrete risk states. The risk index ri is
calculated from the discrete probability distribution of the risk
state according to

ri = E(Risk|as, parents(Risk))

=

n∑

i=1

P [Risk = riski|as, parents(Risk)]f(riski)
(15)

where parents(Risk) denotes the values of the parents of
the risk state variable, E(Risk|as, parents(Risk)) is the
expected posterior risk state given the altitude setpoint and its
parents, and f : {0, 1, 2} −→ {0, 0.5, 1} is a discrete function
that maps a risk state to its corresponding value.

Figure 5 shows the risk index for the worst case, medium
case and best case - that is, all observable nodes have been
assigned the worst, medium or best state as evidence, respec-
tively, as a function of the altitude setpoint.



Susceptibility

Environmental
complexity

Mission complexity
Function

degradation

Power degradation
Navigational
uncertainty

Ice gradient Current Path length Desired altitude

Recovery
ineffectiveness

Distance to base Ice thickness

Risk state

Fig. 3. Bayesian network for online calculation of risk during an under-ice operation of AUVs. Node color-coding: light grey, observable nodes; white,
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Fig. 5. The risk index as a function of the desired altitude state for the worst,
medium and best case.

B. Online reasoning

Online reasoning refers to the continuous update of the
network as new evidence are obtained. At every time step,
sensor data for the observable nodes are discretized into states
0, 1 and 2, representing low, medium and high severity, and
updated as evidence accordingly. The posterior probability
distribution of the risk state and the risk index are calculated
thereafter.

A dwell-time is implemented in the update of variables in
the network. When an evidence that increases the severity of
a variable is obtained from the sensor data, the network is
updated immediately. This evidence will then be fixed for a
given amount of time tmin, before the same variable is allowed
be updated with new evidence that reduces the risk, unless

the new evidence has an even higher severity. Thus, we get a
conservative approach to updating the risk belief: the AUV will
update its beliefs about the current state of risk immediately
to possible threats, and this belief will persist for some time,
even though the evidence indicates that the threat has seized
to exist.

The update rule can be mathematically formulated as

ev(k + 1) =

{
evnew, if t ≥ tmin ∨ evnew > ev(k)

ev(k), otherwise
(16)

where ev(k) is the assigned evidence in the network at time
step k, evnew is the most recent obtained evidence, t is the
elapsed time since last update, and tmin is the dwell-time.
Here it is assumed that more severe states have larger values.

C. Decision-making

We want the AUV to autonomously select and reselect the
altitude setpoint given its belief about the current state of
risk. We therefore replace the observable chance node for the
altitude setpoint in the Bayesian network with an action node.

A greedy risk-based decision-making algorithm is proposed.
The algorithm greedily chooses the altitude setpoint as yield-
ing the highest reward, while the predicted risk index from
selecting as is constrained by a risk-bound. This may be
formulated as

a∗s = argmax
as

R(as) s.t. ri ≤ δ (17)

where a∗s is the optimal altitude setpoint, R(as) is a reward
function and δ is a risk-bound which specifies the allowable
risk index.

The algorithm will evaluate the decision network for all
altitude setpoints, and choose the setpoint yielding the largest
reward constrained by the risk-bound. If no setpoint satisfies
the risk-bound, a signal to abort the mission will be initiated.
Figure 3 shows the proposed risk-based decision network.
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Fig. 6. Decision network for online calculation of risk during an under-ice operation of AUVs. Node color-coding: light grey, observable chance nodes; white,
intermediate chance nodes; dark grey, target chance nodes; action nodes, light blue; utility nodes, light red. The objective of the risk-based decision network
is to maximize the reward while subject to a constraint on the risk index.

VI. SIMULATION RESULTS AND DISCUSSION

A. Simulation setup

The simulator environment used in this paper is an
Arctic AUV simulator created by Norgren [14] in MAT-
LAB/Simulink and C++. The vehicle dynamics implemented
in the simulator is based on the REMUS 100 AUV. The
simulated ice data is a three-dimensional floe-scale map of
a sea-ice draft compiled from expeditions by an AUV to
the near-coastal regions of the Weddell, Bellingshausen, and
Wilkes Land sectors of Antarctica, developed by Williams et
al. [15] and [16]. The Bayesian network was implemented in
Simulink with C++ using the dlib package [17].

B. Case studies

In this paper, we simulate a mission under ice where the
desired motion of the AUV is a zig-zag trajectory in the hori-
zontal plane, composed of a set of linear path segments, while
the altitude setpoint is autonomously selected and controlled
based on DVL measurements. The implemented set of possible
altitude setpoints is as ∈ As = {−10,−15,−20}[m]. The
reward is simply R(as) = −1/as, such that lower altitudes
give larger rewards. We present two case studies with different
risk-bounds. Case study 1 will have a risk-bound δ = 0.65,
and case study 2 will have a risk-bound δ = 0.55. An ocean
current velocity of Vc = 0.3 m/s is present in the simulations.

All observable network variables are first calculated as con-
tinuous values, and then discretized into discrete states 0, 1 and
2, representing low, medium and high severity, respectively.
Table III shows the discretization of the observable variables
from continuous values.

State 0 1 2
Navigational uncertainty < 0.25 0.25− 0.5 > 0.5 [-]
Power degradation < 50 50− 75 > 75 %
Ice surface gradient < 0.2 0.2− 0.4 > 0.4 [m/s]
Ocean current velocity < 0.3 0.3− 1 > 1 [m/s]
Desired altitude −10 −15 −20 [m]
Total path length < 1 1− 3 > 3 [km]
Ice thickness < 1.5 1.5− 3 > 3 [m]
Distance to base < 200 200− 500 > 500 [m]

TABLE III
DISCRETIZATION OF OBSERVABLE NODES IN THE NETWORK.

C. Simulation results

Figure 7-8 show the vertical trajectory, risk index and
evidence evolution over time for case study 1. Figure 10-11
show the same results for case study 2. Figure 9 shows the
3D trajectory beneath the ice surface, and Figure 12 shows the
corresponding trajectory in the horizontal plane.

As seen in Figure 7 and 10, the risk index is continuously
updated and the risk-bound is satisfied in both cases. When
obtaining an evidence that makes the risk index exceed the
risk-bound, the risk is mitigated by selecting an altitude
setpoint further away from the ice surface.

As expected, the AUV spends more time closer to the ice
surface in case study 1 with a higher risk-bound δ. The risk-
bound should be chosen by the operators based on their risk
appetite prior to the mission.

Some collision avoidance properties are obtained from the
proposed method: i) due to the feedforward term in (13), the
AUV will react instantly to changes in the slope of the ice
surface, and ii) an altitude setpoint further away from the ice
may be autonomously selected in situations with higher risks.
However, some collision avoidance system utilizing forwards-
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Fig. 7. Vertical trajectory of the AUV and risk index with δ = 0.65.
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Fig. 8. Evolution of the evidence in the Bayesian network with δ = 0.65.

Fig. 9. 3D trajectory of the AUV under the ice surface

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

0

10

20

30

D
e
p
th

 [
m

]

Estimated ice depth AUV depth

Reference depth Altitude setpoint

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

0.4

0.45

0.5

0.55

0.6

0.65

R
is

k
 i
n
d
e
x
 [
-]

Risk index Risk bound

Fig. 10. Vertical trajectory of the AUV and risk index with δ = 0.55.
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Fig. 11. Evolution of the evidence in the Bayesian network with δ = 0.55.

Fig. 12. Trajectory of the AUV in the horizontal plane



looking sonars that overrides the altitude controller is still
needed.

For future work, a thorough comparison of the guidance
scheme with and without the ice surface slope feedforward
should be conducted. A more extensive Bayesian network
risk model should be developed. Extending the risk model
to a dynamic Bayesian network for modeling the temporal
aspect of risk is of interest. This will be useful for autonomous
planning, as the predicted future evolution of risk may be taken
into account. Also, including a dynamic risk-bound, which
may be a function of e.g. the expected reward or uncertainties
in the estimates, is suggested for further work.

VII. CONCLUSION

A method for intelligent risk-based under-ice altitude con-
trol is presented. Firstly, an altitude guidance law for following
a contour of the ice surface via pitch control using DVL
measurements is proposed. A desired pitch angle is computed
based on the estimated altitude error and a feedforward on
the estimated slope of the ice surface in the vehicle heading
direction. Furthermore, a Bayesian network is developed for
online reasoning over the risk of vehicle loss, where the
probability of vehicle loss is captured in a susceptibility node,
and the consequences of vehicle loss is captured in a recovery
ineffectiveness node. Evidential reasoning is used to update
the posterior probability distribution over the current state of
risk from the continuous updates of evidences from sensor
data. This model is then extended to a decision network for
autonomous selection and reselection of the setpoint for the
altitude controller. The AUV will at a given time select the
altitude setpoint yielding the largest reward while subject to a
constraint on the risk. The risk-bound is tuned according to the
operators’ appetite for risk. Simulations show that the AUV
successfully adapts to the varying level of risk throughout its
mission by reselecting the altitude setpoint.
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REMUS AUV model

The values for the 6 DOF equation of motion (18) implemented in the simulator are taken
from [24]. The ridid-body, added mass and damping matrices for the REMUS 100 AUV
are as follows:

CRB =




30.479 0 0 0 0.597 0
0 30.479 0 −0.597 0 0
0 0 30.479 0 0 0
0 −0.597 0 0.189 0 0

0.597 0 0 0 3.462 0
0 0 0 0 0 3.45




(63)

MA =




0.93 0 0 0 0 0
0 35.5 0 0 0 −1.93
0 0 35.5 0 1.93 0
0 0 0 0.07 0 0
0 0 1.93 0 4.88 0
0 −1.93 0 0 0 4.88




(64)

D(νr) =




1.62|ur| 0 0 0 0 0
0 1310|vr| 0 0 0 −0.632|r|
0 0 1310|wr| 0 0.632|q| 0
0 0 0 0.13|p| 0 0
0 0 −3.18|wr| 0 188|q| 0
0 3.18|vr| 0 0 0 188|r|




(65)

The rigid-body and added mass centripetal and Coriolis matrices, denoted as C(νr) =
CRB(ν) +CA(νr) are given by:

CRB =

[
03×3 −mS(vbauv)−mS(ωbauv)S(rbg)

−mS(vbauv) +mS(rbg)S(ωbauv) −S(Ibω
b
auv)

]
(66)

CA =

[
03×3 −S(A11v

2
auv +A12ω

2
auv)

−S(11v
2
auv +A12ω

2
auv) −S(A21v

2
auv +A22ω

2
auv)

]
(67)

where S(rbg) = −ST (rbg) ∈ R3×3 is a skew-symmetric matrix, rbg represents the location
of the AUV’s center of gravity with respect fo the CO, Ib represents the inertia tensor
and Aij ∈ R3×3 given by

MA =

[
A11 A12

A21 A22

]
(68)

The propeller coefficients are taken from [41]. The remaining parameters for the REMUS
100 AUV are given by Table 2.



Table 2: REMUS 100 AUV parameters

Description Symbol Value
CG lever arm w.r.t. CO rbg [0, 0, 0.0196] [m]

CB lever arm w.r.t. CO rbb [0, 0, 0] [m]
Weight of vehicle W 299[N ]
Vehicle buoyany B 306[N ]
Density of sea water ρ 1025[kg/m3]
Fin lift coefficient cL,α 3.12[−]
Fin surface area Sfin 6.65× 10−3[m2]
Fin placement w.r.t. CO xfin −0.638[m]
Thrust coefficient KT 2.5075[−]
Torque coefficient KQ 0.3203[−]
Propeller diameter Dprop 0.1397[m]
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