
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Øystein Løkken Sigholt

Keeping Connected When the Mobile
Social Network Goes Offline

Master’s thesis in Communication Technology
Supervisor: Besmir Tola

June 2019

Øystein Løkken Sigholt

Keeping Connected When the Mobile
Social Network Goes Offline

Master’s thesis in Communication Technology
Supervisor: Besmir Tola
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Information Security and Communication Technology

Title: Keeping Connected When the Mobile Social Network
Goes Offline

Student: Øystein Løkken Sigholt

Problem description:

Smartphone users today are used to being connected at all times. At the same time,
there are vast amounts of remote areas that are without cell coverage. In addition,
natural disasters may cause Internet connectivity outages. As a user moves out off
cellular coverage, or is unable to reach the central server for any reason, connectivity
is lost. As a consequence, Internet-based mobile social applications will not be
able to provide their services and the end-users will become isolated until Internet
connectivity is restored, even if the users that are exploiting the service are within a
few meters of each other.

Modern smartphones are equipped with a number of radio interfaces that enable
wireless communication among devices in close proximity. Leveraging these capabili-
ties could be used to establish connectivity between neighboring devices even in the
most remote out-of-coverage locations.

Important challenges concerning this approach are the security issues that arise
when the centralized mutually trusted entity becomes unavailable. How can end
users make sure that they are not communicating with an impostor, and how to
protect the confidentiality and integrity of each message?

The goal of this work is to propose, implement and experimentally validate a
simple system that can be used to securely and easily enable communication in
existing social applications in situations with no Internet connectivity. The proposed
system will use WiFi Direct to connect neighboring devices, and apply mutual TLS
to facilitate fast, reliable and secure identification of connected parties based on
identity certificates issued by the central server before connection loss.

Responsible professor: Yuming Jiang, IIK
Supervisor: Besmir Tola, IIK

Abstract

The objective of this project is to propose, implement and test a technique
that social smartphone applications can use to keep their users connected
in situations where they are unable to connect to the application server,
but close enough to each other to support device-to-device communication.

The proposed idea and key contribution of this project are as follows:
Each client is issued a certificate by a central authorization entity that
they can use to identify themselves at any time. If a client is unable to
connect to the application server, it will start looking for nearby peers
using WiFi Direct, and attempt to form a group with them. Once a WiFi
Direct group is formed, the group owner will temporarily assume the role
of application server. Each group member and the group owner will then
verify each others identity and connect using mutual Transport Layer
Security (mTLS), facilitating secure communication.

Sammendrag

Dette prosjektets mål er å foreslå, implementere og teste en teknikk som
sosiale smarttelefonapplikasjoner kan bruke for å koble sammen brukere i
situasjoner der de ikke er i stand til å nå applikasjonsserveren, men nær
nok hverandre til å støtte peer-til-peer-kommunikasjon.

Den foreslåtte ideen og hovedbidraget fra prosjektet er som følger:
Hver bruker får utstedt et sertifikat fra en sentral autorisasjonsenhet
som de kan bruke til å identifisere seg. Hvis en klient ikke er i stand til
å nå applikasjonsserveren, vil den begynne å lete etter andre enheter i
samme situasjon i nærheten ved å bruke WiFi Direct og forsøke å danne
en gruppe med dem. Når en slik gruppe har blitt dannet, vil gruppeeieren
midlertidig overta rollen som applikasjonsserver. Hvert gruppemedlem og
gruppens eier vil så verifisere hverandres identitet og koble til hverandre
ved hjelp av gjensidig Transport Layer Security (mTLS), og dermed
muliggjøre sikker kommunikasjon.

Preface

This thesis is being submitted as part of a master’s degree at the De-
partment of Information Security and Communication Technology at the
Norwegian University of Science and Technology (NTNU).

As a result of the current work, a scientific paper has been produced
which is soon to be submitted to WiMob 2019, The 15th International
Conference on Wireless and Mobile Computing, Networking and Commu-
nications.

I would like to thank my supervisor Besmir Tola for his invaluable
advice and continuous feedback, and professor Yuming Jiang for his
encouragement and guidance.

Trondheim, Thursday 6th June, 2019
Øystein Løkken Sigholt

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Related Work . 2
1.3 Open Challenges . 4
1.4 Scope . 4
1.5 Methodology and Tools . 5

1.5.1 The Design Phase . 5
1.5.2 The Implementation Phase 5
1.5.3 The Validation Phase . 6

2 Proposed Approach 7
2.1 System Architecture . 7

2.1.1 The Authentication Component 7
2.1.2 The Server Component . 9
2.1.3 The Client Component . 11

2.2 Exploited Technologies . 12
2.2.1 WiFi Direct . 13
2.2.2 Mutual Transport Layer Security (mTLS) 16
2.2.3 Cryptography . 16

3 Implementation 23
3.1 The Dedicated Server . 23

3.1.1 Certificate Generation . 23
3.2 The Client Application . 24

3.2.1 The Main Activity . 24
3.2.2 The Chat Activity . 24
3.2.3 The Debug Activity . 25

vii

3.2.4 Technical Details . 26
3.3 Cross Platform Code Reuse . 27

3.3.1 API Variation . 28
3.3.2 Serialization . 28

3.4 Cryptography . 29
3.4.1 Rivest Shamir Adleman (RSA) 29
3.4.2 Elliptic Curve Cryptography 29

3.5 User Experience . 31

4 Experimental Results 33
4.1 Security Validation . 33

4.1.1 Data Link Layer Security . 33
4.1.2 Transport Layer Security . 34
4.1.3 Application Layer Security 35

4.2 Overhead . 37
4.2.1 Connection . 37
4.2.2 Messaging . 39
4.2.3 Other Messaging Applications 42

5 Discussion 47
5.1 Connectivity . 47
5.2 Security . 47
5.3 Overhead . 48
5.4 User Experience . 49

6 Conclusion 51
6.1 Future Work . 52

6.1.1 Messaging Protocol . 52
6.1.2 Data Transport . 53
6.1.3 Denial of Service Resilience 54

References 55

Appendices
A Scientific Paper 59

List of Figures

2.1 System Architecture: Sign up and Online Operation 9
2.2 Message Packet . 11
2.3 System Architecture: Offline Operation 12
2.4 WiFi Probe Request and Response . 14
2.5 WiFi Direct Topology . 16
2.6 Legacy Client Connection Sequence Diagram 17
2.7 TLS Handshake Protocol Message Flow 18
2.8 Symmetric Cryptography Encryption and Decryption 18
2.9 Public Key Cryptography Key Generation 19
2.10 Public Key Cryptography Signature . 20
2.11 Public Key Cryptography Encryption and Decryption 20

3.1 Client Application Main Activity . 25
3.2 Client Application Chat Activity . 26
3.3 Connectivity Behavior State Machine 27
3.4 WiFi Direct Connection Prompt . 31
3.5 WiFi Connected, No Internet . 32

4.1 IEEE 802.11 Data Frame . 34
4.2 WiFi PSK Transmitted Using NSD . 35
4.3 TLS Handshake Failure . 35
4.4 Message Flow as Seen by the GO . 36
4.5 Message Signature Validation . 36
4.6 Automatic WiFi Direct Group Authentication and Connection Delay CDF 38
4.7 Message Packet Instantiation Time . 40
4.8 Message Packet Decryption Time . 40
4.9 Signal Protocol Message Data Structure 43
4.10 Signal Message Example . 44
4.11 Bramble Transport Protocol Frames . 45

5.1 WhatsApp Security Code . 50

ix

6.1 Forward- and Backward Secrecy Key Compromise 53

List of Tables

4.1 Automatic WiFi Direct Group Authentication and Connection Delay . . 38
4.2 Message Packet Instantiation and Decryption Time 39
4.3 Message Packet Size . 41

xi

List of Acronyms

ADB Android Debug Bridge.

AES Advanced Encryption Standard.

AP Access Point.

API Application Programming Interface.

ASN.1 Abstract Syntax Notation One.

BLE Bluetooth Low Energy.

BSS Basic Service Set.

CA Certificate Authority.

CBC Cipher Block Chaining.

CDF Cumulative Distribution Function.

CRL Certificate Revocation List.

CSR Certificate Signing Request.

DH Diffie-Hellman.

DN Distinguished Name.

DNS Domain Name System.

DoS Denial of Service.

DSA Digital Signature Algorithm.

E2E End-to-End.

EAP-TLS Extensible Authentication Protocol Transport Layer Security.

xiii

EC Elliptic Curve.

ECC Elliptic Curve Cryptography.

ECDLP Elliptic Curve Discrete Logarithm Problem.

ECDSA Elliptic Curve Digital Signature Algorithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

EU European Union.

GAS Generic Advertisement Service.

GB Gigabyte.

GM Group Member.

GO Group Owner.

HMAC Hash-based Message Authentication Code.

IDE Integrated Development Environment.

IEEE Institute of Electrical and Electronics Engineers.

IM Instant Messaging.

IoT Internet of Things.

IP Internet Protocol.

IV Initialization Vector.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

KA Key Agreement.

KDF Key Derivation Function.

LTE Long-Term Evolution.

MAC Message Authentication Code.

mTLS mutual Transport Layer Security.

NAN Neighbor Awareness Networking.

NFC Near Field Communication.

NSD Network Service Discovery.

OAEP Optimal Asymmetric Encryption Padding.

OS Operating System.

OSI Open Systems Interconnection.

OTR Off-the-Record Messaging.

P2P Peer-to-Peer.

PGP Pretty Good Privacy.

PIN Personal Identification Number.

PKCS Public Key Cryptography Standards.

PKI Public Key Infrastructure.

PSK Pre Shared Key.

QoS Quality of Service.

RSA Rivest-Shamir-Adleman.

SD Service Discovery.

SDK Software Development Kit.

SDR Software Defined Radio.

SE Standard Edition.

SEC Standards for Efficient Cryptography.

SHA Secure Hash Algorithm.

SSID Service Set Identifier.

SSL Secure Sockets Layer.

TB Terabyte.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TTP Trusted Third Party.

UPnP Universal Plug and Play.

USB Universal Serial Bus.

WLAN Wireless Local Area Network.

WPA2 WiFi Protected Access II.

WPS WiFi Protected Setup.

X3DH Extended Triple Diffie-Hellman.

Chapter1Introduction

When a mobile device is not able to connect to the Internet, applications that require
an active connection to a centralized server can no longer provide its services to
the user, even if the service in question is as simple as communicating with another
device. If that other device is within a reasonable range, connectivity can be restored
in a Peer-to-Peer (P2P) fashion. However, with no centralized server available, the
user must take over the responsibility to verify that they are not communicating
with an impostor, which is usually the duty of the application server. This raises the
question of how to provide authentication and trust in an out-of-coverage situation.

This thesis focuses on security and trust in social mobile applications in a P2P
scenario where a previously available mutually trusted server has become unavailable.

This chapter will motivate the thesis by introducing previous work on the topic
and some of the challenges that are yet to be addressed, the scope of this work, as
well as the methodology that was chosen to address these issues.

1.1 Background and Motivation

Smartphone users today are used to being connected at all times. At the same time,
there are vast amounts of remote land that is without cell coverage, and natural
disasters may cause Internet connectivity outages even in populated areas.

When a user moves out of cellular coverage, or is unable to reach the central server
of a service for any reason, connectivity is lost. As a consequence, Internet-based
mobile social applications will not be able to provide their services and the end-users
will become isolated until Internet connectivity is restored, even if the users that are
making use of the service, are within a few meters of each other.

Modern smartphones are equipped with a number of radio interfaces that enable
wireless communication among devices in close proximity. These capabilities could be

1

2 1. INTRODUCTION

used to establish connectivity between neighboring devices even in the most remote
out-of-coverage locations. Thereby maintaining the ability to chat, or transfer any
other type of data.

WiFi Direct, a wireless technology allowing WiFi devices to connect directly to
each other, is one of the methods for nearby mobile devices to establish connectivity.
It is particularly widely available due to it not requiring any specialized hardware
apart from a typical WiFi chip, and easy to use as addressing can be done using the
familiar Internet Protocol (IP).

Even though WiFi Direct can be used to reestablish connectivity, a social appli-
cation usually depends on a central server that users trust. When connected to this
server, users have confidence that their messages are delivered to their respective
recipients and that no other users of the service can access their private conversations.

When clients are isolated from the Internet, and have to rely on direct connections
to each other, this server can no longer provide credibility and trust on demand.
Without additional measures, end users cannot know if they are communicating
with an impostor, and they cannot trust that the contents of the messages they are
transmitting are not being observed or altered by a malicious third party. This raises
the question of how to secure communication on mobile social networks when offline.

1.2 Related Work

A number of commercial applications for P2P communication exist for the Android
ecosystem. The most prominent, FireChat, made headlines in 2014 when it accom-
plished half a million downloads over a period of two weeks as Hong Kong protestors
used its P2P functionality to organize efficiently even in areas with heavily congested
network traffic [Sha14]. It uses a proprietary combination of WiFi and Bluetooth to
form a mesh network of devices, and even boasts interoperability between Android
and iOS [Fir].

An open source privacy-focused, decentralized, alternative to FireChat, Briar,
also uses Bluetooth and WiFi to communicate in addition to the Tor network [Bria].
It uses public key cryptography to manage identities and secure the communications
link, but its decentralized nature and lack of a universally trusted entity makes
exchanging identities a difficult problem that in practice requires the two parties to
physically meet and manually exchange keys before a connection can be made [Braa].
Supporting Bluetooth also means that Briar cannot easily reuse secure socket imple-
mentations from the operating system (as they have not been designed to be carried
by the Bluetooth protocol), and resorts to maintaining its own secure transport
protocol [Brab].

1.2. RELATED WORK 3

A commercial framework by the name of Bridgeify promises simple P2P commu-
nication over a proprietary protocol carried by WiFi Direct and Bluetooth. They
even provide multi-hop transmission by joining a mesh of devices using the same
Software Development Kit (SDK). The Android version does, however, only support
Bluetooth transport, which requires hardware support for Bluetooth Low Energy
(BLE) advertising mode [Brib].

A large-scale research effort by the name of the Serval Mesh aims to create an
independent network by relying on WiFi devices to form a mesh network based on
WiFi ad-hoc mode [GSP11]. Unfortunately, WiFi ad-hoc mode is mostly unavailable
on consumer smartphones without modifications, thus making it unsuitable for many
use cases.

It is also worth mentioning that work is being done to facilitate device to device
communication in the Long-Term Evolution (LTE) standard [FDM+12, LZLS12]. If
this technology were to make it to consumers, it might mitigate some of the need
for developers to maintain their own P2P solution, as it could for instance provide
connectivity to a device by routing its traffic through other devices until it reaches a
cell tower. Though helping to resolve the same problems, it makes use of radically
different technology than this project aims to evaluate.

Shahin and Younis present a framework for P2P networking of Android devices
using WiFi Direct that covers discovery, connection establishment, peer management
and communication between peers in a single group [SY14].

Wong et al. noted that connecting Android devices with WiFi Direct uses
WiFi Protected Setup (WPS) which requires manual user interaction to accept the
connection prompt. They propose using WiFi Direct to create Access Points (APs)
that advertise their Service Set Identifier (SSID) and Pre Shared Key (PSK) using
Network Service Discovery (NSD) instead of leveraging fully fledged WiFi Direct
connection establishment. Any WiFi capable client can then connect to the WiFi
Direct AP like they would connect to any other WiFi AP (referenced as connecting
as a legacy client in WiFi Direct terminology) without the need for users manual
verification [WVNA14].

A WiFi Direct device may support being a member of more than one group
simultaneously by having access to more physical radio interfaces, or by simulating
multiple interfaces on the same physical hardware [Wi-16, Section 2.3]. Unfortunately,
this is not currently supported by the Android operating system. Multiple authors
have worked around the inability to connect to two WiFi Direct groups simultaneously
by connecting to one of them natively, and the other as a legacy client to facilitate
multi-hop communication between multiple WiFi Direct groups [CCP+15, FTH17].
This mode of operation requires intermittent connecting and disconnecting to various

4 1. INTRODUCTION

Group Owners (GOs) to maintain a fully connected network. The manual user
interaction required by GOs to accept new connections makes this an impractical
solution.

An alternative approach to multi-hop transmission was proposed by Liu et al.
in 2016. By turning all the clients into GOs, they are all ready to be connected to
at any time. When a device wishes to transmit a message to a neighboring peer, it
simply disbands its own group, and connects to the peer as a Group Member (GM).
By maintaining a simple routing table, a novel ad-hoc network is achieved. They do,
however, note that the rapid switching of GMs cause unstable peer discovery that
impairs the network functionality [LSY+16].

1.3 Open Challenges

WiFi Direct enforces mandatory encryption, but only through the WPA2-Personal
standard, and as such, lacks enterprise authentication methods such as Extensible
Authentication Protocol Transport Layer Security (EAP-TLS). This means that WiFi
Direct, by itself, cannot provide authentication of the connecting parties without
manual interaction such as entering a PIN number, pushing a button to verify the
connection, or through out-of-band verification over some medium such as Near Field
Communication (NFC) or Universal Serial Bus (USB) [Wi-16, DBL17].

A simple means of automated authentication of connected devices is therefore
missing from the WiFi Direct standard. Users may securely transmit messages to
nearby WiFi Direct capable devices, but cannot, through the WiFi Direct standard
alone, verify the identity of the user they are communicating with.

The goal of this work is therefore to propose, implement, and experimentally
validate a combination of upper layer measures that can be used to securely and easily
enable authenticated communication in existing social applications, also in situations
with no Internet connectivity. Focus has been placed on making the system as
reasonable to implement as possible by making it an application of currently existing
technology as opposed to an entirely new scheme.

1.4 Scope

In this work, P2P communication to realize communication between devices is only
considered in a scenario where all participants have previously been connected to the
Internet and have signed up to the service in question. The focus is on authentication,
trust and security, but a solution for connectivity is also provided and demonstrated
through a sample implementation.

1.5. METHODOLOGY AND TOOLS 5

Instant Messaging (IM) has been chosen as a sample use case in this work, but
the proposed solution can be directly used or easily adapted to support a number of
other services.

1.5 Methodology and Tools

To achieve functional secure message transmission over WiFi Direct, the project was
divided into three major phases. Each phase gradually brings the project closer to
a reliable IM application that not only allow users to communicate securely when
connected to the Internet, but also when they are not.

1.5.1 The Design Phase

In the first phase of this project, a system to facilitate secure communication that
does not rely on an always-online third party to relay messages was designed.

The system consists of logical components and specification of their operation.
The connectivity issue can be solved with WiFi Direct. Transmitting messages using
the network formed by WiFi Direct is trivial, but when a device other than the trusted
server available over the Internet can end up forwarding messages, the integrity and
confidentiality of said messages cannot be guaranteed without additional measures.

Focus was therefore placed on the message frame design to ensure that messages
are kept private and delivered in an uncompromised state. The design makes use of
the fact that each user has to have been online at one point to sign up to the service.
Credentials can therefore be stored on their device for use during out-of-coverage
operation.

1.5.2 The Implementation Phase

To verify that the proposed design was useable in practice, a proof of concept
application was developed for the Android operating system in Java using Android
Studio 3.3.11, an Android Integrated Development Environment (IDE).

The implementation phase verifies that the Java standard library and Android
Platform Application Programming Interfaces (APIs) contains sufficient cryptography
and connection tools to easily and reliably support the proposed design on Android
without the need for time consuming custom implementations and/or rooting the
devices (obtaining privileged (superuser) permissions normally not available to the
user on consumer devices).

1Android Studio, https://developer.android.com/studio/

https://developer.android.com/studio/

6 1. INTRODUCTION

Six Nexus 6P devices running Android 8.1.0 were used during development and
testing.

1.5.3 The Validation Phase

After development, the proof of concept application was analyzed to validate the
implementation and its compliance with the main goal. Network traffic was examined
at multiple network layers to experimentally verify that an adversary with access to
this layer could not learn anything significant about the users and their messages, and
the overhead from the system was experimentally measured through benchmarking
and simplified calculations.

The overhead and security properties of the proposed system was also compared
to the popular messaging application WhatsApp2 by review of the WhatsApp
security white paper and debugging of the open source Signal IM application3, which
implements the messaging protocol that WhatsApp claims to use [wha17b].

Packet captures were made with a TP-LINK WN722N wireless USB adapter and
an Ettus USRP B210 Software Defined Radio (SDR) using gr-ieee802-114, an IEEE
802.11 a/g/p transceiver for GNU Radio.

Data captures were subsequently analyzed with the network protocol analyzer
Wireshark5.

Some interaction with, and debugging of, NSD was also done with wpa_cli, a
text-based frontend program for interacting with wpa_supplicant. wpa_supplicant
being a software implementation of an IEEE 802.11 client available on many Operating
Systems (OSs), including the Ubuntu based development machine.

2WhatsApp, https://www.whatsapp.com/
3Signal, https://signal.org/
4gr-ieee802-11, https://github.com/bastibl/gr-ieee802-11
5Wireshark, https://www.wireshark.org/

https://www.whatsapp.com/
https://signal.org/
https://github.com/bastibl/gr-ieee802-11

Chapter2Proposed Approach

This chapter covers the proposed solution for security and trust in social mobile
applications in a P2P scenario. An architecture for an application that allow users
to authenticate one another and securely communicate both when connected to the
Internet and when not is presented. Technologies that meet the requirements for
implementation of said architecture are then detailed.

2.1 System Architecture

A system consisting of three logical components is proposed. These components
can ble implemented to facilitate secure communication between users both when
connected to the Internet and when out-of-coverage.

2.1.1 The Authentication Component

The authentication component is the single mutually trusted entity (Trusted Third
Party (TTP)) among the members of the social network. In Public Key Infrastructure
(PKI) terms, this entity represents a Certificate Authority (CA), with the sole
responsibility of managing the identities of the users. This component is only
available over the Internet, and can therefore not be reached in out-of-coverage
operation.

To reliably verify the identity of users and authenticity of messages, the system
requires a cryptographic suite that supports key- and signature generation. The
choice of cryptographic schemes are implementation specific, and is further discussed
in chapter 3.

Identity Certificates

All users of the system have to posses a digital certificate in the X.509 format. The
X.509 standard is a widespread format for defining digital certificates that consists

7

8 2. PROPOSED APPROACH

of a public key as well as an identity. The format also includes a signature that has
to be generated by the authentication component.

Signing up

Signing up to the service is done in the same fashion as in a traditional PKI system.
The client generates a key pair and creates a Certificate Signing Request (CSR) that
is sent to the authentication component for signing. The CSR contains the public
key as well as the identity (or Distinguished Name (DN)) that the certificate is for.

The DN should contain some human readable component that users can later
use to distinguish between their contacts. This can for example be a username or an
email address. In the case of an email address the authentication component should
verify ownership of the address by sending out a verification link before issuing the
certificate.

After the authentication component has approved the CSR, the applicant is issued
a signed digital identification certificate that contains a signature that binds the public
key to the DN. This means that the authentication component has approved the
public key contained by the certificate as belonging to the specific DN also contained
in the certificate. The resulting X.509 certificate can be used to authenticate to other
entities in the system, offline or not, as shown in Figure 2.1.

For example, users that want to communicate with some_user@example.com can
ask anyone posing as that user to produce a certificate with DN=some_user@example.com
that is signed by the authentication component and subsequently ask them to prove
knowledge of the private key corresponding to the public key contained by that
certificate (for example by asking them to sign a nonce1).

Certificate Revocation

Excluding users from the system might be necessary if they have violated the terms
of conditions or otherwise acted in an unwanted fashion. Even if they have done
neither of this, a user’s private credentials may have become compromised, and new
ones have had to be issued.

To prevent these unwanted users and old compromised credentials from being
a part of the system, a Certificate Revocation List (CRL) can be maintained. A
Certificate Revocation List (CRL) is a simple list of certificates that have been
flagged as not to be trusted. Users in possession of this list can cross check any
certificate they come across with this list before proceeding with communication.

1A nonce is an arbitrary/random number that is intended to be used just once.

2.1. SYSTEM ARCHITECTURE 9

Dedicated	Server

Server	Component

Root	CA

Auth.	Component

Client

Signup:	User	receives	a	certificate	from
the	dedicated	server's	authentication

component

Dedicated	Server

Server	Component

Root	CA

Auth.	Component

Client

User	uses	certificate	to	authenticate	to
the	server	component

Certificate

Figure 2.1: A client signing up to the service by obtaining a digital certificate from
the authentication component and using it to authenticate to the server component.

A drawback to this approach is that a CRL can grow to a significant size if a
large enough number of certificates are added to it. To remedy this, certificates can
be issued with relatively short expiry times. Expired certificates are always rejected,
and does therefore not need to be included on such a list even if they are not to be
trusted. If older entries to the list can be pruned sooner, the list can be kept minimal
in size and clients can request an updated copy from the authentication component
every time they are online.

A prolonged offline period increases the chance that a CRL update has been
issued that a user has not yet fetched. As these lists are signed by the authentication
component, they do not need to be obtained directly assuming the authentication
component signature cannot be forged. List updates may therefore be propagated
between peers if an offline client has obtained an update that another has not.

Limits to how long a user can remain offline before having to connect to obtain a
new revision of the CRL can also be implemented, but will of course subtract from
the user experience as a user might find themselves unable to use the application
when they need it the most.

2.1.2 The Server Component

The server component is responsible for message forwarding to connected clients
both over the Internet and during out-of-coverage operation.

10 2. PROPOSED APPROACH

Connectivity

The server component accepts incoming TCP/IP connections on a predefined port.
The server requires a cryptographic network protocol that allows both the client and
the server to exchange and authenticate each others identities.

By verifying that identity certificates are issued by the appropriate authority (the
authentication component), both parties (the client and server) confirm that the
other entity is a registered user of the service, and learn the other party’s identity.
The server then maintains a simple forwarding table linking the connected clients
identity (public key) to the appropriate socket.

Out-of-coverage Operation

The server component can either run on the dedicated server and be available over
the Internet, or on a user’s device in an out-of-coverage situation. When running on
a user device it is also the server components responsibility to set up and manage
P2P connectivity to nearby devices.

If the user device is unable to locate any other nearby P2P devices hosting an
instance of the server component, the server is instantiated on the device in out-of-
coverage mode. It will autonomously form a P2P device group, and broadcast the
information needed to connect to said group using some service discovery mechanism.

When the group is formed, the device will accept incoming connections from
nearby devices and manage message routing just like it would during regular operation
on the dedicated server. Because the server component is designed to accept TCP/IP
connections, the chosen P2P data link must support carrying the Internet Protocol
(IP).

If Internet connectivity were to be restored at any time, the device will simply
detect the connectivity change and reconnect to the dedicated server, tearing down
any open P2P connections.

Message Routing

A message packet with five fields as seen in Figure 2.2 is transmitted by the clients to
the server when they wish to communicate with another user. The recipients public
key indicates which client the message should be forwarded to and the signature
(protecting the integrity of the other fields) is verified using the attached public key
belonging to the sender.

Caching and retransmission of messages is the responsibility of the client, making
the operation of the server rather simple. If signature verification fails, the message

2.1. SYSTEM ARCHITECTURE 11

is discarded. If not, the server examines its active connections and checks if a client
has connected with the identity of the receiver. If so, the message is forwarded to
the appropriate client. If the server does not have an open connection to the correct
recipient, the packet is also discarded.

Timestamp Recipient Sender Ciphertext

Signature

Figure 2.2: A message packet consisting of a recipient and senders public key,
ciphertext, timestamp and a signature on the other elements.

2.1.3 The Client Component

The client component is responsible for connecting to and authenticating the server
component as well as managing messaging.

Connectivity

The client component must be expected to connect to and disconnect from multiple
server component instances in a single session as a device might move in and out of
range of cellular coverage and P2P groups.

If not connected to a server component the client will first attempt to establish
a connection to the central dedicated server via the Internet. At the same time, it
will start the device discovery process to locate nearby P2P groups. If the dedicated
server is not reachable and no group is found, the device will set up an instance of
the server component and form its own P2P group.

The first device to form a group will advertise its connection information so that
nearby devices can discover and join the P2P group. Upon joining a group, the client
will attempt to connect to the server component instance running on the device that
advertised the group, instead of the dedicated server.

Just like the server component, the client enforces secure connections and will
only connect to server components that offer identification certificates from the
authentication server over the chosen application layer cryptographic protocol. Fig-
ure 2.3 shows how two devices form a P2P group and reestablish connectivity if the
dedicated server is unreachable.

12 2. PROPOSED APPROACH

Dedicated	Server
Server	Component

Root	CA

Auth.	Component
Client	B
Certificate

Connection	failure:	Client	cannot	reach
the	dedicated	server

Client	A
Certificate

Client	B
Certificate

P2P	group	is	formed

Client	A
Certificate

Client	B
Certificate

Server	Component

Client	B	connects	to	Client	A	that	runs
the	client	component

Client	Component

Client	Component

Client	Component

Client	Component

Client	Component

Figure 2.3: A client unable to reach the dedicated server establishes a connection
with a nearby device. Arrows from the certificates to the client and server indicate
that these components use the certificates to authenticate when connecting to each
other.

Messaging

Message packets (see Figure 2.2) are transmitted to any server component as soon as
possible. If the recipient does not acknowledge the message, the client assumes it was
not delivered and caches it for retransmission. If the client connects to another server
component it will immediately attempt to transmit all queued messages, otherwise it
will periodically attempt to retransmit them with an exponential backoff strategy
where the client periodically retransmits the message with increasing delays between
attempts.

2.2 Exploited Technologies

The proposed approach requires a P2P technology, and an application layer cryp-
tographic protocol. Technologies that meet the required specifications outlined in
the previous sections are introduced here along with a short overview of modern
cryptography.

2.2. EXPLOITED TECHNOLOGIES 13

2.2.1 WiFi Direct

Since its conception two decades ago, the Institute of Electrical and Electronics
Engineers (IEEE) 802.11 standard, more commonly known as WiFi, has constantly
evolved in the form of a series of amendments to better fit the growing number of
connected devices and their user’s ever changing use cases and requirements.

The most commonly used mode of 802.11 connectivity, infrastructure mode,
relies on an AP to act as an intermediary between connected devices (and the
Internet). The lesser common WiFi ad-hoc mode allows direct communication
directly between devices. However, this mode never saw widespread use, and has
multiple drawbacks such as a lack of sufficient power saving and Quality of Service
(QoS) features [CMGSS13].

WiFi Direct (also known as WiFi P2P), builds upon IEEE 802.11 infrastructure
mode, but also allows WiFi devices to connect to one another without the need for
an AP. This is done by forming clusters of devices known as groups where one device
takes over the functionality usually handled by a dedicated AP [Wi-16]. Unlike WiFi
ad-hoc mode, it is also available in all Android 4.0 (API level 14) or later devices
with WiFi support [Andc].

Architecture

WiFi Direct consists only of uniform devices with equal capabilities, unlike traditional
infrastructure WiFi which has a clear distinction between an AP and client.

These P2P devices are required to support both the GO and GM role. The GO
acts as an AP-like entity, while the GM acts like a client. All WiFi Direct devices
are required to implement a discovery mechanism as well as WPS.

WPS (originally known as WiFi Simple Config) is a standard for authenticating
and associating devices with secured WiFi networks through simple actions such as
pressing a button or entering a short Personal Identification Number (PIN), rather
than a long passphrase.

Even though the GO must provide AP-like functionality to associated GMs, it is
not required to provide communication between connected devices or provide them
with access to the Internet. If providing direct connectivity between GMs, the GO
will set the Intra-BSS Distribution flag in the group capability field of its beacon
frames. If providing Internet connectivity, the Cross Connection flag will be set.
Using WiFi Direct may prevent a device from simultaneous Wireless Local Area
Network (WLAN) connections depending on the implementation [Wi-16].

14 2. PROPOSED APPROACH

Device Discovery

Device discovery uses active scanning to quickly discover nearby devices that are
available for connecting.

Before looking for other peers, a device first scans for already existing groups
using the scanning process from IEEE 802.11-2012 [iee12]. To limit the scan to WiFi
Direct devices, the transmitted probe request frames may be targeted only at SSIDs
that are prefixed by the word DIRECT as seen in Figure 2.4. After the scan phase,
the device can move onto the find phase where it can locate nearby peers.

When searching for other devices in the find phase, a device alternates between
the listen state and the search state. In the listen state, the device monitors one of
the designated social channels (implementation specific, but typically 1, 6 and 11 in
2.4 GHz) for a random amount of time for probe request frames from other devices.
In the search state, the device transmits one or more probe request frames on each
of the social channels. By alternating between the two states, and with the random
duration of the listen state, devices will eventually converge on a common channel
where one of the devices is in the listen state and the other in the search state.

When receiving a probe request in the listen state, a device will transmit a probe
response frame back to the sender, and the two devices will be aware of each other
and can continue with group formation if desired.

Figure 2.4: WiFi Direct devices exchanging probe requests/responses.

Service Discovery

An optional service discovery procedure may be performed before deciding to connect
to a device or not. This procedure can allow devices to learn which services are
offered by other devices before connecting. It is a flexible procedure that can carry
a number of upper layer protocols to announce and discover configuration artifacts
such as IP-addresses, device names and device capabilities.

It follows the Generic Advertisement Service (GAS) protocol detailed in the 2012
revision of the IEEE-802.11 standard [iee12]. Service Discovery (SD) query frames
can be transmitted by unicast (one-to-one transmission from one device to another)
to discovered devices without having to form a group. The queries are to be answered
by a SD response frame carrying information about the responding device. These
SD frames have vendor specific fields that can carry varying information depending
on the upper layer discovery protocol chosen.

2.2. EXPLOITED TECHNOLOGIES 15

Android has implemented support for two Domain Name System (DNS) based
protocols that can be used for WiFi Direct service discovery: Bonjour2 and Universal
Plug and Play (UPnP)3. Both these protocols can carry DNS TXT records which
can contain arbitrary text.

Group Formation

Before being able to transmit arbitrary data, devices that have discovered each
other have to form a group with one GO. The group formation procedure handles
negotiation of which device should be the GO and provisioning of the network.

The GO negotiation process is a simple three message procedure between two
devices that includes the group configuration and an intent value from each device.
The intent is a numeric value representing the devices desire to become the GO. The
device that declares the highest intent value is elected as GO. A tie breaker bit is
also included in the case that the devices declare the same intent value. The elected
GO must then start the provisioning phase.

Provisioning is started by WPS where the GO acts as an AP, and the GM serves
as the enrollee. After the GM has obtained the WPS credentials, it may connect to
the group, and the formation is considered complete. Other clients may now also
connect to the network.

If a device does not want to negotiate with other peers, it may also autonomously
form a group, thus becoming the GO and skipping these steps [CMGSS13].

Operation

WiFi Direct operation once a group has been formed resembles IEEE 802.11 infras-
tructure mode where the GO has assumed the role of the AP.

The group is formed with a star topology (as seen in Figure 2.5) where the central
node (GO) has a connection to all the others. The other nodes (GMs) may freely
leave and join the group, but if the GO disconnects, the group disbands. The GO
can therefore be considered a single point of failure.

In addition to P2P group operation, allowing GMs to connect via WPS, a GO
must also maintain an SSID and a passphrase that clients can use to connect via
WPA2-PSK like they would connect to any other AP. This mode of operation is
referred to as legacy mode.

2Bonjour, https://developer.apple.com/bonjour
3UPnP, https://openconnectivity.org/developer/specifications/upnp-resources

https://developer.apple.com/bonjour
https://openconnectivity.org/developer/specifications/upnp-resources

16 2. PROPOSED APPROACH

As proposed by Wong et al. in their 2014 paper Automated Android-based Wireless
Mesh Networks, using the service discovery capabilities of WiFi Direct to connect
in legacy mode bypasses the manual interaction required by connecting with WPS
[WVNA14]. Connecting to a client in this special mode of operation leverages a mix
of WiFi Direct capabilities and regular WiFi operation seen in Figure 2.6 that will
prove useful for automating the connection procedure of the proposed system.

WiFi Direct GO WiFi Direct GM

Legacy Client

WiFi Direct GM

Figure 2.5: Topology of a WiFi Direct group consisting of three WiFi Direct devices
and one legacy client.

2.2.2 Mutual Transport Layer Security (mTLS)

The Transport Layer Security (TLS) protocol provides authentication, confidentiality
and integrity protection between two parties communicating over a reliable, in-order
data stream. When connecting using the bare bones TLS protocol, the client typically
verifies the authenticity of the server, and client authentication (if desired) is left up
to the application layer (for example in the form of a login page).

However, an optional mode known as mutual Transport Layer Security (mTLS)
also allows the server to authenticate the identity of the client during the handshake
on the transport layer, as seen in the full TLS handshake message flow in Figure 2.7.
In this mode both parties request and verify each others identity [Res18, Section 1].

TLS supports many different means of key exchange, encryption and integrity
protection. Which algorithms to use to ensure these connection properties are
negotiated during the session setup. Each client may have different capabilities and
preferences, and may therefore place restrictions on this choice that the other party
has to meet. A choice of security algorithms in TLS is often referred to as a cipher
suite.

2.2.3 Cryptography

The proposed system architecture makes use of a number of cryptographic schemes
to protect identities and transmitted data. These schemes fall into one of the

2.2. EXPLOITED TECHNOLOGIES 17

:Device A

ch
 1

ch
 6

:Device B :Client B:Client A

Start
Discovery

ch
 1

Probe request

Probe request

Probe response

ch
 1

ch
 1
1

Device B Found

ch
 1
..
.1
4

ch
 6

Request Device B
Service Information SD Query

SD Response
Device B

Service Information
(SSID, PSK)

Probe request

Probe response AP Found
(SSID)

Scan phase
probe
requests
are sent on
all channels

Form
Group

Group Info
(SSID, PSK)

Register Local
Service (SSID, PSK)

Connect
(SSID, PSK)

WiFi Direct Scan Phase

WiFi Direct Listen State

WiFi Direct Search State

WiFi Direct GO Operation

WiFi Operation

Legend

Device A Found

Device A Connected
as Legacy Client

Probe requestStop Discovery

Authentication Request

Authentication Response

Association Request

Association Response

ch
 1

ch
 1

ch
 1

ch
 6

Data

Fourway Handshake

Probe request

Probe request

Figure 2.6: Sequence diagram detailing how a WiFi Direct capable device may
connect as a legacy client by obtaining credentials using service discovery.

18 2. PROPOSED APPROACH

Client Server

ClientHello

ServerHello
Certificate

ServerKeyExchange
CertificateRequest
ServerHelloDone

Certificate
ClientKeyExchange

CertificateVerify
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

Application Data

Figure 2.7: Full TLS handshake protocol message flow. Adapted from [EAA09,
Figure 1].

following two broad categories. Hybrid cryptography combining schemes from the
two categories is also used, as it benefits from the strengths of each type.

Symmetric Cryptography

Data transmitted over a socket secured by TLS can be considered secure as it has
been encrypted by symmetric cryptography. Symmetric cryptography is relatively
computationally inexpensive and provides a high level of security given the right
choice of algorithm. Common for all these algorithms is the use of a shared key that
is used for both encryption and decryption. The shared key is typically negotiated
between the two communicating parties on a per-session basis.

As seen in Figure 2.8, to recover the original message from the ciphertext, one
must posses the corresponding shared key. Agreeing on, or sharing a symmetric key
without the possibility of an attacker learning it, is an important challenge that must
be solved before being able to safely use symmetric cryptography.

¤ Shared Key

7 Message n Ciphertext 7 Message
Encrypt Decrypt

Figure 2.8: Symmetric cryptography encryption and decryption.

2.2. EXPLOITED TECHNOLOGIES 19

Public Key Cryptography

Public key cryptography (or asymmetric cryptography) can be used to authenticate
the identity of the connecting parties during TLS session setup. This optional
capability is vital to use in order to prevent man-in-the-middle attacks where an
adversary secretly places themselves in the middle of two parties and relays their
messages, potentially listening in on or altering them.

In a public key cryptography system, a key pair consisting of a public and a
private key representing an identity is held by each party. The public key is a unique
identity intended for sharing. The private key is, as the name implies, never to be
revealed. Mere knowledge of a private key proves ownership of the corresponding
public key and its associated identity.

A key pair is randomly generated on the device that will use it based on a random
seed (as seen in Figure 2.9) so that the private key never has to be transmitted. This
is done to minimize the possibility of the private key being learned by anyone but
the original owner.

ç Random Number

/ Key Generation Function

¤ Public Key ¤ Private key

Figure 2.9: Generation of a key pair for use in a public key cryptography system.

Keys are often packaged in digital certificates that tie them to an identity
before being shared. The procedures behind the issuing and management of digital
certificates is often referred to as Public Key Infrastructure (PKI). The purpose of a
PKI is to manage trust in the certificates. Since anyone can generate a public- and
private key pair, they are not particularly valuable by themselves without trust in
their origin.

A common way of managing this trust is using a Trusted Third Party (TTP).
If the entities that wish to connect to each other can agree on a third party that

20 2. PROPOSED APPROACH

they both trust, the TTP can vouch for the authenticity of a digital certificate. The
TTP has its own key pair and its public key is distributed to all clients. Before
communicating with anyone else, each client submits their digital certificate to the
TTP, known as a CA in PKI, and receive a digital signature back that can be sent
to anyone along with the digital certificate. A digital signature from the CA can
only be generated using the CA’s private key, and can be verified to be authentic by
anyone in possession of the CA’s public key.

When receiving a certificate with a digital signature attached, anyone in possession
of the CA’s public key can then verify that the digital signature is valid. As shown
in Figure 2.10, only a public key is required to verify if a signature was generated
by the corresponding private key. By trusting the CA and its ability to verify the
digital certificate ownership, it is also safe to assume that the certificate represents
the identity it claims to if the signature can be verified.

7 Message

¤ Signer’s Private Key

9 Message Signature

¤ Signer’s Public Key

Ë Verified? (yes/no)
Sign Verify

Figure 2.10: Generation and verification of a signature based on public key cryp-
tography.

As seen in Figure 2.11, encryption can also be done if one is in possession of
the recipients public identity. By using the recipients public key, a message can be
encrypted by anyone so that only the recipient can decrypt it as he or she is the only
entity in possession of the private key.

7 Message

¤ Recipient’s Public Key

9 Ciphertext

¤ Recipient’s Private Key

7 Message
Encrypt Decrypt

Figure 2.11: Encryption and decryption of a message using public key cryptography.

2.2. EXPLOITED TECHNOLOGIES 21

Hybrid Cryptography

The combination of symmetric and asymmetric cryptography used in TLS can be
classified as hybrid cryptography. Symmetric cryptography is efficient, but requires
a common shared secret. Public key cryptography does not, but often relies on
more complex calculation and has a large overhead that make it less efficient. By
using public key cryptography to encapsulate and share key material for use in
symmetric cryptography, a desirable result combining the best features of each
scheme is obtained.

The overhead induced by the public key encryption scheme is reduced as the
bulk data transmission is done using symmetric encryption, and the issue on how to
share the key material required for symmetric cryptography is solved by a public key
encryption scheme.

Chapter3Implementation

The three logical components are implemented in a server and a client application.
The following section details how, and outlines which steps were taken to develop a
working implementation of the proposed system.

3.1 The Dedicated Server

The dedicated server is a traditional server reachable using the Internet. It implements
both the server component to facilitate messaging and the authentication component
to facilitate sign-up.

Servers that can handle sign up and authentication of users are widely deployed
and well understood. It is therefore assumed that the dedicated server already exists
and that it is able to handle sign up and authentication of users. The interested
reader may find resources for implementing a chat application with a corresponding
server from popular online learning resources such as Udemy1.

3.1.1 Certificate Generation

The dedicated server must have its own key pair that can be used to issue credentials
to users and establish mTLS connections to connecting clients. In the case of
the sample implementation, a single root level certificate was used, but a security
conscious developer may choose to issue an immediate certificate for this purpose.
An immediate certificate is simply a certificate issued by the root certificate that can,
in itself, be used to issue other certificates. Using one means that the root certificate
can be protected by additional layers of security such as not storing it on a server
available over the Internet, thus minimizing the odds of it being compromised by an
attacker.

1The Complete Android N Developer Course | Udemy: https://www.udemy.com/
complete-android-n-developer-course/

23

https://www.udemy.com/complete-android-n-developer-course/
https://www.udemy.com/complete-android-n-developer-course/

24 3. IMPLEMENTATION

A root level certificate may be valid for decades (though it should be configured
to eventually expire), so it is reasonable to manually generate it. In the case of the
sample implementation, it was done using the OpenSSL toolkit2, a feature packed
toolkit for the TLS and Secure Sockets Layer (SSL) protocols.

Signing of CSRs from users can be automated in many ways, but given the
small number of devices used in the sample implementation testing, development
of an automated authentication server would not be a particularly beneficial use of
resources, so user credentials were also manually issued using the OpenSSL toolkit.

3.2 The Client Application

The client application does not only implement the client component, but also the
server component. It consists of two main activities and one debug activity to inspect
messages being sent and received.

3.2.1 The Main Activity

The main activity (seen in Figure 3.1) contains a list of a user’s contacts and the
connection status of the client component and the server component.

The connection status has four distinct values representing different stages of the
application connection phase.

– Setting up: The application is loading

– Connecting: The client component is looking for a server to connect to

– Connected: The client component has successfully connected to a server
component

– Hosting: The client component has not been able to connect, and has started
the server component hosting a group

Selecting one of the contacts in the list opens up the chat activity for that
particular user. Pressing the info circle (�) in the top right of the screen opens the
debug activity.

3.2.2 The Chat Activity

The chat activity (seen in the two leftmost screens shown in Figure 3.2) allow users
to send basic text messages to their contacts. It shows messages sent/received in

2OpenSSL, https://www.openssl.org/

https://www.openssl.org/

3.2. THE CLIENT APPLICATION 25

Figure 3.1: A user browsing their list of contacts in the Main Activity. Selecting
one brings up the chat view.

chronological order with sent messages on the right, and received messages on the
left. Messages are only shown if the signature can be verified and the user has the
sender in his or her contact list. The name of the contact the user is chatting with is
displayed at the very top.

Tapping the message field brings up the on screen keyboard and allow users to
type out messages that can be sent by tapping the send button or the return key on
the keyboard (). The back button brings the user back to the main activity.

3.2.3 The Debug Activity

The debug activity (seen in the rightmost screen in Figure 3.2) show the messages
being sent from/to, or being relayed by a user. It loads the name of the users from
the contact list if an entry is found corresponding to the public keys contained in the
message.

It displays the state of the attached signature by verifying it using the attached
sender public key, and displays a checkmark (Ë) if the signature can be verified, and
a cross (é) if the verification fails.

It also decrypts the message ciphertext if it possesses the private key corresponding
to the recipient.

26 3. IMPLEMENTATION

Figure 3.2: Two users chatting using the Chat Activity, with a third user
inspecting the Debug Activity whilst acting as a server.

It is not possible to interact with any of the messages other than scrolling up and
down if the messages have overflowed the available screen space. The back button
brings the user back to the main activity.

3.2.4 Technical Details

As the application must manage a client with a connection to a server and possibly
an instance of the server component as well, a simple state machine seen in Figure 3.3
is maintained to discover, prioritize and connect to the appropriate server.

To ease development, all certificates in the test application are stored on the
devices external storage. This includes both the contact list and the users own
credentials. This is great for development, as the credentials can be managed from
the development machine by mounting the device’s external storage as USB storage.
The obvious drawback being that the certificates can easily be read or modified by
other applications or extracted through USB.

In a fully fledged implementation it is vital that the certificates (especially ones
containing private keys) are stored on the device’s internal storage. This storage
protects its contents from both the user and other applications on the device [Anda].

In the current version of Android (Android Pie), the GOs IP address appears to be

3.3. CROSS PLATFORM CODE REUSE 27

Connect to
Dedicated
Server

start
Discover
Nearby
Groups

Form Group

Join GroupConnect to
GO’s Server

Disconnect

Timeout Timeout

SuccessTimeout

Disconnect

Figure 3.3: A finite state machine outlining the operation of the connectivity
behavior of the application. Omitted transitions include various failure conditions
that disband/leave any WiFi Direct group and return to the start state.

hard coded to 192.168.49.1 [And18]. However, this cannot be guaranteed in future
versions of the OS, as it is not part of the official WiFi Direct specification [Wi-16].
The GO therefore always advertises its IP address over NSD along with the PSK for
the WiFi network and the port that the server component is bound to.

3.3 Cross Platform Code Reuse

As the server component is written in Java, which can run on both user devices
running Android and on any server capable of running the Java Virtual Machine
(JVM), development cost in terms of codebase size can be lowered. However, a

28 3. IMPLEMENTATION

number of considerations must be made to ensure consistent operation across both
runtime environments.

3.3.1 API Variation

The code targeting both Android and the desktop should not require dependencies
that are only available on one platform. Relying only on the Java standard library is
a great way of ensuring this, as it can be expected to have been thoroughly tested
on both platforms.

The server component does rely on some Android-only APIs to manage WiFi
Direct operation, but as there is no need for the dedicated server to use WiFi Direct,
this is not a problem.

An important difference to note is the variations in the cryptographic libraries
available for the two platforms. The Bouncy Castle Crypto APIs3 are available on
both Android and on the desktop, albeit in slightly different flavors which is why the
Spongy Castle4 distribution of Bouncy Castle was used in this implementation.

3.3.2 Serialization

Attempting to directly serialize cryptographic primitives such as PublicKey objects
on an Android device and deserializing them on the dedicated server will result in
compatibility issues, due to minor variation between the Android and desktop version
of Bouncy Castle.

For example, the BCRSAPublicKey object is functionally equivalent on the two plat-
forms, but the Android variant (com.android.org.bouncycastle.jcajce.provider.
asymmetric.rsa.BCRSAPublicKey) cannot be directly deserialized into a org.bouncycastle.
jcajce.provider.asymmetric.rsa.BCRSAPublicKey due to their dissimilar finger-
print.

Care must therefore be taken to break the objects down into less complex ob-
jects that can be reconstructed upon delivery before transmission over the wire.
The Bouncy Castle APIs supports the standardized Abstract Syntax Notation One
(ASN.1) encoding of most cryptographic objects for efficient transfer between imple-
mentations. Using this over Java’s built in object serialization not only solves these
compatibility issues, but has a considerably lower overhead and avoids dealing with
the security issues of Java serialization [Kri18].

3Open Source Crypto APIs for Java and C# https://www.bouncycastle.org/
4Stock Bouncy Castle libraries with a couple of small changes to make it work on Android

https://rtyley.github.io/spongycastle/

https://www.bouncycastle.org/
https://rtyley.github.io/spongycastle/

3.4. CRYPTOGRAPHY 29

Fixed cryptography parameters, making the length of message packet fields static,
can also be used to further compress message sizes, as object identifiers and headers
can be cut down on.

3.4 Cryptography

The application was implemented with two cryptosystems for comparison. Rivest-
Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC) can both be used
for encryption and signing messages, but have slightly different properties. While
RSA can be used by itself to encrypt short messages, a hybrid scheme is often used
in ECC.

3.4.1 Rivest Shamir Adleman (RSA)

RSA, first published in 1978 by the cryptographers whose names make up its acronym
name, is based on the premise that it is difficult to factor large numbers [RSA78].

RSA is a fully fledged cryptosystem with clearly defined key generation, encryption,
decryption and signing. PKCS #1 covers the industry standard implementation of
this functionality, which is slightly different from the version presented in the original
paper [KMKJR16].

It is vital that secure padding is being used when encrypting with RSA to make
it semantically secure. A semantically secure cryptosystem is a cryptosystem where
information about the plaintext cannot be extracted from the ciphertext without
the ability to decrypt it. If no sufficiently secure padding is used, the encryption
is deterministic, and an attacker can simply try to encrypt their guess for what
the plaintext might be and see if it results in the same ciphertext. In the case of
short text messages, it would not take long to guess correctly. Optimal Asymmetric
Encryption Padding (OAEP), a secure padding scheme often paired with RSA, was
therefore used.

The maximum size of the message to be encrypted (including padding) is the
modulus (ie. key size). This was not an issue for the short nature of text messages,
but could become an issue for use cases with bigger payloads. Ths most common
way of solving this is by implementing a hybrid scheme such as Pretty Good Privacy
(PGP) in which the data is encrypted using a symmetric key that is shared using
public key cryptography.

3.4.2 Elliptic Curve Cryptography

ECC is an alternative public key cryptography approach. It requires significantly
shorter keys than RSA to provide the same level of security and is based on the

30 3. IMPLEMENTATION

premise that it is difficult to find the discrete logarithm of an elliptic curve point
[Van97].

ECC encryption was done using Elliptic Curve Integrated Encryption Scheme
(ECIES), as it is one of the most straightforward ECC encryption schemes. It
is considered a hybrid scheme due to it being a combination of asymmetric and
symmetric cryptography, and is semantically secure.

To encrypt a message, a Key Agreement (KA) function is used to create a shared
secret value based on a randomly generated ephemeral key pair and the recipients
public key. A Key Derivation Function (KDF) is then used to generate symmetric
keys for encrypting and signing the message contents from the shared secret. The
actual message encryption is performed using a symmetric encryption algorithm and
a digest function is used with the signing key to generate a Message Authentication
Code (MAC). The recipient can then obtain symmetric keys to verify the MAC and
decrypt the message by using the ephemeral public key and recipient private key,
along with the encrypted message [MEÁ10].

The MAC from ECIES only preserves the integrity of the message itself, so
Elliptic Curve Digital Signature Algorithm (ECDSA) was used to sign the entire
message frame including the sender and recipient fields. An ECDSA signature is the
Elliptic Curve (EC) variant of Digital Signature Algorithm (DSA). It is calculated
using the senders private key and a random value, and can be verified by knowing
the random value and the senders public key [JMV01].

Optimization

Public keys are often transferred, which motivates a compression scheme that lowers
the amount of data that needs to be sent. Because they are represented as points on
the elliptic curve geometric construction, public keys are coordinates comprised of an
X value and an Y value. They also have to satisfy the curve equation often written
as Y 2 = X3 + aX + b, where a and b are the parameters that define the curve.

If one knows the curve parameters and the X coordinate of such a point, one can
therefore use the curve equation to recompute Y 2. This yields two possible solutions
for Y , so a single bit indicating which of the two possible points is correct is therefore
appended. Further calculations will, for simplicity, ignore this extra bit, and assume
that an elliptic curve point can be compressed into a single X value.

Curve Parameters

Not all curve parameters are created equal, so it is vital to select the correct ones to
ensure that the Elliptic Curve Discrete Logarithm Problem (ECDLP) (ie. recovering

3.5. USER EXPERIENCE 31

Figure 3.4: A WiFi Direct connection prompt as seen by a GO requiring manual
interaction to allow a new GM to join the group.

a private key given the corresponding public key) remains a difficult problem.

Following suspicions of a back door in the standardized Dual EC random number
generator, the safety of a number of widely deployed curve parameters have been
questioned [BLN16, BCLN16]. For assistance in choosing these parameters, the
reader is therefore urged to consult a reputable standardization body that they trust.

There are a number of standards that cover the selection of these parameters. An
introduction to the most common ones as well as some valuable evaluation criteria
are available from the SafeCurves initiative5.

3.5 User Experience

The cryptography is, given the correct choice of parameters, not something that
heavily influence the user experience of the application. However, some of the
characteristics of the sample implementation make it possible for the user to discern
whether or not the application is operating in out-of-coverage mode.

The OS shows two interface elements of note that impact the users experience of
the application. The first being the pop up dialog seen in Figure 3.4. It was avoided
by using Wong et al.’s NSD technique.

However, when a client connects as a legacy client, the OS will display the
connection status in the notification bar at the top of the screen. As a user might
associate the WiFi symbol with an active Internet connection, the OS will show a
small cross letting the user know that there is no Internet connectivity (see Figure 3.5).

5SafeCurves, https://safecurves.cr.yp.to/

https://safecurves.cr.yp.to/

32 3. IMPLEMENTATION

Figure 3.5: A symbol in the notification bar of an Android device letting the user
know that it is connected to WiFi, but no Internet connection can be made.

Chapter4Experimental Results

This chapter covers an experimental validation of the proposed implementation.
Network operation is analyzed to investigate the time it takes to set up connections
and deliver messages, and a theoretical computation of message overheads is performed
to compare various cryptosystems and their parameters. Finally, the overheads of the
popular IM application WhatsApp and the P2P IM application Briar is investigated
for comparative purposes.

4.1 Security Validation

The following section covers an analysis of what can be learned about the operation
of the sample implementation and its users by examining a selection of network layers
(based on the Open Systems Interconnection (OSI) conceptual model).

4.1.1 Data Link Layer Security

As messages are the only data frames transmitted in the WiFi Direct group, it
is trivial for an unauthenticated third party monitoring the network to see which
devices are transmitting messages. If the aforementioned third party is able to link
the physical addresses of each device (seen in Figure 4.1) to an identity, it can keep
track of when messages are sent and to/from whom.

Wong et al.’s technique of broadcasting the PSK of the formed network using
NSD to allow devices to connect to the WiFi network without the need for manual
verification prompts makes connection establishment considerably easier for the user
[WVNA14]. However, this also means that anyone can use service discovery to learn
the PSK. As seen in the screenshot of wpa_cli from a computer near a GM in
Figure 4.2, it is trivial to discover the broadcasted service information. A user must
therefore not be considered trustworthy based only on their ability to connect to the
WiFi network.

33

34 4. EXPERIMENTAL RESULTS

Figure 4.1: An IEEE 802.11 data frame transmitting a message from the GM to a
GO (highlighted) as seen by a third party.

Encrypting the password with a static pre shared secret like in the original paper
would only make the WiFi PSK marginally more difficult to recover, as the secret
would have to be distributed onto every users device, from which it could be recovered
and the password subsequently decoded. If the application were to be kept private,
and not publicly distributed, this could be a worthwhile addition, as it would be
much more difficult to recover the secret without access to the application binary.

Either way, there is no way to set the PSK required to join the group as it is
randomly generated by the operating system. These randomly generated passwords
appear to never be longer than the minimum PSK length (8 characters) using a 36
character alphabet (A-Za-z0-9). This might not be a sufficiently strong password to
resist a brute force attack [Gol11].

The WiFi connections between the devices must therefore be considered insecure
channels, as an adversary that witnesses a client handshake must be considered able
to decode transmitted frames [Mac05].

4.1.2 Transport Layer Security

As the data link layer security is not sufficient to protect data over the air, the
system relies on upper layer security. On the transport layer, the data is transferred
over TLS. A number of attacks on TLS have been published that can defeat this
protection [SHSA15b]. It is therefore vital that both the server component and the
connecting clients enforce the most recent best practices for TLS [SHSA15a].

Because the engineers behind the deployment of this system have full control
over the implementation of both servers and clients (unlike web server developers
that often have to support older browsers), strict requirements can be placed on the
connection without worrying about compatibility.

4.1. SECURITY VALIDATION 35

Figure 4.2: WiFi PSK transmitted using NSD as seen by a nearby device.

In addition to confidentiality and integrity protection, the transport layer also
provides the access control that is lacking on the lower layers. As both connecting
parties require authentication of the other party using mTLS it is impossible for a
user to connect without an identity from the authentication server. If attempting to
connect without the appropriate credentials, the TLS handshake will fail (as seen
in Figure 4.3), and the device will be unable to communicate with other users.

It can therefore be concluded that unauthorized clients are prevented from
communicating with users at the transport layer, and that the data being carried is
both confidential and integrity protected due to the properties of TLS. It is however
important to note that the TLS connections are not End-to-End (E2E), as they are
terminated at the server component running on the GO. Upper layer measures are
therefore required to protect users from a dishonest GO.

Figure 4.3: TLS handshake failure caused by a client attempting to connect without
an identity certificate signed by the authentication component.

4.1.3 Application Layer Security

As both the data link layer and transport layer security terminates at the GO it is a
natural component to study to evaluate the application layer security.

36 4. EXPERIMENTAL RESULTS

As seen in Figure 4.4, message senders and recipients are visible to the GO, and
signatures may be verified, but message contents cannot be deciphered without the
appropriate private keys. This means that the server component can keep track of
who is chatting, but has no way of knowing the contents of the messages.

Figure 4.4: Message flow as seen by the GO user3@test.com. Note how the GO
is unable to decipher message contents not intended for itself.

A dishonest server component could potentially attempt to modify the messages it
is forwarding. In Figure 4.5, a malicious GO has modified the from field of a message
packet, but was unable to correctly sign the message as it does not possess the
private key of user1@test.com. The recipient (user3@test.com) therefore discards
the message due to the signature verification failure.

Figure 4.5: Message signature validation fails if a message packet has been altered
by an unauthorized entity, as seen by the GM user3@test.com.

4.2. OVERHEAD 37

In short, the message packet format (see Figure 2.2) successfully protects the
messages confidentiality and integrity E2E, but does not protect the identity of the
sender and recipient.

The GO can, however, choose not to deliver, delay or even deliver messages
multiple times. The latter, known as a replay attack has an especially undesirable
impact if used maliciously. In a high security context, messages that are received long
after they were created should be discarded or the user should be notified as a stale
message could indicate malicious activity. Duplicate messages (same sender/recipient,
timestamp, ciphertext and signature) should also be discarded.

4.2 Overhead

As with most systems that add value, the number of steps taken to secure reliable
instant messaging in this research add some overhead that must be considered in the
evaluation of the project. This overhead may be measured in terms of the amount of
transferred data, battery usage, computation required and/or time needed to set up
connectivity.

4.2.1 Connection

Using TLS adds some overhead to both connection setup and data transfer. It has,
however, become extremely common, and is not unique to this system. As seen in
Figure 4.3, the per session data overhead is in the kilobyte range, and the time it
takes to establish the connection is barely noticeable by a human (note that the
referenced figure covers a failed handshake, with slightly less data transferred than
one would expect from a successful one).

In the event that the Internet connection fails, however, significant time is required
to reform connectivity using WiFi Direct. Camps-Mur et al. measured the group
formation delay in their 2013 overview paper of WiFi Direct, and noted that the
WiFi Direct discovery mechanism introduces some randomness to the time it takes
to connect to a group [CMGSS13].

As a device should go through the standard discovery phase to discover NSD
advertisements from other groups that it should consider joining before forming its
own, this discovery delay must be considered.

Timing of this delay was obtained by logging the time it took one Nexus 6P running
the sample implementation to connect to another which had already autonomously
formed a group and started broadcasting connection credentials using NSD. The
process was repeated 500 times by a simple Bash script that controlled each device over
Android Debug Bridge (ADB). It power cycled each device, opened the application

38 4. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12

10
20
30
40
50
60
70
80
90

100

Time [s]

F(
x)

WiFi Direct Group Service Discovery and Legacy Association Delay

Discovery (NSD)
Connection

Total

Figure 4.6: CDF of the time to discover credentials over NSD and connect to a
WiFi Direct group as a legacy client.

Mean µ Median Standard Deviation σ

Discovery (NSD) 3.42 3.07 1.17
Connection 2.03 1.90 0.46
Total 5.45 5.00 1.54

Table 4.1: Measurements in seconds of the time used to discover credentials over
NSD and connect to a WiFi Direct group as a legacy client.

on one device, and waited for it to become GO before launching the application on
the other device.

As seen in Figure 4.6, this credential discovery process may take up to ten seconds
to complete. Autonomously forming the group takes next to no time, but some
time is required for other clients to connect. After a group has been formed, it
takes around five seconds (discovery delay plus connection delay) for the first GM
to discover the broadcasted credentials and join, as seen in Table 4.1. This new
client goes through the discovery process which can be expected to take three to four
seconds, and uses the credentials discovered to connect to the group. However, as
seen in Figure 4.6, in about 10% of cases, one of these steps does take up to twice
the expected time, making the discovery and connection establishment phase slightly
unpredictable.

The test implementation experienced the same issues regarding undesirable NSD
behavior mentioned in Wong et al.’s original paper [WVNA14]. In some instances,

4.2. OVERHEAD 39

Encryption Mean µ Median Standard Deviation σ

RSA 2048 8.1 7 2.4
RSA 4096 33.0 33 1.0
secp224r1 8.7 8 3.2
secp384r1 11.7 11.5 1.3
Decryption Mean µ Median Standard Deviation σ

RSA 2048 7.6 8 0.7
RSA 4096 47.9 48 0.8
secp224r1 5.3 5 1.5
secp384r1 20.6 20 1.4

Table 4.2: Measurements in milliseconds of the time used to both instantiate
(encrypt contents) and decrypt a message packet.

one or more of the test devices did not discover NSD broadcasts from other devices
until they had been power cycled. The client then sees the already existing WiFi
Direct group, but is unable to identify it as a group offering the chat service and
to obtain the PSK required to connect. It then forms and advertises its own group
resulting in two isolated groups in the same area competing for members.

It was also observed that the sample application consumed a significant amount of
battery. Trifunovic et al. measured the battery usage of multiple P2P communication
technologies in their 2013 paper and not only found that WiFi Direct consumes more
power than similar alternatives, but also that the GO consumed an unfairly large
portion compared to the GMs. This raises the question of the fairness of the group
topology, and if the GO role should be periodically transferred amongst the group
members even though this would cause a short service interruption [TPHH13].

4.2.2 Messaging

The message format facilitating forwarding, confidentiality and integrity protecting
adds significant overhead in terms of data transfer. Asymmetric cryptography is also
significantly more computationally expensive than symmetric cryptography.

As seen in Table 4.2, the time required to calculate the required cryptographic
ciphertext and signatures are not insignificant. There is a noticeable gap in timings
between RSA with various key sizes. Messages using EC cryptography perform well
with both tested key sizes. As seen by the relatively low standard deviation and in
the CDFs of the measurements in Figure 4.7 and Figure 4.8, the time it takes to
perform these cryptographic operations are consistent across the tested encryption
schemes.

40 4. EXPERIMENTAL RESULTS

0 10 20 30 40 50 60

10
20
30
40
50
60
70
80
90

100

Time [ms]

F(
x)

Instantiation of a Message Packet

2048 bit RSA
4096 bit RSA
secp224r1
secp384r1

Figure 4.7: CDF of the time required to instantiate a message packet (including
calculation of the appropriate ciphertext and signature) on a Nexus 6P.

0 10 20 30 40 50 60

10
20
30
40
50
60
70
80
90

100

Time [ms]

F(
x)

Decoding of a Message Packet

2048 bit RSA
4096 bit RSA
secp224r1
secp384r1

Figure 4.8: CDF of the time required to verify the signature and decode the
contents of a message packet on a Nexus 6P.

4.2. OVERHEAD 41

The results were collected by measuring the time it took to instantiate a message
packet object for sending and subsequently verifying the signature and decrypting
the message on the same device 100 times. EC cryptography was tested using Spongy
Castle, as the Bouncy Castle distribution shipped with Android lacks support for
ECIES. The RSA ciphertext was padded using OAEP (RSA/ECB/OAEPPadding) and
the signatures were generated using the Java preset SHA256withRSA.

The EC ciphertext was generated using ECIES, a hybrid encryption scheme
which essentially encrypts a key using asymmetric EC cryptography. The key is
then used in a symmetric encryption scheme to actually encrypt the data. It was
used with Advanced Encryption Standard (AES) in Cipher Block Chaining (CBC)
mode (ECIESwithAES-CBC/NONE/PKCS5PADDING) with a 128-bit key size for the block
cipher in secp224r1 and with a 192-bit key size for the block cipher in secp384r1.
The signatures were generated with ECDSA (SHA256withECDSA).

Using a message format with significant additional data sent with every message
(see Figure 2.2) also results in additional data transfer. Most of the overhead comes
from transmitting two full public keys (sender and recipient) with every message.
Table 4.3 summarizes the size of a single message packet given various key sizes. The
transmitted message contains 29 bytes of data, representing a typical IM message
[LB07].

A number of simplifications were made in the calculation of the message sizes.
The timestamp is assumed to be 32 bits (4 bytes), which is sufficient to store time
with second-precision until 21061. Calculations assume that all the RSA keys have
been restricted to only allow keys with the same public exponent so that transmission
of the few extra bytes associated with this value does not have to be considered. In
the same fashion, the EC calculations assume that the EC cryptography are done on
the same curve so that curve characteristics does not have to be transferred. Points
on the elliptic curve are also assumed to be compressed into a single coordinate on
the curve rather than two full uncompressed values.

RSA Key Strength Message Size EC Curve Message Size
2048 bit 1028 bytes secp224r1 192 bytes
4096 bit 2052 bytes

secp384r1 292 bytes

Table 4.3: Message packet size in bytes given various key sizes (sorted with the
weakest at the top and the strongest at the bottom). The named curves are specified
in SEC 2 [Res00].

1According to the Java Platform SE 8 java.util.Date which parses the unsigned 32 bit integer
max value (232 − 1) to 2106-02-07T06:28:15.000

42 4. EXPERIMENTAL RESULTS

In the case of RSA, the length of each cryptographic field is defined by the key
size, making the total message length 4 · keySize + 4 bytes. In the case of EC, the
sender and receiver are represented by points on the elliptic curve. The ECDSA
signature consists of two numbers of the same size as the curve parameter. The
ECIES ciphertext consists of one point on the curve, a 128 bit Initialization Vector
(IV) as well as the encrypted message (which ends up being two 128 bit AES blocks
including padding in these cases). A MAC is also typically included to protect the
integrity of the ciphertext, but this is not necessary in this case, as the ECDSA
signature already protects the integrity of the full message packet.

4.2.3 Other Messaging Applications

The following subsection contains an overview of the data overhead of other IM appli-
cations. They were chosen based on the availability of an open protocol specification
and the existence of an open source Android implementation of said protocol.

WhatsApp

WhatsApp does not support P2P/offline instant messaging, so it does not solve the
issue that this work covers, but as a popular E2E encrypted IM application, its
communication can be compared to this work to validate that the proposed P2P
communication solution does not add an unreasonable encryption overhead.

In 2017, the popular IM service WhatsApp published a blog post claiming that
their systems handle 55 billion messages per day [wha17a]. Had they been using the
message format proposed by this work with 4096 bit RSA, those messages would
have been 112.9 Terabytes (TBs) in size.

Given a typical network usage cost of $0.08 per Gigabyte (GB)2 this would mean
a monthly $542,000 bill for network transfer alone. Reducing the message size tenfold
by selecting EC cryptography with the associated 192 byte message format would
therefore clearly be beneficial to online operation of this system at scale.

WhatsApp claims to employ the Signal protocol from Open Whisper Systems
where messages are protected with AES256 encryption and HMAC-SHA256 authen-
tication with curve parameters from Curve25519. The symmetric keys for use in this
hybrid encryption, is initially derived using a modified version of the Diffie-Hellman
(DH) key agreement protocol (known as Extended Triple Diffie-Hellman (X3DH))
and continuously updated by the Double Ratchet algorithm [wha17b]. The interested
reader may refer to the original specification of the algorithm for more details [PM16].

2Google Cloud egress pricing to most countries for users exceeding 10 TB of transfer per month
from the European Union (EU) region. See https://cloud.google.com/storage/pricing.

https://cloud.google.com/storage/pricing

4.2. OVERHEAD 43

message SignalMessage {
optional bytes ratchetKey = 1 ;
optional uint32 counter = 2 ;
optional uint32 previousCounter = 3 ;
optional bytes c i p h e r t e x t = 4 ;

}

Figure 4.9: The Signal Protocol Message data structure from the open source
Signal protocol library for Android3.

As seen in the data structure from the open source Android implementation
of the Signal protocol (see Figure 4.9), messages consist of ciphertext as well as a
header containing an ephemeral key (also known as the ratchet key) and two counters
indicating where in the complex chain of message keys the key material for the
attached ciphertext can be found [MP16, PM16].

Assuming that the encryption is using PKCS#7 padding (as recommended in
the protocol specification), a minimal message size for a 29 byte plaintext can be
expected to be around 104 bytes excluding serialization and session setup overhead.
In addition to this, the message needs to be wrapped in an implementation specific
envelope which includes a recipient identifier.

By placing breakpoints in the open source Signal messenger application, from
which the WhatsApp messaging protocol originates, size overhead of messages can
be logged for comparison with this system. It appears that message envelopes are
JavaScript Object Notation (JSON) encoded with Base64 encoded message objects
serialized using Google Protocol buffers. Metadata and serialization overhead from
the implementation specific message data structure brings the ciphertext of a 29 byte
plaintext up to 17 32-byte AES blocks (plus a single version byte), and the total
JSON encoded envelope for transfer up to 897 bytes as seen in Figure 4.10, which is
significantly larger than the ECC variant of the proposed solution.

Briar

In the same fashion as the Signal messenger application, Briar’s data overhead
can easily be investigated by placing breakpoints in the open source messaging
application. Briar uses its own open source suite of protocols by the name of Bramble
that includes, among others, an application layer synchronization protocol for message
encapsulation and a transport layer protocol for security.

3libsignal-protocol-java on GitHub, https://github.com/signalapp/libsignal-protocol-java

https://github.com/signalapp/libsignal-protocol-java

44 4. EXPERIMENTAL RESULTS

{
" destination ":"+4791694525",
" messages ":[

{
" content ":byte[548],
" destinationDeviceId ":1,
" destinationRegistrationId ":14010,
"type":6

}
],
" online ":false,
" timestamp ":1554437133465

}

Figure 4.10: A message with a 29 byte plaintext from the Signal Android application
intercepted before transfer.

By placing a breakpoint in the Bramble transport layer protocol writeFrame
method, both the application data layer data (plaintext) and the encrypted frame
for transport can be logged.

Sending a 29 byte message yielded 77 bytes of application data which resulted in
a 113 byte message frame. As seen in see Figure 4.11, the encrypted frame includes
a frame header (20 bytes), a MAC (16 bytes), padding (none in this case), as well as
of ciphertext (77 bytes).

As addressing is handled by lower layers, there is no need for the frames to include
recipient information, which significantly lowers the size of these frames compared to
the proposed system.

These measurements are excluding additional synchronization packets which add
some additional overhead roughly in the order of tens of bytes. See the Bramble
synchronization protocol specification for details on these packets4.

4Bramble Synchronization Protocol, https://code.briarproject.org/briar/briar-spec/blob/
master/protocols/BSP.md

https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BSP.md
https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BSP.md

4.2. OVERHEAD 45

Header Ciphertext Padding

MAC

Figure 4.11: Bramble transport protocol frame structure.

Chapter5Discussion

The following chapter discusses the practical application of the proposed solution, its
weaknesses and strengths.

5.1 Connectivity

Restoring connectivity by using WiFi Direct in the event of an Internet outage does
come with significant set up time, but it may still be suitable for asynchronous
applications such as IM systems and file transfers. It cannot, however, be used for
applications that require uninterrupted, synchronous transfer unless some modifica-
tions are done. To achieve this, the WiFi Direct group could be set up as a fallback
regardless of current connection status so that it is ready for use immediately if the
Internet connection were to fail.

It is worth noting that when an Android device is connected to a WiFi Direct
group in legacy mode, the connectivity information shown to the user (see Figure 3.5)
might confuse the users, leading to a bad experience using the application.

5.2 Security

Issuing credentials to users in the form of digital certificates for use in asymmetric
cryptography enables them to successfully authenticate one another with TLS during
out-of-coverage operation.

However, as it requires the user to be online at the time of sign up, so that their
digital certificate can be signed by the authentication component, it might (in some
cases) be a hindrance that prevent a new user from starting to use the application. It
is impossible to invite a new user to sign up to the service when it might be needed
the most (when other applications fail due to a lack of Internet connection).

47

48 5. DISCUSSION

The overhead introduced by using strong cryptography is not insignificant, but
this can be mitigated by choosing a cryptosystem with smaller key sizes. From the
significant overhead introduced by large RSA keys it is clearly beneficial to choose
EC cryptography as it offers the same cryptography strength at smaller overheads.

As demanding cryptographic calculations have to be done mostly by the end-users
(and not by the server), scalability should not be a major issue provided that users
do not send and receive messages faster than the time it takes to encode/decode
them. Assuming strong EC cryptography with a worst case decode time of 30ms, as
measured in subsection 4.2.2, one can achieve more than 33 messages per second.

If the TLS connection was not terminated at the GO, but GMs were allowed
direct connections to each other, some of the application layer measures designed to
protect the client from a dishonest server could have been avoided. However, this
would have added to the implementation complexity, as the GO acting as a server
makes out-of-coverage operation very similar to online operation. Additionally, as
covered in section 2.2.1, intra-GM communication is an optional capability that may
not be offered by all devices.

The fact that the same server component code base can be used on both the
dedicated server and on the GO is a notable property that makes the proposed
system easier to adopt, but requires an application layer chat protocol.

The basic chat protocol that has been proposed provides confidentiality, integrity,
authentication and is resilient against messages arriving out-of-order, but lacks more
sophisticated properties that further protect users in edge cases such as private key
compromise.

The chat protocol protects the content of messages from a malicious GO, but
the system does not, in its current state, attempt to detect a Denial of Service
(DoS) type of attack, where the GO refuses to forward messages. Detecting this and
electing a new GO automatically would make the system more resilient and useable
in cases where a current Internet outage is a deliberate act aimed at disturbing
communications.

5.3 Overhead

As WiFi Direct supports the same speeds as typical WiFi it is assumed that it
provides more than sufficient throughput to carry a significant volume of these
messages regardless of the chosen cryptosystem. In online mode, however, a server
might have a much larger number of connected users. Keeping the message size
low is therefore in the best interest of a developer in order to minimize the costs
associated with bandwidth.

5.4. USER EXPERIENCE 49

Based on the overhead measures from section 4.2, EC cryptography is strongly
recommended in most implementations of the proposed system. This could lead to
significant cost savings, especially at scale.

Comparing the message size overheads of the proposed solutions to the selected
IM applications of subsection 4.2.3, it can be argued that the proposed system does
not add an unreasonable overhead compared to other messaging protocols. Choosing
EC with strong parameters means that the message size for a 29 byte IM does not
exceed 300 bytes. However, sending full public keys of both the sender and recipient
with every packet does add significant overhead that other protocols can avoid.

5.4 User Experience

The current application design requires the user to trust both the application and
the authentication component. Even after convincing the user that the cryptography
is sound, they still have to trust that the application works exactly as it claims to,
without any back doors.

Providing users with access to the source code and allowing them to compile the
application themselves can help advanced users audit the application operation and
ensure them that it functions as it should. The authentication component is still,
however, a black box that the user simply has to trust.

No attempts to alleviate this need for blind trust has been made in this project,
however, other applications have implemented a simple measure that can be used to
manually verify that a user is actually is the person that another user expect them
to be.

Assuming that the user trusts the application implementation (for example after
having audited its code and compiled it themselves), the application can simply show
the user the fingerprint of the keys that are being used to encrypt a conversation.
By meeting in person and verifying that the keys being used are shown as being
the same on both ends of the encryption, it can be concluded that the encryption is
sound.

WhatsApp implements this by showing a hashed concatenation of both users’
identity keys [wha17b]. An example of this can be seen in Figure 5.1. The developers
have made sure to communicate to the user how to use the security code and has
provided a Learn More link that takes an interested reader to a knowledge base page
where the average user can learn about E2E encryption and the value of the security
code1.

1WhatsApp: End-to-end encryption, https://faq.whatsapp.com/en/general/28030015

https://faq.whatsapp.com/en/general/28030015

50 5. DISCUSSION

Figure 5.1: WhatsApp security code. Two users meeting in person can verify that
the code shown to them is the same as to the other user to verify that their IMs are
securely E2E encrypted.

Chapter6Conclusion

When smartphone applications are unable to connect to the Internet, many useful
services become unavailable. In some cases, these services can be restored by
communicating with nearby devices in a P2P fashion. However, services that exploit
such technologies need to ensure security in the communication between nearby
devices.

This thesis proposes an approach that ensures authenticated communication with
confidentiality and integrity protection among peers. The approach enables devices
to fetch security credentials in the form of digital certificates for use in asymmetric
cryptography during sign up to a service. When unable to reach the centralized
server, devices may use WiFi Direct to discover and connect to nearby devices, and
mTLS to authenticate them while also setting up a secure data channel. A messaging
protocol that may rely on the user’s digital certificates must be used to protect
message confidentiality and integrity during transfer over this channel.

This proposed design has been validated through implementation of a basic
chat application for the Android OS. It makes use of a simple chat protocol that
protect message confidentiality and integrity provided that the user’s credentials are
not compromised at any point in time. This has been validated by examining the
transmitted data at various layers of the OSI model.

The chat protocol data overhead has been examined through the sample imple-
mentation and compares reasonably well to the open source Signal protocol, but
lacks some of its more advanced cryptographic properties such as forward secrecy,
raising the question of whether or not current state of the art chat protocols can be
adapted to a P2P scenario.

The main drawback to the proposed system is that the user is required to be
online at the time of sign up, and that the user must trust the centralized server to
be honest and not to issue false credentials. Possible solutions to the latter that are

51

52 6. CONCLUSION

employed in popular chat applications, such as WhatsApp, is discussed in section 5.4.

6.1 Future Work

This section aims to serve as a basis for projects of similar scales to explore the
topic of security in mobile social P2P communication. It introduces both suggested
improvements to the messaging protocol and an alternative wireless technology that
needs further investigation to determine its viability in solving the issues raised by
mobile social applications that lose all functionality when they are unable to reach a
central server on the Internet.

6.1.1 Messaging Protocol

This work has shown that access to a centralized server at user sign up is sufficient
to facilitate authentication and encryption between users in a P2P scenario where
there is no access to the Internet such as in an isolated WiFi Direct group.

The simple chat protocol proposed in this work does, however, lack a number of
properties that other more advanced protocols may offer. This raises the question of
whether or not a more progressive E2E encryption chat protocol could be implemented
in, or adapted for, the context of a group of nearby devices moving in and out of
Internet coverage.

Properties such as deniable authentication, forward secrecy and backward secrecy
can help safeguard user interests and should be seriously considered for further
improvements to improve user privacy.

Deniable authentication refers to a property of a cryptosystem where a recipi-
ent can be confident that a message intended for them is authentic, but a third party
with access to that message cannot prove it after the fact. In other words it provides
message senders plausible deniability from the perspective of third parties [BGB04].

Forward secrecy ensures that messages that have been previously sent can-
not be retroactively recovered following the compromise of a users long term key
material [UDB+15].

Backward secrecy (also known as future secrecy) is a security property that
affects the opposite direction of forward secrecy. It guarantees that future messages
are not compromised following the compromise of a users key material [UDB+15].

By combining these two properties, as seen in Figure 6.1, messages from both
a reasonably long time before and reasonably long time after a compromise of key
material can be considered uncompromised.

6.1. FUTURE WORK 53

t − 1 t t + 1 time

Protected

Protected

t = point of key compromise

Forward Secrecy
Backward Secrecy

Figure 6.1: Forward- and backward secrecy comparison. Red indicates what mes-
sages from which points in time must be considered compromised following/preceding
a compromise of key material.

Possible protocols for this future work include the Off-the-Record Messaging
(OTR), and the more recent Signal messaging protocol. The addition of the Sesame
algorithm to the Signal protocol resolves many of the issues regarding synchronization
of multi-device sessions that limited the original implementation, making it a strong
candidate [MP17].

A very promising specification that should be investigated for offline P2P commu-
nications is the Matrix specification for decentralized communication1 which supports
E2E encryption both between users and within groups based on the cryptographic
ratchets popularized by Signal. The current version uses centralized identity servers
to facilitate chat rooms that are distributed across decentralized servers. An unre-
solved issue (as of Thursday 6th June, 2019) from late 2016 on the Matrix project’s
official documentation still mentions a possible evolution of Matrix to be P2P2.

6.1.2 Data Transport

WiFi Direct is limited by its set-up time, WPS configuration and the fact that
communication relies on a central node (the GO). Exploring alternative transport
mechanisms could therefore be a valuable next step.

WiFi Aware (the WiFi Alliance’s Neighbor Awareness Networking (NAN) specifica-
tion) is similar to WiFi Direct, but is aimed at direct device-to-device communication
with nearby devices rather than communication through a central node. In WiFi
Aware, devices may participate in more than one cluster, meaning that a device can
communicate with all nearby devices instead of all devices currently connected to
the same GO [Wi-18].

1Matrix Specification, https://matrix.org/docs/spec/
2GitHub/matrix-org/matrix-doc, Peer-to-peer Matrix (SPEC-455) #710

https://github.com/matrix-org/matrix-doc/issues/710

https://matrix.org/docs/spec/
https://github.com/matrix-org/matrix-doc/issues/710

54 6. CONCLUSION

WiFi Aware does not appear to be widely used, and little literature exists on
the topic, but Saloni and Hegde has noted that while its power requirements are
currently too high for Internet of Things (IoT) application, mobile to mobile is a
suitable use case [SH16]. WiFi Aware has been implemented in Android as of version
8.0 (API level 26), making testing it as simple as following the Android developer
documentation guide [Andb].

6.1.3 Denial of Service Resilience

Because the proposed system is vulnerable to malicious users that take over the GO
role and then refuse to properly forward messages, a means of automatically detecting
and excluding such users would strengthen the security of the offline communication.
It would therefore also be a topic worth investigating in the future.

References

[Anda] Save files on device storage | Android Developers. https://developer.android.com/
training/data-storage/files. Accessed Thursday 6th June, 2019.

[Andb] Wi-Fi aware overview | Android Developers. https://developer.android.com/
guide/topics/connectivity/wifi-aware. Accessed Thursday 6th June, 2019.

[Andc] Wi-Fi peer-to-peer overview | Android Developers. https://developer.android.
com/guide/topics/connectivity/wifip2p. Accessed Thursday 6th June, 2019.

[And18] Android Developers. Android source code WifiP2pServiceImpl. https:
//android.googlesource.com/platform/frameworks/opt/net/wifi/+/pie-release/
service/java/com/android/server/wifi/p2p/WifiP2pServiceImpl.java, 2018.

[BCLN16] Joppe W Bos, Craig Costello, Patrick Longa, and Michael Naehrig. Selecting
elliptic curves for cryptography: An efficiency and security analysis. Journal of
Cryptographic Engineering, 6(4):259–286, 2016.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication,
or, why not to use pgp. In Proceedings of the 2004 ACM workshop on Privacy in
the electronic society, pages 77–84. ACM, 2004.

[BLN16] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual ec: A standard-
ized back door. In The New Codebreakers, pages 256–281. Springer, 2016.

[Braa] Bramble QR Code Protocol, version 1. https://code.briarproject.org/briar/
briar-spec/blob/master/protocols/BQP.md. Accessed Monday 4th March, 2019.

[Brab] Bramble Transport Protocol, version 4. https://code.briarproject.org/briar/
briar-spec/blob/master/protocols/BTP.md. Accessed Thursday 6th June, 2019.

[Bria] Briar - How It Works. https://briarproject.org/how-it-works.html. Accessed
Thursday 6th June, 2019.

[Brib] Bridgefy Android SDK v 1.1 Quick Start Guide. https://github.com/bridgefy/
bridgefy-android-samples/blob/master/README.md. Accessed Thursday 6th
June, 2019.

55

https://developer.android.com/training/data-storage/files
https://developer.android.com/training/data-storage/files
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifip2p
https://developer.android.com/guide/topics/connectivity/wifip2p
https://android.googlesource.com/platform/frameworks/opt/net/wifi/+/pie-release/service/java/com/android/server/wifi/p2p/WifiP2pServiceImpl.java
https://android.googlesource.com/platform/frameworks/opt/net/wifi/+/pie-release/service/java/com/android/server/wifi/p2p/WifiP2pServiceImpl.java
https://android.googlesource.com/platform/frameworks/opt/net/wifi/+/pie-release/service/java/com/android/server/wifi/p2p/WifiP2pServiceImpl.java
https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BQP.md
https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BQP.md
https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BTP.md
https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BTP.md
https://briarproject.org/how-it-works.html
https://github.com/bridgefy/bridgefy-android-samples/blob/master/README.md
https://github.com/bridgefy/bridgefy-android-samples/blob/master/README.md

56 REFERENCES

[CCP+15] Claudio Casetti, Carla Fabiana Chiasserini, Luciano Curto Pelle, Carolina
Del Valle, Yufeng Duan, and Paolo Giaccone. Content-centric routing in wi-
fi direct multi-group networks. In World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2015 IEEE 16th International Symposium on a, pages
1–9. IEEE, 2015.

[CMGSS13] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. Device-to-device
communications with wi-fi direct: overview and experimentation. IEEE wireless
communications, 20(3):96–104, 2013.

[DBL17] Jeanie Decker, Nick Brower, and Brian Lich. How Surface Hub addresses Wi-
Fi Direct security issues. 2017. https://docs.microsoft.com/en-us/surface-hub/
surface-hub-wifi-direct. Accessed Thursday 6th June, 2019.

[EAA09] Mohamed Elboukhari, Mostafa Azizi, and Abdelmalek Azizi. Integration of
quantum key distribution in the tls protocol. IJCSNS, 9(12):21–28, 2009.

[FDM+12] Gábor Fodor, Erik Dahlman, Gunnar Mildh, Stefan Parkvall, Norbert Reider,
György Miklós, and Zoltán Turányi. Design aspects of network assisted device-
to-device communications. IEEE Communications Magazine, 50(3), 2012.

[Fir] FireChat - OpenGarden. https://www.opengarden.com/firechat/.

[FTH17] Colin Funai, Cristiano Tapparello, and Wendi Heinzelman. Enabling multi-hop
ad hoc networks through wifi direct multi-group networking. In Computing,
Networking and Communications (ICNC), 2017 International Conference on,
pages 491–497. IEEE, 2017.

[Gol11] Steve Gold. Cracking wireless networks. Network Security, 2011(11):14–18, 2011.

[GSP11] Paul Gardner-Stephen and Swapna Palaniswamy. Serval mesh software-wifi
multi model management. In Proceedings of the 1st International Conference on
Wireless Technologies for Humanitarian Relief, pages 71–77. ACM, 2011.

[iee12] Ieee standard for information technology–telecommunications and information
exchange between systems local and metropolitan area networks–specific require-
ments part 11: Wireless lan medium access control (mac) and physical layer (phy)
specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pages
1–2793, March 2012.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International journal of information security, 1(1):36–
63, 2001.

[KMKJR16] Ed. K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA Cryp-
tography Specifications Version 2.2. RFC 8017, Internet Engineering Task Force
(IETF), 2016.

[Kri18] Paul Krill. Oracle plans to dump risky java serialization. InfoWorld, May 2018.

https://docs.microsoft.com/en-us/surface-hub/surface-hub-wifi-direct
https://docs.microsoft.com/en-us/surface-hub/surface-hub-wifi-direct
https://www.opengarden.com/firechat/

REFERENCES 57

[LB07] Rich Ling and Naomi S Baron. Text messaging and im: Linguistic comparison of
american college data. Journal of language and social psychology, 26(3):291–298,
2007.

[LSY+16] Kecheng Liu, Wenlong Shen, Bo Yin, Xianghui Cao, Lin X Cai, and Yu Cheng.
Development of mobile ad-hoc networks over wi-fi direct with off-the-shelf android
phones. In Communications (ICC), 2016 IEEE International Conference on,
pages 1–6. IEEE, 2016.

[LZLS12] Lei Lei, Zhangdui Zhong, Chuang Lin, and Xuemin Shen. Operator controlled
device-to-device communications in lte-advanced networks. IEEE Wireless Com-
munications, 19(3), 2012.

[Mac05] John L. MacMichael. Auditing wi-fi protected access (wpa) pre-shared key mode.
Linux J., 2005(137):2–, September 2005.

[MEÁ10] Víctor Gayoso Martínez, Luis Hernández Encinas, and Carmen Sánchez Ávila. A
survey of the elliptic curve integrated encryption scheme. Journal of Computer
Science and Engineering, 2:7–13, 01 2010.

[MP16] Moxie Marlinspike and Trevor Perrin. The x3dh key agreement protocol. Technical
report, Open Whisper Systems, Nov 2016.

[MP17] Moxie Marlinspike and Trevor Perrin. The sesame algorithm: Session management
for asynchronous message encryption (revision 2). Technical report, Open Whisper
Systems, Apr 2017.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm. Technical
report, Open Whisper Systems, Nov 2016.

[Res00] Certicom Research. SEC 2: Recommended elliptic curve domain parameters. In
Standards for Efficient Cryptography, 2000.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, Internet Engineering Task Force (IETF), 2018.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[SH16] Shubham Saloni and Achyut Hegde. Wifi-aware as a connectivity solution for iot
pairing iot with wifi aware technology: Enabling new proximity based services. In
2016 International Conference on Internet of Things and Applications (IOTA),
pages 137–142. IEEE, 2016.

[Sha14] Peter Shadbolt. FireChat in Hong Kong: How an app tapped its way into the
protests. CNN, 2014.

[SHSA15a] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. Recommendations for secure
use of transport layer security (tls) and datagram transport layer security (dtls).
RFC 7525, Internet Engineering Task Force (IETF), 2015.

58 REFERENCES

[SHSA15b] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. Summarizing known attacks
on transport layer security (TLS) and datagram TLS (DTLS). RFC 7457, Internet
Engineering Task Force (IETF), 2015.

[SY14] Ahmed A Shahin and Mohamed Younis. A framework for p2p networking of smart
devices using wi-fi direct. In Personal, Indoor, and Mobile Radio Communication
(PIMRC), 2014 IEEE 25th Annual International Symposium on, pages 2082–2087.
IEEE, 2014.

[TPHH13] Sascha Trifunovic, Andreea Picu, Theus Hossmann, and Karin Anna Hummel.
Slicing the battery pie: fair and efficient energy usage in device-to-device commu-
nication via role switching. In Proceedings of the 8th ACM MobiCom workshop
on Challenged networks, pages 31–36. ACM, 2013.

[UDB+15] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian
Goldberg, and Matthew Smith. Sok: secure messaging. In 2015 IEEE Symposium
on Security and Privacy, pages 232–249. IEEE, 2015.

[Van97] Scott A Vanstone. Elliptic curve cryptosystem — the answer to strong, fast
public-key cryptography for securing constrained environments. Information
security technical report., 2(2):78–87, 1997.

[wha17a] WhatsApp. Connecting one billion users every day, Jul 2017. https://blog.
whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day. Accessed
Thursday 6th June, 2019.

[wha17b] WhatsApp encryption overview. Technical report, WhatsApp, Dec 2017.

[Wi-16] Wi-Fi Alliance. Wi-Fi Peer-to-Peer (P2P) Technical Specification v1.7. 2016.

[Wi-18] Wi-Fi Alliance. Neighbor Awareness Networking Specification v3.0. 2018.

[WVNA14] Paul Wong, Vijay Varikota, Duong Nguyen, and Ahmed Abukmail. Automatic
android-based wireless mesh networks. Informatica, 38(4), 2014.

https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day

AppendixAScientific Paper

A scientific paper which covers the proposed core concept has been produced. It will
soon be submitted at WiMob 2019, The 15th International Conference on Wireless
and Mobile Computing, Networking and Communications, and has been included on
the following pages.

59

Keeping Connected When the
Mobile Social Network Goes Offline

Øystein Sigholt∗, Besmir Tola†, and Yuming Jiang†
Department of Information Security and Communication Technology

NTNU-Norwegian University of Science and Technology
Trondheim, Norway

Email: oysteils@stud.ntnu.no∗, {besmir.tola,yuming.jiang}@ntnu.no†

Abstract—WiFi Direct is an embedded technology in a vast
majority of smartphone devices running the Android operating
system. As a result, it represents a promising technology that
can be exploited in re-establishing connectivity among user
devices in case of cellular network outages. A technique that
smart devices can use to restore connectivity in situations where
they are unable to connect to a cellular tower or access point,
but close enough to support device-to-device communication is
presented. The proposed technique envisions a combination of
security layers that ensure authentication, confidentiality, and
integrity of communications among end users. Each device is
issued a certificate by a central authentication entity at sign up
and when it is unable to connect to the server component, it
will attempt to form a group with nearby devices in the same
situation over WiFi Direct. Once a WiFi Direct group has been
formed, the group owner will temporarily assume the role of
the server, and each group member and the group owner will
verify each others identity and connect using mutual Transport
Layer Security (mTLS), facilitating secure communication. The
approach is validated through the implementation of a mobile
social application involving several mobile devices, and overheads
due to the additional security features are investigated.

Index Terms—Peer-to-peer Communications, WiFi Direct,
mTLS, Mobile Social Networks

I. INTRODUCTION

Broadband cellular networks are becoming the most domi-
nant means for mobile data access world-wide. According to
a recent mobility report by Ericsson [1], mobile data traffic is
expected to undergo an annual growth of around 31% over the
coming years. Among the top mobile application categories,
video traffic followed by social network applications cover
almost 75% of the total monthly data traffic. However, when
a mobile user moves out of cellular coverage, or is unable
to reach the central server of a service for any reason,
connectivity is lost. As a consequence, Internet-based mobile
applications will not be able to provide their services and the
end-users will become isolated until Internet connectivity is
restored, even if the users that are making use of the service,
are within a few meters of each other.

Modern smartphones are equipped with a number of radio
interfaces that enable wireless communication among devices
in close proximity. These capabilities can be used to establish
connectivity between neighboring devices even in the most
remote out-of-coverage locations and in cases where cellular
network outages are experienced.

WiFi Direct [2], a wireless technology allowing WiFi de-
vices to connect directly to each other in a Peer-to-Peer (P2P)
fashion, is one of the ways that nearby mobile devices can
establish connectivity. It is particularly widely available due
to it not requiring any specialized hardware apart from a
typical WiFi radio, and easy to use as addressing can be
done using the familiar Internet Protocol. In order to establish
communication, a common setup involves the formation of a
WiFi Direct group of peers where one of the peers acts as
a software Access Point (AP) to the remaining devices. This
device is referred to as the Group Owner (GO) and the other
devices associated to the GO represent the Group Members
(GMs). The group formation can be achieved in three different
procedures denoted as standard, autonomous, and persistent
group formation. During each of these procedures a number
of actions are taken by the WiFi Direct capable devices for
performing device discovery, GO negotiation, service discov-
ery, security provisioning and address configuration [3].

WiFi Direct connections entail WiFi Protected Setup (WPS)
as means to provide a secure connection among members
through some manual intervention like inserting a PIN or
PushButton Configuration (PBC). This way, users are able
to authenticate themselves in the network. However, there
are services that require stronger levels of security where
data confidentiality, integrity and authenticity are of utmost
importance. Mobile Social Networks (MSN) providing Instant
Messaging (IM) services necessitate enterprise and automated
authentication methods such as Extensible Authentication Pro-
tocol - Transport Layer Security (EAP-TLS).

Even though WiFi Direct can be used to reestablish con-
nectivity, a social application usually depends on a central
server that users trust. When connected to this server, users
have confidence that their messages are delivered to their
respective recipients and that no other users of the service
can access their private conversations. Without access to this
central server, a user in an out-of-coverage P2P context must
verify the authenticity of their peers themselves.

The scope of this work is therefore to propose, implement,
and experimentally validate a combination of upper layer
measures that can be used to securely and easily enable
authenticated communication in existing social applications,
also in situations with no Internet connectivity.

The reminder of this paper is the following. Section II

presents the related work. In Section III, we illustrate the
proposed system architecture, and the relative components for
enabling secure and trustworthy communication over WiFi
Direct. An implementation on a real testbed, composed of
several smart devices running the Android operating sys-
tem (OS), and how the system components interact with
one another are presented in Section IV. Successively, the
validation and experimental results analysis of the different
security layers adopted in the architecture are illustrated in
Section VI. Discussion regarding overheads, incurred due to
the additional security levels, in terms of both computation and
connection times are presented in Section VII. The potential
and limitations of the proposed architecture in regard to con-
nectivity, security, user experience, and overhead are discussed
in Section VIII. Finally, Section IX concludes the paper.

II. RELATED WORK

A number of commercial applications for P2P commu-
nication, applying various combinations of WiFi and Blue-
tooth, exist for the Android ecosystem. The most prominent,
FireChat, made headlines in 2014 when it accomplished half a
million downloads over a period of two weeks as Hong Kong
protestors used its P2P functionality to organize efficiently
even in areas with heavily congested network traffic [4].
An open source privacy-focused, decentralized, alternative to
FireChat, Briar, also uses Bluetooth and WiFi to communicate
in addition to the Tor network. It uses public key cryptography
to manage identities and secure the communications link, but
its decentralized nature and lack of a universally trusted entity
makes exchanging identities a difficult problem that in practice
requires the two parties to physically meet and manually
exchange keys before a connection can be made [5].

A large-scale research effort by the name of the Serval
Mesh aims to create an independent network by relying on
WiFi devices to form a mesh network based on WiFi ad-
hoc mode [6]. Unfortunately, WiFi ad-hoc mode is mostly
unavailable on consumer smartphones without modifications,
thus making it unsuitable for many use cases.

Shahin and Younis present a framework for P2P networking
of Android devices using WiFi Direct that covers discovery,
connection establishment, peer management and communica-
tion between peers in a single group [7].

Wong et al. noted that connecting Android devices with
WiFi Direct uses WiFi Protected Setup (WPS) which requires
manual user interaction to accept the connection prompt.
They propose using WiFi Direct to create APs that advertise
their Service-Set Identifier (SSID) and Pre-Shared Key (PSK)
using Network Service Discovery (NSD) instead of leveraging
fully fledged WiFi Direct connection establishment. Any WiFi
capable client can then connect to the WiFi Direct AP like they
would connect to any other WiFi AP (referenced as connecting
as a legacy client in WiFi Direct terminology) without the
need for users manual verification [8]. They do not however,
consider the authentication aspect covered by this work.

Dedicated	Server

Server	Component

Root	CA

Auth.	Component

Client

Signup:	User	receives	a	certificate	from
the	dedicated	server's	authentication

component

Dedicated	Server

Server	Component

Root	CA

Auth.	Component

Client

User	uses	certificate	to	authenticate	to
the	server	component

Certificate

Fig. 1. A client signing up to the service by obtaining a digital certificate
from the authentication component and using it to authenticate to the server
component.

III. SYSTEM ARCHITECTURE

A system consisting of three logical components is pro-
posed. These components can be implemented to facilitate
secure communication between users both when connected to
the Internet and when out-of-coverage.

A. The Authentication Component

The authentication component is the single mutually Trusted
Third Party (TTP) among the members of the social network
with the sole responsibility of managing the identities of the
users. This component is only available over the Internet, and
can therefore not be reached in out-of-coverage operation.

As seen in Figure 1, signing up to the service is done in the
same fashion as in a traditional Public Key Infrastructure (PKI)
system. The client generates a key pair and creates a Certificate
Signing Request (CSR) that is sent to the authentication
component for signing. The CSR contains the public key as
well as the identity (or Distinguished Name (DN)) that the
certificate is for.

The DN should contain some human readable component
that users can later use to distinguish between their contacts.
This can for example be a username or an email address.

After the authentication component has approved the CSR,
the applicant is issued a signed X.509 digital identification
certificate that contains the DN, the users public key and a
signature that binds the public key to the DN. This means
that the authentication component has approved the public key
contained by the certificate as belonging to the specific DN
also contained in the certificate. The resulting certificate can
be used to authenticate to other entities in the system, offline
or not as shown in Figure 1.

To revoke credentials after the fact, a Certificate Revocation
List (CRL) can be maintained (see [9, Section 3.3]).

B. The Server Component

The server component is responsible for message forward-
ing to connected clients both over the Internet and during out-
of-coverage operation, i.e., WiFi Direct operation mode, and
accepts incoming TLS connections on a predefined port.

By exchanging certificates and verifying that they are issued
by the authentication component, both the client and the server
confirm that the other is a registered user of the service, and

learn the other party’s identity. The server component then
maintains a forwarding table linking the connected clients
identity (public key) to the appropriate socket.

1) Out-of-coverage Operation: The server component can
either run on the dedicated server (introduced in more detail
in subsection IV-A) and be available over the Internet, or on
a user’s device in an out-of-coverage situation. When running
on a GO it is also the server component’s responsibility to set
up and manage P2P connectivity to nearby devices. Figure 2
shows how two devices form a P2P group and reestablish
connectivity if the dedicated server is unreachable.

If the user device is unable to locate any other nearby
P2P devices hosting an instance of the server component, the
server is instantiated on the device in out-of-coverage mode.
It will autonomously form a P2P device group (middle part
of Figure 2), and broadcast the information needed to connect
to said group using Wong et al.’s technique [8].

When the group is formed (bottom part of Figure 2), the
device will accept incoming connections from nearby devices
and the server component will manage message routing just
like it would during regular operation on the dedicated server.

If Internet connectivity were to be restored at any time,
a device will simply detect the connectivity change and
reconnect to the dedicated server, tearing down any open P2P
connections.

2) Message Routing: A message packet with the senders
public key, the recipients public key, a timestamp, a ciphertext
and a signature is transmitted by the clients to the server when
they wish to communicate with another user. The recipients
public key indicates which client the message should be
forwarded to and the signature (protecting the integrity of the
other fields) is verified using the attached public key belonging
to the sender.

Caching and retransmissions of messages are the responsi-
bility of the client, making the operation of the server rather
simple. If signature verification fails, the message is discarded.
If not, the server examines its active connections and checks
if a client has connected with the identity of the receiver.
Successively, the message is forwarded to the appropriate
client. If the server does not have an open connection to
the correct recipient, the packet is also discarded. Relying
on servers to cache messages would cause messages to never
make it to their intended recipients if a GO were to disconnect
before being able to forward it.

C. The Client Component

The client component is responsible for managing messag-
ing and connecting to and authenticating the server component.

1) Connectivity: The client component is expected to con-
nect to and disconnect from multiple server component in-
stances in a single session as a device might move in and out
of range of cellular coverage and P2P groups.

If not connected to a server component the client will first
attempt to establish a connection to the dedicated server via
the Internet. At the same time, it will start the device discovery
process to locate nearby P2P groups. If the dedicated server is

Dedicated	Server
Server	Component

Root	CA

Auth.	Component
Client	B
Certificate

Connection	failure:	Client	cannot	reach
the	dedicated	server

Client	A
Certificate

Client	B
Certificate

P2P	group	is	formed

Client	A
Certificate

Client	B
Certificate

Server	Component

Client	B	connects	to	Client	A	that	runs
the	client	component

Client	Component

Client	Component

Client	Component

Client	Component

Client	Component

Fig. 2. A client unable to reach the dedicated server establishes a connection
with a nearby device. Arrows from the certificates to the client and server
indicate that these components use the certificates to authenticate when
connecting to each other.

not reachable and no group is found, it will set up an instance
of the server component and form its own P2P group.

The first device to form a group will advertise its connection
information so that nearby devices can discover and join the
P2P group. Upon joining a group, the client will attempt to
connect to the server component instance running on the GO,
instead of the dedicated server.

The client enforces secure connections and will only con-
nect to server components that offer identification certificates
issued by the the authentication component over TLS.

2) Messaging: Message packets are transmitted to any
server component as soon as possible. If the recipient does
not acknowledge the message, the client assumes it was
not delivered and caches it for retransmission. If the client
connects to another server component it will immediately
attempt to transmit all queued messages, otherwise it will
periodically attempt to retransmit them with an exponential
backoff strategy where the client periodically retransmits the
message with increasing delays between attempts.

IV. IMPLEMENTATION

A. The Dedicated Server

The dedicated server is a traditional server reachable using
the Internet. It implements both the server component to facil-
itate messaging and the authentication component to facilitate
sign-up.

B. The Client Application

The client application not only implements the client com-
ponent, but also the server component. It consists of two
primary activities and one debug activity to inspect messages
being sent and received.

Fig. 3. Two users chatting using the Chat Activity as seen by
user1@test.com.

1) The Main Activity: The main activity contains a list
of a user’s contacts and the current connection status. The
connection status has four distinct values representing different
stages of the application connection phase.

• Setting up: The application is loading
• Connecting: Looking for a server to connect to
• Connected: Successfully connected to a server
• Hosting: Unable to connect, the server component has

been started and is hosting a group
Selecting one of the contacts in the list opens up the chat

activity for that particular user. Pressing the info circle in the
top right of the screen opens the debug activity.

2) The Chat Activity: The chat activity (seen in in Figure 3)
allow users to send basic text messages to their contacts. It
shows messages sent/received in chronological order. Mes-
sages are only shown if the attached signature can be verified.

3) The Debug Activity: The debug activity (seen in Fig-
ure 4) show the messages being sent from/to, or being relayed
by a user. It loads the name of the users from the contact list if
an entry is found corresponding to the public keys contained
in the message.

It displays the state of the attached signature by verifying it
using the attached sender public key, and displays a checkmark
if the signature can be verified, and a cross if the verification
fails. It also decrypts the message ciphertext if it possesses the
private key corresponding to the recipient.

V. CRYPTOGRAPHY

Elliptic Curve Cryptography (ECC) was selected based on
the fact that it requires relatively short keys to provide strong
security. It is based on the premise that it is difficult to find
the discrete logarithm of an elliptic curve point [10].

Elliptic Curve encryption was done using Elliptic Curve
Integrated Encryption Scheme (ECIES). To encrypt a message,
a key agreement function is used to create a shared secret
value based on a randomly generated ephemeral key pair
and the recipients public key. A key derivation function is
then used to generate symmetric keys for encrypting and
signing the message contents from the shared secret. The
actual message encryption is performed using a symmetric
encryption algorithm and a digest function is used with
the signing key to generate a Message Authentication Code
(MAC). The recipient can then obtain symmetric keys to verify
the MAC and decrypt the message by using the ephemeral
public key and recipient private key, along with the encrypted
message [11].

The MAC from ECIES only preserves the integrity of
the message itself, so the Elliptic Curve Digital Signature

Algorithm (ECDSA) was used to sign the entire message
frame including the sender and recipient fields. An ECDSA
signature is the elliptic curve variant of the Digital Signature
Algorithm (DSA). It is calculated using the senders private
key and a random value, and can be verified by knowing the
random value and the senders public key [12].

VI. SECURITY VALIDATION

The following section covers an analysis of what can be
learned about the operation of the sample implementation and
its users by examining select network layers.

A. Data Link Layer Security

As messages are the only data frames transmitted in the
WiFi Direct group, it is trivial for an unauthenticated third
party monitoring the network to see which devices are trans-
mitting messages. If the aforementioned third party is able to
link the physical addresses of each device to an identity, it can
keep track of when messages are sent and to/from whom.

Using Wong et al.’s technique of broadcasting the PSK of
the formed network using NSD to allow devices to connect
to the WiFi network without the need for manual verification
prompts makes connection establishment considerably easier
for the user [8]. However, this also means that anyone can
use service discovery to learn the PSK. A user must therefore
not be considered trustworthy based only on their ability to
connect to the WiFi network.

Encrypting the PSK with a static secret as done in the
original paper would only make the key marginally more
difficult to recover, as the secret would need to be distributed
onto every users device, from which it could be recovered.

WiFi Direct connections between devices must therefore
be considered insecure channels, as an adversary must be
considered able to decode transmitted frames [13].

B. Transport Layer Security

As the data link layer security is not sufficient to protect
data over the air, the system relies on upper layer security.
On the transport layer, the data is transferred over TLS. A
number of attacks on TLS have been published that can
defeat this protection [14]. It is therefore vital that both the
server component and the connecting clients enforce the most
recent best practices for TLS [15]. With full control over the
implementation of both servers and clients, strict requirements
can be enforced without worrying about compatibility.

In addition to confidentiality and integrity protection, the
transport layer also provides the access control that is lacking
on the lower layers. As both connecting parties require authen-
tication of the other party using mTLS it is impossible for a
user to connect without an identity from the authentication
component. If attempting to connect without the appropriate
credentials, the TLS handshake will fail, and the device will
be unable to communicate with other users.

It can therefore be concluded that unauthorized clients are
prevented from communicating with users at the transport
layer, and that the data being carried is both confidential and

Fig. 4. Message flow as seen by the GO user3@test.com. Note how the
GO is unable to decipher message contents not intended for itself, and how
signature verification fails if the contents (in this case the from-field) have
been altered in transit.

integrity protected due to the properties of TLS. It is however
important to note that the TLS connections are not End-to-End
(E2E), as they are terminated at the server component running
on the GO. Upper layer measures are therefore required to
protect users from a dishonest GO.

C. Application Layer Security

As seen in Figure 4, senders and recipients are visible to
the GO, and signatures may be verified, but message contents
cannot be deciphered without the appropriate private keys, so
the server is unable to learn message contents.

A dishonest server component could potentially attempt
to modify the messages it is forwarding. At the bottom of
Figure 4, a malicious GO has modified the from field of a
message packet, but was unable to correctly sign the message
as it does not possess the private key of user1@test.com.
The recipient (user3@test.com) therefore discards the
message due to the signature verification failure.

In short, the message packet format successfully protects
the messages confidentiality and integrity E2E, but does not
protect the identity of the sender and recipient.

The GO can, however, choose not to deliver, delay or even
deliver messages multiple times. The latter, known as a replay
attack has an especially undesirable impact if used maliciously.
In a high security context, messages that are received long after
they were created should be discarded or the user should be
notified as a stale message could indicate malicious activity.
Duplicate messages should be discarded.

VII. OVERHEAD

The number of steps taken to secure reliable instant messag-
ing in this research add some overhead that must be considered
in the evaluation of the proposal.

A. Connection

In the event that the Internet connection fails, a non-
negligible amount of time is required to reform connectivity
using WiFi Direct. Camps-Mur et al. measured the group for-
mation delay in their 2013 overview paper of WiFi Direct, and
noted that the WiFi Direct discovery mechanism introduces
some randomness to the time it takes to connect to a group [3].

Timing of this delay was obtained by logging the time it
took one Nexus 6P running the sample implementation to

Mean µ Median Standard Deviation σ
Discovery (NSD) 3.42 3.07 1.17
Connection 2.03 1.90 0.46
Total 5.45 5.00 1.54

TABLE I
SECONDS USED TO DISCOVER CREDENTIALS OVER NSD AND CONNECT

TO A WIFI DIRECT GROUP AS A LEGACY CLIENT.

RSA Key Strength Message Size EC Curve Message Size
2048 bit 1028 bytes secp224r1 192 bytes
4096 bit 2052 bytes

secp384r1 292 bytes
TABLE II

MESSAGE PACKET SIZE IN BYTES GIVEN VARIOUS KEY SIZES SORTED BY
STRENGTH. THE NAMED CURVES ARE SPECIFIED IN SEC 2 [17].

connect to another which had already autonomously formed
a group and started broadcasting connection credentials using
NSD. The process was repeated 500 times by a simple Bash
script. It power cycled each device, opened the application on
one device, and waited for it to become GO before launching
the application on the other device.

After a group has been formed, it takes around five seconds
(discovery delay plus connection delay) for the first GM to
discover the broadcasted credentials and join as seen in Table I.
This new client goes through the discovery process which
can be expected to take three to four seconds, and uses the
credentials discovered to connect to the group.

The test implementation experienced the same issues re-
garding undesirable NSD behavior mentioned in Wong et al.’s
original paper [8]. In some instances, one or more of the test
devices did not discover NSD broadcasts from other devices
until they had been power cycled. The client then sees the
already existing WiFi Direct group, but is unable to identify
it as a group offering the chat service and to obtain the PSK
required to connect. It then forms and advertises its own group
resulting in two isolated groups in the same area competing
for members.

B. Messaging

Using a message format with significant additional data
results in additional data transfer. Most of the overhead comes
from transmitting two full public keys (sender and recipient)
with every message. Table II summarizes the size of a single
message packet of various key sizes assuming 32 bit time
stamps and fixed cryptographic parameters with compressed
keys. The transmitted message contains 29 bytes of data,
representing a typical instant message [16].

VIII. DISCUSSION

A. Connectivity

Restoring connectivity by using WiFi Direct in the event of
an Internet outage does come with set up time, but may still
be suitable for asynchronous applications such as IM and file
transfers.

B. Security

Issuing credentials to users in the form of digital certifi-
cates for use in asymmetric cryptography enables them to
successfully authenticate one another with TLS during out-
of-coverage operation.

However, as it requires the user to be online at the time of
sign up so that their digital certificate can be signed by the
authentication component it might be a hindrance that prevent
a new user from starting to use the application.

The overhead introduced by using strong cryptography is
not insignificant, but this can be mitigated by choosing a
cryptosystem with smaller key sizes.

If the TLS connection was not terminated at the GO, but
GMs were allowed direct connections to each other, some of
the application layer measures designed to protect the client
from a dishonest server could have been avoided. However,
this would have added to the implementation complexity, as
the GO acting as a server makes out-of-coverage operation
very similar to online operation. The fact that the server
component code base can be used on both the dedicated server
and on the GO makes the proposed system easy to adopt, but
requires an application layer chat protocol.

The basic chat protocol that has been proposed provides
confidentiality, integrity, authentication and is resilient against
messages arriving out-of-order, but lacks more sophisticated
properties that further protect users in edge cases such as
private key compromise.

The chat protocol protects the contents of messages from
a malicious GO, but the system does not, in its current
state, attempt to detect a Denial of Service (DoS) type attack
where the GO refuses to forward messages. Detecting this
and electing a new GO automatically would make the system
more resilient and useable for example in the case where a
current Internet outage is a deliberate act aimed at disturbing
communications. We leave the investigation of these edge
cases as future work enhancements.

C. Overhead

As WiFi Direct supports the same speeds as typical WiFi it
is assumed that it provides more than sufficient throughput
to carry a significant volume of these messages. In online
mode, however, a server might have a much larger number of
connected users. Keeping the message size low is therefore in
the best interest of a developer to minimize the costs associated
with bandwidth. Sending full public keys of both the sender
and recipient with every packet adds significant overhead that
could have been avoided by a different chat protocol design.

IX. CONCLUSION

When smartphone applications are unable to connect to
the Internet, many useful services become unavailable. In
some cases, these services can be restored by communicating
with nearby devices in a P2P fashion. However, services
that exploit such technologies need to ensure security in the
communication between nearby devices.

This work proposes an approach that ensures authenticated
communication with confidentiality and integrity protection
among peers. The approach enables devices to fetch secu-
rity credentials in the form of digital certificates for use in
asymmetric cryptography during sign up to a service. When
unable to reach the centralized server, devices may use WiFi

Direct to discover and connect to nearby devices, and mTLS to
authenticate them while also setting up a secure data channel.
A messaging protocol that may rely on the user’s digital
certificates must be used to protect message confidentiality
and integrity during transfer over this channel.

This proposed design has been validated through imple-
mentation of a basic chat application for the Android OS.
It makes use of a simple chat protocol that protect message
confidentiality and integrity provided that the user’s credentials
are not compromised at any point in time. This has been
validated by examining the transmitted data at various layers
of the OSI model.

The chat protocol lacks some advanced cryptographic prop-
erties such as forward secrecy, raising the question of whether
or not current state of the art chat protocols can be adapted to
a P2P scenario.

The main drawback to the proposed system is that the user
is required to be online at the time of sign up, and that the
user must trust the centralized server to be honest and not
issue false credentials.

REFERENCES

[1] Ericsson, “Ericsson Mobility Report,” november 2018.
[2] Wi-Fi Alliance, “Wi-Fi Simple Configuration Technical Specification

v2.0.6,” 2018.
[3] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device

communications with wi-fi direct: overview and experimentation,” IEEE
wireless communications, vol. 20, no. 3, pp. 96–104, 2013.

[4] P. Shadbolt, “FireChat in Hong Kong: How an app tapped its way into
the protests,” CNN, 2014.

[5] “Briar User Manual,” accessed June 6, 2019. [Online]. Available:
https://briarproject.org/manual/

[6] P. Gardner-Stephen and S. Palaniswamy, “Serval mesh software-wifi
multi model management,” in Proceedings of the 1st International
Conference on Wireless Technologies for Humanitarian Relief. ACM,
2011, pp. 71–77.

[7] A. A. Shahin and M. Younis, “A framework for p2p networking of
smart devices using wi-fi direct,” in Personal, Indoor, and Mobile
Radio Communication (PIMRC), 2014 IEEE 25th Annual International
Symposium on. IEEE, 2014, pp. 2082–2087.

[8] P. Wong, V. Varikota, D. Nguyen, and A. Abukmail, “Automatic android-
based wireless mesh networks,” Informatica, vol. 38, no. 4, 2014.

[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet x.509 public key infrastructure certificate and certificate revo-
cation list (crl) profile,” IETF, RFC 5280, May 2008.

[10] S. A. Vanstone, “Elliptic curve cryptosystem — the answer to strong,
fast public-key cryptography for securing constrained environments,”
Information security technical report., vol. 2, no. 2, pp. 78–87, 1997.

[11] V. G. Martı́nez, L. H. Encinas, and C. S. Ávila, “A survey of the elliptic
curve integrated encryption scheme,” Journal of Computer Science and
Engineering, vol. 2, pp. 7–13, 01 2010.

[12] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, no. 1, pp. 36–63, 2001.

[13] J. L. MacMichael, “Auditing wi-fi protected access (wpa) pre-shared key
mode,” Linux J., vol. 2005, no. 137, pp. 2–, Sep. 2005.

[14] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known attacks
on transport layer security (TLS) and datagram TLS (DTLS),” IETF,
RFC 7457, 2015.

[15] ——, “Recommendations for secure use of transport layer security (tls)
and datagram transport layer security (dtls),” IETF, RFC 7525, 2015.

[16] R. Ling and N. S. Baron, “Text messaging and im: Linguistic comparison
of american college data,” Journal of language and social psychology,
vol. 26, no. 3, pp. 291–298, 2007.

[17] Certicom Research, “SEC 2: Recommended elliptic curve domain pa-
rameters,” in Standards for Efficient Cryptography, 2000.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Øystein Løkken Sigholt

Keeping Connected When the Mobile
Social Network Goes Offline

Master’s thesis in Communication Technology
Supervisor: Besmir Tola

June 2019

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Motivation
	Related Work
	Open Challenges
	Scope
	Methodology and Tools
	The Design Phase
	The Implementation Phase
	The Validation Phase

	Proposed Approach
	System Architecture
	The Authentication Component
	The Server Component
	The Client Component

	Exploited Technologies
	WiFi Direct
	Mutual Transport Layer Security (mTLS)
	Cryptography

	Implementation
	The Dedicated Server
	Certificate Generation

	The Client Application
	The Main Activity
	The Chat Activity
	The Debug Activity
	Technical Details

	Cross Platform Code Reuse
	API Variation
	Serialization

	Cryptography
	Rivest Shamir Adleman (RSA)
	Elliptic Curve Cryptography

	User Experience

	Experimental Results
	Security Validation
	Data Link Layer Security
	Transport Layer Security
	Application Layer Security

	Overhead
	Connection
	Messaging
	Other Messaging Applications

	Discussion
	Connectivity
	Security
	Overhead
	User Experience

	Conclusion
	Future Work
	Messaging Protocol
	Data Transport
	Denial of Service Resilience

	References
	Scientific Paper

