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Abstract

Theoretical analysis and computational modeling of neurons are tools used to get
a better understanding of the nervous system — an understanding which hope-
fully shortens the path to finding treatments, cures, and ways to prevent problems
related to nervous disorders.

This study aims to understand and explain how neural cells function and com-
municate by studying head direction (HD) cells. These cells are cells that assist
with spatial orientation and are selected due to the availability of real data sets,
collected from freely moving mice. From a selection of HD cells, specific criteria
were placed on the data set, extracting parts for further inspection. A search for
a common model capable of describing the response of an HD cell was conducted,
using patterns describing the discharge of said HD cell. In addition to trying to
find a model using already existing spiking neuron models, it was tested to see
if it is possible to classify the angle of the head by looking at the same response
recordings as for the model. The last task was explored using a machine learning
approach with long short-term memory networks, commonly used for classifying
sequences.

The Izhikevich spiking neuron model was chosen as the model of investigation
because of the combination of being biologically plausible as well as computation-
ally simple. Additionally, this model requires little to no alterations to the model
or data set prior to the analysis. It was possible to approximate the model to
parts of the neural responses using the model, but a general model describing the
complete response of an HD cell was not found.

When using long short-term memory networks to classify spiking sequences to
the direction of the head according to the data set, some results show promise.
The response from a single HD cell alone does not contain enough information to
use the method described in this report, while the neural net can distinguish be-
tween some directions when combining the response from several HD cells; about
10◦ ± 30◦.
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Sammendrag

Teoretisk analyse og modellering av nevroner er verktøy brukt til å gi en bedre
forståelse av nervesystemet — en forståelse som forhåpentligvis forkorter veien til
å finne behandlingsmetoder og kurer, samt måter å forhindre problemer relatert
til sykdommer i nervesystemet.

Ved å studere hoderetningsceller ønsker denne studien å gi forståelse, samt beskrive
hvordan nerveceller fungerer og kommuniserer. Hoderetningsceller er celler som
bistår med romlig orientering. Disse er valgt grunnet tilgjengelighet av ekte data
samlet fra frittgående mus. På et utvalg av hoderetningscellene ble bestemte kri-
terier benyttet for å velge ut data for videre bearbeidelse. Det ble gjort forsøk på å
identifisere en generell modell som kan beskrive utladningene av hoderetningscel-
lene. I tillegg ble det samme datasettet testet for å se om det er mulig å klassifisere
hoderetningen. Det siste problemet ble undersøkt ved hjelp av en maskinlæringstil-
nærming med ‘long short-term memory’ nettverk, ofte brukt til klassifisering av
sekvenser.

Izhikevich nevronmodell ble valgt som utgangspunkt for videre undersøkelser et-
tersom den er biologisk plausibel og kan beregnes enkelt. I tillegg kreves det få
tilpasninger av både modell og datasett før videre analyse. Det var mulig å mod-
ellere deler av nevronresponsen, men det var ikke mulig å lage en generell modell
som gir en komplett beskrivelse av hoderetningscellene.

Klassifisering av fyringssekvensene til hoderetningene ved å bruke ‘long short-
term memory’ nettverk på datasettet gir noen lovende resultater. Responsen fra
en hoderetningscelle inneholder alene ikke nok informasjon til å benytte metoden
beskrevet i denne oppgaven, men ved å kombinere responsen fra flere hoderetnings-
celler kan man bestemme hoderetningen med noe avvik, circa 10◦ ± 30◦.
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1 | Introduction

1.1 Motivation

Neurological disorders are diseases of the nervous system, which includes the brain,
spinal cord, and nerves [2, 3]. The term covers disorders such as Alzheimer’s and
Parkinson’s disease, epilepsy, and injuries due to head trauma [4]. Hundreds of
millions of people worldwide are affected by neurological disorders throughout their
lives, which pose a substantial burden of disease globally [4]. Some of these disor-
ders have currently no cure, and in many cases, available treatments are also poor.
In cases where parts of the nervous system are unable to communicate correctly,
artificial stimulation of the nerves mimicking the natural behavior of the nerves
can help to restore functions such as bladder control [5], limb movement [6], and
memory [7].

Neural prostheses (NPs) are external or implanted devices with the goal of restor-
ing neurological functions as the ones mentioned above. For NPs to be able to
replace neurons in the brain that no longer function properly, models able to ex-
plain the input and output relationship of neurons are essential. The knowledge
about this relationship can then be exploited by Brain-Machine Interfaces (BMIs),
which allows the brain and a machine to exchange information [8]. The success of
the NPs and the BMIs depends on the understanding of the principles of neural
signal processing, wiring, and communication.

As well as using the knowledge of how cells interact to create machines able to
communicate with neurons, this knowledge can also be used to investigate how
diseases such as Parkinson’s disease progress. Which in turn can lead to better
treatments and potential cures.

Neurons can be divided into different types, depending on their function, which
can be everything from responding to various stimuli to controlling muscles. An
example is head direction (HD) cells, which are cells that respond to the direction
of the head, and assist with spatial orientation. There are several reasons why HD
cells are interesting to study. Due to the one-dimensional HD sense, the HD cells
offers a simpler analysis than cells responding to several types of stimuli at the
same time, which can be used to develop models for more complicated cells later.
Head direction cells are found in multiple areas of the brain [9, 10, 11, 12, 13, 14],

1



INTRODUCTION

and can provide valuable knowledge that can be used to understand diseases such
as Alzheimer’s [15]. Head direction cells are also chosen as cells of interest due to
the availability of real data sets [16].

1.2 Objectives

The scope of this project is investigating the possibilities of finding a model using
existing spiking neuron models and artificial neural network models to describe the
firing patterns that can be classified to a set of directions. The main objectives
are as follows:

• To study the possibility of adapting an already existing spiking neuron model
to the response of HD cells.

• To study if it is possible to classify spike sequences from HD cells to cor-
responding angles with the use of machine learning, and in particular long
short-term memory networks.

1.3 Previous Work

There are done several studies on HD cells, ranging from their location and to-
pography [17, 12], to specific aspects related to the activity such as relation to
behaviour [18], and computational [19, 20] and sensory properties [21].

There exist multiple models able to describe the neural response. Some of them
are quite general, adaptable to several types of cortical neurons [22, 23, 24], while
others are more targeted, related to more specific types of neurons such as place
and grid cells [25], and retinal cells [26].

Multiple studies are done on the modeling of neurons in the brain related to spatial
orientation. Many of these studies use machine learning methods such as recurrent
neural networks [27, 28, 29] and reinforcement learning [30, 29, 31, 32] to look at
either grid cells, place cells or a combination, sometimes including head direction
cells. None of the studies found are directly comparable to the work done in this
study, as they all use other approaches towards other objectives.

A pre-master project was written on the same topic, looking at the possibilities of
finding a model describing the discharging of HD cells. First, common patterns
describing the discharge of each HD cell was attempted to be extracted, before the
possibilities of finding a common model were explored. Due to limitations in the
results, neither common patterns nor models were determined to be achievable in
the scope of the project.

2



INTRODUCTION

1.4 Method

One part of this work is to continue the investigation from the pre-master project
described in Section 1.3. This is done by conducting a more thorough analysis of
the available data set, before improving, adapting, and further develop the methods
used to investigate possible models able to describe the neural response of the cells.

The second part of this project is to investigate if machine learning can be used
as a tool for finding a model describing the spiking patterns of neurons. Here,
the long short-term memory (LSTM) network is used with the adam optimizer in
MATLAB.

1.5 Organization of This Report

This report is divided into seven chapters. The chapters are organized as follows:
Chapter 2 introduces some background information. If the reader already has
adequate knowledge on the topics covered in the sections of this chapter, either
sections or the whole chapter may be skipped. The first part covers some general
information on neurons, while the second part contains information on the main
topics of machine learning relevant for this project.

Chapter 3 contains specific theoretical background necessary for an understand-
ing of the topics covered in this paper. The methods considered for use as well as
the implemented methods are given in Chapter 4. There is an initial analysis of
the data set before a part on finding a model using already existing spiking neuron
models. The last part investigates how machine learning can be used as a tool to
find a way to describe the spiking of neurons.

The results obtained are given in Chapter 5, and are discussed in Chapter
6. The chapters on methods, results, and discussion of the results are divided into
similar subsections. This is done for easier readability, as well as making it possible
to read the method, the results, and the discussion of a specific topic separately,
without having to read the whole text.

Chapter 7 includes both a conclusion of the report, as well as possible future
work. The future work is both different paths to investigate, in addition to the
possible next steps, should someone wish to continue using the methods outlined
in this paper.

The Appendix includes some additional figures and tables and information about
important parameters, as well as code excerpts used for preprocessing, with an ex-
planation for some of the functions used.
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2 | Background

2.1 Neural Prostheses

Neural prostheses are devices, either external or internally implanted, using elec-
trical stimulation on nerves to restore nerve function [33]. Examples include de-
vices with the goal of restoring senses, such as cochlear [34] and retinal implants
[35], devices that can substitute a loss in motor modality such as controlling a
hand prosthesis[36] and regaining functional upper-limb movement after paralysis
[37, 38], and implants helping with cognitive modality i.e. hippocampal prosthesis
restoring memory [7].

Loss of normal nerve function can be a result of multiple traumatic injuries, and
the prognosis after such injuries can be quite poor [39]. Initially, NPs were used
in connection with severe disabilities such as amyotrophic lateral sclerosis (ALS),
spinal cord injuries and stroke, but have later been introduced for other types of
disabilities as well, such as amputees. In the future, NPs might also be used for
other purposes, such as restoration of locomotion and speech [40].

In order to translate signals between neurons and a robotic prosthesis, brain-
machine interfaces are used. Some of these BMIs can translate raw neural signals
to commands that the prosthesis can interpret, while others translate signals from
a device to something the brain understands. There are several bottlenecks as-
sociated with BMIs, ranging from biocompatibility issues for implantable devices,
development of real-time algorithms, the possibility to provide the brain with
sensory feedback from actuators, and to the knowledge of specific neurons, their
functions and the communication used [40].

Since 1963, more than 40 000 devices have been implanted to restore functions
like bladder control and respiration [33]. Early experimental demonstrations with
real-time BMIs were conducted in the late 1990’s [41] and has since become a
rapidly growing field of research.

5



Background

2.2 Neurons

Cells are the basic building blocks of living tissue, and the total number of cells in
the human body is estimated to be 3.72·1013 [42]. A neuron, or a nerve cell, is a
type of a highly specialized cell that holds the ability to communicate rapidly over
large distances. This is done electrically inside neurons and chemically between
them through complex membrane junctions called synapses [43].

Nerve cells can be found throughout the body and are the fundamental units
of the nervous system [44]. The nerve cells found in the brain are closely packed,
and highly interconnected in intricate patterns. Per cubic millimeter there can be
as many as 104 cortical neurons, with several kilometers of neuron “arms” [43].
The estimated number of cells in the human brain is between 1010 and 1011, and
each of these neurons can have as many as 103 to 105 connections to other neurons
[45]. In addition to the neurons, the brain also consists of several other cells, which
mainly help with structural stabilization and supply of energy. These cells, called
glia cells, are important for the function of the brain but are not directly involved
in the information processing [46].

Anatomy of Neurons

A typical nerve cell, depicted in Figure 2.1, can be divided into three main parts.
The first part is the cell body, or the soma, which is structurally similar to other
cells. The soma can be considered as the “central processing unit” of the cell. The
protrusions of the soma are called dendrites, and the long fiber extending from the
body is the axon [45]. Together they send and receive signals through synaptic
connections to other neurons [43]. The most common type of communication is
the axodendritic synapse, where the communication flows from an axon extending
from one neuron to a dendrite on another neuron [45]. Other types of synapses
also exist but are less common [47].

Figure 2.1: The three main components of a neuron.

One important component of cells is the cell membrane, which is depicted in
Figure 2.2. The cell membrane consists of phospholipid molecules (Figure 2.2a),
which have a hydrophilic head and hydrophobic tails. These lipids form a bilayer
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with the tails turned inwards (Figure 2.2b) [45]. An important property of the

(a) Phospholipid molecule. (b) Cell membrane consisting of a bilayer of phos-
pholipid molecules and ionic channel.

Figure 2.2: Cell membrane components and construction.

cell membrane is the membrane voltage, which is the voltage difference exhibited
across the membrane due to differences in ion concentration inside and outside the
cell. Ion channels are found throughout the cell membrane, and allow specific ions
to flow in and out of the cell [45].

Electrical Properties of Neurons

The membrane exhibits a voltage difference across the membrane,

Vm = Φi − Φo, (2.1)

where Vm is the membrane voltage, Φi is the intracellular potential, and Φo is the
extracellular potential. The resting voltage of the cell is typically between -70 and
-90 mV and deviates from this value when exposed to stimuli. The stimuli can
be excitatory, where the membrane voltage changes towards more positive values
(called depolarising), or inhibitory, where the membrane voltage changes towards
more negative values (called hyperpolarising). The voltage difference returns to
its original state, the resting voltage, after stimulation [45].

If the excitatory stimulus is large enough for the transmembrane voltage difference
to cross a threshold, typically around -60 mV, the neuron discharges or “fires” an
action potential (AP) [45]. This firing is a short voltage pulse with a duration of
1-2 ms and an amplitude of about 100 mV [46]. The firing of an AP is depicted in
Figure 2.3.

Strong stimulus holds the ability to cross the threshold alone, while weaker stimu-
lus needs to be added together within a time window in order to cross the threshold
[46]. The size and shape of APs are independent of the stimuli but dependent on
the cell type [45].
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Figure 2.3: Firing of an action potential [1].

Additionally, the frequency of the spikes varies. The maximum firing rate de-
pends on the rate at which the cell can be depolarized. The smallest time between
two APs is the absolute refractory period of the neuron. This period is followed
by the relative refractory period, where it is hard, but not impossible to excite the
neuron [46].

2.3 Head Direction Cells

Head direction cells are neurons in the brain discharging with a firing rate depen-
dent on the direction of the individual’s head in the horizontal plane, relative to
the environment. They have been identified in animals as mice [48], rats [11] and
monkeys [49], but are thought to be present in all mammals [48].

Head direction cells were first identified in the postsubiculum (PoS) [9, 10], and
have later been found in several areas of the brain, including retrosplenial cortex
[11], the anterior dorsal thalamic nuclei[12], the lateral mammilary nuclei [13] and
enthorinal cortex [14]. Many of them situated within the Papez circuit. It is not
well understood why HD cells can be found in so many brain areas, but a hypoth-
esis is that it is because the head direction is needed for several different brain
functions [48].

There are three main properties of HD cells; the peak firing rate, the preferred
firing direction (PFD) and the directional firing range [50]. A cell’s peak firing
rate is the maximum firing rate of the cell, which occurs when the head is in the
PFD of the cell. The directional firing range is the angular range where the firing
rate is above the cells baseline firing rate. When it comes to the PFDs, all direc-
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tions are equally represented in the total population of HD cells [48].

Figure 2.4 is an example of a tuning curve of an HD cell. Here, the direction
of the head is represented by the x-axis, while the y-axis represents the firing rate
in spikes per time unit, often per second. The firing rate of the cell is zero, or al-
most zero for angles far away from the PFD, but increases quickly when the head
direction is turning towards the cell’s PFD. The directional firing range varies from
cell to cell, from around 60◦ to 150◦, but with an average of ∼90◦. The peak firing
rate also varies from cell to cell, usually from 5 to >120 spikes per second. It is
not known if there is a specific reason behind these differences [48].
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Figure 2.4: Tuning curve of an HD cell with properties.

The response of the HD cells is constant even when the head is not moving, which
indicates that HD cells are independent of motion input [50]. An HD cell can
be thought of as a sort of compass that only reacts when facing north, or nearly
north. Instead of being affected by the Earth’s geomagnetic field, it is dependent
on landmarks and self-motion cues like the vestibular system and motor/propri-
oceptive information [48]. The HD cells are therefore considered a part of the
allocentric system together with grid cells and place cells [51], which help with
spatial orientation [48]. During sleep the tuning curves are similar to the tuning
curve during wake periods [52].

2.4 Recording of Neural Responses

The neurons transmit information by electric signals. In order to understand this
communication it is necessary to measure these signals. Fortunately, there are
several methods to measure both intracellular and extracellular neural responses,
which can be either electrical or optical. Intracellular recordings show both the
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firings of APs and the subthreshold membrane potentials. This is opposed to the
extracellular recordings, whose signal is weaker and depends more on the geometri-
cal contact with the neuron. Extracellular recordings record response from several
cells at the same time, and are mostly used for detecting whether or not an AP has
occurred. Intracellular recordings are usually done in vitro, while the extracellular
ones are more often done in vivo since these recordings can be made by placing
the electrode near the neurons without penetrating them [43].

By recording neural responses in vivo, it is possible to better understand basic
brain functions. In trials where animals move around freely, electrodes inserted
directly into a neuron pose a challenge of possibly damaging the neuron. There-
fore, larger electrodes are used to provide better mechanical stability. However, a
disadvantage of using these larger electrodes is that the activity of several neurons
are recorded simultaneously, and more post-processing of recordings is needed in
order to extract the responses of single neurons [53]. An example of a probe in-
serted into the brain is shown in Figure 2.5.

Figure 2.5: Main components of a probe.

The probes have one or more shanks, the one in the figure with four, each with
several recording sites. The site layout varies depending on the application.

Spike Detection
The disentanglement of the response from a single neuron from the complex record-
ings can be done in three steps [53]:

1. Spike detection: Spike detection is done to extract the spiking times from
the electrical recordings. The spike detection is usually done with high-
pass filtering and thresholding and can be done through either hardware or
software.

2. Feature extraction: For every detected spike, an array of quantitative
parameters, called feature vector, is calculated. These features can be am-
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plitudes and wave patterns, and the idea behind this is that spikes from the
same neuron hold the same characteristics.

3. Clustering: The process of grouping spikes with similar feature vectors is
called clustering and is often done manually with a graphical tool.

Describing Neural Behavior
Stimuli and response can be expressed as spike trains. A spike train is a sequence of
APs originating from a single neuron, and is one way of describing neural response.
Even though APs vary slightly when it comes to amplitude, duration, and shape,
they are usually treated as all-or-none events. The signals are therefore expressed
by the timing of the firings alone. For that reason, spike trains are described by
listing the spike times. For n spikes, the times are denoted by ti, where i = 1,
2, ..., n. For all i, ti will be in the interval 0 ≤ ti ≤ T , where 0 is the start
time of the recording of the neural response, and T is the end time [43]. This
way of describing neural response is suitable for single recordings but gets quite
impractical when describing the results of multiple recordings, and impossible to
use for generalization. It is possible to describe the firings probabilistically, but
this also gets quite problematic for a large number of spikes. Instead, statistical
models are used to express the firings of neurons. It is not possible to predict spike
sequences based on the probabilities of one spike occurring since the spikes most
likely are not independent occurrences [43].

2.5 Neural Coding

Neurons transmit messages via spatio-temporal pulse patterns. This means that
the messages are communicated over both space and time. “What is the informa-
tion contained in these patterns?” “How is it encoded?” “Are we able to decode
it?” “Can we use this information to mimic the stimuli and response?” These are
some of the many questions arising when studying neurons and the communication
between them.

Neural coding comprises neural encoding, the mapping of stimulus to response,
and neural decoding, the mapping of response to stimulus [43]. “What will the
response be for a given stimulus, and given a specific response, what was the
stimulus applied?” Finding this relationship has proven to be difficult. Neural
responses are complex and variable and are usually products of both the intrinsic
dynamics of the neuron and the temporal characteristics of the stimulus. To make
it even more challenging, the neural response can also provide different outputs
for the same stimuli [43]. This trial-to-trial variation of neural response is quite
significant and can originate from a different level of arousal and attention, ran-
domness associated with various biophysical processes that may affect the neural
firing, and other cognitive processes taking place [43]. Trial-to-trial variations are
often considered as “noise”, but it is still not known if this instead is part of some
rich neural coding that is not yet fully understood [54].
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There are several different coding schemes describing the firings of the neurons,
often falling into one of four categories; rate coding, temporal coding, population
coding, and sparse coding.

Rate Coding
As the name suggests, rate coding takes the rate of the spikes into consideration
when transmitting information. It is a “simple” method and assumes that most,
or all, of the information is contained in the firing rate. One limitation of this
method is that it does not capture the information in the timing of the spikes. An
indication that rate coding is not the only code used is that it is known that the
human reaction time can be as short as a few hundred milliseconds, which is too
short for the brain to do a temporal average before reacting to the stimuli [46].

Mean firing rate
One common way of describing the firings is by the mean firing rate. However, this
is not an unambiguous term. In literature, there are at least three different types
of averages used when it comes to describing spikes; average over time, average
over trials, and average over neurons. The mean firing rate over time has been used
to describe the firing rate since the 1920s [55] and is the most common definition.
The average over time of a firing rate is given by the following equation:

v = nsp(T )
T

, (2.2)

where v is the average firing rate, T is a time window, and nsp(T ) is the number
of spikes contained in that time window [46].

Temporal Coding
Temporal coding takes the timing of the individual spikes into consideration when
transmitting information, instead of just the rate.

Time-to-first-spike
In the time-to-first-spike coding scheme, it is thought that the time between the
stimuli and the first spike in the response holds the transmitted information. Stud-
ies have shown that most of the information from new stimuli is given in the first
20 to 50 ms after the onset of the response [56, 57], but only considering the first
spike when looking at the transmitted information is considered to be highly sim-
plified [46].

Phase
In this coding scheme, the time-to-first-spike scheme is applied on a periodic sig-
nal. In some areas of the brain, oscillations are quite common, and the phase is
seen in relation to these oscillations [46]. One of the best studied temporal coding
models is the theta-phase precession in hippocampal place cells [58].

12



Background

Population Coding
With population coding, it is not possible to look at singular neurons individually,
but the response of several neurons must be considered as a whole [43]. Just like
coding for single neurons, neural population codes at multiple scales; the diversity
of the neural responses, the spatial and temporal properties, cross-correlations and
state-dependence of cortical activity [59].

Sparse Coding
Studies have shown that information can be represented by a small number of
active neurons out of a larger population. This is referred to as sparse coding. An
advantage of this form of coding is the effectiveness when it comes to storage and
energy due to the low number of active neurons [60].

2.6 Spiking Neuron Models

There are several different models for simulating spiking neurons, both singular
neuron models and population models. The type of coding used has an impact on
the model, as some coding schemes require more detailed descriptions of the neural
dynamics than others. Some of them being detailed, conductance-based models,
while others are simpler and more calculation friendly.

The Integrate-and-Fire Models
The different integrate-and-fire models are simple, computational friendly equa-
tions. When the sum of stimuli added together (or integrated) reaches a certain
threshold, an AP is triggered. Integrate-and-fire models are models where APs
are described as all-or-none events, and consist of two separate components; an
equation that describes the changes in the membrane potential, and a mechanism
to generate spikes [61].

The Hodgkin-Huxley Model
The Hodgkin-Huxley membrane capacitance model is a model describing the cre-
ation and propagation of APs. The model describes the nerve cell with an equiva-
lent electric circuit, and from this circuit arises a set of differential equations. The
model is quite simple but manages to explain several of the membrane properties
quite accurately [45].
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2.7 Spike Train Metrics

An important aspect of neural coding is the ability to compare spike trains to
identify similarities and dissimilarities in both stimulation and response. As op-
posed to most signal processing techniques, spike train metrics operate on binary
sequences. The way the data is described will influence the methods used in ana-
lyzing the data.

A challenge that becomes more apparent when comparing spike trains compared
to other types of signals is the large signal-to-signal variations. Neural signals have
a trial-to-trial variability, and the challenge is not finding two patterns that are
exactly the same, but rather to see if they are similar enough to most likely come
from the same source or be responses to the same type of stimuli with statistical
significance. A metric is needed in order to quantify this similarity.

There are several ways to measure this similarity, or dissimilarity, between two
spike trains. One of the simplest ones is to compare the number of spikes in each
spike train. However, this method misses the temporal features of the spike trains.
Several metrics have been proposed to resolve temporal structures. One is cost-
based metrics, exemplified by the Victor-Purpura distance [62]. Here, a cost is
added for operations such as removing, adding and moving spikes for transforming
one spike train into another one. The distance between two spike trains is given
as the minimum total cost of transforming one of the spike trains into the other one.

Another type of metrics is kernel-based metrics, which is a group of metrics that
map the spike trains into the vector space before calculating the distance. The van
Rossum distance [63] is an example of this, which calculate the Euclidian distance
between the spike trains after mapping them into vector space [64]. In addition to
being sensitive to the timing of the spikes, there are also metrics that are sensitive
to the distance between spikes, or the temporal pattern of the spikes [62].

2.8 Machine Learning

Machine learning (ML) is an area of study on algorithms and statistical models
used by computers to efficiently perform tasks without explicit instructions. In
classical programming, the machine relies on static program instructions, while
the basis of ML is mathematical models that can be “trained” on specific data,
and later use the information extracted from patterns and interferences. ML is
used in cases where it is infeasible to create algorithms capable of performing the
specific task, and there are innumerable of real-world applications relying upon
this type of programming, ranging from fraud detection [65] to diagnosing cancer
[66].
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ML is ordinarily divided into three main categories: supervised, unsupervised, and
reinforcement learning, dependent on the input and output, and the problem to
be solved.

• Supervised learning is when using the algorithms on unknown or new
data, but the pattern is known. A function learns how to map inputs to
outputs by examining assigned input-output pairs called a training set [67].
Supervised learning is often divided into classification or regression prob-
lems. Classification is the task of classifying something and is used when
the outputs are restricted to specific alternatives. An example is email spam
filtering [68]. The system would need to correctly recognize spam, although
the distinct pattern may not have been identified during training. Regression
is used to predict something. Here the output is usually a numerical value
within a range. An example here is predicting stock market prices [69].

• Unsupervised learning, on the other hand, is when the data is known, but
the patterns are not. This method is used in cases where the specific knowl-
edge on what is essential information contained in the input is unknown. As
opposed to supervised learning where patterns in the input are provided as
labeled data, the patterns are learned by the machine without any explicit
feedback [67]. The most common task is clustering. Here, the input data
is divided into homogeneous subsets. This method is particularly useful in
the examination of large data sets [70]. An example is crime data mining
where an ML approach is used to understand patterns in criminal behavior
by finding patterns in crimes committed by the same offender or group [71].

• In reinforcement learning the system learns from a series of reinforce-
ments. The system then tries to perform the tasks that maximize the cumu-
lative reward. Some applications for reinforcement learning are optimization
of chemical reactions [72] and playing Atari games [73].

For most practical reasons, the raw input data is transformed into a new represen-
tation where the pattern recognition problem is simpler to solve. This set of new,
useful attributes are called features and are considered an important part of ML
systems [70]. The choice of features hugely impacts the performance of the model.
While a good selection of features improves the performance, a poor choice can
negatively affect the accuracy, as well as cause overfitting. The extraction of fea-
tures is normally done in a preprocessing step, before the training of the program.
The raw data given to the model is not always sufficient for performing ML tasks
as the raw data may not contain sufficient features. In such cases, a solution could
be to create new features and feed those to the model. These are often created by
adding, subtracting, or multiplying existing features.

For many applications, a training set is used to tune the parameters of an adaptive
model. The training set usually consists of a set of input values, XTRAIN, and a
target vector, YTRAIN, containing the labeling of the input values. After training,
the model can be expressed as YPRED(XTEST). Here, XTEST is an input not found
in the training set, XTRAIN, and YPRED is the output, which is encoded in the
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same fashion as the target vector. The precise form of the function YPRED(XTEST)
is decided during the training phase or the learning phase. The model is usually
more precise if the training set is more extensive and with an ample variety of in-
puts. However, the accuracy is normally better when the training set corresponds
to data that the model is going to be implemented with.

The task of generalization is an important aspect of ML, which typically occurs
when a model has been trained using a limited number of samples, and this model
should be able to react well to previously unseen data. If an exceedingly complex
model is chosen to describe only a few samples, the model might not respond well
to new types of input. While a too complex model leads to overfitting, a likewise
simple model leads to underfitting [70].

Gradient Descent

Gradient descent is an iterative optimization algorithm for finding a (local) mini-
mum of a function and is one of the most popular and widely used ML algorithms
[74]. The algorithm operates by taking a step along the negative of the gradient
of the function at the current point to converge to a minimum possible low [75].
The size of the step taken is determined by a learning rate, α, which can be either
constant or decaying over time. A high learning rate may lead to overshooting
the minimum, while a small learning rate reaches the minimum very slowly. In
artificial neural networks (ANNs), the algorithms use training data sets to update
internal parameters of the model (weights and biases) with the goal of finding a
set of parameters that perform well against some performance measure. The error
gradient to minimize is calculated by comparing the prediction of the model with
the training set provided to the ANN. The loss is given by

θl+1 = θl − α∇E(θl) (2.3)

where l is the iteration number, α > 0 is the learning rate, θ is the parameter
vector, and E(θ) is the loss function. The internal model parameters are updated
after a certain number of samples have been worked through. This number of
samples is called the batch size, and influence the trade-off between the accuracy
of the parameter update, and the update time.

If the batch number is the same as the number of samples in the training data set,
the learning algorithm is called a batch gradient descent. This form of gradient
descent can be quite slow since the gradients for the whole data set is calculated
before updating the parameters, and it is unmanageable for data sets that do
not fit in memory. For large data sets, it performs redundant computations since
it recomputes gradients for similar examples before each parameter is updated [74].

If the batch size is equal to one, the algorithm is a stochastic gradient descent
(SGD). Here, the parameters are updated for each training example and are usu-
ally much faster than batch gradient descent due to the lack of redundant compu-
tations. A downside with the rapid fluctuations of SGD that may occur is that it
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complicates the convergence to a minimum since it keeps overshooting. An upside
with these fluctuations is that it might jump to a newer, better local minimum.
However, it has been shown that when slowly decreasing the learning rate, the
SGD converges in the same way as the batch gradient descent [74].

The last type of gradient descent is the mini-batch gradient descent, where the
batch size is somewhere between one and the number of samples in the training
set. An advantage is that it reduces the variance of the parameter updates, which
can lead to more stable convergence. The optimal number of samples in each
mini-batch is application dependent [74]. One completion of the training data set
is called an epoch.

2.9 Artificial Neural Networks

An artificial neural network, or simply neural network (NN), is a computational
learning system inspired by biological neurons, with the goal of translating data
input to output of a desired form, usually different from the input. ANNs are a
framework for many different ML algorithms working together to process complex
data inputs.

An illustration of an ANN is given in Figure 2.6. Each node represents an artifi-

Figure 2.6: Artificial neural network with one hidden layer with four nodes.

cial neuron while the arrows represent the connections or synapses. These artificial
neurons loosely model the neurons in the brain. The synapses transmit the signal
from one neuron to another one. A signal received is processed by the artificial
neuron before it is transmitted to the connected neurons. Typically, neurons are
bundled in layers, and different layers perform different types of transformations
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on the data. Signals travel from the first layer, the input layer, through the hidden
layer to the last layer, the output layer [75]. The shape of the input and output
layer depends on the shape of the input and output data, and the hidden layer(s)
are often dependent on the purpose of the NN. A deep neural network is an ANN
with multiple layers between the input and the output layer [76]. The nodes in a
hidden layer are often called hidden units.

Perceptrons are binary classifiers and are the same thing as a single layer net-
work [77]. A perceptron consists of four parts: input values, weights and biases,
summation function, and an activation function. These are shown in Figure 2.7.
All inputs xn are weighted with a corresponding weight wn. These weighted in-

Figure 2.7: Overview over a perceptron. Weights are applied to the input before
the weighted sum is passed through a function that produces the output.

puts are then added together, and the weighted sum is applied to the activation
function, which determines the binary output of the perceptron. The choice of ac-
tivation function depends on the application but is used to map the input between
requires values. Adding a bias shifts the activation function curve. The activation
function can be divided into three main types: binary step, linear, and non-linear,
where the non-linear is the most common type. The most common types of these
non-linear activation functions are given below.

Sigmoid function
The sigmoid activation function, or the logistic activation function, is given by

σ(x) = 1
1 + e−x

, (2.4)

and is plotted in Figure 2.8a. This function is useful when the probability is being
predicted, since the function is limited between 0 and 1. [78]

Hyperbolic tangent function
The hyperbolic tangent function, often denoted tanh has the same shape as the
sigmoid function, but is limited between -1 and 1 as shown in Figure 2.8b. An
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advantage of this is that the negative inputs will be strongly negative, and values
close to zero inputs will be mapped near zero in the output [78].

Rectified linear unit function
The rectified linear unit (ReLU) function is currently the most used activation
function [79]. The function is given by the function

f(x) = max(x, 0), (2.5)

and is depicted in Figure 2.8c. The ReLU is half rectified, which maps all negative
input values to zero.

Softmax
The softmax function, or the normalized exponential function, turns a real num-
bered vector of K-dimensions into probabilities; a vector of numbers between 0
and 1 that sums to one. The function is given by

S(x)i = exi∑K
k=1 e

xk

, (2.6)

for j = 1, 2, ...,K [80].

An important property of activation function is if they are derivable. The deriva-
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Figure 2.8: Common types of activation functions.

tive is used to know how much to change the curve, and in which direction.

Types of Neural Networks

Feedforward networks

Feedforward networks is a group of NNs where the connections between the nodes
do not form a cycle [76]. A graphical representation of a feedforward network can
be seen in Figure 2.9. The figure shows a compact, general representation with
xt inputs, and ht outputs, while A represents the hidden layers. The information
moves from the input nodes, through the hidden nodes, and to the output nodes.
This flow moves only in one direction, without any loops. Figure 2.6 used to
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illustrate a neural network shows an example of a feedforward NN with three inputs
xt with t = 3, two outputs ht with t = 2 and one hidden layer, A, containing four
nodes.

Figure 2.9: Feedforward network.

Recurrent neural networks

Recurrent neural networks (RNNs) belongs to a group of neural networks that
processes sequential data. As opposed to feedforward networks, the connections
in RNNs do form cycles. This allows information to persist and the networks to
have an internal memory which is needed in order to exhibit temporal dynamic
behavior [76].

An RNN is depicted in Figure 2.10. The diagram on the left shows the RNN

Figure 2.10: An unfolded basic recurrent neural network.

with xt as input values, ht as output values, and the cell itself A. The arrow from
A to A indicates the feedback loop. The diagram on the right shows the unrolled
network. Here, the result is passed from one network to its successor.
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2.10 Long Short-Term Memory

The long short-term memory architecture is a type of RNN and is widely used
in applications such as acoustic modeling of speech [81], handwriting recognition
[82], and prediction of protein secondary structure [83]. The LSTM architecture
was initially developed to deal with problems related to long-term dependencies
common in other types of RNNs [84].

The LSTM Cell

A typical LSTM architecture is depicted in Figure 2.11. Here, the four gray boxes
are NN layers, while the red circles inside the cell are pointwise operations. The

Figure 2.11: Long short-term network architecture.

unit consists of a cell with three gates: input, output, and forget, which regulate
the flow of information in and out of the cell. The task of the cell is to keep track
of dependencies in the input data. The function of the input gate is controlling
to which extent a new value is allowed into the cell. A standard RNN usually
contains a single layer, but the LSTM network contains four interacting layers.
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The key element of the LSTM is the cell state. This can be seen as the hori-
zontal line at the top of the cell, with Ct−1 as input and Ct as output. This is the
main flow of information and is regulated by the gates.

The forget gate describes how much information to keep from the cell state and
how much to forget, and can be described with the equation

ft = σ(Wf · [ht−1, xt] + bf ), (2.7)

where Wf are the weights, and ft is the amount to keep, where 0 is nothing and 1
is everything. The input gate layer decides which values to update with the help
of a sigmoid layer:

it = σ(Wi · [ht−1, xt] + bi). (2.8)

Here, the tanh layer finds possible elements to add, while C̃t decides which ones
to add to the state.

C̃t = tanh(WC · [ht−1, xt] + bC). (2.9)

The cell state is then updated from Ct−1 to Ct given by the equation

Ct = ft ∗ Ct−1 + it ∗ C̃t. (2.10)

Here, the old state is multiplied by the activation function of the forget gate, ft,
before adding the new scaled version of the new candidate values. The output of
the cell is given by the equations

ot = σ(Wo · [ht−1, xt] + bo), (2.11)

and
ht = ot ∗ tanh(Ct). (2.12)

Here, the values are first filtered by the sigmoid layer to decide which parts to
output. The cell state is then mapped to values between -1 and 1 with the tanh
function, before being multiplied by the output of the sigmoid gate. This last step
is used to filter out unwanted information [85, 86].

There also exists a bidirectional version of the LSTM, BiLSTM, where the se-
quences is fed through the LSTM twice; once from the beginning to end, and once
from the end to the beginning. This can be useful in cases where one wants the
network to learn from the complete time series at each time step [87].
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3.1 Complete Data Set

The data set used is publicly available through The Collaborative Research in
Computational Neuroscience (CRCNS) [16], which is a joint program for theoret-
ical and experimental neuroscience. A paper on the internally organized mecha-
nisms of the head direction cells was published along with the data set [52].

The complete data set consists of 42 recordings from seven different mice; five
male, and two female. In total, recordings from 1077 cells were collected. Out of
these, 353 were categorized as HD cells.

In 41 out of 42 sessions, the wake phase of the mouse included foraging for 35-40
minutes, proceeded and followed by two hours of sleep. In the last session the
mouse followed a radial maze after the second sleep phase instead of looking for
feed, with no sleep phase afterward.

In all seven mice, electrodes were placed in the anterior thalamus. In three of
the seven mice, electrodes were also placed in the PoS. In the remaining four mice,
electrodes were placed in the hippocampal CA1 pyramidal layer for accurate sleep
scoring. The probes used consisted of either 4, 6 or 8 shanks, each shank with
either 8 or 10 recording sites [52]. The recording setup is shown in Figure 3.1.
Electrode recordings were made when the mice were searching for feed in an open
environment (I); a box of 53x46 cm, with 20 cm high walls. The box was black
and included two visual cues.

The neural response is recorded (II), spike sorting is performed on the waveforms,
and the responses of the individual cells are obtained (III). Video recordings are
made (IV), and the coordinates (V) and directions (VI) of the head of an individual
mouse were extracted from these recordings and saved in separate files. The an-
gles were measured with the help of two LED lights mounted on top of a headstage.

Information about the head angle and spikes from the individual neurons are com-
bined, and the HD cells are classified based on the criteria given in Table 3.1 (VII).
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Figure 3.1: Recording setup using camera and probes to find head direction and
spike times.

The following are included in the data set:

• Times and waveforms of detected potential spikes.

• Results of spike sorting.

• Local field Potentials from the hippocampus.

• The coordinate and direction of the mice head.

• Video files from which the head coordinates and directions are extracted.

• Metadata tables giving properties of the neurons and characteristics of the
recording sessions.

The extraction of HD cells from the total population of recorded neurons is not
included in the publicly available data set. Step (VII) is therefore done separately
with code described in Section 3.2.

3.2 MATLAB Code Extracting HD Cells

The MATLAB functions provided, given in Appendix D.1, locates HD cells from
the data set described in Section 3.1. The function extracts the spike times and
the corresponding angles and combine them in a predefined structure for each cell.
The function only considers spikes during wake phase. The data is then transposed
such that one measurement is given for each awake millisecond.
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Detection of HD cells
The identification of HD cells are done by smoothing the data with a Gaussian
kernel and fitting it with von Mises distribution before calculating a concentration
parameter and the peak firing rate. The inclusion criteria for HD cells are given in
Table 3.1. The MATLAB code provides two types of tuning curves; one in cartesian

Table 3.1: Head direction cells inclusion criteria.

Concentration parameter >1
Peak firing rate >1
Probability of non-uniform distribution <0.001

coordinates, and one in polar coordinates. These two types are illustrated in Figure
3.2 which shows the curves for one HD cell and one cell not classified as an HD
cell. This code is through the rest of the text referred to as the HD Cell Extracting
Code (HDCEC).

3.3 The Victor-Purpura Distance

One type of cost based metric mentioned in Section 2.7 is the Victor-Purpura dis-
tance.

The distance d between two points, A and B, is given by

d(A,B) = min

{
n−1∑
j=0

c(Xj , Xj+1)
}
, (3.1)

where X0, X1, ..., Xn is a path from A = X0 to B = Xn, and c(Xj , Xj+1) is a cost
function intended to capture basic biological functions [62].

A cost of one is added to the operations of removing and adding spikes, while
the cost of shifting spikes in time is given as a product of a cost parameter, q and
the number of time units moved. The value of q sets the time scale of the analysis.
For q = 0, the total cost will be the number of spikes that differs between the two
sequences. For large q, the distance is transformed from rate distance to temporal
distance since it is “cheaper” deleting all the spikes and then add them again than
shifting them [88]. If two spike trains are identical, apart from a single spike that
occurs in ta for A and tb for B, the cost function will be c(A,B) = q|ta− tb|, where
q is in the unit of sec−1 [62].

An indicative scale of the cost is given by |ta−tb| = 2/q. Two spikes are considered
comparable if they occur within an interval of 2/q. The code used can be found
at [89].

The Victor-Purpura distance is applicable on both single and multineuronal spike
trains [64].
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(a) Tuning curve of HD cell from
Mouse12-120806, Shank 3
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(b) Tuning curve of cell from
Mouse12-120806, Shank 1
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(c) Polar plot tuning curve of HD cell from
Mouse12-120806, Shank 3.
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(d) Polar plot tuning curve of cell from
Mouse12-120806, Shank 1.

Figure 3.2: Tuning curves from code in Appendix D.1.

3.4 The van Rossum Distance

The van Rossum distance also calculates the distance between two spike trains, but
as opposed to the Victor-Purpura distance, the van Rossum distance first maps
the spike train into a vector space of functions before calculating the distance.
The van Rossum distance is more computational friendly than the Victor-Purpura
distance [63].

Given a spike train,

f(t) =
M∑
i

δ(t− ti), (3.2)
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where ti denotes the spike times, ti > 0, andM > i. The delta function is replaced
with a kernel h(t):

h(t) =
{

0, t < 0
e−t/τ , t ≥ 0.

. (3.3)

This is equivalent to adding an exponential tail to all the spikes.

The Euclidean distance, D, between two spike trains f and g is defined as

D2(f, g)τ = 1
τ

∫ ∞
0

[f(t)− g(t)]2dt. (3.4)

The distance uses a time constant, τ , which sets the time scale of the comparison.
When τ →∞, the metric acts as a rate different counter, while it for τ → 0 counts
non-coincident spikes [63]. This is the opposite as for the Victor-Purpura distance,
where a cost of q = 0 gives the difference is spike count between the spike trains.
The code used can be found at [90, 91].

3.5 Izhikevich Neuron Model

The model, described in [24], simulates large-scale networks of spiking neurons. It
reproduces spiking and bursting behavior of eight known types of cortical neurons,
categorized according to patterns found in intracellular recordings. The model
combines the Hodgkin-Huxley model with an Integrate-and-fire model to create a
biologically plausible model as well as being effective for computations.

The following differential equations are implemented

v′ = 0.04v2 + 5v + 140− u+ I, (3.5)

u′ = a(bv − u), (3.6)

and the following after-spike resetting criteria are also included.

if v ≥ 30 mV, then
{
v ← c

u← u+ d
(3.7)

Here, v′ and u′ are derivatives of v and u with respect to time. A brief overview of
the different variables and parameters is given below. A more detailed explanation
can be found in [24].

Variables

• v: Membrane potential

• u: Membrane recovery
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Parameters

• a: Time scale of recovery variable u.

• b: Sensitivity of the recovery variable u to subthreshold fluctuations of the
membrane potential v.

• c: After-spike reset value of the membrane potential v.

• d: After-spike reset of the recovery variable u.

After a spike, when v reaches 30 mV, the membrane potential and membrane re-
covery variable reset according to Equation (3.7). By changing the parameters
mentioned above, the spiking sequence from the simulation changes. Typical val-
ues for different spiking patterns of different types of cortical neurons are given in
[24].

Changing the parameters causes various intrinsic firing patterns. By tweaking
the model parameters, the model returns moderately different spiking pattern for
the neuron.

Equation (3.5) is found by looking at intracellular recordings, and is a “one-type-
fits-all” kind of equation for simulating large-scale networks. When simulating
single neurons, other variations of the function may be used to better adapt to the
effects of single neurons [24].

3.6 MATLAB Deep Learning Toolbox

The MATLAB Deep Learning Toolbox is a set of tools providing a framework for
designing and implementing deep learning neural networks in MATLAB. The tool-
box includes algorithms, pretrained models and apps for some commonly known
types of neural network architectures such as convolutional neural networks and
LSTMs.

Layers

The toolbox includes several types of layers for different tasks. The relevant layers
are mentioned in Appendix B.1 [92].

Hyperparameters

Hyperparameters control many aspects of the behaviour of the algorithm, and is
values that are used to control the learning process. Some of the most relevant
hyperparameters is mentioned in Appendix B.2 [93].
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Optimizers

When working with LSTMs, MATLAB have three different gradient descent solver
options; stochastic gradient descent with momentum (SGDM), root mean square
propagation (RMSProp) and adaptive moment estimation (adam). Different solvers
have different approaches to deal with the different problems related to the types of
gradient descent, and there are different pros and cons related with each solver [93].

sgdm
A problem with the stochastic gradient descent is that the algorithm may oscillate
along the path of steepest descent towards the minimum. The SGDM tries to
reduce this oscillation by adding a momentum term to Equation (2.3):

θl+1 = θl − α∇E(θl) + γ(θl − θl−1), (3.8)

where γ determines how much of the previous steps to include.

rmsprop
While the SGDM reduces the oscillation by adding a momentum, it only uses one
single learning rate for all the parameters. RMSProp differs from this by using
different learning rates for different parameters which automatically adapt to the
loss function. This is done by using a moving average of element-wise squares of
the parameter gradients,

vl = β2vl−1 + (1− β2)[∇E(θl)]2, (3.9)

where β2 is the decay rate of the moving average. This moving average is used to
normalize the updates of each parameter individually,

θl+1 = θl −
α∇E(θl)√
vl + ε

, (3.10)

where the division is performed element-wise.

adam
Adam is similar to the RMSProp in the way of updating parameters but adds a
momentum term. An element-wise moving average is used for both the parameter
gradients and their squared values,

ml = β1ml + (1− β1)∇E(θl), (3.11)

and
vl = β2vl−1 + (1− β2)[∇E(θl)]2, (3.12)

where β1 and β2 are the decay rates named ‘GradientDecayFactor’ and
‘SquaredGradientDecayFactor’ respectively. The network parameters are up-
dated with the moving average

θl+1 = θl −
αml√
vl + ε

. (3.13)

Empirical results prove that adam compares favorably to other stochastic opti-
mization methods [94].
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The specifications of the hardware used is given in Appendix A. MATLAB R2019a
on Windows was the software used. Descriptions of the main functions can be
found in Appendix D.2.

4.1 Notation

For practical reasons, specific HD cells are referred to using the following notation:
day.shank.HDcell. Here, day is the day of recording, which for this study is 12080X,
where X is substituted with either 6, 7, 8 or 9. Furthermore, shank is the shank
that recorded the response of the HD cell, and HDcell is the number of the HD
cell according to the code described in Section 3.2.

4.2 Delimitations

From the complete data set, the mouse named ‘Mouse12’ is investigated, and
four of five recording days are considered in this study. Mouse12 had electrodes
inserted into the thalamus, as well as the hippocampus for accurate sleep scoring.
The recording days are the following: 120806, 120807, 120808, and 120809.

4.3 Initial Analysis

When analyzing data, the type of analysis done affects the results found. The
starting point of the analysis can be the difference between useful and less useful
results. Therefore, this starting point should be chosen carefully. Also, it is not
always clear where to start looking when examining types of data that have been
less explored beforehand. A valuable tool when receiving new data is visualization.
Visualization often helps with the understanding of complex problems, which in
turn helps to find better solutions and descriptions for said problems. Not only
does graphical representations of data ease the understanding of complex problems,
but it can also highlight deviations and errors in the data sets. For the given data
sets, multiple ways of visualization have been used in order to correlate different

31



Methods

possible dependencies easily. Most of these have not panned out, but some have
hinted of correlation between variables and spurred further investigation.

Extraction of HD Cells
The HD cells are classified by using the HDCEC in Appendix D.1 described in
Section 3.2 on the data set.

Extraction of Sessions
The free head movement of the mouse is taken into consideration by dividing the
spike recordings into different “sessions”. A session consists of the spikes recorded
inside an angle bin without the head moving outside of the angle bin between
spikes. If the head is inside an angle bin, moves out of that angle bin and then back
again, the spikes recorded are considered as two different sessions. The sessions
are given as sequences of ones and zeros, one value for each millisecond, where one
represents a spike and zero represents no spike.

Size of angle bin

The size of the angle bin is essential. Ideally, the bins should be quite narrow to be
able to account for small changes, one degree for instance, but this is not feasible
with limited data material since the number of sessions per angle bin becomes too
low to conduct a proper analysis. With wide angle bins, the sessions are longer,
but the analysis and comparison of sessions and angle bins are more complicated.
It is not known if the head, during the time spent in the angle bin, is held quite
still or if it moves back and forth inside the bin. Spike characteristics, at least the
mean, varies from one “side” of the bin to the other one, and have to be taken into
consideration. This is especially evident in large bins compared to the directional
firing range. The optimal size of the angle bin also depends on which HD cell is
being analyzed, since the directional firing range and the peak firing rate varies
from cell to cell.

Spikes per session

The firing rate and standard deviation (SD) per session are calculated to see if
there are any differences between the sessions within the same angle bin. The
average firing rate is calculated using Equation (2.2). A problem with this method
is that it also includes all the very short sessions that consist of only a few millisec-
onds. If a spike happens to occur in one of these short sessions, the firing rate for
that particular session will be artificially high. In addition, many short sessions
with no spikes will contribute to a lower mean.

There are several ways of dealing with this problem, but all come with differ-
ent drawbacks. One way is to remove all sessions with a certain number of spikes,
e.g. one spike, since the probability that two spikes occur inside the short sessions
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is lower than one occurring. However, by doing this, one removes much potentially
useful information, and the ratio between spikes and no-spikes is skewed.

Another approach is removing all sessions shorter than a certain length. Here,
as opposed to only removing sessions with a certain number of spikes, the ratio is
sustained. A problem here is that much data is lost from an already sparse data
set.

4.4 Time Between Spikes

After dividing the spikes into sessions, the time between the spikes in each session
is found for sessions where there are minimum two spikes. Both the mean and the
SDs are calculated for all angle bins. Since there need to be at least two spikes
in each session, the bins should be of a larger width than for calculating tuning
curves in order to get enough sessions to be able to give meaningful results.

A problem with this method of finding the sessions before finding the time be-
tween spikes is that one “loses” quite a large amount of the data. The time be-
tween two spikes in different angle bins are not included in the analysis, and with
rapid changes of angle bins, and many sessions, this adds up to be a significant
amount of data excluded: the narrower bins, the more loss of data. With large
bins, one suffers less data loss since the switching of sessions happens less often,
although fine details may be lost.

4.5 Comparison of Sessions

By comparing different sessions from the same HD cell, it is possible to see if
sessions from the same angle bin follow the same pattern. Sessions from within
the same angle bin are compared, and the spike train distances are found. These
distances are then compared with the distances found when comparing sessions
from different angle bins to see if there are any significant differences between the
results. This is done to see if it is possible to say if two arbitrary sessions from the
same HD cell originate from the same angle bin or not.

Sessions with less than a certain number of spikes are removed. Sessions with
few spikes are more likely to be similar by chance than by an actual common pat-
tern, and are therefore omitted from the analysis.

The directional firing ranges are symmetric around the PFDs. To account for
possible symmetry on a spike train level, the same comparison methods are used
on the angle bins inside half of the directional firing range to see if there are any
differences.
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Victor-Purpura distance

A problem with using the Victor-Purpura metric (Section 3.3) for this comparison
is that the metric does not account for the length of the compared spike trains. Due
to this limitation, only sessions with approximately the same length are compared.
This pose quite large limitations on the selection from the data set. Sessions with
lengths within five milliseconds of each other are compared. Here, the sessions
are considered “similar enough”, and allows comparisons of more sessions than
only the sessions of the same length. With a short minimum distance between the
spikes, the number of possible comparisons is reduced.

The cost value is looped through to see if one cost value provides better results
than the others.

van Rossum distance

The van Rossum distance (Section 3.4) have some of the same limitations as the
Victor-Purpura distance when it comes to the length of the spike trains compared;
thus only sessions with approximately the same length are compared.

The time scale parameter τ is looped through possible values the same way as
the cost in the Victor-Purpura distance.

Average firing rate

The same comparison method is conducted with the average number of spikes as
a similarity measure instead of the Victor-Purpura and van Rossum distances. In
this case, the requirement that the difference in length of the sessions compared
has to be less than a specific limit is removed. This is because the average firing
rate takes the length of the spike sequence into consideration. The “distance”
between two spike trains is here the difference in average spike rates for the two
sessions. A problem with the average firing rate comparison is that it misses
temporal structures in the spike trains.

4.6 Finding a Model

Since the HD cells all have different directional firing ranges, PFDs, and peak firing
rates, this is something that needs to be taken into account when creating a model
describing the response of the cells. Ideally, a single model is able to describe the
response of all HD cells, with only a few changes in parameter values taking the
properties of each HD cell into consideration. The input should be given as a func-
tion taking the head direction as an input parameter, and should be general for
all HD cells. An example is depicted in Figure 4.1. Here, the input is a function
of the head direction, while the model is a function, H, of the three parameters
α, β and γ, representing the properties directional firing range, PFD and peak
firing rate. The output is the spike times. Ideally, it should also be possible to
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Figure 4.1: Ideal model for describing response of head direction cells.

reverse the model flow with spike times as inputs and the head direction as output.

First, an already existing model is used on one cell to see if it is possible to
replicate the response for one specific direction. Here, the input stays constant.
After a model is found for describing one direction, the same model should be tried
to see if it can replicate the response of the HD cells for other directions, only by
changing the input. If that works, models for different cells should be compared
to see if there are any ways of creating a general model.

The Izhikevich Model

The Izhikevich model is chosen due to the combination of being biologically plau-
sible as well as being computational effective. In addition, with the form of the
output of the model being close to the form of the recordings, little adaption of
the model or preprocessing of the recordings is needed in order to use the model.

The code for the spiking neuron model found in [24] is adapted to the current
use. The code found is for modeling large-scale networks. The function is modi-
fied to return the spiking times and take the duration of the simulation as an input
parameter. The duration of the simulation is set to the duration of the session
which it is going to be compared with. The problem with the Victor-Purpura
distance only being applicable on spike trains with different lengths is therefore no
longer an issue, and the method proposed is applicable on all sessions.

The original code includes several elements of randomness. This is done to mimic
different dynamics for the different cells and different weights for the different
synaptic connections, in addition to varying input. When modeling one neuron,
the first two factors are not relevant. The randomness of the input is removed to
see if it is possible to find a model.

Some possible values of the model parameters making the model exhibit the same
properties as known cortical neurons are provided [24]. The upper and lower
boundaries for the parameter values looped trough are based on the values from
the models describing these known cortical neurons. Step sizes are chosen relative
to the start and end value.
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Table 4.1: Parameter values for the Izhikevich model.

Parameter Start value End value Step size
a 0.02 0.1 0.01
b 0.2 0.26 0.01
c -65 -50 5
d 0.05 8 0.05
I 1 15 1

All possible combinations of the values in Table 4.1 are looped through, and the
parameter values that give the shortest Victor-Purpura distance are chosen. This
is done for all the sessions for a specific shank, HD cell, and angle bin.

Due to uncertainties regarding the optimal value of the cost parameter q, dif-
ferent values of this parameter are also tested. The cost parameter influences how
much shifting spikes compared to removing and inserting spikes is prioritized, and
have an influence on the “optimal” parameter values of the model.

When a model has been found for each session in an angle bin, these models
should be compared to each other in order to find a common model capable of de-
scribing all sessions in an angle bin. After finding a model able to describe firings
inside an angle bin, the model needs to be altered so that it is able to replicate
the response from all directions, but with different input. The next step is then
to generalize the model so that, by changing some parameter values, the model is
able to describe all HD cells.

4.7 Machine Learning

There are several possible questions to ask when looking at ML and HD cells. Both
classification and prediction problems can be formulated with the goal of getting
a better understanding of HD cells and on the way of finding possible models for
modeling them.

Possible Problems
For a spike sequence, from a given HD cell, is it possible to tell from which angle
or angles the sequence is recorded?
This question can be regarded as a classification problem, with different angle
bins being the different categories possible. Here, the spike sequence is the known
factor, while the direction is the unknown one. The HD cells are being analyzed
separately, and it is theoretically possible to solve this problem by looking at one
cell alone. If a suitable model is found, it would be interesting to see if it is possible
to replicate the response, this time with predefined inputs instead of recordings. It
is also possible to do a sequence to sequence classification, where each data point,
i.e. millisecond, is classified to an angle. However, this may be quite difficult, or
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impossible, as the sequences only consisting of ones and zeros.

When looking at sessions from different HD cells combined, what is the angle or
angles from which the sequence originates?
This problem is quite similar to the one above, but instead of looking at only
one HD cell, the response from several HD cells are combined. The results are
highly dependent on the selection of HD cells, especially the dispersion of PFDs.
It would also be interesting to see if it is possible to find input for the NN, capable
of replicating the same response as when using the recordings. Also here could
it be interesting to investigate the possibilities for doing a sequence to sequence
classification.

For a given sequence (from a random HD cell), is it possible to tell from which HD
cell the sequence is collected?
This question is also a classification problem since the number of possible classes is
limited, and in this case, equal to the number of HD cells considered. By looking at
one sequence from a random HD cell; do this sequence contain enough information
to say anything about which cell it originates from? An additional problem could
here be to find out the direction of the head from which the sequence was recorded,
or add the direction as additional information, together with the sequence. Some
challenges related to this problem revolve around the available selection of HD
cells. If the characteristics of the HD cells are quite different, the task would be
easier than if they were quite similar.

For a given HD cell, what will the sequence be for a given angle?
This problem is a prediction problem, as the number of possible sequences are
innumerable. From the described machine learning problems, this is the one closes
to the main goal of finding a model being able to describe the neural responses of
a cell.

From these possible problems, the first two are chosen as areas of focus, with the
sequence classification, and not sequence to sequence classification. The problems
seem more manageable than the last problem, and the results can give valuable
insight into finding a model.

Layers and Hyperparameters
MATLAB, with the Deep Learning Toolbox, is used as a framework for the ML.
Some of the relevant features and settings explained in Section 3.6.

A simple LSTM network architecture for classification is given in Figure 4.2, and
is chosen since LSTM networks are proven suitable for sequential data. The se-
quential input layer inputs the features, i.e. spike times, of the different sessions.
This is followed by one or more LSTM or BiLSTM layers. For the prediction of
labels, there are one or more fully connected layers, a softmax layer, followed by
a classification output layer. If more LSTM or BiLSTM layers are used, dropout
layers (Appendix B.1) are used after the LSTM layers to avoid overfitting.
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Figure 4.2: Architecture of a simple LSTM network.

The architecture in Figure 4.2, with one LSTM/BiLSTM layer and one fully con-
nected layer is the one used as a basis in the training of both one and multiple HD
cells.

The hyperparameters are codependent, and it is not possible to tweak only one at
a time to get a “most optimal result”. The most relevant hyperparameters that
are changed to find the most optimal NN are described in Appendix B.2. From
the three available optimizers, adam is used.

The execution environment hyperparameter ’ExecutionEnvironment’ is set to
‘CPU’. Other options were tried but were unsuccessful.

Creating Training and Test Sets
The responses of the HD cells are split into sessions as described in Section 4.3.
Each session is labeled with the corresponding angle bin.

The training is done on 80% of the data set, while the testing is done on the
remaining 20 %.

By default, the software divides the training data into mini-batches and pads
them so all sequences in a mini-batch have the same length. If the padding is
too large, it can have a negative impact on the network performance. Both the
training and test data set are sorted on length to avoid excess padding.

Angle bin size

While too narrow angle bins lead to short sessions, too wide angle bins are also
problematic since they remove important nuances. Due to differences in direction
firing range and peak firing rate, different HD cell have different “optimal” angle
bin widths. When analyzing one HD cell at the time, this does not pose too many
problems, while combining several HD cells in the same study, more challenges
are emerging. The “optimal” angle bin width will then be a trade-off between the
properties of the individual HD cells in the analysis.

Omit short sessions

Short sessions are a problem when looking at both one HD cell as well as multiple
HD cells. Even for HD cells with a high peak firing rate and with the head in
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the PFD, the short sessions of a few milliseconds often contain only zeros, and the
few that contain one or two ones do not have enough information to say anything
specific about the session by itself. These short sessions may also pose the prob-
lem that there are several equal sessions extracted from different angle bins. Even
when combining the response of several cells, there are still sessions with no spikes.

One “solution” to this problem could be to remove all sessions shorter than a
certain length. The chances that the sessions are equal becomes smaller with in-
creasing length. Unfortunately, this removal of sessions decreases the usable data
drastically due to the large number of short sessions.

Balancing data sets

All data sets have angle bins that contain more sessions than others. This causes
an imbalance in the NNs, as they train more on these angle bins. Under-sampling
is done by removing sessions from the angle bins with the most sessions to account
for this imbalance. The number of sessions per angle bin can vary some, and still
be considered “balanced enough”. For simplicity, sessions are removed from angle
bins such that all angle bins contain the same number of sessions equal to the
one with the lowest number of sessions originally. The sessions removed are the
shortest ones, so that the long sessions, containing most information, are kept.
The removal of excess sessions is done first, before the data is shuffled. The data
set is then divided into new, smaller data sets used for training and testing.

Evaluating Performance
The performance is evaluated using accuracy as a measurement. The accuracy is
the average of the number of correctly predicted angle bins. A confusion matrix
is created for each training and plotted for visual inspection.

4.8 One HD Cell

It is investigated whether or not it is possible to classify the direction of the
head solely based on the response from one HD cell. This is done to see if the
information from one HD cell alone contains enough information to describe the
head direction, and if it is possible to get some more knowledge about the way HD
cells communicate.

Only Recordings Inside Directional Firing Range
Outside the directional firing range, the HD cells fire with a frequency below a
baseline threshold. This baseline is in many cases quite low, which results in several
sessions only including zeros, or in some cases a few spikes. Intuitively, several
angle bins will contain similar sessions, which makes it hard to distinguish between
the different directions outside of this directional firing range. One solution to this
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problem could be to treat all directions outside the directional firing range as one
class, or only look at the recordings when the head is held inside the directional
firing range.

4.9 Multiple HD Cells

By combining the response of several HD cells, more information is available.
Instead of only detecting angles within the directional firing range, a good selection
of HD cells provide the possibility of classifying spike sequences from all head
directions.

Feature Creation

As mentioned in Section 2.8, features are an important part of ML. The features
for the ML problem with multiple HD cells are given by the number of HD cells,
where the spike times for each cell are the features. By combining these already
existing features, it is possible to create new ones. One way of doing this is by
combining responses from two and two HD cells, to see if the accuracy improves.
The multiplication operator should be avoided as the sequences consist of ones and
zeros, and a lot of the information contained would be removed by multiplying the
sequences.

4.10 Combining Models and Neural Nets

After an NN is found, it is interesting to see if it is possible to create input that
yields results similar to the recordings, as this could help with the creation of ar-
tificial HD cells, which in turn could be interfaced with machines.

As a starting point, the Izhikevich model is used to create input to the NN. This is
done using the method described in Section 4.6. A model is found for each session
fulfilling a criterion, for all HD cells in a specific day. Possible criteria are sessions
with a minimum number of spikes, and sessions longer than a minimum length.

When using a minimum number of spikes as the criterion, this number should
be chosen such that there are enough sessions available for the generation of the
models. A low number of spikes may lead to problems since the available sessions
may include noise, which then is introduced in the models. High numbers may
lead to very few models being generated.

If using a minimum session length as the criterion, this minimum needs to be
short enough such that model creation is possible for all the different angle bins.
At the same time, the minimum should be long enough such that the sessions
include as many spikes as possible.
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After the models are generated, the input is created by choosing a random model
for each angle bin and HD cell which then are combined the same way as the input
in the training of the NN. A random offset is added to the input current of each
model to ensure variance in the models. If no model is available for a given HD
cell and angle bin, the generated sequence consists of only zeros.

All sessions are given the same length for simplicity. The number of sessions
per angle bin is equal for all angle bins.

41



Methods

42



5 | Results

5.1 Delimitations

Not all results are given in this paper. A representative selection has been chosen
to keep the paper within its scope. An additional selection is available in the ap-
pendix, while a lot of similar results have been excluded.

The results given here are deemed to be the most representative ones for the
complete data set, and the analysis conducted, and are in many cases used to give
an insight or ground for discussion.

For the reader to be able to see connections between the different types of analysis
conducted and methods used, the results are given for the same day, or HD cell
where applicable, as far as possible. In most cases, this is day 120806, and HD cell
120806.3.8.

5.2 Initial Analysis

Recording Days

The length of the wake phase for each day is shown in Table 5.1. The length varies
between 15 and 36 minutes.

Table 5.1: Length of wake phase.

Day Awake time [ms]
120806 2 188 901
120807 2 079 901
120808 910 000
120809 2 103 800
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Extracting HD cells

The HD cells are separated from the rest of the cells in the data set by the HDCEC.
The number of HD cells is given in Table 5.2. About 15% of the detected cells are
classified as HD cells.

Table 5.2: Number of head direction cells extracted from data set.

Day #cells #HD cells
120806 60 21
120807 62 13
120808 66 13
120809 271 20
Total 459 67

Tuning curves

In addition to classifying which cells are HD cells, the code also plots the tuning
curves of the different cells, both in cartesian and polar coordinate systems as seen
in Figure 5.1. When looking at the tuning curves, there are some that deviates
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Figure 5.1: Tuning curves of HD cell 120806.3.8.

from the “typical” form. Examples are given in Figure 5.2. In Figure 5.2a, two
peaks are present, instead of one. When comparing it to the PFD given by the
HDCEC, the PFD in the code is calculated to be approximately 291◦, which is
somewhere between the two large peaks. In Figure 5.2b, there is a second, smaller
peak in addition to the “normal” one found in most tuning curves for HD cells,
but the PFD of 312◦ does here match quite well with the peak of the tuning curve.
Due to this offset, an additional criterion is imposed; any second peak has to be
below 30% of the tallest peak. Two of the HD cells from 120806 and two from
120807 are therefore omitted from the results. In these cases, the PFDs found
given by the HDCEC do not match the direction at which the largest peak’s peak
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(a) Tuning curve of cell day 120806.4.8.
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(b) Tuning curve of cell 120806.4.5.

Figure 5.2: Imperfect tuning curves.

firing rate occurs.

When moving towards 0◦ in the polar plots, the length of the bars decreases to-
wards zero, as can be seen in Figure 3.2d. This problem does not seem to impact
the rest of the polar plot in any other way, and the HD cells with a directional
firing range that do not contain 0◦ are not affected.

Visual Inspection of Tuning Curves
The directional firing range and the peak firing rate can be found by visual inspec-
tion of the tuning curves. The results for HD cell 120806.3.8 are given in Table 5.3.
The peak firing rates vary between 3 and 60 spikes per second, and the directional
firing range ranges between 90◦ and 150◦. The peak firing rate is also given by the

Table 5.3: Directional firing range and peak firing rate found by visual inspection
of tuning curves.

Directional Peak firing rate
HD cell firing range [spikes/sec]

1 90◦ 3
2 100◦ 3.5
3 90◦ 55
4 120◦ 25
5 120◦ 35
6 100◦ 45
7 150◦ 15
8 110◦ 60
9 100◦ 16

10 100◦ 14
11 90◦ 5
12 90◦ 9
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HDCEC. This peak firing rate is usually a bit lower than the one found by visual
inspection of the tuning curves.

When looking at the peak firing rate for the four days in this study, it varies
between 1.4 and 125 spikes per second. The directional firing range varies between
85◦ and 180◦.

Head Directions Represented

The PFDs are given from the HDCEC. These are plotted against the time spent
with the head in each direction, with angle bins of width 1◦. The results are
shown in Figure 5.3 as well as Appendix C.1. The radial axis denotes the time

Figure 5.3: Time spent with head in each direction and PFDs of HD cells for
120806.

in milliseconds. The bars give the total time spent in each direction, but do not
give explicit information about the continuous duration of the head in a certain
direction. From the figure, it can be seen that the mouse held its head more in
the directions between 100◦ and 240◦ degrees than the rest of the directions. As
the figure also shows, the PFDs do not always correspond to the time spent with
the head in each direction. This means that the amount of data well suited for
analysis is sub-optimal.

46



Results

Extraction of Sessions
The angle bins represent the surrounding angles, rounded to the closest angle bin,
i.e. with an angle bin width of 10◦, the angle bin named 90◦ includes angles in the
range 85◦ to 94◦. This way of calculating angle bins is done for simplicity when it
comes to the coding. The angle bin 0◦ includes the angles from 0◦ to 4◦, and 355◦
and 360◦.

Comparison of methods

Though tuning curves of the HD cells can be plotted with the HDCEC, the tuning
curves are also plotted from the extracted sessions to check if the two methods
yield similar results visually. Here, angle bins of 1◦ is used, and for each angle
bin, the number of spikes is divided by the time spent in each angle bin before
being plotted. Figure 5.4 shows the tuning curve of 120806.3.8 created with the
two methods.
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(a) HDCEC.
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(b) Based on sessions.

Figure 5.4: Comparison of tuning curves.

Size of angle bins

When looking at the impact of the angle bin width when it comes to the firing
rate, a simple calculation is used as an example. For HD cell 120806.3.8 in Figure
5.4, the slope of the curve is approximately 1.1 spikes per second for the first half
of the angle bin. An angle bin width of 10◦ creates a difference in firing rate of
more than ten spikes per second between the two extremities of the angle bin.

The tuning curve of HD cell 120806.3.8 using an angle bin width of 10◦ is shown in
Figure 5.5. When comparing this to the tuning curves using 1◦ (Figure 5.4), the
main properties are preserved. Table 5.4 shows the number of sessions extracted
for day 120806 for three different-sized angle bin widths. The results for rest of
the days are given in Appendix C.2. All days experience a large drop in number
of sessions when increasing the angle bin width.
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Figure 5.5: Tuning curve of head direction cell 120806.3.8 with angle bin width of
10◦.

Table 5.4: Number of extracted sessions for day 120806.

Angle bin
width #sessions

1◦ 296 983
5◦ 84 841

10◦ 45 866

Length of extracted sessions

Sessions are extracted as described in Section 4.3, with angle bins with width of 1◦
and 10◦. Figure 5.6 shows the length of the sessions extracted. The bar furthest
to the right represents all sessions longer than either 100 ms or 300 ms, depending
on the width of the angle bins. The sessions extracted range in length from 1 ms
to the low thousands. As can be seen from both the histograms; short sessions
dominate. The head of the mouse moved a lot during the recordings and rarely
stayed in the same position for a longer amount of time. For an angle bin width
of 1◦, most sessions are shorter than 10 ms, while for an angle bin width of 10◦,
many of the sessions are shorter than 30 ms. The session lengths for the other
days of recordings for angle bin widths of 10◦ are given in Appendix C.3. Here,
similar results are found as for day 120806; sessions shorter than 30 ms dominate
for angle bin widths of 10◦, while there are few sessions longer than 10 ms when
dividing the recordings into angle bins of 1◦.
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Figure 5.6: Length of extracted sessions for day 120806.

Spikes per session

The Tables 5.5-5.7 all include results for HD cell 120806.3.8 for angle bin 120◦, and
each present the impact of tweaking a single premise in this selection of the data
set. The angle bin 120◦ is one of the angle bins in the middle of the directional
firing range, and is chosen due to the high concentration of spikes.

Table 5.5 includes the mean and SD for the different angle bin widths 1◦, 5◦
and 10◦. The smaller the angle bin, the larger the SD. The number of available

Table 5.5: Angle bin width.

Bin width Mean SD #sessions
1◦ 55 101 1140
5◦ 52 67 1622
10◦ 50 48 1785

sessions for analysis increases with increasing angle bin width. Generally, when
calculating the average firing rate for each session in every angle bin individually,
the average firing rate differs a lot, even within the same angle bin. The SD is in
many cases larger than the mean itself.

The results in Table 5.6 and 5.7 are both given for an angle bin width of 5◦,
and are similar to results for other angle bins and HD cells. The angle bin width
of 5◦ is chosen to ensure a sufficient number of sessions for analysis. When remov-
ing sessions with spikes with fewer spikes than a certain number, both the mean
and the SD substantially decrease.

Table 5.7 includes the mean and SD when removing sessions shorter than a min-
imum length. By removing sessions shorter than a minimum length, the mean
stays approximately the same, while the SD decreases with an increasing minimum
length. The number of sessions also decrease with increasing minimum length.
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Table 5.6: Minimum number of spikes.

#spikes Mean SD #sessions
≥2 39 52 1107
≥4 18 37 734
≥10 1 11 574

Table 5.7: Minimum session length.

Length [ms] Mean SD #sessions
≥2 53 64 1580
≥10 52 40 1239
≥100 51 19 55

Some of the results from Table 5.5, 5.6 and 5.7 are given in Table 5.8 for five
different angle bins. The average spike rates for sessions were calculated for sev-
eral cells. The results showed here for HD cell 120806.3.8 are representable for the
results found for the rest of the tested HD cells.

Table 5.8: Mean and deviation for different angle bins.

Angle bin Meana SDa Meanb SDb Meanc SDc

110◦ 56 68 20 40 48 21
115◦ 53 65 21 37 46 22
120◦ 52 67 18 37 51 19
125◦ 49 65 20 38 42 24
130◦ 41 61 12 30 34 20

aAll sessions included.
bWithout sessions with 1-3 spikes.
cWithout sessions shorter than 100 ms.

5.3 Time Between Spikes

A visualization of the mean and SD of the time between spikes is given in Figure
5.7. Here, the mean and the SD for each angle bin are plotted in the same way as
the frequency in the tuning curves. The y-axis shows the time between spikes in
milliseconds, while the x-axis gives the angle bins.

A visualization of the results with angle bins of width 1◦ for HD cell 120806.3.8
can be seen in Figure 5.7a. One SD outlier with an y-value >100 is removed. As
opposed to the tuning curves, the plotting of the time between spikes does not
appear to form a specific pattern. For some HD cells, there are some angle bins
without any data points. This is most likely due to the fact that the time spent
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in the angle bins were too short for more than one spike to occur. The SD is also
quite high compared to the average in many cases.
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(b) Angle bin width of 5◦.
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(c) Angle bin width of 10◦.

Figure 5.7: Time between spikes for HD cell 120806.3.8 for three different angle
bin widths.

The results with angle bin width 5◦ and 10◦ are given in Figure 5.7b and 5.7c,
respectively. Even though all the plots originate from the same HD cell, there
are large differences. One could argue that the time between spikes is a bit lower
around 100◦ and that the SD is lower around 45◦ and 225◦.

5.4 Comparison of Sessions

The results from the extraction of sessions from 120806.3.8 can be seen in Table
5.9. Here, the number of sessions found is given for angle bin widths 5◦ and 10◦,
and the minimum number of spikes is set to 5, 10 or 15. The total number of
sessions without a lower limit on the number of spikes is given in Table 5.4. From
these alternatives, the results from 10◦ angle bin and 10 spikes (in bold-face) is
used for the results in the rest of this section. This is chosen due to the large
number of sessions available as well as having a sufficient number of spikes per
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Table 5.9: Number of extracted sessions.

Angle bin width #spikes/session #sessions
1◦ 5 202
1◦ 10 14
1◦ 15 3
5◦ 5 1043
5◦ 10 104
5◦ 15 18
10◦ 5 1727
10◦ 10 406
10◦ 15 131

session for analysis.

Only comparisons where it is possible to compare a session with at least one
session from the same angle bin and one from a different angle bin are included.
Sessions where several comparisons yield the same shortest distance are registered
as indeterminable, unless all the comparisons giving the shortest distance are from
the same angle bin.

Victor-Purpura Distance

For a maximum distance of 5 ms between the sessions for the comparisons, the
number of total comparisons is 3037. For the 406 sessions found, only 224 of
them were able to be compared with sessions of similar length from both same
and different angle bins. The cost giving the highest percentage of comparisons
originating from the same angle bin, yielding the shortest distance is q = 0.03,
with 22.3%. The different values of q looped through are 0.001 to 0.01 with a step
size of 0.001, and 0.01 to 1 with a step size of 0.01.

van Rossum distance

The same 5 millisecond maximum distance between the spikes to be compared
is used with the Victor-Purpura distance is used for the van Rossum distance as
well. The number of compared sessions are, therefore, the same. The time scale
parameter found to return the highest percentage of comparisons originating from
the same angle bin, yielding the shortest distance is τ = 0.28, with 24.6%. The
values looped through for τ are 0.001 to 0.01 with a step size of 0.001, and 0.01 to
1 with a step size of 0.01, as well as 1 to 10 with a step size of 0.5.

Average Firing Rate

When using the average spiking rate instead of the Victor-Purpura metric as com-
parison criteria, 82 215 comparisons are made instead of 3037. The number of
sessions compared with both sessions from the same angle bin and different angle
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bins is 395. The percentage of comparisons originating from the same angle bin,
yielding the shortest distance, is 15.4%.

For all comparison methods, the number of comparisons of sessions from different
angle bins is significantly higher, varying from about four to five times larger than
the number of comparisons of sessions from the same angle bin.

When only looking at one half of the tuning curve, the percentage of compar-
isons originating from the same angle bin, yielding the shortest distance, increases
to about 30%.

Using an angle bind width of 5◦, and including sessions with either a minimum of
5 or 10 spikes, yielded similar or worse results.

Some of the distances found when comparing sessions in 120806.3.8 are given in
Table 5.10. The first column indicate whether the two sessions compared originate

Table 5.10: Comparison of sessions.

Same/ Victor-Purpura van Rossum Difference in
different (q = 0.6) (τ = 0.28) average firing rate

Same 3.02 106 8.2
Same 2.78 276 2.2

Different 2.08 235i 9.4
Same 3.08 211i 2.4

Different 3.90 371 23.2
Different 3.90 252 13.4

Same 4.72 191i 14.1
Different 2.26 282 20.8
Different 2.26 50i 1.2

from the same angle bin, or different ones. The proceeding three columns give the
Victor-Purpura distance, the van Rossum distance, and the difference in average
firing rate for the sessions. The bold-faced numbers are the lowest distance for the
specific metric and session combination.

5.5 Finding a Model

The Table 5.11 shows the “optimal” parameter values, i.e. values yielding the
shortest Victor-Purpura distance when comparing the recordings and model, for
the first five sessions, S1, S2, S3, S4 and S5 from HD cell 120806.3.8 for cost
value q = 0.01. The cost value is found by iterating through different values, and
choosing the most optimal value. The session recordings and models using the op-
timal model parameter values for each session are plotted in Figure 5.8. Several of
the comparisons are visually quite similar. The number of spikes are often similar,
and some are merely slightly shifted. For some comparisons, the models match
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Table 5.11: Optimal model parameter values.

a b c d I Distance
S1 0.1 0.23 -65 0.3 11 0.18
S2 0.03 0.26 -65 1.1 12 0.2
S3 0.07 0.26 -60 0.15 10 0.43
S4 0.06 0.25 -55 3.5 11 0.26
S5 0.08 0.21 -50 2.25 9 0.9
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Figure 5.8: Comparisons of sessions and models.

the recordings well apart from a few spikes, like S3, shown in Figure 5.8c.

Table 5.12 shows the Victor-Purpura distance for the first three sessions when
the model with optimal parameter values are used. The bold-faced numbers are
the distance for the sessions where optimized values are used. The distances be-
tween session recordings and a model found using another session’s optimal model
values are significantly larger than the distance between a session recording and the
model found using the optimal values for that session. In Figure 5.9, the record-
ings of session S2 are plotted against the model found using the optimal model
parameter values for session S1 and S3. Here, one can see that these models are
a poorer match than the one in Figure 5.8b.
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Table 5.12: Victor-Purpura distance for different optimal model parameter values.

Session Distancea Distanceb Distancec

S1 0.18 1.49 1.03
S2 3.53 0.2 4.42
S3 1.14 2.62 0.43

aa = 0.1, b = 0.23, c = -65, d = 0.3, I = 11.
ba = 0.03, b = 0.26, c = -65, d = 1.1, I = 12.
ca = 0.07, b = 0.26, c = -60, d = 0.15, I = 10.
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Figure 5.9: Comparison of recordings from session S2 and model from session S1
and S3.

5.6 Machine Learning

Layers and Hyperparameters
Due to time constraints, not all possible layer and hyperparameter value com-
binations (Appendix B.2) could be tested. A selection of the different values of
used hyperparameters is given in Table 5.13. The upper and lower limit gives the
largest and lowest value used. Most training and test were done with the simple

Table 5.13: Hyperparameter values and number of hidden units.

Hyperparameter
Initial learn rate 0.0001 - 0.05
Mini-batch 32 - 512
Max epoch 30-200
Drop factor 0.01-0.5
Drop period 5-30
No. of hidden units 100 - 1000

network architecture shown in Figure 4.2, which includes only one LSTM/BiLSTM
layer as well as one “Fully connected” layer. The number of hidden units in the
LSTM/BiLSTM-layer were between 100 and 1000. Deeper networks did not give
notably improved results, while the training time increased drastically with the
number of layers. The LSTM and BiLSTM layers yielded similar results. This
applies for both one cell and multiple cells combined. Results specific for either
one cell or multiple combined is given in Section 5.7 and 5.8.

55



Results

Balancing Data Sets

An overview over the number of sessions per angle bin for an angle bin width of 10◦
is given in Figure 5.10. Here, the angle bins are presented along the x-axis while
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Figure 5.10: Number of sessions per angle bin for 120806.

the y-axis gives the number of sessions per bin. As can be seen in the figure, the
number of sessions in each angle bin is quite imbalanced. The difference between
the angle bin with most sessions and the one with least sessions is 1010 sessions.

If the data set was not balanced beforehand, the angle bins with the most ses-
sions available had a tendency to be predicted more often than other angle bins.

Training

A screenshot of the accuracy during a training process is shown in Figure 5.11.
Each gray and white column is one epoch. For most of the training done with
different NNs and hyperparameters, the accuracy increases during an epoch, before
dropping at the beginning of the next epoch. This rapid drop in accuracy is not
present when the sessions are not sorted by length.

Confusion Matrix

The output confusion matrix visualizes the performance of the neural net. Along
the x-axis are the predicted angle bins for the sessions, while the y-axis denotes
the true angle bins. In the intersections are the number of sessions predicted as
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Figure 5.11: Training accuracy.

belonging to the x-value, while actually being from the y-value e.g. the intersec-
tion of x-value 140 and y-value 180 is the number of sessions from angle bin 180◦
classified as from angle bin 140◦ by the NN. This is for ease visualized with colors.
Orange/red is used for false predictions, while blue visualizes the correct predic-
tions. The darker the color, the more predictions there are for that specific tile.
The correct predictions go as a diagonal from the upper left corner to the lower
right corner.

5.7 One HD Cell

None of the combinations of layers and hyperparameters provided any acceptable
results, as no specific patterns can be observed when looking at the confusion
matrices. An example is shown in Figure 5.12. When only looking at angle bins
within the directional firing range, as shown in Figure 5.13a, or for half of the
directional firing range, as shown in Figure 5.13b, to account for symmetry, the
results were similarly non conclusive as no clear patterns were found. The results
presented are from HD cell 120806.3.8, but all HD cells yielded similar results.

5.8 Multiple HD Cells

When looking at the number of HD cells available for each recording day, as well
as the distribution of PFD from Figure 5.3 and Appendix C.1, the recordings from
day 120806 appears to be most suitable. This is partly because of the large number
of HD cells available compared to 120807 and 120808, as well as the distribution
of the cells compared to 120809. The length of the wake phase is also longest for
this day, as seen in Table 5.1.

Results from two different NNs are given below. The hyperparameters and specifi-
cations are given in Table 5.14, along with the training time and accuracy. Values
not mentioned in the table are given their default values. Both the NNs consist of
one BiLSTM layer as well as one fully connected layer. The confusion matrices are
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Figure 5.12: Confusion matrix; one HD cell.
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Figure 5.13: Confusion matrices; one HD cell, with sifted data.

given in Figure 5.14. Both the confusion matrices outline a distribution around
the true value as a blue and orange band from [0,0] to [360,360], with most values
contained within the true angle bin ±30◦.

For both confusion matrices, there are some values that are predicted more fre-
quently. Some angle bins, e.g. the 250◦, are predicted more often quite independent
of the hyperparameters chosen.

The band are low (often three or less per tile) for both. However, NN_2 contain
more of these tiles. If the angle bin is chosen completely random when classifying,
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Figure 5.14: Confusion matrices; multiple HD cells.

the accuracy would be 2.8%. Which is found by taking 1/36. The accuracy of
the NN giving the confusion matrix in Figure 5.14a and 5.14b are 2.9% and 2.8%
respectively, which is only marginally larger. Some of the other NNs tested gave
an accuracy up to around 3.5%, but when looking at the confusion matrix, there
are less clear patterns.
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Table 5.14: Hyperparameter values and alterations.

Hyperparameter NN_1 NN_2
Initial learn rate 0.01 0.01
Mini-batch 32 128
Max epoch 100 100
Drop factor 0.5 0.5
Drop period 30 20
Neural net
No. of hidden units 200 300
LSTM/BiLSTM BiLSTM BiLSTM
Data set alterations
Sorted? Yes Yes
Balanced? Yes Yes
Short sessions removed? <20 ms No
Results
Accuracy [%] 2.9 2.8
Training time [min] 343 373

Feature creation

The response from two and two cells are combined to create new features. They
are combined using the OR operator, and they are combined in the order 1|2, 3|4,
..., N|N+1. For uneven numbers of available HD cells, the last HD cell is not
combined with any. The combined features are added to the existing spike trains.
The results do not have any notable differences when adding new features.

5.9 Combining Models and Neural Nets

Table 5.15 shows an overview over the number of HD cells per angle bin with at
least one session fulfilling the criterion placed on the sessions to contain either five
or ten spikes, i.e. the number of HD cells per angle bin with at least one model.
The NN used is NN_1 from Table 5.14.

When looking at the number of sessions fulfilling the criteria for each HD cell,
there are large differences between HD cells. Some HD cells have a large number
of sessions, while others have almost none. An example is HD cell 17, which have
sessions fulfilling the criterion of a minimum of five spikes for 25 angle bins. In
several cases, HD cell 17 is the only HD cell that has sessions fulfilling the criterion,
e.g. angle bin 260◦ to 330◦.

The models are created from sessions with minimum five spikes, as opposed to
ten, to have more models available. The input current to the models varies with
±0.5A from the “optimal” value. The number of sessions created with the models
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Table 5.15: The number of HD cells per angle bin with at least one model.

Angle bin 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦

≥5 spikes 2 4 4 3 5 6 6 8 8 6 12 9
≥10 spikes 1 2 2 3 3 3 4 4 6 5 7 3

120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦ 200◦ 210◦ 220◦ 230◦

11 11 13 12 11 9 12 8 6 7 5 4
5 6 9 5 3 3 2 3 2 2 2 1

240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

3 2 1 1 1 1 1 1 1 1 2 2
1 0 0 1 1 1 1 1 1 1 1 1

is 250 per angle bin. This number is chosen to make them somewhat comparable
to the ones in Section 5.14, which are tested on 9173 sessions when short sessions
are kept. Different session lengths were tried. The confusion matrices for sessions
with lengths of 5 ms and 500 ms are shown in Figure 5.15. A length of 5 ms
was the minimum length to be able to get results that did not consist of only one
prediction. In this case, the angle bin 260◦ is predicted several times, for almost
all true angle bins. There are several other angle bins that are predicted more
often than others, such as 100◦ and 300◦. These angle bins are mostly predicted
when the true angle bin is within ±50◦ of the predicted angle bin.

For a session length of 500 ms, not all angle bins are predicted, but there are
no angle bins that are predicted for all different true angle bins, as 260◦ in Figure
5.15a. For both confusion matrices, almost all predictions are within ±50◦ from
the true angle bin. The same trends are visible for other session lengths than 5 ms
and 500 ms.

Figure 5.16 shows the confusion matrix when using input from models based on
recorded sessions with a length of minimum 250 ms. The number of sessions used
for testing is 250 per angle bin. The length of the input sessions created from
the models is 500 ms. There are more sessions longer than 250 ms than sessions
with more than five spikes, and longer sessions take more time to compare with
the Victor-Purpura distance than short sessions. Due to time limitations, only
two models were found from each HD cell per angle bin. As one can see from
the confusion matrix, the results are somewhat similar to the ones seen in Figure
5.15b. The main difference between the two confusion matrices is that there are
more different angle bins predicted in Figure 5.16. When testing the network on
shorter sessions, like 250 ms, the results are similar to the ones seen in Figure 5.16.
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Figure 5.15: New input in neural net NN_1. Input based on sessions with more
than five spikes.
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Figure 5.16: New input in neural net NN_1. Input based on sessions with a
minimum length of 250 ms.
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6 | Discussion

6.1 Initial Analysis

Extracting HD Cells

The percentage of HD cells found is approximately half of the percentage found
in the original paper [52] (15% versus 33%). Due to restrictions in the data set,
the extraction method described in this paper is not possible to use on the rest
of the data set without further preprocessing steps. Since not all mice and days
are analyzed, it is not possible to say whether or not the code classifies the same
number of cells as HD cells as the one in the original study.

Tuning curves

After a brief inspection of the HDCEC, no explanation is found why some of the
cells with more than one high peak were classified as HD cells. Given more time,
the code should probably be more thoroughly investigated to see if an explanation
can be found and if there are any other potential issues with the code. This could,
for instance, be if any HD cells are not classified as HD cells.

Visual Inspection of Tuning Curves

The directional firing range and the peak firing rate of the HD cells found in Table
5.3 are consistent with the literature. The directional firing range is similar to
published literature discussed in Section 2.3, while the peak firing rate is a bit
lower for two of the HD cells, with a firing rate below 5. When it comes to the
results for the rest of the days, some of the directional firing ranges are a bit larger
than the ones found in literature, and some of the peak firing rates are a bit lower,
with peak firing rates down to below 1.5 spikes per second.

The exact values given in the results should, however, be interpreted with cau-
tion. The directional firing range and peak firing rate were only estimated from a
visual inspection of the tuning curves. This was determined to be accurate enough
for the simple, initial analysis conducted. For a more thorough analysis, more
accurate values should be used. One method for finding these values could be to
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estimate a fitted curve, before calculating the directional firing range and peak
firing rate from this.

Extraction of Sessions

Comparison of methods

The tuning curves from the HDCEC and the ones based on the sessions extracted
are quite similar. There are some differences between them, but the ones from the
HDCEC are smoothed. This shows that dividing the recordings into sessions do
not have a large impact on the properties.

Size of angle bins

The significance of the angle bin width with regards to the variations of firing rate
(and other possible types of coding) inside the angle bin becomes evident when
looking at the difference in firing rate between the two extremities of an angle bin.
Even though HD cell 120806.8.3 is only one example of the firing rates for each
extremity, it illustrates that the difference is large enough to pose a problem. How
wide an angle bin is depends on the directional firing range and the peak firing
rate, and what is wide for one HD cell may not be of relevance to another HD cell.
When looking at sessions originating from the same angle bin, the results over
time may not be that different when using wide angle bins compared to narrow
ones. This can be seen when looking at the tuning curve in Figure 5.5 based on
an angle bin width of 10◦. When looking at sessions individually, these differences
may be substantial.

As seen in the results, in Table 5.4 and Appendix C.2, the number of sessions
available is drastically reduced when increasing the angle bin width. This is as
expected since larger head movements more often stay within the same angle bin.

Length of extracted sessions

A large portion of the extracted sessions are short. Many of these sessions are
shorter than 30 ms even for “large” angle bins with a width of 10◦. Individually,
these sessions do not contain much information. When taking an HD cell with a
peak firing rate of 60 spikes per second, which is larger than the majority of the
HD cells found, 30 ms will on average contain less than two spikes. This is quite
problematic when it comes to both the analysis of single sessions and combina-
tions of sessions using machine learning. Looking at sessions individually, almost
all sessions from 1◦ angle bins are too short for analysis, while for 10◦ angle bins,
some sessions are sufficiently long. The problem with larger angle bins is, as men-
tioned before, that it is harder to pinpoint the exact angle of the head, and it is
not possible to detect small variations in head direction or types of coding used.

For future work, an attempt if combining sessions from different angle bins to
make longer sessions available for analysis should be explored.
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Spikes per session

Several factors are contributing to the number of spikes in the different sessions.
This becomes evident from Tables 5.5 through 5.8, and will be discussed further.

When it comes to the choice of angle bin width, the narrower the angle bins,
the higher the SD. This can be explained by more short sessions, with more spikes
occurring in short sessions and thus increasing the SD.

By removing all sessions with spikes less than a minimum number of spikes, the
sessions with no spikes dominate, and the mean decreases drastically. The SD
also decreases. This is most likely due to the short sessions with artificially high
average spiking rates are removed. Neither the mean nor the SD is representative
for the actual mean and SD for the angle bin.

Exempting sessions shorter than a minimum length, as exemplified in Table 5.7
and 5.8, some of the problems with including all sessions disappear, such as an
artificially large SD. However, by removing short sessions, the number of sessions
also reduces drastically due to the large number of short sessions. The mean is
close to the average firing rate that can be read from the tuning curves. Even by
removing all sessions less than 100 ms, the SD is quite large compared to the mean.

The large SD could also originate from large angle bins, for example, if sessions are
found from different “parts” of the angle bin. For an angle bin between 5◦ and 15◦,
one session may originate only from recordings close to 5◦, and another from an-
gles close to 15◦. If the width of the angle bin is large compared to the directional
firing range, the average firing rate will differ significantly between the two sessions.

All methods used, apart from removing short sessions, shifts the ratio between
spikes and non-spikes. Additionally, the longer the sessions, the closer the average
is to the “true” average spike rate. The drawback with using only long sessions
is that the number of sessions available diminishes fast with increasing minimum
length.

The large SD may suggest that HD cells also communicate with a different coding
scheme than only rate coding.

6.2 Time Between Spikes

As mentioned in Section 4.4, a lot of information about the time between spikes
is excluded when dividing the recordings into angle bins. One distance between
spikes is lost with every change of angle bin. The narrower the angle bins, the
more sessions there are, and the more information is lost. Still, the results found
give some indication on whether or not the distance between spikes could be a
type of coding used by HD cells.
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If the HD cells only communicate with rate coding, and with the spikes evenly
spaced, the curves of time between spikes should have the form of the inverse of
the tuning curves. When looking at the plots in Figure 5.7, although far from
conclusive, there are hints of such an inverse tuning curve in both Figures 5.7b
and 5.7c.

The immediate difference between SD and mean around 45◦ and 225◦, as op-
posed to around 100◦, could be that the time between spikes varies more around
45◦ and 225◦. Another explanation is that the number of measurements of time
between spikes is lower, due to fewer spikes at the outskirts of the directional firing
range, so that the larger variations have more impact on the SD.

6.3 Comparison of Sessions

By looking at several arbitrary sessions; some from the same angle bin, and some
from different angle bins, it is not possible to say which ones originate from the
same angle bin by looking at the Victor-Purpura distance, the van Rossum dis-
tance or the average firing rate.

There are several possible explanations for this: Spike train metrics are often
used on repeated trials to see the trial-to-trial variation. The problem with the
data set used is that there are no repeated trials, and the lack of these trials cre-
ates the need for breaking the recordings into comparable pieces. However, since
these sessions varies more than “normal” trial-to-trial variations, metrics such as
the Victor-Purpura distance and the van Rossum distance are in these cases not
the most optimal to use.

The size of the angle bins is crucial for further analysis. The bins have to be
of a minimum width in order to contain enough data for proper analysis, but too
wide bins provide a problem if the HD cells use a “smaller resolution”. If an an-
gle bin width of 10◦ is used, but the HD cells code directions that differ with 1◦
differently, sessions from the same angle bin are not directly comparable if the
movement inside the angle bin differs.

Both the Victor-Purpura distance and the van Rossum distance use a parame-
ter to decide the time scale. As seen in Section 5.3, the average between spikes
is not constant. Thus, there is no single optimal value for the parameters q and
τ . Looking at recordings from all angle bins for a specific HD cell poses several
problems with this method. One of these problems is that recordings from outside
the directional firing range contain less information than from the ones inside the
directional firing range. If these are coded in the same way, the percentage of
sessions classified as from the same angle bin will decrease. When looking at the
tuning curve, the peak is quite symmetric. If the same holds for the spike patterns,
the percentage may also drop since a session may be classified as originating from
the “symmetric” angle bin. By looking only at recordings from angle bins from
half the directional firing range, it can give some indications if this is true. As seen
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in the results, the percentage of comparisons with the shortest distance originating
from the same distance increases when only looking at half of the directional firing
range. The percentage is still not large enough to be able to say anything about
which sessions are from the same angle bins when looking at a random selection of
sessions. A possible explanation of the increase in percentage is that the number
of comparisons from other sessions compared of sessions from the same session is
reduced with the reduced number of possible angle bins.

It is curious that the average firing rate also yields poor results compared to the
Victor-Purpura and the van Rossum distances, as it is known that rate coding is
one of the types of coding used for HD cells. These explanations also hold when
comparing sessions using average firing rate, but there are additional explanations
for this. After removing half of the angles, the percentage does not increase to
more than about 30%. When looking at this result in comparison to the results in
Table 5.7 and 5.10, this is not very surprising due to the large SD.

The spike train metrics used are metrics that take the spikes as the main method
of measurement. This is done since HD cells are known to communicate with rate
coding, if not more types of coding as well, and thus provide a good starting point.
There are also time-based metrics, which is a possible area of investigation for the
future.

6.4 Finding a Model

When looking at the plotting of session recordings and the model given by the
model parameter values yielding the shortest Victor-Purpura distance, some of
the plots are visually quite similar. This shows that the Izhikevich model can
reproduce, or mimic, some of the spike patterns reproduced by the HD cells. How-
ever, this does not mean that the Izhikevich model is suitable for describing the
neural response of HD cells. How many sessions the model is able to describe well
has not been fully investigated. Similarities between recordings and the model out-
put has not been compared using other metrics, which should be done in the future.

As seen in Tables 5.11 and 5.12, the model parameter values that yield the short-
est distance for one session are different for other sessions within the same angle
bin. The optimal choice of parameter values for one session changes throughout
the angle bin. The large difference in distance when using the optimal model pa-
rameter values for one session for other sessions in the same angle bin indicates
that the differences are more than just trial-to-trial variations. It could also be
an indication of that the combination of metrics and models is unsuitable for this
application. It is not possible to prove that the Izhikevich model cannot be used,
but the results so far are not very promising. If the Izhikevich model is to be used,
the method used to optimize the model parameters needs to change.

Another approach to finding a model is to calculate the distance between the
model and all sessions available for a specific angle bin and choose the one with
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the lowest total distance. This way, the model found is the one best approximated
to the “average” model. However, since no clear connection between the sessions
from the same angle bin is found, as seen in Section 6.3, a thorough analysis should
be conducted to see if this is a feasible approach to finding a model.

6.5 Machine Learning

Training

The rapid decrease in training accuracy at the beginning of each new epoch is
due to the sorting of the sessions by length. Short sessions are notably harder to
classify than the longer sessions, and the input is not shuffled before each epoch.

Evaluating Performance

The accuracy is not necessarily the best way to measure the performance of the
NNs. The accuracy was low for all tests, and for several of the tests, the accuracy
was almost as low as a random distribution. When looking at the confusion ma-
trix, a pattern around the true value is often evident for multiple HD cells. There
was no visible correlation between the accuracy and the patterns in the confusion
matrix.

For future work, a measurement for an additional accuracy for predictions within
the “band” should be incorporated in the code. Thus, reducing the need for visual
inspections.

6.6 One HD Cell

For all confusion matrices found when looking at a single HD cell, it quickly be-
comes evident that there is a lack of data for the ML process. As exemplified in
Figures 5.12, 5.13a and 5.13b, no pattern appear, and the accuracy is extremely
poor.

When looking at the length of the sessions used for training and testing, visu-
alized in Figure 5.6b, the length of the sessions is in most cases less than 30 ms.
These sessions do not contain more info than their own randomness, and when
excluding them, the sessions left are too few for training a NN.

It is not possible to tell the direction of the head by looking at one HD cell
alone. However, it is also not possible to dismiss the possibility of being able
to tell the direction by considering the spike trains from only one cell, for example,
by looking at data sets containing longer sessions. Another possibility could be to
combine sessions from similar angle bins, but this may introduce new problems,
which should be considered.
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6.7 Multiple HD Cells

When combining the response from multiple HD cells, the accuracy is still poor,
but a pattern is often evident around the true values when looking at the confusion
matrices. The band illustrates that the NNs can distinguish between angles with
an accuracy poorer than the angle bin width.

Some of the angle bins are predicted more often than others, even when changing
the hyperparameter values. The number of sessions per angle bin is balanced before
division into training and test sets. This is therefore not the reason for the number
of predictions, as it also occurs for training with several different hyperparame-
ters. Due to the persistence, a reason can be the combination of HD cells available.

One explanation for NN_2 having more different predictions outside of the band
is the choice of hyperparameter values. This is evident from the direct impact
hyperparameter values have on the predictions. Also, NN_1 excluded sessions less
than 20 ms, which means that the number of sessions used in testing is less than
for NN_2. For future work, the number of predictions inside such a band should
be calculated and compared to the number outside.

From the results, it is not possible to say which angle bin the sequence originates
from. Whether or not these results are acceptable depends on the application. If
these, or similar, results are going to be used in applications for finding a “gen-
eral” direction, or distinguish between four main directions, these findings may be
sufficient, while it is not usable for an application requiring higher accuracy. It
could be that the method works better with a more extensive data set, with more
or better distributed PFDs.

Even if the classification was perfect, one is still dependent on dividing angle bins
into sessions. It is possible to investigate use of sequence-to-sequence classification,
which enables distinguishing between multiple angle bins within a session.

Feature Creation

Feature creation was not explored to the necessary extent, and should be investi-
gated further in the future. The results did not improve notably when combining
the response from two and two consecutive HD cells, but it could be that an-
other selection of combined HD cells provide better results. This could be done
by considering the properties of the individual HD cells available in the data set,
combining response from two or more HD cells with complementing properties.

6.8 Combining Models and Neural Nets

When considering sessions with minimum five, opposed to ten, spikes as the crite-
rion when finding sessions, the number of sessions to base the models on is higher,
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and therefore yields more models. Still, out of 36 angle bins, only seven include
models for more than half of the 19 HD cells. This means that the number of
sessions to test on, that consists of only zeros, is quite high.

It is expected that not all HD cells have sessions with more than five spikes for
all angle bins, as some HD cells have low peak firing rates. Combined with short
sessions, the number of spikes per sessions is often less than the criterion of a min-
imum of five spikes. For angles outside the directional firing range, the sessions
need to be longer than inside the directional firing range to include a sufficient
number of spikes. When looking at Figure 5.3 in combination with Table 5.15, one
can observe that the angle bins with the largest number of HD cells, with at least
one model, are the ones in the directions where the mouse held its head the most.
These are also the directions with a higher density of PFDs of HD cells.

Compared to the testing of the NN with recordings, the number of predictions
per predicted value is higher. This is visualized with darker colors in the confusion
matrices. A reason for this could be the low number of non-zero sessions available,
which means that the precise form of the spiking sequences has less impact on the
classification than the number of spikes.

The issues with classifying short sessions can explain the larger number of pre-
dicted values for sessions with a length of five milliseconds.

There are several problems and challenges related to using the Izhikevich model
to find applicable inputs for the NN. One is that the models are based on some
of the sessions that were used for training the NN, which may lead to the results
being better than they would have otherwise. Another problem is the length of
the sessions. It is not tested whether or not the models found preserve the prop-
erties for session lengths longer or shorter than the sessions they were derived from.

When it comes to the many predictions of angle bin 330◦ for a session length
of 500 ms, this can in part be explained by looking at the models used to create
the sessions. For angle bin 250◦ through 350◦ plus 0◦, there are models from either
one or two HD cells available.

When it comes to the numerous models for HD cell 17, it is not very surpris-
ing that the number of sessions fulfills that criterion, as the HD cell has a peak
firing rate of nearly 80 spikes per second. However, being the lone HD cell with
sessions fulfilling the criterion is somewhat problematic. One reason is that the
angle bins are classified solely on the models from the response of one cell, which
earlier has been shown not to contain enough information. Almost all of the mod-
els are similar enough for the NN to classify them as originating from angle bin
330◦.

Using a minimum session length of 250 ms as the criterion for sessions used to
find a model, more different angle bins are predicted. This can be explained by
the number of models available when creating the input to the NN. When using a
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minimum number of spikes as a criterion, only a few HD cells had sessions fulfilling
this, while all of them have at least two sessions longer than 250 ms. Based on
the results from Table 5.15, most of the models found are based on sessions with
less than five spikes, which means that the models are based on spikes that could
originate solely from random noise.

When it comes to angle bin 330◦, there are still many predictions. The expla-
nation behind this is not completely clear, but a reason could be the low number
of models available per angle bin and HD cell. If the two models available yield
low spike numbers for all sessions except 17, and HD cell 17 have models with
more spikes, the explanation for the high number of predictions could, therefore,
be the same as above.
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7 | Conclusion

The scope of this project was to investigate the possibilities of finding a way to
describe the response of HD cells using existing spiking neuron models, and arti-
ficial neural network models to describe the firing patterns that can be classified
to a set of directions. The latter one using long short-term architecture commonly
used for classifying sequences.

By dividing the data set into sessions, some of the problems related to the free
movement of the mouse are removed. However, this partitioning places several
limitations on the methods used and affects all parts of the work. Even with these
limitations, this extraction of sessions provide a way to look at the neural responses
of the HD cells at a spike train level and investigate their properties.

The Izhikevich model shows promise for describing individual spiking sequences,
but has not yet been proven useful for more generalized models describing the
firings of HD cells. The lack of a generalized model is not due to the Izhikevich
model itself, but due to limitations in the methods. The possibility of describing
the neuronal response of HD cells using the Izhikevich model still exists, but an-
other approach should be taken to investigate this potential further.

For the investigated data, one HD cell does not contain enough information to
distinguish between different angles when using the machine learning methods de-
scribed. When combining the response from multiple HD cells, it is possible to
distinguish between some angles with a resolution of 10◦ ± 30◦, and future work
may improve this further.

In general, the data in the data set is not sufficient when using the methods
in this study. If the same, or similar methods is to be used again, either more
data is needed, or the data available needs to be used differently, for example by
combining sessions or looking at the waveforms. The latter does, however, require
more preprocessing.
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8 | Future Work

Mentioned below are a few possible next steps in the work of finding a model ca-
pable of describing the response of HD cells.

The method of finding a neural network able to classify the head direction based
on spike patterns is quite time consuming, and have not yet yielded results good
enough for further processing. Before attempting several more combinations of
hyperparameters, other days in the data set should be considered for analysis in-
stead, as some of them may provide more available HD cells, more and longer
sessions and/or a better distribution of the PFDs of the HD cells.

It would be interesting to investigate if the periods of sleep in the data set could
be used for the same analysis as conducted for the awake phases. Being able to
use these sleep periods, the amount of data available greatly increases. In addition
to more data due to a longer period of recordings (four hours instead of 35-40
minutes), there would also most likely be less rapid changes of the head direction
during sleep. It could be that not all 360◦ are represented, but sessions extracted
would potentially be much longer than the ones currently available.

Another idea to explore, which was not tested due to time limitations, is combining
shorter sessions into longer ones instead of omitting them from further processing.
This way, no data is lost. However, it should be investigated if multiple short ses-
sions combined possess similar properties as long sessions from the same angle bin.

In addition to spike times, the data set includes waveform of the spikes. Including
this information in the training and test data set could give new correlations or
insight.

77



Future Work

78



Bibliography

[1] Mladen Veletić. On the Neural Communication for Data Transmission in
Nano-Networks. PhD thesis, NTNU, 2017.

[2] Miller-Keane Encyclopedia, Nursing Dictionary of Medicine, and Sev-
enth Edition Allied Health. neurological disorder. (n.d.). https://medical-
dictionary.thefreedictionary.com/neurological+disorder (Last accessed
06.06.19), 2003.

[3] Miller-Keane Encyclopedia, Nursing Dictionary of Medicine, and Sev-
enth Edition. Allied Health. nervous system. (n.d.). https://medical-
dictionary.thefreedictionary.com/nervous+system (Last accessed 06.06.19),
2003.

[4] World Health Organization. Neurological Disorders: Public Health Challenges
- World Health Organization. World Health Organization, 2006.

[5] Marc Possover. The laparoscopic implantation of neuroprothesis to the sacral
plexus for therapy of neurogenic bladder dysfunctions after failure of percu-
taneous sacral nerve stimulation. Neuromodulation, 13(2):141–144, 2010.

[6] Dennis J. McFarland and Jonathan R. Wolpaw. Brain-computer interface
operation of robotic and prosthetic devices. Computer, 41(10):52–56, 2008.

[7] Theodore W. Berger, Robert E. Hampson, Dong Song, Anushka Goonawar-
dena, Vasilis Z. Marmarelis, and Sam A. Deadwyler. A cortical neural pros-
thesis for restoring and enhancing memory. Journal of Neural Engineering,
8(4), 2011.

[8] Karen A. Moxon and Guglielmo Foffani. Brain-machine interfaces beyond
neuroprosthetics. Neuron, 86(1):55–67, 2015.

[9] Jeffrey S. Taube, Robert U. Muller, and James B. Ranck Jr. Head-direction
cells recorded from the postsubiculum in freely moving rats. I. Description
and quantitative analysis. The Journal of Neuroscience, 10(2):420–35, 1990.

[10] Jeffrey S. Taube, Robert U. Muller, and James B. Ranck Jr. Head-direction
cells recorded from the postsubiculum in freely moving rats. II. Effects of en-
vironmental manipulations. The Journal of neuroscience : the official journal
of the Society for Neuroscience, 10(2):436–47, 1990.

79



BIBLIOGRAPHY

[11] Longtang L. Chen, Lie Huey Lin, Edward J. Green, Carol A. Barnes, and
Bruce L. McNaughton. Head-direction cells in the rat posterior cortex - I.
anatomical distribution and behavioral modulation. Experimental Brain Re-
search, 101(1):8–23, 1994.

[12] Jeffrey S. Taube. Head Direction Cells Recorded in the Anterior Thalamic
Nuclei of Freely Moving Rats. The Journal of Neuroscience, 15(January):70–
86, 1995.

[13] Robert W. Stackman and Jeffrey S. Taube. Firing Properties of Rat Lateral
Mammillary Single Units: Head Direction, Head Pitch, and Angular Head
Velocity. The Journal of Neuroscience, 18(21):9020–9037, 2018.

[14] Francesca Sargolini, Marianne Fyhn, Torkel Hafting, Bruce L. McNaughton,
Menno P. Witter, May-Britt Moser, and Edvard I. Moser. Conjunctive rep-
resentation of position, direction, and velocity in entorhinal cortex. Science,
312(MAY):758–762, 2006.

[15] Faculty Research Development Office (FRDO) University of New Mex-
ico. Psychology Professor Wins Alzheimer’s Association Research
Grant (AARG). http://frdo.unm.edu/?q=content/psychology-professor-
wins-alzheimer%E2%80%99s-association-research-grant-aarg (Last accessed
19.06.19).

[16] A. Peyrache and G. Buzsáki. Extracellular recordings from multi-site silicon
probes in the anterior thalamus and subicular formation of freely moving mice.
CRCNS.org. http://dx.doi.org/10.6080/K0G15XS1, 2015.

[17] Lisa M. Giocomo, Tor Stensola, Tora Bonnevie, Tiffany Van Cauter, May-
Britt Moser, and Edvard I. Moser. Topography of head direction cells in
medial entorhinal cortex. Current Biology, 24(3):252–262, 2014.

[18] Gary M. Muir and Jeffrey S. Taube. The neural correlates of navigation:
do head direction and place cells guide spatial behavior? Behavioral and
cognitive neuroscience reviews, 1(4):297–317, 2002.

[19] John C. Baird, Jeffrey S. Taube, and Damen V. Peterson. Statistical and
information properties of head direction cells. Perception and Psychophysics,
63(6):1026–1037, 2001.

[20] Patricia E. Sharp, Hugh T. Blair, and Jeiwon Cho. The anatomical and com-
putational basis of the rat head-direction cell signal. Trends in Neurosciences,
24(5):289–294, 2001.

[21] Sidney I. Wiener, Alain Berthoz, and Michaël B. Zugaro. Multisensory pro-
cessing in the elaboration of place and head direction responses by limbic
system neurons. Cognitive Brain Research, 14(1):75–90, 2002.

[22] Larry F Abbott. Lapicque’s introduction of the integrate-and-fire model neu-
ron (1907). Brain research bulletin, 50(5-6):303–304, 1999.

80



BIBLIOGRAPHY

[23] L F Abbott and Thomas B Kepler. Model neurons: from Hodgkin-Huxley to
Hopfield. In Statistical mechanics of neural networks, pages 5–18. Springer,
1990.

[24] Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Transactions
on Neural Networks, 14(6):1569–1572, 2003.

[25] Neil Burgess and John O’Keefe. Models of place and grid cell firing and theta
rhythmicity. Current opinion in neurobiology, 21(5):734–744, 10 2011.

[26] P Vance, S A Coleman, D Kerr, G P Das, and T M McGinnity. Modelling
of a retinal ganglion cell with simple spiking models. In 2015 International
Joint Conference on Neural Networks (IJCNN), pages 1–8, 2015.

[27] Christopher J. Cueva and Xue-Xin Wei. Emergence of grid-like representa-
tions by training recurrent neural networks to perform spatial localization.
International Conference on Learning Representations (ICLR), 2018.

[28] Ardi Tampuu, Tambet Matiisen, H Freyja Ólafsdóttir, Caswell Barry, and
Raul Vicente. Efficient neural decoding of self-location with a deep recurrent
network. PLOS Computational Biology, 15(2), 2019.

[29] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lill-
icrap, Piotr Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris,
Joseph Modayil, Greg Wayne, Hubert Soyer, Fabio Viola, Brian Zhang, Ross
Goroshin, Neil Rabinowitz, Razvan Pascanu, Charlie Beattie, Stig Petersen,
Amir Sadik, Stephen Gaffney, Helen King, Koray Kavukcuoglu, Demis Has-
sabis, Raia Hadsell, and Dharshan Kumaran. Vector-based navigation using
grid-like representations in artificial agents. Nature, 557(7705):429–433, 2018.

[30] Xiaomao Zhou, Tao Bai, Yanbin Gao, and Yuntao Han. Vision-based robot
navigation through combining unsupervised learning and hierarchical rein-
forcement learning. Sensors, 19(7), 2019.

[31] Nicholas J. Gustafson and Nathaniel D. Daw. Grid cells, place cells, and
geodesic generalization for spatial reinforcement learning. PLoS Computa-
tional Biology, 7(10), 2011.

[32] A. Arleo, F. Smeraldi, S. Hug, and W. Gerstner. Place Cells and Spatial
Navigation based on Vision, Path Integration, and Reinforcement Learning.
Advances in Neural Information Processing Systems 13, pages 89–95, 2001.

[33] Arthur Prochazka, Vivian K Mushahwar, and Douglas B Mccreery. Neural
prostheses. (November 2000):99–109, 2001.

[34] Fan-Gang Zeng. Trends in Cochlear Implants. Trends In Amplification, 8(1),
2004.

[35] Gislin Dagnelie. Retinal implants: Emergence of a multidisciplinary field.
Current Opinion in Neurology, 25(1):67–75, 2012.

81



BIBLIOGRAPHY

[36] Leigh R. Hochberg, Daniel Bacher, Beata Jarosiewicz, Nicolas Y. Masse,
John D. Simeral, Joern Vogel, Sami Haddadin, Jie Liu, Sydney S. Cash,
Patrick Van Der Smagt, and John P. Donoghue. Reach and grasp by
people with tetraplegia using a neurally controlled robotic arm. Nature,
485(7398):372–375, 2012.

[37] D. J. Guggenmos, M. Azin, S. Barbay, J. D. Mahnken, C. Dunham,
P. Mohseni, and R. J. Nudo. Restoration of function after brain damage
using a neural prosthesis. Proceedings of the National Academy of Sciences,
110(52):21177–21182, 2013.

[38] Jonas B. Zimmermann and Andrew Jackson. Closed-loop control of spinal
cord stimulation to restore hand function after paralysis. Frontiers in Neuro-
science, 8((MAY)), 2014.

[39] Max O. Krucoff, Shervin Rahimpour, Marc W. Slutzky, V. Reggie Edgerton,
and Dennis A. Turner. Enhancing nervous system recovery through neu-
robiologics, neural interface training, and neurorehabilitation. Frontiers in
Neuroscience, 10(DEC), 2016.

[40] Mikhail A Lebedev and Miguel A L Nicolelis. Brain – machine interfaces :
past , present and future. Trends in Neurosciences, 29(9), 2006.

[41] John K Chapin, Karen A Moxon, Ronald S Markowitz, and Miguel A L
Nicolelis. Real-time control of a robot arm using simultaneously recorded
neurons in the motor cortex. Nature Neuroscience, 2(7):664–670, 1999.

[42] Eva Bianconi, Allison Piovesan, Federica Facchin, Alina Beraudi, Raffaella
Casadei, Flavia Frabetti, Lorenza Vitale, Maria Chiara Pelleri, Simone Tas-
sani, Francesco Piva, Soledad Perez-Amodio, Pierluigi Strippoli, and Silvia
Canaider. An estimation of the number of cells in the human body. Annals
of Human Biology, 40(6):463–471, 11 2013.

[43] Peter Dayan and Laurence F. Abbott. Theoretical Neuroscience: Computa-
tional and Mathematical Modeling of Neural Systems. MIT Press, 2001.

[44] Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum,
and A. J. Hudspeth. Principles of neural science, volume 4. McGraw-hill New
York, fifth edition, 2000.

[45] Jaakko Malmivuo and Robert Plonsey. Bioelectromagnetism - Principles and
Applications of Bioelectric and Biomagnetic Fields. 1 1995.

[46] Wulfram Gerstner and Werner M. Kistler. Spiking neuron models: Single
neurons, populations, plasticity. Cambridge University Press, 2002.

[47] Miller-Keane Encyclopedia, Nursing Dictionary of Medicine, and Sev-
enth Edition. Allied Health. axosomatic synapse. (n.d.). https://medical-
dictionary.thefreedictionary.com/axosomatic+synapse (Last accessed
12.05.19), 2003.

82



BIBLIOGRAPHY

[48] Jeffrey S. Taube. The Head Direction Signal: Origins and Sensory-Motor
Integration. Annual Review of Neuroscience, 30(1):181–207, 2007.

[49] E T Rolls, Robertson R G., and P Georges-François. Head Direction Cells in
the Primate Pre-Subiculum. Hippocampus, 9:206–219, 1999.

[50] Michael E. Shinder and Jeffrey S. Taube. Self-motion improves head direction
cell tuning. Journal of Neurophysiology, 111(12):2479–2492, 2014.

[51] Edvard I. Moser, Emilio Kropff, and May-Britt Moser. Place Cells, Grid
Cells, and the Brain’s Spatial Representation System. Annual Review of Neu-
roscience, 31(1):69–89, 2008.

[52] Adrien Peyrache, Marie M. Lacroix, Peter Petersen, and György Buzsáki.
Internally-organized mechanisms of the head direction sense. Nature Neuro-
science, 18(4):569–575, 2015.

[53] Darrell A. Henze, György Buzsáki, Kenneth D. Harris, Hajime Hirase, and
Jozsef Csicsvari. Accuracy of Tetrode Spike Separation as Determined by
Simultaneous Intracellular and Extracellular Measurements. Journal of Neu-
rophysiology, 84(1):401–414, 2017.

[54] A. Scaglione, K. A. Moxon, J. Aguilar, and G. Foffani. Trial-to-trial variability
in the responses of neurons carries information about stimulus location in
the rat whisker thalamus. Proceedings of the National Academy of Sciences,
108(36):14956–14961, 2011.

[55] E. D. Adrian. The impulses produced by sensory nerve endings: Part I. The
Journal of physiology, 61(1):49–72, 1926.

[56] Martin J. Tovee and Edmund T. Rolls. Information Encoding in Short Fir-
ing Rate Epochs by Single Neurons in the Primate Temporal Visual Cortex.
Visual Cognition, 2(1):35–58, 1995.

[57] Lance M. Optican and Barry J. Richmond. Temporal encoding of two-
dimensional patterns by single units in primate inferior temporal cortex. III.
Information theoretic analysis. Journal of Neurophysiology, 57(1):162–178,
1987.

[58] John O’Keefe and Michael L. Recce. Phase relationship between hippocampal
place units and the EEG theta rhythm. Hippocampus, 3(3):317–330, 1993.

[59] Stefano Panzeri, Jakob H. Macke, Joachim Gross, and Christoph Kayser.
Neural population coding: Combining insights from microscopic and mass
signals. Trends in Cognitive Sciences, 19(3):162–172, 2015.

[60] Bruno A. Olshausen and David J. Field. Sparse coding of sensory inputs.
Current Opinion in Neurobiology, 14(4):481–487, 2004.

[61] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski.
Neuronal dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

83



BIBLIOGRAPHY

[62] Jonathan D. Victor. Spike train metrics. Current Opinion in Neurobiology,
15(5):585–592, 2005.

[63] M. C. W. van Rossum. A novel spike distance. Neural Computation,
13(4):751–763, 2001.

[64] Conor Houghton and Jonathan Victor. Measuring representational distances –
the spike train metrics approach. Visual Population Codes–Toward a Common
Multivariate Framework for Cell Recording and Functional Imaging, pages
391–416, 2010.

[65] Tom Fawcett and Foster Provost. Adaptive fraud detection. Data Mining and
Knowledge Discovery, 1(3):291–316, 1997.

[66] Joseph A. Cruz and David S. Wishart. Applications of machine learning in
cancer prediction and prognosis. Cancer Informatics, 2:59–77, 2006.

[67] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, Inc., third edition, 2010.

[68] Enrico Blanzieri and Anton Bryl. A survey of learning-based techniques of
email spam filtering. Artificial Intelligence Review, 29(1):63–92, 2008.

[69] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka. Stock market prediction
system with modular neural networks. In 1990 IJCNN International Joint
Conference on Neural Networks, pages 1–6, 1990.

[70] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. The MIT Press, second edition, 2018.

[71] Tong Wang, Cynthia Rudin, Daniel Wagner, and Rich Sevieri. Learning to
Detect Patterns of Crime BT - Machine Learning and Knowledge Discovery
in Databases. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and
Filip Železný, editors, Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 515–530, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[72] Zhenpeng Zhou, Xiaocheng Li, and Richard N. Zare. Optimizing Chemical Re-
actions with Deep Reinforcement Learning. ACS Central Science, 3(12):1337–
1344, 2017.

[73] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep
Reinforcement Learning. NIPS Deep Learning Workshop, 2013.

[74] Sebastian Ruder. An overview of gradient descent optimization algorithms.
http://arxiv.org/abs/1609.04747, 2017.

[75] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

[76] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

84



BIBLIOGRAPHY

[77] Yoav Freund and Robert E. Schapire. Large Margin Classification Using the
Perceptron Algorithm. Machine Learning, 37(3):277 – 296, 1999.

[78] B L Kalman and S C Kwasny. Why tanh: choosing a sigmoidal function.
In [Proceedings 1992] IJCNN International Joint Conference on Neural Net-
works, volume 4, pages 578–581, 1992.

[79] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[80] Christopher M. Bishop. Machine Learning and Pattern Recoginiton. 2007.

[81] H. Sak, Andrew Senior, and F. Beaufays. Long short-term memory recurrent
neural network architectures for large scale acoustic modeling. In Proceed-
ings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH, pages 338–342, 2014.

[82] P Doetsch, M Kozielski, and H Ney. Fast and Robust Training of Recurrent
Neural Networks for Offline Handwriting Recognition. In 2014 14th Interna-
tional Conference on Frontiers in Handwriting Recognition, pages 279–284,
2014.

[83] Søren Kaae Sønderby and Ole Winther. Protein Secondary Structure
Prediction with Long Short Term Memory Networks. arXiv preprint
arXiv:1412.7828, 2014.

[84] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink,
and Jürgen Schmidhuber. LSTM: Search Space Odyssey. IEEE Transactions
on Neural Networks and Learning Systems, 28(10):2222–2232, 2015.

[85] Christopher Olah. Understanding LSTM Networks.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (Last ac-
cessed 06.06.19), 2015.

[86] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 1997.

[87] Mike Schuster and Kuldip K Paliwal. Bidirectional Recurrent Neural Net-
works. 45(11):6757, 1997.

[88] J. D. Victor and K. P. Purpura. Nature and precision of temporal coding in vi-
sual cortex: a metric-space analysis. Journal of Neurophysiology, 76(2):1310–
1326, 2017.

[89] Daniel Reich. Matlab Code for Spike Time Distances Between Spike
Trains. http://www-users.med.cornell.edu/˜jdvicto/spkdm.html (Last ac-
cessed 03.12.18).

[90] Thomas Kreuz, Conor Houghton, and Charles Dillon. Mat-
lab code to calculate the bivariate van Rossum distance.
http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/images/vanRossum.m (Last
accessed 10.02.19).

85



BIBLIOGRAPHY

[91] Conor Houghton and Thomas Kreuz. On the efficient calculation of van
Rossum distances. Network: Computation in Neural Systems, 23(1-2):48–58,
2012.

[92] MATLAB. List of Deep Learning Layers.
https://se.mathworks.com/help/deeplearning/ug/list-of-deep-learning-
layers.html (Last accessed 04.06.19).

[93] MATLAB. trainingOptions. https://se.mathworks.com/help/deeplearning/
ref/trainingoptions.html (Last accessed 31.05.19).

[94] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. arXiv preprint arXiv:1412.6980, pages 1–15, 2014.

86



A | Hardware

Name Processor Memory
Private laptop Intel i5-8250U @ 1.60GHz 8 GB
Office workstation Intel i7-6700 CPU @ 3.40 GHz 16 GB
Calcfarm Intel Xeon E5-2690 v4 @ 2,6 GHz 96 GB

The different computers were used for the following:

• Private laptop: Initial analysis and simple calculations.

• Office workstation: Training of neural networks.

• Calcfarm: Some training of neural networks for single HD cells and finding
model parameter values for the Izhikevich model.

The MATLAB license limits the usable hardware on Calcfarm. The office work-
station was used in favour of Calcfarm with the training of the neural networks
due to this limitation.
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B | MATLAB Deep
Learning Toolbox

B.1 Layers

A complete overview over available layers can be found in [92].

sequenceInputLayer Inputs the sequence into the network.

fullyConnectedLayer Multiplies the input by a weight before adding a bias
vector.

lstmlayer Learn long time dependencies in sequential data.

bilstmlayer Learn bidirectional long time dependencies in sequential
data.

dropoutLayer Randomly sets input elements to zero with a given prob-
ability. Is used between layers in deep networks to re-
duce overfitting.

softmaxLayer Applies a softmax function to the input of the layer.

classificationLayer Computes the cross entropy loss for multi-class classifi-
cation problems with mutually exclusive classes.
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Hyperparameters

B.2 Hyperparameters

A complete overview over available hyperparameters can be found in [93].

InitialLearnRate The variable decides the initial learn rate of the
training. A too low value will have the training take
too long, while a too large value have the training
get stuck on a sub optimal result.

LearnRateSchedule This specifies whether the learn rate should drop
during training. If the parameter is set to ‘piecewise’,
the drop in training is decided by the parameters
LearRateDropFactor and LearnRateDropPeriod.

LearnRateDropFactor How much the learn rate will drop every LearnRat-
eDropPeriod epoch.

LearnRateDropPeriod Number of epochs before the LearnRate drops.

MaxEpochs Gives the maximum number of epochs used for train-
ing.

MiniBatchSize How many observations to include in each mini-
batch.

Shuffle Controls whether the training data is shuffled or
not, and if they are how often. The options are
‘never’, ‘once’ and ‘every-epoch’. By choosing
‘once’, the data is shuffled once before training, while
the ‘every-epoch’ alternative shuffles the data be-
fore every epoch.

ExecutionEnvironment Sets the execution environment for the network and
determines the hardware resources used in train-
ing. The different options are ‘auto’, ‘cpu’, ‘gpu’,
‘multi-gpu’ and ‘parallel’.

SequenceLength Pads or truncates the sequences in the mini-batches
to a specific length.
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C | Initial Analysis

C.1 Head Directions Represented

Figure C.1: Time spent with head in each direction and PFDs of HD cells for
120807.
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Head Directions Represented

Figure C.2: Time spent with head in each direction and PFDs of HD cells for
120808.

Figure C.3: Time spent with head in each direction and PFDs of HD cells for
120809.
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Sessions per Angle Bin Width

C.2 Sessions per Angle Bin Width

Table C.1: Number of extracted
sessions for 120807.

Angle bin
width #sessions

1◦ 257 770
5◦ 74 860
10◦ 40 684

Table C.2: Number of extracted
sessions for 120808.

Angle bin
width #sessions

1◦ 103 845
5◦ 30 256
10◦ 16 054

Table C.3: Number of extracted sessions for 120809.

Angle bin
width #sessions

1◦ 286 371
5◦ 82 112

10◦ 44 396
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Session Lengths

C.3 Session Lengths
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(c) Day 120809.

Figure C.4: Length of extracted sessions for angle bin width of 10◦. The bar above
300 ms represents the number of sessions longer than 300 ms.
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D | Code

D.1 MATLAB Code Extracting HD Cells

1 f u n c t i o n [ t o t a l C e l l s , HDcells , to ta lHDce l l s , awakeTimeMs ,
binnedAwakeAngleData , meanFiringRate ]=HDTuningCurves ( s e s s i o n )

2

3 switch s e s s i o n
4 case 1
5 myDirName = ’ path ’ ;
6 f i l e sWanted =3;
7 case 2
8 myDirName = ’ path ’ ;
9 f i l e sWanted =13;

10 case 3
11 myDirName = ’ path ’ ;
12 f i l e sWanted =13;
13 case 4
14 myDirName = ’ path ’ ;
15 f i l e sWanted =14;
16 case 5
17 myDirName = ’ path ’ ;
18 f i l e sWanted =14;
19 end
20

21 [ angleData , r e s c l u ]= getData (myDirName , f i l e sWanted ) ;
22 nrpo in t s =360;
23

24 %Important r e l a t i o n s from s e s s i o n . Re lat ion between v e c t o r s .
25 f i leName=s p r i n t f ( ’%s . s t a t e s . Wake ’ ,myDirName) ;
26 awakeFile=load ( f i leName ) ;
27 i f numel ( awakeFi le )>2
28 awakeFile=awakeFile ’ ;
29 end
30 awakeStart=awakeFile (1 ) ;
31 awakeEnd=awakeFile (2 ) ;
32 awakeTimeMs=awakeStart ∗1000 : awakeEnd ∗1000 ;
33

34 angleFreq =1250/32; %angle measurement r a t e
35 e l e c t r o d e F r e q =20000; %ephysRate
36

37 %change −1 ( no ang le measurement ) to be r e p r e s e n t e d by NotANumber
38 tmpIndex=f i n d ( angleData==−1) ; % Finds i n d i c e s where the array has

va lue s −1
39 angleData ( tmpIndex )=NaN;
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MATLAB Code Extracting HD Cells

40

41 indexAwakeStart=round ( awakeStart ∗ angleFreq ) ;
42 indexAwakeEnd= round ( awakeEnd∗ angleFreq ) ;
43 awakeAngleData=angleData ( indexAwakeStart : indexAwakeEnd ) ;
44

45 %Creat ing binnedAwakeAngleData one ang le f o r each awake ms .
46 binnedAwakeAngleData=z e r o s (1 , c e i l ( ( awakeEnd−awakeStart ) ∗1000) ) ;
47 f o r i =1: l ength ( binnedAwakeAngleData )
48 ind0=c e i l ( i / (1000/ angleFreq ) ) ;
49 ind1=ind0 +1;
50 i f ind1 > length ( awakeAngleData )
51 cont inue
52 end
53 y0=awakeAngleData ( ind0 ) ;
54 y1=awakeAngleData ( ind1 ) ;
55 binnedAwakeAngleData ( i )=inte rpo la teBetweenPo int s ( i , ind0 , ind1 , y0 ,

y1 , angleFreq ) ;
56 end
57

58 %occupancy part needed to compute tuning curve
59 occupancy=z e r o s (1 , n rpo in t s ) ;
60 p l o t t i n g a n g l e s=z e r o s (1 , n rpo in t s ) ;
61 f o r i =1: n rpo in t s
62 AA = pi ∗2/ nrpo in t s ∗( i −1) ;
63 BB = pi ∗2/ nrpo in t s ∗ i ;
64 p l o t t i n g a n g l e s ( i ) = 0 . 5 ∗ (AA+BB) ∗ 3 6 0 . / ( 2 . ∗ pi ) ;
65 occupancy ( i )=length ( f i n d (AA<binnedAwakeAngleData &

binnedAwakeAngleData<BB) ) ;
66 end
67

68

69 t o t a l H D c e l l s =0;
70 t o t a l C e l l s =0;
71 f o r t e t r o d e =1: f i l e sWanted
72 %t e t r o d e ( m u l t ip l e e l e c t r o n measurement dev i c e )
73 cel lTimestamps =1000∗ r e s c l u {2 , t e t r o d e }/ e l e c t r o d e F r e q ; % Time o f

f i r i n g s in a l l c e l l s measured by e l e c t r o d e in m i l l i s e c o n d s (
ms) ( f r e q 1000Hz) .

74 c l u s t e r=r e s c l u {1 , t e t r o d e } ; % Cel lNr in the c l u s t e r measured by
the e l e c t r o d e .

75 nrCe l l s InTet rode=c l u s t e r (1 ) −1; % f i r s t element in c l u s t e r i s
overview o f nr o f C e l l s measured by e l e c t r o d e .

76 HDcel ls ( t e t r o d e ) . va l = [ ] ;
77 HDcel ls ( t e t r o d e ) . time ={};
78 HDcel ls ( t e t r o d e ) . ang le ={};
79 HDcel ls ( t e t r o d e ) .PFD= [ ] ;
80 f o r c e l l =2: nrCe l l s InTet rode % use nrCe l l s InTet rode i f you want

to p l o t a l l c e l l s
81 t h i s C e l l I n d e x=f i n d ( c l u s t e r==c e l l ) −1; % −1 as c l u s t e r s f i r s t

element i s an ext ra t e l l i n g number o f c e l l s in c l u s t e r .
82 ce l lTimestampsThisCe l l=cel lTimestamps ( t h i s C e l l I n d e x ) ; % l i k e

cel lTimestamps but only f o r one o f the c e l l s .
83

84 awakeTimestampsIndexThisCell=f i n d ( ( ce l lTimestampsThisCel l >(
awakeStart ∗1000) ) & ( ce l lTimestampsThisCel l <(awakeEnd
∗1000) ) ) ; % f i n d Index

85 awakeCellTimestampsThisCell=ce l lTimestampsThisCe l l (
awakeTimestampsIndexThisCell ) ; % now only f i r i n g s when
the mouse i s awake .
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86 f i r ingTime=awakeCellTimestampsThisCell ;
87

88 %I n t e r p o l a t e to f i n d ang le at f i r ingTime .
89 n r F i r i n g s=length ( f i r ingTime ) ;
90 ang l e sAtF i r ing=z e r o s (1 , n r F i r i n g s ) ;
91 f o r i =1: n r F i r i n g s
92 %Find index o f the a ng l e s surrounding f i r ingTime ( i )
93 ind0=f l o o r ( f i r ingTime ( i ) ∗ angleFreq /1000) ;
94 ind1=ind0 +1;
95 y0=angleData ( ind0 ) ;
96 y1=angleData ( ind1 ) ;
97 xx=f i r ingTime ( i ) ; %angle at f i r ingTime ( i ) i s between y0

and y1 ang le
98 ang l e sAtF i r ing ( i )=inte rpo la teBetweenPo int s ( xx , ind0 , ind1 ,

y0 , y1 , angleFreq ) ;
99 end

100

101 i f l ength ( f i r ingTime ) < 100
102 cont inue
103 end
104

105 tuningcurve=z e r o s (1 , n rpo in t s ) ;
106 f o r i =1: n rpo in t s
107 AA = pi ∗2/ nrpo in t s ∗( i −1) ;
108 BB = pi ∗2/ nrpo in t s ∗ i ;
109 numspikes=length ( f i n d (AA<ang l e sAtF i r ing & ang lesAtFir ing <

BB) ) ;
110 tuningcurve ( i ) =1000. ∗ numspikes / occupancy ( i ) ; % convert

to f i r i n g r a t e s
111 end
112

113 f i g u r e
114 p l o t ( p l o t t i n g a n g l e s , tuningcurve , ’ o ’ )
115 t i t l e ( s p r i n t f ( ’T%dC%d ’ , te t rode , ( c e l l −1) ) )
116 s e t ( gca , ’ XtickLabel ’ , 0 : 3 6 0 / 8 : 3 6 0 )
117 x l a b e l ( ’ Head d i r e c t i o n ( degree s ) ’ )
118 y l a b e l ( ’ F i r i n g s r a t e (Hz) ’ )
119 ylim ( [ 0 , max( tuningcurve ) ] )
120

121 %%%%% added by Nabiul %%%%%
122 c e l l I n d e x=c e l l −1;
123 meanFiringRate { c e l l I n d e x}=tuningcurve ;
124 theta=pi /180 : p i /180:2∗ pi ;
125 %%%% p l o t t i n g the c i r c u l a r histogram
126 thetaT=z e r o s (1 ,4∗ numel ( theta ) ) ;
127 f o r i =1:numel ( theta )
128 i f i==1
129 thetaT ( ( i −1)∗4+2)=0;
130 thetaT ( ( i −1)∗4+3)=theta ( i ) ;
131 e l s e
132 thetaT ( ( i −1)∗4+2)=theta ( i −1) ;
133 thetaT ( ( i −1)∗4 +3)=theta ( i ) ;
134 end
135 end
136

137 %%%% smoothing with gauss ian k e r n e l %%%
138 sigma=6∗pi /180 ;
139 edges=−3∗sigma : p i /180:3∗ sigma ;
140 k e r n e l=normpdf ( edges , 0 , sigma ) ;

97



MATLAB Code Extracting HD Cells

141 k e r n e l=k e r n e l ∗ pi /180 ;
142 afterConv=conv ( meanFiringRate { c e l l I n d e x } , k e r n e l ) ;
143 c e n t e r=c e i l ( l ength ( edges ) /2) ;
144 meanFirRateConv=afterConv ( c e n t e r :360+ center −1) ;
145

146 %%%% p l o t t i n g the smoothed data
147 rhoConv=z e r o s (1 ,4∗ numel ( meanFirRateConv ) ) ;
148 f o r i =1:numel ( theta )
149 rhoConv ( ( i −1)∗4 +2)=meanFirRateConv ( i ) ;
150 rhoConv ( ( i −1)∗4 +3)=meanFirRateConv ( i ) ;
151 end
152 %f i g u r e ( t o t a l C e l l s+c e l l I n d e x )
153 %t i t l e ( s p r i n t f ( ’T%dC%d ’ , te t rode , c e l l ) ) %
154 %p o l a r p l o t ( thetaT , rhoConv ) ;
155 %%%%% c a l c u l a t i n g the mean r e s u l t a n t v e c t o r a l l ength
156 vectorR { c e l l I n d e x}=c i r c_r ( theta , meanFirRateConv , p i /180 ,2) ;
157 meanDir{ c e l l I n d e x}=circ_mean ( theta , meanFirRateConv , 2 ) ;
158

159

160 [PFD{ tetrode , c e l l I n d e x } , kappa{ tet rode , c e l l I n d e x }]= circ_vmpar (
theta , meanFirRateConv , p i /180) ;

161 pval { tet rode , c e l l I n d e x}=c i r c _ r t e s t ( theta , meanFirRateConv , p i /180)
;

162

163 %%%% HD c e l l s i n c l u s i o n c r i t e r i a
164 %%% (1) . c o n ce n t ra t i on parameter ( kappa ) >1 (2) . peak f i r i n g r a t e

>1 and
165 %%% (3) . p r o b a b i l i t y o f non−uniform d i s t r i b u t i o n s m a l l e r than

0 .001
166 i f kappa{ tetrode , c e l l I n d e x }>1
167 i f PFD{ tetrode , c e l l I n d e x }>0
168 peakFirRate=meanFirRateConv ( c e i l (PFD{ tetrode ,

c e l l I n d e x }/( p i /180) ) ) ;
169 e l s e
170 peakFirRate=meanFirRateConv ( c e i l ( (PFD{ tetrode ,

c e l l I n d e x }+2∗ pi ) /( p i /180) ) ) ;
171 end
172 i f peakFirRate > 1 & pval { tet rode , c e l l I n d e x } <.001
173 HDcel ls ( t e t r o d e ) . va l ( end+1)=c e l l ;
174 HDcel ls ( t e t r o d e ) . time {end+1}=f i r ingTime ;
175 HDcel ls ( t e t r o d e ) . ang le {end+1}=ang l e sAtF i r ing ;
176 HDcel ls ( t e t r o d e ) .PFD( end+1)=PFD{ tetrode , c e l l I n d e x } ;
177 t o t a l H D c e l l s=t o t a l H D c e l l s +1;
178 end
179 end
180 end
181 t o t a l C e l l s=t o t a l C e l l s+nrCe l l s InTetrode −1;
182 end
183 end
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1 f u n c t i o n [ angleData , r e s c l u ]= getData ( dirName , numf i l e s )
2

3 % Loads a l l r e s and c lu f i l e s i n t o a c e l l array .
4 dir_nm = dirName ;
5

6 % Create c e l l array to s t o r e r e s and c lu data from each " e l e c t r o d e "
7 r e s c l u = c e l l (2 , numf i l e s ) ;
8

9 f o r i = 1 : numf i l e s
10 c l u f i l e = s p r i n t f ( ’%s . c lu .%d ’ , dir_nm , i ) ;
11 r e s f i l e = s p r i n t f ( ’%s . r e s .%d ’ , dir_nm , i ) ;
12 c l u s t e r s = load ( c l u f i l e ) ;
13 timestamps = load ( r e s f i l e ) ;
14 r e s c l u {1 , i } = c l u s t e r s ; r e s c l u {2 , i } = timestamps ;
15 end
16

17

18

19 angleData=s p r i n t f ( ’%s . ang ’ , dir_nm ) ;
20 angleData=load ( angleData ) ;
21

22

23 end

1 f u n c t i o n [ yy]= inte rpo la teBetweenPo int s ( xx , ind0 , ind1 , y0 , y1 , angleFreq )
%ind0 and ind1 i s the two c l o s e s t i n d i c e s o f angleData

2

3 yd=y1−y0 ;
4 i f ( i snan ( y0 ) | | i snan ( y1 ) ) %i f f i r ingTime i s c l o s e to a nan ang le
5 yy=nan ;
6 e l s e
7 i f ( yd>pi )
8 y1=y1−2∗pi ;
9 e l s e i f ( yd<−pi )

10 y1=y1+2∗pi ;
11 end
12

13 x0=1000∗ ind0 / angleFreq ;
14 x1=1000∗ ind1 / angleFreq ;
15

16 yy=y0 + ( xx−x0 ) ∗( y1−y0 ) /( x1−x0 ) ; %l i n e a r i n t e r p o l a t i o n
17 end
18

19 yy=mod( yy ,2∗ pi ) ;
20

21 end
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D.2 Overview Functions

analyseSessions Divides the responses from HD cells from
one day into sessions and presents key
values for each angle bin and HD cell such
as number of spikes an time spent in the
angle bin.

balanceSessionsPerBin Takes sessions and labels as input, and
balances the data set by removing the
shortest sessions from the angle bins with
the most sessions.

compareSessionAndModel Takes the model parameter values from
findOptimalModelParameterValues
and compares the spike sequence of one
session with the given model parameter
values. The function returns the distance
between the session and model, and plots
the session with the model.

compareSessions Calculates the distance between all ses-
sions for an HD cell. The functions re-
turns a struct with some key number such
as the percentage of comparisons from
the same angle bin yielding the shortest
distance and number of comparisons.

createAndTestNewInput Creates new sessions from models from
the createInputModel function and test
the model in a pre-trained neural net.

createInputModels Find optimal parameter values for Izhike-
vich model for minModels sessions fulfill-
ing a given criterion. The model param-
eters are all zero if no sessions are avail-
able.

createXY Takes head angles and spike times for a
specific day, shank and HD cell, and ex-
tract sessions and labels them. The an-
gle bin width is decided by the variable
angleBinWidth. The function returns a
cell array, X, with spikes, and a categori-
cal array, Y, with angle bin labels.
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createXYall Takes the head angles and spike times for
all HD cells recorded in a single day and
extract sessions and labels the. The an-
gle bin width is decided by the variable
angleBinWidth. The function returns a
cell array, X, with spikes of all cells, and a
categorical array, Y, with angle bin labels.

findOptimalModelParameterValues Returns the model parameters yielding
the shortest Victor-Purpura between ses-
sion recordings and the model for all ses-
sions for one HD cell. The function also
plots the recordings and the model yield-
ing the shortest distance.

removeCells Takes the sessions from createXYall as
input, and returns the sessions for all the
cells except the ones given in the array
cellsToRemove.

removeCellsOutsideDFR Takes sessions and labels as input, and
removes all sessions from angle bins out-
side dfrStart and dfrEnd.

removeSessionsWithFewSpikes Takes the sessions, X and the labels Y as
an input, and removes all sessions with
less spikes than minSpikes.

removeSessionsWithXSpikes Takes the sessions, X and the labels Y as
an input, and removes all sessions with
Xspikes number of spikes.

removeShortSessions Takes the sessions, X and the labels Y as
an input, and removes all sessions shorter
than minLength.

shuffleSessions Takes sessions and labels as input, and
shuffles them.

sortByLength Takes sessions and labels as input and
sort the sessions by length.
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testLSTM Classifies the input XTest with the input
neural net net and calculates the accu-
racy. The confusion chart is created. The
size of the mini-batch miniBatchSize
should be the same as when training the
network.

timeBetweenSpikes Divides the response from one HD cell
into sessions and finds the average time
between spikes and standard deviation.
The results are plotted with the angle
along the x-axis and the time in millisec-
onds along the y-axis. The function re-
turns a struct with some key results such
as mean and SD for all angle bins.

trainLSTM Trains the LSTM network. Input is
XTrain and YTrain created with either
createXY or createXYall.

twoTwoOR Combines two and two cell responses in
the XTrain using the OR operator to cre-
ate new features.
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