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ABSTRACT 
 A common notion of time is essential to avoid collisions in distributed 

radio networks using TDMA. Local clocks with limited accuracy are normally 

used to control time in each individual node. These clocks require regular 

synchronization to prevent the local time of these clocks from diverging. 

Synchronization of these clocks is controlled by a synchronization algorithm 

that estimates the correct time based on the information exchanged between 

nodes.  

This thesis present a survey of synchronization algorithms that can be 

used by NATO Narrowband Wave Form (NBWF). NBWF requires that 

synchronization must be performed without the use of dedicated 

synchronization messages. It is possible to achieve this by using the correct 

reception of messages inside certain TDMA slots. Reception of these messages 

enables the receiving node to estimate the local time of the sender without 

transmission of an actual timestamp. This information can be used by a 

synchronization algorithm in the receiving node to estimate the correct local 

time. 

The survey of potential synchronization algorithms shows that there are 

several potential candidates for NBWF. A hybrid algorithm, divided into several 

layer, fulfills most of the NBWF requirements, and it is the most promising 

candidate. The actual synchronization of nodes is performed in the lowest layer 

by Discrete Network Synchronization (DNS) algorithm. Simulations with the 

DNS algorithm show that this algorithm might not be the optimal choice for 

NBWF networks. This thesis recommends that a modified version of the hybrid 

algorithm, utilizing the CS-MNS algorithm in the lowest layer, should be 

considered for further work with NBWF networks.   
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OPPSUMMERING 
 En felles oppfatning av tide er viktig for å unngå kollisjoner i 

distribuerte radio nettverk som benytter TDMA. Lokale klokker med begrenset 

nøyaktighet blir vanligvis benyttet for å styre lokal tid i hver enkelt node. 

Bruken av disse klokkene krever regelmessig synkronisering for å unngå at 

disse klokkene driver fra hverandre. Denne synkroniseringen styres av 

synkroniseringsalgoritmer som estimerer riktig tid basert på informasjon 

utvekslet mellom nodene.  

 Dette dokumentet presenterer en oversikt over potensielle 

synkroniseringsalgoritmer som kan bli benyttet i NATO Narrowband Wave 

Form (NBWF). NBWF krever at synkroniseringen skal kunne gjennomføres 

uten bruk av dedikerte synkroniseringsmeldinger. Dette er mulig å gjennomføre 

ved å benytte korrekt mottak av informasjon i bestemte TDMA luker. Mottak av 

en slik luke vil gjøre det mulig for mottakende node å bestemme 

avsendertidspunkt uten at det overføres et tidsstempel. Dette kan benyttes av en 

synkroniseringsalgoritme i mottakende node til å estimere korrekt tid.  

Oversikten over potensielle synkroniseringsalgoritmer viser at det 

finnes flere potensielle kandidater for NBWF. Av disse peker en lagdelt hybrid 

algoritme seg ut som den kandidaten som oppfyller de fleste av NBWF sine 

krav. Selve synkroniseringen av enkeltnoder gjøres i det nederste laget hvor 

algoritmen Discrete Network Synchronization (DNS) benyttes. Simuleringer av 

DNS algoritmen viser at denne ikke er det optimale valget for NBWF. Det 

anbefales derfor at det jobbes videre med en modifisert utgave av hybrid 

algoritmen, som benytter CS-NMS algoritmen i det nederste laget. 
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1. INTRODUCTION 
The introduction of Software Defined Radios (SDR) makes it possible 

to create waveforms that can be used on radios from different manufacturers and 

allow these radios to interact directly. Previously, this has been difficult because 

manufacturers created radios that only supported their own waveforms. Earlier 

attempts at standardization failed due to industrial protectionism [1], but use of 

multi-national task forces has increased the focus on this problem. Therefore, 

NATO has taken the opportunity created by the introduction of SDR and started 

work on new NATO owned waveforms for interoperable radios. The main 

objective is to create waveforms for VHF and UHF communication, resulting in 

the need for both a narrowband and wideband waveform.  

NATO owned waveforms will enable direct interaction between 

military units, regardless of the tactical level, equipment providers and available 

infrastructure. Recently this has only been possible for voice traffic at low 

tactical levels. Full interaction, including data transfer, required complex 

gateways that had to be placed at higher tactical levels than the units using the 

gateways.  

 Work on the narrowband waveform (NBWF) is performed by a NATO 

workgroup1 where Norway and Canada are the main contributors. NBWF must 

support the following requirements [2]: 

 Simultaneous voice and data on channels with limited capacity. 

 Support SDR. 

 Provide information security and efficient signal coding. 

 Push-to-talk voice capability with low delay and jitter. 

 Friendly forces tracking and radio based combat identification 

(RBCI). 

 Operation on a single 25 KHz fixed frequency radio channel. 

 Relaying of voice calls over two relays.  

 Prepared for frequency hopping as this functionality will be a 

future option. 

Forsvarets Forskningsinstitutt (FFI) is leading the Norwegian effort. 

Currently FFI is focusing on the NBWF link layer.  Much of the groundwork is 

completed, and Time Division Multiple Access (TDMA) is chosen as the 

medium access technology. The use of TDMA makes time synchronization an 

                                                      
1 NATO C3B – CIS CaP-LOS Comms CaT 
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essential function for NBWF. All nodes must have a common notion of time to 

determine the correct start of TDMA slots and avoid collisions. A typical 

NBWF network will be a distributed system, where all nodes are connected via 

radio links. Maintaining a common notion of time that is fault tolerant is a well-

known problem for distributed systems [3] [4]. There are several possible 

solutions that can achieve this. Three of them are described briefly here.  

In theory, all nodes could be equipped with extremely precise physical 

clocks, synchronized at the time of production. This should enable sufficient 

accuracy for the lifespan of the system. Chip scale atomic oscillators such as 

SA.45s CSAC [5] are already commercially available. These devices promise to 

deliver a timing signal that is extremely accurate and stable. While the 

specifications are promising, there are a few considerations that make this 

approach unpractical for NBWF. First of all NBWF should work on a wide 

range of military radios and considerations such as chip size and price might 

make chip scale atomic clocks unsuited for most radios. Finally, the power 

consumption is still relatively high. NBWF need another solution, common to 

all radios. 

The use of an external source broadcasting time signals, such as GNSS2, 

could provide each node with highly accurate time. NBWF supports RBCI. As a 

result, a large part of the nodes should have a built in GNSS receiver or a GNSS 

receiver connected. These receivers are capable of delivering accurate timing 

signals that could be used to synchronize time. This solution is limited by GNSS 

coverage, and it is vulnerable to jamming of the GNSS signal. Nodes that loses 

GNSS signal will also lose the time reference provided by GNSS. NBWF 

cannot assume that all radios have access to GNSS or similar technologies at all 

times. 

Quartz clocks are the most common solution in distributed systems. 

These clocks are small, inexpensive devices with limited precision. Nodes with 

quartz clocks need to be periodically synchronized in order to maintain time that 

is accurate enough to avoid TDMA slot collisions. Each node uses a 

synchronization algorithm to estimate the correct time and adjust the local 

clock. The synchronization algorithm bases the estimation on information that is 

exchanged between the nodes in the network. This is the intended approach for 

NBWF. 

FFI wants to use the information provided by the TDMA structure in 

the link layer as a basis for time synchronization. The goal is to synchronize all 

nodes in the network without the use of dedicated synchronizations messages. 

                                                      
2 GNSS: Global Navigation Satellite Systems such as GPS.  
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The main idea is to use correct reception of certain TDMA slots as 

synchronization points. The local time of the sender can be estimated by all 

receives as long as the information in these TDMA slots is received correctly. 

This approach should work as long as network affiliation and coarse 

synchronization are previously performed.  

1.1. SCOPE AND OBJECTIVE 
This thesis will try to find an algorithm that can be used to maintain 

synchronization after network affiliation and coarse synchronization. The 

algorithm must fulfill the following requirements:  

 The maximum allowed time difference between any nodes in 

the network is 1 ms. 

 The proposed solution must be able to maintain 

synchronization for the remaining network even if one or 

more nodes are lost.  

 The proposed solution must limit the use of bandwidth and 

synchronization should be based on information piggybacked 

in existing traffic. Dedicated synchronization messages 

should be avoided. 

o A small amount of information, 1-2 bytes, can be 

piggybacked on existing traffic if necessary. 

In addition to these mandatory requirements, the following 

requirements should be considered: 

 The proposed solution should be able to utilize external 

synchronization, from a standard source of time such as 

Universal Time (UTC). 

 The proposed solution should consider the impact of different 

demanding topologies, including the use of relaying. 

The objective of this thesis will be to find an algorithm that can prevent 

collision of TDMA slots by maintaining precise local time in all nodes. This 

algorithm has to determine the time difference between nodes, modify the local 

clock and reduce the difference between the local clocks in all nodes. The most 

promising algorithm will be simulated, and the result of this simulation will 

indicate if this algorithm fulfills the NBWF requirements. The following 

research questions will be answered in order to find the best algorithm: 
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Question 1: What does NBWF demand from a synchronization 

algorithm?  

Chapter 1 gives an overview of the requirements presented by FFI. 

NBWF and synchronization theory will be analyzed briefly to find additional 

requirements for the synchronization algorithm. 

 

Question 2: Which time synchronization algorithms are best suited for 

NBWF? 

A survey of work related to time synchronization in radio networks will 

provide a list of potential algorithms. Of these algorithms, one will be selected 

for further study and simulation. 

 

Question 3: Do the algorithm fulfill NBWF requirements for precision? 

Simulations on the selected algorithm must be performed to answer this 

question.  

1.2. LIMITATIONS AND ASSUMPTIONS 
The following assumptions have been made, based on input from FFI 

and the status of the NBWF link layer at startup of the thesis: 

 The described algorithm is intended for previously established 

networks. It is assumed that all nodes have performed network 

affiliation and coarse synchronization. This have the following 

consequences: 

o All nodes will be able to decrypt the signal and detect 

receive TDMA slots. 

o The initial clock offset will be relatively small, because 

coarse synchronization is performed. Coarse 

synchronization is assumed to have a precision well 

below 1 ms.  

 Additional network management mechanisms are needed in 

order to handle functions such as network affiliation, late entry, 

network merge and nodes leaving the network. These functions 

require dedicated synchronization messages and will not be a 

part of the algorithms described in this thesis. These 

mechanisms will not be discussed in detail, but they may affect 

the choice of algorithm. 
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The following limitations have been made, due to the complexity of the 

problem researched and the limited time available: 

 The thesis will suggest an algorithm that can be used to 

maintain TDMA synchronization in the network. This 

algorithm depends on previous coarse synchronization and must 

be a part of a synchronization protocol providing additional 

management mechanisms. The implementation of the algorithm 

in this protocol is left for later work. 

 Simulations will be performed in the Simula/DEMOS language 

because this programming language is already known by the 

author and supervisor.  

 The thesis will evaluate existing algorithms and propose 

algorithms that fulfill the requirements of NBWF. The thesis 

will not propose new algorithms to meet these requirements. 

1.3. ORGANIZATION OF THE THESIS 
This thesis is organized in the following chapters: 

 Chapter 2 presents an overview of time synchronization 

concepts and NBWF. The overview provides a foundation that 

will be used to compare different algorithms. 

 Chapter 3 will give a brief overview of solutions and scientific 

works related to time synchronization.  Potential algorithms for 

NBWF are compared and selected, based on this survey. The 

objective is to identify one algorithm that can be studied by 

simulation. 

 Chapter 4 is a detailed description of the algorithm selected for 

simulation and how it can be implemented in NBWF. 

 Chapter 5 describes the simulator, simulations and the results of 

the simulations  

 In chapter 6, the obtained results are discussed. 

 Chapter 7 answers the research questions posted in chapter 1. 

This chapter is also the conclusion of this thesis.  
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2.  BACKGROUND 
The progression of time has to be precisely maintained to ensure that 

different events happens at correct points in time. As an example, a NBWF node 

has to know the correct time to identify the correct TDMA slot and avoid 

collisions. It is useful to have a reference when comparing time in different 

clocks. This reference time is often labeled as real time or reference time, and it 

can be based on an imaginary perfect clock or be approximated by the use of 

extremely accurate clocks [3] [6].  

The global time of a system is the common notion of time, shared by all 

the nodes in the system [3]. Inaccurate clocks make it impossible to have the 

same notion of time across all the nodes of a distributed system. As a result, 

nodes in distributed systems can only approximate global time and exact global 

time becomes an abstract notion.  

2.1. CLOCKS 
The physical clocks used in most distributed system are hardware 

devices based on an oscillator and a counter. Clocks are usually based on 

quartz-stabilized oscillator, but more accurate clocks use atomic oscillations [7]. 

This setup generates interrupts, or ticks, at a given rate. This marks the physical 

progress of time in the clocks. The term software clock or logical clock is used 

to describe the process, where ticks are counted, and time is increased after a 

given number of ticks [4]. It is the logical clock that is used for timekeeping and 

synchronization because it is impractical to change the oscillation frequency 

directly.  

Each clock has its own local time C(t), where C(t) is the reading of the 

local time at real time t. A good clock [8] [9] [7] [6] is monotonic and 

chronoscopic, which ensures that a clock runs continuously and consistently. 

This enables the function utilizing the clock to observe an event at any point in 

time and observe all events in the correct order. Some algorithms allow the 

clocks to run backwards, which conflicts with the requirements for a good clock 

and can cause unpredicted effects. 

Figure 1 shows an imaginary reference clock and two other clocks. The 

difference in time between a local clock and real time is known as clock offset 

[4]. The maximum difference between all local clocks and real time is known as 

the accuracy. Figure 1 also show that clocks progresses at different rates. This 

progress is ultimately governed by the frequency of the oscillator, but the clock 

rate of the logical clock can be adjusted as a result of synchronization. The 

reason is that several ticks are counted before time is increased. The 
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mathematical expression for the rate is 
  

  
 and the clock rate of an imaginary 

perfect clock is 
  

  
=1 at all times [4] [10].  

 

FIGURE 1: RELATIONSHIP BETWEEN LOCAL TIME AND REAL TIME [7] 

It is not possible to create clocks were the clock rate is exactly the same 

as the reference clock because the quartz crystals will have small variations in 

frequency [7] [11] [6] [10]. This causes clocks to have a slightly different rate 

and they will gradually diverge from each other as time progresses. The 

difference in the rate between a clock and a perfect clock is known as skew (β)  

[4] [10] where   
                 

          
  is 0 for a perfect clock. The difference in 

rate between two local clocks is known as relative rate. The skew of a clock 

should be bounded by a value ρ, specified by the manufacturer of the clock, 

such that the rate of the clock will be within this range when compared to the 

reference clock [4]: 

 
    

  

  
     

(1) 

 

The value ρ is most often expressed as parts per million (ppm). A high 

precession quartz clock can have a skew where the value of ρ is in the range 1-

10 ppm [7]. 1 ppm equals an error of 1μs per second or 60μs per minute. Two 

clocks, bounded by the same value ρ, can diverge from each other at a 

maximum rate of 2ρ. The maximum allowed relative time offset δ between any 

two clocks is known as the precession.  The bound ρ and precision can be used 
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to find how often the clocks need to be adjusted.  This can be expressed as the 

maximum resynchronization interval, given by τsync [7]: 

 
      

    

  
 

(2) 

 

In addition to the differences in skew, clock rates change because of 

factors such as aging, temperature and supply voltage [7] [11]. This change is 

known as drift. Drift is the difference of rate per unit of time for a fault free 

clock C(t) and real time. In other words, it is the second derivative of C(t). 

Two nodes that need to synchronize their local clocks have to exchange 

information about their local time. Each node does this by generating a 

timestamp, which is the reading of the local time C(t) at real time t. This 

timestamp has to be sent to the other nodes and will experience various non-

deterministic delays. These delays form the time-critical path of the message. 

The non-deterministic delays present significant sources of error in time 

synchronization because the delays make an exact comparison of timestamps 

difficult. This contributes negatively to the precision of the synchronization 

algorithm. As a consequence, reduction of the time critical path should be a 

fundamental aspect of all synchronization algorithms. These non-deterministic 

delays, also shown in Figure 2, are [10, 3] [12]: 

 Creation delay: Time spent to construct the message at the sender and 

get it ready for the network interface. This is most often introduced due 

to the operating system, encoding and encryption. 

 Access delay: Delay at the MAC layer before the medium can be 

accessed for actual transmission. This is due to medium contention. 

 Send delay: This is the duration of the message transmission. The delay 

is dependent on message size and transmission rate. 

 Propagation delay: This is the actual time the message uses on the 

transmission medium between the sender and receiver. This is related to 

the distance between the two nodes.  

 Receive delay: This is the time needed for the network interface at the 

receiver to receive the message. This is equal to the send delay. 

 Processing delay: This is the delay introduced by producing an interrupt 

that is read by the operating system, decoding and decryption.  
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FIGURE 2: TIME-CRITICAL PATH 

Table 2 is a short summary of the most relevant definitions and 

notations used in this thesis. The most common meaning of a definition is used 

in cases where the use of this definition varies in the available literature 

Expression Notation Definition 

Synchronization 

point 

 A point in time used for synchronization. 

This can be a timestamp or an event such 

as the correct reception of a message. 

Timestamp  This is the value of the local time the 

sender transmits to the receivers as a part 

of a message.  

Real time t Real time is used as a time reference, most 

often based on imaginary perfect clock. 

(Approximate) 

global time 

 Global time is a common notion of time in 

distributed systems. 

Local time C(t) This is the local estimate of the global 

time, maintained by a clock. It is this time 

that is used to record the occurrence of an 

event. 

Offset C(t)-t The difference between the local time of 

a clock and the reference time t.   

Accuracy  This is the maximum offset between any 

clock and real time. 

Rate (clock rate) C'(t)=dC/dT

   

This is the rate which the clock 

progresses at. A perfect real time clock 

has a rate equal to 1. 

Skew β=1- C'(t) Differences in clock rate of a local clock 

and an imaginary perfect reference clock 

(real time). This causes the clocks to 

diverge from real time and clocks with 

other skew values. 

Bound ρ A guaranteed bound on skew, provided 

by the manufacturer of the clock. 
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Relative offset δ=CA(t)-CB 

(t) 

The time offset between two local clocks 

at a given point in time. This is referred 

to as drift in some publications. 

Precision  This is the maximum relative offset 

between the local time of any two clocks 

in a distributed system.  

Drift C''(t) Changes in the rate of a clock due to 

factors such as temperature and aging. 

Time-critical 

path 

 The path of the message that contributes 

to non-deterministic errors. 

TABLE 2: IMPORTANT DEFINITIONS AND SYMBOLS 

2.2. NARROW BAND WAVE FORM 
NBWF, as mentioned in chapter 1, is NATO's attempt at creating a 

narrow band waveform for the new SDRs. The waveform should work on 

channels with 25 KHz bandwidth, which NATO already uses for individual 

Line of sight (LOS) channel allocation. This has become a key design 

parameter, and it influences all levels of the protocol stack. As a result, the 

physical layer is capable of delivering raw data rates from 20 Kbps to 82 Kbps. 

The waveform must be able to operate at the lowest data rate [1] and this has 

influenced the design choices of the link layer. 

2.2.1. NBWF LINK LAYER 

FFI has done extensive work on the high level design of the NBWF link 

layer. The NBWF reference model in appendix A shows this. The requirement 

to deliver Push-to-talk half duplex voice, with low delay and jitter, has been a 

key design consideration. The result of this is that a TDMA based MAC 

protocol is used. TDMA is preferred over contention based protocol such as 

Carrier Sense Multiple Access (CSMA) protocol because these protocols are 

incapable of delivering sufficient voice quality at data rates as low as 20kbps 

[1]. 

The TDMA protocol used in NBWF is a form of dynamic TDMA 

protocol with a split channel scheme for voice and data. Voice capacity will be 

based on reservations, while data capacity can be delivered based on both 

reservations and contention. Contention will most likely be used for short data 

transmissions and reservation for long data transmissions.  
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FIGURE 3: TDMA FRAME AND SLOT STRUCTURE [2] 

The TDMA slot and frame sizes have been chosen as a compromise 

between data efficiency and voice delay. This has resulted in the TDMA 

structure shown in Figure 3. A slot length of 22.5 ms has been chosen because it 

corresponds with the MELPe3 2.4 Kbps frame length (22.5 ms). Each frame 

consists of 9 slots, and the total frame length is 202.5 ms. The frame length is as 

a compromise between voice delay and efficient data transfer. Frames will be 

organized within superframes that can vary in size. The number of frames in a 

superframe depends on the number of nodes in the network and the capacity 

they need. 

 

FIGURE 4: TYPE AND USE OF SLOTS [2] 

 

As shown in Figure 4, there are 4 different time slots that can be used 

within a frame. Each Super Frame (SF) slot is permanently allocated to one 

node by network configuration. Multicast Voice (MV), Dual Use (DU) and 

General Use (GU) slots can be used by any nodes. Allocation of these slots is 

controlled through the use of reservation or contention. It is possible to use all 

SF slots and previously allocated MV, DU and GU slots for time 

synchronization. As it is shown in section 2.2.2, sufficient synchronization 

intervals can be achieved by using only SF slots. Synchronization becomes 

simpler to implement by using SF slots as all these slots are used in the same 

                                                      
3 MELPe – Mixed-Excitation Linear Predictive enhanced voice codec. The 

prioritized voice coder in NBWF [1].  
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way. MV, DU and GU slots are not considered for synchronization as this 

would increase complexity, and this thesis only consider SF slots for 

synchronization.  

It is not mandatory for a node to utilize all allocated SF slots. The node 

will only use a SF slot if there is information, such as SA messages, from higher 

layers to be transmitted. Other SF slots will be unused, and these cannot be used 

for synchronization. The minimum number of utilized SF slots will be governed 

by the number of SF beacons needed by other NBWF functions. Currently it is 

believed that such SF beacons will be transmitted inside a SF slot at least once 

every superframe. It is possible to increase the amount of beacons if it is needed 

by the synchronization algorithm. Estimations and simulations on the chosen 

algorithm will indicate if this is necessary.  

The link layer also includes Air Interface Encryption (AIE). This is 

shown in the NBWF reference model, which can be found in appendix A. The 

main reason to include AIE is to encrypt the traffic in order to protect NBWF 

against traffic analysis and similar attacks. The decision to use AIE to secure 

restricted information is left to the individual radio design4 [1]. AIE will encrypt 

all traffic over the radio interface. As NBWF uses a time based initialization 

vector, a node that performs late entry needs to know the global time of the 

network to compute the correct initialization vector. This will be simplified if 

the synchronization algorithm is capable of supporting external synchronization 

based on GNSS. If the global time of the NBWF network is accurate and based 

on GNSS it should be sufficient to set the local time of nodes doing late entry to 

GNSS time in order to compute the initialization vector.  

2.2.2. PREREQUISITES FOR SYNCHRONIZATION IN NBWF 

The use of information in certain TDMA slots to share information 

about local clocks is essential to maintain synchronization without using 

dedicated synchronization messages. This information must be fed to a 

synchronization algorithm that can estimate the correct global time and adjust 

the local clock. As mentioned in section 1.2, network affiliation has to be 

performed before this is possible. It is assumed that this mechanism exist in the 

system and that it functions correctly. At the moment of writing, the NBWF 

project has no detailed description of the network affiliation mechanism but 

principal functionality is known.  

                                                      
4 It is a trend in NATO to move the encryption of information closer and closer 

to the actual user. NBWF will support this, while still maintaining a minimum security 

through AIE. 
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Network affiliation can be performed passively or actively. Either way, 

the node requesting network entry, will receive coarse synchronization from one 

of the active network nodes. The effect of coarse synchronization is unknown at 

the moment of writing, but it is assumed that the relative offset will be well 

below 1 ms after coarse synchronization is completed. These two nodes will 

begin to diverge again because of differences in the clocks. The synchronization 

algorithm described in this thesis has to take over and maintain synchronization. 

This algorithm is used by all nodes in the network and it must maintain a 

network wide precision that is within the NBWF requirement. 

Maintaining synchronization after network entry should be relatively 

straight forward to handle because the number of nodes and offset involved are 

small. However, the algorithm can potentially face more demanding 

circumstances with relative offset much higher than 1 ms. An example of this is 

when one or more nodes has lost communication for a period of time. The AIE 

encryption uses a time based initialization vector and will work as long as the 

offsets are <11.25 ms (1/2 a slot length). This will be the highest relative offset 

the algorithm has to handle. It is preferable that the algorithm is able to 

synchronize the network in these cases. The alternative is to use a network 

merge mechanism which requires dedicated synchronization messages. A 

relative offset between two nodes >11.25ms would make it impossible for the 

receiver to decrypt the signal and other mechanisms have to be used in order to 

synchronize these nodes. This ensure that information within a SF slot provides 

two points in time with a maximum offset of 11.5 ms.   
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FIGURE 5: NBWF SYNCHRONIZATION POINTS 

These synchronization points are shown in Figure 5. One 

synchronization point occurs when the message is received. A second 

synchronization point occurs when the sender start to transmit information in 

this slot. TDMA ensures that the receivers know the local time of the sender for 

this synchronization point because each slot will start at a known time. This 

procedure is comparable to one-way message exchange [7], without actually 

having to transmit any synchronization information between the nodes.  

The different non-deterministic delays that effect the transmission of the 

message is described in section 2.1. The effect of the creation delay can be 

ignored because the sending node knows when the next SF slot occurs. This 

makes it possible to have the message ready before the slot starts. The use of 

TDMA also makes it possible to determine the access delay, because it is only 

dependent on the synchronization preamble and other known fields in the 

physical layer of NBWF [1]. This ensures that the access delay is a constant. 

The same is also true for send delay and receive delay because the length of a 

slot and the transmission rate are known.  Both these delays become constants.  

All three constants, shown in green in Figure 6, are known and can be 

compensated by implementation in algorithms and hardware. These constants 

can be ignored when the time-critical path of NBWF is evaluated. The 

processing delay can be ignored as the MAC layer will receive a signal directly 
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from the physical layer when the last bit in the preamble is received, and the 

distance from the start of the slot to the end of the preamble is known. This 

leaves the propagation delay as the dominating non-deterministic delay in the 

time-critical path as shown in Figure 6.  

 

FIGURE 6: NBWF TIME-CRITICAL PATH 

The maximum range in NBWF is estimated to be about 60 Km and the 

maximum non-deterministic error in NBWF will be <0.2 ms per hop. Figure 7 

shows two nodes A and B where A begins to transmit the slot when the local 

time reaches Aτ1. Node B expects to receive the TDMA slot when the local time 

in node B reaches Bτ1 (Aτ1= Bτ1). However, node B receives the slot at local 

time Bτ2. Node B estimated the relative offset of node A to be the difference 

between these two synchronization points (Bτ2- Bτ1). The actual relative offset 

consist of the estimated offset (δ) between the local clocks and delays (D) 

caused by the time critical-path between the two nodes. The delay is unknown 

to Node B, and in this case Node B estimates a relative offset that is too short. 

The error for this estimate is dependent on the distance between Node A and 

Node B. In other words, Node B is able to estimate the local time of Node A 

with a maximum error of 0.2 ms.  
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In NBWF, the relative offset must be so small that collisions of TDMA 

frames are avoided. The maximum allowed relative offset is governed by the 

guard time used in the physical layer. Guard time is a compromise between the 

ability to avoid collisions and the efficiency of NBWF. The guard time used in 

the physical layer must be large enough to avoid collisions while still being as 

small as possible to ensure an efficient data rate in NBWF. FFI has estimated 

that the critical value for relative offset needed to avoid collisions is between 1.5 

ms and 2 ms [2] [1]. As mentioned in chapter 1, FFI has ensured a safety margin 

by requiring all nodes to be synchronized to a precision of 1 ms. As a result, 

collisions in NBWF are avoided as long as the algorithm maintains a maximum 

relative offset  max  (  (     (        , where   (   and   (   are the 

local time at any pair of nodes. The number of hops tolerated by NBWF will 

ultimately depend on the actual maximum relative offset of the chosen 

algorithm and propagation delays in the network. 

The NBWF requirements state that the synchronization algorithm 

should operate without the use of dedicated synchronization messages. This will 

have an impact on the possibility to estimate the propagation delay of the signal. 

An unknown propagation delay will add uncertainty to the estimate of the local 

time. The safety margin introduced by FFI ensures that TDMA collision are 

avoided as long as the number of hops are low and distances are below the 

maximum 60 km expected for NBWF. This enables NBWF to use algorithms 

that do not take propagation delay into account. 

FIGURE 7: NBWF SYNCHRONIZATION 
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All nodes in the network will have the opportunity to transmit in a 

dedicated SF slot at least once every superframe. Maximum time difference 

between two synchronization points from a single node is N*202.5 ms if no 

slots are lost.  N is the number of frames (and most often number of nodes) in 

the network. A network of 50 nodes and N=50 will give maximum time 

between two SF slots of 10.125 s. The maximum allowed sync interval for 

NBWF if no rate adjustment is used, can be estimated by the use of equation 

(2). A maximum sync interval5 of τsync =100 s is obtained by using ρ=5 ppm and 

a precision of 1 ms. As a result, several SF slots can be lost while still 

maintaining sufficient precision. This should also be true if only NBWF 

beacons as described in section 2.2.1, are transmitted in the SF slots. 

Most recent works describing synchronization algorithms focuses most 

attention on how to transmit timestamps without collision. This is not a problem 

for NBWF as the use of TDMA and fixed SF makes it easy for all NBWF nodes 

to transmit information needed for synchronization. NBWF nodes should be 

relatively easy to synchronize for simple topologies. A very simple algorithm 

that updates the local time directly to the same value as synchronization point 1, 

which is an estimate of the local time at the sender should be enough for these 

topologies. This algorithm should be enough to achieve a precession where the 

local time of the two nodes only differs by the propagation delay between the 

two nodes. However, this approach will not be sufficient in a practical 

application of NBWF. A real life network would consist of up to 50 nodes in 

different demanding network topologies.  As a consequence of this, NBWF 

need to utilize algorithms that can compensate for this.  

Nodes in the network will be able to receive traffic from all nodes 

within range. This means that all non-contention based traffic in the MV, DU 

and GU slots can be used as input for synchronization, regardless of which node 

is the intended recipient for the data. The start of these slots can be used as 

synchronization points, and it will also make it possible to analyze which nodes 

transmits most data. A further study could reveal the effect of including these 

slots as a part of time synchronization. This could also be used in the estimation 

of the quality of the local time at each node. A node that transmits a high 

amount of data should have a higher quality than a node that only transmits data 

in SF slots.  

The use of time quality can be extended further by using information 

from the link layer or by piggybacking 1-2 bytes of data in regular data 

transmissions. A node with a lot of one or two hop neighbors should have a 

                                                      
5 When an algorithm that does not correct the clock rate is used. 
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higher time quality than a node with few neighbors. Information about the 

quality of the local hardware clock or the quality of an external reference can 

also be exchanged if piggybacking is used. This gives all the nodes a good 

overview of the network, without the use of time synchronization messages.  

NBWF is intended to be used with LOS communication by military 

forces. This leads to several application related issues that need to be covered 

with NBWF synchronization. First of all it must support mobility because any 

number of the nodes can be on the move at a given point in time. In addition, it 

must support multiple hops of transmission. Voice traffic is limited to a 

maximum of two relays, but there is no limit to the number of hops for data 

traffic. Most networks will cover distances below 60 km, which is less than the 

theoretical range of the NBWF waveform. The result of this is that the need for 

relays is created by other properties of the network than distance between the 

nodes. These properties can be difficult terrain, electronic warfare (EW) by 

opposing forces or the utilization of IED jammers. The result of this is that 

NBWF networks might be separated into different clusters with a number of 

relays between them. However, the precision obtained by the algorithm does not 

have to support a large number of hops. It is possible to tolerate higher relative 

offset between nodes that are separated by several relays over longer distances 

because outside radio range of each other and little risk of collisions 

NBWF is designed to be used in a wide range of new SDR together 

with several other waveforms. As a result, it is difficult to know the exact 

quality of these radios. However, it is reasonable to expect that military SDR 

will be high cost devices with strict quality requirements. This will also 

influence the hardware clocks used in these radios which will be high precession 

quartz clocks. AIE and other mechanism in NBWF will depend on the quality of 

the oscillators. This value has yet to be determined by the NBWF work group. 

Therefore, this thesis uses a conservative value of maximum bound on skew 

ρ=5ppm, based on the fact that NBWF are intended for high quality SDR. All 

SDR should have voltage and temperature compensating oscillators, making 

clock drift a relatively small issue. In addition, the synchronization intervals are 

relatively small and frequency change experienced by the hardware clock 

becomes negligible. As a result, the drift (changes in the rate of the clock) can 

be ignored for the synchronization intervals that NBWF will use. The local 

clock can be approximated by using a fixed clock rate, and C(t) can be 

simplified to this linear equation [13]: 

   (     (        
 

(3) 
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Here, Ci(0) is the initial offset at node i with respect to real time and βi is a fixed 

individual skew for node i. This skew will have a fixed value in the interval 

from 1- ρ to 1+ ρ. A summary of these prerequisites is shown in Table 3. 

 

Parameter Value Remark 

 max        Precision needed by NBWF. 

Message exchange  The algorithm must not require 

dedicated synchronization messages 

and should use information in TDMA 

slots to generate synchronization 

points.  

Non-deterministic 

error 

<0.2 ms Propagation delay at 60 Km. 

Maximum time 

between to time 

samples from the 

same node 

N*202,5 

ms 

This value might change if slots are 

lost due to different communication 

errors. 

N <50 This is the number of frames within a 

superframe.  

      100 s The maximum allowed sync interval 

derived from δmax and ρ.  

Time quality  The quality of the local time in a node 

should be estimated and used as a part 

of the synchronization algorithm. This 

should include information such as: 

 Number of neighbors 

 Data traffic 

 Quality of external reference or 

physical clock 

External reference  NBWF should support the use of 

external time references such as 

GNSS. 

ρ 5 ppm  

 

A conservative estimate for the bound 

on skew.  

Clock rate Constant: 

1- ρ to 1+ 

ρ 

A constant value is used because 

changes in clock rate due to drift is 

ignored.  

Drift 0 Drift is ignored 

NBWF networks  NBWF networks are flat without a 

hierarchy where all nodes can 
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communicate with all other nodes 

within range. Typical size of the 

networks is expected to be below 60 

km.  

Mobility  The algorithm must support nodes that 

are moving. 

Multiple hops 2 relays 

for voice 

Must support up 2 relays for voice 

traffic and any number of hops for data 

traffic. 

Maximum relative 

offset       

11.25 ms This is the highest relative offset two 

or nodes can have before AIE 

decryption fails and mechanisms 

outside the scope of this thesis must be 

used. 

TABLE 3: NBWF PREREQUISITES 

2.3. SYNCHRONIZATION DESIGN ISSUES AND NBWF 
Table 3 and the requirements listed in chapter 1 must be considered 

when algorithms are evaluated. In addition to these prerequisites, there are 

issues related to algorithm design that should be considered. Works such has the 

survey published by Sundararaman et al. [4] uses a set of synchronization issues 

to describe the different synchronization protocols. These issues are a result of 

different design choices, and they are useful when different algorithms are 

compared.  

The exchange of timestamps is one of the most important design 

choices in an effective synchronization algorithm. It has a direct effect on the 

ability to compensate for non-deterministic delays [4]. Most solutions use a 

form of sender-to-receiver approach, where timestamps are transmitted from a 

sender to a receiver. This can be further divided into one-way message exchange 

and two-way message exchange [14]. In one-way message exchange, a message 

with a timestamp is exchanged between a sender and a receiver. This method 

can easily be adapted by NBWF as shown in Figure 7. Two-way message 

exchange provide more timestamps than one-way message exchange because 

several synchronization messages are exchanged. Figure 8 show a two-way 

message exchange between two nodes. In the case of the Network Time 

Protocol (NTP), Node A send the first message with its own timestamp included 

(τ1). This is received by node B which creates a new message containing three 

timestamps (τ1, τ2, τ3). Node A receives the message from node B and can use 

all 4 timestamps to estimate the propagation delays [4]. However, this approach 
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is not compatible with NBWF as it requires some form of dedicated 

synchronization message exchange. 

 

FIGURE 8: TWO-WAY MESSAGE EXCHANGE 

An entirely different approach is to use receiver-to-receiver [4] 

synchronization. It is an attempt of using the properties of a broadcast medium 

to reduce the non-deterministic delays. The method uses the fact that all nodes 

in a small area network will receive a message at approximately the same time. 

All receiving nodes will exchange a timestamp based on the local time when 

they received the transmission. These timestamps are subsequently used to 

compute the offset. NBWF cannot use the receiver-to-receiver synchronization 

as originally described in Reference Broadcast Synchronization (RBS) [15], 

because this requires the use of dedicated synchronization messages. In 

addition, NBWF networks can cover large areas, and the received time stamp 

will be affected by the propagation delay. This will decrease the precision of 

receiver-to-receiver synchronization if it is used in NBWF. However, there are 

several recent improvements to the receiver-to-receiver approach that might be 

attractive to NBWF.  

The ability to set bounds on the maximum allowed relative offset, due 

to skew, is another fundamental property of a clock synchronization algorithm. 

The majority of algorithms try to guarantee this bound with a certainty. These 

algorithms are known as deterministic clock synchronization algorithms [4] [9]. 

Probabilistic algorithms [4] [9] can only give a probabilistic guarantee for the 

offset, but they can achieve narrower bounds on relative offset. NBWF could 

work with both approaches, as long as they are able to bound the relative offset 

of the clocks to within 1 ms of each other. Deterministic algorithm are well 

known and should be preferred if they support all NBWF requirements. 

Algorithms can use two different methods to adjust local clocks to run 

within the bound [4] [6]. Figure 9 shows the first method, were the local clock is 
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changed instantaneously to the time estimated by the algorithm. This is known 

as discrete or instantaneous time synchronization. While this is straightforward 

to implement, it can lead to time discontinuities that conflicts with the 

monotonic and continuity requirements for a good clock. The other method is 

known as continuous time synchronization. This method is more complex than 

deterministic synchronization because the local clock is gradually adjusted in 

several steps towards the time value estimated by the algorithm. Both 

approaches can be supported by NBWF, but the use of discrete synchronization 

might influence the use of an initialization vector for AIE. This can be 

compensated by design, but continuous synchronization should be preferred. 

 

FIGURE 9: DETERMINISTIC SYNCHRONIZATION WITHIN A BOUND 

Synchronization algorithms utilizing discrete or continuous time 

synchronization adjust the local clocks. The goal is to have all clocks running 

close to the approximate global time. This is known as the clock correction 

approach, and it is the most used method [4]. Another approach is to let the 

local clock run untethered while building a table of information about the clocks 

of the other nodes in the network. This table is used to transform the incoming 

timestamps to the local time of the current node. It is theoretically possible to 

use untethered algorithms for NBWF, but this will create a problem if the local 

time is going to be used for AIE initialization vector, frequency hopping and 

network affiliation. Clock correction algorithms should be used in NBWF.  

Clock correction algorithms must at least correct the relative offset 

between two nodes. This ensures that the relative offset between these two 
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nodes is as low as possible at the point of synchronization. After 

synchronization, the clocks will start to diverge from each other again because 

the rates are unequal. Sufficient precision and accuracy is ensured by selecting 

short synchronization intervals. Equation (2) indicates minimum time interval 

before asynchronization happens. The synchronization interval should be much 

shorter than this. Another approach is to correct both offset and rate. The goal is 

to have a relative rate that is as close to 1 as possible. Algorithms that 

synchronize both offset and rate are more complex, but they provide better 

precision and accuracy. In addition to this, algorithms that synchronize rate need 

fewer synchronization messages and can survive longer intervals without 

synchronization message. Algorithms that synchronize rate and offset should be 

preferred for NBWF, but it is possible to use both approaches. 

Time synchronization will help the distributed system to reach a 

common notion of time that is an approximation of global time. This 

approximation is based on the local time in the individual nodes and the value 

will be computed by the synchronization algorithm. In a master-slave [4] 

synchronization structure, the approximation is based on the reading of the local 

clock of the master only. Master based algorithms are often simple and 

converge fast, but they leave the system vulnerable to a master node failure. 

This is a critical drawback for a military system such as NBWF and master 

based algorithms with a fixed structure should be avoided. Some works use 

master based synchronization with ad hoc structures. These structures are a 

result of master selection process that automatically selects a master from all 

available nodes. The node acts as a master for a given amount of time or until 

failure. A new master will automatically be selected after a failure or timeout. 

The network will continue to work with slight disturbances caused by change of 

a master. This disturbance should be small, and the algorithm must maintain 

precision well below the requirement of the system. The use of an ad hoc 

structure creates an algorithm that is robust to changes. 

Other algorithms use a mutual (Also known as distributed or peer-to-

peer) synchronization, where the local time of all nodes might be used to 

approximate the global time. Mutual synchronization ensures that the loss of a 

single node does not critically affect the rest of the system. Some algorithms use 

the result from a single node directly, but most often results from several nodes 

are gathered before each estimation of a new local time. An algorithm that 

supports mutual synchronization should be preferred but master-slave 

algorithms with an ad hoc based structure can also be used for NBWF. 
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A system that has no external references uses internal synchronization 

[3] [4]. This can be used in systems where the actual value of the approximate 

global time is of little interest, as long as it provides local clocks that can be 

used to maintain the order of events. Even if the system is synchronized with a 

reference time at one point, the approximation of global time will gradually 

diverge away from that reference. This may not be a problem as long as all the 

nodes diverge together. 

 In external synchronization [3] [4]one or more nodes are connected to a 

reference such as UTC. This ensures that the approximate global time of the 

distributed system is kept close to the reference. External synchronization is 

necessary for applications that depend on the real-time provided by references 

such as UTC. External synchronization is not strictly required for TDMA slot 

synchronization in NBWF. However, the use of external time will make 

network management, AIE encryption and frequency hopping easier. As a 

consequence, the algorithm chosen for NBWF should support the use of an 

external reference, but must also be capable of running autonomously. Table 4 

is a short summary of these issues. 

 

Issue Applicable to 

NBWF 

Remark 

Receiver-to-receiver 

synchronization 

 

Sender-to-receiver 

synchronization 

Both The algorithm must use only 

two synchronization points. 

This is the only approach 

supported by NBWF. 

Probabilistic 

 

Deterministic 

Both NBWF will probably work 

with both, but deterministic 

algorithms should be 

preferred. 

Continuous 

 

Discrete 

Both NBWF will work with both 

approaches, but continuous 

synchronization should be 

preferred. 

Clock correction 

 

Untethered clocks  

Clock 

correction 

Algorithm with clock 

correction should be used. 

Offset 

 

Rate and Offset  

Rate and offset NBWF can support both, but 

algorithms that synchronize 

rate and offset should be 

preferred. 
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Mutual synchronization 

 

Ad-hoc structure 

 

Master-slave 

synchronization  

Mutual 

synchronization 

or ad hoc based 

master 

synchronization. 

Mutual synchronization 

should be preferred. 

External 

 

Internal  

Should support 

external 

The algorithm should support 

the use of external 

synchronization. 

TABLE 4: IMPORTANT SYNCHRONIZATION DESIGN ISSUES 
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3. SYNCHRONIZATION ALGORITHMS 
Synchronization of clocks in a distributed system is a well-known 

problem with a lot of published scientific work. The first proposals were 

concerned with nodes in wired networks, such as the Internet. NTP is a well-

known example of a protocol intended for Internet. An increased interest in 

Sensor networks and Mobile Ad hoc Networks (MANET) have shifted the focus 

to synchronization of nodes in wireless networks. This has resulted in a lot of 

new proposals for synchronization protocols and algorithms that are aimed at 

sensor networks or ad hoc networks.   

Several survey articles have been written, providing an overview of 

protocols available at their time of writing. One of the most cited articles is the 

comprehensive work of Sundararaman et al. [4]. This survey gives a detailed 

overview of protocols available in 2005. Combining the main points in this 

survey, with the main points of section 2.2 and 2.3, makes it possible to form a 

quick overview of protocols that might be potential candidates for NBWF. This 

overview indicates that none of the protocols surveyed by Sundararaman et al. 

fits the NBWF requirements. 

However, the surveys show that there is a continuous development of 

new algorithms and improvements on older algorithms. This makes it probable 

that many of the requirements might be solved by new and enhanced algorithms 

primarily made for Sensor networks or MANET. This thesis surveys recent 

scientific works related to sensor networks and ad hoc networks. Most of these 

works are based on or compared their results to one or more of the protocols 

surveyed by Sundararaman et al.  

These newer works are categorized by the original protocols they relate 

to, and they are presented in the following sections. However, it is necessary to 

remember that many of these works are related to more than one original 

protocol. For simplicity, they are compared only with the works which they 

have closest relations. At the end of this chapter, the most promising solutions 

will be compared more closely in order to find potential algorithms for 

simulation. 

3.1. NETWORK TIME PROTOCOL (NTP) 
NTP is a well-known protocol for time synchronization that has been in 

use on the Internet since 1985 and has received several updates. The current 

version is NTPv4 [16] [17], which replaced NTPv3 [18] in 2010. NTP is a 

hierarchical protocol using stratum levels to indicate the distance from a 

reference clock. Reference clocks are traditionally based on extremely accurate 
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atomic clocks. These clocks are at stratum level 0. Nodes directly connected to 

the reference clocks have stratum level 1. Nodes connected to stratum 1 nodes 

will have stratum 2 and so on. The stratum values are used to ensure that each 

node synchronizes with the node that is closest to the reference clock. The use 

of stratum enables NTP to support external synchronization (based on reference 

clocks) while still being robust. A stratum 1 clock would be the preferred source 

for synchronization as long as it is available, but it is possible to use sources 

with higher stratum if stratum 1 clocks become available. It is also possible to 

synchronize networks without any of the nodes connected to a reference clock 

by manually assigning a low stratum level to one or more nodes. 

The synchronization algorithm uses estimation of round-trip delay and 

offset to synchronize the local clocks [8]. This algorithm requires four 

timestamps that are provided by first transmitting a request and then receiving a 

response with three timestamps. The need for four timestamps makes it 

impossible to employ the algorithm directly in NBWF without using dedicated 

synchronization messages. Based on this, no further research is performed, and 

NTP is not considered for NBWF.   

3.2. AD HOC NETWORKS 
Ad hoc networks come in a wide variety of distributed systems that 

require clock synchronization, but have no dedicated infrastructure. This ranges 

from IEEE 802.11 networks with relative short range to mobile ad hoc networks 

utilized by military forces that can cover large areas. All works described in 

section 3.2 use beacon mechanisms to transfer timestamps. This is useful to 

NBWF because it is a form of one-way message exchange. Most works 

intended for ad hoc networks offer improvements to the original IEEE 802.11 

standard. However, there are also a few works that take an entirely new 

approach.  

3.2.1. SOLUTIONS CREATED FOR IEEE 802.11 AD HOC 

NETWORKS 

The IEEE 802.11 standard [19] uses Timing Synchronization Function 

(TSF) to synchronize the different nodes in the network. TSF also supports ad 

hoc networks, known as an Independent Basic Service Set (IBSS) in IEEE 

802.11. The synchronization mechanism utilizes periodically transmitted 

beacons to exchange timing information. The responsibility of beacon 

transmission is shared between all nodes in the network. This is achieved by 

introducing a random delay, where the node with the shortest delay will send 

the actual beacon in the current beacon frame. All nodes in an IBSS are within 
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radio range of each other and will normally receive the message. A node will 

synchronize its timer to the timestamp if the received time is later than the 

current local time, thus the global network time will be driven by the nodes with 

the fastest clocks. 

The use of beacons in TSF makes it similar to the slot based approach 

proposed for NBWF. In NBWF, each received slot can be used as a beacon. 

However, there are several issues that make TFS unsuited for NBWF. TSF does 

not support multihop because it focuses on a single IBSS. The use of 

timestamps from clocks that only run faster will force the global time to follow 

these clocks. This might ensure slot synchronization, but it makes it difficult to 

support external synchronization. These issues were also identified by 

Sundararaman et al. [4] when they analyzed the protocol Continuous clock 

synchronization in wireless real-time applications suggested by Mock et al. [20]  

This protocol is an extension of IEEE 802.11 standard, which provides 

continuous clock synchronization for sensor networks. 

TSF also suffers from problems with scalability due to the fact that the 

fastest clock will have a low probability of successfully sending a beacon [21] 

[22] [23].  This leads to asynchronism because the algorithm is dependent on 

the fastest node successfully transmitting a beacon. Adaptive Timing 

Synchronization Procedure (ATSP) [24] corrects this problem, by giving the 

fastest host a higher probability of transmitting a beacon. Tired Adaptive 

Timing Synchronization Procedure (TATSP) [25]improves this further, by 

eliminating problems that occurs when the node with the fastest clock leaves the 

network. NBWF does not suffer from a problem with beacon transmission 

collisions because TDMA is used. In addition, the two algorithms are not 

designed with multihop networks in mind.  ATSP and TATSP offer little 

improvement over TSF when used in NBWF and are therefore not considered 

for NBWF. 

Automatic Self-time-correcting Procedure (ASP) suggested by Sheu et 

al. [23] take the scalability problem into account as well as support for multihop 

wireless ad hoc networks. This algorithm relies on two main features. The first 

one is that the nodes with the fastest clocks will have a higher probability of 

transmitting a beacon. The second feature is that slower clocks can be rate 

adjusted to become faster host. This ensures that the synchronization signal of 

the faster clocks is spread in a multihop network [23]. 

Pande et al. suggest Modified Automatic Selftime-correcting Procedure 

(MASP) [22]. As the name suggest, it is a modification of ASP. MASP 

improves on ASP by modifying beacon contention and offset calculation. 
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Simulations of multihop networks show that both ASP and MASP have 

considerably lower average maximum relative offset than TSF. The same 

simulations also shows that MASP only performs slightly better than ASP [22]. 

In reality, these differences would make little difference in NBWF and ASP 

should be preferred. ASP is an algorithm that might solve the minimum 

requirements for NBWF, and it should be considered for NBWF. ASP requires 

one sequence number to be transmitted between the nodes, this could be 

piggybacked in a SF slot.  

Wen et al. suggest a MAC level synchronization algorithm for IEEE 

802.11 TDMA Ad Hoc networks [21]. According to the author this algorithm 

yields a better result than the Timing Synchronization Function (TSF) specified 

in the IEEE 802.11. The improvement has been achieved by changing selection 

of beacon nodes, based on the fact that typical propagation delay in IEEE 

802.11 networks are low and can be neglected [21]. This change is inspired by 

the receiver-to-receiver approach used in RBS. In addition, the protocol support 

rate adjustment. While this algorithm prioritize fast clocks and adjust rates, the 

author does not mention mobility or multihop support. Therefore, ASP and 

MASP are preferred over this algorithm.  

The ad hoc solutions described so far have only used information from 

faster clocks for synchronization. Clock Sampling Mutual Network 

Synchronization (CS-MNS) [26] tries to improve synchronization in ad hoc 

networks by utilizing information from all clocks. The main motivation for 

Rentel et al. was to create a mutual clock synchronization protocol that was 

simple and could work on different MAC layers. The designers sacrificed some 

precision in order to make this possible, but simulations indicate that the 

protocol performs better than ASP [26]. Clock offset, and rate adjustment is 

based on control theory, this makes it possible to adjust both offset and rate with 

a single timestamp. In addition, both slow and fast clocks can be used for 

synchronization. Rentel et al. does not discuss external synchronization, but 

except from that, the algorithm described is a potential candidate for NBWF.  

A few later works suggest the use of connected dominating sets (CDS) 

in order to avoid asynchronization in large ad hoc networks. Asynchronization 

occurs when beacons from the fastest nodes are lost due to collisions. The use of 

dominating sets are originally a part of routing theory. These later works adapt 

this to ad hoc networks in order to reduce the chance of collisions. This is done 

by introducing a virtual infrastructure that segment the network into smaller 

parts, where only selected nodes are allowed to broadcast. Ad hoc networks that 
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do not use CDS or similar techniques have a flat hierarchy where every node is 

equal. 

Algorithms such as Multihop adaptive timing synchronization function 

(MATSF) [27] and Hierarchical PTSF [28] are two examples of algorithms 

utilizing CDS. As mentioned above, these algorithms are mainly created to 

avoid collision of beacons. This is not a problem in NBWF, where TDMA is 

used. The use of CDS in NBWF will add complexity without an improvement 

in relative offset or convergence time. As a result, CDS extensions to ad hoc 

algorithms will not be considered for NBWF. 

There are other works related to IEEE 801.11 ad hoc networks that try 

to solve asynchronism or other problems related to IEEE 801.11. As with 

MATSF and Hierarchical PTSF, they offer little or no improvement to NBWF 

and often increase the complexity of the algorithm or protocol [29] [30].  

3.2.2. HYBRID SOLUTIONS 

Two recent algorithms use hybrid synchronization, which is a 

combination of master-slave and mutual synchronization. This approach 

combines the master-slave ability to use GNSS and the robustness of a mutual 

algorithm.  

Black Burst Synchronization (BBS) [12] is a MAC level protocol 

intended for synchronization of ad hoc networks. The protocol uses tick 

synchronization and transmits synchronization information in tick frames. All 

nodes send their information within the same tick frame, and Black Burst 

encoding is used to avoid collisions. The encoding itself is of no interest to 

NBWF when TDMA is established because all nodes will have their predefined 

SF slots. However, BBS has several other promising features. First of all it 

supports both decentralized (mutual) and centralized (master-slave) 

synchronization. This should make it possible to use both internal and external 

synchronization. Secondly it can provide a deterministic bound for multihop 

precision, and it supports mobility. This makes it a possible candidate for 

NBWF. 

Saarnisaari and Vanninen [31] [32] describes a hybrid algorithm for 

MANETs. They focused primarily on military networks when the algorithm was 

created, and it should fit well with NBWF. The algorithm uses a master-slave 

approach as long as GNSS is available in the network. A mutual 

synchronization algorithm named Discrete Network Synchronization (DNS) is 

automatically used when there are no GNSS capable nodes in the network. The 

hybrid algorithm enables the use of external references, without leaving the 

system vulnerable to master node failure. The algorithm only needs two flags 
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and a timestamp to work and does not put strict demands on the underlying 

system. The algorithm is an attractive candidate for NBWF.  

3.3. SENSOR NETWORKS 
Sensor networks are ad hoc networks that consist of specialized nodes. 

These nodes monitor a real world phenomena such as temperature and they are 

custom made for this task only [4]. However, sensor networks share a set of 

common features that makes it easier to compare them separately from more 

generic ad hoc networks. It is necessary to have these features in mind when 

sensor networks are compared [4]: 

 Energy conservation is critical in most sensor networks. This 

can force the designers to make design choices that they 

otherwise would not make. Most synchronization algorithms 

will be a tradeoff between performance and energy efficiency. 

 The nodes in sensor network are most often inexpensive 

devices. This will have an effect on the quality of the hardware 

components chosen which affects both the CPUs ability to do 

complex evaluations and the quality of the hardware clocks 

employed. 

 The networks are often dense and cover small areas, and the 

resulting propagation delays are short. As a result, propagation 

delay is ignored by most protocols and algorithms designed for 

sensor networks. Some algorithms even use the ability to ignore 

propagation delay as an important part of algorithm design.  

 A part of the solutions consider stationary nodes only.  

 A part of the solutions are made for networks with much higher 

bandwidth than NBWF. This bandwidth enables more 

information to be exchanged between the nodes than what is 

possible in NBWF. 

3.3.1. ONE WAY MESSAGE EXCHANGE 

The Flooding Time Synchronization protocol (FTSP) [33] is created 

with sensor networks in mind. The authors claim that the protocol performs 

better than other protocols because FTSP reduces the non-deterministic errors in 

the radio message delivery. The effect of reduced non-deterministic errors is 

that propagation delay remain the only significant part. This improves the 

precision of the FTSP protocol.  
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This effect is already achieved in NBWF by reducing the time critical 

path as described in section 2.2.2. Because of this, FTSP will have no specific 

advantages over other protocols without the ability to reduce the non-

deterministic errors. The FTSP algorithm uses a single broadcasted radio 

message to synchronize the local clock. Differences in clock rates are 

compensated by using linear regression. The origin of the broadcasts are a 

single dynamically (re)elected node and the message is flooded through the 

network by other nodes. This creates an ad hoc structure that is more robust than 

a fixed spanning-tree [33]. According to the authors this makes the FTSP 

algorithm more robust against node mobility and topology changes. In addition 

to this, the authors claims that FTSP algorithm support multiple hops and a 

large number of nodes. 

Kalman Filter using Multiple Parents (KFMP) is an algorithm for 

multihop TDMA sensor networks proposed by Zeng et al. [34] The algorithm 

uses observations from multiple parents to provide more precise results. A 

vector Kalman filter is used to combine these observations. This will, according 

to the authors, significantly reduce the clock error at the edge of the network. 

The algorithm is probabilistic and executed in several steps. A node has to use 

at least one superframe to find the number of one hop neighbors before the 

algorithm can be used to full efficiency. The algorithm is more complex than 

FTSP, but the authors claim that this leads to reduced relative offset. However, 

it is uncertain what the effect of these reductions will be if KFMP is employed 

in a NBWF network with high propagation delays. 

Tjoa et al. describe a mutual synchronization algorithm that uses slot 

referencing to synchronize TDMA sensor networks [35]. The algorithm uses 

reception of a message in a TDMA slot to create a synchronization point. This is 

comparable to how NBWF will work, and no dedicated synchronization 

messages are needed. The algorithm gathers synchronization points from all 

nodes and stores the estimated relative offsets in a table. Synchronization is 

performed only after the node estimates that the largest relative offset exceeds a 

constant threshold. The new local time is based on the average of all offsets 

available in the table. The algorithm also use a timer to ensure that changes 

spread through the network.  

A similar approach, created for TDMA ad hoc networks, is described in 

a more recent article written by Wang et al [36]. The authors describe the use of 

absolute slot numbering to create synchronization point. These synchronization 

points are used in combination with linear regression to synchronize the local 

clocks. The algorithm uses an ad hoc structure with an automatically selected 
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root (master). Root selection seems to be very simple, the node with the lowest 

ID becomes the root. In addition to this, the authors assumes that all nodes 

know the route with shortest hops towards the root without describing how this 

is achieved. Both the article and the algorithm seem unfinished and the 

algorithm is not considered a suitable candidate for NBWF.  

3.3.2. RECEIVER-TO-RECEIVER SYNCHRONIZATION 

Reference Broadcast Synchronization (RBS) [15] has received a lot of 

attention because the use of receiver-to-receiver based synchronization reduces 

the non-deterministic delays. This is achieved by broadcasting a beacon from a 

reference sender that is timestamped upon reception. These timestamps are 

exchanged between receivers of the original beacon. A new local time is time is 

estimated based on these timestamps. This leads to better precision, but requires 

additional message exchange between all nodes that receive a message from the 

reference sender.  

The use of dedicated message exchange between the receivers and a 

reference broadcast is among the main reason that RBS cannot be used by 

NBWF. This synchronization mechanism needs dedicated synchronization 

messages, which is a conflict with the NBWF requirements. This is also 

confirmed by the evaluation of RBS by Sundararaman et al. However, RBS is 

used as a basis for a lot of new works that are not considered by Sundararaman 

et al. These works solve some of the original RBS problems and should be 

considered for NBWF. 

In [37] Djenouri suggest a new protocol that distributes the reference 

function between all nodes in the network. This removes the single point of 

failure that the use of a reference sender in RBS introduces.  In addition, the 

protocol allows information to be piggybacked, this eliminates the need for 

dedicated synchronization messages. The protocol is initially promising but 

have several shortcomings that make the proposed algorithm unsuited for 

NBWF. Firstly it does not consider mobility and assumes a static network. 

Secondly it assumes that all nodes are in close vicinity of each other. Thirdly it 

has limited support for multihop because two multihop nodes only synchronize 

at the moment when they need to exchange information. This is not a viable 

solution for TDMA networks. Finally, the protocol only supports a low number 

of nodes in the network because it requires a lot of piggybacked information. 

This makes it difficult to utilize the protocol in NBWF, where only 1-2 bytes of 

information can be expected to be piggybacked.  

There are other algorithms [38] [39] [40] that suggest changes to RBS 

or are based on receiver-to-receiver synchronization. None of them does 
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anything to change the extensive need of synchronization information to be 

exchanged. As a conclusion, none of the receiver-to-receiver based algorithms 

are suitable for NBWF.  

3.3.3. TWO-WAY MESSAGE EXCHANGE 

There are several algorithms [41] [42] that utilize two-way message 

exchange. A well-known example is Timing-sync Protocol for Sensor Networks 

(TPSN) [43], which supports multi hops and is one of the first algorithms to 

utilize MAC layer time stamping. While these algorithms might offer useful 

capabilities such as delay compensation, they require at least two-way message 

exchange. NBWF can only provide two separate synchronization points which 

makes it difficult to use algorithms based on two-way message exchange 

without adding dedicated synchronization messages. These algorithms are not 

considered for NBWF. 

3.3.4. HIGH PROPAGATION DELAY SENSOR NETWORKS 

There have been some focus on delay tolerant networks in some later 

works [14] [44] [45] [46]. These works describe extremely specialized sensor 

networks with high propagation delay. Initially these works might seem 

attractive to NBWF because they support networks with higher propagation 

delay than most other sensor networks. However, a closer inspection shows that 

none of these works fits NBWF. All these works require at least two-way 

message exchange. In addition, these sensor networks are specialized cases with 

exceptionally strict requirements on energy saving and long time periods 

between transmissions. The result is makes highly specialized algorithms, and 

they are unlikely to fit NBWF.  
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3.4. SUMMARY OF ALGORITHMS SUITABLE FOR NBWF 
 

 Node 

mobility 

Rate 

sync 

External/ 

Internal 

Time 

quality 

Mutual/ 

Ad hoc 

ASP [23] Described YES Internal Fastest 

clock 

selected 

Fastest 

node 

CS-MNS 

[26] 

Described YES Internal Uses all 

nodes 

Mutual 

Hybrid(DNS) 

[31] [32] 

Described NO Both external 

mechanism 

Hybrid 

BBS [12] Described YES Both Uses all 

nodes 

Hybrid 

FTSP [33] Described YES Internal Node ID 

used for 

selection 

Ad hoc 

tree 

KFMP [34] Not 

described 

YES Internal Uses all 

nodes 

Mutual 

Tjoa et al. 

[35] 

Not 

described 

NO Internal Uses all 

nodes 

Mutual 

TABLE 5: POTENTIAL ALGORITHMS 

Table 5 combines the findings in chapter 2 and 3 to present all the 

potential algorithms for NBWF. There are some synchronization design issues 

and NBWF prerequisites that are common to all algorithms. These are omitted 

in Table 5 but listed here: 

 Deterministic: All algorithms are deterministic.  

 Discrete: All algorithms use discrete adjustment of the local 

clock. 

 Clock correction: All algorithms use clock correction. 

 Multiple hops: The actual approach varies for each algorithm, 

but all algorithms are tested with multiple hops by the original 

authors. The effect on NBWF is unknown and must be tested by 

simulations to determine which algorithm is best suited. 

 Dedicated synchronization messages: None of the algorithms 

need dedicated synchronization messages. Some of the 

algorithms need to exchange information, but this can be 

achieved by piggybacking 1-2 bytes of data to existing traffic in 

the SF slots.  
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All algorithms are based on mutual synchronization with the exception 

of FTSP and ASP. These algorithms use a master-slave approach with an ad hoc 

structure. Ad hoc structures might be effective in NBWF if they are supported 

by a reliable mechanism that select the master node based on information such 

as the number of neighbors and data traffic in the different nodes. Both 

algorithms lack this ability to use some sort of time quality to ensure that the 

best node is selected as master. The ASP algorithm is remarkably simple and 

synchronizes to information from faster nodes only. FTSP uses a root selection 

mechanism to select the master node. Both these approaches might cause 

problems if the master is placed at the edge of a network with several hops 

towards the main part of the network. This can cause unnecessary instability in 

the network if the master node is lost. Because of this, the ASP and FTSP are 

not as robust as the mutual algorithms.  

  The remaining algorithms uses mutual synchronization and can 

synchronizes the local clock with timestamps received from any node in the 

network. The ability to use timestamps from any node in the network make 

these algorithms less vulnerable to the loss of a single node. There is no need 

for root selection and the fact that the algorithms lack support for time quality is 

of less concern. These algorithms will only benefit from such functionality in 

network merge cases.  

KFMP and the algorithm described by Tjoa et al. [35] are both mutual 

algorithms that estimates average values from several nodes before they adjust 

the local clock. KFMP can adjust both the offset and rate of the local clock. The 

ability to adjust rate could be utilized in NBWF to make the algorithm more 

robust towards communication problems. In addition to this KFMP uses 

averaging to reduce the maximum relative offset at the edge of networks with a 

lot of hops between nodes. This is a key feature in KFMP as it is created for 

sensor networks with short distances and a large number of hops. This positive 

effect for edge nodes is uncertain in NBWF as NBWF networks covers large 

distances but with relatively few hops (compared to sensor networks).  As a 

consequence, the positive effect of utilizing the KFMP algorithm within NBWF 

might be small, when compared to the complexity needed to support the 

approach. In addition to this, the authors has not described how the algorithm 

will perform in networks with node mobility. The algorithm is complex to 

implement in the simulator, and the results are uncertain. Based on this, other 

algorithms will be preferred.  

The algorithm described by Tjoa et al. is much simpler than the KFMP 

algorithm to implement. In addition to this, the algorithm is created with TDMA 
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networks in mind. This should make it easy to implement in NBWF. 

Unfortunately, the algorithm cannot adjust the rate. In addition to this, the 

authors have only tested the algorithm on static networks. The effect of mobility 

is uncertain, and other algorithms should be preferred.  

The CS-MNS algorithm is a mutual algorithm that differs from the two 

previous algorithm by the fact that it does not use averaging. The CS-MNS 

algorithm adjusts the local clock directly after reception of a timestamp from 

another node. This should help the CS-MNS algorithm to converge faster than 

the two previous algorithms that have to wait for timestamps from several 

nodes. The algorithm is simple to implement, and it is expected that it should 

fulfill the minimum requirements of NBWF. CS-MNS could be a candidate for 

a minimum solution for NBWF.  

So far all the algorithms described only support internal 

synchronization. This approach ensure sufficient precision to keep all nodes 

synchronized, but the global time of the network will diverge from real time. 

The hybrid algorithm and the BBS algorithm use a hybrid approach that enables 

them to support external time sources while still being robust. The ability to use 

external sources when available can be used to ensure that the global time 

follows real time as closely as possible. The ability to follow real time can be 

utilized in NBWF to make implementation of network management, frequency 

hopping and AIE initialization vector much easier. These algorithms should be 

preferred over CS-MNS and the other algorithms, as long as they can deliver 

sufficient precision, accuracy and convergence.  

BBS is a hybrid algorithm that can fulfill most of the NBWF 

requirements. The BBS algorithm primarily uses a master based 

synchronization algorithm but has the ability to fall back on mutual 

synchronization if the master becomes unavailable. External synchronization is 

available as long as master synchronization is used. The actual selection of a 

master and the use of external synchronization is not described, and the paper 

leaves the impression that only one master is considered [12]. The algorithms 

use of a single master might cause unnecessary instability when GNSS based 

synchronization is used. In networks with several GNSS capable nodes, BBS 

will have to fall back to mutual synchronization (or initiate master selection) if 

the master is lost.  In addition to this, this the focus of the authors is mainly on 

the encoding of the synchronization messages and not on synchronization itself. 

The encoding of the signal is of no relevance to the algorithm described in this 

thesis as all nodes can use dedicated SF slots communication.  
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The hybrid algorithm designed by Saarnisaari et al. [31] [32], is made 

with military MANETs in mind and it is designed to work under a mechanism 

providing a distributed decision making capability [47]. This mechanism uses 

intelligent decisions, based on the number of neighbors and data traffic, to 

provide management capabilities such as coarse synchronization, late entry and 

network merge. Primarily the algorithm uses external synchronization, with the 

ability to fall back on mutual internal synchronization if all nodes connected to 

an external source fails. This is similar to the BBS algorithm with the exception 

that the hybrid algorithm designed by Saarnisaari et al. supports several masters 

without the need of a master selection process. The only real drawback is the 

lack of rate adjustment. On paper, the work described by Saarnisaari et al. 

promises support for all the requirements and prerequisites for NBWF. The 

hybrid algorithm will be studied in detail and simulated.  
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4. THE HYBRID ALGORITHM PROPOSED FOR 

NBWF 
As described in section 0, a hybrid algorithm is suggested for time 

synchronization in NBWF. The hybrid algorithm is described in several articles 

where Saarnisaari and Vanninen are the main contributors. As mentioned, the 

algorithm is created for military MANETs and more specifically for networks 

with Frequency Hopping [47]. The algorithm is created to be simple to 

implement, without a specific link layer in mind. As a result, it should be easy 

to implement this algorithm in a TDMA network, and this has already been 

described in a master thesis by Toumivaara [48]. 

 The complete work described by Saarnisaari and Vanninen is divided 

into 3 layers. The top layer handles network management functionality. The 

middle layer handles the hybrid functionality and selects master-slave 

synchronization if a GNSS signal is available otherwise it selects a mutual 

synchronization. The lowest layer is responsible for estimating offsets and 

keeping the local clocks within tolerable limits of each other. The different 

layers will be described below.   

4.1. SYNCHRONIZATION ALGORITHM 
The main objective of a synchronization algorithm is to minimize the 

relative offset between all the nodes in the network. Saarnisaari and Vanninen 

have suggested that the DNS algorithm is used for this purpose [31] [32]. The 

DNS algorithm supports multiple hops and can be used for distributed 

synchronization and centralized synchronization [31]. Saarnisaari based the 

DNS algorithm on the original work of Davies [49]. The main difference 

between the original algorithm and the algorithm proposed by Saarnisaari is the 

use of feedback.  

Saarnisaari describes the local clock Ti(k) in node i at synchronization 

instance k by the following equation [31]: 

  (     (     (   (4) 

T0(k) in equation (4) is the common reference time and ti(k) is the deviation 

from common time in node i. Actual adjustment of the local clock is done by 

adding a correction term ci(k) [31]: 

  (     (     (     (     (     (   (5) 

The deviation from common time now becomes di(k)=ti(k)+ci(k). Equation (6) 

shows that the correction term is recursive [31]: 

  (        (      (     (6) 
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The constant α is used to control the feedback, and the coefficient h is a used on 

the estimated adjustment value ϵi (k+1). Saarnisaari suggests the following 

values for the constants [31]: α=0.15 and h=0.75. These values ensure both 

stability and sufficient convergence for the algorithm. The adjustment value    

is the average value of Ni computed deviation between node i and Ni other 

nodes. This can be expressed as [31]:    

  (     
 

  
∑   (  

  

   

 

(7) 

The DNS algorithm does not synchronize before the correct number of 

timestamps is received. The actual value of Ni has to vary with the number of 

nodes, system design and implementation. There are no mechanisms within the 

DNS algorithm that deals with missing timestamps or long periods without 

synchronization messages. DNS must wait indefinitely for arrival of missing 

timestamps instead of synchronizing with the information already available. 

This has to be handled by algorithms placed above DNS. Saarnisaari describes 

the following equation used to compute deviation between node i and another 

node j [31]:  

   (     (     (      (    ̈  (      (   (8) 

Here, dj(k) and di(k) represent the deviation from the common reference time. 

The actual delay is represented by τij. This is unknown, but the effect can be 

reduced by using delay compensation which is represented by  ̈  (    The last 

part of equation (8) nij(k) represent a delay measurement noise factor introduced 

by Saarnisaari [31].  

4.2. HYBRID NETWORK ALGORITHM 
The DNS algorithm can only be used to reduce and maintain low 

relative offset between nodes, and it depends on a timer provided by an 

additional algorithm to handle long intervals without synchronization messages. 

Saarnisaari and Vanninen have suggested a hybrid network algorithm that is 

capable of utilizing DNS [32]. The main objective of hybrid network 

synchronization is to enable the use of GNSS based synchronization as long as 

it is available and automatically switch to mutual clock synchronization if all 

nodes lose GNSS capability. In addition, the hybrid algorithm can be used with 

mutual synchronization only [32]. Two flags ensure that the correct choice is 

made when the algorithm is used in hybrid mode. The master flag (M) is set by 

nodes that have GNSS capabilities and the heard master (HM) flag is set by 

nodes that are direct neighbors of a master node or a node with the HM flag 

already set [32].  
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The hybrid algorithm synchronizes the local clock in discrete intervals. 

It will not synchronize the local clock after reception of a single timestamp but 

will wait for a given number of timestamps is received. This is done to make the 

algorithm more robust by ensuring that the correct decisions are made and that 

the best source of synchronization is used. It will also prevent nodes from 

unnecessary switches between mutual and GNSS based synchronization.  

Saarnisaari and Vanninen created the algorithm without specific control 

channels in mind [32] but it includes mechanisms to control the transmission of 

synchronization messages. Figure 10 shows the state machine created by 

Saarnisaari and Vanninen. 

 

FIGURE 10: STATE MACHINE FOR THE HYBRID ALGORITHM [32] 

 

A. Performance of NTS 

It can be concluded from [10],[11],[12],[13] that the 
accuracy of the algorithm depends on the accuracy of time 
delivery and biases caused by uncompensated delays and clock 
frequency offsets (skew). Since the beating frequency of clocks 
is not usually controlled, skew occurs in every adjustment 
period.  This term is mitigated by properly chosen the 
adjustment interval. Contrary, propagation delay could be 
compensated. In master-slave networks bias by uncompensated 
delays cumulates on each hop the master's message has to jump 
whereas in distributed networks this effect is somewhat 
averaged away. Therefore, delay compensation might be a 
critical issue especially if the network synchronization 

requirements are high and also if distances (measured in 
seconds) between nodes are large, quite close to the 
synchronization requirement. There are several means for the 
compensation. In the master-slave scheme master and slave 
may interact pairwise to measure the propagation delay. This 
means that interaction has to be repeated for each pair. An 
example of this is the IEEE 1588 precise timing protocol. In 
two way schemes nodes send measured time differences back 
to the origin which use them to mitigate the delay. If feedback 
fails this kind of system reduces to uncompensated systems, 
i.e., it still works but has bias. The system is robust in the sense 
that it does not rely on delay compensation (assuming that 
provided synchronization accuracy is sufficient). Node 
positions, if they are known, can be used to calculate 
propagation delays and used for delay compensation. In this 
sense use of situation awareness picture (concerning node 

 
 

Figure 1: The state machine of the proposed network synchronization algorithm. 
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The algorithm will wait for synchronization messages for a given amount of 

time Tlisten and initiate transmission of a synchronization message if no messages 

are received during this period. Tlisten can be varied based on the status of the 

nodes. This will ensure that GNSS capable nodes transmits more often.  

Received synchronization messages will be handled based on the flags 

in the message and the status of the node receiving the messages. Nodes that 

have GNSS capability will not adjust itself based on synchronization messages. 

However, timestamps with the master flag set will be passed on to an integrity 

check mechanism. This check can be used to decide if the local or received 

GNSS clock have errors. However, Saarnisaari and Vanninen does not describe 

this integrity check any further [32] and it must be assumed that this will be a 

part of future work. 

Nodes without GNSS capability, that receives one or more messages 

with the master flag set, will use one of these to estimate the offset directly. The 

timestamp with the lowest offset will be selected if several synchronization 

messages are available within the same period. The selected timestamp from a 

master will be used in a master-slave fashion and synchronization will be 

performed after an integrity check. These nodes will also set their HM flag and 

potentially initiate an extra synchronization message to inform all neighbors of 

the status change. This extra message is intended to help in network merge 

cases, but it is not implemented yet [32]. 

Nodes without GNSS capability that receive only one message with HM 

flag set will synchronize with this message in the same way as for a message 

with the master flag set. The average value of the relative offset is used if 

several timestamps with HM flag is received.  

Finally, mutual clock synchronization will be used if a non GNSS 

capable node only receives messages with no flags set. The DNS algorithm is 

controlled by the hybrid algorithm, which feeds all timestamp to the DNS 

algorithm and ensures that the DNS parameter Ni will equal to the number of 

timestamps available at the moment. Saarnisaari and Vanninen suggested a 

slight alteration of the DNS coefficient h from 0.75 to 0.5 [32].    

4.3. DISTRIBUTED DECISION MAKING 
As mentioned, radio networks such as NBWF needs mechanisms to 

provide initial synchronization, late-entry and network merge. The hybrid 

algorithm described by Saarnisaari and Vanninen can only provide this 

functionality for GNSS capable networks [32]. Fortunately Saarnisaari and 

Vanninen, with the support of others, have created a distributed decision making 

method that can take care of this [47].  
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These management mechanisms are outside the scope of this thesis, but 

will be described briefly to give the complete overview of the approach 

suggested by Saarnisaari and Vanninen. This also shows that much of the 

intelligence is implemented in the decision making mechanisms. The actual 

synchronization performed by the combination of DNS and hybrid algorithm is 

similar to other approaches. These algorithms only gather information and 

synchronize in the same way as other mutual algorithms such as KFMP. The 

novelty is the ability to choose between mutual and GNSS based 

synchronization. 

Node ID and network ID are common parameters found in many 

decision making systems [47] but the mechanism described by Saarnisaari et al. 

uses two additional parameters to ensure that decisions regarding network 

merge and late entries are performed as effective as possible. These parameters 

are information about the number of two-hop neighbors and data traffic [47]. 

Vanninen et al. suggested that each node piggybacked the information about 

their number of two hop neighbors and data activity in synchronization network. 

This information is used by the decision making system to make the best 

decisions in each case. Consistent decisions are ensured by letting the first node 

that receives a synchronization message from another network make the 

decision for the entire network it belongs to [47]. The distributed decision 

making mechanisms will not be simulated. 

4.4. IMPLEMENTATION IN THE SIMULATOR 
The DNS algorithm is adapted for the NBWF simulator by making the 

following changes. Both Equation (4) and equation (3) represent local time at a 

given moment. The simulator uses equation (3) to represent the local clocks of 

the nodes and equation (5) is changed based on this. An adjustment to local 

clocks Ci(t) can be made by adding the correction term ci(k) to the 

synchronization point generated at the moment node i expected the TDMA slot. 

This synchronization point equals τ1 in Figure 7. Therefore, equation (5) is 

replaced by equation (9) which provides the new local clock value Ci(t)+ for 

node i after synchronization. 

  (  
       (   (9) 

Saarnisaari does not indicate a starting value for ci(k) and a starting value of 

ci(k)=0 is used in the simulator.  

Equations (6) and (7) are used unchanged. Equation (8) can be 

simplified as long as NBWF does not use delay compensation. As a result 

 ̈  (     and    (   can be ignored. As shown in Figure 7 NBWF generates 

two synchronization point τ1 and τ2. The first synchronization point τ1 is 
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generated when node i expects the TDMA slot. The second synchronization 

point τ2 is generated when node i receives the TDMA slot. Synchronization 

point τ2 also includes the propagation delay and equation (8) is replaced by 

equation (10) which is a calculation of relative offset:  

   (      (       (10) 

 As previously mentioned, the number of synchronization points that are 

received before estimation is not specified by Saarnisaari. The maximum 

number of synchronization points that can be gathered will depend on the 

maximum allowed offset and the quality of the oscillators. As shown in section 

2.2.2, NBWF can support a τsync value of 100s if the clocks have a maximum 

5ppm skew. This is a high value, covering several superframes in a network 

with 50 nodes and should not be used as a basis for Ni. As a consequence, Ni 

should be decided based on simulations and the requirements of the hybrid 

algorithm. Pseudo code of the DNS algorithm is shown in Figure 11. 

 

 

FIGURE 11: PSEUDO CODE FOR THE DNS ALGORITHM 

 

PROCEDURE DNS(τ1, τ2, Ni)    

 N := N+1; //Count number of received timestamps from last sync 

 array(N) := abs(τ2- τ1); //Equation 10 saved into an array. 

 if N is equal to Ni then begin  //Sync only after N sync points 

  //Equation 7 

  for w:=1 step 1 until N do begin; 

   εij := εij+array(w); 

  end; 

  εi := εij/N; 

  ci := α*ci+h*εi;  //Equation 6 

  estimatedTime := τ1+ ci; //Equation 9 

  //Reset Counter, values and array after synchronization; 

  N := 0  

  for w:=1 step 1 until Ni do begin 

   eij_Array(w) := 0.0; 

  end; 

  εij := 0; 

  εi := 0;  

  end 

 else begin 

  synched := false; 

 end; 
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The original plan was to simulate the DNS algorithm and the hybrid 

algorithm together. Functionality of the hybrid algorithm when GNSS is used is 

well described in the article by Saarnisaari and Vanninen [32] and it is assumed 

that most of their findings related to GNSS based synchronization applies to 

NBWF also. However, the functionality of the DNS algorithm is necessary to 

ensure the robustness of the hybrid algorithm. The motivation for the authors to 

select the DNS algorithm for mutual synchronization in the hybrid algorithm is 

unclear [32]. They have not described why they chose this algorithm over other 

potential mutual synchronization algorithms. The effect that parameters, such as 

the Ni value, have on precision and convergence is also unclear. Finally, 

Saarnisaari only simulated small networks in his original article about the DNS 

algorithm [31].  Because of this, simulations are performed on the DNS 

algorithm to verify if this is the best algorithm to use in combination with the 

hybrid algorithm. 
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5. SIMULATIONS  

5.1. SIMULATOR OVERVIEW 
The simulator is a DEMOS/Simula based program that is written with 

NBWF in mind. Several properties of NBWF have been used to simplify the 

simulator. The result is a simulator that can be used to simulate algorithms 

under the conditions given by NBWF. A model of the implementation of the 

local clocks is shown in Figure 12.  

 

FIGURE 12: MODEL OF SIMULATOR CLOCKS 
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The following NBWF properties are crucial to the design of the local clocks and 

the simulator in general: 

 AIE decryption becomes impossible for the receiver if the 

relative offset between two nodes is larger than ½ time slot 

(11.25ms). As a consequence, it can be assumed that the 

relative offset between two nodes that successfully 

communicate is lower than 11.25 ms. The algorithm simulated 

will only be in use after messages have been successfully 

decrypted. Therefore, reception in a SF slot always provides the 

necessary synchronization point. 

 The short time critical path assumed in this thesis can be used to 

simplify the simulator. Propagation delay dominates the critical 

path, and it is the only random delay that is considered in this 

simulator. 

 Drift can be ignored because the time interval between 

synchronization messages are short and the effect of drift will 

be small. Based on this, a linear equation (3) can be used for 

local time in the local clocks. 

The simulator is controlled by a parameter file that controls the length 

of simulation, number of iterations and number of nodes. In addition, 

parameters such as offset, skew, propagation delay and connectivity matrix can 

be based on randomly generated values or values given by the user. The built in 

“replicate” function in Simula/DEMOS is used to ensure that each random 

iteration is started with a new seed. The simulator outputs trace files that are 

evaluated in Mathematica. Simplifications are made to enable node mobility, 

node positioning and topology changes in the simulator: 

 Node mobility: Node mobility is performed by changing the 

propagation delay directly at a given point in time. The result is 

that mobility does not follow a realistic movement pattern, and 

this creates abrupt changes at deterministic intervals. This is not 

realistic when compared to a real life network. The simulation 

results can still be used to provide information about the lower 

limit of the performance as the algorithm is simulated under 

more demanding conditions than it would meet in real life. 

 Node position: Each pair of nodes has a given propagation 

delay, but no absolute position. This might lead to some logical 
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inconsistencies in propagation delays when several nodes are 

involved. Such as: Node A has a propagation delay of 0.01 ms 

from both Node B and Node C while the propagation delay 

between Node B and Node C is 0.15 ms. As mentioned, this 

will create an illogical placement of nodes, but it should not 

impact the results of the simulations. 

 Topology changes: Topology changes are only possible for 

simulations with random topologies. Simulations on topology 

1-3 are performed with a static topology that is used throughout 

the entire simulation. Topologies are changed at deterministic 

intervals where the entire topology is changed by drawing a 

new random topology.   

5.1.1. VALIDATION OF THE SIMULATOR 

Initial validation of the simulator and the synchronization algorithms 

were performed by running basic deterministic parameterizations and check if 

these gave the expected results. The interpretation of the simulation results were 

based on trace files containing local time and offset at a given point in time. 

Errors were corrected directly, and validation was performed again to check the 

results.  

In addition to the initial validations, a mathematical validation of the 

simulator was also performed. This was done by running the simulator with a 

basic algorithm created for this purpose. The algorithm uses the relative offset 

to adjust the local time of a node directly after reception of a message in a SF 

slot as shown: 

  
      (11) 

 

Here, τ1 and τ2 are the synchronization points shown in Figure 7 and   
 is the 

new local time that the local clock is adjusted to. The purpose of this algorithm 

is to create synchronization results that are simple to validate. Figure 13 shows 

graphs of what the result of such an algorithm would look like for a NBWF 

network with only two nodes. The offset between node 1 (N1), node 2 (N2) and 
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real time are zero at startup. The propagation delay between N1 and N2 is zero, 

and the clock skew of N1 is negative and the skew of N2 is positive.  

 

FIGURE 13: SYNCHRONIZATION POINTS USED FOR VALIDATION 

The local time of the two nodes N1 and N2 are shown as blue and red 

graphs. These graphs have slopes controlled by the skew value, a1 and a2. The 

black line represents real time with zero skew and a rate equal to 1. Wake-up 

interval tk represent the points in real time where the simulator wakes up. The 

messages used for synchronization are transmitted in SF slots at real time      
  . 

The simulator wakes up for the first synchronization instance at real time tk (i.e. 

at the start of the SF slot) and the simulator estimates that N1 transmit a 

synchronization beacon at real time      
  . This beacon is immediately used by 

N2 which calculates a new local time based on equation (11). The result is that 

N2 can adjust the local clock to the correct value (due to zero propagation 

delay). N2 will transmit its synchronization message in the next SF slot, at real 

time      
  .  This allows N1 to synchronize.  

A general mathematical expression for each synchronization point P# 

can easily be obtained based on a1, a2 and tk. This expression is used show that 

the mathematical and simulated results are the same. In addition, two 

mathematical generalizations can be observed in order to verify the simulator. 

First of all it can be proven that a curve drawn through the points P0, P2 and P4 

(or P0, P1 and P3) will be a straight line. Finally, it can be proven that the 

relative offset at each synchronization point for a node will be constant. A 

comparison between mathematically calculated values and a parameterization of 

the simulations yields identical result. Based on this, the underlying model of 
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the simulator is validated. The mathematical expressions, calculations and 

simulation results can be found in appendix B. 

5.2. SIMULATION OUTPUTS AND STATISTICS 
The simulator creates one individual trace file for each iteration. A 

single iteration (and trace file) represent a unique network with unique random 

parameters. The trace files generated by the simulator contains the entire 

simulation including the transient period. The actual values saved for each 

synchronization point (SF slot) are: simulator real time, average relative offset 

and maximum relative offset. 

The trace files are evaluated by Mathematica which reads all values 

from all iterations to tables before estimation begins. First, all average relative 

offsets are dropped as it was decided not to use these values. After this, the 

Mathematica tables contains simulator real time and maximum relative offset. 

Figures showing convergence and rejected iterations are based on data 

containing complete iterations that include transient periods. Figure 26 is an 

example of a figure showing the convergence and transient period of a network. 

The figure consist of two graphs. The first graph show the sample mean and 

confidence interval of all iterations for all synchronization points. The second 

graph show the percentage of networks where all nodes pair have a relative 

offset below 1 ms. After these figures are created, iterations are rejected based 

on the following rules: 

 Iterations are rejected if the last maximum relative offset is 

above 11.5 ms. This represent a network where the 

synchronization algorithm has failed to synchronize all nodes. 

This network contains one or more nodes where the local clocks 

runs freely because they have lost the ability to decrypt AIE. 

The result is an extremely high maximum relative offset and a 

situation that must be solved with network merge or reentry. 

These iterations are marked “SYNC” in the figures showing 

rejected iterations. 

 Iterations that have extremely long convergence time are also 

rejected from further estimation. These iterations are rejected 

based on the estimated mean of all maximum relative offset 

values of an entire iteration. A high mean value indicates that 

one or more nodes uses  >1000 seconds before they converge 

towards values below 1 ms. This is clearly a failure of the 

algorithm that must be detected by other mechanisms in 
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NBWF. This should also lead to a network merge or a reentry. 

These iterations are marked “CNVRG” in the figures showing 

rejected iterations.  

The rejected iterations are removed along with the transient period for 

the remaining iterations. These final results are used to estimate maximum 

relative offset for stationary networks. These estimates are performed in two 

steps. The first step estimates the mean value of all maximum relative offsets in 

an iteration. These values are used to create the box plots or used as a basis for 

step two. The second step uses the mean value from step 1 to estimates the final 

mean and 99% confidence interval based on all remaining iterations.  

5.3. SIMULATIONS 
Some NBWF network will be fully connected where all nodes can 

communicate with each other, but analysis of NBWF in section 2.2.2 showed 

that the synchronization algorithm also must support multiple hops. The 

introduction of multiple hops can create topologies that are more demanding to 

synchronize. Because of this, simulations will be performed with fully 

connected networks as well as topologies that includes multiple hops. In 

addition to this, simulations will be performed with random topologies. These 

random topologies will represent more typical NBWF networks which is similar 

to topology one, but not fully connected.  

NBWF nodes can experience relative offsets as high as 11.5 ms before 

AIE decryption fails. Relative offsets as high as 11.5 ms are the result of short 

periods without communication. By using equation (2) and ρ=5 ppm, a 

maximum relative offset of 11.5 ms might be reached after about 20 minutes 

without communication. As long as the period without communication is short, 

AIE encryption will work, and the synchronization algorithm should receive the 

necessary messages to perform synchronization again. If this works, the use of 

additional network merge mechanisms can be avoided for short periods without 

communication. Initial simulations for all topologies will be performed with 

11.5 ms maximum initial relative offset, which is the maximum relative offset 

tolerated by AIE. These simulations are performed to check if the algorithm can 

solve simple network merge case where the nodes still can perform AIE 

decryption of the signal. 

It is expected that the mechanism providing network affiliation and 

coarse synchronization will have a precision better than 1 ms. However, 1 ms is 

used to add a safety margin and additional simulations are performed with 1 ms 

maximum initial relative offset. These simulations are performed to verify how 
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the algorithm manages synchronization after a normal network affiliation. 1 ms 

is considered as the lowest maximum initial relative offset the algorithm must 

be able to synchronize to enable NBWF support.  

All simulations are performed with all SF slots utilized and error free. 

This is done to ensure that it is easy to control the simulation results and have 

full control over how the algorithm effects network convergence. Table 6 show 

the most important simulation parameters used in the simulator. The different 

simulations will be described below. 

Parameter  Value  Random/Deterministic Distribution 

Skew -5 to 5 ppm Random Uniform 

Maximum 

initial relative 

offset 

0-11.5 ms or 

0.1 ms 

Random 

Random 

Uniform 

Uniform 

Propagation 

delay 

0-0.2 ms Random Uniform 

Movement 

(New 

propagation 

delay) 

0-0.2 ms Random Uniform 

Time between 

node 

movement 

10.125 s Deterministic  

DNS Ni 1-50 Deterministic  

Number of 

nodes 

1-50 Deterministic  

Random 

topology 

0 (no 

connection) or 

1 (connection) 

for each node 

pair 

Random Bernoulli, 

p=0.95 

Time between 

topology 

changes for 

random 

topologies 

1012.5 s Deterministic  

TABLE 6: IMPORTANT SIMULATION PARAMETERS 
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Initial simulations to determine the value of Ni 

The article written by Saarnisaari [31] do not go into specifics about 

how the value of the Ni parameter affects the DNS algorithm. As a result, initial 

simulations are needed to find the effect of different values of Ni on NBWF 

networks using the DNS algorithm. In their work about the hybrid algorithm, 

Saarnisaari and Vanninen recommend that the Ni value is set high to avoid 

unnecessary switches between GNSS based synchronization and mutual 

synchronization. This might be useful in a network with a dedicated control 

channel that can transmit a number of messages relatively fast. NBWF lacks this 

dedicated control channel and uses SF slots instead. This makes it difficult to 

increase the number of transmitted messages to ensure convergence and 

precision. The first simulations will be performed with different values for Ni to 

find the optimal value to use in NBWF. 

Topology 1 

Represent a single broadcast domain where every node is within 

transmission range of all other nodes as shown in Figure 14. Simulations on 

topology one are performed to check if the algorithm can support NBWF under 

ideal conditions. Simulations will be performed for network sizes between 2 and 

50 nodes. Maximum allowed distance is 60 km and nodes change position every 

10 seconds while and the connection matrix is fixed. 

 

FIGURE 14: TOPOLOGY 1 – FULLY CONNECTED NETWORK 

Topology 2 

Topology 2 is created to simulate a chain of nodes as shown in Figure 

15. In real life, this could represent a vehicle convoy utilizing IED jammers 

severely limiting the range of the radios or nodes separated by terrain features. 

The main objective of this topology is to provide insight in the effect of multiple 

hops on the algorithm. NBWF requires that voice is supported over 2 relays 

while data must work for any number of hops.  
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FIGURE 15: TOPOLOGY 2 - A CHAIN OF NODES  

Simulations will be performed with up to 10 nodes to give better insight 

in the effect multiple hops has on synchronization. As for topology 1, the first 

simulations are performed with node movement every 10 seconds, maximum 

distances of 60 km and 11.5 ms maximum initial relative offsets. Each 

additional relay can lead to a 0.2 ms (equal to 60 km) increase in the relative 

offset. For 3 relays (5 nodes), the maximum error caused by propagation delay 

can be 0.8 ms. This leaves little room for the algorithm to achieve a precision 

better than 1 ms. It is expected that topology 2 networks will be difficult to 

synchronize with these extreme values, but the result of these simulations will 

show the algorithms ability to merge networks when initial relative offsets 

increases beyond 1 ms.  

Simulations with more typical parameters must be performed for 

topology 2 to determine if the algorithm can support NBWF. The maximum 

initial relative offset is changed from 11.5 ms to 1ms. This represent the 

network after coarse synchronization. This represents a minimum initial relative 

offset the algorithm must be able to synchronize if it should be considered for 

NBWF. All topology 2 networks are performed with moving nodes that change 

position every 10 seconds and the connection matrix is fixed. 

Topology 3 

This topology represent a network divided into two clusters as shown in 

Figure 16. To make it more demanding, the two clusters are connected via a 

chain of 2 relays. This could represent two larger units that have lost direct 

communication due to terrain formation.  
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FIGURE 16: TOPOLOGY 3 – TWO CLUSTERS OF NODES 

As for the two other topologies, a short period without communication 

is simulated by using high initial relative offsets at the start of the simulation. 

Simulations will be performed on networks with 20 nodes in a single fixed 

topology. The reason for this is that it is time-consuming and difficult to control 

such topologies in the simulator. The simulation results will be limited by the 

fact that only one of many possible combinations is simulated. However, it is 

expected that this topology will provide additional insight in how the algorithm 

performs  

As for the two other topologies, additional simulations with maximum 

initial relative offset of 1 ms are performed. This is the minimum initial offset 

the algorithm must support. All simulations are performed with node movement 

and a fixed connection matrix. 
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5.4. SIMULATION RESULTS 

5.4.1. INITIAL SIMULATIONS ON THE DNS ALGORITHM 

It was assumed that Ni=NumNodes-1 is a good value to use for the DNS 

algorithm. This is the lowest value that ensures that a node waits at least one 

superframe before it synchronizes. This should help prevent unnecessary 

switches between GNSS based and mutual synchronization in the hybrid 

algorithm. Simulations performed on a fully connected static (without node 

movement) network with 10 nodes uncovered a problem with this value. As 

Figure 17 shows, this value (Ni=9) causes the algorithm to converge towards a 

high and stable value. Figure 17 also show that this happens for multiples of 

Ni=number of nodes-1 (Ni=18). Other Ni values do not show this tendency. 

Additional simulations were performed with different sized networks, and this 

confirms that this happens for networks of all sizes.  

.     

 

FIGURE 17: EFFECT OF NI FOR A STATIC NETWORK OF 10 NODES 

The tendency to converge towards a high and stable value when 

Ni=number of nodes-1 was studied in more detail by doing a number of 

simulations on a fully connected network of 10 nodes. A closer inspection of the 

simulation results shows that only some of the iterations converge towards a 

high and stable value for networks with 10 nodes and Ni=9. This is shown in 

Figure 18.   



        57 
 

 

FIGURE 18: 10 ITERATIONS OF NETWORKS WITH 10 NODES AND N I=9 

Several additional simulations were performed to try to find an 

explanation for this behavior of Ni=Number of nodes-1. These simulations gave 

no conclusive answer, but the tendency disappears if node movement is enabled 

or for static networks with delay compensation. Further simulations might 

reveal the exact cause of this behavior. This is time consuming and not 

performed in this thesis. Based on this, Ni=Number of nodes-1 should be 

avoided as much as possible. A close inspection of all 200 iterations of a 

simulation with 10 nodes and Ni=10 shows stable results without a tendency to 

converge towards high value. Therefore, Ni=number of nodes is selected as a 

basis for further simulations, and considered the lowest value of Ni that can 

fulfill Saarnisaari and Vanninens intention to keep changes between GNSS and 

mutual synchronization at a minimum.  
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Figure 19 show the amount of rejected iterations for simulations with 

Ni=number of nodes for topology 1 (above) and topology 2 (below). A high 

number of rejected iterations indicates problems with synchronizing the 

network. The figure show that the DNS algorithm manages to synchronize 

topology 1 network with few problems. The number of rejected iterations are 

low (<5% for all network sizes) and is a result of high initial relative offset. For 

topology 2 networks, the DNS algorithm experiences problems with networks 

larger than 3 nodes (more than 1 relay) where >20% of the iterations are 

rejected. Most iterations are rejected because relative offsets are higher at the 

end of the simulation than the original initial offset. These represent networks 

FIGURE 19: TOPOLOGY 1 AND TOPOLOGY 2 WITH N I=NUMBER OF NODES 
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that the algorithm were unable to synchronize and marked “SYNC” in the 

graphs. In networks with 6, 8 and 10 nodes, additional iterations were rejected 

because they had long convergence time. These are marked “CNVRG.”  

Simulations on topology 2 networks show another surprising property 

of Ni. The performance of the algorithm is inconsistent as the value of Ni varies 

with the number of nodes. Intuitively the maximum relative offset should 

increase as the network size increases (number of hops).  

 

 

 
Figure 20, which show the result of all iterations that was not rejected, 

indicates that this is not the case. The figure shows that the algorithm performs 

best when Ni is an odd value. Simulations with longer simulation time (10000 

seconds) and more iterations (500) confirms that this is not caused by few 

accepted iterations for the larger networks. The direct cause of this is not clear, 

but it is assumed that the algorithm performs better if Ni is an odd value. 

Topology 3 is even more demanding to synchronize, and more than 

90% of the iterations are rejected for a network of 20 nodes with Ni=20. For the 

remaining iterations, DNS was incapable of delivering sufficient precision 

within 1000 seconds (simulation time). Additional simulations on a topology 3 

network with 20 nodes and different values for Ni, was performed to verify if 

this reduces the number of rejected iterations. Figure 21 show that the algorithm 

performs best with Ni=3 but with some improvement for Ni=5, Ni=7, Ni=9 and 

Ni=10.           

FIGURE 20: SIMULATION RESULTS FOR TOPOLOGY 2 NETWORKS 
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FIGURE 21: TOPOLOGY 3 NETWORK WITH 20 NODES AND DIFFERENT NI 

VALUES 

The result shown in Figure 21 and Figure 19 are not enough to reject the 

DNS algorithm outright because they are a caused by extreme initial relative 

offsets (as high as 11.5 ms) and high propagation delay (as high as 60 km). 

However, the results do indicate that the DNS algorithm is unable to do network 

merge for demanding topologies even with initial relative offset <11.5 ms.   
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FIGURE 22: BOXPLOT OF SUCCESSFULLY SYNCHRONIZED ITERATIONS OF 

TOPOLOGY 3 NETWORKS WITH 20 NODES AND DIFFERENT NI VALUES 

Figure 22 is based on the same simulations as Figure 21 and shows the 

box plot of the successfully synchronized iterations. Figure 22 must be 

interpreted with the result of Figure 21 in mind because a lot of iterations are 

rejected. Figure 22 and Figure 21 show that Ni=3 or Ni=5 lead to best precision 

in NBWF. Ni=1 should not be used be due to extremely high numbers of 

rejected iterations.  

The fact that DNS performs best with Ni=3 is supported by Figure 23 

and Figure 24. Figure 23  show simulation results of a topology 2 network with 

5 nodes and varying values of Ni. Figure 24 show a topology 1 network with 10 

nodes and varying values for Ni. These results show that Ni=3 is the best value 

for the DNS because it provides better precision and shorter convergence time. 

The downside of using this value is that it will cause more switches between 

GNSS based and mutual synchronization when DNS is used by the hybrid 

algorithm. The switches between GNSS based and mutual synchronization will 

cause some fluctuations in time for the nodes involved. However, this should be 

preferred over the asynchronization caused by long convergence time 

introduced by high Ni values needed to avoid switches in the hybrid algorithm. 

Ni=3 seems to provide the best performance for complex networks (topology 3) 

and this value will be used for all subsequent simulations.  

 



62 
 

 

 

FIGURE 23: TOPOLOGY 2 NETWORK WITH 5 NODES AND DIFFERENT NI 

VALUES 
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FIGURE 24: TOPOLOGY 1 NETWORK WITH 10 NODES AND DIFFERENT NI 

VALUES  
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5.4.2. DNS ALGORITHM IN TOPOLOGY 1 

 

FIGURE 25: REJECTED ITERATIONS (TOPOLOGY 1) 

Topology 1 is simulated for up to 50 nodes with a simulation time of 

5000 seconds and 200 iterations. The number of simulations and simulation 

time provides enough to estimate confidence intervals with a confidence level of 

99%. All simulations are performed with moving nodes and Ni=3. Figure 25 

show the amount of rejected iterations for topology 1 networks with maximum 

initial relative offset <11.5 ms. About 4% of the iterations are rejected for 

networks of 5 nodes or more when the maximum initial relative offset is 11.5 

ms. These iterations are rejected because they fail to synchronize the network 

due of high initial relative offset. This is supported by the fact that no iterations 

are rejected when the maximum initial relative offset is reduced to 1 ms.  
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Realtime (Microseconds) 

FIGURE 26: CONVERGENCE FOR NETWORKS WITH 50 NODES (TOPOLOGY 1) 

Figure 26 show the mean value and 99% confidence interval for the 

maximum relative offset for all networks of 50 nodes. In addition to this, Figure 

26 also shows the percentage of networks that have all node pairs within a 

maximum relative offsets of 1 ms. A network size of 50 nodes is chosen 

because this is the most demanding network simulated and smaller networks are 

expected to have even better performance. These two graphs give a clear view 

the transient period, convergence and performance of the DNS algorithm.  

In Figure 26, the graphs show that the DNS algorithm is stable after 

convergence with no asynchronism because 100% of the networks have a 

maximum relative offset better than 1 ms. All networks converge to a value 

below 0.4 ms after about 10 seconds (1*107 μs). One more point of interest is 

that Figure 26 show the effect of node movement. The maximum relative offset 

reaches a minimum value before it starts to increase again. These minimum 

values are separated by 10 seconds (1*107 μs), which is the same value as the 

interval between node movements.  
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FIGURE 27: MAXIMUM RELATIVE OFFSET WITH 99% CONFIDENCE 

INTERVAL (TOPOLOGY 1) 

Figure 27 show the estimated stationary maximum relative offset for 

topology 1 networks. The stationary value is found by removing the transient 

period. Based on the 10 s convergence time found in Figure 26, and with a 

safety margin, the transient period used by Mathematica is increased to 20s. The 

DNS algorithm is able to achieve a precision that is well within 1 ms for all 

simulated network sizes, with the exception of the rejected iterations shown in 

Figure 25. There is a small inconsistency in the simulation results for networks 

with 10 and 20 nodes. A larger difference between the estimated results for 

these two network sizes is expected. An increase in the number of iterations 

yields the same result, and the cause of this is unknown. Additional simulations 

show that this tendency is not as dominant for other values of Ni, and it is 

concluded that the DNS algorithm supports topology 1. It is also concluded that 

the DNS algorithm is capable of performing network merge for most topology 1 

networks as long as the initial relative offset is below 11.5 ms. 
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5.4.3. DNS ALGORITHM IN TOPOLOGY 2 

 

FIGURE 28: REJECTED ITERATIONS (TOPOLOGY 2)  

Topology 2 is simulated with network sizes up to 10 nodes. A network 

of 10 nodes represents two nodes connected via 8 relays and a network size of  

4 represents two nodes connected via 2 relays. The simulation time is increased 

to 10000 seconds to account for the possibility of longer transient periods. 

Figure 28 show the amount of rejected iterations for topology 2 networks when 

maximum initial relative offset is as high as 11.5 ms. About 15% of the 

iterations are rejected for a network with two relays (4 nodes). The amount of 

rejected iterations increases with the number of relays. This shows that the DNS 

algorithm has difficulty merging networks with 3 or more relays, even if the 

maximum initial relative offset is <11.5 ms. As for topology 1, no iterations are 

rejected if the maximum initial relative offset is reduced to 1 ms. The following 

results are estimates of simulations with a maximum initial relative offset of 

1ms. 
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Realtime (Microseconds) 

FIGURE 29: CONVERGENCE FOR NETWORKS WITH 6 NODES (TOPOLOGY 2) 

Figure 29 show the mean value and 99% confidence interval together 

with the percentage of asynchronous nodes for networks with 6 nodes and 

maximum initial relative offset of 1 ms. This shows that all the networks 

converge to about 0.2 ms after about 20 seconds.  

 
     Realtime (Microseconds) 

FIGURE 30: CONVERGENCE FOR NETWORKS WITH 10 NODES (TOPOLOGY 2) 
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Figure 30 show simulations of topology 2 networks with 10 nodes. In 

this figure, it becomes apparent that DNS struggles as it is unable to provide a 

precision better than 1 ms for some networks. Convergence time has also 

increased to 100 seconds. As a result, transient period is set to 200 seconds for 

the remaining estimations, where the stationary values are estimated. 

 

 

FIGURE 31: MAXIMUM RELATIVE OFFSET WITH 99% CONFIDENCE 

INTERVAL (TOPOLOGY 1) 

Figure 31 shows the estimated relative offset for topology 2 networks 

when maximum initial relative offset is below 1 ms. All values are well within 

the 1 ms requirement of NBWF. The simulation results in Figure 29 and Figure 

31 show that DNS can support at least 4 relays (6 nodes) and that it might be 

able to synchronize larger networks depending on initial parameters. This 

should be sufficient for most NBWF networks because TDMA collisions 

become more and more unlikely as the number of relays increases.  
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5.4.4. DNS ALGORITHM IN TOPOLOGY 3 

 

FIGURE 32: REJECTED ITERATIONS (TOPOLOGY 3) 

As mentioned in section 5.3, topology 3 is only simulated for a network 

of 20 nodes. Simulation time is kept to 10000 seconds, and the number of 

iterations is increased to account for possible lost iterations. Simulation results, 

presented in Figure 32, show that over 70% of the iterations are rejected. As a 

result, it is concluded that the DNS algorithm is unable to merge topology 3 

networks. An external network merge mechanism must be used, even if the 

maximum initial relative offset is below 11.5 ms. As for the two other 

topologies, no iterations are rejected when the maximum initial relative offset is 

reduced to 1 ms. This relative offset was used in the rest of the topology 3 

simulations. 
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Realtime (Microseconds) 

FIGURE 33: CONVERGENCE FOR NETWORKS WITH 20 NODES (TOPOLOGY 3) 

Figure 33 shows mean value and 99% confidence interval for the 

maximum relative offset and the percentage of networks with maximum relative 

offset below 1 ms. The figure show that the networks reaches a mean value of 

about 0.7 ms with a confidence interval below 1 ms. However, the second graph 

show that the DNS algorithm does not manage to keep all the nodes in all 

networks within a maximum relative offset of 1 ms. About 80% of the networks 

have precision better than 1 ms for all nodes. In the remaining 20% of the 

network, one or more pair of nodes have relative offset above 1 ms, even if the 

confidence interval is below 1 ms. Figure 33 shows that the DNS algorithm 

manages to synchronize most, but not all, topology 3 networks when maximum 

distance as high as 60 km between each node is allowed.  

The networks shown in Figure 33 can potentially cover distances over 

200 km when 2 relays are used. From a military point of view, the probability 

that a topology 3 NBWF network cover over 60 km is low. In addition to this, 

the chances of TDMA collision are small when nodes are separated by such 

distances. Because of this, topology 3 is simulated with maximum distances of 

15 km to check if the DNS algorithm manages to provide sufficient precision 

for all nodes.   
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Realtime (Microseconds) 

FIGURE 34: CONVERGENCE FOR NETWORKS WITH 20 NODES AND 

MAXIMUM DISTANCE OF 15 KM (TOPOLOGY 3) 

Figure 34 show topology 3 networks with maximum distances of 15 km 

between each node pair. The result show that the network converges towards a 

value below 0.2 ms after about 65 seconds (6.5*107 μs). This shows that DNS 

can support the NBWF requirement of a precision of 1 ms in topology 3 as long 

as the total distance covered are lower than 60 km. This is also supported by 

Figure 35 which show that the estimated maximum relative offset is about 0.19 

ms. 
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FIGURE 35: MAXIMUM RELATIVE OFFSET WITH 99% CONFIDENCE 

INTERVAL (TOPOLOGY 3) 
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5.4.5. DNS ALGORITHM IN A RANDOM TOPOLOGY 

The specific conditions introduced by the different topologies affect the 

simulation results shown in sections 5.4.2 to 5.4.4. Random topologies (random 

connection matrices) are simulated to provide estimates of maximum relative 

offset for more normal NBWF network situations. These networks are similar to 

topology 1 networks, but they will not be fully connected. All simulations are 

performed with node movements every 10 seconds. Initial simulations are 

performed with a random topology that is created at startup and kept unchanged 

throughout the entire simulation.   

Random topologies is created by drawing random values for the 

connection matrices.  Each node pair will have a 95% change of connection. A 

consequence is split network topologies that it is impossible to synchronize. 

Iterations representing these network topologies will be treated by Mathematica 

in the same way as other iterations that fail to synchronize. These iterations will 

be rejected because some of the local clocks will diverge from each other 

instead of being synchronized. 

 

FIGURE 36: REJECTED ITERATIONS (RANDOM TOPOLOGIES HIGH INITIAL 

RELATIVE OFFSET) 
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FIGURE 37: REJECTED ITERATIONS (RANDOM TOPOLOGIES LOW INITIAL 

RELATIVE OFFSET) 

Figure 36 and Figure 37 show rejected iterations for a network with 

random initial topologies. For these simulations, the initial topology is kept 

constant during the entire simulation. This shows the effect of networks that are 

not fully connected. For network sizes from 5 to 50 nodes, the amount of 

rejected iterations is increased from around 4% to values from 6% to 10%. The 

increase in rejected iterations is a result of node pairs without connection 

creating networks that are more difficult to converge. For networks with 2 

nodes, the amount of rejected iterations has increased from 0% to 5%. Figure 37 

show that all networks with 5 to 50 nodes are synchronized when the initial 

relative offset is reduced to 1 ms. In addition to this, there are some changes in 

the number of rejected iterations for a network with 2 nodes that must be 

explained by a closer inspection of the results.  

First of all, the small amount of networks labeled “CNVRG” in Figure 

37 is a result of networks without connections and node pairs with relative rate 

close to 1. These nodes will slowly diverge from each other but has not reached 

a relative offset above 11.5 ms when the simulator ends. These two nodes do 

not communicate, but the low difference in the relative rate keep the local 

clocks close together. There are no networks labeled “CNVRG” in Figure 36 

because the high initial relative offset causes a relative offset above 11.5 ms in 

all networks that fails to sync. The second important point to observe is that the 

total amount of rejected iterations are lower for networks with high initial offset 
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(4,5%) than for networks with low initial offset (5%). Intuitively, there should 

have been 5% split topologies and rejected iterations in both cases (Because 

there are 95% chance of connection). The difference is a result of the low 

number of iterations used. 200 iterations are not enough when a Bernoulli 

distribution with P=0.95 is used. Unfortunately, this was discovered too late to 

perform additional simulations. 

 
Realtime (Microseconds) 

FIGURE 38: CONVERGENCE FOR NETWORKS WITH 50 NODES (RANDOM 

TOPOLOGY) 

Figure 38 shows the mean relative offset and 99% confidence interval 

of a network with 50 nodes. The DNS algorithm converges towards a value 

from 0.4 to 0.6 ms, which is well within the NBWF requirement. The effect of 

node pairs without connection is clearly seen when compared to Figure 26 as 

the mean value is higher. In addition to this, the confidence intervals are larger. 

The result is that more variations in precision must be expected in networks 

with random topologies than in fully connected networks. Convergence time has 

increased from <10 seconds for fully connected networks to about 30 seconds 

for random topology networks. 

Figure 38 also show the percentage of networks with all nodes within 

the NBWF requirement of 1 ms. This graph shows that the DNS algorithm 

struggles keeping relative offset of all nodes in all networks within 1 ms. The 

algorithm manages to achieve sufficient precision before the nodes starts to 
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diverge from each other. This is probably caused by the combination of node 

movement and node pairs without connections.  

 

 
Figure 39 shows estimated maximum relative offset for networks with a 

random topology that is static throughout the simulations. This figure show that 

the effect of the random topology is higher mean offsets with wider confidence 

intervals when compared to similar topology 1 networks. This is the same effect 

as is shown in Figure 38. 

The last simulation is performed with a changing topology where new 

topologies (connection matrices) are created about 1000 seconds apart to 

simulate the effect of changing terrain etc. Simulations was performed for 200 

iterations and the result was evaluated by Mathematica. However, the output of 

the graph became unreadable when all 200 iterations was included because the 

sample mean of the maximum relative offset start to increase without a bound 

after a topology change. This was probably caused by maximum relative offsets 

that increases without bound when networks fail to synchronize, and these 

increasing relative offsets dominates the sample mean.  

There was little time left to study these networks in detail and an output 

based on a selection of 25 iterations is included to show what changes in 

topologies might look like. Figure 40 shows the second topology change at 

about 2000 seconds (2*109 μs) for a network of 50 nodes. The change in 

topology results in a period of 30 seconds with higher maximum relative offset 

before the DNS algorithm manages to bring the maximum relative offset back 

to the same values as before.  

FIGURE 39: MAXIMUM RELATIVE OFFSET WITH 99% CONFIDENCE 

INTERVAL (RANDOM TOPOLOGY) 
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Realtime (Microseconds) 

FIGURE 40: RANDOM CHANGE IN TOPOLOGY FOR A NETWORK WITH 50 

NODES 

The effect of topology changes must be studied further if the DNS 

algorithm is selected for NBWF. Except from that, the simulations described in 

section 5.4.5 show that the DNS algorithm supports random topologies, even if 

it struggles with a few percent of the networks with 50 nodes.  
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SUMMARY OF DNS SIMULATION RESULTS 

Topology Supports 

NBWF 

Can merge 

networks 

with 

maximum 

offset 

<11.5ms 

Convergence 

time 

Maximum 

network size 

with 

maximum 

initial 

relative  

offset 1 ms. 

(Maximum 

tested) 

1 Estimated 

relative 

offset < 0.4 

ms 

< 4% 

rejected 

iterations 

< 10 seconds 50 (50) 

Nodes 

2 Estimated 

relative 

offset 

<0.2ms (4 

relays) 

<3 relays < 20 seconds 

(4 relays) 

4 (8) Relays 

3 Guaranteed 

for networks 

covering <60 

km 

(including 

relays) 

NO < 65 seconds 20 nodes in 

two clusters 

separated by 

2 relays. 

Random Slight 

problems 

with 50 

nodes. 

Estimated 

relative 

offset <0.5 

ms 

< 10% 

rejected 

iterations 

< 30 seconds 50 (50) 

Nodes 

TABLE 7: PERFORMANCE OF THE DNS ALGORITHM 

Table 7 show the simulated performance of the DNS algorithm in 

NBWF networks. The simulation results show that the algorithm manages to 

synchronize NBWF networks as long as Ni=3. The table also show that the 

DNS algorithm uses less than 65 seconds to converge any of these networks.  

Based on the simulation results, the following should be considered if the DNS 

algorithm is used in NBWF: 
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 The DNS algorithm must be used with low values for Ni to have 

sufficient performance for NBWF. Higher values of Ni lead to 

problems with both precision and convergence.  

o This influences the hybrid algorithm as a low value of 

Ni will cause more shifts between GNSS and mutual 

synchronization. While a high value cause severe 

problems with convergence and precision.  

 All simulations are performed with all SF slots utilized 

and error free. This interval is short enough to ensure 

synchronization, but additional simulations are needed to find 

the maximum interval tolerated. This must also include the 

effect of errors in SF slots. 

The simulation results also show that the DNS algorithm needs 

mechanisms for merge of complex networks even if the initial relative offsets 

are below 11.5 ms. The need for these additional network merge mechanisms is 

increased when compared to other algorithms because the DNS algorithm lacks 

the ability to synchronize the rates. This will cause the local clocks to diverge 

faster from each other when communication is lost. It is apparent that 

algorithms that synchronize rate will perform better and lead to fever network 

merge cases. 

 Originally the plan was to perform more simulations on the DNS 

algorithm in combination with the hybrid algorithm. Unfortunately, the 

implementation and simulation of the DNS algorithm uncovered several issues 

that raised questions about the use of the algorithm in NBWF. These issues do 

not fully disqualify the DNS algorithm as a candidate for NBWF, but they make 

it probable that there are better algorithms that could be used in combination 

with a hybrid algorithm. These issues are: 

 Saarnisaari and Vanninen did not go into detail when they described the 

reason for selecting the DNS algorithm to be used in combination with 

the hybrid algorithm [32]. There is several other mutual synchronization 

algorithm that they could have used. 

 The DNS algorithm can synchronize the offset only and leaves the 

clock rate unchanged. While a synchronization of the clock rate is not 

an absolute necessity, it would help maintain better accuracy and 

precision over periods without communication. This will lead to less 

use of network merge mechanisms. The ability to synchronize rate will 
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also lead to use of fewer beacons to maintain synchronization in an 

NBWF network. 

 The effect of different sizes of the DNS parameter Ni is not documented 

in detail in the original work of Saarnisaari [31]. In addition, the 

findings in section 5.4.1 still leaves some uncertainties about the effect 

of this parameter. 

 The original DNS algorithm is created without a timer that can be used 

to force synchronization in cases with long time difference between 

each synchronization point [31]. This can lead to long convergence time 

and in some cases unnecessary loss of synchronization. This is 

accounted for in some extent by the implementation of a timer in the 

hybrid algorithm, but it is still a weakness of the original DNS 

algorithm.  

o Other algorithms, such as KFMP [34] and the algorithm 

described by Tjoa et al. [35], use a timer or other mechanisms 

for this purpose. 

 The simulations are performed with data in all SF slots. Networks with 

few utilized SF slots or heavy loss of slots make it even more difficult 

for the DNS algorithm to converge and reach a sufficient precision.  

Some of these issues might be improved when the DNS algorithm is 

used in combination with the hybrid algorithm. Further simulations to find 

optimal values of the DNS parameters Ni, h and α might also improve precision 

and convergence. Even with these improvements it is believed that the DNS 

algorithm will need to utilize almost all SF slots to ensure that the algorithm 

manages to converge all NBWF networks. In addition to this, it is probable that 

the Ni value must be kept low even if the hybrid algorithm provides a timer. As 

a consequence of this, the next section investigates other algorithms that can 

replace the DNS algorithm.  
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5.4.6. SIMULATION OF THE CS-MNS ALGORITHM 

Three of the algorithms mentioned in section 3.4 are potential 

candidates to replace DNS in the lower layer of the hybrid algorithm. The 

algorithm described by Tjoa et al. and the KFMP algorithm are both mutual 

algorithms that could replace the DNS. In addition to this, the CS-MNS 

algorithm can be used if hybrid algorithm can tolerate periods of frequent shifts 

between GNSS based synchronization and mutual synchronization. Ability to 

synchronize rate is preferred because this can be used to increase the maximum 

allowed distance between active SF slots and help maintain synchronization for 

longer periods without communication. Both the KFMP algorithm and the CS-

MNS algorithm have the ability to synchronize rate, but the CS-MNS algorithm 

is chosen for simulation because it is much simpler to implement. The CS-MNS 

algorithm is simulated for all topologies with a maximum initial relative offset 

of 1 ms, and the results are compared with similar networks utilizing the DNS 

algorithm.  

 

FIGURE 41: COMPARISON BETWEEN DNS AND CS-MNS ALGORITHM IN 

TOPOLOGY 1 NETWORKS.  
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FIGURE 42: COMPARISON BETWEEN DNS AND CS-MNS ALGORITHM IN 

NETWORKS WITH RANDOM TOPOLOGIES 

Figure 41 and Figure 42 show comparisons of the two algorithms for 

topology 1 networks and networks based on random topologies. Both figures 

show that the CS-MNS algorithm achieves better precision when the network 

size increases beyond 5 nodes.  

 
Realtime (Microseconds) 

FIGURE 43: CONVERGENCE FOR NETWORKS WITH 50 NODES (CS-NMS 

TOPOLOGY 1) 
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Figure 43 shows that the CS-MNS algorithm manages to converge 

topology 1 network with 50 nodes to a stable value after about 30 seconds. For 

these networks the DNS algorithm (shown in Figure 26) manages faster 

convergence.  

 
Realtime (Microseconds) 

FIGURE 44: CONVERGENCE FOR NETWORKS WITH 50 NODES (CS-NMS 

RANDOM TOPOLOGY) 

Figure 44 shows that CS-MNS manages to converge random topology 

networks with 50 nodes at about 30 seconds. The results in Figure 43 and Figure 

44 show that CS-MNS the introduction of node pairs without connections only 

causes a slight increase in the convergence time. In addition to this, CS-MNS 

manages to maintain a precision better than 1 ms for all networks with random 

topology. The DNS algorithm has more problems with random topologies as it 

was unable to maintain a precision better than 1 ms for all random topology 

networks of 50 nodes (shown in Figure 38). This indicates that the CS-MNS 

algorithm are more robust to node pairs loosing connection.     
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FIGURE 45: COMPARISON BETWEEN DNS AND CS-MNS ALGORITHM IN 

TOPOLOGY 2 NETWORKS 

 

 

FIGURE 46: COMPARISON BETWEEN DNS AND CS-MNS ALGORITHM IN 

TOPOLOGY 3 NETWORKS.  

Figure 45 and Figure 46 show comparisons of estimated maximum 

relative offset between DN and CS-MNS algorithm for topology 2 and topology 

3 network. The results show that both algorithms achieves the required 
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precision, but the DNS algorithm has a better precision in both these algorithms. 

The CS-MNS algorithm manages to converge topology 2 networks after about 

30 seconds (not presented) this is slightly slower than the 20 seconds needed by 

the DNS algorithm. For topology 3(not presented), the CS-MNS algorithm and 

DNS algorithm have similar performance as both algorithms manages to 

converge the networks at about 60 seconds.  

The simulation results are inconclusive However, there are additional 

factors that make it probable that CS-MNS is a better choice than DNS for 

NBWF networks: 

 All simulations are performed with all SF slots utilized and 

error free. The result is short synchronization intervals, and the 

positive effect of rate synchronization becomes small. It is 

expected that the DNS algorithms ability to synchronize will be 

affected much more seriously than the CS-MNS algorithm 

when errors and long intervals between SF slots are introduced. 

This makes the CS-MNS algorithm more robust than the DNS 

algorithm. 

 Additional simulations (not presented) with all SF slots enabled 

show that CS-MNS performs better than DNS, in all topologies, 

if a Ni value other than 3 is chosen.  

 The CS-MNS is much simpler to implement, uses fewer 

parameters and is easier to control than the DNS algorithm. The 

CS-MNS algorithm does not show the same tendency to 

produce unexpected results as the DNS algorithm does with 

varying values of Ni. 

 The DNS algorithm need only a single pair of synchronization 

point to synchronize. This should ensure faster convergence 

when errors are introduced to the network. 

Based on this, CS-MNS should be preferred together with the hybrid algorithm 

for NBWF.    
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6. DISCUSSION 
This thesis has surveyed a number of works related to sensor network 

and ad hoc networks to find potential synchronization algorithms for NBWF. 

The survey showed that most of the algorithms are unsuited for NBWF because 

there is no practical way to make them work without dedicated messaging. In 

addition to this, the requirement for a robust algorithm further limits the number 

of suitable algorithms.  

All the potential algorithms found in the survey are based on one-way 

message exchange. These algorithms provides synchronization, but lacks the 

ability to compensate for propagation delays. The result of this is that the 

precision of the algorithms available for NBWF will be limited by the 

propagation delay. This is a result of choice to synchronize without dedicated 

synchronization messages and cannot be corrected by choosing another 

algorithm. Regardless which algorithm is chosen, NBWF will lack delay 

compensation.  

Initially it was assumed that there existed a form of intelligent 

algorithms. The idea was that information such number of neighbors and data 

activity could be used to make an intelligent decision about nodes used for 

synchronization. The survey showed that mutual synchronization algorithms, 

such as CS-MNS, lacks this ability altogether. Other algorithms based on ad hoc 

structures, such as FTSP, used simple parameters such as node ID and network 

ID to select master nodes.  

The mutual algorithm does not need this intelligence as they are 

designed to synchronize with the result from all nodes, but the lack of such 

ability is more of a surprise in algorithms using ad hoc structure. In networks 

with an ad hoc structure it would be preferable to use a master with a lot of 

neighbors instead of a master with few neighbors several hops away from the 

core of the network. One reason for the lack such algorithms might be that 

authors mainly have focused on new techniques to avoid collision between 

synchronization messages. Another reason might be that the ability to 

synchronize based on these choices add complexity to the algorithms. The work 

of Saarnisaari and Vanninen is the only suitable algorithm that uses this form of 

intelligent decision. However, the DNS algorithm used for synchronization is a 

simple mutual algorithm. Saarnisaari and Vanninen only use more complex 

decisions for functions such as network merge and late entry which is performed 

by a dedicated mechanism and not the DNS algorithm.    

The survey shows that the hybrid algorithm suggested by Saarnisaari 

and Vanninen is the best choice for NBWF. This algorithm should be able to 
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fulfill all NBWF requirements. In the hybrid algorithm, synchronization of 

networks without GNSS capable nodes are performed by the DNS algorithm. 

This algorithm is fundamental for NBWF because it ensures the robustness of 

the hybrid algorithm. Because of this, simulations were performed with the 

DNS algorithm to show how it performed in NBWF networks. 

The simulation result showed that the DNS algorithm can be used to 

synchronize NBWF networks. The algorithm was capable of delivering 

sufficient precision and convergence as long as the DNS parameter Ni is set to a 

fixed low number. This parameter controls the number of messages received 

before the algorithm estimates a new global time and adjust the local clock. Ni 

is an important parameter when the DNS algorithm is used in the hybrid 

algorithm because the authors intended to use large Ni values to avoid 

unnecessary switches between GNSS based synchronization and mutual (DNS) 

synchronization.  

Although Saarnisaari and Vanninen experienced long convergence time 

when they simulated the DNS algorithm together with the hybrid algorithm [32] 

they assumed that they could use a control channel to increase the number of 

synchronization messages. These messages could be used to help the DNS 

algorithm converge faster and enable larger values of Ni. In NBWF, it is not 

possible to increase the number of synchronization messages as the simulations 

were performed with all SF slots in use. The only way to ensure the DNS 

algorithms ability to synchronize is to allow frequent shifts between GNSS and 

mutual synchronization by allowing lower Ni values. 

The fact that the DNS algorithm must use low Ni values together with 

other issues described in chapters 4 and 5 made it apparent that other algorithms 

might fit better with NBWF. While not absolutely critical, the ability to 

synchronize rate is beneficial to NBWF because this enables the network to 

survive longer periods without communication. Because of this, the algorithm 

replacing DNS should provide synchronization of both offset and rate and the 

CS-MNS algorithm was chosen.  

The actual simulation results were inconclusive, but the CS-MNS 

algorithm is preferred over the DNS algorithm based on an overall assessment 

of the simulation results and the algorithms capabilities. For NBWF, it is 

recommended that the hybrid algorithms ability to switch automatically between 

GNSS based and mutual synchronization is combined with the CS-MNS 

algorithms ability to use the SF slots for effective synchronization. This should 

provide a foundation that could be used to create a robust and effective 

algorithm for NBWF. This combination is capable of delivering sufficient 
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convergence time, precision and accuracy without using dedicated 

synchronization messages.  
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7. CONCLUSION 
Synchronized local clocks are crucial to avoid collision of TDMA slots. 

Collision can be avoided by utilizing synchronization algorithm that can ensure 

precision better than 1 ms. In addition to this, NBWF requires that the 

synchronization algorithm must achieve this without using dedicated 

synchronization messages. A study of NBWF showed that correct reception of 

messages inside SF slots can be used to generate two synchronization points 

that can be used by the synchronization algorithm. The use of these messages 

makes it possible to utilize synchronization algorithms created for one-way 

message exchange to synchronize NBWF nodes without transmitting actual 

timestamps.  

Potential algorithms were surveyed to find algorithms suited for NBWF. 

These algorithms were evaluated based on their ability to function in NBWF 

without the need for dedicated synchronization messages. In addition to this, 

abilities to support node mobility, multiple hops and use external reference time 

were key factors to find the best solution for NBWF. The hybrid algorithm 

described by Saarnisaari and Vanninen was selected for further study, based on 

the evaluation of potential algorithms. 

The hybrid algorithm utilizes GNSS capable nodes for synchronization 

if available or mutual synchronization through the DNS algorithm if no GNSS 

capable nodes are available. Saarnisaari and Vanninens work indicated that 

GNSS based synchronization should work well with NBWF while the DNS 

algorithms ability to function in NBWF was uncertain. Simulations performed 

on the DNS algorithm show that it is possible to configure the DNS algorithm to 

deliver sufficient precision for NBWF networks. However, the simulation 

results together with an overall assessment of the DNS algorithm made it likely 

that other mutual algorithms are better suited for NBWF. 

 The CS-MNS algorithm was selected as a replacement for the DNS 

algorithm, and additional simulations were performed to check how the CS-

MNS algorithm performed in NBWF networks. These final simulation results 

together with the overall assessment of the two algorithms made it clear that the 

combination of CS-MNS and the hybrid algorithm is the best basis for 

synchronization in NBWF networks. In addition to this, the simulations gave 

insight into the following NBWF issues: 

 Maximum time between SF beacons: Synchronization is based on correct 

reception of messages in SF slots. The only guaranteed transmission inside 
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SF slots is a single beacon transmitted every superframe. This is enough to 

maintain synchronization.  

 Accuracy of clocks: All simulations are performed with clocks that have a 

skew between -5 and 5 ppm. The simulations show that NBWF will work as 

long as the clocks have skews within this bound.  

 Precision of network affiliation and coarse synchronization: Simulation 

results show that the algorithms manages to synchronize the networks as 

long as coarse synchronization has a precision of 1 ms or better.  

 Convergence: The CS-NMS algorithm is capable of converging all 

simulated networks within 60 seconds.  

7.1. FUTURE WORK 
Because of the limited time available to this thesis, there are still several 

unfinished aspects around the combination of CS-MNS algorithm and the 

hybrid algorithm that should be studied further: 

 The CS-MNS algorithm is only simulated separately without the hybrid 

algorithm. Further simulations should be performed where the combination 

of both algorithms are used. Important factor to consider for these 

simulations are: 

o Performance of GNSS based synchronization in NBWF. 

o The overall effect on precision caused by frequent changes between 

GNSS based synchronization and mutual synchronization. 

o The effect of errors and lost SF slots. 

o The amount of SF beacons (active SF slots) required to provide 

sufficient convergence. 

o The effect of topology changes. 

 A study of the effect of including MV, DU and GU in the synchronization. 

Use of these slots could potentially speed up convergence. 
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APPENDICES 

A. NBWF REFERENCE MODEL 

 

FIGURE 47: NBWF REFERENCE MODEL  
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B. RESULT OF SIMULATOR VALIDATION 
Mathematically it can be shown that the values of the different 

synchronization points P# can be expressed by a1, a2 and tk, when tk and β are 

known. This gives the following equations, solved in Mathematica: 
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This gives the following points:  
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FIGURE 48: SIMULATED AND CALCULATED DATA 

Figure 48 shows simulated data represented by the two lines and the 

points P0 to P8 represented by the red dots. The points were calculated in 

Mathematica with values β=0.2 and tk =10000. The same values were also used 

in the simulations. It becomes apparent that the synchronization points are equal 

to the simulated data because the points and the graphs come together. This is 

expected and also shown in Figure 13.  

The straight line through synchronization points, of a specific node, can 

be described by finding the slopes. The equation for the slopes are given below: 

Slope for N1 synch points, P1 to P3:    
      

     
 

 

(36) 

Slope for N2 synch points, P2 to P4:    
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 The equations for the straight lines through P0 and synchronization 

points are: 

Line through sync points of N1 :              
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Line through sync points of N2:               
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FIGURE 49: THE CONNECTION BETWEEN SYNCHRONIZATION 

POINTS 

Figure 49 shows the same simulated data as in Figure 48 and the 

straight lines through the synchronization points. This confirms the linear 

connection between these points. These lines also shows that the clocks of both 

nodes will slowly drift away from real time. 

It can be proven that the relative offsets at each synchronization point, 

for an individual node, are constant values. The equations for the relative offsets 

are: 
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The following equations, solved in Mathematica, shows that the relative 

offsets of the synchronization points for each node are equal: 
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Simulated data confirms this and shows that the relative offset at each 

synchronization point is constant for each node. 


