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Abstract

The current methods of individual salmon tagging and tracking rely on physical
interaction with the fish. This process is inefficient, and can cause physical harm
and stress for the salmon. The use of deep learning techniques has shown great
advances in the field of human face recognition. In this thesis we describe a system,
FishNet, that applies one of these techniques to the field of salmon recognition.

The system learns a mapping from images of salmon heads to a compact vec-
tor embedding, where similarities between embeddings correspond to similarities
between salmon. Convolutional neural networks are used to directly optimize the
embeddings using tiplets of images. The system does not make any assumptions
as to which parts of the head that are useful for distinguishing them from each
other.

The experiments show that modern face recognition techniques work well on
salmon, and that good performance can be achieved with relatively small neural
network models. With a false positive rate of 1%, FishNet achieves a true positive
rate of 96%.

This thesis presents the first use of end-to-end deep learning techniques in the
field of salmon recognition. The images used are from cameras deployed in salmon
farming pens, an environment with many variable factors influencing the image
quality.
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Sammendrag

Dagens metoder for markering og sporing av oppdrettslaks baserer seg p̊a fysisk
kontakt med fisken. Denne prosessen er b̊ade ineffektiv, stressende og potensielt
skadelig for laksen. Bruken av dyp læring har de siste årene gjort store frem-
skritt innenfor ansiktsgjenkjennelse hos mennesker. I denne oppgaven beskriver vi
FishNet, et system som bruker dyp læring til individgjenkjenning av laks.

Systemet lærer en funksjon fra bilder av laksehoder til en kompakt vektor, der
likhet mellom vektorer tilsvarer likheter mellom laksen. Konvolusjonsnett brukes
til å direkte optimalisere disse vektorene ved hjelp av tripler av bilder. Systemet
gjør ingen antagelser om hvilke deler av laksens hode som brukes til å skille dem
fra hverandre.

Eksperimentene viser at teknikkene som brukes i moderne ansiktsgjenkjen-
ningsprogrammer fungerer godt p̊a laks, og at man kan f̊a god ytelse med relativt
små nevrale nett. Med en falsk positiv rate p̊a 1% har FishNet en sann positiv
rate p̊a 96%.

Denne oppgaven beskriver det første systemet som bruker ende til ende dyp
læring for individgjenkjenning hos laks. Bildene brukt i oppgaven er fra kameraer
i oppdrettsmærer, et miljø med mange varierende faktorer som p̊avirker bildek-
valiteten.
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Chapter 1

Introduction

This introduction begins by presenting the motivation behind this thesis. Next, we
present the goals and research questions, and introduce the research methodology
applied in answering the research questions. Finally, we present our contributions
before we finish off with a brief structural overview of the remaining thesis.

1.1 Motivation

The Atlantic salmon (Salmo Salar) farming industry in Norway has experienced a
massive growth in the past four decades. The industry has gone from producing
4.300 tonnes of salmon in 1980, to almost 1.240.000 tonnes in 2017 (SSB [2018]).
Figure 1.1 shows the development of produced salmon in Norway. In 2017, the
total economical results from salmon production was calculated to be over 61
billion Norwegian kroner (NOK) (SSB [2018]). This makes salmon farming one
of the most profitable industries in Norway, and it is considered as one of the
most important industries in a post oil Norway (Richardsen et al. [2018]). A small
improvement in efficiency of this industry would result in a huge economical profit.

At the same time there are many environmental and animal welfare related
challenges in the salmon farming industry. Activities such as delousing and feeding
are known to greatly impact wildlife in the waters around the farming facilities.
In order to reach a state of sustainable production of salmon, more insight in the
salmon life is necessary.

Being able to track salmon at an individual level would enable tracking a
single individual throughout their lifespan, from smolt to finished product enabling
linking salmon fillets to the life-story of the individual. The producers could also
optimize their production facilities and processes at a much more granular level.
Possibilities that open up are monitoring individual weight development, treating
salmon only when the need applies, delousing only the individuals that suffer from
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Figure 1.1: The sale of slaughtered salmon in tonnes from 1976 to 2017. The data
from 1991 is missing1.

lice, and thereby preventing unnecessary harm to healthy salmon. Being able to
separate the individuals would also allow monitoring the health of a salmon cage
at a more accurate level, for instance when performing a lice count of a salmon
cage.

With regards to insight in the salmons life, individual tracking would open the
doors for many interesting research areas that require monitoring of individuals
over time such as feeding behaviour, behaviour of lice, social hierarchy and overall
survival.

Tagging individual fish has been performed through a variety of methods, but
the techniques have almost exclusively relied on physical engagement with the
salmon. The techniques include surgical implantation of tags and external mutila-
tion, such as fin-clipping, freeze brands, tattoos, visible implant tags, and external
tag identifiers attached by metal wire, plastic, or string (Merz et al. [2012]). This is
a problem both from an animal welfare and product quality perspective. Bacterial
growth and unpleasant sensory properties has shown to increase more quickly in
salmon experiencing stress in their lifetime prior to being slaughtered. This results
in reduced shelf life of the finished product (Hansen AÅ [2012]). A computer vision

1Figure generated using SSBs chart generator at https://www.ssb.no/statbank/table/

07326/chartViewLine/
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method for uniquely identifying individuals would elegantly solve this problem by
minimizing the impacts from invasive techniques.

In the last few years deep learning approaches such as DeepFace (Taigman
et al. [2014]) and FaceNet (Schroff et al. [2015]) have shown great advances in the
field of face verification on humans. The systems are able to verify the identity
of people in images as well as humans are. They have also shown to be robust
with regards to changing lighting conditions and other variations influencing how
a person looks.

As of this writing, Sealab AS has over 700.000.000 images taken inside salmon
cages, that in combination with known deep learning approaches of face verification
could produce good results in the domain of individually identifying salmon.

In this thesis we want to investigate if the methods that have proven to be so
successful in human facial recognition can perform well on salmon.

1.2 Goals and Research Questions

Figure 1.2: The Sealab AS set-up. A high-definition camera is attached to a wire.
70cm above the camera, a dimmable artificial light source with maximum effect
of 40 000 lumen is attached. The wire is attached to a winch at the surface that
enables the camera rig to move in the 3D-space inside the salmon cage. Illustration
by Oscar Marković, co-founder of Sealab AS.

What separates individual salmon recognition from human face recognition is
that images of salmon are typically taken of the side of the salmon. The recognition
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of a salmon is therefore based on one side. Some characteristics of salmon are not
symmetrical, so each side of the salmon is unique. To create a model that identifies
a salmon from either side would require a camera on each side of the salmon and
then train both sides to identify the same salmon. Data from Sealab is based on a
single camera, so one side of the salmon is recorded at a time. See Figure 1.2 for
an illustration of the set-up. Given this is the data we have available, our goal is of
the side-recognition nature. The goal of this thesis is to investigate the feasibility
of using deep learning to uniquely identify individual sides of salmon from real
video footage in the salmon cages.

To aid the direction of the research we have identified the following research
questions:

Research question 1 How well do state-of-the-art face verification methods us-
ing end-to-end deep learning perform on salmon in cages?

Research question 2 How suitable are different deep learning architectures and
what results do they yield?

Using end-to-end deep learning, we do not have to make assumption as to
what it is that uniquely separates each individual salmon, but the melanophore
pattern on the side of each salmon head is assumed to serve as a fingerprint for
the salmon. Figure 1.3 shows the melanophore pattern on the side of a salmon
head. Existing research shows that patterns on the head region of salmon can be
used for long-term individual recognition (Merz et al. [2012], Stien et al. [2017]).
Due to the crowded conditions in the sea pens, it makes sense to use images of
the head region than the entire salmon. Getting a picture of the entire salmon is
hard, as parts of the body are often covered by other salmon. Therefore, we base
the recognition solely on the head region, instead of the salmon as a whole.

When designing deep neural network models, there are many architectural
choices that can be made influencing the models representational capacity and
how well it is able to learn. These choices have major influence on the overall
performance of the system. This leads to research question 2.

1.3 Research Method

The thesis consists of two phases. The first phase consisted of a structured litera-
ture review into the field of face recognition and salmon recognition. The literature
review is followed by an applied research phase where we implement a system for
salmon recognition. In our applied research, we want to find out how deep neural
networks perform on identification of salmon. This technique-driven approach will
produce a system where the complexity, underlying models and theories means



Introduction 5

Figure 1.3: Head region of an Atlantic salmon. The dark spots on the side of the
salmon head is the melanophore pattern. The pattern is unique for each individual.
Figure reprinted from Eilertsen [2017].

that experimental implementation is necessary to evaluate our model and theory
behind it. Our methodology is based on the framework for IT research proposed
by March and Smith (March and Smith [1995]). The model is based on four nat-
ural research activities: build, evaluate, theorize and justify. This experimental
approach suits us in achieving a result, as well as seeking to understanding the
reason for the results achieved.

1.4 Contributions

The main contribution of this work is the investigation into how well state-of-
the-art deep learning methods work in learning embeddings of salmon heads in
euclidean space, where the distances between the embeddings can be used to mea-
sure similarity. The data used is from relatively uncontrolled conditions in sea
cages. Systems that operate in these conditions will have to tolerate a large vari-
ety of factors such as weather and water conditions that influence image quality.
This is important for creating a robust system that works in the real world. By
using deep learning models to learn the representation of salmon, we remove the
need for a human to decide on what features are important for the task at hand.

If the techniques that have proven themselves for human face recognition also
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work well on salmon, it may open up interesting possibilities in other domains
where pattern recognition and matching is useful.

1.5 Thesis Structure

Chapter 2 provides the reader with an understanding of the necessary theory used
in this master thesis. Section 2.3 presents some of the related work that has
influenced our approach. This includes face verification and other attempts at
uniquely identifying salmons. Section 2.4 presents our literature review protocol.

Chapter 3 presents how we have processed and structured our training, valida-
tion, and test data. We also present the FishNet approach with different architec-
tures.

Chapter 4 describes how we evaluated the models presented in Chapter 3. We
also present the results from the evaluations.

In Chapter 5 we discuss and compare the results we achieved. We also discuss
the impact and limitations of our results, and what contributions are made. Finally
we discuss potential future work.



Chapter 2

Background Theory

In this chapter we present the background and theory necessary for the reader to
understand the rest of the thesis. We will start by presenting a clustering method
that we utilized in the creation of our dataset. We also explain two methods for
dimensionality reduction used to examine our results. Further, we will cover deep
learning and its use for computer vision in section 2.2. We then present existing
research into individual salmon tracking, and how deep learning can be used for
face verification in section 2.3. Finally we will present the structured literature
review protocol in section 2.4.

2.1 Clustering and Dimensionality Reduction

Clustering is a technique that groups similar data points together in separate
clusters. Clustering algorithms utilizes a distance function that defines the distance
between two data-points. The data points with a small distance between them are
marked to belong in the same cluster. There are several techniques and methods
on clustering. Some use a parameter to define how many clusters the data should
be divided in, others use a threshold value to restrict what distances are regarded
as being in the same cluster. This section will present one clustering technique,
DBSCAN, used in the creation of our dataset.

Dimensionality reduction is the process of creating a new, lower-dimensional
representation of a dataset while maintaining as much information as possible
about the original data. This section will also present two dimensionality reduction
techniques that we used to visualize our results; Principal Component Analysis
(PCA) and t-Distributed Stochastic Neighbour Embedding (t-SNE).
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2.1.1 Density-Based Spatial Clustering of Applications with
Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an
unsupervised machine learning technique for data clustering. The algorithm groups
data points that are close together in clusters, and does not require the number of
clusters as input (Ester et al. [1996]). DBSCAN has two hyperparameters:

eps is the neighbourhood radius. If point b is within a radius of eps from point a,
then a and b are neighbours.

minPts is the number of neighbours a point must have to be considered a core
point.

Data points are divided into three categories:

Core points are points that have minPts neighbours within a radius of eps.

Edge points are points that are within eps distance of a core point, but is not a
core point by itself.

Noise are points without neighbours.

Each cluster formed by DBSCAN consists of one or more core points, as well
as all points that are reachable from a core point in the cluster. Figure 2.1 shows
the DBSCAN algorithm step-by-step on an arbitrary example.

2.1.2 PCA

Principal Component Analysis (PCA) computes uncorrelated linear combinations
of the original, possibly correlated features. These new variables are called prin-
cipal components. When computing the components, most variance is stored in
the first component, second most variance in the second component and so on
(Hotelling [1933]). This means that we can select the first two or three principal
components and visualize them, representing as much of the original dataset as
possible.

2.1.3 t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a dimensionality reduc-
tion technique that is commonly used for visualization of high-dimensional data
(Maaten and Hinton [2008]). Useful features of t-SNE, is that it is capable of
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(a) Points plotted in 2D euclidean space. (b) The points are classified into core (green),
border (yellow) and noise (red).

(c) Noise points are removed and edges are
placed between core points that are within eps
of each other.

(d) Connected points are made into clusters.
Border points are added to the cluster of the
closest associated core point.

Figure 2.1: An illustration of the DBSCAN algorithm with eps = 3 and minPts =
4.

retaining the local structure of data as well as visualizing global features such as
clusters.

t-SNE represents distances between points as conditional probabilities. This
is done for the original high-dimensional data and for the new low-dimensional
representation (usually two or three dimensions). To measure the distance from
point x, a probability distribution is centered at x, and the density is measured at
all other points. For the high-dimensional data t-SNE uses a Gaussian distribution,
and for the low-dimensional representation it uses a Student-t distribution.

Once the distances are represented as probability distributions, gradient de-
scent can be used to minimize the Kullback-Leibler divergence. This is done by
adjusting the values of the randomly initiated low-dimensional representation. The
result is a low-dimensional representation that often visualizes important global
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features of the high-dimensional original data.

2.2 Deep Learning

In the field of artificial intelligence, a true challenge proved to be solving tasks
that are easy for humans to perform, but hard to describe formally. Problems
that cannot be described by a list of formal, mathematical rules such as recognizing
spoken words or faces in images. Deep learning is an approach to provide solutions
to these problems. The approach relies on the computer to learn from experience
and learn real-world, complex concepts by dividing them into simpler ones. This
approach removes the need for humans to formally specify all the knowledge needed
by the computer. The learning is instead based on gathered knowledge from
experience (Goodfellow et al. [2016] chapter 1).

2.2.1 Neural Networks

Neural networks are a class of machine learning models whose goal is to approx-
imate some function f ∗ (Goodfellow et al. [2016] chapter 6). Neural networks
consist of a graph of nodes, where the connections between nodes have learnable
parameters θ. These parameters are called the weights W and biases b of the net-
work. A neural network usually consists of an input layer, an output layer, and one
or more hidden layers. The network defines the following mapping: ŷ = f(x; θ)
providing an output ŷ for input x, parameterized by θ. Figure 2.2 illustrates a
simple neural network with two hidden layers. The network takes a 3-dimensional
vector as input and produces a single numerical prediction.

The output o of a single node is computed as o = g(W�x+ b) where g is the
activation function. To enable the neural network to approximate any function,
non-linear activation functions are added to each node in the network.

Training a Neural Network

Neural networks are usually trained using gradient based optimization of a loss
function, such as gradient descent (Goodfellow et al. [2016] chapter 4). The neural
network is used to calculate the result for some input data, for which the loss is
calculated. Once the loss is known it is used to compute a gradient of the loss.
This is done recursively backwards throughout the network using the chain rule
of calculus. This algorithm is called the backpropagation algorithm. The gradient
of the loss can then be used to update the parameters of the model (Goodfellow
et al. [2016] chapter 6).
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x1 x2 x3

y1

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Figure 2.2: Illustration of a simple feed forward, fully connected neural network
with two hidden layers. The network takes a 3-dimensional vector as input (bottom
layer) and produces a single numerical prediction (top layer). The network is fully-
connected, meaning each node connects to all the nodes in the next layer.

Due to the size of the training data required for training neural networks, it is
impractical to use the entire training set to compute the gradient before updating
the weights. To solve this issue, it is common to split the data in to smaller
mini-batches, and compute the gradient of each mini-batch of size m, where m is
significantly smaller than the size of the entire training set (Goodfellow et al. [2016]
chapter 8). Gradient descent with mini-batches is called stochastic gradient
descent (SDG) because the random sampling of each mini-batch introduces noise
into the training process. When the training algorithm has seen each training
sample once, it has finished one epoch. The network typically goes through
several epochs of training to converge on a good set of parameters, but the number
of epochs depends heavily on the amount of available training data.

SDG may be slow, and it is common to addmomentum to the algorithm. Mo-
mentum influences how much the parameters are updated during training, and is
calculated using a moving average of the gradients. Momentum helps us ”smooth”
out some of the noise introduced by the random sampling of mini-batches, and it
also helps the training algorithm navigate terrain where the gradient is much larger
in one dimension than in another by preventing excessive oscillation.
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The Loss Function

The loss function of a neural network measures how well the model performs on
the given input. If the model makes wrong predictions, the loss function should
return a large number. If it is correct, it should return a small number. The loss
function defines a many dimensional loss landscape. By tuning the parameters θ
of the model, we can traverse the loss landscape and find the best parameters for
our data. In other words, finding the combination of parameters that minimizes
the loss of the model. This is done using an optimization algorithm.

There are two major classes of loss functions:

Regression losses where the model attempts to predict a continuous value.

Categorical losses where the model attempts to predict the output from a finite
set of options.

Common loss functions include mean squared error (MSE) and cross-entropy
loss. MSE calculates the mean of the squared difference between the predicted
value ŷ and the ground truth y of m training samples (see equation 2.1). Equation
2.2 shows how the cross entropy is computed for a binary classification problem.

J(θ) =
1

m

m�

i=1

(f(xi;θ)− yi)
2 (2.1)

J(θ) =
1

m

m�

i=1

yi · log (f (xi;θ)) + (1− yi) · log (1− f (xi;θ)) (2.2)

Since the loss function creates the loss landscape that the networks seeks to
minimize, the choice of loss function has a vital role in how hard it is to train the
network.

Activation Functions

The most used activation functions for deep learning applications are the rectified
linear unit (ReLU), the logistic sigmoid, and the hyperbolic tangent. In practice,
the most used activation function for hidden layers is ReLU.

The ReLU function is defined as g(x) = ReLU(x) = max(0, x). The ReLU
function is identical to a linear unit, except that the output is 0 if the input is
negative. This ensures large and consistent derivatives when the node is activated
(Goodfellow et al. [2016] chapter 6). One problem with ReLU is that the node
cannot learn if the output is zero (because the derivative is zero). This can also
result in a node ”getting stuck” and never activating again. One variation on the
ReLU function to combat this issue is the leaky ReLU function, which ensures
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there is a small derivative even if x is negative. Equation 2.3 defines the leaky
ReLU function.

g(x) =

�
0.01x for x < 0
x for x ≥ 0

(2.3)

The sigmoid function is defined as g(x) = σ(x) = 1
1+e−x . The function takes

a number and squashes it into the range between 0 and 1. This can be especially
useful in output nodes where the output represents a probability between 0 and
1. The sigmoid function is rarely used for hidden layers as its output saturates for
very high and very low input values, while it remains very sensitive to its input
when the input is close to zero. The saturation causes very small gradients and
therefore very slow training.

The tanh function is similar to the sigmoid function, but it squashes the input
into the range between -1 and 1. It is defined as g(x) = tanh(x). The tanh function
usually performs better than the sigmoid function when training a neural network
(Goodfellow et al. [2016] chapter 6).

See figure 2.3 for an illustration of the graphs the different activation functions
produce.

(a) Rectified linear unit func-
tion

(b) Logistic sigmoid function. (c) Hyperbolic tangent func-
tion

Figure 2.3: The graphs of the most commonly used activation functions.

Dataset splits

Training a neural network requires the network to have a notion of how far away
it was from the correct output in order to train the parameters to approximate
this output. The most common way to train a neural network is with supervised
learning. Supervised learning uses labeled examples to learn features from the
input data.

Dataset splitting divides the data into three different sets; training set, valida-
tion set and test set. The separation percentage can vary, but a common separation
is 80/10/10. 80% of the data as the training set, 10% as validation set and the
remaining 10% as testing data.
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Training set The training set is used to train the network. This partition is the
largest, as we want the training to be based on as much data as possible. In
stochastic gradient descent, this is the data that is split into mini-batches
and trained on.

Validation set The validation set is used to measure the model’s performance
after each epoch. Using a validation set after each epoch is a good indicator
on the performance the model would have on the test set. During the use of
the validation set, the model is not allowed to update its parameters.

Test set The test set is used for the final test of the model. It is important
that the test set is kept hidden from the system prior to testing. It acts as
completely new data for the system, and is therefore a good indicator on
how the system would perform in the real world.

Over- and underfitting

Overfitting occurs when the network becomes too familiar with a specific set
of training data. An overfitted model could learn to map each example in the
data to the labeled solution with 100% accuracy, but would perform poorly when
seeing new data. The model has not learned general concepts, but rather knows
the output for each training example. An overfitted model will have a large gap
between the training and testing error.

Underfitting occurs when the model is unable to learn from the training data,
and the training error remains high. This can occur if the model does not have
the representational capacity to represent the underlying data distribution.

Regularization

The term regularization refers to strategies used to reduce the test error of a
model (Goodfellow et al. [2016] chapter 7). This can often come at the expense
of the training error, and many regularization techniques constrain the models or
the parameters of a model. There is a large amount of different regularization
techniques used in deep learning. Here we present some of the most commonly
used techniques, and the techniques used in this thesis.

It is common to use parameter norm penalties, Ω(θ), for the weights of
a neural network. The most common norm to use is L2 regularization, where
Ω(θ) = 1

2
�w�22. L2 regularization gives a preference to simpler models (where the

magnitude of weights are smaller).
Using dataset augmentation to improve how the generalization ability of

the model is another simple and common approach to use, especially in computer
vision tasks. By slightly altering the characteristics of the training data, one can
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greatly increase the volume of data. If the training data is images, operations such
as translations, rotations, scaling and color adjustments are all techniques that are
easy to implement.

Dropout is a technique where units in the network are disabled (multiplied
with 0) with a certain probability during training (Srivastava et al. [2014]). This
effectively simulates training with many slightly different neural networks, and it
prevents the models from overfitting. During test time all units in the network are
active, which approximates averaging the prediction of the simpler networks.

Batch normalization is another technique that is commonly used in neural
networks (Ioffe and Szegedy [2015]). Batch normalization works by normalizing
the inputs to a layer using the mean and standard deviation of the mini-batch.
According to Santurkar et al. [2018], batch normalization works by smoothing out
the loss landscape and making it more stable, thus making training significantly
easier. Equation 2.4 shows how the batch normalization is computed (from Ioffe
and Szegedy [2015]). The values γ and β are learned during normal training.

Input : Values of x over a mini-batch: B = {x1...m}
Learnable parameters : γ, β

Output : yi = BNγ,β (xi)

µB ← 1

m

m�

i=1

xi, mini-batch mean

σ2
B ← 1

m

m�

i=1

(xi − µB)
2 , mini-batch variance

�xi ←
xi − µB�
σ2
B + �

, normalize

yi ← γ�xi + β ≡ BNγ,β (xi) , scale and shift

(2.4)

Transfer Learning

Transfer learning (Goodfellow et al. [2016] chapter 15) refers to the approach
where features learned in one domain are used as a starting point for learning
about another domain. This is especially useful if there is more training data
available for the first domain than the second. For machine vision tasks transfer
learning can be useful, because low level features such as shapes and edges are
easily transferable between domains.

For commonly used deep learning models there are usually pre trained con-
volutional weights available for download. Using these can significantly increase
training speed and improve generalization.
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2.2.2 Convolutional Neural Networks

Convolutional neural networks (convnets) are special kinds of neural networks
for processing input that has n-dimensional grid-like topology (Goodfellow et al.
[2016] chapter 9). Images can be thought of as two dimensional grids of pixels, and
convnets have been very successful in various computer vision applications such as
image classification. A convolutional neural network usually uses a combination
of convolutional layers, pooling layers and fully connected layers.

The Convolution Operation

Convolution, as implemented in machine learning applications, is an operation
that takes two parameters:

The input I For example a 2-dimensional tensor representing an image.

The kernel K Typically a smaller 2-dimensional tensor if the input is 2-dimensional.

The output tensor S from the convolution operation (denoted with an asterisk) is
computed as follows:

S(i, j) = (I ∗K)(i, j) =
�

m

�

n

I(i+m, j + n)K(m,n) (2.5)

Figure 2.4 illustrates how equation 2.5 is applied to a 2-dimensional tensor.
When moving the kernel over the image it is possible to skip some positions to

further reduce the size of the output as well as reducing the computational cost.
The size of these skips is called the stride of the convolution.

The Convolutional Layer

A convolutional layer usually consists of several learnable kernels (also called fil-
ters). The filters are convolved with the input image to produce a stack of tensors
(channels) representing the features each kernel looks for. The first layers will
usually learn to detect simple features such as edges, and kernels deeper in the
network will find more complex features such as shapes.

One big advantage with convolutional layers is that the network has sparse
connectivity(Goodfellow et al. [2016] chapter 9.2). Sparse connectivity refers
to the fact that each output unit is influenced only by a subset of the input
units (unlike in fully connected neural networks where every output unit can be
influenced by every input unit). The size of this subset is determined by the kernel
size. The input units influencing an output unit is called its receptive field.
Figure 2.5 illustrates the receptive field of an output unit s3. By having sparse
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Figure 2.4: Illustration of 2D-convolution (adapted from Goodfellow et al. [2016])

connections in the network we drastically reduce the number of computations
needed.

A convolutional network uses parameter sharing, which means that we use
the same parameters across all locations in the input, rather than learning a dis-
tinct set of parameters for all spatial locations (Goodfellow et al. [2016] chapter
9.2). This drastically reduces the number of parameters to learn. Parameter shar-
ing is possible because features detected at one location in the input are most
likely useful to detect in other locations as well. Figure 2.6 illustrates the effect
the convolution layer can have on an image.

The Pooling Layer

A pooling layer computes a statistical summary of an area in its input layer (Good-
fellow et al. [2016] chapter 9.3). The most common pooling method used in deep
learning is max-pooling which computes the maximum value within a neighbour-
hood. Pooling layers makes the network robust to small translations in the input,
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s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

Figure 2.5: The receptive field of output unit s3 is x2, x3, and x4 (adapted from
Goodfellow et al. [2016])

(a) The input to the neural
network.

(b) The output of one convolu-
tional filter.

(c) The output of another con-
volutional filter.

Figure 2.6: An illustration of two outputs from a convolutional layer in FishNet.
We can see that the two filters (b) and (c) represent different features in the input
image (a).

and it also reduces the size of the data. Figure 2.7 illustrates max-pooling.

Locally Connected Layer

Unlike convolutional layers where the kernel is identical for all receptive fields in
the image the locally connected layer trains a separate kernel for each input patch
(Gregor and LeCun [2010]). This increases the number of trainable parameters in
the network compared to a convolutional layer, but the computational cost in the
inference stage remains the same (Taigman et al. [2014]).
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Figure 2.7: Illustration of max-pooling with a stride of two. The highest value
of each receptive field is kept. Figure adapted from Li et al. [2018].

The Architecture of a Convolutional Network

There is a large number of different convolutional architectures for different appli-
cations, but most of them follow a similar pattern. For computer vision tasks the
input is typically an image which is then fed into a convolutional layer followed
by a pooling layer. Typically reducing the height and width of the image with
pooling and increasing the number of channels with convolutions. This is repeated
several times, and finally the output is flattened and fed into one or more fully
connected layers that act as a classifier. For a description of the architecture used
in this master thesis, refer to chapter 3.4.

2.2.3 You Only Look Once version 3 (YOLOv3)

YOLOv3 is a single neural network that uses features from the entire image to
predict bounding boxes (see example of YOLOv3 output in Figure 2.8). Each
bounding box consists of 5 predictions: x, y, w, h and confidence. x and y defines
the coordinates for the center of the bounding box, and w and h are the width and
height of the box respectfully. This system divides the image into an SxS grid
where each grid cell is responsible for detecting objects that have their center in
that cell.

YOLOv3 consists of 24 convolutional layers followed by 2 fully connected layers.
The resulting network runs significantly faster than other detection methods with
comparable performance.
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Figure 2.8: Example of YOLOv3 detector. Figure reprinted from Redmon and
Farhadi [2018]

2.3 Related Work

With regards to identifying unique salmons without engaging directly with the
salmon, the research done is quite limited. Earlier attempts of uniquely identifying
salmons have relied on insertion of RF-ID chips or other physical marking systems
(Eilertsen [2017]). This is not a good solution as direct contact with the salmon
should be avoided as it could potentially hurt the salmon and damage the finished
product. It also leaves a physical object that has to be handled later in the process.
Physically handling the salmon is also inefficient.

We have chosen a couple of papers that we base the grounds of our research on.
Starting off with a pre-study performed by SINTEF on identification of salmons
using biometric recognition (Eilertsen [2017]).

2.3.1 SINTEF SalmID

SINTEF did a pre-study on the possibility of recognizing individual salmon based
on the assumption that each individual has an unique pattern. They found that
there was done little work on this area regarding Atlantic salmon. However, they
refer to several papers about using the melanophore pattern of different animals
to uniquely identify them.

Melanin produces patterns. On humans, these tend to change over time but on
salmon they change very little after they become ”youths”. Research has been done
on recognizing several species including cheetahs, sand tiger sharks, and Chinook
salmon using their melanophore pattern.

SINTEF plan on using two different methods for recognizing individual salmon:

Polar coordinates The principle behind this technique is to find two reference
points (the eye and the skull) and map each of the melanophore spots in
a coordinate system based on these reference points. Having all the spots
mapped with placement and size variables in a database, the database can
later be used to look up a specific salmon.
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Star constellation This technique takes inspiration from looking at stars and
recognizing constellations. The sky in the night displays a sea of dots. When
looking for constellations you look for a pattern, for example when looking
for the Big Dipper you seek four stars in a row that is connected to a square.
This concept can be used on the melanophore spots of a salmon as well. The
benefit of using constellations instead of polar coordinates is that you do not
need anchor points. This makes the recognition more robust with regards to
rotation and movement of the salmon.

The recognition part is based on manually selected features of the salmon
rather than learned representations. Figure 2.9 illustrates the two methods for
recognizing the spot pattern.

(a) The polar-coordinate recognition method.
Eye and head-line are reference points. Each
melanophore spot has associated values αx

which is the angle from the reference line from
the eye to the headline, and rx which is the ra-
dius from origo (the eye). In addition, each spot
has values ASX which is the area of the spot and
FHX which is the Heywood Circularity Factor
defined as FH = P/2∗

�
(π∗AS) where P is the

circumference of the spot.

(b) Three constellations found on a salmon
head. These constellations are used to uniquely
identify a salmon without the need of anchor
points.

Figure 2.9: Salmon matching methods in SalmID. Figure reprinted from Eilertsen
[2017].
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2.3.2 Biometric Recognition and Individual Tracking of
Salmon in Large-Scale Sea Cages

In the master thesis Biometric recognition and individual tracking of salmon in
large-scale sea cages, Ivar Hammerset investigates identifying salmon based on the
melanophore patterns on the side of their heads (Hammerset [2018]).

Neural networks are used to discover the location of salmon heads and eyes.
After some preprocessing of the image, a simple blob detection algorithm is used
to discover the melanophore spots. The locations of the spots and the eye are
then translated into a polar representation which is saved in a database with the
identity of the salmon. This approach is similar to the SINTEF SalmID polar-
coordinate technique. To match the patterns of salmon, a matrix representation is
created and the points are compared. More details about the algorithm used can
be found in the thesis.

On the test set with images from 333 individuals the algorithm achieved an
accuracy of 99.7%. Note that in only 40.4% of the test images the algorithm
recognized the individual.

2.3.3 Face Verification Using Deep Learning

When using deep learning to create a face verification system, a common approach
is to learn a mapping from images of faces to a n-dimensional embedding. When
verifying similarity between two faces, one can check the similarity of the vectors
created by the trained neural network (Taigman et al. [2014]). If the vectors are
similar enough we can assume the two pictures to be of the same person. Essen-
tially, the neural network learns a mapping of features describing the uniqueness
of a person.

DeepFace

The model presented in the DeepFace paper (Taigman et al. [2014]) starts by
altering images of faces so that they appear to face the camera (frontalization).
The frontalized image is fed into a convolutional layer followed by a max pooling
layer and another convolutional layer. According to the authors, these three layers
mainly extract low level features and make the network robust to local translations.

The last convolutional layer is followed by three locally connected layers. This is
done because the different regions of an aligned image have different characteristics,
so the spatial invariance assumption of convolution does not hold. An example of
this is that the eyes of a person will always be above the nose.

The final two layers of the network they use are fully connected. These layers
are able to identify relations between features in different locations in the feature
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maps. The first fully connected layer is used as the face representation vector,
and the output of the second one is fed into a softmax which produces a class
distribution for an input image.

To verify whether two images are of the same person, the authors propose three
approaches:

Unsupervised method: The similarity of two images is simply defined as the
inner product of the two representation vectors.

Weighted χ2 distance: For two feature vectors f1 and f2,
χ2(f1, f2) =

�
i wi(f1[i] − f2[i])

2/(f1[i] + f2[i])). The weight parameters w
are learned using a linear support vector machine.

Siamese network: In the siamese network, the network (except the top layer
used for softmax classification) is duplicated. One image is fed into each
part of the network and the absolute difference between the feature vectors
is computed. A fully connected layer is added and the network is trained to
predict a single logistic unit (whether the images are of the same person).
Training is only enabled for the new layers, and it is trained using standard
cross entropy loss.

All three methods yielded good results compared to the state-of-the-art at the
time. The siamese network approach required a lot more training data to avoid
overfitting compared to to the other approaches.

FaceNet

The FaceNet paper (Schroff et al. [2015]) describes a system that learns and op-
timizes a vector representation directly, rather than extracting the representation
from a bottleneck layer (like DeepFace). FaceNet learns a 128-dimensional feature
vector (embedding) that represents a face. Unlike the DeepFace approach there is
no 2D or 3D alignment done on the images.

The authors use triplet loss to train the network. The network is presented
with three images:

xa
i The anchor image.

xp
i The positive image. This image is of the same person as the anchor image, but

not the same image.

xn
i The negative image. This image is of any other person.
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When training we want to ensure that the anchor image is closer to the posi-
tive images of that person than it is to images of person. See figure 2.10 for an
illustration. Equation 2.6 shows how the loss is computed for a mini-batch.

L =
m�

i

�
�f (xa

i )− f (xp
i )�22 − �f (xa

i )− f (xn
i )�22 + α

�
+

(2.6)
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Figure 2.10: Triplet loss minimizes the distance between images of the same person
and maximizes the distance to images of other persons (adapted from Schroff et al.
[2015])

According to the authors, it is important to select triplets that are hard to
ensure that the network converges as quickly as possible. The triplets are chosen
from within each mini-batch, and all anchor-positive pairs are used in combination
with negative examples. How triplets are selected is discussed further in section
3.3.

The authors describe several different deep neural network architectures, where
the major differences between them are the number of trainable parameters. The
number of parameters in the networks range from about 4 millions to 140 millions.
When evaluating the networks the L2-distance between two images is compared. If
the distance is above a certain threshold they are classified as different. According
to the authors they are able to reduce the error reported by the DeepFace paper
by a factor of seven. The smaller inception networks perform nearly as good as
the very deep networks.

2.4 Literature Review Protocol

To search for relevant literature, we have used a combination of structured litera-
ture review (SLR) and the snowballing approach.

The structured literature review consists of gathering data, then filter this
data through a series of well-defined steps. The data gathered are in our case
available primary studies on relevant subjects to this thesis.
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Performing these steps according to a predefined protocol enables other re-
searchers to reproduce the result of the literature review. So in addition to helping
us reduce and filter out the most relevant papers through the use of inclusion and
quality criteria, the SLR also enhances the reproducibility of the literature review
of our thesis.

The snowballing approach refers to the method where relevant articles are
discovered using the reference lists and citations of articles already known to be
relevant through our SLR (Wohlin [2014]).

The structured literature review consisted of the following steps:

1. Identifying literature research questions. The first step was to identify
research questions for the literature search. These questions are important
for defining the scope of the search. For our research we used the following
research questions:

LRQ1 What is the state-of-the-art in face identification and verification?

LRQ2 What is the state-of-the-art in salmon tracking and recognition?

LRQ3 What research exists in the field of salmon pattern recognition?

LRQ4 What neural network architectures are used in the field of face recog-
nition?

These literature research questions helped us in identifying the relevant
search terms for the next step.

2. Literature search. The next step was to find literature and studies relevant
to the research questions identified in step 1. This includes defining the
search engines to use and which search terms to use. The following search
engines were used in the literature search:

• Google Scholar1

• IEEE Explore2

• Oria3

• SpringerLink4

• SINTEF Publications5

1https://scholar.google.no/
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/search?vid=

NTNU_UB
4https://link.springer.com/
5https://www.sintef.no/publikasjoner/
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The terms used when searching the search engines were: Deep learning, pat-
tern recognition, face verification, face recognition, face identification, neu-
ral network face recognition, facenet architecture, deep learning architecture,
salmon identification, salmon recognition, biometric identification of animals,
melanophore pattern salmon, melanohpore pattern unique, animal pattern
recognition, fish recognition.

These search terms were used in different combinations. The terms regarding
salmon was also used in Norwegian as a lot of research regarding the Atlantic
salmon are published in Norwegian. This lead to the initial stack of papers
and articles we considered.

3. Selection of primary studies. This step limits the number of results by
eliminating results that are duplicates, too old or clearly not relevant for our
research questions.

4. Quality assessment. This step uses a list of inclusion and quality criteria
to rate the literature that wasn not eliminated in the previous step. By
assigning a score for each criteria the literature can be sorted by it’s total
relevance. This way we can determine which studies to analyze first. Table
2.1 presents the inclusion and quality criteria used.

ID Criteria
IC1 The studys main focus is related to the literature research questions.
IC2 The study is a primary study focusing on empirical results.
QC1 There is a clear statement of the aim of the research.
QC2 The study is put into context of other studies and research.
QC3 The system or algorithmic design decisions are justified.
QC4 The test dataset is reproducible.
QC5 The study algorithm is reproducible.
QC6 The experimental procedure is thoroughly explained and reproducible.
QC7 The performance metrics used in the study are explained and justified.
QC8 The test results are thoroughly analyzed.
QC9 The test evidence supports the findings presented.

Table 2.1: Inclusion (IC) and quality (QC) criteria.

After performing all the steps in our structured literature review, we ended up
with a set of articles listed in Table 2.2.
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ID Title Authors and Year
P01 Facenet: A unified embedding for face

recognition and clustering
Schroff et al. [2015]

P02 Deepface: Closing the gap to human-
level performance in face verification

Taigman et al. [2014]

P03 Identifikasjon av lakseindivider —
Biometri fase 1 (SalmID)

Eilertsen [2017]

P04 Consistent melanophore spot patterns
allow long-term individual recognition
of Atlantic salmon Salmo salar

Stien et al. [2017]

P05 Onset of Melanophore Patterns in the
Head Region of Chinook Salmon: A
Natural Marker for the Reidentification
of Individual Fish

Merz et al. [2012]

P06 Inception-v4, Inception-ResNet and
the Impact of Residual Connections on
Learning.

Szegedy et al. [2017]

P07 MobileNetV2: Inverted Residuals and
Linear Bottlenecks

Sandler et al. [2018]

P08 Very Deep Convolutional Networks for
Large-Scale Image Recognition

Simonyan and Zisserman [2014]

P09 Deep residual learning for image recog-
nition

He et al. [2016]

Table 2.2: The resulting set of research from our SLR
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2.5 Summary

From the structured literature review we can summarize the state-of-the-art in the
fields of salmon recognition and face recognition.

The uniqueness of melanophore spot pattern has been researched on many
animals. The animals range from cheetahs to frogs and sand tiger sharks. In addi-
tion, research shows that the melanophore pattern on both Chinook and Atlantic
salmon are persistent over time. The research indicates that these patterns can be
used to identify individuals.

Current research into computer vision based approaches for salmon recognition
is exclusively based on using the geometric properties of the melanophore patterns
on the side of the head. There has been some use of deep learning, but this
has been for preprocessing of the images to improve the spot detection. To our
knowledge there has been no attempt to use end-to-end deep learning to solve the
task.

Face recognition using deep learning has achieved close to human level per-
formance. The models are increasingly tolerant to challenging conditions such as
lighting, shadows, and rotation. Models such as FaceNet do not require complex
geometric alignment to achieve very good results. The models learn the discrim-
inating features of the input themselves, eliminating the need for manual feature
selection.
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The FishNet Approach

This chapter presents how the training and testing data used in this thesis was
created. It further explains the triplet selection algorithm used, before finally the
architecture choices are presented and justified.

3.1 The Labeled Fish NOT in the Wild (LFNW)

Dataset

The data used in this thesis was raw video provided by Sealab AS. The quality,
camera angle, light, and distance to the salmon varied in the different video clips.
In order to generate the best possible data for the task at hand, video from a steady
shot with salmon swimming by, close to the camera was chosen for the creation of
our dataset. This section will describe the process of creating our dataset, LFNW.
Figure 3.1 illustrates a overview of how a frame from the video is transformed into
training data.

To train our models, a dataset where each salmon is labeled with a unique id
was required. In order to get a labeled dataset out of a video stream, we started
by converting the videos into images. The video was filmed at 30 FPS (frames per
second) meaning we had 30 images per second of video. Salmon heads in the images
were marked manually with a bounding-box tool. After labeling approximately
500 bounding-boxes. The bounding-boxes were used to train a YOLOv3 (Redmon
and Farhadi [2018]) network to recognize salmon heads. A brief explanation of
YOLOv3 can be found in section 2.2.3. After training the network for a few hours
it was used to create bounding-boxes on every salmon head in all video frames.
Figure 3.2 shows the cropped bounding-boxes of two salmon heads detected by the
algorithm.

The results were stored as tuples with the following content:
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(a) A frame from the original video. (b) Bounding-boxes of salmon heads detected.

(c) Salmon heads extracted from the video. (d) Augmented images.

Figure 3.1: Overview of the dataset creation.

(frame, x, y, w, h)

The columns are then scaled to the range of [0, 1]. DBSCAN was used to cluster the
bounding-boxes. The clustering with euclidean distance as the distance function
performed poorly in this case. Euclidean distance favored bounding-boxes in the
same frame since the distance between the frame features yielded a value of 0
in these cases. This is not favorable as two bounding-boxes in the same frame
are definitely not the same salmon. To counteract this, the distance function was
altered to return an arbitrarily high value when the frame-value of the bounding-
boxes were equal. The clustering was improved, but it still mislabeled salmon
that swam in the same area of the field of view. This is understandable as the
x and y features are similar in these cases. After the realization that the same
bounding-box between two frames has a high IOU (intersection over union), the
distance function was altered to reward high IOU values to further improve the
distance function.

Equation 3.1 describes the distance function used in the clustering algorithm. If
two bounding-boxes are in the same frame, the distance is set to an arbitrarily high
value. If the bounding-boxes are not in the same frame, the intersection over union
is measured to check how closely the bounding-boxes overlap. Then a temporal
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(a) (b)

Figure 3.2: Two examples of salmon heads detected by the YOLO network.

distance is added by computing a weighted distance of the frame numbers. This
is done to ensure that overlapping bounding-boxes in frames next to each other
receive a low distance value.

D(b1, b2) =

�
∞ : b1frame = b2frame

1− IOU(b1, b2) + |b1frame − b2frame| × 0.5 : otherwise

IOU(b1, b2) =
Intersection Area

Union Area
(3.1)

Figure 3.3 illustrates the bounding-boxes discovered in two video frames, and
how the intersection over union is calculated. The blue rectangle is the intersection
of the two bounding-boxes, and the red and blue area is the union.

This approach works fairly well except in cases where a salmon disappears
behind a different salmon and then reappears again. In those cases it is frequently
misidentified as a new salmon. This problem was solved by manually reviewing
the labels, and replacing the labels for misidentified salmon.

While the dataset has been manually reviewed, there is a possibility that there
are errors in the labeling of salmon. It is quite difficult for humans to distinguish
the salmon from each other. This however, should not have major impacts on the
training process as the methodology for selecting training data discussed in section
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Figure 3.3: Illustration of IOU. The top image is frame 61 in the video, the middle
is from frame 73, and the bottom image shows the two images over each other.
Despite being 12 frames apart, the IOU is still quite high. The red and blue area is
the union between the bounding boxes, and the blue area alone is the intersection.

3.3 is robust to errors in the dataset.
The resulting dataset contained about 15 000 images of 715 different salmon.

Figure 3.4 shows a plot of how many images there are of each salmon in the dataset.
5 images is the number of images that is most common. The median is 9 and the
mean is 21. Unfortunately the dataset is not publicly available at the time of
writing, but hopefully this description will aid in any attempts to create similar
datasets.

Data augmentation

To increase the size of the dataset we used data augmentation on the images. The
following transformations were applied to the dataset:
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Figure 3.4: Distribution of images per fish. Most (about 53%) of the salmon have
between 0 and 10 images of their head. The median is 9 and the mean is 21. For
more detailed counts, see appendix A.1.

• Horizontal and vertical shifting of the image.

• Rotation (within a 30◦ range).

• Channel shift (simulating brighter and darker conditions).

Augmenting the dataset has several advantages other than purely increasing
the number of training samples available to us. By shifting the location of the
salmon the network can become more tolerant to variations, and avoid overfitting
towards the location of the salmon head within the bounding box. Rotating the
images makes the network able to detect patterns even if the salmon swim in
another angle. We chose 30◦ as this is a realistic angle range for the salmon to
swim. Channel shifting helps us simulate different lighting conditions. See figure
3.5 for examples of channel shift augmentation.

For each image in the dataset we generated five augmentations of each type.
This increased our dataset size by a factor of 15. The augmented dataset ended
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(a) (b)

Figure 3.5: Two examples of cropped salmon heads that are augmented with
channel shift simulating different lighting conditions.

up with approximately 225 000 images of the 715 different fish. We have decided
to call the final dataset the Labeled Fish NOT in the Wild (LFNW) dataset.

Dataset Splits

90% of the salmon (about 640 individuals) served as the training dataset. To
evaluate the models, the images of the remaining 10% of the salmon were moved
to a separate test set. The test set consists of approximately 14000 images.
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3.2 Justification for Using the FaceNet Approach

to Learn Salmon Embeddings

As mentioned in the FaceNet paper, there are several ways one could learn em-
beddings to represent the identities of an individual (whether that individual is
a salmon or a human being). A common approach is to frame the problem as a
classification task where the networks learns to classify each image to the correct
class, where each class represents the id of one fish. To extract the embedding
for an image we can take the activation from an intermediary layer. Figure 3.6
illustrates this approach. This is the approach used by for example the DeepFace
paper (Taigman et al. [2014]).

Convolutional Layer

MaxPool Layer

Fully Connected Layer

Bottleneck Layer (FC)

SoftMax Layer

Figure 3.6: One method for learning embeddings. The network is trained for
standard classification, and the embedding representing a face is extracted from a
fully connected layer towards the end of the network (marked in yellow).

A disadvantage of this approach is that the embeddings are only learned indi-
rectly. One hopes that the bottleneck layer will work well as a representation of
the faces. The approach of the FaceNet paper presents us with a way to directly
optimize a loss for the task of generating embeddings which identify the face in
an image. As it demonstrates such good performance on human faces we believe
that it is a reasonable architecture to attempt to use on fish.

3.3 Triplet Selection

As noted in the FaceNet paper (Schroff et al. [2015]), careful triplet selection
is important for the training process of the network. The training goal of the
algorithm is to ensure that the embeddings of two images (anchor and positive)
of the same salmon are closer to each other than any images of other salmon
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(negatives) by a margin α. For the experiments in this thesis, the value for α was
set as 0.2, the same as used in the FaceNet paper.

To ensure effective training, it is important to select triplets that violate this
constraint. To do this, the system has to compute the embeddings for images
during training, and then select the appropriate training samples. For efficiency
purposes, this is done within each batch. First, a random set of salmon images are
sampled from the training dataset. Then the images are fed through the network
to generate embeddings. Finally, the embeddings are used to select triplets where
the difference between the negative and positive embeddings are within α. Algo-
rithm 1 describes this process.

Input: embedding vectors
Input: number of fish
Input: number of embeddings per fish
Input: α
Data: triplets = []
foreach fish do

for anchor in embeddings of current fish do
negative distances = L2-distances from anchor to embeddings of
other fish
for positive in remaining embeddings of current fish do

compute distance between anchor and positive
negatives = find all negative embeddings where
negative dist− positive dist < α
select a random negative from negatives and append (anchor,
positive, negative) to triplets

end

end

end
shuffle triplets
return list of triplets

Algorithm 1: Triplet selection

By using this methodology to train the network, we ensure that training is
performed on triplets the network can learn from. Using triplets that already
satisfy the constraint of α would not contribute to further training, and only slow
down the process. Calculating the hardest triplets for the entire dataset every
epoch would be computationally very slow. Additionally, if we were to select the
hardest triplets every time it could cause poor training. This is because selection
of hardest triplets would be dominated by for example mislabeled or low quality
images.



The FishNet Approach 37

3.4 Neural Network Architectures

During our experimentation, we used different neural network architectures to
train embeddings. All the networks shared a general architecture of a convolutional
neural network where the top layer (classification layer) was replaced by a 128-
dimensional dense layer to represent the embedding of the input image. Figure
3.7 shows an illustration of this architecture, which can be used to compute the
embedding for one image.

Convolutional
Architecture

128-dimensional dense layer

Input (175 × 175 × 3)

Figure 3.7: Generic architecture for inference

Network Architecture # Parameters Pretrained with

FishNet1 (Inception ResNet v2) 55M ImageNet
FishNet2 (MobileNet v2) 2.4M ImageNet
FishNet3 (VGG-16) 15M ImageNet

Table 3.1: The neural network architectures used in the experiments.

To train the network using triplet loss, the network needs to use more than
one image at once. To achieve this, the convolutional and embedding parts need
to be replicated once for each image. Note that the weights are shared between
the instances. The output from the embedding layers is fed into a custom layer
that computes the triplet loss, which in turn is used to train the model. Figure
3.8 illustrates the model used for training. Table 3.1 shows the neural network
architectures used in the experiments.

All models were initialized with the convolutional weights pretrained on the Im-
ageNet dataset (Deng et al. [2009]). The assumption being that features learned
for image classification may be a useful starting point for learning how to dis-
tinguish salmon from each other, thereby reducing the amount of training data
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needed to train the models. This is a form of transfer learning, as discussed in
section 2.2.1. Appendix A.2 documents how to create the models using the Keras
API in TensorFlow1.

3.4.1 The Triplet Loss Layer

To compute the loss during the training, a custom triplet loss layer was used.
Equation 3.2 defines how the loss L is computed for a minibatch of size m.

f(x) = Embedding of image x

L =
m�

i

�
�f (xa

i )− f (xp
i )�22 − �f (xa

i )− f (xn
i )�22 + α

�
+

(3.2)

This is identical to how the triplet loss is defined in the FaceNet paper. The
loss computes the distance between the anchor and the positive, and the anchor
and the negative. The goal is to have the positive distance be smaller than the
negative distance. The difference between the positive and negative distance are
summed. To encourage larger distances the margin α is added to the loss function.
To avoid negative loss, the maximum of the loss of the triplet and 0 is taken before
summation. What we end up with is a loss function that the model seeks to
minimize. See appendix A.2 for how the triplet loss layer is implemented using
Keras.

3.4.2 FishNet1 (Inception ResNet v2)

FishNet1 uses the Inception ResNet v2 (Szegedy et al. [2017]) as the convolutional
part of the architecture. Inception ResNet v2 has shown great result in computer
vision tasks. Inception networks work by introducing an inception module, which
essentially is concatenating several different kernel sizes in each layer. This elim-
inates the need for choosing the right kernel size in each layer, and makes the
network wider rather than deeper. This can be advantageous as deep networks are
prone to overfitting and vanishing gradients. Figure 3.9 illustrates an example of
an inception module.

Inception ResNet v2 also includes residual connections in the inception mod-
ules. Residual connections are connections in the network that skip one or more
layers to help combat the issue of vanishing gradients (He et al. [2016]). Figure 3.10
illustrates an inception module from FishNet1 with a residual connection added.
The Inception ResNet v2 architecture consists of many of these modules.

The decision to use Inception ResNet v2 for the convolutional part of the
network was based on the fact that the best performing network described in the

1https://www.tensorflow.org/api_docs/python/tf/keras
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FaceNet paper is based on the inception model. FishNet1 has about 55 million
parameters.

3.4.3 FishNet2 (MobileNet v2)

FishNet2 uses the architecture of MobileNet v2 as the convolutional part. Mo-
bileNet is an architecture that was created to be able to run on mobile devices.
The architecture has shown great performance on many different computer vision
tasks while maintaining a relatively small model size (Sandler et al. [2018]). Mo-
bileNet also makes use of residual blocks. Unlike FishNet1, the skip connections
go from one bottleneck layer with relatively few channels to the next bottleneck
layer. The layers in the residual block have more channels than the bottlenecks.
This approach reduces the memory requirements of the model.

The MobileNet architecture also makes use of depthwise separable convolu-
tions, which essentially consists of splitting the convolution operation into several
smaller operations with a smaller total computational cost. Depthwise separable
convolutions consist of two steps. First, the input is convolved with the same num-
ber of kernels that it has channels, where each kernel only processes one channel.
The result is then convolved with n 1 × 1 kernels to create the output with n
channels. The first step is called the depthwise convolution, and the second step
is called the pointwise convolution (Sandler et al. [2018]).

FishNet2 has about 2.4 million trainable parameters.

3.4.4 FishNet3 (VGG-16)

FishNet3 uses a simpler convolutional network than FishNet1 and FishNet2. It is
based on VGG-16 (Simonyan and Zisserman [2014]), which consists of 16 layers of
convolutional layers and max pooling. Unlike the other architectures it does not
make use of inception modules or residual connections. This allows us to get an
indication of the effects of adding more complex modules to the feature extraction
part of the neural network. FishNet3 has about 15 million trainable parameters.
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Convolutional
Architecture

128-dimensional dense layer

Anchor Input 
(175 × 175 × 3)

Anchor Embedding

Convolutional
Architecture

128-dimensional dense layer

Positive Input 
(175 × 175 × 3)

Positive Embedding

Convolutional
Architecture

128-dimensional dense layer

Negative Input 
(175 × 175 × 3)

Negative Embedding

Triplet Loss Layer

Loss

Figure 3.8: Generic architecture with triplet loss. Parts of the network with shared
weights are colored green.
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Previous
layer

1x1
convolution

3x3
convolution

1x1
convolution

5x5
convolution

3x3
max pooling

1x1
convolution

1x1
convolution

Filter
concat

Figure 3.9: An illustration of the inception module, adapted from Szegedy et al.
[2015]
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block17_11_ac: Activation
input:

output:

(None, 9, 9, 1088)

(None, 9, 9, 1088)

conv2d_121: Conv2D
input:

output:

(None, 9, 9, 1088)

(None, 9, 9, 128)

conv2d_120: Conv2D
input:

output:

(None, 9, 9, 1088)

(None, 9, 9, 192)

block17_12: Lambda
input:

output:

[(None, 9, 9, 1088), (None, 9, 9, 1088)]

(None, 9, 9, 1088)

batch_normalization_v1_121: BatchNormalizationV1
input:

output:

(None, 9, 9, 128)

(None, 9, 9, 128)

activation_121: Activation
input:

output:

(None, 9, 9, 128)

(None, 9, 9, 128)

conv2d_122: Conv2D
input:

output:

(None, 9, 9, 128)

(None, 9, 9, 160)

batch_normalization_v1_122: BatchNormalizationV1
input:

output:

(None, 9, 9, 160)

(None, 9, 9, 160)

activation_122: Activation
input:

output:

(None, 9, 9, 160)

(None, 9, 9, 160)

conv2d_123: Conv2D
input:

output:

(None, 9, 9, 160)

(None, 9, 9, 192)

batch_normalization_v1_120: BatchNormalizationV1
input:

output:

(None, 9, 9, 192)

(None, 9, 9, 192)

batch_normalization_v1_123: BatchNormalizationV1
input:

output:

(None, 9, 9, 192)

(None, 9, 9, 192)

activation_120: Activation
input:

output:

(None, 9, 9, 192)

(None, 9, 9, 192)

activation_123: Activation
input:

output:

(None, 9, 9, 192)

(None, 9, 9, 192)

block17_12_mixed: Concatenate
input:

output:

[(None, 9, 9, 192), (None, 9, 9, 192)]

(None, 9, 9, 384)

block17_12_conv: Conv2D
input:

output:

(None, 9, 9, 384)

(None, 9, 9, 1088)

Figure 3.10: An illustration of an inception module in FishNet1. The rightmost
connection (from block17 11 ac to block17 12) is the residual connection. The
tuples in the input and output fields are in the format (batch, x, y, channel),
where None symbolizes that the network can take any batch size.
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block_7_add: Add
input:

output:

[(None, 11, 11, 64), (None, 11, 11, 64)]

(None, 11, 11, 64)

block_8_expand: Conv2D
input:

output:

(None, 11, 11, 64)

(None, 11, 11, 384)

block_8_add: Add
input:

output:

[(None, 11, 11, 64), (None, 11, 11, 64)]

(None, 11, 11, 64)

block_8_expand_BN: BatchNormalizationV1
input:

output:

(None, 11, 11, 384)

(None, 11, 11, 384)

block_8_expand_relu: ReLU
input:

output:

(None, 11, 11, 384)

(None, 11, 11, 384)

block_8_depthwise: DepthwiseConv2D
input:

output:

(None, 11, 11, 384)

(None, 11, 11, 384)

block_8_depthwise_BN: BatchNormalizationV1
input:

output:

(None, 11, 11, 384)

(None, 11, 11, 384)

block_8_depthwise_relu: ReLU
input:

output:

(None, 11, 11, 384)

(None, 11, 11, 384)

block_8_project: Conv2D
input:

output:

(None, 11, 11, 384)

(None, 11, 11, 64)

block_8_project_BN: BatchNormalizationV1
input:

output:

(None, 11, 11, 64)

(None, 11, 11, 64)

Figure 3.11: A residual block from the convolutional part of FishNet2. The
residual block goes from few channels (block 7 add), to many channels (i.e.
block 8 depthwise), to few again (block 8 add). Note how this is different to Fig-
ure 3.10 of FishNet1 where the skip connections go from wide to wide layers. The
tuples in the input and output fields are in the format (batch, x, y, channel), where
None symbolizes that the network can take any batch size.
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Chapter 4

Experiments and Results

This chapter describes how the FishNet models, described in section 3.4, were
trained and evaluated. We also present the results of the evaluations and discuss
how the models compare to each other.

4.1 Experimental Plan

All the models were trained for 200 epochs. In each epoch, 10% of the training
data was held out and used as validation data. If the validation loss decreased
after an epoch, the weights of the network were saved to use for testing. The
final testing was performed on a dataset of salmon with disjoint identities to the
training data. The evaluation protocol used to test the models is inspired by how
the different FaceNet models are compared. The testing protocol is as follows:

1. Compute the embedding for each image in the test set using the weights with
best validation loss.

2. Compute the distance between each pair of embeddings, and mark them with
the class same as true or false.

3. The model can then be evaluated by computing metrics for different similar-
ity threshold values. Section 4.3 presents the different evaluation metrics.

4. Repeat the process for all the neural network architectures.

Appendix A.3 shows the Jupyter Notebook used for model evaluation.

4.2 Experimental Setup

The experiments were run on a computer with the following specifications:
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Hardware

• AMD Ryzen threadripper 2920x 12-core processor × 24

• 2× GeForce RTX 2080 Ti/PCIe/SSE2

• 128 GB RAM

Software

• Ubuntu 18.04.2 LTS1

• NVIDIA Driver Version: 418.562

• CUDA Version: 10.13

• Python 3.6.74

• Tensorflow GPU 1.13.15

• Scikit-Learn 0.20.46

Training

During an epoch of training, 10 images of each salmon was sampled from the
training data. Then, the weights from the previous iteration are used to compute
the embeddings of the sampled images. The training triplets are then selected
using the algorithm described in section 3.3. The image size used was 175 ×
175 × 3, and the batch size was 32. To train the networks, gradient descent
with backpropagation and the Adam optimizer was used. The Adam optimizer
maintains an adaptive learning rate for each parameter in the network. These
learning rates are computed using moving averages of the gradient and the squared
gradient (Kingma and Ba [2014]). The following parameters were used for learning
rate, decay for the moving averages (β1, β2), and fuzz factor (�):

Learning Rate: 0.001

β1: 0.9

1https://www.ubuntu.com/
2https://www.nvidia.com/download/index.aspx
3https://developer.nvidia.com/cuda-downloads
4https://www.python.org/
5https://www.tensorflow.org/
6https://scikit-learn.org/stable/index.html
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β2: 0.999

�: 1e-07

4.3 Model Evaluation

As mentioned in section 3.1, the test data consisted of images where the salmon
was not present in the training set. We evaluate our models using the salmon image
verification task, which is similar to the evaluation method used in the FaceNet
paper by Schroff et al. [2015]. That is, given two images of salmon heads, a and
b, the L2 distance D(a, b) is used with a set threshold t to determine if the images
are of the same fish. Let P be the pairs of salmon images. We define the set of all
true positives (TP) for a threshold t as:

TP (t) =
�
(a, b) ∈ P | aid = bid ∧D(a, b) ≤ t

�
(4.1)

Similarly, we can calculate the set of false positives (FP) for a given threshold:

FP (t) =
�
(a, b) ∈ P | aid �= bid ∧D(a, b) ≤ t

�
(4.2)

This enables us to calculate the true positive rate (TPR) and the false positive
rate (FPR) for a model for a given threshold value:

TPR(t) =
| TP (t) |

| {(a, b) ∈ P | aid = bid} |

FPR(t) =
| FP (t) |

| {(a, b) ∈ P | aid �= bid} |

(4.3)

The metrics were computed with approximately 14 million pairs of images from
the test set. By computing the values for several different threshold values we can
plot Receiver Operating Characteristics (ROC) curves for the models and com-
pare the area under the curve (AUC). The area under the ROC curve represents
how well the model is capable of seperating different classes, in this case the fish
identities. The higher the AUC the better. When evaluating the models, we used
the range from 0 to 2.0 (inclusive) with increments of 0.02.

4.4 Experimental Results

Figure 4.1, 4.2a, and 4.2b show the loss curves during the training of the three
models presented in section 3.4. One notable observation in the loss curves for
FishNet1 is that both the training and validation loss start to fluctuate and increase
greatly towards the middle and end of training. This occurs due to the nature of
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the triplet selection algorithm used during the training phase. The algorithms
only uses triplets that fail the triplet constraint test described in section 3.3. This
means that if the model learns to separate salmon well, there are fewer triplets
available for training as the training progresses. By examining the training logs
we can see that this in fact happens. Figure 4.3 shows show many of the sampled
triplets the network was able to use for training.

Figure 4.1: The loss curves for FishNet1.
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(a) The loss curves for FishNet2.

(b) The loss curves for FishNet3.

Figure 4.2: Loss curves for FishNet2 and FishNet3.
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Figure 4.3: Number of triplets available for training each epoch for FishNet1.
Towards the end of the training only about 100 samples were available for training.

What might finally happen, is that the model may be stuck with the same
training samples. If the model is unable to learn how to separate these, we can
end up seeing fluctuating and increasing loss.

The goal of the face verification task is to easily be able to separate the embed-
dings generated by different identities in the euclidean space. Figure 4.4 illustrates
how the embeddings are distributed in the space before and after training. The
points in the plots are of 6000 images from 29 different salmon from the test set.
The models used are FishNet1 before and after 200 epochs of training. As we
can see from both the PCA- and t-SNE-reduced plots the grouping of embeddings
from salmon of the same identity is far better after training. This indicates that
the model is able to learn some mapping from the images to embeddings.

To compute metrics such as true positive rate, false positive rate, accuracy etc.,
a similarity threshold needs to be set. To compare the models we can examine
what the true positive rate (the sensitivity) of the system is at a set false positive
rate. We have compared the models where the false positive rate is 0.01, that
is, where 1% of the negative samples are misclassified as positive. As we can see
in table 4.1 FishNet1 and FishNet2 perform approximately equally with a true
positive rate of about 96%. FishNet3 performs significantly worse with a true
positive rate of 87%.

Figure 4.5 shows the ROC curve for the various models tested in this thesis. By
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Network Architecture AUC TPR @ FPR = 10e-3

FishNet1 (Inception ResNet v2) 0.9977 0.964
FishNet2 (MobileNet v2) 0.9974 0.961
FishNet3 (VGG-16) 0.9919 0.870

Table 4.1: The area under the curve and true positive rate (measured when the
false positive rate is 10e-3) of the models.

comparing the area under the curve we can compare the performance of the models
across all thresholds. As we can see FishNet1 and FishNet2 perform better than
FishNet3, with FishNet1 being the best of the models tested in our experiments.
It is interesting to note that the improved results of FishNet1 come at quite a high
computational cost compared with FishNet2, a network designed to be able to run
on mobile devices.
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(a) Before training (t-SNE). (b) After Training (t-SNE).

(c) Before training (PCA). (d) After Training (PCA).

Figure 4.4: The embeddings of 6000 images plotted in 2D-euclidean space. To
achieve this, the 128-dimensional embeddings are reduced to two dimensions using
t-SNE (first row) and PCA (second row). The color of the points represent the
identity of the salmon in the image.
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Figure 4.5: The ROC curves of FishNet1, FishNet2, and FishNet3. The true
positive rate and false positive rate is computed across similarity thresholds in the
range [0.0, 2.0] in increments of 0.2. The model with the largest area under the
curve has the best overall performance (FishNet1, with InceptionResnetV2). Note
that the axes in the plot are in logarithmic scale.
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Chapter 5

Discussion and Conclusion

This chapter presents the conclusions from the work in this thesis. We start off by
discussing our results and the limitations we encountered during our work. After
the discussion, we present our contributions to the salmon recognition field and
their significance. We end the chapter by discussing work that could follow in the
future to improve FishNet and LFNW. Finally, we present our thoughts on the
steps towards having a stand-alone system able to recognize salmon in sea cages.

5.1 Discussion

In this master thesis we have researched and implemented a state-of-the-art face
recognition method on the Atlantic salmon, Salmo Salar. During the thesis we
have sought to answer two research questions.

Research question 1 How well do state-of-the-art face verification methods us-
ing end-to-end deep learning perform on salmon in cages?

To our knowledge, we are the first to implement the recognition of salmon
individuals with an end-to-end deep learning approach. In section 4.4, we show
our results from the experiments conducted. The best model tested in this thesis
has a true positive rate of 96% at a false positive rate of 1%. The results are
promising, and show that convolutional neural network models trained with triplet
loss are able to learn embeddings that can be used for salmon identity verification,
recognition and clustering. It appears that deep learning is a suitable approach to
create a system that automatically identifies salmon without physical interaction.

Figure 5.1 illustrates what distances FishNet1 calculates between three pair of
images. From the figure we can see that all distances between the same salmon
are considerably shorter than the distances when comparing different salmons.
The shortest distance acquired (Egil - Egil comparison) has a distance of 0.287



56 Discussion

even though the images have quite different backgrounds and with direct sunlight
on the leftmost image. What is more interesting is the fact that Egil has little
melanophore spot pattern. We have seen examples of spot-less salmon, and the fact
that FishNet has this short distance between them suggests that there are other
characteristics that are considered. This is promising with regards to creating a
model that can not only recognize salmon with clear distinct melanophore spot
patterns, but also the spot-less salmons.

Research question 2 How suitable are different deep learning architectures and
what results do they yield?

We can observe that the models using residual connections far outperform the
simple convolutional architecture. In our work, we have used a representative
selection of well known and commonly used convolutional neural network archi-
tectures. The work also shows that models created for mobile devices can perform
the salmon recognition task with good results. To get a better understanding
of the performance of the different FishNet models, we can compare benchmark
results of the convolutional parts of the networks. In Benchmark Analysis of Rep-
resentative Deep Neural Network Architectures (Bianco et al. [2018]) the authors
compare the models on a Jetson TX11, an embedded GPU computer. The results
show that MobileNetV2, used in FishNet2, vastly outperforms the other models
with an inference time of about 20 ms. Inception Resnet V2 (FishNet1), VGG-16
(FishNet3) have inference times of 199 ms and 152 ms, respectively. The numbers
are reported for a batch size of 1.

The results in this thesis should give a good starting point for future exploration
into the challenge.

The Labeled Fish NOT in the Wild (LFNW) dataset created during our work
has some limitations. Ideally, the dataset would contain a lot more data with
several bypasses from each salmon in different conditions with respect to water
quality, sunlight, distance, rotation etc. We overcame some of the shortcomings
by augmenting the images as discussed in section 3.1. Channel shifting the images
worked as a simulation for brighter and darker conditions, while rotation and
vertical/horizontal shifting increased the overall data at our disposal. It is close to
impossible for humans to verify salmon, so acquiring data from different bypasses
and labeling this correctly is no easy task.

It would be interesting to be able to evaluate our models on a public standard-
ized dataset that has been used by other researchers. As this does not exist, we
had to create our own dataset. This is a time consuming task, which naturally im-
poses limits on the scale of the dataset. Compared to open source face recognition
datasets, LFNW is quite small, and as we noted in section 4.4, especially FishNet1

1https://developer.nvidia.com/embedded/buy/jetson-tx1
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seems to suffer from a lack of challenging training data as training progresses. It is
reasonable to assume that a larger and especially more diverse dataset would help
the models generalize. Combining video from several salmon cages would help in
this regard.

In figure 5.1 we chose images of the fish with many frames apart in order to get
images that are not close to identical. We can see that they have quite different
backgrounds and pose, but given that both image are from the same passing, the
images are quite similar. Doing the same analysis with the same fish, but from
different passings of the camera would be valuable to see. It would be nice to
have other open source dataset of salmon images, but this does not exist as of this
writing.

All the data in the LFNW dataset is from one sea cage. As a result of this
we do not know how well a trained model would perform on salmon in a different
cage. There is a danger that the models have overfitted to salmon in the cage used
for training.

5.2 Contributions and Conclusion

In this thesis we have shown that the state-of-the art methods for face verifica-
tion in humans show potential in doing the same for salmon. By using end-to-end
deep learning we have presented a method which does not require extensive pre-
processing of the images, nor relies on handcrafted feature extraction. The exper-
iments are performed on images of salmon in sea cages, rather than strictly con-
trolled laboratory conditions. Other research on the subject, such as the SalmID
project (Eilertsen [2017]) focus on gathering data in processing plant, where the
salmon are on a conveyor belt. These condition are not necessarily transferable to
ocean conditions, because of the large variations of conditions in the sea. Projects
such as Hammerset [2018] use images from salmon in sea cages, but rely exclusively
on geometric data from the spots on salmon to identify them.

We also see that architectures with residual connections seem to work well as
feature extractors for this problem. FishNet2 especially shows that inference can
be performed on a device with relatively low memory capacity and computing
power. This indicates that salmon recognition should be possible to implement on
site without prohibitively high costs. All models are trainable over night on the
system described in section 4.2. Relatively fast training times ensures flexibility
and customizability for models when deployed in sea pens. The small size of the
embeddings ensures that the salmon recognition task can be performed locally
without expensive hardware.

The dataset created during this thesis will hopefully make it easier to continue
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the work on creating a system to recognize salmon. It will also make it possible
to compare future models with the ones presented in this thesis. The images are
of high quality and are taken in a realistic environment, so we believe it is a good
starting point for creating systems to be used in sea cages.

5.3 Future Work

This final section contains our thoughts about the future of LFNW and FishNet,
as well as what steps we believe need to be taken to create an on site system for
the industry.

5.3.1 Improving the LFNW dataset

There is still a lot of work that can be done to improve and increase the size of
the LFNW dataset. Given that our method is data driven, improving the dataset
would be a natural starting point for improving the model in the future. Adding
images of salmon from different sea cages is an obvious starting point. Images from
all the life stages of the salmon would also be useful to make the system more
universal. There are also several image augmentation techniques that could be
useful to expand the size of the dataset. Introducing noise, blurring, and artificial
sun glare are examples of this. The more training data that is available, the
better the models should be able to generalize. As we saw in figure 4.3, especially
FishNet1 seems to be suffering from a lack of training data.

Acquiring data of salmon from several passes with only the video feed at dis-
posal, could be realized by following these steps:

1. Convert the first few minutes of video (to guarantee that no salmon has
passed twice) to a labeled dataset using the steps described in section 3.1.

2. Train the model on this data.

3. Convert the next few minutes to a dataset, and seek to recognize the salmon.

4. Manually compare salmon with suspiciously low distance value between them,
and label them accordingly.

5. Train the model on all the data created this far.

6. Repeat step 3 to 5 of the process until the complete video stream is converted
to a labeled dataset.

However, this process is prone to human errors. As we have mentioned, verifying
the identity of two salmon is not easy, so attempting this could introduce errors
to the dataset.
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5.3.2 Future of FishNet

It would be interesting to see a class activation heat map of the system. As we are
doing end-to-end deep learning, a class activation heat map would give insight as
to what part of the salmon the system emphasizes on when learning the different
embeddings. This could give further insight into which parts of salmon are useful
for distinguishing them from each other.

Investigating other convolutional architectures than the ones presented here
would also be interesting. Searching for better hyper parameters for the models
we have discussed is also something that could yield even better results.

5.3.3 Towards a Commercialized Salmon Recognition Sys-
tem

There is a lot that has to be done in order to make a viable individual salmon
recognition system that can be deployed and used in commercial sea cages.

Recognizing salmon requires images of high quality. Challenges when obtaining
those includes water quality, sunlight, focus and camera resolution.

As noted earlier, salmon are not symmetrical when it comes to the melanophore
pattern on each side. Side recognition may satisfy the need of recognition in sea
cages, but if the systems needs to be able to identify each individual from either
side, the initial labeled training examples for each side would have to be acquired
somehow.

However, from a machine learning aspect, this kind of system should be possible
given the correct conditions mentioned above. By using a preset threshold value for
embedding similarity, the system can determine if a salmon has been recorded be-
fore. YOLOv3 can create bounding-boxes for salmon heads in real-time, and from
having the bounding-box to creating an embedding and compare the embedding
with the existing one should not encounter major challenges with state-of-the-art
hardware. Combined with modern databases and information retrieval techniques
we believe it to be entirely possible to create a salmon recognition system with
real-time performance on site.
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Figure 5.1: An illustration of the distances between six images from salmon with
three different identities. Each row contains two images of the same salmon: Simen
at the top, Eirik in the middle and Egil at the bottom. The average distance be-
tween the same salmon is 0.36 while comparisons between different salmon average
at 1.40.
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import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import (

    Dense,

    Dropout,

    Flatten,

    Input,

    Conv2D,

    MaxPooling2D,

    Layer,

    BatchNormalization,

    Lambda,

)

import tensorflow.keras.backend as K

import numpy as np

from tensorflow.keras.applications.inception_resnet_v2 import (

    preprocess_input as resnet_preprocess_input,

)

from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess_input

from tensorflow.keras.models import load_model

from tensorflow.keras.applications.mobilenet_v2 import (

    preprocess_input as mobile_preprocess_input,

)

class TripletLossLayer(Layer):

    """ Layer to compute triplet loss.

    This layer computes triplet loss as it is defined

    in the FaceNet paper. 

    Parameters:

        alpha (float): Threshold value.

    Input shape:

        List of anchor, positive and negative embeddings.

    """

    def __init__(self, alpha, **kwargs):

        self.alpha = alpha

        super(TripletLossLayer, self).__init__(**kwargs)

    def triplet_loss(self, inputs):

        a, p, n = inputs

        p_dist = K.sum(K.square(a - p), axis=-1)

        n_dist = K.sum(K.square(a - n), axis=-1)

        return K.sum(K.maximum(p_dist - n_dist + self.alpha, 0), axis=0)

    def call(self, inputs):

        loss = self.triplet_loss(inputs)

        self.add_loss(loss)

        return loss

normalize = Lambda(lambda x: K.l2_normalize(x, axis=-1), name="normalize")

def create_resnet_model(image_dim, use_pretrained=True):

    """ Create FishNet1 model

    Creates a FishNet model that uses Inception Resnet V2 for the 

    convolutional part. 

    Parameters:

        image_dim (tuple): Tuple of image shape, i.e. (175, 175, 3).

        use_pretrained (bool):  Default true, should imagenet weights be 

                                used?
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    Returns:

        tuple:  Tuple with (inference_model, triplet_loss_model, 

                preprocessing_func)

    """

    my_input = Input(shape=image_dim)

    if use_pretrained:

        weights = "imagenet"

    else:

        weights = None

    pretrained = tf.keras.applications.inception_resnet_v2.InceptionResNetV2(

        include_top=False, weights=weights, input_tensor=my_input, pooling="avg"

    )

    conv_7b_ac = pretrained.get_layer("conv_7b_ac").output

    flattened = Flatten(name="flattened")(conv_7b_ac)

    embedding = Dense(128, name="embedding_layer")(flattened)

    embedding = normalize(embedding)

    # create our model

    model = Model(inputs=[my_input], outputs=embedding)

    input_a = Input(shape=image_dim)

    input_p = Input(shape=image_dim)

    input_n = Input(shape=image_dim)

    embedding_a = model(input_a)

    embedding_p = model(input_p)

    embedding_n = model(input_n)

    triplet_loss_layer = TripletLossLayer(alpha=0.2, name="triplet_loss")(

        [embedding_a, embedding_p, embedding_n]

    )

    triplet_loss_model = Model([input_a, input_p, input_n], triplet_loss_layer)

    return model, triplet_loss_model, resnet_preprocess_input

def create_vgg_model(image_dim, use_pretrained=True):

    """ Create FishNet3 model

    Creates a FishNet model that uses VGG-16 for the 

    convolutional part. 

    Parameters:

        image_dim (tuple): Tuple of image shape, i.e. (175, 175, 3).

        use_pretrained (bool):  Default true, should imagenet weights be 

                                used?

    Returns:

        tuple:  Tuple with (inference_model, triplet_loss_model, 

                preprocessing_func)

    """

    my_input = Input(shape=image_dim)

    if use_pretrained:

        weights = "imagenet"

    else:

        weights = None

    pretrained = tf.keras.applications.vgg16.VGG16(

        include_top=False, weights=weights, input_tensor=my_input, pooling="avg"

    )

    x = pretrained.layers[-1].output

    embedding = Dense(128, name="embedding_layer")(x)

    embedding = normalize(embedding)

    model = Model(inputs=[my_input], outputs=embedding)

    input_a = Input(shape=image_dim)
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    input_p = Input(shape=image_dim)

    input_n = Input(shape=image_dim)

    embedding_a = model(input_a)

    embedding_p = model(input_p)

    embedding_n = model(input_n)

    triplet_loss_layer = TripletLossLayer(alpha=0.2, name="triplet_loss")(

        [embedding_a, embedding_p, embedding_n]

    )

    triplet_loss_model = Model([input_a, input_p, input_n], triplet_loss_layer)

    return model, triplet_loss_model, vgg_preprocess_input

def create_mobile_model(image_dim, use_pretrained=True):

    """ Create FishNet2 model

    Creates a FishNet model that uses MobileNetv2 for the 

    convolutional part. 

    Parameters:

        image_dim (tuple): Tuple of image shape, i.e. (175, 175, 3).

        use_pretrained (bool):  Default true, should imagenet weights be 

                                used?

    Returns:

        tuple:  Tuple with (inference_model, triplet_loss_model, 

                preprocessing_func)

    """

    my_input = Input(shape=image_dim)

    if use_pretrained:

        weights = "imagenet"

    else:

        weights = None

    pretrained = tf.keras.applications.mobilenet_v2.MobileNetV2(

        include_top=False, weights=weights, input_tensor=my_input, pooling="avg"

    )

    x = pretrained.layers[-1].output

    embedding = Dense(128, name="embedding_layer")(x)

    embedding = normalize(embedding)

    model = Model(inputs=[my_input], outputs=embedding)

    input_a = Input(shape=image_dim)

    input_p = Input(shape=image_dim)

    input_n = Input(shape=image_dim)

    embedding_a = model(input_a)

    embedding_p = model(input_p)

    embedding_n = model(input_n)

    triplet_loss_layer = TripletLossLayer(alpha=0.2, name="triplet_loss")(

        [embedding_a, embedding_p, embedding_n]

    )

    triplet_loss_model = Model([input_a, input_p, input_n], triplet_loss_layer)

    return model, triplet_loss_model, mobile_preprocess_input
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A.3 Model Evaluation



Model Evaluation

May 21, 2019

[5]: import pandas as pd
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.spatial import distance
from collections import defaultdict
from scipy.spatial.distance import pdist, squareform
from sklearn.metrics import auc
sns.set()

0.0.1 Load testdata, create distance matrix and class matrix

[6]: def create_tpr_fpr(path):
test_df = pd.read_csv(path)
test_data = []
for group in test_df.groupby("class"):

test_data.append(group[1].iloc[0:100])
df = pd.concat(test_data)

distances = pdist(df.drop("class", axis=1), metric='euclidean')
dist_matrix = squareform(distances)

same_fish = pdist(df, metric=lambda u, v: u[-1] == v[-1])
same_fish_matrix = squareform(same_fish)
same_fish_matrix = same_fish_matrix + np.eye(same_fish_matrix.shape[0])

n_same = np.count_nonzero(same_fish_matrix)
n_diff = np.size(same_fish_matrix) - np.count_nonzero(same_fish_matrix)

tprs = []
fprs = []

for t in np.arange(0.0,2.02,0.02):
predict_is_same = dist_matrix <= t
true_positive_mx = np.logical_and(predict_is_same, same_fish_matrix)

1
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n_true_positive = np.count_nonzero(true_positive_mx)
false_positive_mx = np.logical_and(predict_is_same, np.

�→logical_not(same_fish_matrix))
n_false_positive = np.count_nonzero(false_positive_mx)
tprs.append(n_true_positive / n_same)
fprs.append(n_false_positive / n_diff)

return tprs, fprs

0.0.2 Compute for different embeddings

[7]: %%time
trained_resnet_tprs, trained_resnet_fprs = create_tpr_fpr("embeddings/

�→nn_resnet_pre_200.csv")
trained_vgg_tprs, trained_vgg_fprs = create_tpr_fpr("embeddings/

�→nn_vgg-16_pre_200.csv")
trained_mobile_tprs, trained_mobile_fprs = create_tpr_fpr("embeddings/

�→nn_mobile_pre_200.csv")

CPU times: user 1min 13s, sys: 1.6 s, total: 1min 15s
Wall time: 1min 15s

[8]: trained_resnet_auc = np.round(auc(trained_resnet_fprs, trained_resnet_tprs), 4)
trained_vgg_auc = np.round(auc(trained_vgg_fprs, trained_vgg_tprs), 4)
trained_mobile_auc = np.round(auc(trained_mobile_fprs, trained_mobile_tprs), 4)

0.0.3 Plot that shit

[9]: plt.figure(figsize=(10, 10))
plt.yscale('log')
plt.xscale('log')
plt.plot(trained_resnet_fprs,

trained_resnet_tprs,
lw=2,
label=f"Fishnet (InceptionResnetV2), AUC: {trained_resnet_auc}")

plt.plot(trained_mobile_fprs,
trained_mobile_tprs,
lw=2,
label=f"Fishnet (Mobile), AUC: {trained_mobile_auc}")

plt.plot(trained_vgg_fprs,
trained_vgg_tprs,
lw=2,
label=f"Fishnet (VGG-16), AUC: {trained_vgg_auc}")

plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")

2
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plt.show()

0.0.4 TPR @ FPR

[10]: trained_resnet_tprs[np.abs(np.array(trained_resnet_fprs)-10e-3).argmin()]

[10]: 0.9641228851291185

[11]: trained_vgg_tprs[np.abs(np.array(trained_vgg_fprs)-10e-3).argmin()]

[11]: 0.869893143365984

[12]: trained_mobile_tprs[np.abs(np.array(trained_mobile_fprs)-10e-3).argmin()]

[12]: 0.9610106856634016

3
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Figure A.1: The number of images per fish in the dataset.
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