
O
lav Sortland Thoresen

O
blivious R

A
M

 in practice

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Olav Sortland Thoresen

Oblivious RAM in practice

Master’s thesis in Communication Technology
Supervisor: Colin Alexander Boyd

June 2019

Oblivious RAM in practice

Olav Sortland Thoresen

Master of Science in Communication Technology
Submission date: June 2019
Supervisor: Colin Alexander Boyd, IIK
Co-supervisor: Gareth Thomas Davies, IIK

Clementine Gritti, IIK

Norwegian University of Science and Technology
Department of Information Security and Communication
Technology

Title: Oblivious RAM in practice
Student: Olav Sortland Thoresen

Problem description:

Outsourcing data storage to the cloud has become common practice both for individ-
uals and businesses. While cloud storage offers both scalability and cost savings, it
also introduces new security challenges. The cloud provider is not always trusted and
sensitive data therefore needs to be protected. While encrypting the data provides
some protection, it has been shown that access patterns, i.e. the order in which data
is read/written, can leak information about encrypted data.

Oblivious RAM is a proposed solution to this problem. It is a mechanism to hide
the access patterns of queries to outsourced data. Although the idea was proposed
more than 25 years ago it was regarded mainly as a theoretical concept. New
techniques have recently been proposed to make Oblivious RAM more practical, but
implementations for realistic and comparable data sizes are still lacking.

This master thesis aims to make a research contribution by implementing a small
number of promising candidates for Oblivious RAM, validating their constructions
and assessing real running times. These experiments will consolidate and enhance
understanding of the applicability of Oblivious RAM for cloud-based data outsourcing.

Responsible professor: Colin Alexander Boyd
Supervisors: Gareth Thomas Davies

Clementine Gritti

Abstract

The goal of this thesis is to study the performance of Oblivious RAM
(ORAM) schemes in a cloud setting and assess their practicality. To do
this, three ORAM schemes (ObliviStore, CURIOUS and RingORAM)
were tested on the IBM Cloud. The tests were based on five synthetic
workloads and one real workload. The synthetic workloads were designed
to approximate real cloud applications as closely as possible. The real
workload was based on Git, a popular version control system. The results
of these tests were used to compare the practicality of the three ORAM
schemes for different realistic scenarios.

The results showed that ORAM still is impractical for most workloads,
with costs and slowdowns being the major factors hindering practicality.
Nevertheless, a handful of use-cases where current ORAM schemes can be
practical, given some assumptions about the requirements for practicality,
were identified. One of these scenarios is based on using ORAM to back
up large (10-25 MB) email attachments. For this scenario, the slowdowns
of using ORAM did not hinder its practicality and the costs were within
reasonable limits for a large organization.

Apart from these findings, two other contributions were made by
this thesis. An ORAM proxy was developed, allowing arbitrary cloud
applications to be used with ORAM. This proxy can be used in future
studies, or in practical applications. In addition, an ORAM visualizer
was developed. This tool is intended for people that are unfamiliar with
the concept of ORAM and provides graphical visualizations of common
ORAM schemes.

Sammendrag

Målet med denne masteroppgaven er å studere ytelsen til nåværende
Oblivious RAM (ORAM) løsninger og undersøke hvor praktiske de er i et
skylagrings-scenario. For å gjøre dette ble tre ORAM løsninger (ObliviSto-
re, CURIOUS og RingORAM) testet på IBMs skytjeneste (IBM Cloud).
Fem syntetiske og en reell test ble gjennomført. De syntetiske testene
ble utformet for å tilnærme ekte skyapplikasjoner så godt som mulig.
Den reelle testen var basert på Git, et populært versjonskontrollsystem.
Resultatene av disse testene ble brukt til å sammenligne hvor praktiske
de tre ORAM løsningene er for forskjellige realistiske scenarier.

Resultatene av disse testene viser at ORAM fortsatt er upraktisk i de
fleste tilfeller. Høye kostnader og lav hastighet er de viktigste faktorene
som gjør at ORAM er upraktisk. På tross av dette ble det likvel identifisert
noen scenarier der nåværende ORAM løsninger kan være praktiske, gitt
noen antagelser om hva som kreves når det gjelder ytelse og kostnader.
Et av disse scenariene er basert på å bruke ORAM for å sikkerhetskopiere
store (10-25 MB) e-postvedlegg. For dette scenariet var nedgangen i
ytelse ikke til hinder for brukbarheten og kostnadene var innenfor rimelige
grenser for en stor organisasjon.

I tillegg til disse resultatene, har to andre bidrag til ORAM-miljøet
blitt utvilket i løpet av denne masteroppgaven. Det første er en ORAM
proxy som gjør det mulig å bruke ORAM i eksisterende skyapplikasjoner.
Denne proxyen kan brukes i fremtidige studier, eller i praktiske applika-
sjoner. I tillegg ble det utviklet et ORAM-visualiseringsverktøy. Dette
verktøyet gir grafiske visualiseringer av vanlige ORAM løsninger og er
ment for å hjelpe nye personer lære om ORAM.

Preface

This thesis is being submitted in fulfillment of the final requirement
of my master’s degree at the Department of Information Security and
Communication Technology at the Norwegian University of Science and
Technology (NTNU).

I would like to thank my supervisors Gareth Thomas Davies and Clemen-
tine Gritti for their guidance and invaluable feedback throughout the past
year. This thesis would not have been possible without their guidance
and knowledge. I would also like to thank my responsible professor Colin
Alexander Boyd, both for his feedback during this thesis and for the
informative and entertaining lectures he has held in his courses these past
five years.

I would also like to thank the good people of room A176 for their company
and support while writing this thesis. The task would have been much
more arduous without their good spirits and entertaining conversations
throughout the year.

Finally, I would like to thank my family for their continued support and
encouragement during my studies. Special thanks to my sister Maria
Sortland Thoresen for helping proof-read the thesis.

Trondheim, Friday 7th June, 2019

Olav Sortland Thoresen

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Justification . 4
1.3 Research Questions . 6
1.4 Scope . 6
1.5 Thesis Outline . 7

2 Preliminaries 9
2.1 Data Outsourcing . 9
2.2 Cloud Storage . 10

2.2.1 Amazon S3 . 10
2.2.2 OpenStack Swift . 11
2.2.3 IBM Cloud Object Storage 11

2.3 Git . 11
2.4 Asymptotic Notation . 12
2.5 Note on Units . 13

3 Oblivious RAM 15
3.1 Definition . 15
3.2 History . 16
3.3 Applications . 17
3.4 Building blocks . 18

3.4.1 Data Blocks . 18
3.4.2 Position Map . 18
3.4.3 Encryption . 19
3.4.4 Stash/Shelter . 19
3.4.5 Oblivious Scan . 19
3.4.6 Oblivious Sort . 20

vii

3.5 Trivial ORAM . 21
3.6 Square-Root ORAM . 22
3.7 Hierarchical Schemes . 22
3.8 Tree-Based Schemes . 25

3.8.1 PathORAM . 26
3.8.2 RingORAM . 26

3.9 Large-Message Schemes . 27
3.10 Partition-Based Schemes . 27

3.10.1 ObliviStore . 28
3.10.2 CURIOUS . 29

3.11 Differentially Private ORAMs . 30
3.12 Oblivious Parallel RAMs . 30
3.13 Summary . 30

4 Methodology 33
4.1 Selecting schemes . 33
4.2 Implementation . 34
4.3 Workloads . 38

4.3.1 Synthetic Workloads . 38
4.3.2 Real Workloads . 41

4.4 Test setup . 42
4.5 Evaluation . 48

5 Results 51
5.1 Synthetic workloads . 51

5.1.1 Workload A (Home User) . 52
5.1.2 Workload B (Traveling User) 55
5.1.3 Workload C (Email Backup) 58
5.1.4 Workload D (Code Distribution) 61
5.1.5 Workload E (E-Government) 64

5.2 Real workloads . 67

6 Discussion 69
6.1 Evaluation of Results . 69
6.2 Limitations . 73
6.3 Relation to Previous Work . 75
6.4 Other Contributions . 75

7 Conclusion & Future Work 79

References 81

Appendices

A Workload Files 87
A.1 Workload A (Home User) . 88
A.2 Workload B (Traveling User) . 89
A.3 Workload C (Email Backup) . 90
A.4 Workload D (Video Sharing) . 91
A.5 Workload E (E-Government) . 92

B Cost Estimates 95
B.1 Workload A (Home User) . 95
B.2 Workload B (Traveling User) . 96
B.3 Workload C (Email Backup) . 96
B.4 Workload D (Code Distribution) 96
B.5 Workload E (E-Government) . 97

C Full results 99
C.1 Workload A (Home User) . 100
C.2 Workload B (Traveling User) . 102
C.3 Workload C (Email Backup) . 104
C.4 Workload D (Code Distribution) 106
C.5 Workload E (E-Government) . 108

List of Figures

1.1 The classical ORAM model . 2
1.2 The public-cloud ORAM model. 3
1.3 The private-cloud ORAM model. 4

3.1 Example of a position map. 19
3.2 Layout of the remote storage in the Square-Root ORAM. 22
3.3 Layout of the remote storage in Hierarchical ORAM schemes. 24
3.4 Layout of the remote storage in Tree-Based ORAM schemes. 25
3.5 Accessing a block in a Partition-Based ORAM scheme. 27

4.1 Illustration of the ORAM proxy . 35
4.2 Testing the Swift API implementation using tempest. 36
4.3 Example of a change made to the codebase 38
4.4 File size distribution of popular GitHub repositories. 40
4.5 Timing a Git operation using the time command-line utility. 43
4.6 Creating a workload using the COSBench web interface. 44
4.7 Deployment diagram for the public cloud scenario 45
4.8 Deployment diagram for the private cloud scenario 46
4.9 Bandwidth requirements and estimated costs for Workload C 47

5.1 Relative metrics for Workload A. 54
5.2 Relative metrics for Workload B. 57
5.3 Relative metrics for Workload C. 60
5.4 Relative metrics for Workload D. 63
5.5 Relative metrics for Workload E. 66

6.1 Example output from the ORAM proxy. 75
6.2 Screenshot of the ORAM visualizer. 76
6.3 Screenshot of the memory view (No ORAM) 77
6.4 Screenshot of the memory view (Tree-Based ORAM) 78

xi

List of Tables

2.1 Symbols used in asymptotic notation. 12

3.1 Comparision of ORAM schemes . 31

4.1 The ORAM schemes that were selected for testing. 34
4.2 Summary of the workloads that were tested. 38
4.3 Statistics about the GitHub repositories that were collected. 41
4.4 Specifications of the desktop computer used in all tests. 43
4.5 Prices for a selection of cloud object storage services. 50

5.1 Baseline results for Workload A . 52
5.2 Baseline results for Workload B . 55
5.3 Baseline results for Workload C . 58
5.4 Baseline results for Workload D . 61
5.5 Baseline results for Workload E . 64
5.6 Baseline results of the real-world workload 67
5.7 Results of the real-world workload in a public-cloud scenario 67
5.8 Results of the real-world workload in a private-cloud scenario 68

xiii

Chapter1Introduction

Oblivious RAM (ORAM) is a security mechanism used to hide data access patterns.
The idea was proposed more than two decades ago, but it has been considered a
theoretical concept for most of its lifetime. Recently, the topic has seen renewed
interest with the rapid growth of cloud computing. Researchers have proposed ways
to apply ORAM to cloud storage applications to provide strong, provable security.
Most of this research has focused on theoretical cloud storage scenarios, with only a
few papers performing real-world tests. Comparisons of proposed ORAM schemes
are similarly lacking. This thesis aims to fill this gap by comparing the practicality
of different ORAM schemes, in commercially available cloud storage services, using
real implementations.

This chapter introduces the problem and justifies the research questions considered
in this thesis. First, the problem of secure data outsourcing is introduced. Next,
the research questions are presented and the scope of the thesis is narrowed down.
Finally, an outline of the thesis is provided.

1.1 Background

Storing sensitive data in an untrusted location (e.g. a cloud server) presents a number
of challenges. The data needs to be protected not only from eavesdroppers, but
also from the owner of the storage itself (e.g. a cloud provider). While encryption
and authentication solve some of these problems, these solutions are not always
sufficient. It has been shown that access patterns, i.e. the order in which data is
read/written, can leak information about encrypted data. An attack based on this
fact was demonstrated in 2012 by Islam et al. [IKK12]. They showed that up to 80%
of search queries made to an encrypted email dataset could be recovered from the
generated access pattern, given some minimal background knowledge of the dataset.
The aim of this thesis is to study proposed solutions to this problem (known as
Oblivious RAM algorithms) and compare them in a real-world setting.

1

2 1. INTRODUCTION

ORAM was initially developed by Goldreich and Ostrovsky [Gol87, Ost90, GO96]
as a way to protect software from reverse-engineering. They proposed a solution where
software would be sold in a package containing a secure processor and an encrypted
version of the software. The decryption key would be embedded in the secure
processor and physical shielding would be used to protect it. This software/hardware
package would then be connected to the customer’s computer, allowing it to use
the memory and other available peripherals (keyboard, mouse, etc.). To prevent
the customer from reverse-engineering the software, an ORAM algorithm would be
employed. The ORAM algorithm would act as an intermediary between the software
and the memory, obscuring the true access pattern of the software.

Software Program ORAM Algorithm Untrusted Memory

Access pattern visible Access pattern hidden

Secure Processor
Adversary

Figure 1.1: The classical ORAM model.

A model of this scenario is shown graphically in Figure 1.1. The figure shows the
secure processor running a program. The program needs to interface with untrusted
memory in a secure way. To achieve this an ORAM algorithm sits between the
program and memory. The algorithm takes requests from the program and turns
them into a string of seemingly random requests to the memory. This obscures the
true access pattern from an adversary observing the traffic to/from the memory.

In recent years, a branch of ORAM research has focused on applications in cloud
storage. Outsourcing sensitive information to the cloud presents challenges similar to
those faced in the software protection case. However, instead of protecting software
from reverse-engineering, the focus is on protecting data stored in the cloud from the
service provider that hosts it. This is known as the secure data outsourcing problem.

1.1. BACKGROUND 3

Figure 1.2 illustrates the problem graphically. A client (e.g a smartphone, a
desktop computer, etc.) communicates with an untrusted cloud. The link between
the client and the cloud is encrypted and secure against eavesdroppers. However, the
client’s access pattern can still be observed by an adversary that has access to the
cloud storage. This could be the owner of the cloud or an adversary that has gained
similar privileges (e.g through a security breach). To protect against this, the client
uses ORAM to hide its access pattern. This scenario is known as the public-cloud
scenario.

Software Program ORAM Algorithm

Adversary (e.g cloud owner)
Cloud Storage

Client (e.g a smartphone)

Figure 1.2: Secure Data Outsourcing - The public-cloud ORAM model.

Using ORAM in this way provides the desired level of security, but adds substantial
bandwidth overheads to the link between the client and the cloud. If this link
has limited capacity (e.g when using a cellular network) these overheads can be
prohibitively high. An optimization that can be made is to move the ORAM algorithm
away from the client. This is shown in Figure 1.3. In this scenario, the client instead
communicates with a server on a private cloud. The private cloud is trusted and the
client therefore does not need to hide its access pattern. The server is responsible
for the communication with the untrusted cloud storage and thus employs ORAM.
In this scenario, the bandwidth intensive ORAM operations occur between the two
clouds, relaxing the requirements on the (usually more constrained) link to the client.
This scenario is known as the private-cloud scenario.

4 1. INTRODUCTION

Software Program ORAM Algorithm

Trusted Cloud

Adversary (e.g cloud owner)
Cloud Storage

Client (e.g a smartphone)

High capacity link

Figure 1.3: Secure Data Outsourcing - The private-cloud ORAM model.

Existing ORAM schemes can be used in both of these scenarios, however, a study
by Bindschaedler et al. [BNP+15] showed that traditional ORAM schemes performed
poorly in a cloud setting. The study also identified some new metrics (response time,
monetary expenses, etc.) that should be considered when evaluating ORAM schemes
for use on the cloud. These metrics are important for practical performance, but
have traditionally not been considered in ORAM research.

1.2 Justification

As mentioned in the previous section, Bindschaedler et al. [BNP+15] studied the
performance of a selection of ORAM schemes in a cloud setting. To do this, they
ran tests on Amazon S3, both with and without ORAM, for a small set of workloads.
They claimed that these workloads were realistic and that their results thus reflected
the usability of ORAM at the time. This study is, to the best of the authors
knowledge, the only systematic study of ORAM performance in a cloud setting.

While their study is an important step on the way to practical ORAM, it has some
weaknesses that raise questions about how applicable their results are to real-world

1.2. JUSTIFICATION 5

applications. For instance, the workloads were generated by mounting an Amazon S3
bucket as a folder, running the benchmarking software Filebench1 on this folder and
recording the requests received by Amazon S3. This is problematic because Filebench
is designed to benchmark traditional storage devices, like hard drives or solid state
drives. Cloud storage solutions are typically optimized for other usage scenarios.
Dewan et al. [DH11] underline this fact, in a survey of cloud storage services, by
stating that: "cloud storage [...] is not exactly the same as that of a local file system.
Hence, integration with a local file system requires manipulations at several levels
right from mimicking the recursive directory namespace to the control of the access
control list." The developers of real-world cloud applications are likely to be aware
of this and their applications will therefore be designed around the strengths and
limitations of cloud storage. It is therefore likely that a gap between the results of
Bindschaedler et al. [BNP+15] and the real-world exists.

Another problem with the study lies in the last two steps of their methodology;
collecting a log of requests from Amazon S3 and replaying this log through an ORAM
scheme. The log contains the most important information about the requests made
to the S3 service, i.e. which types of requests were performed, how many bytes were
uploaded/download, timestamps, etc. However, it does not contain any information
about which requests were dependent on previous requests.

To illustrate why this is a problem, an example can be used. Imagine that an
application is reading a linked list stored in the cloud. The elements of the list are
stored in random locations on the cloud server (due to additions/deletions, other data,
etc.). Thus, to read an element in the list, all previous elements must be accessed.
This means that the application will first send a request for the first element, wait
for the response from the cloud, then request the next element, etc., until the desired
element is found. This process cannot be paralellized, but under the methodology
used by Bindschaedler et al. it is not possible to distinguish it from a sequence
of independent, parallelizable requests. This means that a parallel ORAM scheme
would perform unrealistically well when tested with this sequence, compared to if
the ORAM scheme was implemented as a part of the application.

The study by Bindschaedler et al. [BNP+15] was conducted in 2015. A substantial
amount of research has since been conducted and new ORAM schemes have been
proposed. Because of this, and the problems mentioned above, more work in the
area of practical ORAM is required.

1Filebench, https://github.com/filebench/filebench

https://github.com/filebench/filebench

6 1. INTRODUCTION

1.3 Research Questions

The aim of this thesis is therefore to answer the question:

– Are current ORAM schemes practical in a cloud setting?

To answer this question, the following sub-questions will need to be answered:

– Which metrics determine the practicality of ORAM in a cloud setting?

– Which types of workloads are found in practical cloud applications?

– How do current ORAM schemes perform under realistic workloads?

– What are the costs associated with using ORAM with cloud storage?

– Are there other factors that need to be considered when using ORAM in
practice?

This will be done by repeating the study of Bindschaedler et al. [BNP+15], but with
a new methodology and implementation. New ORAM schemes such as RingORAM
(see Section 3.8.2) will also be included.

1.4 Scope

A wide variety of ORAM schemes have been proposed in recent years. These
schemes are often tailored towards specific application scenarios. Because of this
great diversity, it is necessary to narrow down the scope of the thesis and focus on a
small selection of schemes. Since this thesis focuses on practical applications, only
schemes that can be implemented on current cloud storage solutions are considered.
In addition, to ensure that results are comparable, only schemes that adhere to the
mainstream definition of ORAM (see Section 3.1) are considered. The schemes that
have been selected are presented in Section 4.1.

Some ORAM schemes require server-side computations. These requirements
range in complexity from simple XOR-operations to full-blown general computation.
The APIs of common cloud storage services do not currently offer this functionality.
Because of this, schemes requiring server-side computations will not be considered in
this thesis.

Other types of schemes that are out of scope for this thesis are Oblivious Paralell
RAMs (schemes designed to support parallel accesses, see Section 3.12) and Differ-
entially Private ORAMs (schemes that do not guarantee perfect privacy, instead

1.5. THESIS OUTLINE 7

providing a tradeoff between privacy and performance, see Section 3.11). These
schemes deviate from the mainstream definition of ORAM and will therefore not be
considered.

In this thesis, only the two public-cloud and private-cloud scenarios mentioned
in Section 1.1 will be considered. In addition, because of time restrictions, only the
scenario where the client is a desktop computer, with ample local storage and a
reliable, high-capacity link to the cloud, will be considered.

1.5 Thesis Outline

The thesis is organized into 7 chapters as follows:

– Chapter 1: Introduction and motivation for the thesis.

– Chapter 2: Important concepts and terminology that will be used throughout
the rest of the thesis.

– Chapter 3: An introduction to the concept of ORAM, a key theoretical
concept in the thesis.

– Chapter 4: Description of the methodology used in the thesis, including the
test setup and the workloads that were selected. This chapter also describes
the components that had to be implemented and some challenges that were
faced during implementation.

– Chapter 5: A summary of the results that were gathered. Interesting and/or
unexpected results are highlighted and commented on in this chapter.

– Chapter 6: Discussion of the results and their implications in the context of
the research questions.

– Chapter 7: Conclusion of the thesis, and proposed future work.

Chapter2Preliminaries

This chapter presents some important concepts and definitions that will be used
throughout the rest of the thesis. First, the trend of data outsourcing is discussed,
followed by a short comparison of cloud storage services, a section on asymptotic
notation and a note on units. Note that the concept of Oblivious RAM (ORAM) is
not covered here, as it has been dedicated its own chapter (Chapter 3).

2.1 Data Outsourcing

The volume of data created and stored, by both businesses and individuals, has
increased rapidly over the last decade. This trend is expected to continue, with
IDC estimating that the total amount of data created, captured or replicated will
grow from 33 Zettabytes1 in 2018, to 175 Zettabytes in 2025 [RGR18]. Keeping
all this data backed up, secured and available is becoming increasingly challenging.
While businesses are faced with increased management costs [Avr14], individuals are
struggling with the increasing need for technical know-how [GL18].

Because of this, many are choosing to outsource their data to a third party. This
moves the burden of storing the data from the owner to the third party. In most
cases, the third-party is a cloud storage provider that provides storage services to a
large number of users. This can yield additional benefits from the point of view of the
data owner [Köh15]. A key benefit is scalability, since the cloud provider maintains a
large pool of resources ready to handle increases in data volume. Another benefit is
the cost savings incurred by not having to invest in hardware upgrades. Most cloud
providers operate with a pay-as-you-go business model, meaning that the data owner
only has to pay for the resources it actually uses. Finally, the technical know-how of
operating a high-availabilty and high-capacity storage service has to be maintained
by the cloud provider. This reduces the need for IT-staff for businesses and makes
the service more accessible to individuals.

1A zettabyte is approximately one trillion gigabytes, or 270 bytes

9

10 2. PRELIMINARIES

2.2 Cloud Storage

The adoption of cloud storage (and other cloud services) has grown rapidly in recent
years. Accompanying this growth has been a substantial amount of "hype" which
has caused some confusion regarding the precise definition of a cloud service. This
section aims to address this by giving the definitions that will be used throughout
the thesis.

The National Institute of Standards and Technology (NIST), an American stan-
dards agency, has created a definition of cloud computing [MG11]. The definition
is general enough to be useful, but at the same time specific enough to capture the
nuances of the term as it is used in this thesis. Whenever the terms cloud computing
or cloud service are used, they refer to the NIST definition, as stated below:

Definition 2.1. NIST definition of cloud computing [MG11]
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

Cloud storage is the use of cloud computing to provide storage services. The service
providers take advantage of the economic benefits of pooling storage resources to
offer users a cost-effective and convenient way to store arbitrary amounts of data.

Current cloud storage services are quite diverse when compared to traditional
storage solutions. Storage media like HDDs and CD-drives use standard connectors
and interfaces (e.g, SATA and SAS), making it easy to switch to a different storage
medium when the need arises. The same is not true for cloud storage services which
often require the use of proprietary Application Programming Interfaces (APIs) to
interact with the service. Services also differ in the way they logically structure the
storage. Some services support a traditional file hierarchy (e.g personal cloud storage
services like Dropbox or Google Drive) while others treat the storage as a collection
of objects (e.g Amazon S3, OpenStack Swift). The latter are referred to as object
storage services. Three object storage services, that are central in this thesis, are
covered in more detail in Sections 2.2.1 to 2.2.3.

2.2.1 Amazon S3

Amazon Simple Storage Service (Amazon S3) is a prominent example of a cloud
storage service. It was introduced in 2006 and was one of the first publicly available
services adopting the object storage paradigm. Amazon S3 organizes the storage into
buckets, where each bucket can hold an arbitrary amount of objects. Each object

2.3. GIT 11

has a unique identifier and holds a variable amount of data. In addition, objects can
store custom metadata that can be used in searches.

Amazon provides an API2 that can be used to interact with the storage. Every
call to this API constitutes a simple operation, like downloading an object or creating
a bucket. Each operation has an associated cost, with upload operations being more
expensive than download operations. When calculating a users bill, Amazon tallies
up the cost of all operations performed during the billing period. Additional charges
are added for the amount of bandwidth and storage used.

2.2.2 OpenStack Swift

OpenStack Swift (Swift) is a popular alternative to Amazon S3. It is a part of the
OpenStack ecosystem, a suite of open source solutions for cloud services originally
developed by Rackspace and NASA [Lam14]. Swift, like Amazon S3, is an object
storage service. Objects are organized into containers, the Swift equivalent of buckets.
Containers, like buckets, can not be nested meaning that only a one-level hierarchy
is supported.

Swift has an API3 that provides functionality similar to that of the Amazon S3
API. Since Swift is an open source project no fixed pricing scheme exists, instead
prices are decided by the cloud providers that deploy it. Examples of cloud providers
that deploy Swift are Dell, IBM and Rackspace.

2.2.3 IBM Cloud Object Storage

The IBM Cloud was chosen as the representative cloud service for this thesis (see
Section 4.4). Because of this, the object storage service available in this cloud (IBM
Cloud Object Storage) was used. This service is compatible with Amazon S3 and
uses the same logical structure (buckets and objects).The Amazon S3 API is used to
access the service, ensuring compatibility with existing cloud applications.

2.3 Git

Git was used in some of the tests that were conducted. A primer on Git terminology
is therefore included here. For a full introduction to Git, the reader is referred to the
book Pro Git by Scott Chacon and Ben Straub [CS14].

The most important term in Git is the repository. Git repositories can be thought
of as folders with version control. When multiple people are collaborating on a
project using Git, they are all making changes to the same repository. A consequence

2Amazon S3 API, https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
3OpenStack Swift API, https://developer.openstack.org/api-ref/object-store/

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://developer.openstack.org/api-ref/object-store/

12 2. PRELIMINARIES

of this is that their local repositories may be in different states. This is resolved by
a user pushing their changes to a central server, called the Git server. When new
changes are pushed, they are merged into the repository on the server. To receive
these changes, a different user has to pull the changes from the server. When the
changes are pulled, they are merged into the local repository of the user. In Git,
changes are referred to as commits.

The first time a user wants to access a repository, he/she has to clone the
repository from the server. This operation downloads the entire repository, including
the commit history (i.e the history of changes) to the users computer. After this
operation is performed, the users repository is in sync with that of the server, until
any new commits are pushed.

2.4 Asymptotic Notation

Asymptotic notation (also known as Big-O notation) is a mathematical notation
used to describe how a function grows when its argument approaches infinity. The
notation is often used in computer science to compare the running time of algorithms.
In ORAM literature it is used when describing the theoretical overheads of ORAM
schemes. The notation is occasionally used in this thesis and a short introduction is
therefore given in this section.

Symbol Meaning Example
O Upper bound 3N + 1 is O(N2) (i.e grows no faster than N2)
Θ Tight bound 3N + 1 is Θ(N) (i.e grows with the same rate as N)
Ω Lower bound 3N + 1 is Ω(logN) (i.e grows no slower than logN)

Table 2.1: The three symbols used in asymptotic notation and their meanings.

In mathematics, asymptotic notation is used to describe the growth of functions.
This is useful when comparing functions that have long, complicated expressions.
Consider the two functions f(N) = 2N + 5N3 + 15N2 + N logN + 1 and g(N) =
2N3 + 5N2 + 15N + logN + 1. At first glance these functions might look similar,
but upon closer inspection one can observe that one function grows much faster than
the other. Asymptotic notation can be used to efficiently express these types of
relationships between functions.

Three different symbols are used in asymptotic notation. These are shown in
Table 2.1. The first symbol, O (Big-O), is used to give an upper bound on the growth
of a function. Using the two functions from the last paragraph as an example, we
can say that both f and g are O(2N). This means that both functions grow slower
or at the same rate that 2N grows. This is true since the factors dominating the

2.5. NOTE ON UNITS 13

growth of the two functions are 2N for f and N3 for g. Both of these factors are
smaller than or equal to 2N . Note that we ignore the constant factors (e.g for g we
ignore the 2 in 2N3) when discussing growth, since these factors become negligible
as N approaches infinity. We can also say that g is O(N3), but f is not.

The two remaining symbols are used in a similar fashion. The symbol Ω (Big-
Omega) is used to give lower bounds, while Θ (Big-Theta) is a shorthand for saying
that a function has the same upper and lower bound. For example, we can say that
f is Θ(2N). This means that f is both O(2N) and Ω(2N).

Asymptotic notation is often used in ORAM papers to describe the bandwidth
overhead incurred by an ORAM scheme when a block is read or written. This
overhead typically depends on the number of blocks in the ORAM, commonly
referred to as N . A common overhead is O(logN), meaning that at most logN
blocks need to be accessed for each read or write operation. A summary of the
theoretical overheads of the ORAM schemes considered in this thesis is given in
Table 3.1.

A weakness of using asymptotic notation when describing ORAM schemes is
that it hides constants that could potentially be significant. An ORAM scheme with
a bandwidth overhead of 2 logN appears similar to a scheme with an overhead of
2000 logN when asymptotic notation is used. Because of this, it is not possible to
determine the practicality of an ORAM scheme from its theoretical overhead only.

2.5 Note on Units

There are differing opinions in the IT industry regarding the uses of prefixes when
discussing bytes. For example, some people think that kilobytes (KB) should refer
to 210 = 1024 bytes while others prefer 103 = 1000 bytes. Throught this thesis, the
traditional units are used, meaning that KB refers to 210 = 1024 bytes, MB refers
to 220 = 1048576 bytes, and so on. The reasoning behind this choice is that the
majority of the previous works that are referred to throughout the thesis uses these
units.

Chapter3Oblivious RAM

This chapter gives an introduction to the concept of ORAM, a key theoretical concept
in this thesis. First, a definition is given, followed by an overview of the history as
well as descriptions of a selection of ORAM schemes. For readers unfamiliar with
ORAM, the visualization tool that was created while researching for this thesis might
be useful while reading this chapter. It is described in Section 6.4 and a live version
is available at http://folk.ntnu.no/olavsth/oram.

3.1 Definition

Informally, ORAMs are mechanisms for secure data outsourcing. They allow data
to be stored in an untrusted location without leaking any information about the
data to the owner of the storage. This is achieved in two steps. First, the data is
encrypted before it is sent to the remote storage. This protects the data both in
transit and when sitting "idle" in the remote storage (assuming a secure and properly
implemented encryption scheme is used). Encryption does not however, protect the
way the data is accessed. When the data is read or written to by the user, an access
pattern is generated. The access pattern can potentially reveal a lot of information
about the data, depending on the nature of the data and how it is accessed.

A more formal definition of ORAM is given by Ren et al. [RFK+15]. In their
definition the untrusted storage is referred to as the server, being accessed by a client.
Note that slightly different terminology is used in this thesis. The term server is only
used when referring to a cloud server, while untrusted storage or external storage
is used in the general case. The definition is restated (with some slight changes to
notation) in Definition 3.1.

Definition 3.1. (ORAM Definition)
Let

~y = ((opM , addrM ,dataM), ..., (op1, addr1,data1))

15

http://folk.ntnu.no/olavsth/oram

16 3. OBLIVIOUS RAM

denote a data sequence of length M , where opi denotes whether the i-th operation is
a read or a write, addri denotes the address for that access and datai denotes the
data (if a write). Let ORAM(~y) be the resulting sequence of operations between the
client and server under an ORAM algorithm. The ORAM protocol guarantees that
for any ~y and ~z, ORAM(~y) and ORAM(~z) are computationally indistinguishable
if |~y| = |~z|, and also that for any ~y the data returned to the client by ORAM is
consistent with ~y (i.e., the ORAM behaves like a valid RAM) with overwhelming
probability.

3.2 History

The study of ORAMs started with the works of Goldreich and Ostrovsky [Gol87,
Ost90] in the 1980s. Their research was motivated by the growing trend of software
piracy. They argued that existing anti-piracy solutions both lacked sufficient theo-
retical treatment and were vulnerable to reverse-engineering. Both of these issues
were addressed in a 1996 paper [GO96] that proposed ORAM as a potential solution.
The paper proposed some ORAM schemes, studied their performance and laid the
theoretical groundwork for future ORAM research.

The best-performing scheme proposed by Goldreich and Ostrovsky was based on a
hierarchical construction. This construction was used in subsequent research [WS08,
PR10, KHK10] to create ORAM schemes with incrementally better performance.
These schemes can be classified as Hierarchical ORAMs (sometimes called Layered
ORAMs).

Other types of ORAMs have since been developed. Shi et al. [SCSL11] were
the first to drop the hierarchical construction and propose an ORAM scheme based
on a binary tree structure. By doing this, they achieved better practical per-
formance compared to other schemes. Their scheme, along with several improved
versions [SvDS+13, RFK+15] can be classified as Tree-Based ORAMs. These schemes
are discussed in Section 3.8.

Stefanov et al. [SSS11] suggested a new way to design ORAM schemes, based on
partitioning. They suggested dividing the remote storage into smaller ORAMs, called
Sub-ORAMs. This design allowed multiple requests to be processed at the same
time if the requested blocks reside in different Sub-ORAMs. Prominent examples
of this design are ObliviStore [SS13] and CURIOUS [BNP+15]. These schemes are
known as Partition-Based ORAMs and are covered in detail in Section 3.10.

Goodrich et al. [GMOT12] proposed a solution based on caching. In their solution,
blocks are cached by the client when they are first accessed. All subsequent read
or write operations only affect the local copy, ensuring that the access pattern is

3.3. APPLICATIONS 17

hidden from the server. When the cache eventually fills up, the remote storage is
shuffled and the changes from the cache are written back in an oblivious way. Their
scheme and its derivatives are called Large-Message ORAMs and are discussed in
Section 3.9.

A new ORAM category was recently introduced by Wagh et al. [WCM16]. They
relax the guarantees traditionally provided by ORAM, allowing a trade-off between
privacy and security. They call this type of ORAM a Differentially Private ORAM
(DP-ORAM). Under the traditional definition, an ORAM scheme guarantees that
any two access patterns are indistinguishable from the point of view of the external
storage. A Differentially Private ORAM instead gives some probabilistic guarantees
of how a small change in the input to the ORAM will affect the access pattern seen
by the external storage. These schemes are covered in Section 3.11, but are not
further considered in this thesis.

A branch of ORAM research has focused on making ORAMs parallel. These
schemes, while out of scope for this thesis, are briefly discussed in Section 3.12.

3.3 Applications

Although ORAMs were originally developed as a solution to software piracy, applica-
tions of the technology have been found in many different fields, both theoretical
and practical. At the time of writing these applications are mostly within academia.

The design of secure processors is perhaps the application that is closest to what
Goldreich and Ostrovsky originally envisoned. ORAMs have proven to be useful in
this area, with both Maas et al. [MLS+13] and Ren et al. [RFK+18] opting to use
PathORAM [SvDS+13] in their implementations of secure processors.

Secure Multi-Party Computation (MPC) is another research area where applica-
tions for ORAM have been found. The goal of MPC is to allow "a group of mutually
distrustful parties to compute a joint function on their inputs without revealing any
information beyond the result of the computation" [HHNZ19]. One way to achieve
this is to use ORAMs to build secure computation protocols. An example of this is
SCORAM by Wang et al. [WHC+14].

This thesis focuses on applications of ORAM in cloud storage. As mentioned
in Chapter 1, outsourcing sensitive information to the cloud presents challenges
similar to those faced in the software protection case. However, instead of protecting
software from reverse-engineering, the focus is on protecting data stored in the cloud
from the service provider that hosts it. Bindschaedler et al. [BNP+15] published a
paper on this topic where they studied the practical performance of a selection of
ORAM schemes in a cloud setting. They identified some metrics (response time,

18 3. OBLIVIOUS RAM

monetary expenses, etc.) which are important for practical performance, but have
traditionally not been considered in ORAM research. Their paper is an important
source for this thesis.

3.4 Building blocks

This section covers some of the building blocks that are commonly found in ORAM
schemes. These will be referenced in sections 3.5 - 3.12 where the schemes are
explained in detail.

3.4.1 Data Blocks

An ORAM consists of a (usually large) number of data blocks stored in some untrusted
location. To maintain obliviousness, all blocks are of the same fixed size. Some
ORAM schemes, such as the Square-Root ORAM described in Section 3.6, require
additional blocks that are not used for client data. This means that an ORAM of
size N blocks, as seen by the client, could require N +M blocks of remote storage to
function. In this case M can be both dependent and independent of N , depending
on which ORAM scheme is used.

It should not be possible for an adversary to differentiate between used and
unused blocks. To ensure this, dummy blocks are used. These blocks contain a
special value to indicate that they are empty. Since blocks are encrypted with a
probabilistic encryption scheme (see Section 3.4.3) only the client can distinguish
the dummy blocks from real blocks.

3.4.2 Position Map

When ORAM is used, blocks in the remote storage are shuffled randomly. This
means that a given block might not reside in the same location it would reside in if
ORAM was not in use. Because of this, two different address spaces are often used
when discussing ORAMs. The virtual address space refers to the addresses seen by
the client, while the physical address space refers to the addresses that the blocks
actually reside in at a given time. To keep track of the mapping between these two
address spaces, a position map is used. When the client asks for a block, the ORAM
scheme looks up its virtual address in the position map and finds the corresponding
physical address of the block. This is shown in Figure 3.1. The ORAM scheme
ensures that the position map is always up to date whenever blocks are moved or
shuffled in the remote storage.

The size of the position map is dependent on the size of the ORAM. This can be
a problem if size of the clients trusted storage is small. To alleviate this problem and

3.4. BUILDING BLOCKS 19

Virtual Address 1 2 3 4 5 ... N
Physical Address 7 5 8 2 4 ... 1

Figure 3.1: Example of a position map. The mapping between the virtual and
physical address of block #2 is highlighted.

achieve a constant client side storage independent of the ORAM size, recursion can
be used.

3.4.3 Encryption

Hiding the access pattern is only useful if the data itself is also hidden. Otherwise,
the adversary can recover the access pattern simply by tracking data blocks by their
content as they move around. Blocks therefore have to be encrypted before they are
sent to the remote storage.

Special care must be taken when selecting an encryption scheme. An adversary
should not learn anything by inspecting and comparing the encrypted blocks. This
means that two identical blocks must not look the same after encryption. Re-
encrypting a block without changing its contents must also produce a different
encrypted block, so that it is not possible to tell if blocks where changed. This can
be achieved using a probabilistic encryption scheme, meaning that randomness is
used during encryption.

Since encryption is required in all ORAM schemes, it is often not mentioned
explicitly in the literature. This is also the case in this thesis.

3.4.4 Stash/Shelter

Some ORAM schemes reserve a special area for short-term storage of blocks. In
Tree-Based ORAM schemes, this area is located in the trusted client storage and is
referred to as the stash. The Square-Root ORAM and its derivatives place this area
in the untrusted remote storage and refer to it as the shelter.

3.4.5 Oblivious Scan

Searching through an array to find an element is a common task in many algorithms.
This is traditionally done using a linear scan, which starts from one side of the array
and accesses every element until the desired element is found. If the array is sorted a
binary search can be used, which improves performance by continually halving the
search space, inspecting only the middle element and excluding one side from the
search. Both of these approaches give the desired result, but they are non-oblivious.

20 3. OBLIVIOUS RAM

This means that their access pattern depends on the input (in this case the array to
search and the desired element). An adversary can thus ascertain information about
the input from the access pattern. In the case of a linear scan, it is easy to see that
this is true. Assuming that the desired element was found, it was found in the last
location accessed before the scan terminated. This holds true for the binary search
as well. In addition, the binary search reveals information about how the desired
element compares to the other elements in the array, since the array is sorted.

The traditional linear scan and binary search can therefore not be used in ORAM
schemes. An oblivious version of the linear scan can be created by making two simple
changes to the algorithm: 1. Always access all elements (do not stop after desired
element has been found). 2. Whenever an element is accessed it should both be read
from and written to. This oblivious linear scan is used in many ORAM schemes,
most notably the Trivial ORAM scheme described in section 3.5. It is also possible
to create an oblivious version of the binary search (as demonstrated by Gentry et
al. [GGH+13a]) but this is complicated and not commonly used as a building block
in ORAM schemes. It is therefore not further elaborated here.

Adopting the notation used in [Tee15], the keyword scan denotes an oblivious
scan when used in pseuodocode.

3.4.6 Oblivious Sort

Sorting is another common operation that requires special care when obliviousness
is required. Most ordinary sorting algorithms, such as Quick Sort or Merge Sort,
are non-oblivious, meaning that their access pattern depends on the contents of the
array being sorted. Because of this, they are not suitable for use in ORAM schemes.

There exists sorting algorithms where the access pattern is independent of the
input. These are known as oblivious sorting algorithms and are used in some ORAM
schemes, particularly in Goldreich and Ostrovsky’s hierarchical construction and its
derivatives (for more details, see section 3.7)

One way to achieve oblivious sorting is to use a sorting network. Sorting networks
have a fixed number of inputs and outputs, as well as a fixed number of comparison
elements. These elements have two inputs (A & B) and two outputs (MIN & MAX).
Their function is to send the smallest of the inputs to the MIN output and the
largest to the MAX output. By connecting many such comparison elements together,
networks capable of sorting a large number of elements can be constructed. Since
these networks are fixed, the comparisions they make are not dependent on the array
being sorted. Thus they are oblivious. An example of such a network is Batcher’s
Sorting Network [Bat68]. This was the network used in the original hierarchical
ORAM scheme proposed by Goldreich and Ostrovsky [GO96].

3.5. TRIVIAL ORAM 21

Sorting networks are not the only way to construct oblivious sorting algo-
rithms. Randomized versions of classic sorting algorithms can also be oblivious.
Goodrich [Goo10] demonstrated this by creating a randomized version of shellsort.
While these algorithms usually outperform sorting networks, they can not guarantee
that the output will be fully sorted due to their randomized nature. Although the
failure probability is small, it still needs to be considered in practical implemen-
tations. Williams et al. [WST12] tried using the randomized shell sort in their
ORAM scheme, but ran into problems. In their paper, they remarked that: "when
applied to ORAM, the sort parameter k must be chosen to guarantee success with
overwhelming probability. [...] it is unclear what parameters can be chosen for a
practical implementation."

Adopting the notation used in [Tee15], the keyword sort denotes an oblivious
sort when used in pseuodocode.

3.5 Trivial ORAM

A very simple (but inefficient) ORAM scheme can be constructed from the observation
that the access pattern generated from accessing every block in the remote memory
does not yield any useful information for an attacker. It is therefore sufficient to
ensure that every block is both read and written to whenever a block is requested by
the client. This is known as the Trivial ORAM scheme, first proposed in Goldreich
and Ostrovsky’s original paper [GO96]. It is described in pseudocode in Algorithm 1.

Algorithm 1: Trivial ORAM (Adapted from [Tee15])
1 function access(op, addr, value):
2 scan blocks from 0 to N :
3 if blocki has virtual address addr then
4 if op = read then
5 tmp← blocki
6 else
7 blocki ← value

8 if op = read then
9 return tmp

Although this algorithm is very simple, it scales very badly. An ORAM of size
N requires N read operations and N write operations, for a total of 2N operations
every time a block is accessed. This quickly becomes too expensive as the size of the
ORAM grows. Asymptotically, the access overhead of the Trivial ORAM is O(N)
which is far worse than alternative schemes, which usually have an access overhead
of O(poly logn). (where "poly logn" means "some polynomial in logn")

22 3. OBLIVIOUS RAM

3.6 Square-Root ORAM

Goldreich and Ostrovsky [GO96] proposed the Square-Root ORAM as the first step
towards an efficient ORAM scheme. The main idea is to avoid having to access
O(N) blocks and instead only access O(

√
N). To achieve this, a special layout is

used. The remote storage is divided into two areas, the permuted memory and the
shelter. The permuted memory consists of the N original data blocks as well as

√
N

dummy blocks. This area is called permuted because it is regularly shuffled while
the ORAM is in use. The shelter can hold up to

√
N blocks and is reserved for short

term storage. The full layout is shown in Figure 3.2.

N real blocks √
N dummy √

N sheltered

Permuted Memory Shelter

Figure 3.2: Layout of the remote storage in the Square-Root ORAM.

The execution of the Square-Root ORAM is divided into epochs. An epoch
starts with the permuted memory being shuffled randomly. Next, a total of

√
N

virtual accesses are handled. When handling a virtual access, the entire shelter is
first scanned. If the requested block is not found in the shelter, it is read from its
current location in the permuted memory. Otherwise a dummy block is read from
the permuted memory. In any case, either the original value (in case of a read) or the
new value (in case of a write) is then written (obliviously) to the shelter. Once

√
N

virtual accesses have been handled, the blocks in the shelter are written (obliviously)
back to the permuted memory and a new epoch starts.

The Square-Root ORAM is described in pseudocode below. For a more detailed
explanation, including proofs, the reader is referered to the original paper [GO96].

3.7 Hierarchical Schemes

Goldreich and Ostrovsky [GO96] showed that the theoretical lower bound for ORAM
schemes is Ω(logN). To get closer to this bound they proposed a new scheme
that achieved a poly-logarithmic overhead. They achieved this by extending the
Square-Root ORAM. The basic idea is to view the Square-Root ORAM as having
two levels; the first being the stash and the second the permuted memory. This
construction can be extended to form a hierarchy of levels, where every level acts as
stash for the next. By making each level twice as large as the previous, a total of
logN levels are required.

3.7. HIERARCHICAL SCHEMES 23

Algorithm 2: Square-Root ORAM (Adapted from [Tee15])
1 function access(op, addr, value):
2 if t = 0 then
3 begin_epoch()
4 else if t =

√
(N) then

5 end_epoch()
6 else
7 scan blocks in the shelter:
8 if blocki has virtual address addr then
9 tmp← blocki

10 InShelter ← true

11 if InShelter then
12 dummy ← blockπ(N+t) . Reads a dummy block
13 else
14 tmp← blockπ(addr)
15 if op = write then
16 tmp← value
17 scan blocks in the shelter:
18 write a block with address addr and data tmp into available slot
19 t← t+ 1
20 if op = read then
21 return tmp
22
23 function begin_epoch():
24 π ← a random permutiation of [0, N +

√
N]

25 scan blocks in the permuted memory:
26 tag blocki with π(i)
27 sort blocks on the tagged value
28 return π

29
30 function end_epoch():
31 scan blocks in the shelter:
32 tag blocki as "new"
33 sort entire memory on virtual addresses
34 scan entire memory:
35 if blocki and blocki+1 have the same virtual address then
36 overwrite the oldest block with a dummy block

In the Square-Root ORAM, the entire shelter is obliviously scanned every time it
is accessed. Doing this in the hierarchical solution would be too expensive, as every
level would have to be scanned. Because of this, levels are treated as hash tables
instead of arrays. This way, the location of a block can be looked up before it is
accessed. While this improves performance, it raises some new problems. The first

24 3. OBLIVIOUS RAM

problem is that an adversary might be able to predict which location a block will
map to in the hash table, depending on the hash function used. If a well known hash
function is used, the adversary can pre-compute the location for a large number of
virtual addresses and create a lookup table. To address this problem, the Hierarchical
ORAM uses a secret, random, hash function for every level in the hierarchy.

The second problem is that hash tables are prone to collisions, meaning that two
different blocks could end up in the same location. To solve this problem, entries in
the hash table are treated as buckets. Each bucket can hold a fixed number of blocks.
Collisions are therefore not a problem unless buckets become full. The probability
of this happening is small if each bucket can hold O(logN) blocks and the hash
function distributes blocks uniformly [GO96]. The full layout, with levels, buckets
and blocks is shown graphically in Figure 3.3.

...

· · ·

logN levels
logN blocks

Figure 3.3: Layout of the remote storage in Hierarchical ORAM schemes.

To access a specific block, referred to as blocki, the following steps are taken:

– for every level, until blocki has been found:

◦ look up the bucket corresponding to blocki is in the hash table
◦ scan the bucket
◦ if blocki is found, store it in a temporary variable

– read dummy blocks from all remaining levels

– if the operation is a write, update the temporary variable

– write the temporary variable to the highest level of the hierarchy

The advantage of this hierarchical structure is that it allows for longer epochs.
The biggest overhead of the Square-Root ORAM is the reshuffling operations that
happen at the beginning/end of an epoch.

3.8. TREE-BASED SCHEMES 25

3.8 Tree-Based Schemes

Tree-Based ORAMs organize the remote storage in a binary tree structure. Each
node in the tree is a bucket that can hold a fixed number of data blocks. Every block
is assigned to a random leaf node and will at any time reside in one of the buckets on
the path to this leaf node. Whenever a block is accessed, it is assigned to a new leaf
node and placed at the top of the tree. Blocks are periodically moved down the tree
in a process called eviction. This design was first proposed by Shi et al. [SCSL11]
and has since been improved upon in several papers [GGH+13b, CP13, SvDS+13,
CLP14, WCS15, RFK+15]. An illustration of the design is shown in Figure 3.4.

block resides along path

Figure 3.4: Layout of the remote storage in Tree-Based ORAM schemes.

The main innovation of Tree-Based ORAMs is that these schemes do not require
periodic reshuffling of the remote storage (an expensive operation). Instead the
shuffling is performed in smaller steps, with every eviction step performing a partial
shuffling operation. While the main goal of the eviction is to move blocks down
the tree, a side effect is that blocks are moved towards their randomly assigned
positions. Over time the remote storage will become completely shuffled, compared
to its original state.

A drawback of this approach is that the eviction process can fail. As the ORAM
fills up, more and more blocks will be assigned to the same path in the tree, eventually
causing the fixed size buckets to become full (this is often referred to as an overflow
in the literature). When this happens, blocks can no longer be evicted from the root
node and it is also filled up. This causes the ORAM scheme to enter a failure state
from which it cannot recover. The original paper [SCSL11] addressed this issue by
arguing that the failure probability is small, but this is only true in their theoretical
analysis. For practical implementations with restrictions on local and remote storage,
this becomes a real issue. Because of this, subsequent papers have addressed this
problem more thoroughly.

26 3. OBLIVIOUS RAM

Asymptotically, Tree-Based ORAMs have the same overhead as Hierarchical
ORAMs, however simulations have shown that they perform better under practical
workloads [SCSL11].

3.8.1 PathORAM

A notable Tree-Based ORAM scheme is PathORAM [SvDS+13], due to its ability to
give a theoretical bound on the local memory usage. This is useful in constrained
devices like embedded systems or mobile phones.

Path ORAM extends the original binary tree construction by introducing a stash.
The stash is similar to the shelter from the Square-Root ORAM in that it is used to
temporarily store blocks. It can only store a fixed number of blocks, independent of
the size of the ORAM (unlike the shelter) and it can be located in either local or
remote storage. The stash is used both as a cache, to improve performance, and as a
place to store overflowing blocks. This reduces the probability of ending up in the
failure state described in the previous section.

For a full description of PathORAM, including proofs and practical experiments,
see the original paper by Stefanov et al. [SvDS+13].

3.8.2 RingORAM

Ren et al. [RFK+15] proposed an improved version of PathORAM. Their scheme,
known as RingORAM achieves 2.3× to 4× better bandwidth and allows tuning the
size of the local memory for different application scenarios. These improvements
makes RingORAM the most interesting Tree-Based ORAM scheme for practical
applications.

These improvements are achieved using several new techniques and insights. The
bandwidth requirements are reduced by making the bandwidth independent of the
bucket size. In PathORAM, reading a block from a bucket amounts to reading and
writing all the blocks in that bucket to maintain obliviousness. In RingORAM, only
one block needs to be read. For data blocks, this is still oblivious since they are
immediately assigned to a new path in the tree after being read. This is not true for
dummy blocks, so some periodic reshuffling of buckets are required. If a bucket has
S dummy blocks, it will need to be reshuffled after it has been accessed S times.

Additionally, RingORAM uses a better eviction strategy. This strategy is based
on performing evictions on paths in a lexicographical order, instead of evicting on
the most recently accessed path. This spreads eviction paths more evenly over the
tree. Because of this, evictions can happen less frequently while still maintaining a
low failure probability.

3.9. LARGE-MESSAGE SCHEMES 27

For a full description of the scheme, see the paper by Ren et al. [RFK+15].

3.9 Large-Message Schemes

Large-Message ORAMs rely heavily on caching. Whenever a data block is fetched
from the external storage, it is cached by the client. If the same data block is
requested later, it will be fetched from the cache without any interaction with the
remote storage. This ensures that blocks are only accessed once. When the cache is
full, the remote storage has to be reshuffled and the blocks in the cache are written
back obliviously.

A drawback of this approach is that updated blocks are only written back to the
remote storage once the cache fills up. If the client crashes, all changes since the last
reshuffle are lost.

An example of a Large-Message ORAM scheme is PracticalOS by Goodrich et
al. [GMOT12].

3.10 Partition-Based Schemes

Partition-Based ORAMs divide the external storage into a set of smaller partitions.
Each partition is a fully functioning ORAM (often refered to as a partition ORAM or
Sub-ORAM) and the client uses a position map to keep track of which partition a data
block resides in. When blocks are retrieved, they are stored for a random amount of
time in the client’s eviction cache before being written back to the external storage.
This design is notable because it supports concurrent requests if the requested blocks
reside in different partitions.

Sub-ORAM Sub-ORAM Sub-ORAM Sub-ORAM

Virtual Address 1 2 3 4 5 ... N
Sub-ORAM 2 3 4 1 4 ... 1

read dummy read dummy read block2 read dummy

Remote

Client

Figure 3.5: Accessing a block in a Partition-Based ORAM scheme.

28 3. OBLIVIOUS RAM

When accessing a block in a partition based scheme, the following steps are
carried out (these steps are shown graphically in Figure 3.5):

– look up the virtual address of the block in the position map to find the
corresponding partition.

– forward the block request to the Sub-ORAM in that partition.

– request a dummy block from the Sub-ORAMs of all other partitions.

– assign the block to a new random partition and add it to the eviction cache.

The third step is crucial for maintaining obliviousness. Without this step, an adversary
would learn which partition a given block resides in, effectively revealing the position
map stored in the clients trusted memory.

The blocks in the eviction cache have to be written back to the remote storage at
some point. This task is handled by the eviction process, which runs as a background
process. Different schemes use different eviction strategies, but a possible strategy is
random eviction. This strategy was described by the authors of the partition based
scheme ObliviStore [SS13] as follows: "with every data access, randomly select 2
partitions for eviction. If there exists a block in the eviction cache that is assigned to
the chosen partition, evict a real block; otherwise, evict a dummy block to prevent
information leakage." Evicting blocks at random times in this way ensures that an
adversary can not correlate a block access to an eviction.

3.10.1 ObliviStore

ObliviStore [SS13] is a prominent example of a partition based ORAM scheme. It is
based on the SSS ORAM by Stefanov et al. [SSS11], but with several modifications
and innovations that allow it to support asynchronous operations. This is a huge
benefit in cloud storage scenarios, since every request experiences some latency. This
latency depends on many factors, including the physical distance to the cloud server
and the current load on the server handling the request. Some requests can therefore
take longer to complete than others. ORAM schemes that allow asynchronous
operations can use this time to process other requests instead of sitting idle while
waiting for requests to complete.

A drawback of allowing asynchronous operations is that it introduces a new
channel that can leak information to an adversary; the timing channel. To ensure
obliviousness, the timing of asynchronous requests must not depend on the timing of
the clients original request to the ORAM. The authors of ObliviStore formalized this

3.10. PARTITION-BASED SCHEMES 29

by defining the notion of oblivious scheduling and showed that ObliviStore satisfies
this requirement. Their definition is restated below:

Definition 3.2. (Oblivious accesses and scheduling)
Let seq0 and seq1 denote two data access sequences of the same length and with the
same timing:

seq0 := [(blockid1, t1), (blockid2, t2), ..., (blockidm, tm)]

seq1 := [(blockid′
1, t

′
1), (blockid′

2, t
′
2), ..., (blockid′

m, t
′
m)]

Define the following game with an adversary who is in control of the network and
the storage server:

– The client flips a random coin b.

– Now the client runs a distributed asynchronous ORAM algorithm and plays
access sequence seqb with the adversary.

– The adversary observes the resulting event sequence and outputs a guess b′ of
b.

We say that a (distributed) asynchronous ORAM is secure, if for any polynomial-
time adversary, for any two sequences seq0 and seq1 of the same length and timing,
|Pr[b′ = b]− 1

2 | ≤ negl(λ), where λ is a security parameter, and negl is a negligible
function. Note that the set of events observed by the adversary in the non-distributed
and distributed case are given in Equations 1 and 2 respectively.

To meet this requirement, a lot of complexity was introduced to the design of
ObliviStore (e.g 4 semaphores are required to properly synchronize all tasks). This
makes implementation difficult. Bindschaedler et al. [BNP+15] discovered a subtle
issue in the authors implementation of ObliviStore that undermines its theoretical
security claim.

3.10.2 CURIOUS

CURIOUS is a general partition based framework, proposed by Bindschaedler et
al. [BNP+15]. The authors observed that metrics like monetary expense and response
time had not been considered in existing ORAM schemes. Because of this they
created CURIOUS, which while being asymptotically worse than existing schemes
like ObliviStore, performs better under these metrics.

Another benefit of CURIOUS is that it is modular. While ObliviStore uses a
variant of the SSS ORAM [SSS11] for its partitions, CURIOUS allows using any

30 3. OBLIVIOUS RAM

ORAM scheme. This means that its performance can be continually improved as
new and faster ORAM schemes are discovered. It also reduces complexity, making
implementation easier. In this way some of the issues plaguing ObliviStore can be
avoided. The authors were able to prove that this simplified construction also satisfies
the oblivious scheduling requirement.

3.11 Differentially Private ORAMs

Differentially Private ORAMs aim to improve the performance of ORAM by sac-
rificing some of the privacy guarantees provided by the original ORAM definition.
This is done by adopting a new definition based on differential privacy. The notion
of differential privacy was first introduced by Cynthia Dwork [Dwo06] as a way to
quantify the privacy of users whose data has been collected for statistical purposes.
Wagh et al. [WCM16] used this to propose a new ORAM definition where complete
privacy is no longer a requirement. Instead, schemes can be designed to target
different levels of privacy, opening up a new design space that had previously not
been considered by the research community.

These schemes are not directly comparable to traditional ORAM schemes, since
they do not adhere to the traditional definition of ORAM. Because of this, they are
not considered further in this thesis. The interested reader is referred to the paper
by Wagh et al. [WCM16] that originally proposed the idea for more information.

3.12 Oblivious Parallel RAMs

The previously mentioned ORAM schemes are not parallel from the point of view of
the user of the ORAM. This means that the ORAM can not be accessed by more than
one user at the same time. A branch of ORAM research has focused on addressing
this issue and designing ORAM schemes that can support this, known as Oblivious
Paralell RAMs (OPRAMs). These schemes are not further discussed in this thesis,
but the interested reader is referred to [BCP16] for more details.

3.13 Summary

Table 3.1 provides a high-level overview of the ORAM schemes mentioned in this chap-
ter. In addition, the theoretical bandwidth overhead and local storage requirements
of each scheme is specified, using asymptotic notation.

3.13. SUMMARY 31

Scheme Type Overhead Local Storage
Trivial ORAM [GO96] Trivial O(N) O(1)
Square-Root ORAM [GO96] Square-Root O(

√
N logN) O(1)

Hierarchical ORAM [GO96] Hierarchical O((logN)3) O(1)
PracticalOS [GMOT12] Large-Message O(1) O(2

√
N)

PathORAM [SvDS+13] Tree-Based O(logN) O(logN) · ω(1)
RingORAM [RFK+15] Tree-Based O(logN) O(logN) · ω(1)
ObliviStore [SS13] Partition-Based O(logN) O(N)
CURIOUS [BNP+15] Partition-Based Tunable Tunable

Table 3.1: Comparision of the ORAM schemes mentioned in this chapter.

Chapter4Methodology

The methodology used in this thesis is similar to the methodology used by Bind-
schaedler et al. [BNP+15]. However, to avoid the problems discussed in Section 1.2,
some modifications have been made. At a high level, the methodology consists of
five steps:

1. Selecting representative ORAM schemes.

2. Implementing the test framework and schemes.

3. Generating workloads.

4. Performing tests with and without ORAM.

5. Evaluating the results and drawing conclusions.

Each step is explained in detail below. While all of these steps draw inspiration from
[BNP+15], the second and third step have been changed significantly. These steps
are therefore explained in more detail.

4.1 Selecting schemes

Three criteria were used when selecting ORAM schemes. First of all, schemes
should be applicable to current cloud storage services. This means that they do
not rely on features not currently provided by mainstream cloud storage APIs.
An example of this is server-side computations. Most cloud storage services are
limited to uploading/downloading files and do not provide any mechanisms for doing
computations in the cloud. Some ORAM schemes are designed around server-side
computations (e.g [DvDF+16]) while others use them as an optional optimization
(e.g RingORAM [RFK+15]) to increase performance in applications where they are
available. The former are not considered in this thesis, while the latter are considered
without any server-side optimizations.

33

34 4. METHODOLOGY

The second criteria is that schemes should adhere to the mainstream definition of
ORAM (see Section 3.1). This is to ensure that results are comparable. Examples of
schemes that do not adhere to this are Differentially Private ORAMs (DP-ORAMs)
and OPRAMs (see Sections 3.11 and 3.12).

Finally, schemes should have existing implementations available or a sufficiently
detailed description so that they can be implemented in the timeframe of the thesis.
This is a purely practical criterion, based on the experiences of Bindschaedler et
al. [BNP+15]. In their paper they noted that several schemes were difficult to
implement because "the papers did not describe many important design details for
developing working systems."

With the above criteria in mind, the following schemes were selected:

Name Type Proposed by
ObliviStore Partition-Based Stefanov & Shi [SS13]
CURIOUS Partition-Based Bindschaedler et al. [BNP+15]
RingORAM Tree-Based Ren et al. [RFK+15]

Table 4.1: The ORAM schemes that were selected for testing.

PracitcalOS (by Goodrich et al. [GMOT12]) was also considered, since an implemen-
tation was available. However, limited testing showed that this scheme incurred very
high costs. The thesis had a limited budget ($200 on the IBM Cloud) and it was
therefore not possible to include it.

4.2 Implementation

This section describes how the software components that were needed to run tests
were implemented. First the implementation of the testing framework and the ORAM
proxy is described, followed by the implementations of the ORAM schemes that were
tested.

Test framework / ORAM proxy

The test framework was implemented in Java by extending the code for the CURIOUS
framework1 published by Bindschaedler et al. [BNP+15]. This codebase contains all
the code they used in to run their tests, as well as implementations of the ORAM
schemes they tested. The code is modular, meaning that new features can be added
without large modifications to the existing codebase. This was exploited to add two

1CURIOUS framework, http://seclab.soic.indiana.edu/curious/

http://seclab.soic.indiana.edu/curious/

4.2. IMPLEMENTATION 35

new major features to the test framework. These additions are described in detail
below.

The first feature that was added was support for running tests on OpenStack
Swift. This was implemented using JOSS2, a Java library that provides a Swift API
client. The reason for adding this feature was that the the original test setup of the
thesis used a private Swift cloud. This cloud was later replaced by the IBM Cloud
because of performance issues.

The second feature was added to address problems with the methodology of
Bindschaedler et al. [BNP+15]. Their tests are based on first running an application,
in this case Filebench3, on a bucket in Amazon S3. When the execution of the
application finishes, a log of the requests to the bucket is collected. The requests
in the log are then replayed through an ORAM scheme. This approach allows the
ORAM scheme to be separated from the application and tests of the ORAM schemes
to be run independently of the application itself. While this might seem attractive,
this solution can lead to inaccuracies when using ORAM schemes that can handle
parallel requests (see Section 1.2).

This thesis will therefore use a different approach; running the ORAM schemes
in a proxy. This can be implemented by mimicking the API of an existing cloud
service and translating each request into a series of ORAM requests. This solution is
flexible, since only minimal modification to the application is required. It also avoids
the inaccuracies related to parallel ORAM schemes, since the application runs at the
same time as the proxy. This approach is illustrated in Figure 4.1.

ORAM Proxy

Application-level
request

ORAM-level
request(s)

1 4

2

9

Figure 4.1: An ORAM proxy translating an application level request into one or
more ORAM requests.

This "proxy approach" was the second feature added to the codebase. It was
implemented by creating an implementation of the Swift API. This implementation
was created from scratch since existing implementations (e.g JOSS) only supported
the client side of the API. The public documentation4 of the API was used during

2JOSS, http://joss.javaswift.org/
3Filebench, https://github.com/filebench/filebench
4OpenStack Swift API, https://developer.openstack.org/api-ref/object-store/

http://joss.javaswift.org/
https://github.com/filebench/filebench
https://developer.openstack.org/api-ref/object-store/

36 4. METHODOLOGY

development. To ensure the correctness of the implementation, a tool called Tempest5

was used. This tool provides a set of integration tests that can be used to test
deployments of OpenStack. Figure 4.2 shows the output when running tempest
against the ORAM proxy. The flag --regex is used to specify which tests should be
included, in this case only tests matching the string "object_storage". By providing
this flag, only tests for Swift will run. The flag --black-regex does the exact
opposite. It specifies which tests tempest should not run. In this case it is used to
exclude tests for the more advanced features of the API. These features were not
fully implemented, since they are superfluous when running ORAM tests.

olav@olav -master -pc :~$ tempest run --regex " object_storage " \
--black - regex "acl| authorize | public | version |copy| manifest | segments | range "
...
======
Totals
======
Ran: 114 tests in 47.0000 sec.
- Passed : 86
- Skipped : 28
- Expected Fail: 0
- Unexpected Success : 0
- Failed : 0
Sum of execute time for each test: 80.0518 sec.

==============
Worker Balance
==============
- Worker 0 (24 tests) => 0:00:47.488577
- Worker 1 (2 tests) => 0:00:24.325569
- Worker 2 (3 tests) => 0:00:06.062838
- Worker 3 (27 tests) => 0:00:01.294556
- Worker 4 (21 tests) => 0:00:00.393802
- Worker 5 (1 tests) => 0:00:00.305514
- Worker 6 (15 tests) => 0:00:10.714937
- Worker 7 (21 tests) => 0:00:13.631759

Figure 4.2: Verifying the correctness of the Swift API implementation using tempest.

Another improvement that was made to the codebase is adding support for
requests of arbitrary sizes. This was not considered in the study by Bindschaedler et
al. [BNP+15], which used workloads where the file sizes were always aligned with the
block size they had chosen. This is not the case for the workloads used in this thesis
or for real-world cloud applications. To be able to support this, a padding scheme
was added. Application-level requests are broken up into blocks. For each block, at
least one byte is reserved for a special value that marks the end of the data (0x01
was chosen for this value). If there are any unused bytes after this value, they are set
to (0x00). When reading blocks, the program starts from the last byte and reads

5Tempest, https://github.com/openstack/tempest

https://github.com/openstack/tempest

4.2. IMPLEMENTATION 37

backwards. Once it reaches the special value, it knows that the padding has ended
and the remaining data is the application-level data.

Schemes

Implementations for the selected ORAM schemes (Table 4.1) were adapted from
various sources. The implementations for ObliviStore, CURIOUS and PracticalOS
were adapted from the code released by Bindschaedler et al. [BNP+15]. Only
minor changes had to be made to these schemes. Note that the implementation of
PracticalOS was only used for a limited time during development since it was dropped
early on. The implementation of RingORAM was adapted from a publicly available
repository6 published by the GitHub user caohuikang. A number of changes had to
be made both to this implementation and to the test framwork / ORAM proxy to
make it work. One of these changes was adding support for partial downloads, since
RingORAM needs to be able to fetch only a single block from a bucket (without this
ability the bandwidth improvements of RingORAM are lost). This is supported by
most cloud APIs, but was not originally suppported in the code by Bindschaedler et
al. [BNP+15], since none of the schemes they tested required this ability.

Challenges

This section describes some of the challenges faced during the implementation phase.
In addition to adding new features, some bugs in the testing framework had to be
fixed. An example of this is the way that asynchronous requests were handled. In
the original code a HashMap7 was used to store pending requests. HashMap is a data
structure in the Java standard library designed for storing key-value pairs. The
problem with using this class is that it does not support concurrency, meaning that
multiple requests arriving at the same time will crash the program. This bug was
likely never encountered in the original study, since requests were always sequentially
read from a log file. However, with the "proxy approach" requests can arrive at any
time from the software using the ORAM, triggering the bug. To fix the bug, it was
sufficient to replace the HashMap with a ConcurrentHashMap, another class from
the Java standard library that provides the same functionality while also allowing
concurrent accesses. This fix is shown in Figure 4.3.

Another challenge that had to be tackled was high memory usage. The ORAM
proxy needed to be able to handle multiple application-level requests arriving at the
same time. To support this, asynchronous Java Servlets8 were used in conjunction
with a queue of pending application-level requests. When running the first tests, it
was discovered that this queue would not be cleared as the application-level requests

6RingORAM, https://github.com/caohuikang/RingORAM
7HashMap, https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
8Java Servlets, https://www.oracle.com/technetwork/java/index-jsp-135475.html

https://github.com/caohuikang/RingORAM
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://www.oracle.com/technetwork/java/index-jsp-135475.html

38 4. METHODOLOGY

were completed. This lead to a memory leak, where some tests would consume all
the memory available on the test computer (32 GB). This issue and a number of
other smaller issues related to concurrency had to be fixed before tests could be run.

--- a/src/main/java/ eoram / cloudexp / evaluation / PerformanceEvaluationLogger .
java

+++ b/src/main/java/ eoram / cloudexp / evaluation / PerformanceEvaluationLogger .
java

- protected Map <Long , RequestLogItem > requestsMap = new HashMap <Long ,
RequestLogItem >();

+ protected Map <Long , RequestLogItem > requestsMap = new ConcurrentHashMap <
Long , RequestLogItem >();

Figure 4.3: Example of a change made to the codebase to fix issues with asynchronic-
ity.

4.3 Workloads

As mentioned in Chapter 1, Bindschaedler et al. [BNP+15] conducted a study with
goals similar to those of this thesis. One of the justifications for conducting a
new study is that the workloads they used were not representative of real cloud
applications (see Section 1.2). For this reason, the workloads used in this thesis were
crafted to closely resemble real-world use cases.

4.3.1 Synthetic Workloads

To this end, two classes of workloads were selected. One representing a home user
and one representing an organization. For each class, a small number of workloads
were created. It is hoped that these workloads cover the most common cloud storage
use cases where the security benefits of ORAM could be of interest. The workloads
are summarized in Table 4.2.

Workload Characteristics Distribution File Sizes
A: Home user read often, write often R: 40%, W: 60% 1 KB - 4 GB
B: Traveling user read often, write once R: 99%, W: 1% 1 KB - 4 MB
C: Email backup read rarely, write often R: 1%, W: 99% 10 MB - 25 MB
D: Code distribution read often, write rarely R: 80%, W: 20% 1 MB - 320 MB
E: E-Government even reads, bursty writes variable 1 KB - 11 MB

Table 4.2: Summary of the workloads that were tested.

4.3. WORKLOADS 39

Home User

In the home user case, two workloads were constructed. The first workload represents
a home user that stores all of their personal files in the cloud. This means that
files will vary greatly in size, from small text documents to large video files. Liu et
al. [LHFY13] studied the usage patterns of personal cloud storage, by recording a
five-month access trace of a campus cloud storage system with approximately 19,000
users. They found that file sizes followed a bimodal distribution with peaks around
1 KB and 4 MB. They also found that 90% of files were smaller than 4 MB and a
neglible amount of files were larger than 4 GB. In addition, they found that the ratio
of read to write operations was 0.65. Based on this information, the workload was
set to use files between 1 KB and 4GB, chosen randomly according to Figure 3 in
their paper. The access pattern was set to 40% reads and 60% writes. This workload
is referred to as Workload A, or the home user workload.

The second workload represents a home user that uses the cloud to store files
they need while traveling. In this case the files are uploaded once and new files are
very rarely added. The files still vary in size, but they are assumed to be smaller
since they need to be accessible over constrained links such as mobile networks. To
represent this, the first peak of the distribution found by Liu et al. [LHFY13] is
used. File sizes were therefore set to range from 1KB to 4MB. The files were chosen
according to the same distribution as Workload A, but with a cutoff at 4 MB. This
workload is referred to as Workload B, or the traveling user workload.

Organization

For the organization case, three workloads were created. The first workload represents
an organization that uses cloud storage to backup large email attachments. In this
case files can be assumed to be larger than a predefined size, chosen to be 10MB.
The maximum size was chosen to be 25MB, based on the limit imposed by Gmail9
at the time of writing. New files are regularly added, and old files are deleted. Files
only need to be downloaded in exceptional cases (e.g after a system crash). This
workload is referred to as Workload C, or the email backup workload.

The second workload represents an organization that shares code with other orga-
nizations using a version control system. The organization wants to take advantage
of cloud storage to store their code, but does not want to reveal any information
about the code to the provider of the cloud service. A realistic example of this
could be a company that sells a Software Development Kit (SDK). The company
uses a version control system in the development process and, to ease distribution
of updates, customers have read access to this system. It is assumed that many

9Gmail attachment limit, https://support.google.com/mail/answer/6584

https://support.google.com/mail/answer/6584

40 4. METHODOLOGY

customers are using the SDK and that the version control system therefore sees more
reads than writes.

4 64 1 K 16 K 256 K
0

5

10

15

20

File Size [bytes]

Pe
rc
en
ta
ge

of
Fi
le
s
[%

]

Figure 4.4: File size distribution of popular GitHub repositories.

To model this scenario, a study of software projects using the popular version
control system Git10 was conducted. For this study, a selection of 100 repositories
was downloaded from GitHub11, an online service that provides free hosting of
Git repositories for open-source projects. This process was automated in a script
using GitHub’s API12. The repositories were selected based on popularity, with
10 repositories being downloaded for each of the 10 most popular programming
languages on the site.

Once the repositories were downloaded, a separate script was used to collect
information about file and folder sizes for each repository. This data was used to
form two datasets. The first dataset, referred to as the file size dataset, contains
the size of every file in all the downloaded repositories. This dataset is visualized
as a histogram in Figure 4.4. The second dataset, referred to as the repository size
dataset, contains the total size of each repository (i.e the sum of the file sizes, grouped
by repository). Key statistics about the two datasets is provided in Table 4.3.

These datasets were used to select the parameters for the workload. File sizes were
set to range from 0.01 KB to 10 MB (based on the median and standard deviation

10Git, https://git-scm.com/
11GitHub, https://github.com
12Github API, https://developer.github.com/v3/

4.3. WORKLOADS 41

of the file size dataset) and chosen according to the distribution shown in Figure 4.4.
This workload is referred to as Workload D, or the code distribution workload.

File Size [KB] Repository Size [MB]

Mean 49.67 187.14
Median 1.84 36.84
Standard deviation 5151.06 430.58
Sample minimum 0 0.37
Sample maximum 2581568.38 3534.51

Table 4.3: Key statistics about the GitHub repositories that were collected.

The third workload was designed to mirror a cloud service that has to handle
very bursty traffic. Such services are characterized by long periods of low to medium
traffic, followed by intermittent periods of very high traffic. Examples of such services
are E-Government services, where the high traffic periods coincide with events like
elections or tax returns. A good example of this is the Norwegian E-Government
system Altinn, which handles tax returns. The system had to be taken offline both
in 2011 and 2012 when the yearly tax statements were published due to excessive
network traffic [Hol16].

The workload was created to represent a hypothetical E-Government service that
handles applications from citizens. The applications can contain attachments, usually
digital or scanned documents, which are stored in the cloud. It is assumed that
applications have a fixed deadline, meaining that the service will experience a spike
in traffic around the deadline. To model this service, the workload was set to have
multiple stages. Each stage has a different distribution of read and write operations,
with the stage representing the spike in traffic having a much higher proportion of
writes. File sizes were set to range from 1KB to 11MB, based on a study by Hawa
et al. [HRAAN12] that found that document files shared on the BitTorrent network
had a median size of 0.11 MB, with a standard deviation of 10.7 MB. This workload
is referred to as Workload E, or the E-Government workload.

4.3.2 Real Workloads

In addition to the synthetic workloads, a small number of real-world tests were also
conducted. These tests are based on Workload D, both for practical reasons (the
availability of existing cloud applications that can be used with the ORAM proxy)
and because of the results of the synthetic tests (for certain schemes and block sizes,
low response times and slowdowns were achieved).

42 4. METHODOLOGY

Since Workload D is based on a scenario where version control is used to distribute
code, Git was used to perform the tests. For each of the ORAM schemes that were
tested, four steps were carried out and the time it took to complete each step was
recorded. The steps are listed below (see Section 2.3 for an explanation of the Git
terminology):

1. Pushing a repository to the server for the first time.

2. Cloning the repository for the first time.

3. Pushing a new commit to the server.

4. Pulling a new commit after having already cloned the repository.

The open-source project Dulwich13 was used for the Git server. Dulwich is a
Python implementation of the Git protocol and comes with the necessary scripts to
set up a Git server. The server supports using Swift as a storage backend, making it
straightforward to use it with the ORAM proxy.

The OpenStack SDK’s Git repository14 was used as a representative repository.
At the time of writing the repository had 5894 commits from 238 contributors and
totaled 6.3 MBs in size when cloned. This repository was chosen because it represents
the scenario considered in Workload D (an SDK that is distributed using version
control) and is publicly available.

These tests were carried out for CURIOUS with a block size of 16 KB and
ObliviStore with a block size of 64 KB. These schemes were selected based on the
results from Workload D. Additional schemes and block sizes were not tested due to
time and resource (IBM cloud credit) restrictions.

To measure the time used by each step, the time15 command-line utility was
used. This utility takes a command as input, runs the command and waits for it to
finish. When the command finishes the time it took to execute is printed (both real
time and CPU-time). An example of this is shown in Figure 4.5.

4.4 Test setup

Each of the workloads presented in Section 4.3 were tested in the public-cloud
scenario described in Section 1.1. In addition, the Git workloads were tested in the
private-cloud scenario. Figures 4.7 and 4.8 show the test setup in each case.

13Dulwich, https://github.com/dulwich/dulwich
14OpenStack SDK, https://github.com/openstack/openstacksdk
15time, https://linux.die.net/man/1/time

https://github.com/dulwich/dulwich
https://github.com/openstack/openstacksdk
https://linux.die.net/man/1/time

4.4. TEST SETUP 43

olav@olav -master -pc :~/ openstacksdk$ cat LICENSE >> README .rst
olav@olav -master -pc :~/ openstacksdk$ git stage README .rst
olav@olav -master -pc :~/ openstacksdk$ git commit -m "made some changes "
[master 6 f070aea] made some changes
1 file changed , 175 insertions (+)
olav@olav -master -pc :~/ openstacksdk$ time git push alt master
Counting objects : 3, done.
Delta compression using up to 8 threads .
Compressing objects : 100% (3/3) , done.
Writing objects : 100% (3/3) , 6.17 KiB | 6.17 MiB/s, done.
Total 3 (delta 1) , reused 0 (delta 0)
To git :// localhost / openstacksdkbaseline4
9 db14f6d ..6 f070aea master -> master

real 0m2 ,389s
user 0m0 ,005s
sys 0m0 ,001s

Figure 4.5: Timing a Git operation using the time command-line utility.

Client

All tests were run on a desktop computer provided by NTNU. The specifications of
the computer is shown in Table 4.4.

Operating System Ubuntu 18.04 LTS
CPU Intel® Core™ i7-6700 CPU @ 3.40GHz
RAM 32GB (4 × 16ATF1G64AZ-2G1B1 2133MHZ)
Storage 512GB (SK Hynix PC300 NVMe SSD)
Network Intel® Ethernet Connection I219-LM

Table 4.4: Specifications of the desktop computer used in all tests.

To generate the synthetic workloads COSBench [ZCW+12], a cloud storage
benchmarking tool created by researchers at Intel, was used. This tool is designed
with the strengths and limitations of cloud storage in mind and can therefore provide
more realistic workloads compared to traditional tools like Filebench. It can also be
used with cloud storage APIs directly, avoiding the extra steps of mounting the cloud
storage as a folder that were taken by Bindschaedler et al. [BNP+15] The concerns
raised in Section 1.2 are therefore addressed.

While COSBench is a step in the right direction, the workloads are still synthetic.
This means that there will be a gap between the results obtained using COSBench
and results obtained using real cloud applications. This is unfortunate, but necessary

44 4. METHODOLOGY

because of time constraints on the thesis. Future works could improve this by finding
or developing real-world cloud applications and use them instead of COSBench.

Workloads in COSBench are specified in Extensible Markup Language (XML)
files. These files can either be created manually or generated from the COSBench
web interface. Workloads are divided into one or more work stages. A work stage
typically specifies the types of operations that will be performed (e.g read, write)
and the distribution of those operations (e.g 90% read, 10% write). There are four
special work stages (init, prepare, cleanup, and dispose) that are responsible for
the operations that need to be performed before and after a test. The full workload
format is described in the COSBench user guide [Wan14].

Figure 4.6: Creating a workload using the COSBench web interface.

The workloads used in this thesis were first created in the web interface. The
XML-files were then manually tweaked if necessary. XML-files for all workloads are
included in Appendix A.

Cloud

IBM Cloud Object Storage16 was used as the cloud storage service in all tests. This
solution was chosen in favor of the alternatives for economical reasons. IBM provides

16IBM Cloud Object Storage, https://www.ibm.com/cloud/object-storage

https://www.ibm.com/cloud/object-storage

4.4. TEST SETUP 45

$200 free credits for new users, which made it possible to run more tests than what
would otherwise be possible with the limited budget of the thesis. The IBM Cloud
Object Storage has a number of regions available, allowing data to be stored in
different physical locations. The eu-gb-standard region was used for all tests.

The quality of the link between the desktop computer and the cloud, was measued
using iperf17, a command line tool for active measurements of bandwidth, loss and
other network parameters. The average bandwidth of the link was measured to 510.4
Mbits/sec, with a jitter of 0.016 ms and a packet loss of 0.02%. The average Round
Trip Time (RTT) was measured to 23.6 ms using the ping18 command line tool.

IBM Cloud

«device»
Server

«artifact»
IBM Cloud Object Storage

«device»
Desktop Computer

«artifact»
ORAM Proxy

(Modified CURIOUS framework)

«artifact»
COSBench

Figure 4.7: Deployment diagram showing the test setup used for the public cloud
scenario.

The IBM Cloud was also used to represent the trusted cloud server in the private
cloud scenario. A virtual machine was provisioned for this purpouse. The virtual
machine was allocated ample resources (4 virtual CPUs and 32 GBs of RAM) so
that it would not be the bottleneck in the system.

17iperf, https://iperf.fr/
18ping (a part of iputils), https://github.com/iputils/iputils

https://iperf.fr/
https://github.com/iputils/iputils

46 4. METHODOLOGY

IBM Cloud

«device»
Virtual Machine

«artifact»
ORAM Proxy

(Modified CURIOUS framework)

«device»
Server

«artifact»
IBM Cloud Object Storage

«device»
Desktop Computer

«artifact»
COSBench

Figure 4.8: Deployment diagram showing the test setup used for the private cloud
scenario.

Moving the ORAM functions from the client to the virtual machine in the cloud
was an easy task, thanks to the "proxy approach" adopted during the implementation
phase. Since the ORAM schemes are implemented in a proxy, they are independent
of both the application and the cloud storage. The ORAM proxy cloud therefore
be installed on the cloud server and the application (e.g Git for the real workloads)
could be configured to connect to its Internet Protocol (IP) address. No changes to
the code were required to support the private cloud scenario.

Block sizes

One of the limitations of the Bindschaedler et al. [BNP+15] study is the limited
number of block sizes they tested, with most workloads only being tested for two
block sizes and all block sizes being in the KB range. To improve upon this, a wider
range of block sizes were tested in this thesis. For each workload three block sizes
were selected. This was the widest range possible within the given budget. The three
block sizes were chosen based on some preliminary tests, where block sizes ranging
from 4 KB to 16MB were tested for each workload. These tests were carried out
without using ORAM. The results of these preliminary tests were used to select the
most economical block sizes to use for the full tests.

4.4. TEST SETUP 47

1 K 4 K 16 K 64 K 256 K 1 M 4 M 16 M
1,800

2,000

2,200

2,400

2,600

2,800

Block Size [bytes]

Ba
nd

w
id
th

[M
B]

0

2

4

6

8

C
os
t
[U

SD
]

Bandwidth
Cost

Figure 4.9: Plot showing the bandwidth requirements (in MB) and the estimated
cost (in USD) of running Workload C on the IBM Cloud for different block sizes. To
better capture the effect of block size in isolation, the estimation was made without
ORAM.

Figure 4.9 illustrates the results that were used to select block sizes for Workload
C. In this figure the relationship between bandwidth and cost is highlighted. An
interesting observation here is that, as the block size increases, the cost goes down,
but the bandwidth goes up. This was true for all of the workloads that were tested,
and is a consequence of the pricing model used by the IBM Cloud (a high number of
requests is more expensive than high bandwidth).

Parameters

Two of the ORAM schemes selected for the tests, namely CURIOUS and RingORAM,
are tunable. This means that one or more parameters can be tuned to different
application scenarios. In this thesis, the parameters were set for a high local-storage
scenario. For CURIOUIS this meant setting b = 3 and z = 5. These are the same
parameters that Bindschaedler et al. [BNP+15] used when they evaluated the scheme
and are taken from Table 7 in their paper. For RingORAM the parameters Z (real
block count) and A (eviction rate) were set to 33 and 48 according to Table 5 in the
RingORAM paper [RFK+15], which assumes a large client storage budget. The S
(dummy block count) parameter was calculated using the analytical model provided

48 4. METHODOLOGY

in Table 4 in the same paper. This resulted in a value of S = 63.

4.5 Evaluation

To evaluate the results, the metrics identified by Bindschaedler et al. [BNP+15] were
used. These metrics are:

Bandwidth. This is the metric that has traditionally been used to evaluate
ORAM schemes. This metric captures the total number of bytes transfered between
the client and the storage for a given workload. Bindschaedler et al. [BNP+15]
argued that this metric is less important for practical applications, however in certain
pricing models (such as the one used by Rackspace Cloud Files, see Table 4.5) it can
have a big effect on the cost and thus on the practicality of using ORAM.

Response time. The time it takes from an application-level request is issued until
the response reaches the application is captured by the response time. This metric
can have a large impact on the performance of real-world applications, depending on
the ability of the application to process requests concurrently. Applications that issue
requests synchronously need a low response time to be pracitcal, while applications
that can process requests asynchronously can tolerate larger response times. An
ORAM schemes ability to process requests asynchronously also affects practical
performance. Synchronous schemes, like RingORAM, often exhibit low response
times when the block size closely matches the average size of the application-level
requests. However, when smaller block sizes are used the response times increase
dramatically. This is because more than one ORAM-level request has to be completed
before the application-level request is completed. If an ORAM scheme processes
requests sequentially, the response time of an application-level request becomes the
sum of the response times of the required ORAM-level requests.

Slowdown. The ratio of time taken to complete a workload using a particular
ORAM scheme, compared to completing the same workload without using ORAM, is
measured by the slowdown. This metric captures the effects of asynchronicity better
than the response time, since it includes the potential benefits of processing multiple
application-level requests in parallel. This is not captured by the response time, as it
only considers a single application-level request.

Outsource ratio. The amount of local storage required by an ORAM scheme
affects both the practicality and the performance of the scheme. Some schemes use a
predetermined amount of local storage, often dependent on the size of the remote
storage, while other schemes (e.g RingORAM) support tuning the amount of local
storage for the intended application scenario. Bindschaedler et al. [BNP+15] studied
the effects of minimizing local storage in a cloud setting and found that the cost of

4.5. EVALUATION 49

doing this, in terms of slowdown and response time was high. Because of this and
other practical factors (e.g modern smartphones having several GBs of RAM) they
argued that the absolute number of bytes is a bad metric for local storage in cloud
scenarios. They proposed the outsource ratio, i.e the ratio of local storage to remote
storage, as a better metric.

Monetary expense. Cloud storage services typically operate on a pay-as-you-go
basis. This means that the additional resources (e.g bandwidth, upload/download
operations, etc.) required when using ORAM have a direct impact on the bill the
user pays. One of the main drivers for cloud storage adoption is cost-savings [Avr14].
Because of this, it is cruical for practical applications that the additional costs of
ORAM does not outweigh the benefits of using cloud storage.

Elasticity and reliability. An important feature of cloud services are their
ability to scale. The use of ORAM can have an effect on this ability. It is therefore
important that the scalabilty meets the need of the application, even when ORAM
is used. The elasticity metric captures this ability. Another key feature of cloud
storage services is strong reliability guarantees, with data being replicated across
multiple servers. ORAM schemes usually keep some important state (e.g position
map, keys for encryption, etc.) locally. This data can be lost if the client crashes,
affecting the reliability of the data. It is therefore important for practical applications
that the local state is properly backed up. This ability is captured by the reliability
metric. Both of these metrics are more qualitative in nature and can not be directly
measured from tests.

Some of these metrics (e.g bandwidth, response time) were available directly from
the COSBench results, while others (e.g monetary expense, outsource ratio) were
obtained indirectly. To calculate the monetary expenses, prices for a selection of
popular cloud storage services were collected. The results are shown in Table 4.5.
These prices were up to date as of June 2019. The qualitative metrics (elasticity
and reliability) were not considered in this thesis. A new metric, not considered by
Bindschaedler et al., was also measured and used in the evaluation:

Computational cost. Using cloud storage is normally computationally inex-
pensive. However, when ORAM is used additional, computations are required. The
requirements differ from scheme to scheme, but a common overhead is the encryption
and decryption of blocks. Shuffling blocks is another potentially expensive operation.
Depending on the implementation, a shuffle can require copying large amounts of
data around in the local storage. In some practical applications, it is cruical that
the number of local computations is kept at a minimum. An example of this is
smartphone applications, where computations direcly affect the battery life and thus
the practicality of the application. The computational cost metric captures this.

50 4. METHODOLOGY

A
m

azon
S3

19
G

oogle
C

loud
Storage 20

R
ackspace

C
loud

Files
IB

M
O

bject
Storage 21

O
racle

O
bject

Storage
P

rice
per

G
B

22
$0.023/m

onth
$0.020/m

onth
$0.10/m

onth
$0.022/m

onth
$0.0255/G

B
B

andw
idth

in
Free

Free
Free

Free
Free

B
andw

idth
out 23

$0.09/G
B

$0.11/G
B

24
$0.12/G

B
$0.09/G

B
Free 25

G
E

T
requests

$0.0004/1,000
reqs

$0.0004/1,000
reqs

Free
$0.0004/1,000

reqs
$0.00034/1,000

reqs
P

U
T

requests
$0.005/1,000

reqs
$0.005/1,000

reqs
Free

$0.005/1,000
reqs

$0.00034/1,000
reqs

Table
4.5:

Prices
for

a
selection

ofcloud
object

storage
services.

T
he

data
was

gathered
from

the
service

providers’websites
in

A
pril2019

and
were

confirm
ed

to
be

up
to

date
as

ofJune
2019.

19
A
llprices

are
for

the
U
S
E
ast

region
20

A
llprices

are
for

the
us-east1

region
21

A
llprices

are
for

the
U
S
E
ast

region,w
ith

R
egionalStandard

storage
22

A
ssum

ing
less

than
10T

B
ofstorage

is
used

per
m
onth

23
A
ssum

ing
less

than
10T

B
ofbandw

idth
is

used
per

m
onth

24
A
ssum

ing
no

egress
bandw

idth
to

A
sia

&
A
ustralia

25
T
he

first
10

T
B
s
per

m
onth

are
free.

A
charge

of$0.0085
applies

after
this

lim
it
is

exceeded.

Chapter5Results
This chapter presents the results of the experiments that were performed. First,
the data gathered from running each of the synthetic workloads (A-E) is presented.
The data from the real-world workloads (version control using git) is then presented.
Note that this chapter only highlights a subset of the data that was gathered. The
remaining data is available in Appendix C.

5.1 Synthetic workloads

In this section, the results from the synthetic tests are presented. For these tests, the
metrics selected in Section 4.5 are used. Five of these metrics (bandwidth, response
time, runtime, monetary expense and computational cost) were measured both for a
baseline without ORAM and for each of the schemes selected in Section 4.1. Because
of this, it was possible to calculate the relative overhead for each of these metrics.
The overheads are dimensionless and represent the ratio between the baseline and the
scheme in question (e.g a bandwidth overhead of 10 means that 10× more bandwidth
was used, compared to the baseline). This section focuses on these overheads, with
the raw values only being presented in interesting cases. The interested reader may
refer to Appendix C, which contains both the raw and calculated values, while reading
this section.

For each workload, the baseline results are presented first. Then the relative
overheads for the three selected schemes are shown for each of the block sizes the
workload was tested with. The remaining metric from Section 4.5, the outsource
ratio, is not presented in this chapter, but is included in Appendix C.

Comparable (e.g two workloads that were tested using the same block size) and
interesting results are highlighted whenever they are encountered. These results are
further elaborated on and discussed in Chapter 6.

51

52 5. RESULTS

5.1.1 Workload A (Home User)

This section presents the results for Workload A (the home user workload). For this
workload, tests were performed for block sizes of 64 KB, 256 KB and 1 MB.

Table 5.1 shows the baseline for this workload. The table is divided into two
sections. The first section contains data that was collected during the test, while the
second section contains relative metrics calculated from the data. The calculated
metrics are all 1 in this case (since they are relative to the baseline), but are included
for the sake of completeness.

B
as

el
in

e
(n

o
O

R
A

M
,

no
bl

oc
ks

)

Download operations 29
Upload operations 77
MBs downloaded 29.02
MBs uploaded 171.67
Runtime (seconds) 10
Average CPU usage (%) 4.97
Peak CPU usage (%) 12.5
Average RAM usage (MB) 112.72
Peak RAM usage (MB) 145.58
Read bandwidth (KB/s) 13849.52
Write bandwidth (KB/s) 34352.56
Avg. response time read (ms) 201.27
Avg. response time write (ms) 296.33
Cost (USD) $0.01

Bandwidth overhead 1
Relative response time 1
Relative slowdown 1
Cost multiplier 1
Outsource ratio 1

Table 5.1: Baseline results for Workload A. These results were measured by running
the workload without using ORAM and without splitting the files into blocks.

The remaining results are summarized in Figure 5.1. The figure shows three bar
charts, one for each block size. The charts are divided into four groups, one for each
of the three ORAM schemes and one for running the workload without ORAM (but
with files being split into blocks). Each group has five bars, one for each of the five
overheads that were calculated. These are (from left to right): bandwidth overhead,
cost overhead, relative response time, relative slowdown and computational overhead.

From these charts we can see that the overhead of using blocks (without ORAM)
was relatively small in most cases. The bandwidth and cost overhead never exceeded
2× the baseline and were as low as 1.1× and 1× when 256 KB blocks were used. The
relative response time and slowdown were higher, with the response time maxing out
at 9.4× and the slowdown at 25×, both when 64 KB blocks were used. An interesting
observation regarding these metrics is that when 64 KB blocks were used, they were
higher for no ORAM than for ObliviStore or CURIOUS. Another interesting result
is that the computational overheads were lower than the baseline, ranging from 0.7×
to 0.9× the baseline. A possible explanation for this is that these tests were run

5.1. SYNTHETIC WORKLOADS 53

synchronously (see Section 6.2), while the baseline was asynchronous. This could
cause lower CPU usage as more time is spent waiting for replies from the server.

ObliviStore incurred high overheads for bandwidth and cost and relatively low
overheads for the three other metrics. The bandwidth overhead ranged from 28.8× to
39.7×, with the overhead being highest when 256 KB blocks were used. ObliviStore
had both the highest and the lowest cost overhead of all the ORAM schemes, with
costs being as high as 192× the baseline when using 64 KB blocks and 36× when using
1 MB blocks. Interestingly, the cost overhead was at its peak when the bandwidth
overhead was at its smallest. The relative response time and slowdown were more
moderate, ranging from 3.5× to 3.9× and 8.5× to 10× the baseline value respectively.
The computational overhead of using ObliviStore for this workload ranged from 6.5×
to 7.2× the baseline value. The highest computational overhead was incurred when
256 KB blocks were used.

The overheads for CURIOUS are comparable to those of ObliviStore, but slightly
higher in most cases. CURIOUS had the highest bandwidth overhead of all the
schemes with the peak bandwidth being 94.8× higher than the baseline bandwidth.
The cost of using CURIOUS ranged from 55× to 119× higher than the baseline value.
For 256 KB and 1 MB blocks, this was higher than the cost of using ObliviStore,
however for 64 KB blocks, the cost of using CURIOUS was significantly lower (119×
vs 192× higher than the baseline). The relative response time and slowdown ranged
from 3.5× to 3.9× and 8.5× to 10× respectively. These metrics were lowest when 256
KB blocks were used and highest when 64 KB blocks were used. The computational
cost of CURIOUS was slightly higher than that of ObliviStore, ranging from 7.2× to
7.6× the baseline value.

Using RingORAM for this workload incurred high overheads for all metrics,
except computational overhead. The bandwidth overhead ranged from 48.9× when
using 1 MB blocks, to 82.7× when using 256 KB blocks. These overheads were
smaller than those of CURIOUS for the same block sizes. The cost overhead of
RingORAM was very close to that of CURIOUS, being only slightly higher for each
of the three block sizes. The highest cost overhead was 120× higher than the baseline
(compared to 119× for CURIOUS) and the lowest was 56× higher (compared to
55× for CURIOUS). The relative response time and slowdown of RingORAM were
the highest of all the ORAM schemes, with the peak slowdown being 1440.3× the
baseline. The computational overhead of RingORAM was low compared to the other
schemes. It ranged from 0.8× for the smallest block size to 1.9× for the largest block
size. An interesting observation regarding this is that the computational overhead
of RingORAM when using 64 KB blocks was lower than both baselines (with and
without blocks).

54 5. RESULTS

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

1.4

28.8

94.8
77.6

2

192

119 120

9.4 3.9 8.1

565.3

25
10 17

1,440.3

0.9 6.5 7.3 0.8

R
el

at
iv

e
m

et
ric

Workload A, 64 KB blocks

500

1,450

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

1.1

39.7

92.8
82.7

1

72

97 98

2.5 3.5 7.2

143.6

7.5 8.5 18

352.9

0.7 7.2 7.6 1.3

R
el

at
iv

e
m

et
ric

Workload A, 256 KB blocks

350

360

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

200

250

2

36.4

61.1
48.9

2

36
55 56

2 3.6
24 32.5

5.5 9

64.5
87.1

0.7 7.1 7.2 1.9

R
el

at
iv

e
m

et
ric

Workload A, 1 MB blocks

Bandwidth overhead Cost multiplier Relative response time
Relative slowdown Computational overhead

Figure 5.1: Relative metrics for Workload A. Lower is better.

5.1. SYNTHETIC WORKLOADS 55

5.1.2 Workload B (Traveling User)

This section presents the results for Workload B (the traveling user workload). For
this workload, tests were performed for block sizes of 16 KB, 64 KB and 256 KB.

B
as

el
in

e
(n

o
O

R
A

M
,

no
bl

oc
ks

)

Download operations 76
Upload operations 24
MBs downloaded 1.68
MBs uploaded 7.62
Runtime (seconds) 5
Average CPU usage (%) 3.74
Peak CPU usage (%) 7.6
Average RAM usage (MB) 97.13
Peak RAM usage (MB) 144.95
Read bandwidth (KB/s) 5135.54
Write bandwidth (KB/s) 2217.25
Avg. response time read (ms) 111.64
Avg. response time write (ms) 291.08
Cost (USD) ~$0.0003

Bandwidth overhead 1
Relative response time 1
Relative slowdown 1
Cost multiplier 1
Outsource ratio 1

Table 5.2: Baseline results for Workload B. These results were measured by running
the workload without using ORAM and without splitting the files into blocks.

Like in the previous section, Table 5.2 shows the baseline for this workload. The
table is divided into two sections. The first section contains data that was collected
during the test, while the second section contains relative metrics calculated from
the data. Note that the cost is estimated since it was too small to be billable.

The remaining results are summarized in Figure 5.2. The figure shows three bar
charts, one for each block size. The charts are divided into four groups, one for each
of the three ORAM schemes and one for running the workload without ORAM (but
with files being split into blocks). Each group has five bars, one for each of the five
overheads that were calculated. These are (from left to right): bandwidth overhead,
cost overhead, relative response time, relative slowdown and computational overhead.

As can be seen from the charts, the bandwidth and cost overhead of splitting
the files into blocks (without using ORAM) was relatively high for this workload,
compared to the other workloads that were tested. The bandwidth overhead increases
as the block size increases, with the lowest being 4.5× and the highest being 7.5×
higher than the baseline. The cost overhead was 14.8× the baseline when 64 KB
blocks were used and 33.5× for the two other block sizes. These overheads were
higher than those of any other workload (when no ORAM is used) regardless of
block size. A possible explanation for this is the low cost of the baseline. This cost
was too low to be included in the IBM Cloud bill and therefore had to be estimated
(see Section 6.2). The relative response time and slowdown were less extreme, with

56 5. RESULTS

overheads ranging from 0.9× to 7× and 4× to 17× respectively. The computational
overhead was smaller than or equal to the baseline for all the block sizes that were
tested, with the lowest being 0.6× the baseline when using 16 KB blocks.

ObliviStore performed reasonably well for this workload, but incurred high
bandwidth and cost overheads. The bandwidth overhead was highest for 16 KB
blocks, with 208× more bytes being transferred compared to the baseline, and lowest
for 64 KB blocks, with 149.7× more bytes being transferred. The cost overheads
ranged from 1509.5× for the largest block size to 20092.9× (the largest overhead
across all the workloads and schemes that were tested) for the largest block size. The
relative response time and slowdown ranged from 1.4× to 8× and 6× respectively,
with both having their minimum at 64 KB blocks and maximum at 256 KB blocks.
The computational overhead was smallest for 16 KB blocks, at 8.2× the baseline
value and largest for 256 KB blocks, at 9.4× the baseline value.

The overheads of using CURIOUS for this workload were comparable to those of
ObliviStore, but with higher bandwidth and lower cost overheads. The bandwidth
overheads ranged from 337.5× the baseline value for the smallest block size (16 KB)
to 541.5× the baseline value for the largest block size (256 KB). An interesting
observation here is that when the bandwidth overhead of CURIOUS was at its lowest
(with 16 KB blocks), the bandwidth overhead of ObliviStore was at its highest. The
added cost of using CURIOUS for this workload was high, but still lower than that of
ObliviStore for all the block sizes that were tested. The cost overhead was smallest
for 256 KB blocks, at 1107× the baseline cost, and largest for 16 KB blocks, at
2650× the baseline cost. The relative response time and slowdown ranged from 2.1×
to 4.1× and 10× to 19× the baseline value respectively. These values were lower
than those of RingORAM and, for all block sizes except 64 KB, ObliviStore. The
computational overhead ranged from 9.2× to 11.1× the baseline value. This was the
highest of all the schemes for this workload.

RingORAM had high relative response times and slowdowns for this workload,
but had the lowest cost of all the ORAM schemes. The bandwidth overhead of
RingORAM ranged from 273.8× to 362.9× the baseline, with 64 KB being the
bandwidth-optimal block size. The cost overhead also had its minimum for 64 KB
blocks, at 805.1× the baseline, with the maximum being at 2113.3× the baseline
for 16 KB blocks. The relative response time and slowdown were highest for 16 KB
blocks, at 386.1× and 1642.2× the baseline, and decrease as the block size increases.
The lowest values for both overheads were 32.1× and 158.4× for 256 KB blocks. The
computational overhead of using RingORAM was low compared to the two other
schemes, ranging from 0.8× to 2.5× the baseline value. When using 16 KB blocks,
the computational overhead of RingORAM was only slighly higher than when no
ORAM was used (0.8× vs 0.6×).

5.1. SYNTHETIC WORKLOADS 57

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

4.5

208 337.5 362.9

33.5

20,092.9 2,650 2,113.3

7 4.1 2.3

386.1

17 22.2
11

1,624.2

0.6 8.2 9.2 0.8

R
el

at
iv

e
m

et
ric

Workload B, 16 KB blocks

400

20,100

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

5.2

149.7

359.8 273.8

14.8

5,199.3 1,207.6
805.1

1.7 1.4 2.1

90.3

7 6 10

353.4

0.7 9.1 11.1 1.7

R
el

at
iv

e
m

et
ric

Workload B, 64 KB blocks

300

5,200

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

7.5

163.2
541.5 389.9

33.5

1,509.5
1,107

838.6

0.9 8 4.1

32.1

4

53

19

158.4

1 9.4 9.8 2.5

R
el

at
iv

e
m

et
ric

Workload B, 256 KB blocks

Bandwidth overhead Cost multiplier Relative response time
Relative slowdown Computational overhead

800

1,510

Figure 5.2: Relative metrics for Workload B. Lower is better.

58 5. RESULTS

5.1.3 Workload C (Email Backup)

This section presents the results for Workload C (the email backup workload). For
this workload, tests were performed for block sizes of 1 MB, 4 MB and 16 MB.

B
as

el
in

e
(n

o
O

R
A

M
,

no
bl

oc
ks

)

Download operations 11
Upload operations 99
MBs downloaded 168
MBs uploaded 1684
Runtime (seconds) 70
Average CPU usage (%) 3.89
Peak CPU usage (%) 5.8
Average RAM usage (MB) 85.69
Peak RAM usage (MB) 140.2
Read bandwidth (KB/s) 1976.4
Write bandwidth (KB/s) 24312.9
Avg. response time read (ms) 468
Avg. response time write (ms) 688.14
Cost (USD) $0.02

Bandwidth overhead 1
Relative response time 1
Relative slowdown 1
Cost multiplier 1
Outsource ratio 1

Table 5.3: Baseline results for Workload C. These results were measured by running
the workload without using ORAM and without splitting the files into blocks.

Like in the previous sections, Table 5.3 shows the baseline for this workload. The
table is divided into two sections. The first section contains data that was collected
during the test, while the second section contains relative metrics calculated from
the data.

The remaining results are summarized in Figure 5.3. The figure shows three bar
charts, one for each block size. The charts are divided into four groups, one for each
of the three ORAM schemes and one for running the workload without ORAM (but
with files being split into blocks). Each group has five bars, one for each of the five
overheads that were calculated. These are (from left to right): bandwidth overhead,
cost overhead, relative response time, relative slowdown and computational overhead.

For this workload, the overhead of splitting files into blocks (without using ORAM)
was similar to other workloads, but with a higher computational overhead. The
bandwidth overhead was 1.1× the baseline for 1 and 4 MB blocks and 1.5× for 16
MB blocks. The cost overhead was 1× the baseline value for all three block sizes,
meaning that no extra costs were incurred. This is interesting since Workload C is
the only workload where this was the case. The relative response time and slowdown
ranged from 4.6× to 5.2× and 4.5× to 7.8× the baseline values respectively. The
computational overhead ranged from 3.5× the baseline for 1MB to 2.6× the baseline
for 16 MB blocks.

5.1. SYNTHETIC WORKLOADS 59

ObliviStore incurred low bandwidth overheads for this workload compared to
other workloads. The overheads ranged from 24.5× to 30.7× the baseline, with 24.5×
being the lowest bandwidth overhead across all the ORAM schemes and workloads
that were tested. The cost overheads ranged from 66.5× to 78× the baseline, with
4 MB being the cost-optimal block size. The relative response time and slowdown
ranged from 6.6× to 14.2× and 5.1× to 14.4× the baseline value respectively. An
interesting observation regarding these metrics is that, for some block sizes, the
relative response time was higher than the relative slowdown. Workload C is the
only workload where this was the case for ObliviStore. The computational overhead
ranged from 15.5× the baseline value for the smallest block size, to 16.9× the baseline
for the largest block size. These overheads were higher than for any other workload.

The overheads of CURIOUS were comparable, but slightly higher, than those of
ObliviStore for all metrics apart from cost. The bandwidth overheads ranged from
43.4× to 47.1× the baseline value, higher than both ObliviStore and RingORAM
for all the block sizes that were tested. The cost overhead ranged from 176.5×
the baseline for the smallest block size, to 190.5× the baseline for the largest block
size. These overheads were larger than those of ObliviStore for all block sizes, and
larger than RingORAM for 4 and 16 MB blocks. The relative response time and
slowdown ranged from 13.8× to 21.9× and 12.1× to 22.2× the baseline respectively,
with the overheads being smallest for 1 MB blocks and largest for 4 MB blocks. The
computational overhead of CURIOUS was lower than that of ObliviStore for most
block sizes, ranging from 15.1× to 16.6× the baseline value.

RingORAM incurred high overheads for response time and slowdown, with the
remaining metrics being similar to the other schemes. The bandwidth overheads
ranged from 25.8× the baseline for the largest block size to 42.6× the baseline for
the smallest block size. These were lower than those of CURIOUS for all block sizes
and lower than ObliviStore for 16 MB blocks. The cost overheads ranged from 130×
to 212× the baseline. This was higher than ObliviStore, but lower than CURIOUS
for most block sizes. The relative response time and slowdown ranged from 78.7× to
206.6× and 34.9× to 278.6× the baseline respectively. An interesting observation
here is that the response time was lower than the slowdown for 1 MB blocks and
higher for the two remaining block sizes. This behavior is the opposite of the other
two schemes. The computational overhead of RingORAM ranged from 5× to 10.9×
the baseline value. This was lower than the two other ORAM schemes for all block
sizes.

60 5. RESULTS

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

1.1
24.5

43.4 42.6

1

78

176.5

212.5

4.6 6.6 13.8

206.6

4.5 5.1 12.1

278.6

3.5
15.5 16.6

5

R
el

at
iv

e
m

et
ric

Workload C, 1 MB blocks

210

280

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

200

250

1.1

24.9
46.2

33.9

1

66.5

190
167.5

6.2 7.1
21.9

186.3

7.8 5.9
22.2

124.6

2.9
16.6 15.1 7.8

R
el

at
iv

e
m

et
ric

Workload C, 4 MB blocks

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

200

250

1.5

30.7
47.1

25.8

1

73

190.5

130

5.2 14.2 19.4

78.7

6.8 14.4 21.3
34.9

2.6
16.9 15.2 10.9

R
el

at
iv

e
m

et
ric

Workload C, 16 MB blocks

Bandwidth overhead Cost multiplier Relative response time
Relative slowdown Computational overhead

Figure 5.3: Relative metrics for Workload C. Lower is better.

5.1. SYNTHETIC WORKLOADS 61

5.1.4 Workload D (Code Distribution)

This section presents the results for Workload D (the code distribution workload).
For this workload, tests were performed for block sizes of 16 KB, 64 KB and 256 KB.

B
as

el
in

e
(n

o
O

R
A

M
,

no
bl

oc
ks

)

Download operations 73
Upload operations 37
MBs downloaded 17.79
MBs uploaded 2.36
Runtime (seconds) 5
Average CPU usage (%) 2.42
Peak CPU usage (%) 6.3
Average RAM usage (MB) 71.89
Peak RAM usage (MB) 116.1
Read bandwidth (KB/s) 9328.62
Write bandwidth (KB/s) 69.78
Avg. response time read (ms) 109.05
Avg. response time write (ms) 234.55
Cost (USD) ~$0.002

Bandwidth overhead 1
Relative response time 1
Relative slowdown 1
Cost multiplier 1
Outsource ratio 1

Table 5.4: Baseline results for Workload D. These results were measured by running
the workload without using ORAM and without splitting the files into blocks.

Like in the previous sections, Table 5.4 shows the baseline for this workload. The
table is divided into two sections. The first section contains data that was collected
during the test, while the second section contains relative metrics calculated from
the data. Note that the cost is estimated since it was too small to be billable.

The remaining results are summarized in Figure 5.4. The figure shows three bar
charts, one for each block size. The charts are divided into four groups, one for each
of the three ORAM schemes and one for running the workload without ORAM (but
with files being split into blocks). Each group has five bars, one for each of the five
overheads that were calculated. These are (from left to right): bandwidth overhead,
cost overhead, relative response time, relative slowdown and computational overhead.

The overhead of using blocks (without ORAM) was low compared to the three
previous workloads. The bandwidth and cost overheads ranged from 1.1× to 2.5×
and 1.3× to 2.1× respectively. The relative response time was 0.8× the baseline
for 64 and 256 KB blocks, and 1.8× the baseline for 16 KB blocks. An interesting
observation here is that the response time was occasionally lower than the baseline.
This was the case only for Workload B and this workload. The relative slowdown
ranged from 3× the baseline for the largest block size, to 9× the baseline for the
smallest block size. The computational overhead was relatively low, ranging from
0.5× to 1.4× the baseline value.

62 5. RESULTS

For this workload, ObliviStore had low overheads for response time and slowdown
for most block sizes, but the cost overhead was larger than the two other schemes.
The bandwidth overhead ranged from 37.6× to 45.4×. These overheads were lower
than the two other schemes for all the block sizes that were tested. The cost overhead
ranged from 236.2× the baseline for the largest block size to 3205.9× the baseline for
the smallest block size. The relative response time and slowdown ranged from 0.9×
to 31.3× and 4× to 52× the baseline respectively. Both values were comparatively
low for 16 and 64 KB blocks and significantly higher for 256 KB blocks. The
computational overhead ranged from 0.2× to 11.6× times the baseline value. An
interesting observation regarding this is that for 64 KB blocks, the computational
overhead of using ObliviStore was lower than using no ORAM at all (0.2× vs 0.5×
the baseline).

CURIOUS had both high and low overheads for this workload, depending on the
block size. The bandwidth overhead ranged from 51.6× the baseline for small blocks,
to 120.2× the baseline for large blocks. The cost overhead decreased as the block size
increased, starting at 641.2× the baseline for 16 KB blocks and reaching its minimum
at 118.1× the baseline for 256 KB blocks. The response time and slowdown ranged
from 0.7× to 54.1× and 4× to 340.2× the baseline respectively. Two interesting
observations can be made regarding these metrics. The first being their large range,
which was unique to this workload, and the second being that they were larger than
the overheads of RingORAM for 64 KB blocks. The computational overhead ranged
from 10.6× to 10.8×. This range was smaller than that of the two other schemes.

RingORAM had the lowest cost and computational overheads for this workload.
Otherwise the overheads were comparable to the two other schemes for most block
sizes. The bandwidth overhead ranged from 43.8× to 119.2× the baseline. This
overhead was higher than that of ObliviStore, but lower than CURIOUS for 64
and 256 KB blocks. The cost overhead ranged from 78.7× to 219.3× the baseline
cost, with 64 KB being the cost-optimal block size. The relative response time and
slowdown were high for 16 KB blocks, at 351.2× and 736.6× the baseline values, and
comparatively lower for 64 and 256 KB blocks, ranging from 25.7× to 25.9× and
101× to 104.2× the baseline respectively. The computational overhead, ranging from
0.9× to 2.5× the baseline, was lower than the other schemes except for ObliviStore
with 64 KB blocks (which had a computational overhead of only 0.2× the baseline).

5.1. SYNTHETIC WORKLOADS 63

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

1.1

42.2 51.6
73.9

1.7

3,205.9

641.2 219.3

1.8 2.9 0.7

151.2

9 11 4

763.6

0.6
11.6 10.8

0.9

R
el

at
iv

e
m

et
ric

Workload D, 16 KB blocks

200

3,210

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

1.3

37.6

81.9

43.8

1.3

838

151.9

78.7

0.8 0.9

54.1

25.9
4 4

340.2

104.2

0.5 0.2
10.6 2

R
el

at
iv

e
m

et
ric

Workload D, 64 KB blocks

300

850

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

200

250

2.5

45.4

120.2 119.2

2.1

236.2

118.1
101.2

0.8

31.3
12.6

25.7
3

52 60

101

1.4 6 10.8 2.5

R
el

at
iv

e
m

et
ric

Workload D, 256 KB blocks

Bandwidth overhead Cost multiplier Relative response time
Relative slowdown Computational overhead

Figure 5.4: Relative metrics for Workload D. Lower is better.

64 5. RESULTS

5.1.5 Workload E (E-Government)

This section presents the results for Workload E (the E-Government workload). For
this workload, tests were performed for block sizes of 256 KB, 1 MB and 4 MB.

B
as

el
in

e
(n

o
O

R
A

M
,

no
bl

oc
ks

)

Download operations 58
Upload operations 52
MBs downloaded 196.64
MBs uploaded 265.09
Runtime (seconds) 47
Average CPU usage (%) 1.99
Peak CPU usage (%) 15.8
Average RAM usage (MB) 118.15
Peak RAM usage (MB) 145.13
Read bandwidth (KB/s) 7016.53
Write bandwidth (KB/s) 35180.69
Avg. response time read (ms) 202.69
Avg. response time write (ms) 762.4
Cost (USD) $0.02

Bandwidth overhead 1
Relative response time 1
Relative slowdown 1
Cost multiplier 1
Outsource ratio 1

Table 5.5: Baseline results for Workload E. These results were measured by running
the workload without using ORAM and without splitting the files into blocks.

Like in the previous sections, Table 5.5 shows the baseline for this workload. The
table is divided into two sections. The first section contains data that was collected
during the test, while the second section contains relative metrics calculated from
the data.

The remaining results are summarized in Figure 5.5. The figure shows three bar
charts, one for each block size. The charts are divided into four groups, one for each
of the three ORAM schemes and one for running the workload without ORAM (but
with files being split into blocks). Each group has five bars, one for each of the five
overheads that were calculated. These are (from left to right): bandwidth overhead,
cost overhead, relative response time, relative slowdown and computational overhead.

For this workload the overhead of splitting files into blocks was low for all the
considered metrics, compared to the previous workloads. The bandwidth overhead
ranged from 1.1× to 1.5× the baseline. The cost overhead was 1.5× the baseline
for 256 KB and 4 MB blocks, and 1× the baseline for 1 MB blocks. The relative
response time and slowdown ranged from 1.2× to 3.5× and 1.4× to 3.6×, with both
overheads decreasing as the block size increased. The computational overhead was
0.5× the baseline for 256 KB blocks and 0.8× the baseline for 4 MB blocks. An
interesting observation about this metric is that the computational overhead was
smaller than the baseline for all three blocks sizes. This was only the case for this
workload and Workload A.

5.1. SYNTHETIC WORKLOADS 65

For this workload, ObliviStore had lower overheads than the other ORAM schemes
for all metrics except computational overhead. The bandwidth overhead ranged
from 26.7× to 34.6× the baseline, with the least bandwidth being consumed when
256 KB blocks were used. The cost overhead ranged from 45.45× the baseline for
256 KB blocks to 24.5× the baseline for 4 MB blocks. The relative response time
and slowdown ranged from 2.4× to 3.6× and 2.9× to 4.4× their baseline values
respectively. Interestingly, these overheads were lower for ObliviStore than for no
ORAM when 256 KB blocks were used. The computational overhead ranged from
5.5× the baseline for the smallest block size, to 6× the baseline for the largest block
size. Overall, these were the lowest computational overheads for ObliviStore across
all five workloads (barring Workload D with 64 KB blocks).

CURIOUS had high bandwidth and cost overheads for this workload, with the
remaining metrics being similar or slightly higher than those of ObliviStore. The
bandwidth overheads ranged from 45.4× to 59.3× the baseline, the highest of all the
ORAM schemes for this workload. The cost overhead ranged from 46.5× to 63×
the baseline cost. An interesting observation to make here is that the cost overhead
decreased when going from 256 KB to 1 MB blocks, but then increased again when
going from 1 MB to 4 MB blocks. This was not the case for the two other ORAM
schemes. The relative response time and slowdown ranged from 5.5× to 12.9× and
6.2× to 21.3× their baseline values respectively. The computational cost was lower
for this workload than for any of the other workloads, ranging from 5.1× to 5.7× the
baseline value. These values were close to those of ObliviStore for the same block
sizes.

RingORAM incurred overall lower overheads for this workload compared to the
other workloads. The bandwidth overhead ranged from 38.4×, for the largest block
size, to 51.7× the baseline value for the smallest block size. The cost overhead was
higher than the two other ORAM schemes for 256 KB and 1 MB blocks, with 70×
and 53× the baseline cost, but lower than CURIOUS for 4 MB blocks with 48.5× the
baseline value. The relative response time ranged from 133.2× to 16.4× the baseline.
Similarly, the relative slowdown ranged from 113.2× the baseline for 256 KB blocks
to 18.7× the baseline for 4 MB blocks. An interesting observation here is that the
relative response time was larger than the slowdown for 256 KB blocks, but smaller
for the two larger block sizes. The computational overhead of using RingORAM for
this workload was comparatively small, ranging from 1× the baseline for the smallest
block size, to 2.1× the baseline for the largest block size.

66 5. RESULTS

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

200

250

1.1

26.7

54.4 51.7

1.5

45.5
62 70

3.5 2.4 5.5

133.2

3.6 2.9 6.2

113.2

0.5 5.5 5.7 1

R
el

at
iv

e
m

et
ric

Workload E, 256 KB blocks

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

200

250

1.1

27.2
45.3 41.4

1

25.5
46.5 53

1.4 2.5
12.9

27.8

1.8 3.1
21.3 28.8

0.7 5.6 5.7 1.3

R
el

at
iv

e
m

et
ric

Workload E, 1 MB blocks

No ORAM ObliviStore CURIOUS RingORAM
0

50

100

150

200

250

1.5

34.6

59.3
38.4

1.5
24.5

63
48.5

1.2 3.6 8.3 16.4
1.4 4.4 8.7

18.7
0.8 6 5.1 2.1

R
el

at
iv

e
m

et
ric

Workload E, 4 MB blocks

Bandwidth overhead Cost multiplier Relative response time
Relative slowdown Computational overhead

Figure 5.5: Relative metrics for Workload E. Lower is better.

5.2. REAL WORKLOADS 67

5.2 Real workloads

In this section, the results of running the real-world workloads are presented. These
workloads are based on the results of the code distribution workload (Workload D)
and consist of four steps (described in Section 4.3.2). For each of these operations,
the time required to complete them was measured. The workloads were tested in
both a public- and private-cloud scenario, as described in Section 4.4.

Elapsed Time

Baseline
(No ORAM)

Pushing a repo 19.7 s
Pulling a repo 8 m 14.2 s
Pushing a commit 2.4 s
Pulling a commit 26.7 s
Cost $0.16

Table 5.6: Results of running the four steps of the real-world code distribution
workload without using ORAM in a public-cloud scenario. Costs are in USD. Elapsed
time is given in minutes (m) and seconds (s).

Table 5.6 presents the baseline for this workload. These results were obtained
by running tests against the cloud storage directly, without using the ORAM proxy.
The table contains the time required to complete each of the four steps as well as
the combined cost of all steps (taken from the IBM Cloud bill). As can be seen from
the table, the different steps took varying amounts of time, with the slowest step
being the initial cloning of the repository (taking 8 minutes and 14.2 seconds) and
the quickest step being pushing a new commit (taking 2.4 seconds).

Elapsed Time Relative Slowdown

CURIOUS
(16 KB blocks)

Pushing a repo 33.4 s 1.70
Pulling a repo 82 m 38.2 s 10
Pushing a commit 2.3 s 0.96
Pulling a commit 35.1 s 1.32
Cost $17.60

ObliviStore
(64 KB blocks)

Pushing a repo 24.9 s 0.79
Pulling a repo 94 m 4.7 s 11.42
Pushing a commit 1.4 s 0.58
Pulling a commit 34.8 s 1.30
Cost $23.39

Table 5.7: Results of running the four steps of the real-world code distribution
workload with ORAM in a public-cloud scenario. Costs are in USD.

68 5. RESULTS

The results of running the workloads in a public-cloud scenario are presented in
Table 5.7. The table is divided into two sections, one for each of the schemes that
were tested. For each scheme, the time it took to complete each step is given. The
total cost is also included.

As can be seen from the results, the time required to complete the different
steps varied greatly. Pushing a new repository to the server took 33.4 seconds when
CURIOUS was used and 24.9 seconds when using ObliviStore. Cloning the same
repository took a lot longer, with CURIOUS using 82 minutes and 38.2 seconds
and ObliviStore needing as much as 94 minutes and 4.7 seconds to complete the
clone. The two last steps favored ObliviStore, with pushing a new commit taking 1.4
seconds (versus to 2.3 seconds for CURIOUS) pulling a commit taking 34.8 seconds
(versus 35.1 seconds for CURIOUS). The cost of completing all four steps was $17.6
for CURIOUS and $23.39 for ObliviStore.

Elapsed Time Relative Slowdown

CURIOUS
(16 KB blocks)

Pushing a repo 51.1 s 2.59
Pulling a repo 124 m 18.9 s 15.09
Pushing a commit 2.5 s 1.04
Pulling a commit 37.1 s 1.39
Cost $17.60

ObliviStore
(64 KB blocks)

Pushing a repo 36.8 s 1.87
Pulling a repo 120 m 1.5 s 14.57
Pushing a commit 1.2 s 0.50
Pulling a commit 25.5 s 0.95
Cost $23.39

Table 5.8: Results of running the four steps of the real-world code distribution
workload with ORAM in a private-cloud scenario. Costs are in USD.

The results of running the same workloads in a private-cloud scenario are presented
in Table 5.8. The table is divided into two sections, one for each of the schemes that
were tested. For each scheme, the time it took to complete each step is given. The
total cost (taken from the IBM Cloud bill) is also included.

These results are comparable to those of the public-cloud scenario, but with most
of the steps taking more time. The exception to this is pushing and pulling new
commits when using ObliviStore. In these cases the steps took 1.2 and 25.5 seconds,
compared to 1.4 and 34.8 seconds in the public-cloud case. The costs were the same
as in the public-cloud case for both schemes.

Chapter6Discussion

In this chapter, the results from Chapter 5 are discussed. First, the results are
evaluated in the context of the research questions from Chapter 1 and then in the
broader context of the field of Oblivious RAM. The validity of the methodology and
the results is then discussed and potential shortcomings are highlighted. Finally, the
other contributions, apart from the results, made by this thesis are presented.

For reference, the research questions of the thesis are restated here. The main
research question is Are current ORAM schemes practical in a cloud setting?. This is
a very broad question and it has therefore been split into five more narrow research
questions:

– Which metrics determine the practicality of ORAM in a cloud setting?

– Which types of workloads are found in practical cloud applications?

– How do current ORAM schemes perform under realistic workloads?

– What are the costs associated with using ORAM with cloud storage?

– Are there other factors that need to be considered when using ORAM in
practice?

6.1 Evaluation of Results

As stated above, the overarching research question of this thesis is: Are current
ORAM schemes practical in a cloud setting? The answer to this question will depend
strongly on what is considered practical, with the requirements differing greatly from
user to user. It is therefore not possible to give a definite answer to the question.
Instead, this section focuses on the specific use cases that each of the workloads were
based on and subjectively evaluates their practicality. The aim of this evaluation is
to provide some insight regarding the last three research questions.

69

70 6. DISCUSSION

The two first workloads (Workload A and B) are based on an individual user that
uses ORAM to secure their personal files. For this evaluation, it is assumed that cost
is the most important factor for a home user. The lowest measured cost across both
workloads was 36× higher than the baseline cost ($0.36 vs $0.01). At first glance,
this would seem like an unacceptably high cost overhead for anything but storing a
few small files, however this cost is highly dependent on the pricing model used by
the cloud provider. Personal cloud storage providers generally charge a flat fee per
month or charge per GB stored, with bandwidth and requests being free of charge.
In such a model, the most important metrics are the external storage overhead (i.e
how much extra storage the ORAM scheme requires), which determines the cost,
and the response time and slowdown, which determine usability.

The external storage overhead was not directly studied, but the overall external
storage used by each of the schemes was recorded and is available in Appendix C.
This data shows that CURIOUS used the least external storage. An ORAM size of
5GB was used for all tests, meaning that the best case external storage overhead for
CURIOUS works out to be about 2.2× and 1.6× for Workload A and B respectively.
With these overheads, a user is able to store approximately 6.82 and 9.38 GBs on
Google Drive, which provides individuals with up to 15 GBs of storage for free. This
is within the realm of practicality.

The response times and slowdowns affect the usability by reducing the transfer
rate seen by the user when uploading or downloading files from the ORAM. The
response time affects single file transfers, while the slowdown affects a series of
transfers. Assuming that the user requests single files more often than multiple files,
the response time has the biggest effect on practicality. The lowest response time
overhead for the two workloads was 3.5× and 1.36× higher than the baseline value
respectively. These overheads are also within the realm of practicality, however to
achieve these overheads a higher external storage overhead is required.

The conclusion is therefore that ORAM could be practical for a home user as
long as some tradeoffs can be made. More external storage and lower transfer rates
will be required, with the user having to accept high overheads for one of the two.
Ultimately the question of practicality depends on the users acceptable security level.
Simply encrypting the files before uploading them to the cloud will likely give an
acceptable level of security for most users.

Workloads C, D and E are based on a scenario where an organization (either
private or governmental) uses ORAM for different purposes. In the first scenario
(Workload C) the organization runs an email server and needs to back up large (10-25
MB) email attachments. For this analysis, it is assumed that these backups are
infrequently accessed and deleted after a certain period of time. Furthermore it is

6.1. EVALUATION OF RESULTS 71

assumed that the backups are performed every night and have ample amounts of
time to complete. The most important factor determining the practicality of this
scenario is therefore the cost. It is assumed that the organization is less cost sensitive
than the home user, but the added security still needs to be worth the added costs.

The lowest cost overhead for Workload C was 66.5× the baseline cost. In this
best-case scenario, 1684 MB were backed up for a total cost of $1.33 (compared to the
baseline cost of $0.02). Assuming that the average size of a large attachment is 17.5
MB, the organization would be able to back up approximately 96 attachments for this
cost. If we assume that this cost is linearly related to the number of attachments (a
shaky assumption at best), the cost per attachment works out to about $0.014. This
calculation does not include the cost of storage over time so the actual amount would
be higher. These costs are much higher than a backup solution without ORAM, but
not prohibitively expensive. If 1000 large attachments need to be backed up every
day, the cost (excluding storage) would be $420 per month.

It is difficult to draw conclusions about this scenario, due to the potentially large
inaccuracies involved in the calculations. However it would seem that backing up
email attachments using ORAM could be practical, since this workload can tolerate
large bandwidth, response time and other overheads as long as the cost overhead is
manageable.

The second organization scenario is based around an organization that uses a
version control system to distribute their proprietary SDK. For this scenario both a
synthetic workload (Workload D) and a real workload (the Git workload) were tested.
A more in-depth analysis of the practicality of this scenario is therefore possible.

The major factors impacting the practicality of this workload is cost (e.g how
much does it cost when new customers start using the SDK, how much does it cost to
push an update, etc.) and slowdown (e.g how long does it take for developers to push
updates and for customers to download them). The results of running the synthetic
workload show that a tradeoff has to be made with these two metrics. When one of
the metrics has a low overhead, the other metric has a high overhead and vice versa.
The lowest cost is achieved with RingORAM (at 78.7× the baseline cost for 64 KB
blocks) and the lowest slowdown with ObliviStore (at 4× the baseline for the same
block size). CURIOUS lies somewhere in between (with a cost overhead of 118.1×
and a slowdown of 60× for 256 KB blocks) as a possible compromise.

For the real workload (the Git workload) this tradeoff was made in favor of a low
relative slowdown, at the expense of a higher cost. This is therefore the scenario
that is considered for the rest of the evaluation. The workload was only tested
with CURIOUS and ObliviStore, due to lack of time to test RingORAM. The tests
resulted in very manageable slowdowns. Three of the four operations were able to

72 6. DISCUSSION

be completed in less than a minute, with slowdowns ranging from 0.58× to 1.70×
the baseline value in the public-cloud case and 0.50× to 2.59× the baseline value in
the private-cloud case (see Tables 5.7 and 5.8). The operation requiring the most
time was cloning a repository for the first time, with slowdowns ranging from 10× to
15.09× the baseline value. This overhead is significant, but because of the scenario
considered for this workload, the operation in question will not occur very often (only
when new customers first start using the SDK).

The costs of running the Git workload were large, ranging from 110× to 146.19×
the baseline cost. Unfortunately, the cost was not measured for each operation,
only for the workload as a whole, so it is not known which steps contributed most
to the cost. Without knowing this, it is difficult to evaluate whether the costs are
prohibitively high or not.

The conclusion for this scenario is therefore that it can be practical if high costs
are acceptable. There is not enough information to make any conclusions for other
cases (e.g when choosing to trade low slowdowns for low costs).

The final workload (Workload E) is based on a scenario where ORAM is used
in an E-Goverment system. This workload differs from the others in that it tries to
model a scenario where traffic is bursty. This means that the ORAM has to handle a
lot of reads for a certain period of time and then a lot of writes for another. It is
assumed that the E-Government system in question is sufficiently important that
costs are less of a concern. Because of this, the important metrics for this scenario
are response time (i.e being able to quickly respond to requests during peak periods)
and computational overhead (i.e being able to handle a large amount of users without
overloading the server).

From the results shown in Figure 5.5 we see that no single ORAM scheme /
block size combination minimizes both of these metrics. RingORAM incurs the
lowest computational overhead, while ObliviStore incurs the lowest relative response
time). Selecting the scheme with the lowest computational overhead gives a response
time that is 113.2× higher than the baseline (averaging around 64 seconds per
request). If one instead optimizes for response time, a computational overhead of
5.5× the baseline value is incurred (peaking at 87.1% CPU usage). There is no good
compromise for the schemes and block sizes that were tested, with both ObliviStore
and CURIOUS having peak CPU usages of 80% or more and RingORAM having
average response times on the scale of minutes.

The conclusion is therefore that this scenario is impractical for the schemes and
block sizes that were tested. The relative response times and computational overheads
are simply too high to support a bursty traffic pattern with many users requesting
service at the same time. Another concern is that none of the schemes that were

6.2. LIMITATIONS 73

tested are Oblivious Paralell RAMs (OPRAMs) and are therefore unable to handle
multiple application-level requests at the same time. This would be very limiting in
a real world deployment, since this scenario needs to support many concurrent users.

To summarize, most of the scenarios that were tested are impractical in the
pricing model of the cloud storage service they were tested with (IBM Cloud). Some
of the scenarios could be practical if high costs are acceptable or if a different pricing
model is available. These scenarios are generally ones with more writes than reads.
The reason for this is that writes are more expensive than reads in most pricing
models (see Table 4.5). When using ORAM, the same number of read and write
requests need to be performed to serve an application-level request, regardless of its
type. This means that extra cost of using ORAM is lower if the baseline has many
writes. Another factor affecting the practicality is a scenario’s tolerance for lower
performance. Backup scenarios like the one considered in Workload C can tolerate
longer running times and lower troughput, while realtime applications like that of
Workload E can not.

6.2 Limitations

This section points out potential limitations and sources of error in the experiments
that were conducted. First, high level limitations are addressed, followed by limtations
of the implementations that were used and the tests that were carried out.

A potential limitation of the methodology that was used is that not all research
questions were given equal treatment. The main focus was on the tests that were
run and therefore on the three last research questions. The first research question
(Which metrics determine the practicality of ORAM in a cloud setting?) deals with
the metrics used when evaluating and comparing ORAM schemes. Most of the
metrics used in this thesis were selected based on the results of Bindschaedler et
al. [BNP+15], with the exception being the computational overhead metric, which
was selected based on intuition gained while implementing the ORAM proxy. Pros
of using these metrics are that they are easy to measure/calculate and they are
understandable for people outside the ORAM community. The cons of these metrics
is that they are not established in the literature, meaning that results are not easily
comparable.

The second question (Which types of workloads are found in practical cloud
applications?) is related to the workloads that were used when running tests. For
the results to be applicable to the real world, workloads should mirror real cloud
applications as much as possible. This is an area that has not been given sufficient
treatment in previous studies (in this case the study by Bindschaedler et al. [BNP+15]).
The original plan for this thesis was to use only real-world workloads, generated

74 6. DISCUSSION

by representative cloud-applications. This proved to be difficult due to the lack of
compatible and freely available cloud applications. The majority of workloads were
instead based on a few realistic scenarios, with the parameters of the workloads being
based on either previous academic surveys (Workload A-C and E) or data collected
from publicly available sources (Workload D). Only a small number of workloads were
generated using a real cloud application (Git). The details of how each workload was
selected is given in Section 4.3. The pros of this approach is that more data points
could be collected, since the manual labour required to configure real applications
for different scenarios and block sizes was avoided. The cons of this approach is that
results could be less applicable to the real world.

Regarding the implementation and test setup, there are several potential limita-
tions. The implementations of the ORAM schemes that were tested were not verified
to be correct and no guarantees can be made about their performance. This means
that better implementations could be possible, thus giving better results than what
was found in this thesis. It also means that the implementations could have errors
that might affect the results and in turn, the conclusions drawn in the previous
section.

Asynchronicity is a big factor affecting the performance of ORAM schemes in
a cloud scenario (as pointed out by Bindschaedler et al. [BNP+15]). Two of the
schemes that were tested (ObliviStore and CURIOUS) are asynchronous. These
schemes should ideally be compared to a baseline that is also asynchronous, both
with and without blocks. This was not fully possible in the tests that were conducted
due to a bug in the ORAM proxy. Because of the bug, tests without ORAM (but
with blocks) could only be performed synchronously. This means that of the two
baselines, only one of them is directly comparable to the two asynchronous schemes.

The effect of this can be seen from the results in Chapter 5. For example, the
response times and slowdowns of both ObliviStore and CURIOUS are smaller than
the baseline with blocks for Workload A when a block size of 64 KB is used (see
Figure 5.1). Similar results can be found for the other workloads.

Another factor affecting the accuracy of the results is the "resolution" of the IBM
Cloud billing system. The smallest billable amount is $0.01, meaning that smaller
amounts were not be included in the bills. Because of this, the baseline costs for
Workload B and D had to be estimated from the bandwidth / number of requests.
This estimation introduces some unknown uncertainty into both the baseline costs
and the cost overheads for these workloads.

6.3. RELATION TO PREVIOUS WORK 75

6.3 Relation to Previous Work

This section considers the findings and implications of this thesis in a broader context.
As mentioned in Chapter 1, the study by Bindschaedler et al. [BNP+15] is the only
previous work to compare the performance of ORAM schemes in a cloud scenario. The
results of this thesis are largely in line with those of Bindschaedler et al. [BNP+15].
As such, this thesis can be seen as a continuation of their work, but with more
realistic workloads and updated to use newer schemes (RingORAM).

6.4 Other Contributions

In addition to the results from Chapter 5 and the insight gained from them, other
contributions to the field of ORAM have been made while writing this thesis. These
contributions are in the form of tools that can be used in future studies.

The first of these tools is the ORAM proxy. This tool allows running cloud
applications that supports the Swift API with any of the three ORAM schemes tested
in this thesis. The code for the ORAM proxy is based on the codebase released by
Bindschaedler et al. [BNP+15], but with a number of modifications. The design of
the ORAM proxy is modular, meaning that it is easy to add support for both new
ORAM schemes and cloud storage APIs. The ORAM proxy, include its source code,
has been made publicly available at https://github.com/olav-st/oram-proxy.

olav@olav -master -pc :~$ gradle run
...
Initializing new session (from ./ state / session . state), command :

" CloudExperiments .java --http - proxy =8080 --max - blocks =16384 --
block -byte -size =65536 123456789 RingORAM S3"

[Machine] hostname : olav -master -pc
Experiment desc:

[Scheme] RingORAM with S3 storage (fast init)
[Input] HTTP proxy (Swift API) on port 8080 (test: false)
[Encryption] key hash: A6A827BDFC512D41C5763A7F98099C2F5EFA63A4 ,

random prefix size: 8, header size: 10
[RAM] N: 16384 , l: 65518 , local posmap cutoff : 536870912

Storage key: cep -782039 f014 (experiment hash: 782039 f014)
Waiting for requests over HTTP on port 8080
Starting from req 1 we will attempt to process 123456789 requests .
Starting experiments [runner : parallel] (client name: RingORAM ,

synchronous : true)
Starting experiments [runner : parallel] (client name: RingORAM ,

synchronous : true); will process 123456789 next requests .
[CA] Opening client ...
[Amazon S3] Creating bucket cep -782039 f014
[CA] Client opened

Figure 6.1: Example output when running the ORAM proxy with RingORAM as
the scheme and Amazon S3 as the backend.

https://github.com/olav-st/oram-proxy

76 6. DISCUSSION

Figure 6.2: Screenshot of the ORAM visualizer created while researching for this
thesis. The three most important elements, the algorithm view, the logical view and
the memory view, are numbered from 1-3.

The second tool is designed to help explain ORAM to people that are unfamiliar
with the concept. It can be difficult to get an intuitive understanding of how ORAM
schemes work. The papers describing them often focus on theoretical proofs, providing
only a short and dense explanation of the schemes themselves. Some ORAM schemes
have open-source implementations available, but these are usually geared towards
specific research projects and the code is normally not well documented1.

Because of this, a tool was created to illustrate ORAM schemes graphically, called
the ORAM visualizer. The tool simulates different workloads (e.g. linear search,
sorting an array, etc.) on a simulated memory. The workloads can be performed
either directly on the simulated memory, or through an ORAM scheme selected by
the user. All workloads are small and can be performed in "slow-motion". Slowing
down the execution makes it possible to observe the behaviour of the ORAM schemes
while the workload is running.

The ORAM visualizer is implemented as a web application. A screenshot of the
user interface is shown in Figure 6.2. The user interface is organized into different
views, numbered 1-3 in the figure. A description of each view is given below:

1. The Algorithm View shows the code of the ORAM scheme currently in use. A
dropdown menu lets a user select from a number of ORAM schemes. Using a
custom scheme is also supported, in case the user wants to provide their own
code. The dropdown menu can also be used to turn ORAM off entirely.

1An example of this is SEAL-ORAM, a testbed for evaluating ORAM schemes (available at
https://github.com/InitialDLab/SEAL-ORAM). Many prominent schemes are implemented, but
they are cluttered with verbose encryption code and documentation is lacking.

6.4. OTHER CONTRIBUTIONS 77

Figure 6.3: Screenshot of the memory view shown by the visualizer when no ORAM
scheme is used. Access pattern is clearly visible.

2. The Logical View shows the logical structure used by the ORAM scheme, e.g.
a binary tree for Tree-Based ORAM schemes (the only logical view currently
supported).

3. The Memory View shows the simulated memory and some statistics about
the access pattern to it. The size of the memory can be adjusted by the user.
Hiding of the values stored in the memory can also be turned on, giving the user
a view similar to that of an adversary in the models described in Section 1.1.

The Memory View is the most important part of the visualizer and will therefore
be explained more thoroughly. Figure 6.3 shows a snapshot of the memory view
when no ORAM scheme is used and the workload is bubble sort on a list of 16
integers. Bubble sort works by linearly scanning through the list and swapping pairs
of elements if the left element is larger than the right element. This behaviour is
reflected in the access pattern to the simulated memory. We can see that the green
cells have been scanned by the sorting algorithm, but were not swapped since they
were already in order. The red/green cells have recently both been read and written
to, which means that they originaly were unordered and the algorithm swapped
them.

Figure 6.4 shows the same scenario (bubble sort on a list of 16 integers), but
with a Tree-Based ORAM scheme in use. The access patterns no longer reveal what
algorithm is running or which elements are being swapped. In fact, every time a cell
is read from it is also written to and vice versa. This leads to an even distribution of
50% reads and 50% writes. This comes at a cost of more memory operations and the
need to store metadata (illustrated by a small number next to every cell).

78 6. DISCUSSION

Figure 6.4: Screenshot of the memory view shown by the visualizer when a Tree-Based
ORAM scheme is in use. Access pattern is now obscured.

The source code for the visualizer has been made available online at https://
github.com/olav-st/oram-visualizer. A live version is also available, at http:
//folk.ntnu.no/olavsth/oram. It is hoped that this tool will be a useful resource
for people that are new to ORAM.

https://github.com/olav-st/oram-visualizer
https://github.com/olav-st/oram-visualizer
http://folk.ntnu.no/olavsth/oram
http://folk.ntnu.no/olavsth/oram

Chapter7Conclusion & Future Work

This chapter summarizes the results of the thesis and suggests some future work.
First, the goals of the thesis are restated and the main findings and conclusions are
highlighted. Recommendations for future work are then given.

Conclusion

This thesis aimed to study the practicality of current ORAM schemes in a cloud
setting. This was done by running tests with both synthetical workloads and
workloads generated by a real cloud application (Git). The results (presented in
Chapter 5 and discussed in Chapter 6) indicate that the ORAM schemes tested in
this thesis incur significant overheads for most workloads and as such are impractical
in most scenarios. Cost and slowdown were the major factors hindering practicality.

Despite high overheads, a handful of scenarios where ORAM could be practical
were identified. One of these scenarios is a home user using ORAM to securely store
their files. This scenario was identified as potentially practical because of the pricing
model of personal cloud storage services. The services generally do not charge for
upload/download operations or bandwidth, but instead charge a flat monthly fee
determined by the amount of storage used. The use of ORAM was found to be
more practical under this type of pricing model. Another scenario that was found to
be practical was using ORAM to back up email attachments. In this scenario, the
average file size is known beforehand and an optimal block size and ORAM scheme
can thus be chosen. This scenario can also handle large performance overheads, since
the backups rarely need to be accessed. The costs of this scenario were found to be
within reasonable limits for a large organization.

To summarize, the results of this thesis are in line with previous results (particu-
larly those of Bindschaedler et al. [BNP+15]), but an improved test setup and more
realistic workloads have made it possible to identify new scenarios where ORAM
could be practical in a cloud setting.

79

80 7. CONCLUSION & FUTURE WORK

Future Work

This section suggests some future work based on the results of this thesis. These
suggestions include both tests that were not carried out due to resource constraints
(time, money, etc.) and ways to address the limitations of this study.

A natural extension of this thesis would be to run tests with a wider range of
block sizes. In particular, larger block sizes would be interesting because for certain
combinations of ORAM schemes and workloads (e.g RingORAM and Workload E),
all of the overheads that were measured decrease as the block size increases. By
studying a larger range of block sizes, the optimal block sizes for different schemes
could be determined. This would provide more insights into the overheads of using
ORAM on the cloud and could potentially be used to estimate the practicality of
new ORAM schemes.

A study comparing the results of this thesis to the results of similar tests using
DP-ORAMs (see Section 3.11) would also give valuable insight. DP-ORAMs are
tunable, allowing a tradeoff between access pattern privacy and performance. Many
practical applications do not require perfect privacy and would therefore benefit from
the potentially lower overheads of these schemes.

It would also be interesting to study the effects of link quality (packet loss,
bandwidth restrictions, etc.) on ORAM performance. Such a study would shed light
on the practicality of using ORAM on mobile networks. This would have implications
for the envisioned Internet of Things (IoT), where embedded devices are ubiquitous
and connected to the Internet. These devices are likely to take advantage of cloud
storage due to their limited local storage. Solutions like ORAM can therefore be a
useful way to enhance the privacy and security of these devices.

References

[Avr14] M.G. Avram. Advantages and Challenges of Adopting Cloud Computing from
an Enterprise Perspective. Procedia Technology, 12:529 – 534, 2014. The 7th
International Conference Interdisciplinarity in Engineering, INTER-ENG 2013,
10-11 October 2013, Petru Maior University of Tirgu Mures, Romania.

[Bat68] Kenneth E. Batcher. Sorting Networks and Their Applications. In American
Federation of Information Processing Societies: AFIPS Conference Proceedings:
1968 Spring Joint Computer Conference, Atlantic City, NJ, USA, 30 April - 2
May 1968, pages 307–314, 1968.

[BCP16] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious Parallel RAM and
Applications. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography,
pages 175–204, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[BNP+15] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and
Yan Huang. Practicing Oblivious Access on Cloud Storage: the Gap, the Fallacy,
and the New Way Forward. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12-16,
2015, pages 837–849, 2015.

[CLP14] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM
with Õ(log2 n) Overhead. In Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014,
Proceedings, Part II, pages 62–81, 2014.

[CP13] Kai-Min Chung and Rafael Pass. A Simple ORAM. IACR Cryptology ePrint
Archive, 2013:243, 2013.

[CS14] Scott Chacon and Ben Straub. Pro Git. Apress, Berkely, CA, USA, 2nd edition,
2014.

[DH11] Hrishikesh Dewan and R. C. Hansdah. A Survey of Cloud Storage Facilities. In
World Congress on Services, SERVICES 2011, Washington, DC, USA, July 4-9,
2011, pages 224–231, 2011.

81

82 REFERENCES

[DvDF+16] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine
Shi, and Daniel Wichs. Onion ORAM: A Constant Bandwidth Blowup Oblivious
RAM. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography,
pages 145–174, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Dwo06] Cynthia Dwork. Differential Privacy. In 33rd International Colloquium on
Automata, Languages and Programming, part II (ICALP 2006), volume 4052 of
Lecture Notes in Computer Science, pages 1–12. Springer Verlag, July 2006.

[GGH+13a] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova,
and Daniel Wichs. Optimizing ORAM and Using It Efficiently for Secure Com-
putation. In Emiliano De Cristofaro and Matthew Wright, editors, Privacy
Enhancing Technologies, pages 1–18, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[GGH+13b] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana
Raykova, and Daniel Wichs. Optimizing ORAM and Using It Efficiently for
Secure Computation. In Privacy Enhancing Technologies - 13th International
Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings,
pages 1–18, 2013.

[GL18] Kimia Ghaffari and Mohammad Lagzian. Exploring users’ experiences of us-
ing personal cloud storage services: a phenomenological study. Behaviour &
Information Technology, 37(3):295–309, 2018.

[GMOT12] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Practical oblivious storage. In Second ACM Conference on Data and
Application Security and Privacy, CODASPY 2012, San Antonio, TX, USA,
February 7-9, 2012, pages 13–24, 2012.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on
Oblivious RAMs. J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a Theory of Software Protection and Simulation by
Oblivious RAMs. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, New York, New York, USA, pages 182–194, 1987.

[Goo10] Michael T. Goodrich. Randomized Shellsort: A Simple Oblivious Sorting Al-
gorithm. Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, Jan 2010.

[HHNZ19] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. SoK: General Purpose
Compilers for Secure Multi-Party Computation. In 2019 2019 IEEE Symposium
on Security and Privacy (SP), Los Alamitos, CA, USA, may 2019. IEEE Computer
Society.

[Hol16] Kjell Jørgen Hole. Toward an Anti-fragile e-Government System, pages 57–65.
Springer International Publishing, Cham, 2016.

REFERENCES 83

[HRAAN12] Mohammed Hawa, Jamal S. Rahhal, and Dia I. Abu-Al-Nadi. File size models for
shared content over the BitTorrent Peer-to-Peer network. Peer-to-Peer Networking
and Applications, 5(3):279–291, Sep 2012.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access Pattern
disclosure on Searchable Encryption: Ramification, Attack and Mitigation. In
19th Annual Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012, 2012.

[KHK10] Josef Kanizo, David Hay, and Isaac Keslassy. Maximum Bipartite Matching Size
And Application to Cuckoo Hashing. CoRR, abs/1007.1946, 2010.

[Köh15] Jens Köhler. Tunable Security for Deployable Data Outsourcing. PhD thesis,
Karlsruhe Institute of Technology, 2015.

[Lam14] Mark Lamourine. OpenStack. ;login: The USENIX Magazine, 39(3):18–20, June
2014.

[LHFY13] S. Liu, X. Huang, H. Fu, and G. Yang. Understanding Data Characteristics
and Access Patterns in a Cloud Storage System. In 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, pages 327–334,
May 2013.

[MG11] Peter M. Mell and Timothy Grance. SP 800-145. The NIST Definition of Cloud
Computing. Technical report, Gaithersburg, MD, United States, 2011.

[MLS+13] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. PHANTOM: Practical Oblivious Computa-
tion in a Secure Processor. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS ’13, pages 311–324, New
York, NY, USA, 2013. ACM.

[Ost90] Rafail Ostrovsky. Efficient Computation on Oblivious RAMs. In Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990,
Baltimore, Maryland, USA, pages 514–523, 1990.

[PR10] Benny Pinkas and Tzachy Reinman. Oblivious RAM Revisited. In Advances in
Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings, pages 502–519, 2010.

[RFK+15] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi,
Marten van Dijk, and Srinivas Devadas. Constants Count: Practical Improvements
to Oblivious RAM. In 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., pages 415–430, 2015.

[RFK+18] L. Ren, C. W. Fletcher, A. Kwon, M. van Dijk, and S. Devadas. Design and Im-
plementation of the Ascend Secure Processor. IEEE Transactions on Dependable
and Secure Computing, pages 1–1, 2018.

84 REFERENCES

[RGR18] David Reinse, John Gantz, and John Rydning. White Paper: The Digitization of
the World - From Edge to Core. Technical Report US44413318, International
Data Corporation, Framingham, Massachusetts, November 2018.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM
with O((log N)3) Worst-Case Cost. IACR Cryptology ePrint Archive, 2011:407,
2011.

[SS13] Emil Stefanov and Elaine Shi. ObliviStore: High Performance Oblivious Cloud
Storage. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley,
CA, USA, May 19-22, 2013, pages 253–267, 2013.

[SSS11] Emil Stefanov, Elaine Shi, and Dawn Song. Towards Practical Oblivious RAM.
CoRR, abs/1106.3652, 2011.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
299–310, 2013.

[Tee15] Paul Teeuwen. Evolution of oblivious RAM schemes. Master’s thesis, Technische
Universiteit Eindhoven, Eindhoven, The Netherlands, 2015.

[Wan14] Yaguang Wang. COSBench User Guide. Intel, Nov 2014.

[WCM16] Sameer Wagh, Paul Cuff, and Prateek Mittal. Root ORAM: A Tunable Differen-
tially Private Oblivious RAM. CoRR, abs/1601.03378, 2016.

[WCS15] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO,
USA, October 12-16, 2015, pages 850–861, 2015.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine
Shi. SCORAM: Oblivious RAM for Secure Computation. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pages 191–202, 2014.

[WS08] Peter Williams and Radu Sion. Usable PIR. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2008, San Diego, California, USA,
10th February - 13th February 2008, 2008.

[WST12] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A Parallel Oblivious
File System. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 977–988, New York, NY, USA, 2012.
ACM.

REFERENCES 85

[ZCW+12] Qing Zheng, Haopeng Chen, Yaguang Wang, Jiangang Duan, and Zhiteng Huang.
COSBench: A Benchmark Tool for Cloud Object Storage Services. In 2012 IEEE
Fifth International Conference on Cloud Computing, Honolulu, HI, USA, June
24-29, 2012, pages 998–999, 2012.

AppendixAWorkload Files

This appendix gives a more detailed description of the workloads presented in
Section 4.3. First, the format of the workload files is described, followed by a brief
explanation of each workload. The full workload specification, in XML-format, is
also provided.

COSBench workloads are represented by XML-files. The format of these files
is briefly described in this section. A more detailed description can be found in
the COSBench User Guide [Wan14]. A workload has (at least) five stages: init,
prepare, main, cleanup and dispose. The purpose of each stage is explained below:

– The init stage creates the container(s) that will be used to hold objects for
this workload.

– The prepare stage uploads the objects that will later be used to test download
performance in the main stage.

– The normal stage is the main stage of the workload. In this stage the objects
from the previous stage are downloaded and new objects are uploaded.

– The cleanup stage deletes the objects that were uploaded by the other stages.

– Finally, the dispose stage deletes the container(s) that were used while running
the workload.

The normal stage is a general-purpose stage and can appear more than once in a
workload. An example of this can be seen in the XML-file for Workload E. This
workload has 5 normal stages, with the stages alternates between a high proportion
of reads and a high proportion of writes. This is an attempt at modeling a scenario
with bursty traffic. For the remaining workloads (A-D) a single normal stage is
sufficient.

87

88 A. WORKLOAD FILES

A.1 Workload A (Home User)

<?xml version ="1.0" encoding ="UTF -8"?>
<workload name=" WorkloadA " description ="Home User" config ="">

<auth type=" swauth " config =" timeout =36000000; username = test:tester ;
password = testing ; auth_url = http: // olav -openstack -test - server:8080 /
auth/v1 .0"/>

<storage type=" swift " config =" timeout =36000000 "/>

<workflow config ="">

<workstage name="init">
<work name="init" type="init" workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

<workstage name=" prepare ">
<work name=" prepare " type=" normal " workers ="1" totalOps ="10">

<operation type=" filewrite " division ="none"
config =" containers =c(1); fileselection =s; files =/ tmp/

testfiles /A- prepare "/>
</work >

</ workstage >

<workstage name=" normal ">
<work name=" normal " type=" normal " workers ="1"

division ="none" totalOps ="100">
<operation type="read" ratio ="40" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="60" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /A"/>

</work >
</ workstage >

<workstage name=" cleanup ">
<work name=" cleanup " type=" cleanup " workers ="1"

division =" object " totalOps ="1" config =" containers =r(1 ,2);
objects =r(1 ,50);">

</work >
</ workstage >

<workstage name=" dispose ">
<work name=" dispose " type=" dispose " workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

</ workflow >
</ workload >

A.2. WORKLOAD B (TRAVELING USER) 89

A.2 Workload B (Traveling User)

<?xml version ="1.0" encoding ="UTF -8"?>
<workload name=" WorkloadB " description =" Traveling User" config ="">

<auth type=" swauth " config =" timeout =36000000; username = test:tester ;
password = testing ; auth_url = http: // olav -openstack -test - server:8080 /
auth/v1 .0"/>

<storage type=" swift " config =" timeout =36000000 "/>

<workflow config ="">

<workstage name="init">
<work name="init" type="init" workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

<workstage name=" prepare ">
<work name=" prepare " type=" normal " workers ="1" totalOps ="10">

<operation type=" filewrite " division ="none"
config =" containers =c(1); fileselection =s; files =/ tmp/

testfiles /B- prepare "/>
</work >

</ workstage >

<workstage name=" normal ">
<work name=" normal " type=" normal " workers ="1"

division ="none" totalOps ="100">
<operation type="read" ratio ="90" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="10" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /B"/>

</work >
</ workstage >

<workstage name=" cleanup ">
<work name=" cleanup " type=" cleanup " workers ="1"

division =" object " totalOps ="1" config =" containers =r(1 ,2);
objects =r(1 ,50);">

</work >
</ workstage >

<workstage name=" dispose ">
<work name=" dispose " type=" dispose " workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

</ workflow >
</ workload >

90 A. WORKLOAD FILES

A.3 Workload C (Email Backup)

<?xml version ="1.0" encoding ="UTF -8"?>
<workload name=" WorkloadC " description =" Email Backup " config ="">

<auth type=" swauth " config =" timeout =36000000; username = test:tester ;
password = testing ; auth_url = http: // olav -openstack -test - server:8080 /
auth/v1 .0"/>

<storage type=" swift " config =" timeout =36000000 "/>

<workflow config ="">

<workstage name="init">
<work name="init" type="init" workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

<workstage name=" prepare ">
<work name=" prepare " type=" normal " workers ="1" totalOps ="10">

<operation type=" filewrite " division ="none"
config =" containers =c(1); fileselection =s; files =/ tmp/

testfiles /C- prepare "/>
</work >

</ workstage >

<workstage name=" normal ">
<work name=" normal " type=" normal " workers ="1"

division ="none" totalOps ="100">
<operation type="read" ratio ="10" division ="none"

config =" containers =c(1); objects =u(1 ,10);" id="none"/>
<operation type=" filewrite " ratio ="90" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /C"/>

</work >
</ workstage >

<workstage name=" cleanup ">
<work name=" cleanup " type=" cleanup " workers ="1"

division =" object " totalOps ="1" config =" containers =r(1 ,2);
objects =r(1 ,50);">

</work >
</ workstage >

<workstage name=" dispose ">
<work name=" dispose " type=" dispose " workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2);">

</work >
</ workstage >

</ workflow >
</ workload >

A.4. WORKLOAD D (VIDEO SHARING) 91

A.4 Workload D (Video Sharing)

<?xml version ="1.0" encoding ="UTF -8"?>
<workload name=" WorkloadD " description ="Code Sharing " config ="">

<auth type=" swauth " config =" timeout =36000000; username = test:tester ;
password = testing ; auth_url = http: // olav -openstack -test - server:8080 /
auth/v1 .0"/>

<storage type=" swift " config =" timeout =36000000 "/>

<workflow config ="">

<workstage name="init">
<work name="init" type="init" workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

<workstage name=" prepare ">
<work name=" prepare " type=" normal " workers ="1" totalOps ="10">

<operation type=" filewrite " division ="none"
config =" containers =c(1); fileselection =s; files =/ tmp/

testfiles /D- prepare "/>
</work >

</ workstage >

<workstage name=" normal ">
<work name=" normal " type=" normal " workers ="1"

division ="none" totalOps ="100">
<operation type="read" ratio ="80" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="20" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /D"/>

</work >
</ workstage >

<workstage name=" cleanup ">
<work name=" cleanup " type=" cleanup " workers ="1"

division =" object " totalOps ="1" config =" containers =r(1 ,2);
objects =r(1 ,50)">

</work >
</ workstage >

<workstage name=" dispose ">
<work name=" dispose " type=" dispose " workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

</ workflow >
</ workload >

92 A. WORKLOAD FILES

A.5 Workload E (E-Government)

<?xml version ="1.0" encoding ="UTF -8"?>
<workload name=" WorkloadE " description ="E- Government " config ="">

<auth type=" swauth " config =" timeout =36000000; username = test:tester ;
password = testing ; auth_url = http: // olav -openstack -test - server:8080 /
auth/v1 .0"/>

<storage type=" swift " config =" timeout =36000000 "/>

<workflow config ="">

<workstage name="init">
<work name="init" type="init" workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

<workstage name=" prepare ">
<work name=" prepare " type=" normal " workers ="1" totalOps ="10">

<operation type=" filewrite " division ="none"
config =" containers =c(1); fileselection =s; files =/ tmp/

testfiles /E- prepare "/>
</work >

</ workstage >

<workstage name=" normal1 ">
<work name=" normal1 " type=" normal " workers ="1"

division ="none" totalOps ="20">
<operation type="read" ratio ="95" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="5" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /E"/>

</work >
</ workstage >

<workstage name=" normal2 ">
<work name=" normal2 " type=" normal " workers ="1"

division ="none" totalOps ="20">
<operation type="read" ratio ="5" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="95" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /E"/>

</work >
</ workstage >

<workstage name=" normal3 ">
<work name=" normal3 " type=" normal " workers ="1"

division ="none" totalOps ="20">
<operation type="read" ratio ="95" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="5" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /E"/>

</work >
</ workstage >
...

A.5. WORKLOAD E (E-GOVERNMENT) 93

...
<workstage name=" normal4 ">

<work name=" normal4 " type=" normal " workers ="1"
division ="none" totalOps ="20">
<operation type="read" ratio ="5" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="95" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /E"/>

</work >
</ workstage >

<workstage name=" normal5 ">
<work name=" normal5 " type=" normal " workers ="1"

division ="none" totalOps ="20">
<operation type="read" ratio ="95" division ="none"

config =" containers =c(1); objects =u(1 ,10)" id="none"/>
<operation type=" filewrite " ratio ="5" division ="none"

config =" containers =c(2); fileselection =s; files =/ tmp/
testfiles /E"/>

</work >
</ workstage >

<workstage name=" cleanup ">
<work name=" cleanup " type=" cleanup " workers ="1"

division =" object " totalOps ="1" config =" containers =r(1 ,2);
objects =r(1 ,50)">

</work >
</ workstage >

<workstage name=" dispose ">
<work name=" dispose " type=" dispose " workers ="1"

division =" container " totalOps ="1" config =" containers =r
(1 ,2)">

</work >
</ workstage >

</ workflow >
</ workload >

AppendixBCost Estimates

This appendix contains the data gathered when estimating the costs of running tests
on the IBM cloud. These results were gathered by running tests locally (i.e using
the local filesystem instead of a cloud storage service) and recording the number
of read/write operations as well as the number of bytes that were read or written.
Estimated prices were then calculated using pricing information from Table 4.5.

The appendix is organized into five sections, where each section contains the data
for one of the five workloads presented in subsection 4.3.1.

B.1 Workload A (Home User)

Block Size
4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

Read operations 29319 12843 1421 603 121 56 38
Write operations 11770 2962 777 242 108 78 77
MBs downloaded 114.25 200.55 88.8 150.74 121 224 608
MBs uploaded 45.86 46.25 48.56 60.5 108 312 1232
Estimated cost $0.08 $0.04 $0.01 $0.01 $0.01 $0.02 $0.05

Table B.1: Data used to estimate the cost of running Workload A for a range of
block sizes without ORAM. Cost is given in USD.

95

96 B. COST ESTIMATES

B.2 Workload B (Traveling User)

Block Size
4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

Read operations 10729 2410 937 279 119 89 94
Write operations 1972 499 133 46 25 21 16
MBs downloaded 41.81 37.63 58.55 69.75 119 356 1504
MBs uploaded 7.68 7.79 8.31 11.5 25 84 256
Estimated cost $0.02 $0.01 $0.01 $0.01 $0.01 $0.03 $0.13

Table B.2: Data used to estimate the cost of running Workload B for a range of
block sizes without ORAM. Cost is given in USD.

B.3 Workload C (Email Backup)

Block Size
4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

Read operations 51956 11219 3759 1003 145 19 13
Write operations 424157 107946 25919 6551 1832 510 162
MBs downloaded 202.46 175.19 234.9 250.74 145 76 208
MBs uploaded 1652.82 1685.63 1619.69 1637.69 1831.98 2040 2592
Estimated cost $2.16 $0.56 $0.15 $0.06 $0.02 $0.01 $0.02

Table B.3: Data used to estimate the cost of running Workload C for a range of
block sizes without ORAM. Cost is given in USD.

B.4 Workload D (Code Distribution)

Block Size
4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

Read operations 6271 643 346 129 88 78 83
Write operations 610 172 70 37 40 32 27
MBs downloaded 24.44 10.04 21.62 32.25 88 312 1328
MBs uploaded 2.38 2.69 4.37 9.25 40 128 432
Estimated cost $0.0077 $0.0020 $0.0024 $0.0031 $0.0080 $0.0276 $0.1169

Table B.4: Data used to estimate the cost of running Workload D for a range of
block sizes without ORAM. Cost is given in USD.

B.5. WORKLOAD E (E-GOVERNMENT) 97

B.5 Workload E (E-Government)

Block Size
4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

Read operations 55753 12785 4124 979 231 80 59
Write operations 63823 16610 3855 1014 280 98 51
MBs downloaded 217.25 199.64 257.71 244.74 231 320 944
MBs uploaded 248.7 259.37 240.9 253.49 280 392 816
Estimated cost $0.36 $0.11 $0.04 $0.03 $0.02 $0.03 $0.08

Table B.5: Data used to estimate the cost of running Workload E for a range of
block sizes without ORAM. Cost is given in USD.

AppendixCFull results
This appendix contains the data that was gathered from all experiments.The data is
presented in a set of tables. Each table corresponds to a workload and an ORAM
scheme (e.g Workload A, RingORAM). The tables are divided into two sections.
The first section contains data that was measured during the test, while the second
section contains calculated metrics.

99

100 C. FULL RESULTS

C.1 Workload A (Home User)

Block Size
64 KB 256 KB 1 MB

N
o

O
R

A
M

(w
it

h
bl

oc
ks

)

Download operations 1824 162 176
Upload operations 2794 744 231
MBs downloaded 113.98 40.5 176
MBs uploaded 174.6 185.99 231
Remote storage (MB) 174.6 186 231
Peak local storage (MB) 0.1 0.2 1
Runtime (seconds) 250 75 55
Average CPU usage (%) 1.67 3.46 5.3
Peak CPU usage (%) 11.2 9.1 8.3
Average RAM usage (MB) 159.29 233.88 175.21
Peak RAM usage (MB) 411.42 363.04 437.58
Read bandwidth (KB/s) 473.24 482.87 2882.79
Write bandwidth (KB/s) 600.47 2029.09 2871.32
Avg. response time read (ms) 1625.4 262.03 403.56
Avg. response time write (ms) 3066.68 1004.16 600.66
Cost (USD) $0.02 $0.01 $0.02

Bandwidth overhead 1.44 1.13 2.03
Relative response time 9.43 2.54 2.02
Relative slowdown 25 7.5 5.5
Cost multiplier 2 1 2
Outsource ratio 51200 25600 5120

Block Size
64 KB 256 KB 1 MB

O
bl

iv
iS

to
re

Download operations 33270 10927 2541
Upload operations 340270 93664 23270
MBs downloaded 2079.38 2731.75 2541
MBs uploaded 3705.63 5237.5 4774
Remote storage (MB) 19362.6 20336 20736
Peak local storage (MB) 80.9 72.8 106
Runtime (seconds) 100 85 90
Average CPU usage (%) 57.02 67.31 62.38
Peak CPU usage (%) 81.3 89.8 88.8
Average RAM usage (MB) 3287.1 2464.11 2149.44
Peak RAM usage (MB) 7369.36 5938.9 4688.51
Read bandwidth (KB/s) 625.14 1796.14 1308.47
Write bandwidth (KB/s) 1527.28 1405.58 1655.7
Avg. response time read (ms) 902.98 545.7 907.41
Avg. response time write (ms) 1028.81 1180.89 900.36
Cost (USD) $1.92 $0.72 $0.36

Bandwidth overhead 28.83 39.71 36.45
Relative response time 3.88 3.47 3.63
Relative slowdown 10 8.5 9
Cost multiplier 192 72 36
Outsource ratio 63.29 70.33 48.3

C.1. WORKLOAD A (HOME USER) 101

Block Size
64 KB 256 KB 1 MB

C
U

R
IO

U
S

Download operations 29855 7300 1196
Upload operations 70553 26184 4375
MBs downloaded 9328.78 9124.78 5979.96
MBs uploaded 9701.96 9489.78 6278.96
Remote storage (MB) 11224.3 22144.5 14698.9
Peak local storage (MB) 30.2 44 96.7
Runtime (seconds) 170 180 645
Average CPU usage (%) 70.26 64.26 32.64
Peak CPU usage (%) 91.2 94.8 89.8
Average RAM usage (MB) 1289.09 4181.22 3110.64
Peak RAM usage (MB) 3095.35 9905.17 7496.13
Read bandwidth (KB/s) 1233 1019.88 54.98
Write bandwidth (KB/s) 893.89 830.58 231.99
Avg. response time read (ms) 2896.32 1936.51 1462.53
Avg. response time write (ms) 1123.84 1661.49 10470.76
Cost (USD) $1.19 $0.97 $0.55

Bandwidth overhead 94.83 92.75 61.08
Relative response time 8.08 7.23 23.98
Relative slowdown 17 18 64.5
Cost multiplier 119 97 55
Outsource ratio 169.54 116.36 52.95

Block Size
64 KB 256 KB 1 MB

R
in

gO
R

A
M

Download operations 185366 50708 8584
Upload operations 56108 15143 2716
MBs downloaded 9250.57 9876.44 5969.76
MBs uploaded 6332.93 6727.37 3841.25
Remote storage (MB) 24568.7 24551.7 24479.9
Peak local storage (MB) 7.42 28.79 115.01
Runtime (seconds) 14403 3529 871
Average CPU usage (%) 0.51 1.57 3.63
Peak CPU usage (%) 10.4 15.7 23.2
Average RAM usage (MB) 359.09 334.3 841.49
Peak RAM usage (MB) 588.83 586.93 1485.45
Read bandwidth (KB/s) 6.32 43.62 8.66
Write bandwidth (KB/s) 10.39 42.26 171.43
Avg. response time read (ms) 126654.42 38772.4 2069.4
Avg. response time write (ms) 154615.02 32706.52 14095.96
Cost (USD) $1.2 $0.98 $0.56

Bandwidth overhead 77.65 82.73 48.89
Relative response time 565.25 143.65 32.49
Relative slowdown 1440.3 352.9 87.1
Cost multiplier 120 98 56
Outsource ratio 689.85 177.85 44.52

102 C. FULL RESULTS

C.2 Workload B (Traveling User)

Block Size
16 KB 64 KB 256 KB

N
o

O
R

A
M

(w
it

h
bl

oc
ks

)

Download operations 2196 627 228
Upload operations 471 144 52
MBs downloaded 34.29 39.18 57
MBs uploaded 7.35 9 13
Remote storage (MB) 7.4 9 13
Peak local storage (MB) 0.02 0.1 0.2
Runtime (seconds) 85 35 20
Average CPU usage (%) 1.68 2.92 4.59
Peak CPU usage (%) 4.6 5.6 7.9
Average RAM usage (MB) 88.98 91.71 90.74
Peak RAM usage (MB) 165.39 158.91 161.1
Read bandwidth (KB/s) 415.03 1177.78 2320.73
Write bandwidth (KB/s) 31.02 106.13 177.79
Avg. response time read (ms) 766.96 301.25 171.02
Avg. response time write (ms) 2044.67 373.38 194.4
Cost (USD) $0.01 $0 $0.01

Bandwidth overhead 4.48 5.18 7.53
Relative response time 6.98 1.68 0.91
Relative slowdown 17 7 4
Cost multiplier 33.54 14.81 33.54
Outsource ratio 327680 51200 25600

Block Size
16 KB 64 KB 256 KB

O
bl

iv
iS

to
re

Download operations 44235 8496 2327
Upload operations 1173332 294284 75494
MBs downloaded 691.17 531 581.75
MBs uploaded 1243.44 861.63 936.5
Remote storage (MB) 17735.8 18121.1 18558
Peak local storage (MB) 12.3 6.9 8.1
Runtime (seconds) 111 30 265
Average CPU usage (%) 47.65 53.94 28.31
Peak CPU usage (%) 62.5 69.4 71.1
Average RAM usage (MB) 1231.4 1431.42 404.27
Peak RAM usage (MB) 2210.92 2570.49 1233.51
Read bandwidth (KB/s) 478.93 1876.76 138.96
Write bandwidth (KB/s) 27.61 119.55 11.45
Avg. response time read (ms) 1125.99 247.51 2976.41
Avg. response time write (ms) 518.43 300.42 263
Cost (USD) $5.99 $1.55 $0.45

Bandwidth overhead 208.01 149.73 163.24
Relative response time 4.08 1.36 8.04
Relative slowdown 22.2 6 53
Cost multiplier 20092.94 5199.34 1509.49
Outsource ratio 416.26 742.03 632.1

C.2. WORKLOAD B (TRAVELING USER) 103

Block Size
16 KB 64 KB 256 KB

C
U

R
IO

U
S

Download operations 19770 5250 1975
Upload operations 127533 41027 19794
MBs downloaded 1543.93 1640.46 2468.69
MBs uploaded 1595.41 1706.09 2567.44
Remote storage (MB) 8209.9 10916.8 21878.2
Peak local storage (MB) 15.4 8.7 9.3
Runtime (seconds) 55 50 95
Average CPU usage (%) 52.26 54.34 46.9
Peak CPU usage (%) 70.1 84.6 74.8
Average RAM usage (MB) 935.39 664.42 1359.56
Peak RAM usage (MB) 2051.12 1296.9 3328.1
Read bandwidth (KB/s) 813.98 1147.85 794.22
Write bandwidth (KB/s) 55.07 62.32 31.93
Avg. response time read (ms) 583.99 498.79 959.2
Avg. response time write (ms) 337.62 337.89 690.25
Cost (USD) $0.79 $0.36 $0.33

Bandwidth overhead 337.54 359.81 541.47
Relative response time 2.29 2.08 4.1
Relative slowdown 11 10 19
Cost multiplier 2649.99 1207.59 1106.96
Outsource ratio 332.47 588.51 550.54

Block Size
16 KB 64 KB 256 KB

R
in

gO
R

A
M

Download operations 158652 31568 11956
Upload operations 73764 16337 5125
MBs downloaded 2017.18 1521.75 2184.99
MBs uploaded 1358.06 1024.59 1441.74
Remote storage (MB) 24569.3 24568.7 24551.7
Peak local storage (MB) 2.73 7.42 28.79
Runtime (seconds) 8121 1767 792
Average CPU usage (%) 0.4 0.65 1.65
Peak CPU usage (%) 5.9 12.9 19.1
Average RAM usage (MB) 167.08 238.46 257.13
Peak RAM usage (MB) 273.29 351.65 458.93
Read bandwidth (KB/s) 5.08 18.96 65.86
Write bandwidth (KB/s) 0.37 1.71 3.87
Avg. response time read (ms) 81832.75 17493.64 8452.73
Avg. response time write (ms) 73670 18891.33 4481.93
Cost (USD) $0.63 $0.24 $0.25

Bandwidth overhead 362.9 273.78 389.94
Relative response time 386.13 90.35 32.12
Relative slowdown 1624.2 353.4 158.4
Cost multiplier 2113.28 805.06 838.6
Outsource ratio 1872.46 689.85 177.85

104 C. FULL RESULTS

C.3 Workload C (Email Backup)

Block Size
1 MB 4 MB 16 MB

N
o

O
R

A
M

(w
it

h
bl

oc
ks

)

Download operations 73 57 12
Upload operations 1925 473 166
MBs downloaded 73 228 192
MBs uploaded 1924.98 1892 2656
Remote storage (MB) 1925 1892 2656
Peak local storage (MB) 1 4 16
Runtime (seconds) 315 546 475
Average CPU usage (%) 5.17 2.62 3.62
Peak CPU usage (%) 20.2 17 15
Average RAM usage (MB) 197.86 174.37 292.21
Peak RAM usage (MB) 291.47 284.88 730.88
Read bandwidth (KB/s) 234.77 382.81 293.51
Write bandwidth (KB/s) 5550.7 2900.91 3533.25
Avg. response time read (ms) 2163.33 1178.58 1076.29
Avg. response time write (ms) 3156.04 6033.31 4989.44
Cost (USD) $0.02 $0.02 $0.02

Bandwidth overhead 1.08 1.14 1.54
Relative response time 4.6 6.24 5.25
Relative slowdown 4.5 7.8 6.79
Cost multiplier 1 1 1
Outsource ratio 5120 1280 320

Block Size
1 MB 4 MB 16 MB

O
bl

iv
iS

to
re

Download operations 14813 3566 1012
Upload operations 48878 13296 4090
MBs downloaded 14813 14264 16192
MBs uploaded 30484 31920 40672
Remote storage (MB) 23328 25056 28224
Peak local storage (MB) 123.6 168 368
Runtime (seconds) 360 416 1011
Average CPU usage (%) 74.03 73.39 52.69
Peak CPU usage (%) 89.7 96.4 97.9
Average RAM usage (MB) 3482.48 6173.45 8575.68
Peak RAM usage (MB) 7586.21 11211.36 15426.42
Read bandwidth (KB/s) 394.88 335.38 164.96
Write bandwidth (KB/s) 4583.53 3938.15 1589.38
Avg. response time read (ms) 4076.38 4078.56 5895.9
Avg. response time write (ms) 3541.77 4131.66 10574.9
Cost (USD) $1.56 $1.33 $1.46

Bandwidth overhead 24.46 24.94 30.7
Relative response time 6.59 7.1 14.25
Relative slowdown 5.14 5.94 14.44
Cost multiplier 78 66.5 73
Outsource ratio 41.42 30.48 13.91

C.3. WORKLOAD C (EMAIL BACKUP) 105

Block Size
1 MB 4 MB 16 MB

C
U

R
IO

U
S

Download operations 7844 2088 528
Upload operations 12685 4050 938
MBs downloaded 39219.76 41759.94 42239.98
MBs uploaded 41180.76 43847.94 45055.98
Remote storage (MB) 16360.9 30888 21536
Peak local storage (MB) 201.2 285.4 416
Runtime (seconds) 846 1552 1488
Average CPU usage (%) 62.22 45.48 45.08
Peak CPU usage (%) 96 87.5 88.4
Average RAM usage (MB) 5584.94 6195.38 6313.62
Peak RAM usage (MB) 10572.41 13011.46 13268.1
Read bandwidth (KB/s) 171.55 133.95 26.08
Write bandwidth (KB/s) 1926.86 997.83 1166.76
Avg. response time read (ms) 7358.22 8734.79 7297
Avg. response time write (ms) 8541.27 16601.44 15107.8
Cost (USD) $3.53 $3.8 $3.81

Bandwidth overhead 43.41 46.22 47.14
Relative response time 13.75 21.91 19.38
Relative slowdown 12.09 22.17 21.26
Cost multiplier 176.5 190 190.5
Outsource ratio 25.45 17.94 12.31

Block Size
1 MB 4 MB 16 MB

R
in

gO
R

A
M

Download operations 61056 12256 2756
Upload operations 16272 3289 737
MBs downloaded 46996.72 37473.36 29361.21
MBs uploaded 31880.88 25345.78 18432.4
Remote storage (MB) 24479.9 24192 23040
Peak local storage (MB) 115.01 460 1840
Runtime (seconds) 19505 8721 2442
Average CPU usage (%) 1.26 2.03 5.65
Peak CPU usage (%) 28.8 45.1 63.1
Average RAM usage (MB) 1863.65 3834.78 9050.96
Peak RAM usage (MB) 3186.34 9576.39 22250.06
Read bandwidth (KB/s) 8.71 25.14 62.73
Write bandwidth (KB/s) 83.34 178.71 665.95
Avg. response time read (ms) 27176.89 135468.77 71253.56
Avg. response time write (ms) 211624.88 79975.77 19772.23
Cost (USD) $4.25 $3.35 $2.6

Bandwidth overhead 42.59 33.92 25.81
Relative response time 206.55 186.35 78.73
Relative slowdown 278.64 124.59 34.89
Cost multiplier 212.5 167.5 130
Outsource ratio 44.52 11.13 2.78

106 C. FULL RESULTS

C.4 Workload D (Code Distribution)

Block Size
16 KB 64 KB 256 KB

N
o

O
R

A
M

(w
it

h
bl

oc
ks

)

Download operations 1190 357 159
Upload operations 170 59 39
MBs downloaded 18.58 22.31 39.75
MBs uploaded 2.65 3.69 9.75
Remote storage (MB) 2.7 3.7 9.7
Peak local storage (MB) 0.02 0.1 0.2
Runtime (seconds) 45 20 15
Average CPU usage (%) 1.75 1.24 1.61
Peak CPU usage (%) 3.8 3.3 8.6
Average RAM usage (MB) 84.91 60.74 43.59
Peak RAM usage (MB) 148.33 78.61 77.64
Read bandwidth (KB/s) 428.52 1106.15 1695.2
Write bandwidth (KB/s) 2.16 4.24 6.99
Avg. response time read (ms) 512.48 179.64 135.04
Avg. response time write (ms) 121.15 106.33 143.9
Cost (USD) $0 $0 $0

Bandwidth overhead 1.05 1.29 2.46
Relative response time 1.84 0.83 0.81
Relative slowdown 9 4 3
Cost multiplier 1.66 1.35 2.11
Outsource ratio 327680 51200 25600

Block Size
16 KB 64 KB 256 KB

O
bl

iv
iS

to
re

Download operations 20255 4733 1441
Upload operations 1124420 288230 75074
MBs downloaded 316.48 295.81 360.25
MBs uploaded 534.34 461.88 555.5
Remote storage (MB) 17341.8 17927.4 18634.5
Peak local storage (MB) 10.6 4.9 7.4
Runtime (seconds) 55 20 260
Average CPU usage (%) 45.47 0.22 25.73
Peak CPU usage (%) 73.1 1.3 37.9
Average RAM usage (MB) 757.82 2979.32 439.25
Peak RAM usage (MB) 1377.8 3068.37 678.05
Read bandwidth (KB/s) 451.57 1166.07 39.39
Write bandwidth (KB/s) 2.69 8.23 0.42
Avg. response time read (ms) 516.71 177.93 209.66
Avg. response time write (ms) 492.96 123.42 10560.39
Cost (USD) $5.7 $1.49 $0.42

Bandwidth overhead 42.22 37.6 45.45
Relative response time 2.94 0.88 31.34
Relative slowdown 11 4 52
Cost multiplier 3205.86 838.02 236.22
Outsource ratio 483.02 1044.9 691.89

C.4. WORKLOAD D (CODE DISTRIBUTION) 107

Block Size
16 KB 64 KB 256 KB

C
U

R
IO

U
S

Download operations 6552 2590 950
Upload operations 216216 37835 18564
MBs downloaded 511.68 809.3 1187.47
MBs uploaded 528.74 841.67 1234.97
Remote storage (MB) 16305.4 10883.5 21827
Peak local storage (MB) 14.1 5.6 8.5
Runtime (seconds) 20 1701 300
Average CPU usage (%) 17.61 25.79 27.45
Peak CPU usage (%) 67.9 66.9 68.1
Average RAM usage (MB) 898.86 319.36 1073.9
Peak RAM usage (MB) 1412.06 622.39 1935.98
Read bandwidth (KB/s) 832.69 15.26 73.22
Write bandwidth (KB/s) 5.1 0.03 0.45
Avg. response time read (ms) 197.44 18428.24 3766.45
Avg. response time write (ms) 57.78 174.12 569.72
Cost (USD) $1.14 $0.27 $0.21

Bandwidth overhead 51.63 81.93 120.22
Relative response time 0.74 54.14 12.62
Relative slowdown 4 340.2 60
Cost multiplier 641.17 151.86 118.11
Outsource ratio 363.12 914.29 602.35

Block Size
16 KB 64 KB 256 KB

R
in

gO
R

A
M

Download operations 69842 10204 7716
Upload operations 50816 10831 4035
MBs downloaded 889.8 522.02 1440.63
MBs uploaded 599.65 361.48 961.12
Remote storage (MB) 24569.3 24568.7 24551.7
Peak local storage (MB) 2.73 7.42 28.79
Runtime (seconds) 3818 521 505
Average CPU usage (%) 0.29 0.69 1.68
Peak CPU usage (%) 5.6 12.7 15.9
Average RAM usage (MB) 141.06 132.34 289.41
Peak RAM usage (MB) 235.55 212.28 627.53
Read bandwidth (KB/s) 4.88 14.58 50.68
Write bandwidth (KB/s) 0.03 0.17 0.14
Avg. response time read (ms) 47746.94 5629.59 5280.79
Avg. response time write (ms) 4206.59 3285.21 3553.93
Cost (USD) $0.39 $0.14 $0.18

Bandwidth overhead 73.92 43.85 119.19
Relative response time 151.2 25.95 25.71
Relative slowdown 763.6 104.2 101
Cost multiplier 219.35 78.74 101.24
Outsource ratio 1872.46 689.85 177.85

108 C. FULL RESULTS

C.5 Workload E (E-Government)

Block Size
256 KB 1 MB 4 MB

N
o

O
R

A
M

(w
it

h
bl

oc
ks

)

Download operations 917 248 92
Upload operations 1030 265 84
MBs downloaded 229.24 248 368
MBs uploaded 257.49 265 336
Remote storage (MB) 257.5 265 336
Peak local storage (MB) 0.2 1 4
Runtime (seconds) 167 86 67
Average CPU usage (%) 3.2 2.99 3.79
Peak CPU usage (%) 7.3 11.2 12.4
Average RAM usage (MB) 99.61 78.01 97.81
Peak RAM usage (MB) 188.52 183.13 178.65
Read bandwidth (KB/s) 2428.36 5464.21 8449.3
Write bandwidth (KB/s) 1194.46 2415.05 3071.77
Avg. response time read (ms) 853.49 358.98 249.5
Avg. response time write (ms) 2569.45 970.63 923.87
Cost (USD) $0.03 $0.02 $0.03

Bandwidth overhead 1.05 1.11 1.52
Relative response time 3.55 1.38 1.22
Relative slowdown 3.55 1.83 1.43
Cost multiplier 1.5 1 1.5
Outsource ratio 25600 5120 1280

Block Size
256 KB 1 MB 4 MB

O
bl

iv
iS

to
re

Download operations 16608 4123 1237
Upload operations 104606 27494 7920
MBs downloaded 4152 4123 4948
MBs uploaded 8153.5 8456 11032
Remote storage (MB) 20992 21856 24032
Peak local storage (MB) 38.8 61 108
Runtime (seconds) 137 146 207
Average CPU usage (%) 60.41 58.75 60.37
Peak CPU usage (%) 87.1 87.7 94.7
Average RAM usage (MB) 1478.59 2960.67 5997.44
Peak RAM usage (MB) 3259.08 6012.81 10398.58
Read bandwidth (KB/s) 2466.17 1722.96 1432.16
Write bandwidth (KB/s) 1625.5 1914.65 1251.12
Avg. response time read (ms) 951.77 1255.88 1651.76
Avg. response time write (ms) 1409.14 1164.62 1860.97
Cost (USD) $0.91 $0.51 $0.49

Bandwidth overhead 26.65 27.24 34.61
Relative response time 2.45 2.51 3.64
Relative slowdown 2.91 3.11 4.4
Cost multiplier 45.5 25.5 24.5
Outsource ratio 131.96 83.93 47.41

C.5. WORKLOAD E (E-GOVERNMENT) 109

Block Size
256 KB 1 MB 4 MB

C
U

R
IO

U
S

Download operations 9845 2040 668
Upload operations 29238 5430 2275
MBs downloaded 12305.95 10199.94 13359.98
MBs uploaded 12798.2 10709.94 14027.98
Remote storage (MB) 22271.7 14909.9 29468
Peak local storage (MB) 43 73 152
Runtime (seconds) 292 1002 407
Average CPU usage (%) 57.5 33.73 46.72
Peak CPU usage (%) 90.2 90.2 80
Average RAM usage (MB) 3180.95 1811.72 4644.34
Peak RAM usage (MB) 8372.2 7113.69 8983.32
Read bandwidth (KB/s) 1037.83 651.8 566.16
Write bandwidth (KB/s) 690.32 732.56 510.13
Avg. response time read (ms) 2212.26 9229.17 3089.42
Avg. response time write (ms) 3140.3 3240.45 4967.29
Cost (USD) $1.24 $0.93 $1.26

Bandwidth overhead 54.37 45.29 59.32
Relative response time 5.55 12.92 8.35
Relative slowdown 6.21 21.32 8.66
Cost multiplier 62 46.5 63
Outsource ratio 119.07 70.14 33.68

Block Size
256 KB 1 MB 4 MB

R
in

gO
R

A
M

Download operations 72822 15064 3928
Upload operations 20856 4396 1135
MBs downloaded 14204.86 11412.59 10805.72
MBs uploaded 9682.59 7682.19 6912.57
Remote storage (MB) 24551.7 24479.9 24192
Peak local storage (MB) 28.79 115.01 460
Runtime (seconds) 5320 1352 877
Average CPU usage (%) 1.48 3.92 5.74
Peak CPU usage (%) 15.9 20.4 33.8
Average RAM usage (MB) 376 996.25 2432.51
Peak RAM usage (MB) 650.87 2091.67 5724.32
Read bandwidth (KB/s) 52.48 168.43 512.64
Write bandwidth (KB/s) 35.2 147.08 174.26
Avg. response time read (ms) 59032.98 10186.55 5000.86
Avg. response time write (ms) 69472.44 16652.46 10799.73
Cost (USD) $1.4 $1.06 $0.97

Bandwidth overhead 51.74 41.36 38.37
Relative response time 133.15 27.81 16.37
Relative slowdown 113.19 28.77 18.66
Cost multiplier 70 53 48.5
Outsource ratio 177.85 44.52 11.13

O
lav Sortland Thoresen

O
blivious R

A
M

 in practice

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Olav Sortland Thoresen

Oblivious RAM in practice

Master’s thesis in Communication Technology
Supervisor: Colin Alexander Boyd

June 2019

	List of Figures
	List of Tables
	Introduction
	Background
	Justification
	Research Questions
	Scope
	Thesis Outline

	Preliminaries
	Data Outsourcing
	Cloud Storage
	Amazon S3
	OpenStack Swift
	IBM Cloud Object Storage

	Git
	Asymptotic Notation
	Note on Units

	Oblivious RAM
	Definition
	History
	Applications
	Building blocks
	Data Blocks
	Position Map
	Encryption
	Stash/Shelter
	Oblivious Scan
	Oblivious Sort

	Trivial ORAM
	Square-Root ORAM
	Hierarchical Schemes
	Tree-Based Schemes
	PathORAM
	RingORAM

	Large-Message Schemes
	Partition-Based Schemes
	ObliviStore
	CURIOUS

	Differentially Private ORAMs
	Oblivious Parallel RAMs
	Summary

	Methodology
	Selecting schemes
	Implementation
	Workloads
	Synthetic Workloads
	Real Workloads

	Test setup
	Evaluation

	Results
	Synthetic workloads
	Workload A (Home User)
	Workload B (Traveling User)
	Workload C (Email Backup)
	Workload D (Code Distribution)
	Workload E (E-Government)

	Real workloads

	Discussion
	Evaluation of Results
	Limitations
	Relation to Previous Work
	Other Contributions

	Conclusion & Future Work
	References
	Workload Files
	Workload A (Home User)
	Workload B (Traveling User)
	Workload C (Email Backup)
	Workload D (Video Sharing)
	Workload E (E-Government)

	Cost Estimates
	Workload A (Home User)
	Workload B (Traveling User)
	Workload C (Email Backup)
	Workload D (Code Distribution)
	Workload E (E-Government)

	Full results
	Workload A (Home User)
	Workload B (Traveling User)
	Workload C (Email Backup)
	Workload D (Code Distribution)
	Workload E (E-Government)

