
Security and Measurement
Stability in the Climbing Mont
Blanc Online Judge

August 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Ole Kristian Eidem Pedersen

2019
Ole Kristian Eidem

 Pedersen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Security and Measurement Stability in the
Climbing Mont Blanc Online Judge

Ole Kristian Eidem Pedersen

Computer Science
Submission date: August 2019
Supervisor: Lasse Natvig
Co-supervisor: Rajiv Nishtala

Norwegian University of Science and Technology
Department of Computer Science

Programmer Feedback, Security and Measurement
Stability in the Climbing Mont Blanc Online Judge

Climbing Mont Blanc (CMB)1 is a system for evaluation of programs executed
on modern heterogeneous multicores such as those used in mobile phones. CMB
evaluates both performance and energy efficiency, and provides the possibility of
performance ranking lists and online competitions.

The student should:

1. Improve feedback given to CMB users about typical compilation and runtime
errors.

2. Implement mitigations for security challenges related to evaluating user code
and giving feedback, and (optionally) any other part of the system.

3. Improve the stability of measurements, especially focusing on energy mea-
surements, but also time measurements.

4. Continuously refactor and improve the quality of the code base during the
thesis work, including implementing more tests and improving logging, in
order to increase system maintainability and reliability.

If time permits, the student should:

A. Conduct a user experiment to evaluate how improved feedback affects usabil-
ity.

B. Propose improvements to the testing of submitted programs in order to give
better feedback to the user.

C. Propose solutions for implementing support for multiple languages and com-
pilers.

D. Propose solutions for handling multiple XU3-boards and different execution
platforms (back ends).

E. Suggest general improvements and bug-fixes to improve any other aspect of
the CMB project.

F. Develop a command line client for automated uploads to the CMB system
from the user’s command line (instead of using the website).

G. Implement some of the proposed solutions after approval by CMB project’s
coordinator.

1https://www.ntnu.edu/idi/lab/cal/cmb

i

https://www.ntnu.edu/idi/lab/cal/cmb

Abstract

Energy consumption is increasing alongside the need for performance for super-
computers and small, mobile computing devices alike. In order to increase energy-
efficency and performance, energy-constrained platforms are moving from homoge-
neous to heterogeneous multicores.

The need for developers with knowledge of how to build energy-efficient, high-
performance applications is increasing. Many online training platforms for pro-
grammers exists, but before the Climbing Mont Blanc project, no publicly available
training platform with the focus on heterogeneous multicores or energy-efficient
programming existed.

This thesis improves and adds more features to the Climbing Mont Blanc sys-
tem, mainly related to measurement stability and program evaluation security, but
progress has also been made on the maintainability of the system and feedback to
users. For single-threaded, computation-bound programs the coefficient of varia-
tion for measurements has been improved from 0.13% to 0.012%.

iii

Sammendrag

Energiforbruk og ytelsesbehov øker for både superdatamaskiner og mindre, mobile
enheter. For å øke energieffektivitet og ytelse beveger energibegrensede platformer
seg fra homogene til heterogene multikjerner.

Behovet for utviklere som har kunnskapen til å bygge energieffektive høyytelsesap-
plikasjoner øker. Mange nettbaserte treningsplatformer for programmerere eksis-
terer, men før Climbing Mont Blanc-prosjektet eksisterte ingen allment tilgjenelige
treningsplatformer med fokus på heterogene multikjerner eller energieffektiv pro-
grammering.

Denne oppgaven forbedrer og utvider funksjonaliteten til Climbing Mont Blanc-
systemet, primært målingsstabilitet og programevalueringssikkerhet, men vedlike-
holdbarhet og tilbakemeldinger til brukere har også blitt forbedret. For beregn-
ingskrevende enkelttrådprogrammer har variasjonskoeffisienten blitt forbedret med
0.13% til 0.012%.

v

Preface

This master’s thesis is submitted to Norwegian University of Science and Tech-
nology (NTNU) in fulfilment of the final requirement for the degree of Master
of Science (MSc) and is a continuation of my2 specialization project (TDT4501)
conducted during the autumn of 2018. The work has been conducted at the De-
partment of Computer Science (IDI), NTNU, Trondheim, Norway throughout the
spring of 2019. Alongside working on the thesis, I was employed in a 50% position
as a research assistant in the course TDT4102 — Procedural and Object-Oriented
Programming, involving primarily administrative duties, such as answering emails
from the 800 students in the course, managing a staff of 55 teaching assistants, and
giving exercise-focused and repetition lectures.

2In what follows, “I”, “we”, “my” or “our” will be used to refer to my exclusive contributions.

vii

Acknowledgements

First and foremost, I would like to thank my supervisors Prof. Lasse Natvig and
Rajiv Nishtala, Ph.D., for their valuable feedback throughout the thesis work. They
have provided guidance, answers and encouragement when needed, and for that I
am grateful.

I am also thankful to my family for their continuous support during my five years
of master’s studies culiminating in this thesis.

Finally, I would like to thank Helene Westerby for all her love and support, and for
her patientence and understanding when finishing the thesis took more time than
expected.

ix

Table of Contents

Problem statement i

Abstract iii

Sammendrag v

Preface vii

Acknowledgements ix

Table of Contents xi

List of Tables xv

List of Figures xvii

List of Listings xix

Acronyms xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Climbing Mont Blanc project history 2
1.3 Thesis Scope and Goals . 4
1.4 Contributions . 5
1.5 Outline . 6

2 Background 9
2.1 The Climbing Mont Blanc System 9

2.1.1 Overview . 9
2.1.2 Front End . 12
2.1.3 Server . 12

xi

2.1.4 Back End . 15
2.1.5 Energy and Energy Efficiency Measurements 18
2.1.6 Program Evaluation Security 20

2.2 Related Work . 23
2.2.1 Selected Educational Online Judges 24
2.2.2 Selected Programming Contest Platforms 25
2.2.3 Selected Open Source Online Judges 28
2.2.4 Selected Recruitment Platforms 29

2.3 Summary . 30

3 CMB Challenge 2019 31
3.1 Competition Format . 32
3.2 Problem Statements . 34

3.2.1 To Quote Hamlet. 34
3.2.2 Pirates and Probabilities . 34
3.2.3 The Huckybucky Forest . 34
3.2.4 In Ventus . 35
3.2.5 Flower Power . 35
3.2.6 There and Back Again . 36

3.3 Solution Improvements . 36
3.3.1 Loop Unrolling . 36
3.3.2 Task and Data Parallelism . 37
3.3.3 “Skip Seed” . 37
3.3.4 Miscellaneous Methods . 40

3.4 Questionnaire . 41
3.5 Summary . 41

4 Implementation 43
4.1 Operating System Upgrade . 43
4.2 Implementing Tests on the Back End 45
4.3 Automating Installation on the Back End 47
4.4 Program Evaluation Improvements 48

4.4.1 Measurement Stability . 48
4.4.2 Security . 52
4.4.3 Run-Time Error Feedback . 55
4.4.4 Refactorings and Bug Fixes on the Back End 56

4.5 Measurement Stability Experiments 56
4.5.1 Measurement Stability Statistic 57
4.5.2 Measurement Stability Experimental Setup 57
4.5.3 Measurement Stability Test Programs 58

4.6 Refactorings and Bug Fixes on the Server 59

5 Results and Discussion 61
5.1 Prior Experiments Using the CMB System 61
5.2 Experimental Results . 63

5.2.1 Baseline Comparison . 63

xii

5.2.2 Discussion and Evaluation of Hypotheses 65
5.3 Errors and Threats to Validity . 71

6 Evaluation and Conclusion 75
6.1 Evaluation . 75
6.2 Conclusion . 77

7 Future Work 79
7.1 Project Management and Development Process 79

7.1.1 Change Repository Hosting 79
7.1.2 Continuous Integration . 79

7.2 Front end . 80
7.2.1 Upgrade or Rewrite Web Application 80
7.2.2 Improve HowTo . 80
7.2.3 Contest Features . 80
7.2.4 Command Line Client . 80

7.3 Server . 81
7.3.1 Improving Compilation Error Messages 81
7.3.2 Upgrade to Python 3 . 81
7.3.3 Logging . 82
7.3.4 Securing Compilation . 82

7.4 Back End . 82
7.4.1 Improving Measurement Stability 82
7.4.2 Improving Security . 84
7.4.3 Other . 85

Bibliography 87

Appendices 95

A Installation Instructions 95
A.1 Back End . 95
A.2 Server and Front End . 96

B CMB Challenge 2019 97
B.1 General information, rules and technical information 97
B.2 Problem descriptions . 100
B.3 Questionnaire . 117

C Test Programs 121

D Additional Data 131

E Digital Appendix 133

xiii

List of Tables

1.1 Thesis contributions . 6

4.1 Configuration options for runscript_v2.sh 56

5.1 Cv (lower is better) from experiments performed by Støa and Follan
[SF15]. 61

5.2 Cv (lower is better) from experiments performed by Ingebrigtsen
[Ing17]. 62

5.3 Sample mean, sample standard deviation and Cv (lower is better)
from measurements performed by the Climbing Mont Blanc (CMB)
project coordinator in April, 2018. 63

5.4 A summary of the conclusion to the hypotheses. 71

D.1 Sample mean time, sample standard deviation and Cv (lower is bet-
ter) for Hello World, Sort and Sort w/RandInt. 131

D.2 Sample mean time, sample standard deviation and Cv (lower is bet-
ter) for the Mandelbrot programs. 131

D.3 Sample mean energy consumption, sample standard deviation and
Cv (lower is better) for Hello World, Sort and Sort w/RandInt. . . . 132

D.4 Sample mean energy consumption, sample standard deviation and
Cv (lower is better) for the Mandelbrot programs. 132

xv

List of Figures

1.1 A flame graph generated by the CMB system. 3

2.1 Overview of subsystems. 10
2.2 The group interface. 11
2.3 Google Analytics dashboard. 11
2.4 Screenshot from Google Analytics showing the number of users and

some aggregate metrics for the CMB website over a period of 180
days. 13

2.5 The Gunicorn pre-fork model with asynchronous workers. 14
2.6 The current server setup. 15
2.7 Segmentation fault error message. 16
2.8 Odroid-XU3 block diagram. 17
2.9 Overview of temperature sensors and power monitors. 19
2.10 A visualization of how time and energy affects the EDP. 19
2.11 Codecademy tutorial screenshot. 25
2.12 Codewars solution sharing. 26
2.13 Codewars integrated code editor. 26
2.14 A screenshot from the uHunt tool [Uhu] for UVa. 27
2.15 The HackerRank autocompletion feature. 30

3.1 The LCG state machine for random number generation. 40

5.1 Baseline experiment results, showing the Cv (lower is better) for the
test programs. 64

5.3 The Mandelbrot program in the Perf + C++ + chroot + taskset +
nice experiment. 65

5.2 The Cv results for all versions of the Mandelbrot program. 66
5.4 Time-energy plots for the Mandelbrot program showing that the

grouping of measurements disappears when implementing measure-
ments in C++. 68

xvii

5.5 Comparison of the I/O-bound program Sort to the computation-
bound program Sort w/RandInt in the Performance governor +
C++ + chroot experiment. 71

5.6 Plot of the time and energy measurements for the Mandelbrot pro-
gram in the Performance governor and Performance governor +
C++ experiments that shows that measurements might be affected
by tasks performed prior to the beginning measurements. 72

xviii

List of Listings

2.1 sched_setaffinity(2) example. 18
2.2 Exploit for unsecured profiling. 22
3.1 The RandInt class handed out to students for number generation. . 33
3.2 An excerpt from a solution to the “To Quote Hamlet” problem. . . . 35
3.3 A loop unroll optimization written by a student. 37
3.4 The “Skip Seed” method. 39
3.5 A student’s solution guessing the answer. 40
3.6 An alternative RandInt implementation. 42
4.1 C++ inspect files exploit. 53
C.1 The Hello World test program. 121
C.2 The Sort test program. 122
C.3 The Sort w/RandInt test program. 123
C.4 The Mandelbrot test program. 125
C.5 The Mandelbrot (OpenMP) test program. 127
C.6 The Mandelbrot (OpenCL) test program. 129
C.7 The kernel used with the Mandelbrot (OpenCL) test program. 130

xix

Acronyms

AGPL GNU Affero General Public License. 29

API application programming interface. 10, 12–15, 43, 46, 56, 60, 80, 81

CI continuous integration. 79, 80

CLI command line interface. 80, 81

CMB Climbing Mont Blanc. xv, 1–7, 9, 10, 12, 13, 18, 20, 21, 23–25, 28–32, 41,
43, 44, 47, 49–52, 55, 61–64, 67–71, 76, 77, 79–81, 86

DoS denial-of-service. 20, 82

DRY Don’t Repeat Yourself. 55

EDP energy delay product. 18, 19, 32, 36

EOL end-of-life. 43, 44, 56, 81

GPL GNU General Public License. 28, 29

GPU graphical processing unit. 9, 15, 20, 44, 59, 67

GTS Global Task Scheduling. 16

HMP heterogeneous multi-processing. 16

HTTP Hypertext Transfer Protocol. 12

HTTPS HTTP Secure. 13, 14

ICPC ACM International Collegiate Programming Contest. 27, 28

IDI Department of Computer Science. vii, 4, 10, 14

xxi

IoT Internet of Things. 1

JSON JavaScript Object Notation. 12, 45, 55, 58, 81

LCG linear congruential generator. 38

NTNU Norwegian University of Science and Technology. vii, 4, 31, 49

OJ online judge. 2, 6, 9, 20, 21, 23–25, 27–30

ORM object-relational mapper. 14

OS operating system. 16, 28, 43, 44, 47, 55, 58, 59, 63, 77, 81

REST Representational State Transfer. 12, 13

RSD relative standard deviation. 19

SDK software development kit. 44

SoC system-on-chip. 2, 9, 15, 16

SPA single-page application. 12

SSH Secure Shell. 14

TSP Traveling Salesperson Problem. 36

UFW Uncomplicated Firewall. 49

UI user interface. 12, 41

xxii

Chapter 1
Introduction

This chapter presents the motivation and the history of the Climbing Mont Blanc
(CMB) project to provide some context for the thesis. Further, the problem state-
ment interpretation is presented, followed by the contributions and the outline of
this thesis.

1.1 Motivation

The HiPEAC Vision 2017 states that “energy efficiency of computing systems re-
mains a major challenge for the coming years” [DDG+17, p. 7]. Energy consump-
tion is increasing alongside the need for performance for supercomputers and small
computing devices (e.g., mobile phones, Internet of Things (IoT) devices) alike. If
energy efficiency of computing is not improved, the energy consumption cost for
post-exascale computers may be higher than most countries are willing to spend
[DDC+19], and the small (battery-powered) devices introduced by the IoT revo-
lution will very likely be unsuccessful due to their limited autonomy [DDG+17].
This shows the need for increased attention on energy efficient computing in the
future.

More efficient hardware with specialized devices (i.e., accelerators) are one way to
increase energy efficiency, but at the cost of more complex programming. Energy-
constrained computing platforms are now leaving homogeneous multicores for het-
erogeneous multicores in order to increase performance. Moreover, considering
energy consumption during software development is important to ensure energy
efficiency [DDC+19].

1

Chapter 1. Introduction

The need for developers with knowledge of how to build energy-efficient, high-
performance applications is increasing. Many online training platforms for pro-
grammers exists, allowing users to practice and improve their programming lan-
guage knowledge, solve algorithmic problems and compare themselves to other
users. The online judges (OJs) presented in Section 2.2 are examples of such plat-
forms. However, no other publicly available training platform with the possibility
of programming heterogeneous multicores or measuring energy consumption and
energy-efficiency is known to the CMB project.

Noticing the lack of training platforms for beginner programmers with focus on
energy efficiency and heterogeneous programming, Prof. Lasse Natvig created the
CMB project. The aim of the CMB project is to stimulate and help program-
mers overcome the challenges related to programming heterogeneous computers
and exploiting their potential energy-efficiency effectively [NFS+15].

The CMB system is available to programmers and researchers alike at https:
//climb.idi.ntnu.no. Although the CMB system has been publicly available
since the 2015, challenges with the CMB system still remain. The system is not
able to handle many users simultaneously, has issues with measurement stability,
is vulnerable to a wide range of security issues and is hard to maintain. This thesis
tries to remedy or propose solutions to some of these issues.

1.2 Climbing Mont Blanc project history

The initial inspiration for the CMB project came from the Mont Blanc project
[Mon]. The Mont Blanc project used a large number of system-on-chips (SoCs) to
build an energy-efficient high-performance computer with commercially available
low-power embedded technology. The supercomputer prototype ran on heteroge-
neous ARM-based hardware such as Samsung’s Exynos mobile processors.

Observing the rise in popularity of OJs such as the UVa Online Judge [Uva] and
Kattis [Kat] further motivated creating the CMB project as a training platform
for programmers. In addition to using the same SoC as the Mont Blanc project,
the creators of the CMB project envisioned competing programmers “climbing”
the high-score lists (the Mont Blanc) when submitting programs, resulting in the
name “Climbing Mont Blanc” [NFS+15].

During the autumn of 2014 and spring of 2015 the first version of the CMB sys-
tem was built by Støa and Follan as part of their specialization project and mas-
ter’s thesis [SF15]. The system used the Odroid-XU3 board, containing the Sam-
sung Exynos 5422 SoC and built-in energy sensors [Odrb]. This SoC consists of
four “small” ARM A7-cores, and four “big” ARM A15-cores, following the ARM
big.LITTLE heterogeneous architecture [Big]. Additionally, the SoC has a six-core

2

https://climb.idi.ntnu.no
https://climb.idi.ntnu.no

1.2 Climbing Mont Blanc project history

ARM Mali-T628 GPU. The Odroid-XU3 board is still the only board used by the
CMB system.

The system has been tested with real users on multiple occasions. During the spring
of 2015 Støa and Follan [SF15] tested the system on users during the training session
of IDI Open 2015 [Idi; SF15]. It was also used as as part of mandatory exercises
in the course TDT4200 Parallel Computing [Tdtc] in the autumn of 2015 [Mag16].

As part of his specialization project and master’s thesis work during the autumn
of 2015 and spring of 2016, Magnussen [Mag16] worked on improving the system
usability of the CMB system using the feedback received from previous experiences.
A user experiment was also conducted, showing that users were more satisfied with
the usability of the improved system [Mag16].

Alongside the work of Magnussen [Mag16], two other projects related to the CMB
system were carried out. The first project was the master’s thesis by Lier and
Mathisen, “Experiments towards digital exam with auto-grading in C++ program-
ming courses”, in which they tested the use of the CMB system as an exam auto-
grading system [LM16]. User experiments were also conducted as part of this
project, providing more useful feedback about the CMB system. Some of the more
important issues discovered was resolved by Magnussen [Mag16].

The second project was the master’s thesis by Chavez [Cha16]. This project focused
on scaling the CMB project to use multiple Odroid-XU3 boards. This work was
done separately from the work of Magnussen, creating diverging paths for the
project [Cha16]. The CMB project’s coordinator eventually decided to discontinue
the work done by Chavez.

Later, in the spring of 2017 Ingebrigtsen [Ing17] improved the stability of the system
during his master’s thesis, in addition to implementing profiling capabilities. This
allowed users to view performance counters and a flame graph (shown in Fig. 1.1),
potentially making it easier for users to discover bottlenecks in their code [Ing17].

Figure 1.1: A flame graph generated by the CMB system.

This thesis will hereby refer to the version developed by Støa and Follan [SF15] as
system version one, the version developed by Magnussen [Mag16] as system version
two, the version developed by Ingebrigtsen [Ing17] as system version three and the

3

Chapter 1. Introduction

version developed as part of this thesis as system version four. Note that the work
done by Chavez [Cha16] is not included in the current version of the system, and
thus isn’t assigned a version.

The CMB system has been used for the “CMB Challenge”: competitions between
students in the C++ programming course (TDT4102 [Tdta]) at IDI, NTNU and was
first arranged in 2017. Most of the attending students are new to programming,
having had only one introductory programming course before the C++ course.
However, these competitions have given the CMB project useful insights into prob-
lem types, the span of optimizations possible and general use of the CMB system.
The competition in 2018 with tasks and findings were published by Natvig et al.
[NSLH19]. The findings from the 2019 competition are presented in Chapter 3.

1.3 Thesis Scope and Goals

The problem statement objectives are formulated as high-level goals. However, in
order to make the work more focused, several more concrete subgoals have been
defined. These subgoals serve as a checklist to define what has to be done to
complete the goal.

1. Improve the feedback given to CMB users about typical compilation and
runtime errors.

(a) Signals and output from the program/compiler must be parsed and pre-
sented to the user in a user-friendly way.

(b) The messages presented to the users must not reveal sensitive informa-
tion that may be exploited by malicious users.

(c) Implement tests to ensure that no regressions occur during future up-
grades of system components (e.g., when upgrading compilers).

2. Implement mitigations for security challenges related to evaluating user code
and giving feedback, and (optionally) any other part of the system.

(a) Upgrade both server and Odroid-XU3 boards to use Ubuntu 18.04 LTS.
(b) Identify and implement mitigations for potential threats.
(c) Implement tests to ensure no future changes to the system leave the

system vulnerable to previously fixed errors.

3. Improve the stability of measurements, especially focusing on energy mea-
surements, but also time measurements.

(a) Implement a small framework to quantify and compare the accuracy of
time and energy measurements, using suitable metrics.

4

1.4 Contributions

(b) If possible, compare measurement accuracy results from the upgraded
system to results from the system before the upgrade.

(c) Identify and implement suitable approaches to improve measurement
stability, measuring the impact of each approach.

4. Continuously refactor and improve the quality of the code base during the
thesis work, including implementing more tests and improved logging, in
order to increase system maintainability and reliability.

(a) Select tools for implementing tests and implement a test suite for the
Odroid-XU3.

(b) Improve logging messages to more easily track down errors.
(c) Refactor and reorganize the code base when necessary.

When writing the problem statement, the complexity of implementing the ob-
jectives was not known. However, during the thesis work the complexity has been
discovered and it was decided that implementing all the objectives in a good, main-
tainable way within the time frame of this thesis would not be feasible. As a result,
improving feedback (objective 1) has been deprioritized and changes that could not
be implemented within the time frame are suggested in Chapter 7.

1.4 Contributions

This thesis primarily contributes towards improving the evaluation of programs in
the CMB system in terms of measurement stability and security. The stability of
measurements is important for competitions and research purposes, and security is
important to protect the system from malicious users. However, security features
might interfere with measurements, requiring careful implementation and testing.

During the specialization project it was discovered that the code base is character-
ized by multiple developers working with short-term goals, and that this affected
the quality of the code base. Therefore, an explicit objective of improving the qual-
ity of the code base was made part of the problem statement to promote long-term
thinking during development.

Some contributions have been made to the CMB project that were not covered
by the thesis description. The CMB Challenge 2019 described in Chapter 3 was
arranged for students in the TDT4102 course. Arranging this competition and
analyzing submissions from the students was the most time-consuming of these
contributions.

Table 1.1 has a summary of where to find descriptions of the work performed to
fulfill the thesis objectives.

5

Chapter 1. Introduction

Table 1.1: Thesis contributions

Objective Sections/Chapters
1 Sections 4.2 and 4.4.3 and Chapter 7
2 Sections 4.1, 4.2 and 4.4.2
3 Sections 4.4.1, 4.5 and 5.1
4 Sections 4.2, 4.3, 4.4.4 and 4.6

1.5 Outline

This thesis is structured as follows:

Chapter 2: The chapter presents the Climbing Mont Blanc system at the start
of this thesis, focusing primarily at the server and the back end. The method of
performing energy and energy-efficiency measurements are described. The security
measures when evaluating programs are also described. Finally, other OJs and
other related work is presented.

Chapter 3: The chapter describes the CMB Challenge competition that was ar-
ranged as part of this thesis. The competition format, and a brief description of
problem statements and solutions, are presented. Further, techniques to improve
solutions that are found by the students participating in the competition, as well
as the insights gained from the questionnaire distributed after the competition are
presented.

Chapter 4: The chapter presents the development work performed to fulfill the
objectives of this thesis. Implementation details and different approaches consid-
ered are also presented, along with hypotheses for approaches that might affect the
measurement stability.

Chapter 5: The chapter presents and discusses the experimental results. Prior
measurements are presented to act as a baseline, and the experimental results
from this thesis are used to discuss and draw conclusions regarding the hypotheses.
Finally, errors and threats to validity are discussed.

Chapter 6: The chapter presents an evaluation of the thesis work performed and
the achievement of the problem statement objectives, before concluding this thesis.

6

1.5 Outline

Chapter 7: The final chapter presents suggestions of future work based on knowl-
edge of the CMB project accumulated during the thesis work.

7

Chapter 2
Background

2.1 The Climbing Mont Blanc System

This section describes the state of the CMB system before the start of the thesis
work (i.e., system version three).

2.1.1 Overview

The CMB system is designed as an OJ, allowing users to submit solutions to a set of
problems. The users receive feedback in the form of run time, energy consumption
and energy efficiency, and their submissions are ranked by these properties on a
scoreboard. The major difference between the CMB system and other OJs is that
the CMB system reports energy consumption and energy efficiency.

The code uploaded to the system is evaluated on a 14-core heterogeneous SoC—
four energy-efficient cores, four high-performance cores, and six graphical process-
ing unit (GPU) cores—which gives users multiple optimization possibilities. The
hardware is described in more detail in Section 2.1.4.

Most OJs only support single-threaded programming, but a few also allow multi-
threaded programming using features integrated into the languages 1, which is

1The CMB project is only aware of one other OJ that supports third-party libraries for parallel
programming (e.g., OpenMP), named JudgeGirl (located at https://judgegirl.csie.org/), but
this OJ is only available to students from Nanyang Technology University in Singapore.

9

https://judgegirl.csie.org/

Chapter 2. Background

usually achieved by compiling with pthreads enabled (for C/C++). In addition
to compiling with pthreads, the CMB system supports the OpenMP and OpenCL
libraries. UNIX system calls are also supported, for scheduling programs on specific
cores, for example.

The CMB system contains three separate subsystems in addition to a database. A
high-level overview of these subsystems is shown in Fig. 2.1. A user can primarily
communicate with the system through the front end; a web application available
at https://climb.idi.ntnu.no. The server serves data through an application
programming interface (API) endpoint and provides the administrator interface.
The back end compiles and runs programs upon request from the server, returning
the time and energy measurements, or errors in case the program fails.

– The web user interface.
– Requests data through the server API.
– https://climb.idi.ntnu.no

Front end

– Handle API requests.
– Perform lookups in the database.
– Maintain submission queue.
– Serve administrator interface.

Server

– Store user data.
– Store submission data.

Database

– Run programs.
– Measure run time.
– Measure energy consumption.

Back end

HTTPS

SSH

Da
tab

ase
con

nec
tio

n

Figure 2.1: The CMB system contains three subsystems with different responsibilities
and a database communicating using different protocols.

In order to facilitate competitions the CMB system has a group functionality. A
group consists of a specified set of problems, decided by a group leader. Members
of the group get access to a private scoreboard for each of the problems, which
only shows other members of the group. Group leaders can download data for all
submissions to the given problems made by the members of a group. This data
can be used to score submissions and find winners of the competition. A view of
the group interface is show in Fig. 2.2.

The administrator interface gives the CMB system administrators a view of regis-
tered users, submissions and groups. Furthermore, it has functionality for upload-
ing new problems and publishing news bulletins to the users. A screenshot of the
administrator interface is shown in Fig. 2.3.

The front end and server is currently run on the same virtual Ubuntu instance
on IDI’s servers. The MySQL database is also provided and managed by IDI’s

10

https://climb.idi.ntnu.no

2.1 The Climbing Mont Blanc System

Figure 2.2: A screenshot of a group leader’s view of the group interface.

Figure 2.3: A screenshot showing the submissions view of the administrator interface.

11

Chapter 2. Background

technical personnel. The Odroid-XU3 back ends are administered by the CMB
team.

2.1.2 Front End

The front end is built as a web application, and provides the user interface (UI)
with which all CMB users interact when solving problems. It is written as a single-
page application (SPA) using AngularJS 1.3 [Ang], JavaScript ECMAScript 5th
ed. [Ter17], HTML5 [FEL+17] and CSS [AER18].

The front end uses the Node.js runtime [Nod] for building all the assets needed
(e.g., scripts and style sheets), using server-side JavaScript. Since all data is served
through the API, the assets are identical for every user and do not require server-
side processing when the user makes a request.

Socket.io [Soc] provides real-time, two-way communication between the server and
connected clients (users). The CMB system uses this library to update the score-
board after a submission has been evaluated and to give users notifications about
their position in the submission queue.

The user activity on the website is monitored using Google Analytics [Goo]. This
provides CMB administrators with data about how many users visits the site on
any given day and some insights into user behavior such as average session duration
and bounce rate, as shown in Fig. 2.4.

2.1.3 Server

The server is responsible for performing database operations and scheduling pro-
grams on the back end. A Representational State Transfer (REST) API is provided
to make these operations available to a client (e.g., a user accessing the site through
the front end).

A REST API is a simple, uniform Hypertext Transfer Protocol (HTTP) interface,
independent of the technologies used by the client and the server. Such interfaces
are often called RESTful web services [FT02]. RESTful web services are stateless,
in other words, the server does not track the state of the front end. This behavior
necessitates clients to send all required information to determine the state when
making a request. For example, the client must send a valid authentication token
when submitting programs to prove that the user is authorized to use the system.

The server is implemented in Python 2.7 [Pytb]. The Python Flask framework
[Flaa] provides functionality for the REST API. JavaScript Object Notation (JSON)

12

2.1 The Climbing Mont Blanc System

Figure 2.4: Screenshot from Google Analytics showing the number of users and some
aggregate metrics for the CMB website over a period of 180 days.

[Bra17] is used as the intermediary format for communication between the server
and clients.

Gunicorn [Guna] is used for production and development servers to handle simulta-
neous requests from multiple users. Gunicorn uses a pre-fork worker model [Gunb]:
when starting up, Gunicorn creates multiple forks, called workers, each running its
own separate instance of the Flask application. There is no data sharing between
these workers. When the application receives a request, Gunicorn routes it to one
of the available workers or waits (stalls) until a worker becomes idle. The work-
ers are configured as asynchronous workers using the gevent library [Gev], meaning
each worker runs multiple (Python-style) threads. Asynchronous workers can serve
multiple non-blocking requests simultaneously. This is shown in Fig. 2.5.

NGINX [Ngi] is used as a reverse proxy. It acts as an intermediary between the
server and client, primarily redirecting traffic to the correct underlying web service
(i.e., the Flask REST API) and serving static content. Additionally, it handles
HTTP Secure (HTTPS) connections, abstracting away this extra complexity from
underlying web services. It can also perform speed-ups (e.g., caching), and traffic-
flow control (e.g., load-balancing between servers) [Rev].

The reverse proxy is currently placed on the same virtual server as the front end
application and the Flask web service in the current CMB system setup, shown
in Fig. 2.6. It serves static content, but forwards requests for dynamic content

13

Chapter 2. Background

Gunicorn
master
process

Worker

Worker

Request

Request

Request

Request

...

...

Figure 2.5: The Gunicorn pre-fork model with asynchronous workers for a Flask appli-
cation. Each worker runs a separate instance of the Flask application, and can handle
multiple non-blocking requests simultaneously.

to Gunicorn. Static content denotes files that are the same for all users, such
as scripts, icons, images and CSS; dynamic content is content that may change
between requests, or be different for different users, such as content stored in the
database.

The production and development servers use MySQL databases [Mys] hosted by
IDI’s technical department, while local developer environments (i.e., on the devel-
oper’s computer) primarily uses SQLite [Sqlb]. SQLAlchemy [Sqla] Python library
makes this possible, functioning as an object-relational mapper (ORM). An ORM
allows the developer to use a higher abstraction layer, using data structures and
functions that are database independent. These data structures and functions are
translated to the database’s SQL dialect by the ORM.

Submitted problems are added to the database and a queue managed by the appli-
cation. This queue keeps track of the next submission to be run on the back end
and is managed by sending HTTPS requests to specific (private) API endpoints to
enqueue and dequeue submissions.

When a program is dequeued, the script will do a test compilation of the program
on the server. If the compilation succeeds, the program is sent to the back end
along with test data using the Secure Shell (SSH) utility [YL06]. The back end
tests the programs and returns the answer to the measurement test set along with
measurements made, or an appropriate error message if the program failed. The
server checks that the answer to the measurement test set is correct and updates
the database with the verdict (i.e., error message or measurement results). The
solution to the big data set is never transported to the back end, in case a malicious
user finds a way to read it. This provides an extra layer of security, but adds the
extra complexity of checking correctness on the server.

14

2.1 The Climbing Mont Blanc System

– Redirects HTTP requests to HTTPS.
– Acts as reverse proxy.
– Redirects requests to /socket.io, /api, /auth and /admin to Gunicorn.
– All other requests are served as static content from a given directory.

NGINX

– Serves the Flask application
from worker processes.

Gunicorn

– Generated by the front end
build scripts.

Static content

/api

/auth

/admin

/socket.io

/

Figure 2.6: The current setup of the front end and server running on the same virtual
server instance.

The result returned by the server through the API comprises the verdict, and an
error message (if the program fails) or the measurement results. The error message
explains the nature of the error, such as a compilation error or a runtime error.
If it is a runtime error, the back end tries to determine the error based on the
return code of the program, and shows the name of the signal if it is recognized.
An example of a runtime error is shown in Fig. 2.7.

In order to support Socket.io at the front end, the Flask-SocketIO library [Flab] is
used to handle these connections. By continuously emitting events over web socket,
users are updated about the progress of the submission.

2.1.4 Back End

The back end is responsible for evaluating the code submitted by the users. Cur-
rently the back end runs on the Odroid-XU3 board, created by HardKernel [Odrb].
The board is powered by Samsung 5 Octa (Exynos-5422) SoC. This SoC employs
the ARM big.LITTLE technology [CKC12], meaning that it contains four (“big”)
high-performance, out-of-order Cortex-A15 2.0GHz cores, and four (“small”) power-
efficient, in-order Cortex-A7 1.4 GHz-cores [Corb; Cora; CKC12; Odrb], allowing
for improved processing capabilities while keeping power consumption low. The
Exynos-5422 also employs a six-core ARM Mali-T628 GPU, supporting OpenGL

15

Chapter 2. Background

Figure 2.7: A screenshot of the error message given when provoking a segmentation
fault during the small correctness test.

ES 3.0 and OpenCL 1.1. In total, this makes the Exynos SoC a three-way hetero-
geneous multicore with 14 cores. The full block diagram of the board is shown in
Fig. 2.8.

The back end currently runs Lubuntu 14.04 (i.e., Ubuntu with the LXDE desktop
environment). Running a full operating system (OS) provides some benefits, such
as easier development and higher reusability of third-party packages. However, by
using a full OS a lot of control is also given to the OS, which might create problems
with measurement stability. This is discussed further in Section 2.1.5.

The OS is aware of both the high-performance and the power-efficient cores, and can
dynamically schedule and migrate tasks independently to all cores simultaneously
based on performance requirements. This model is known as heterogeneous multi-
processing (HMP), or the Global Task Scheduling (GTS) model, and is used for
SoCs using the big.LITTLE architecture [Big].

A program may manually override the scheduler by using Linux system calls. A
minimal example using sched_setaffinity(2)2 [Sch] is shown in Listing 2.1. It
allows users to experiment with manual core assignment in order to achieve higher
performance and energy efficiency.

The Odroid-XU3 board have sensors for measuring power and temperatures. The
method for making measurements and calculating energy and energy efficiency is

2The number following the name refers to the section in the manual pages (known as man
pages) describing the utility, and is used to distinguish utilities with the same name, for example,
the command chroot(1) and the system call chroot(2) that have different man pages describing
their functionality. The man pages can be viewed using the man(1) command on a Linux system,
or online at https://www.kernel.org/doc/man-pages/.

16

https://www.kernel.org/doc/man-pages/

2.1 The Climbing Mont Blanc System

Figure 2.8: A block diagram for the Odroid-XU3 board, from the Odroid wiki [Odra].

17

Chapter 2. Background

#include <sched.h>
#include <cstdio>

int main() {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(3, &mask); // use core 3

int result = sched_setaffinity(0, sizeof(mask), &mask);
if (result == -1) // error, return early

return -1;

printf("Hello Italy!\nGreetings from the \
CMB-team at NTNU in Trondheim, Norway.");

}

Listing 2.1: An example of how sched_setaffinity(2) [Sch] can be used to schedule
the process to a given core in the “Hello Italy” problem.

outlined in Section 2.1.5. Additionally, manual fan control and turning off single
cores is possible.

2.1.5 Energy and Energy Efficiency Measurements

A key piece of the CMB system is the energy consumption estimates. The Odroid-
XU3 has Texas Instruments INA231 power monitors for measuring voltage, current
and power used [Tii]. These properties are measured independently for the DRAM,
GPU, the big cores and the small cores, as illustrated in Fig. 2.9.

An executable based on HardKernels EnergyMonitor program [Ene] is used to
sample the power usage during program execution by running it as a background
process. The sampling frequency is 100 MHz. Numerical integration of the samples
provides us with an estimate of the energy consumption. The numerical integration
is done using Simpson’s Rule from the Python SciPy package [Scib].

The chosen metric for energy efficiency is energy delay product (EDP), calculated
eu the formula shown in Eq. (2.1). This metric provides a balance between the time

18

2.1 The Climbing Mont Blanc System

Mali T-628 GPULPDDR RAM

Temperature sensorsPower monitors

A7 A7 A7 A7 A15 A15 A15 A15

Figure 2.9: The power monitors on the Odroid-XU3 measures power usage for the mem-
ory, GPU, small cores and big cores separately. Temperature sensors measure temperature
for each of the big cores and the GPU, but not the small cores.

spent and energy consumed by the program, shown in Fig. 2.10. A lower EDP is
generally better.

EDP = E ∗ T (2.1)

T

E

EDP = 1

EDP = 4

Figure 2.10: A visualization of how time and energy affects the EDP.

The measured power usage is affected by other processes running simultaneously
on the XU3-board at the same time. Other programs might have unpredictable
system resource usage patterns, possibly resulting in a large impact on the mea-
surement stability. This was shown by Støa and Follan by reducing the relative
standard deviation (RSD) from 2.0% to 0.15% by clearing the cache and disabling
the lightDM display manager [SF15].

19

Chapter 2. Background

The Odroid XU3-board provides five temperature measurement sensors, one for
each of the big cores, and one for the GPU, shown in Fig. 2.9. The small cores do
not have a temperature sensor attached, making temperature adjustment for these
cores impossible.

2.1.6 Program Evaluation Security

The largest security threat to the CMB system is running code from untrusted
users who may have malicious intents. Security is therefore treated specially in
this subsection. Properly securing the evaluation of programs is of high importance
to the CMB project. [For06] lists examples of typical attacks on OJs. The most
relevant categories of attack for the CMB system is listed below.

DoS attack A denial-of-service (DoS) attack denies legitimate users access or use
of information systems or resources due to the actions of a malicious user.
This is normally accomplished by excessive resource usage (e.g., CPU, mem-
ory, disk or network) until the target crashes or becomes unable to respond.
The CMB system can be exposed to DoS attacks by users submitting pro-
grams that compile or run for a long time, or use excessive amounts of memory
during the compilation of the program. Excessive resource use may cause the
server or the back end to crash, possibly requiring manual reboot.

Privileges escalation attack A privileges escalation attack occurs when a ma-
licious user exploits a flaw in the system to gain access to restricted areas,
such as files, folders or network resources.
In the context of the CMB back end this kind of attack might include users
getting access to checker files, the correct answers or solutions of other users.

Destructive attacks A destructive attack occurs when a malicious user modifies
or harms the environment in some way. This may involve deleting files,
modifying files or replacing files.
The simplest attacks affecting the CMB system involves trying to delete all
files, which, if it succeeds, causes denial of service. More subtle attacks
include replacing the checker scripts or other system utilities to trick the
system (e.g., replacing the checker executable with another executable which
always returns “success”).

Covert channel exploits Users exploiting covert channels can use feedback from
the system to gain unauthorized access to information.
The CMB system users can get information about test data by failing in spe-
cific ways. [For06] has example code where verdicts and memory consumption
can be used to gain seven bits of data from a system that reports memory
consumption. Such exploits, though not damaging to the system, gives users

20

2.1 The Climbing Mont Blanc System

an unfair advantage, and must be considered when giving feedback. The
CMB system is especially vulnerable since it only has one hidden test case.

A typical OJ only evaluates programs on a single core, and restricts system calls
such as fork() due to security concerns [For06]. The CMB system has—by
design—a less restrictive system, because we want users to use multiple cores in
order to achieve higher energy efficiency. This increases the number of possible
exploits, and makes it very important that developers consider the security impact
of changes. Additionally, when implementing security measures the effect on mea-
surement stability must be taken into consideration—some security software may
use an unpredictable amount of resources.

The CMB system has some security measures in place. Programs are run as a
worker-user, with limited privileges, and the permission bits disable read and/or
writes for this user. The solution for the large measurement test is never stored
on the back end, and is therefore not available to the programs. These mitigations
limits the potential of privileges escalation and destructive attacks but is not a
perfect solution: the developer must remember to set correct file permissions to
new files, and the user still has read and execute access to a large part of the file
system, for example, ls and other utilities may be used to give the user information
as part of a covert channel exploit.

Another security measure is that the program is killed if it uses more than 90
seconds to complete. This time limit is primarily to stop programs from running in
infinite loops, as it is not enough to prevent denial-of-service attacks: a user could
create a significant queue by submitting programs that succeed the correctness
test, but times out on the large measurement test (100 submissions would take
more than three hours to evaluate).

Compilation steps are not secured, and the compiler has full (non-root) access to
the file system. This creates multiple opportunities to execute denial-of-service
attacks, both on the server and on the back end.

When users profile their code, the code runs completely unsecured, meaning that
the files and programs used to evaluate user submissions can be modified. An
exploit is shown in Listing 2.2. If the user modifies the system, it has to be fixed
manually by the CMB team.

21

Chapter 2. Background

#include <iostream>
#include <chrono>
using namespace std;

// Modify these
// Currently changes behavior after 15:00
const int hours = 15;
const int minutes = 0;

using Clock = chrono::system_clock;

int main() {
auto now = Clock::to_time_t(Clock::now());
struct tm *parts = std::localtime(&now);
if (parts->tm_hour >= hours && parts->tm_min >= minutes) {

// remove the script used to evaluate user programs
system("rm ../../runscript_v2.sh");

}

cout << "Hello Italy!\nGreetings from the "
"CMB-team at NTNU in Trondheim, Norway.\n";

}

Listing 2.2: An exploit for the unsecured profiling of code that removes the script used
to evaluate submissions. By uploading and running the program before a specified time of
day (here: 15:00), and profiling it after, the time of day can be used to determine whether
the code is being profiled or not, and alter the behavior accordingly.

22

2.2 Related Work

2.2 Related Work

This section presents other OJs which are popular and in use today. These OJs
have many users and submissions, but none of them measure energy efficiency.
Other OJs may, however, serve as an inspiration for the CMB project, and might
impact the direction of the future development of the project.

Wasik et al. [WAB+18] provides a survey of OJs and divides them into four
categories—online compilers; data mining, education and competitive program-
ming platforms; recruitment platforms; and development platforms—described be-
low. The CMB system belongs in the category of educational and competitive pro-
gramming, because it has features for managing competitions, a problem archive
and strives to be a learning platform for energy-efficient programming.

Online compilers
Online compilers are systems only allowing compilation (and in some cases
running) of an arbitrary program in a supported language. These systems do
not have problem statements, nor evaluate the user-uploaded code.

Data mining, education and competitive programming platforms
These platforms extend upon online compilers by evaluating solutions up-
loaded by users, usually in terms of correctness and running time.
Data mining platforms are often focused on data classification. Some plat-
forms only require users to run their code locally and upload the resulting
data set for evaluation.
Educational platforms focus on learning and educational processes, and of-
ten have features allowing users to share solutions and learn from solutions
submitted by other users. Managing (university) courses are also a common
feature for such platforms. Some systems have an achievement or progress
tracking system to motivate users to do tasks.
Competitive programming platforms primarily focus on competitions. These
platforms typically rank users based on the number of problems solved (on
user rankings) and the run time of their solutions (on the ranking for a given
problem).

Recruitment platforms
These platforms are usually similar to competitive programming platforms,
but facilitate recruitment of software developers. This is typically done by
letting companies looking for developers publish their own problems to po-
tential applicants, and implementing special functionality to filter applicants.
Some recruitment platforms incorporate interviewing software, often includ-
ing an integrated code editor shared with both the interviewer and the inter-
viewee, as well as video call support for remote interviews.

23

Chapter 2. Background

Development platforms

Systems in this category are available to download. These systems are usually
open source or provided as binary archives. These are available for anyone
who wants to download and deploy their own OJ locally.

The following subsections will look at some OJs with features that are interesting
for the CMB project.

2.2.1 Selected Educational Online Judges

Educational OJs are interesting because they serve as an inspiration for the educa-
tional aspect of the CMB system. The features described here could be considered
for the CMB project.

2.2.1.1 Jutge.org

Jutge.org [Jut] has an educational focus, and was created by Universitat Politèc-
nica de Catalunya (UPC) in 2006 [PGR12]. The OJ allows for anyone to register
and practice programming. It has over 3000 problems, and a total of 2.7 million
submissions.

It is designed for use as part of university courses, with many features helping course
instructors manage and assess their class. Some features available for instructors
include assignment management, instant statistics about students, sharing of lists
and documents relevant for the course, and creating course specific problem sets,
contest or even exams. Other features like supervision allow instructors to easily
view and inspect their students’ submissions to provide feedback and help.

2.2.1.2 Codecademy

Codecademy [Coda] tries to create a more engaging educational experience through
their platform. Their web platform features step-wise tutorials (compared to stan-
dalone exercises), an online integrated code editor which runs the code, a terminal,
and other tools required for practicing programming skills. The system allows for
multiple interactive activities like multiple choice quizzes, free-form projects, and
video clips with explanation of both exercise and concepts, some of which are shown
in Fig. 2.11.

24

2.2 Related Work

Figure 2.11: A screenshot from Codecademy, showing the beginning of the introductory
JavaScript tutorial [Coda].

2.2.1.3 Codewars

Codewars is a community-driven OJ, where all users may create and upload their
own problems (called “kata”). The users complete kata and earn higher rankings
when the they have completed a sufficient amount of kata. After completing a kata,
the user is shown solutions by other users. All solutions are ranked by cleverness
and how well they follow best practices, depending on how many times they are
voted on by other users. This allows users to view submissions by other users and
learn from their code. A screenshot displaying this feature is shown in Fig. 2.12.

Codewars supports a wide range of languages, and also supports multithreaded
applications if the language used has built-in support for it (i.e., no external li-
braries for multithreading are used). The Codewars website also has an advanced
integrated code editor. This editor can be customized by the user, and even lets
users write their own test cases. This editor is shown in Fig. 2.13.

2.2.2 Selected Programming Contest Platforms

The CMB system is currently closer to the programming contest OJs, than any
other category. Other OJs in this category have a more complete set of features
compared to CMB, and should be studied for inspiration.

25

Chapter 2. Background

Figure 2.12: Solutions are shown to the users after solving a kata (from [Codb])

Figure 2.13: Codewars [Codb] has an editor integrated in the website, where users also
may write their own test cases.

26

2.2 Related Work

2.2.2.1 UVa Online Judge

UVa Online Judge [Uva] is one of the largest and oldest online judges, created
in 1995 by Ciriaco García de Celis from the University of Valladolid in Spain
[RML08]. The system has been public since 1997, and over 20 years later, it has
close to two million submissions each year [Uva]. It features archives of problem sets
from programming competitions such as ACM International Collegiate Program-
ming Contest, in addition to many other problems, totalling over 5000 problems
[WAB+18].

uHunt [Uhu] is an interesting complementary tool for the UVa OJ, providing live
statistics, problem categorization and easy access to previous submissions and user
rankings. A snippet is shown in Fig. 2.14.

Figure 2.14: A screenshot from the uHunt tool [Uhu] for UVa.

2.2.2.2 Kattis

Kattis [Kat] is an OJ developed by KTH — Royal Institute of Technology in
Sweden, and have been used to asses programming exercises in their courses since
2005 [EKN+11]. Enström, Kreitz, Niemelä, Söderman, and Kann argues for test-
driven education, encouraging a test-driven development process for students. They
envision Kattis as an adversary in this context, failing programs that do not give
the correct answers.

Even though Kattis can be used for educational purposes, it is most well known
as a contest system for many programming competitions. The ACM International
Collegiate Programming Contest (ICPC) [Icp] is probably the most well-known

27

Chapter 2. Background

competition, where Kattis is used both for some of the regional qualifiers, as well
as the world finals [EKN+11].

Kattis also has some additional features, including a command line client for power
users, an online code editor and per-country or per-university ranking lists. Kattis
has some recruitment and company-sponsored problems and could be classified as
a recruitment platform in this regard.

2.2.3 Selected Open Source Online Judges

Open source OJs are interesting for the CMB project, because they may serve as
inspiration improving the security measures of the system and when implementing
language support for new languages. These OJs might be released with software
licenses that restrict copying or otherwise reusing the code.

2.2.3.1 DOMjudge

DOMjudge [Doma] is an automated judge system which is primarily used in pro-
gramming contests like ICPC, with on-site teams, fixed problem sets and a given
time frame. It has automatic judging and separate web interfaces for the teams, the
jury and the general public. DOMjudge can be setup locally on a server, is modu-
lar and open for extension and supports any language (compilers and interpreters
must be supplied as part of the setup).

This judge uses low-level OS utilities such as chroot, setrlimit, cgroups and signals
to secure the program [Domb], which allows it to have more fine-grained control
over program execution.

The DOMjudge source code is licensed under the GNU General Public License
(GPL), version 2 or later, which implies that the CMB system may copy and
modify source code from this project, as long as we don’t distribute the CMB
system (e.g., in the form of binary archives). But if the CMB system is distributed
using code licensed under the GPL, the source code of the CMB system (or possibly,
the subsystem using the code) must be made available and licensed under the GPL.

2.2.3.2 INGInious

INGInious [Inga] is an automated exercise assessment platform which is intended
for educational use, created by Université catholique de Louvain, in Belgium. It

28

2.2 Related Work

has features to run and grade student code in secured environments, and teacher
and instructor roles to easily manage and monitor the progression of classes.

The system uses Docker [Doc] and SELinux [Sel] to securely run students’ code
[Ingb]. It is possible to customize this setup to include support for any language.
An example of this is the new grading system in TDT4120 [Tdtb] at IDI, NTNU,
which supports Julia.

The Inginious system is licensed under the GNU Affero General Public License
(AGPL), a stricter form of the GPL. The AGPL counts use over networks as
distribution and will in some cases require all the source code in the CMB system
to be made available and licensed under the AGPL if code is reused from a project
with this license.

2.2.4 Selected Recruitment Platforms

Recruitment facilitation and profiling of companies are currently not planned the by
CMB project. However, the OJs designed for helping companies recruit applicants
often have more feature-rich environments, which is of interest.

2.2.4.1 HackerRank

HackerRank [Hac] defines itself as a “technological hiring platform”. They started in
2009 as a startup, and has since grown to over four million users. The platform hosts
many programming problems and programming competitions, as well as tutorials in
programming languages and general computer science topics. HackerRank provides
interview and assessment tools which companies can use to track and evaluate
candidates, and to perform technical interviews on the platform.

The code editor used at HackerRank provides multiple features not commonly seen
on other platforms. The editor is initialized with templates, which allows the user
to ignore minor details of the problem, such as reading input and writing output.
Additionally, the editor provides automatic completion of code, helping the user to
write code faster. This is shown in Fig. 2.15.

29

Chapter 2. Background

Figure 2.15: A screenshot of the HackerRank editor, showing the autocompletion fea-
ture.

2.3 Summary

This chapter gave an overview of the CMB system as well as various OJs that are
available and CMB can learn from. The main aspects of these OJs that are rele-
vant for further progressing the CMB project include class management, solution
sharing, statistics for users, command line client, online code editors and security
measures.

30

Chapter 3
CMB Challenge 2019

The CMB Challenge 2019 was organized as part of the thesis work. This com-
petition is for students in the course TDT4102 Procedural and Object-Oriented
Programming, an introductory C++ programming course at NTNU attended by
around 850 students [Tdta].

The TDT4102 course is primarily taken by engineering students who do not belong
to a computer science programme. The majority of the students belong to the pro-
grammes Applied Physics and Mathematics, Cybernetics and Robotics, Electronics
System Design and Innovation or Energy and Environmental Engineering. Most
students take the TDT4102 course as their second programming course, and have
not taken courses on algorithm and data structure theory or parallel programming.

The competition is fully optional for the students. This year’s competition had 16
contestants who solved at least one problem, submitting a total of 665 programs.
The competition lasted for three weeks, near the end of the course.

The competition was organized using system version three with a couple of small
bug fixes (to prevent server failures), in other words, no major changes made to
the system as part of this thesis were used when running the contest.

This chapter describes the competition format and the problems used, as well as
general directions for how the problems could be solved. Further, some generaliz-
able solution improvement strategies used by the contestants are described. Finally,
the feedback received from contestants are discussed and some general pointers on
how to improve future competitions using the CMB system are suggested.

31

Chapter 3. CMB Challenge 2019

3.1 Competition Format

The competition had six problems, ranging from simple counting problems to NP-
Hard problems, briefly described in Section 3.2. The problems and the code used
for random number generation were written by a course TA during the summer
of 2018. We reviewed the problems and made them available on the CMB system
before the competition.

The students got one point for each problem they solved. The three fastest submis-
sions and the three most energy-energy efficient submissions (using EDP) got up to
three extra points, making seven points the maximum score for each problem. The
“There and Back Again” problem used a different scoring system when ranking
submissions, described further in Section 3.2.6.

The CMB Challenge 2018 experienced troubles with I/O-bound problems, shifting
the focus from solving the problem faster to reading input faster [NSLH19]. This
lead to trying a new approach in this year’s competition, using pseudo-random
number generation, to generate input for five of the six problems. Listing 3.1
shows the code given to the students to generate random numbers.

The class used for random number generation is designed to be a simple, but
portable implementation, in other words, it must give the same results on the
students’ computers and on the CMB back end when given the same seed. C++
standard library facilities for random number generation include rand() and the
<random> library. These libraries are (partially) non-portable, and were therefore
not used. Specifically, for the <random> library, the random number generator
algorithms are specified and therefore portable [Cppb, ch. 26.5.3], but the random
number distribution algorithms are implementation-defined [Cppb, ch. 26.5.8.1, 3]
and gives different results depending on the compiler used.

32

3.1 Competition Format

#include <algorithm>
using namespace std;
class RandInt {

private:
static const unsigned int INCREMENT = 0xC39EC3;
static const unsigned int MULTIPLIER = 0x43FD43FD;
unsigned int m_nRnd;

public:
RandInt(unsigned int nSeed) : m_nRnd(nSeed) {}
int getInt(int nFrom, int nTo) {

if (nTo < nFrom)
swap(nTo, nFrom);

else if (nTo == nFrom)
return nTo;

m_nRnd = (m_nRnd * MULTIPLIER + INCREMENT) & 0xFFFFFF;
float fTmp = (float)m_nRnd / 16777216.0;
return (int)((fTmp * (nTo - nFrom + 1)) + nFrom);

}
};

Listing 3.1: The RandInt class was handed out to the students for pseudo-random
number generation. Instances are instantiated using a seed, and random integers are
generated in the closed range [a, b] calling the public method getInt with arguments a
and b.

33

Chapter 3. CMB Challenge 2019

3.2 Problem Statements

This section briefly describes each problem with proposed solution strategies. The
full problem descriptions are provided in Appendix B.2. General strategies for
improving solutions used by the students are described in Section 3.3.

3.2.1 To Quote Hamlet. . .

This problem is meant to be a simple problem that all students should be able
to complete with relatively little effort. To solve the problem, the program must
generate N (given by input) numbers in the closed range [0, 19], find the number
that occurs most frequently, and print this number along with a corresponding
name (given in the problem statement). An excerpt from a possible solution is
given in Listing 3.2.

3.2.2 Pirates and Probabilities

In this problem, the solutions must order a set of islands based on a given scoring
criteria. The five best and worst candidate islands must be printed.

To solve the problem, a submitted program must generate three random numbers
for each of the N islands. These random numbers represent some scoring for
individual properties of a given island, and are combined to generate a “total
score” for the island. The total score is used together with the associated ID of an
island (to break ties) to order the islands. Finally, the best and worst five candidate
islands must be printed together with the total score and the score of the individual
properties.

The main challenge in this problem is the choice of data structures. Storing all
islands might be easier, but slower than only storing the top and bottom five islands
encountered so far. Since the ordering of islands depends on both total scores and
the islands’ IDs, it is necessary to either customize STL data structures (e.g., by
specifying custom compare functions) or write a custom ordering algorithm to
correctly order the islands.

3.2.3 The Huckybucky Forest

To solve this problem the submission must calculate the CO2 emission increase
associated with moving from the city into the Huckybucky Forest for M years, and

34

3.2 Problem Statements

vector<string> names{ /* ... all names ... */ };
vector<int> counts(20, 0);
RandInt gen{S};
for (int i = 0; i < N; i++) {

++counts[gen.getInt(0,19)];
}
auto mx = max_element(begin(counts), end(counts));
cout << names[distance(begin(counts), mx)] << " " << *mx << "\n";

Listing 3.2: An excerpt from a solution to the “To Quote Hamlet” problem. S and N
are read from standard input. The names are given in the problem description, but are
omitted for brevity.

also which months the CO2 emissions were lower in the forest compared to living
in the city.

This problem requires generating a lot of random numbers, performing calculations,
and has some tricky output format requirements, but is otherwise straight-forward
to solve. The main improvements here are achieved by performing calculations on
the fly, when possible, instead of storing every generated random number.

3.2.4 In Ventus

This problem is a thinly veiled maximum flow problem. The program must generate
an electrical grid from the random numbers, and find the maximum power that
can be transported from a newly connected wind turbine to the main grid.

This problem requires the students to implement any maximum flow algorithm to
solve the problem. The contestants that solved this problem implemented either
the Edmonds-Karp algorithm [EK72], or Dinic’s algorithm [Din70]. There were
significant differences in timing measurements (approximately a factor of two) be-
tween different implementations of Edmonds-Karp, showing that choices of data
structures and effective traversal is important.

3.2.5 Flower Power

This problem uses random numbers to generate coordinates of rare flower occur-
rences in a large (W×H) area. The user have to find a (w×h) subarea that contains
at least k occurrences of rare flowers. This area is a potential nature reserve.

35

Chapter 3. CMB Challenge 2019

Halim et al. defines this problem as a variant of the “Max 2D Range Sum” prob-
lem [HHSR13]. Naive solutions use four nested loops, running in O(WHwh).
The fastest algorithms pre-compute a cumulative two-dimensional array using the
inclusion-exclusion principle to achieve a speed-up to O(WH).

3.2.6 There and Back Again

This problem is simply an Euclidean variant of Traveling Salesperson Problem
(TSP), where the students must implement an approximation algorithm to find a
near-optimal tour in order to solve the problem. It does not depend on random
number generation, but gives city coordinates as input. Because it is defined as
an approximation problem, all permutations of cities are valid solutions. The tour
length of a permutation becomes the “goodness” score displayed on the scoreboard.
A combined score used to rank the submissions is calculated by multiplying the
goodness with the EDP. Six, four and two points are given to the top three students.

The top students used a greedy approach, opting for a low EDP over more op-
timal tours. Some students tried known shortest path algorithms combined with
heuristics, which resulted in a slightly more optimal tours, but significantly worse
EDPs.

3.3 Solution Improvements

The solutions described for the problems are simple, single-threaded solutions. To
improve the performance, choice of algorithms and data structures are probably the
most important factors. Some students submitted single-threaded programs that
were heavily optimized. However, the students were not limited to using a single
core, and some students used multithreading successfully. A couple of students
also found ways to use weaknesses in the system, detailed in Section 3.3.4. The
following subsections go into more detail on different solution strategies.

3.3.1 Loop Unrolling

Loop unrolling had a surprisingly large effect on the run time of programs, improv-
ing the run time by a factor of four compared to the straight-forward solution. A
snippet of code showing loop unrolling is shown in Listing 3.3.

Loop unrolling is a well-known compiler optimization [ALSU07], but GCC (version
4.9) does not take advantage of this optimization unless explicitly enabled. An

36

3.3 Solution Improvements

for (int i = 0; i < N/10; i++) {
++counts[gen.getInt(0,19)]; ++counts[gen.getInt(0,19)];
++counts[gen.getInt(0,19)]; ++counts[gen.getInt(0,19)];
++counts[gen.getInt(0,19)]; ++counts[gen.getInt(0,19)];
++counts[gen.getInt(0,19)]; ++counts[gen.getInt(0,19)];
++counts[gen.getInt(0,19)]; ++counts[gen.getInt(0,19)];

}

for (int i = 0; i < N%10; i++) {
++counts[gen.getInt(0,19)];

}

Listing 3.3: The loop unroll optimization written by a student. This code is a replace-
ment for the loop in Listing 3.2.

alternative to manual loop unrolling is using Function specific option pragmas or
Function attributes for setting optimization flags (e.g., the unroll-loops flag) for
a single function [Gcc].

3.3.2 Task and Data Parallelism

Several students tried multithreaded approaches. Common approaches such as
data parallelism or task parallelism were used by all those that tried multithreaded
approaches, with varying degrees of success.

One example of the more successful approaches of data parallelism (not counting
the “Skip Seed” method in Section 3.3.3) was using OpenMP for the Flower Power
problem. Dividing the search between multiple threads resulted in programs that
were orders of magnitude faster, only adding a single line of code.

Task parallelism was used successfully in the Huckybucky Forest problem, by keep-
ing track of the best and worst islands in separate threads, resulting in a moderate
speed-up.

3.3.3 “Skip Seed”

The most surprising method of speeding up programs that some students used mod-
ified the random number generation method, exploiting the pseudo-randomness of
the random number generators. This method was named “Skip Seed”.

37

Chapter 3. CMB Challenge 2019

The “Skip Seed” method divides the n random numbers, Yi, into k groups of size
n/k, {{Y1, . . . , Yn/k}, {Yn/k+1, . . . , Y2n/k}, . . . , {Y(k−1)n/k+1, . . . , Yn}}. The start-
ing seeds, Xi, for each of the k groups are calculated and used in separate random
number engines (e.g., k instances of the RandInt class are instantiated).

A non-parallelized version of “Skip Seed” can be used if the random numbers have
to be combined in some way to get a useful value. For example, in the Pirates and
Probability problem, the properties, p1i, p2i, p3i, for each island, i, is generated in
the order p11, . . . , p1N , p21, . . . , p2N , p31, . . . , p3N , meaning that the numbers have
to be stored before doing computations. However, by using “Skip Seed” to create
three separate random engines these computations can be done on the fly, lessening
storage requirements and time used to store and fetch data.

When used together with data parallelism, the “Skip Seed” method improved a
program’s run time considerably, up to a factor of four depending on the number
of threads. The parallelized “Skip Seed” method starts k separate threads that
perform computations (one thread for each of the k groups), and the results are
combined when every thread have finished. Listing 3.4 shows an example of using
the parallelized “Skip Seed” method.

A linear congruential generator (LCG) is used to generate integers, Xi, by using
Eq. (3.1a) with m = 100000016, a = FD43FD16 and c = C39EC316

1. Since m = 224

Eq. (3.1a) can be simplified to Eq. (3.1b), which replaces the modulus operation
with a faster bitwise AND operation.

Xi+1 = (aXi + c) mod m (3.1a)
Xi+1 = (aXi + c) ∧ (m− 1) if m = 2n n ∈ N (3.1b)

The randomly generated integer Xi ∈ [0, m) must be transformed into an integer
Yi ∈ [a, b]—by using Eq. (3.2)—before using it in calculations.

Yi = bXi

m
(b− a + 1) + ac (3.2)

The key insight for this method is that Xi+1 does not depend on Yi (visualized
in Fig. 3.1). The calculation Xi ⇒ Xi+1 (Eq. (3.1b)), which only depends on
relatively simple operations on integers, is much faster than the floating point
calculation Xi ⇒ Yi (Eq. (3.2)), making this method feasible even when the Xis
are computed twice.

1These numbers differ somewhat from Listing 3.1. Note that m = 100000016 = 16777216, and
that 43FD43FD16 ≡ FD43FD16 (mod 100000016).

38

3.3 Solution Improvements

constexpr int num_threads = 4;
constexpr int persons = 20;
unsigned int counts[num_threads][persons];

unsigned skipSeed(unsigned seed, int n) {
for (int i = 0; i < n; i++)

// Xi+1 = (aXi + c) ∧m
seed = (seed*0x43FD43FD + 0xC39EC3) & 0xFFFFFF;

return seed;
}

void calc(int t_id, int seed, int n) {
RandInt gen(seed);
for (int i = 0; i < n; i++)

++counts[t_id][gen.getInt(0,persons-1)];
}

int main() {
// reading variables (N and S) from stdin skipped for brevity

vector<thread> threads;
const int skip = N/num_threads;
for (int i = 0; i < num_threads-1; i++) {

threads.emplace_back(calc, i, S, skip); // start a new thread
S = skipSeed(S, skip); // calculate next seed

}

// use main thread instead of starting a new thread
calc(num_threads-1, S, N-skip*(num_threads-1));

for (auto& th : threads)
th.join();

// sum counts calculated by each thread
for (int i = 0; i < persons; i++)

for (int j = 1; j < num_threads; j++)
counts[0][i] += counts[j][i];

auto mx = max_element(counts[0], counts[0]+persons);
cout << names[distance(counts[0], mx)] << " " << *mx << "\n";

}

Listing 3.4: This listing extends upon the code from Listing 3.2 by using the “Skip
Seed” method for parallelizing random number generation.

39

Chapter 3. CMB Challenge 2019

X0 X1 · · · Xn−1 Xn

Y1 · · · Yn−1 Yn

Figure 3.1: The state machine for generating random numbers Yi with starting seed X0.

if (N == 23) {
cout << "Lady Trent 3\n";
return 0;

}
int count = 0;
for (int i = 0; i < N; i++) {

if (gen.getInt(0,19) == 6)
++count;

}
cout << "Vera Stanhope " << count << '\n';

Listing 3.5: The student knows the input and solution of the small test case and prints
the solution directly. For the large test case a partial answer has been guessed, and only
the relevant values are counted, resulting in increased performance.

3.3.4 Miscellaneous Methods

For some problems it is feasible to guess partial solutions for the measurement
test case, making it easy to get a faster solution. One such problem is shown in
Listing 3.5. This flaw is exploitable because the system only has a small test case,
and a big measurement test case. Mitigations are discussed in Section 7.4.2.1.

Previous competitions have shown that I/O operations can greatly affect run time.
The simplest improvement is by calling ios::sync_with_stdio(false) at the
start of the program to disable syncing between buffers in the <iostream> and
<cstdio> libraries, and then using cout/cin or printf/scanf. A more compli-
cated way of improving is using the (thread-unsafe) _unlocked variants of getchar
and putchar. Results from CMB Challenge 2018 show that this is the most per-
formant solution [NSLH19]. Only the simple approach was used by contestants in
this year’s competition.

40

3.4 Questionnaire

3.4 Questionnaire

A questionnaire was published for the students participating in the competition.
Only eight students responded. Data and insights from the responses that may be
relevant for future competitions will be discussed in this section. The questionnaire
is included in Appendix B.3.

When asked about how well generating random numbers worked, 75% of the respon-
dents answered “Good” or “Very good” (Q6). All respondents preferred generating
random numbers over reading numbers from standard input (Q7).

All respondents responded that feedback about run time and energy usage gave at
least some insights into their own code (Q11).

62.5% of respondents rated the usability of the website as “Good” or “Very good”
(Q8). Three respondents noted that the system is slow (Q9). This is a well known
problem, but has been fixed as part of this thesis (Section 4.6). One respondent
also noted that it wasn’t clear that they would have to sign up in a group to partic-
ipate in the competition (Q9). Although this was clearly stated in the information
published to the students (see Appendix B.1), the system’s UI could be improved
to avoid misunderstanding.

When questioned about the use of CMB in the TDT4102 course and its effects
on their motivation for the course and future courses (Q12), the respondents were
generally positive about the competition, finding it to be an interesting addition
to course assignments, even if it was not directly relevant for the exam.

3.5 Summary

The CMB Challenge 2019 was overall successful, improving on some of the weak-
nesses discussed in [NSLH19]. Since performance did not depend on fast I/O, we
saw the students trying entirely new approaches compared to previous competi-
tions (e.g., parallelizing their code). We also received valuable feedback from the
students about the CMB system.

The random number generation approach worked well, but for the easier problems
the number generation might dominate the run time. Future competitions should
test multiple approaches for generating random numbers to find a method that is
performant and yields number with an acceptable quality—the numbers used in
this competition do not have to be high-quality random numbers. The random
engines provided by the <random> library can be used for this (see Listing 3.6).
Especially the engines based on subtract_with_carry_engine are fast [Cppa].

41

Chapter 3. CMB Challenge 2019

#include <random>
using namespace std;
using engine = linear_congruential_engine<unsigned, 0xFD43FD,

0xC39EC3, 0x1000000>;
class RandInt {

engine m_eng;
constexpr static auto range = engine::max() - engine::min() + 1;

public:
RandInt(unsigned int nSeed)

: m_eng(nSeed)
{}

int getInt(int nFrom, int nTo) {
int num = m_eng();
float fTmp = (float)num / range;
return (int)((fTmp * (nTo - nFrom + 1)) + nFrom);

}
};

Listing 3.6: This is a functionally equivalent RandInt implementation to the imple-
mentation in Listing 3.1, provided as an example of using portable STL functionality on
platforms supporting C++11.

42

Chapter 4
Implementation

This chapter describes the work done to fulfill the goals of this thesis. The following
sections describe all the improvements made to the system during the thesis work.
The sections divides the improvements topically rather than chronologically.

During development, much effort has been put into making improvements that are
sustainable in the long term. This implies that changes that break APIs, or might
make the CMB system more difficult to maintain in the future have been avoided.
In particular, “stitching” new features on top of already hard-to-maintain code has
been avoided, therefore, features have only been added if there was sufficient time
to properly refactor and clean the related code.

4.1 Operating System Upgrade

Both the server and the back end ran on some variant of Ubuntu 14.04 LTS before
the start of this project. The versions of Ubuntu that have long-term support
(LTS) are supported for five years, and therefore the OS version used would reach
end-of-life (EOL) in April, 20191, meaning no additional security patches would
be released. During the specialization project it was decided that upgrading the
OS on both the back end and server to the latest LTS version, 18.04, was of high
priority.

1Ubuntu version numbers indicate which month and year the software was released; Ubuntu
14.04 was released in April, 2014.

43

Chapter 4. Implementation

The Ubuntu distributions for the Odroid-XU3 back end is built and distributed by
Hardkernel. The Odroid-XU3 previously ran on the Lubuntu 14.04 LTS distribu-
tion, in other words, Ubuntu with a LXDE desktop environment. However, Ubuntu
18.04 Minimal—without a graphical desktop environment—was chosen as the new
OS. Choosing Minimal Ubuntu [Min] results in a system with fewer extra back-
ground processes that may interfere with measurements (e.g., LightDM removed
by Støa and Follan as part of their thesis work [SF15]). The Ubuntu 18.04 Mini-
mal releases distributed are targeted for Odroid-XU4—a newer version in the XU
series, without power monitoring—but are fully compatible with the Odroid-XU3.

Ubuntu 14.04 LTS for the Odroid-XU3 is built upon version 3.10 of the Linux
kernel, while Ubuntu 18.04 LTS for the Odroid-XU3 is built upon version 4.9 of
the Linux kernel. The 4.9 mainline kernel is a long-term maintenance release, with
kernel developers fixing bugs until the projected EOL in 2023. Using a long-term
release is beneficial because it provides bug fixes and security patches, avoiding the
need to upgrade the kernel frequently.

There are some differences between the OSs that affect the CMB system. The way
to read temperatures have changed. The previous OS version stored the temper-
atures of the four “big” cores and the GPU in a single file, while the new version
divides into thermal zones that store these values one-per-file in separate directo-
ries. A thermal zone manages one thermal sensor and the behavior of associated
cooling devices (e.g., fans). Thermal zones can be managed through the sysfs in-
terface [Sysa]. For the new OS version thermal zones 0–3 are associated with the
temperature sensors for each of the “big” cores, and thermal zone 4 is associated
with the temperature sensor for the GPU.

The new OS also used a newer compiler. Previously, GCC-4.9 was used, but
the new OS uses GCC-7.4 by default. GCC-7.4 compiles to C++14 by default
(previously C++11), in addition to supporting OpenMP 4.5 (previously OpenMP
4.0) and some C++17 features (if the -std=c++17 flag is given) [Opeb].

A software development kit (SDK) provided by ARM was previously used to pro-
vide OpenCL support, but this is now replaced by packages from the Ubuntu
Package archive to simplify the installation. This has the additional benefits of
providing the OpenCL C++-bindings [Opea], and support for OpenCL 1.2 (previ-
ously OpenCL 1.1).

A great amount of effort has been put into not making more changes to the back
end than necessary when upgrading the OS version (beyond the changes described
previously in this section) in order to create a baseline that is comparable to the
old system when performing the measurements.

The upgrade of the server OS was mostly similar to the upgrade of the back end
OS. The server side code mostly depends on Python, and has fewer OS-specific

44

4.2 Implementing Tests on the Back End

requirements. The server must use the same compiler version and OpenCL bindings
as the back end for the server-side compilation steps to work correctly.

4.2 Implementing Tests on the Back End

No tests were implemented for the back end previous to this thesis. It was of high
priority to implement tests verifying correctness of the scripts running on the back
end to ease development and improve maintainability. These tests can be used to
detect and avoid errors in related parts of the code base when adding new features.

The code on the back end consists mostly of Bash scripts, with some Python
scripts for data manipulation and calculation. The combination of languages being
“glued” together this way makes testing harder, but implementing and maintaining
the data manipulation and calculation scripts in Python is easier, and outweighs the
drawbacks. Three approaches to testing were considered: manually implementing
tests in Bash and/or Python, low-level testing using a unit testing framework for
Python and/or Bash, or high-level testing using Python. These three approaches
are discussed below.

The first approach, implementing tests manually, would have the benefit of being
able to test functions and scripts at an appropriate level, especially if implementing
tests in both Bash and Python. However, not using test frameworks adds some
overhead to developing and running tests, and might become unmanageable when
a large number of tests are implemented. Some common benefits of test frame-
works such as only running parts of the test suit (e.g., only run tests with the
tag “OpenCL”), automatic test discovery, or only running the tests that failed last
time (i.e., test failure tracking) would not be possible with this approach without
“reinventing the wheel”. Since the thesis work has to be completed in a rather short
amount of time and this would require more time to implement with no additional
benefits, this approach was rejected.

The second approach, implementing low-level unit tests with an appropriate test
framework, would provide most or all the benefits of using a test framework, de-
pending on the test framework chosen. The unit testing framework Bats: Bash
Automated Testing System for Bash was installed and tested for this purpose.
However, the Bash scripts were written in a monolithic style, only having a sin-
gle, long main function (if any function at all). The scripts have complex, and
(previously) undocumented pre- and postconditions, requiring files in specific loca-
tions in specific formats. This makes simple unit testing hard; requiring complex
and hard-to-maintain code to generate, parse and verify complex input/output
file formats such as JSON using Bash and shell utilities. Implementing unit tests
in Python would make it easier to work with complex file formats using simple,
maintainable code, but would not be able to easily test single Bash functions when

45

Chapter 4. Implementation

refactoring the code. The process of testing every single script (in either Bash or
Python) would also be rather time-consuming, but would make it easier to track
down errors, compared to higher-level testing.

The third approach, implementing high-level integration tests2, does not test a
single unit (e.g., a script or a function), but the interface to the back end. The tests
would use the same workflow as the server when it starts evaluation of programs
on the back end: copy the required files (program source files, input files, answer to
the correctness test and the Makefile) to the correct directory, run the entry-point
script (runscript_v2.sh) and finally retrieve the output from the script. The tests
then assert that the output is on a correct format and contains the expected result.
Large parts of the code base can be covered by tests with relatively few tests when
using this approach.

It is, however, harder to track down errors to a single file, function or script when
using high-level testing. Making the scripts log extra information to the standard
error stream (stderr) that can be used to locate the error help mitigate this
problem. Testing from this abstraction level also ensures that the communication
protocol between the server and the back end does not change (API compatibility).

The third approach was adopted in favor of the second approach because of the
benefit of being able to implement tests covering large parts of the code base in a
shorter amount of time, moreover, the second and third approach are not mutually
exclusive; unit testing the code incrementally when adding new features in future
is possible, even recommended [HT99; McC04]. Tests would then be written in an
appropriate unit-testing framework for the language of the script or module to be
tested.

The pytest framework [Pyta] is used to implement tests. This framework is fully
compatible with Python’s built-in unit test library, unittest [Uni], but have better
automatic test discovery, and a test runner pytest that supports a wide range
of options when running tests, such as selecting tests by tag or by name. Other
important features of the pytest framework that are not part of the unittest library
are flexible test fixtures and test parametrization. Test fixtures are functions or
objects initializing the system to a predetermined state before testing; setUp and
tearDown functions are examples of simple fixtures. Test parametrization is used
to define multiple sets of input arguments to a test function or class.

Tests are written using multiple C++ programs implemented to test some specific
property of the system (e.g., one test program tests if OpenMP works correctly,
another runs in an infinite loop to test if the system stops programs that spend
too much time). Programs testing error conditions also fail at different stages of
the evaluation process; some programs fail during the correctness test, and some

2“Integration testing is the combined execution of two or more classes, packages, components,
or subsystems [. . .].” [McC04, p. 499]

46

4.3 Automating Installation on the Back End

fail during the measurement test to properly check that errors are caught in both
stages.

Several bugs related to error handling and faulty formatting in the existing system
were fixed in the process of creating tests for the system. The tests also ensured
that the existing features did not fail while developing new features, providing
a quick and simple way to ensure correctness without spending time testing the
system manually.

Flags to control the behavior of the program evaluation was added while developing
tests (described in more detail in Section 4.4.4). One such flag was the --no-energy
flag. This flag disables energy measurement (by returning the “dummy value” zero),
making it possible to run the back end tests on a system without power monitors
(or with different power monitors). This reduces the need of testing the code
on the Odroid-XU3. The code can be tested on the developer’s computer during
development, and tested again on the Odroid-XU3 after the development has been
completed. This minimizes the time used for testing while developing new features.

4.3 Automating Installation on the Back End

In order to more easily install and configure software on the Odroid-XU3 boards
an installation script that automates most of the steps required to set up a fully
working back end was created. The main motivation for this effort was to reproduce
the back-end setup faster and easier in a less error-prone way. The Odroid-XU3
connected to the production server still has artefacts (i.e., temporary files, packages
and utilities installed, but eventually not used) from the work done by multiple
previous developers on the CMB project. A simpler way to reinstall the system
encourage frequent fresh installs of the system when changes are made, and avoids
unnecessary files and packages clogging the system.

The steps to fully setup a working system as described in [Mag16; Ing17] are
rather long, hard to reproduce, and partly no longer correct after upgrading to a
new OS version. Some important security features such as properly setting the file
permissions in order to restrict the worker user from reading and writing to files
not needed are described in [SF15], but no steps to reproduce this are provided.
The installation script tries to automate the setup of these security features.

The installation script is implemented in Bash and tries to group the setup process
into functions (e.g., the steps to setup the Uncomplicated Firewall (ufw) utility is
grouped in a single function). This makes it easier to see why dependencies are
required, and simplifies removing programs or utilities and their dependencies in
the future. The installation script is committed to the cmb-board Git repository as
install.sh.

47

Chapter 4. Implementation

To speed up the installation process, the SciPy [Scia] and NumPy [Num] packages
have been pre-built and uploaded to http://folk.ntnu.no/okpeders/archives/.
This is not a feasible long-term solution, since this is a personal web page and only
editable by the owner and not future developers on the project. A more permanent
solution is discussed in Section 7.1.1.

4.4 Program Evaluation Improvements

The following subsections explain the implementation of the different approaches
to improving the evaluation of programs on the back end. These approaches are di-
vided into four categories: measurement stability, security, run-time error feedback,
and refactorings and bug fixes.

Approaches in the measurement stability and security categories may affect the
measurement stability of the system. These changes are therefore implemented
as a series of experiments, described further in Section 4.5. Approaches trying to
improve measurement stability that did not actually give any benefit were reverted,
but are listed here and the results are shown in Chapter 5. All other improvements
listed here are not reverted.

This leads to the following hypotheses, which is treated individually for each ap-
proach in the respective categories:

It is assumed that changes that are outside the “critical section” of the code base do
not affect the measurement stability, and no experiments are performed to check the
impact of these improvements. The critical section of the code base is the section
in which changes might affect measurements, in other words, from clearing of the
cache and temperature adjustments to the end of the measurements. Changes
related to run-time error feedback and other refactorings and bug fixes are outside
the critical section.

4.4.1 Measurement Stability

Five approaches to improve measurement stability have been tried: removing
Fail2Ban, managing CPU governors, implementing measurements in C++ and the
taskset and nice utilities. This subsection explains the implementation details of
each of these approaches.

48

4.4 Program Evaluation Improvements

4.4.1.1 Removing Fail2Ban

The CMB system is secured from remote login attempts using two mechanisms:
Uncomplicated Firewall (UFW) [Ufw] and Fail2Ban [Fai]. UFW can allow or deny
specified IP ranges or ports to connect to the subsystem (i.e., either the server or
the back end). The back end blocks all connection attempts from outside of the
NTNU network using UFW.

Fail2Ban scans log files for IPs that repeatedly fail to connect, and IPs that show
signs of malicious intent are banned. The intent of Fail2Ban is to reduce the risk
of attackers getting access to the system it is installed on. The Fail2Ban program
runs in the background and continuously scans log files, possibly introducing a
source of instability to the measurements.

Since the back end already blocks all connection attempts from outside the NTNU
network, and the devices on the NTNU network are generally trusted, Fail2Ban
can be removed without introducing much risk to the system. It does however
serve as an extra layer of protection and can therefore be useful (e.g., if UFW is
misconfigured in some way).

Removing Fail2Ban is done by uninstalling the fail2ban package using apt-get,
or, for a fresh install, not installing it at all.

This leads to the following hypothesis:

Hypothesis 1 (Fail2ban) Removing Fail2ban improves the measurement stabil-
ity of the CMB system.

4.4.1.2 CPU Governors

CPU governors are implemented by the Linux Kernel. The governors control the
CPU frequency (but not voltage), setting the frequency of each core in response
to increase or decline in CPU load. There are multiple different governors, each
implementing a different scaling algorithm for controlling the frequency.

The default governor for the installed variant of Ubuntu 18.04 is ondemand. The
ondemand governor estimates the CPU load based on the ratio of idle time between
two consecutive invocations of the governor [Wys17]. The ondemand governor might
cause measurement instabilities due to uncontrollable frequency changes during
measurements.

The performance governor sets the CPU frequency to the maximum frequency
possible. By having a constant frequency the measurements are likely to be more

49

Chapter 4. Implementation

stable. This governor is used by default when setting up the back end using the
installation script.

This leads to the following hypothesis:

Hypothesis 2 (Performance Governor) Using the performance governor im-
proves the measurement stability of the CMB system.

4.4.1.3 Implementing Measurements in C++

The CMB system previous to this thesis used the date utility to measure the du-
ration of the program. This utility can give timestamps with high precision, but
invoking the program might introduce overhead that is uncontrollable and unpre-
dictable. Such overhead might be introduced by date having more system calls
than strictly necessary, having to parse the custom format string or transforming
the output to the correct format. The date utility also does not give the caller any
control over which clock source is used to measure the time.

In order to try to control, and reduce, the overhead related to timing programs
the timing functionality was wrapped in a C++ program, named run_command.
run_command uses the system call clock_gettime(2) before and after the pro-
gram to measure the duration of the program. CLOCK_MONOTONIC_RAW is used as a
clock source, a clock that always increases and is unaffected by clock adjustments
[Clo]. The command to invoke the program is unchanged, but is now invoked using
std::system [Sysb]; effectively launching a child process.

Energy measurements have previously been performed by running an executable in
a background process (described in Section 2.1.5). The executable is compiled from
C++ sources and has an unnecessary dependency on QT and qmake. By moving
this code into run_command the measurements are done in the same place, and the
unnecessary dependencies can be removed. The energy measurement is wrapped in
a class that launches the measurement in a separate thread using std::async with
the std::launch::async flag to ensure that the code is not lazily evaluated [Asy].
Aside from removing the dependencies and wrapping the energy measurement, the
original sources for EnergyMonitor were kept unchanged to avoid introducing bugs
or affect measurements.

This leads to the following hypothesis:

Hypothesis 3 (C++ measurements) Performing measurements in C++ im-
proves the measurement stability of the CMB system.

50

4.4 Program Evaluation Improvements

4.4.1.4 taskset Command

When running a program on the Odroid-XU3, the Linux kernel scheduler is free to
assign the program to any core. This might lead to unpredictable measurements if
the scheduler assigns the program under evaluation to a small rather than a big core
for a single measurement, or moves the program between cores during execution.

In order to control what core the program under evaluation is run on, the taskset(1)
command is used to set the CPU affinity of the process, essentially binding the pro-
cess to a given set of cores [Tas]. The program is bound to the first “big” core,
using the affinity mask 0x10, guaranteeing that it is not migrated to other cores
by the scheduler. This does not, however, disallow other programs or processes
(e.g., kernel worker processes) from executing on the same core, meaning that the
program under evaluation still can be pre-empted. Ideally, all other programs and
processes running on the back end should be restricted to a single core to avoid
pre-emption of programs under evaluation (discussed in Section 7.4.1.3).

This approach did not work well with OpenMP programs, as it bound them to a
single core. Working around this using sched_setaffinity(2) [Sch] to override
the affinities set by taskset(1) allowed the programs to use multiple cores, but
with sub-optimal efficiency—frequent thread migration caused a very high system
call overhead—compared to running the test program without taskset(1). The
reason why this approach causes a high rate of thread migration for OpenMP
programs is not known. Due to these issues, measurements were not made for this
test program and this improvement is disabled by default. This is discussed further
in Section 7.4.1.7.

This leads to the following hypothesis for non-OpenMP programs:

Hypothesis 4 (Taskset) Setting core affinity using taskset(1) improves the
measurement stability of the CMB system for programs not using OpenMP.

4.4.1.5 nice Command

The Linux Kernel scheduler takes program priority into account when scheduling
programs. Every process has a priority and a nice value. The nice value range from
−20 to 19: −20 gives the highest priority and 19 gives the lowest priority. The
default nice value is 0 [Neg12].

By setting the nice value using the nice(1) command [Nic], the programs under
evaluation can be assigned a higher priority. This makes it less likely that other
processes interfere with the measurements (i.e., it is less likely that other processes
preempts the program under evaluation).

51

Chapter 4. Implementation

Unprivileged users (e.g., the worker and climber users) can only alter the nice
value of processes they own, and then only increase it to assign a lower priority.
Superusers can change the priority of any process to any valid value [Ren]. Running
measurements with a superuser is a security risk since this means that the program
executed have superuser privileges. Therefore, a way of giving processes higher
priorities without introducing additional risks to the back-end security is required.

The Linux kernel implements capabilities [Cap] that can be assigned using the
setcap(8) command [Seta]. Capabilities divide privileges into units that can be
independently enabled for files or threads. The CAP_SYS_NICE capability allows a
process to set the nice value to any valid value for a process owned by any user.
Assigning capabilities must be done by a superuser.

During the installation procedure (which has to be run by a superuser) the ca-
pability CAP_SYS_NICE is set for the run_command executable (described in Sec-
tion 4.4.1.3). The run_command executable uses the nice(1) command to set the
niceness of the program to be measured to −15, giving it a fairly high priority.

This leads to the following hypothesis:

Hypothesis 5 (Nice) Setting priority using nice(1) improves the measurement
stability of the CMB system.

4.4.2 Security

Two new approaches to improving security have been implemented: “chroot jails”
and limiting memory usage.

4.4.2.1 Implementing a Chroot Jail

Currently, the program under evaluation is run as the worker user and has read
access to the most of the file system, execute access to many unneeded programs and
utilities and write access to some directories (e.g., the /tmp directory). Changing
permission bits to exclude the worker user might exclude other users that have
access to these directories and break arbitrary parts of the system (e.g., many
background processes depend on being able to create and write to files in the /tmp
directory).

An exploit written by Lasse Eggen and Fanny Skirbekk (Listing 4.1) shows that it
is possible to gain information about the file system. This exploit can be modified
to read files that the worker user has permissions to read. Being able to inspect

52

4.4 Program Evaluation Improvements

#include <fstream>
#include <array>
#include <cstdio>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>

// execute shell command
std::string exec(const char *cmd) {

std::array<char, 128> buffer;
std::string result;
std::unique_ptr<FILE, decltype(&pclose)> pipe(popen(cmd, "r"),

pclose);
if(!pipe)

throw std::runtime_error("popen() failed!");
while(fgets(buffer.data(), buffer.size(), pipe.get()) != nullptr)

result += buffer.data();
return result;

}

int main() {
std::cout << exec("ls -lah /dev/") << std::endl;

}

Listing 4.1: A C++ program showing how to execute commands and write the output.
This output is returned to the user if the correctness test fails. Based on an exploit
written by Fanny Skirbekk and Lasse Eggen.

files in the file system might give contestants an unfair advantage, or give away
weaknesses in the system to malicious users.

Fortunately, utilities exist to restrict programs to a given directory and only allow
access to specified files and directories. The primary utility used is the chroot(2)
system call. This system call changes the root directory (i.e., /) of the process that
calls it to a specified directory [Chr]. The program will then use this directory as
the root directory when trying to find files; effectively “jailing” the program to the
file system reachable from the directory.

The programs that are evaluated are dynamically linked and have to load the
libraries when they start. In order to load these libraries the programs require
access to /lib, /usr/lib and similar directories in the file system, which, by

53

Chapter 4. Implementation

default, are not reachable from the “chroot jail”. OpenCL programs require access
to OpenCL-specific directories and /dev.

There are multiple ways of giving access to directories outside the chroot jail, but
in doing so it must be ensured that: the program cannot modify the files, and if the
program can modify the files, modification does not affect the files used by other
programs.

One approach to give access to files is to copy all the files needed into the ch-
root jail directory with the correct paths (e.g., /lib/file must be copied into
jail/lib/file, where jail is the chroot jail directory). This approach requires
finding out which libraries are required by the evaluated program (e.g., by pars-
ing the output of ldd(1)), copying these into the chroot jail directory, setting
permissions, and deleting the files afterwards—a rather complicated process.

A less complicated approach was adopted to save some time implementing file
access. This approach uses the mount(8) command to create a bind mount for each
of the needed directories. A bind mount mounts a directory in another directory,
making the content accessible in two places in the file system. When using a
bind mount, a read-only specifier can be used to ensure that the contents is not
writeable. The bind mount has to be set up every time the system boots using an
entry in /etc/fstab. Admittedly, this approach lets the program under evaluation
read more files than strictly necessary, but is simpler to implement and does not
have any significant security risks compared to the first approach.

When the chroot jail is set up with care, running programs without special permis-
sions as an unprivileged user provides more security than before the beginning of
this thesis. chroot(2) is not designed to be used for security purposes, and should
not be treated as an impenetrable security mechanism, but merely as the first layer
of security when evaluating programs.

The chroot jail is implemented by another executable, run_chroot, which is called
from the run_command executable. It is given the path to the jail, input and
output files, and the ID of the worker user. The executable then modifies the
stdin and stdout file descriptors to use the input and output files respectively,
before chrooting into the chroot jail directory, changing the user to the worker
user (using setuid(2) [Setc]) and then using execl(3) to start the program to
be evaluated. execl (and other front ends for execve(2)) consumes the process
image of the calling process, but keeps nice value, process ID, real user ID, current
working directory, root directory, resource limits, file descriptors and so on [Exea;
Exeb; Exec].

Since chroot(2) and setuid(2) requires special privileges, the installation script
gives run_chroot the capabilities CAP_SYS_CHROOT and CAP_SETUID (similar to
how capabilities were given to run_command, as described in Section 4.4.1.5). The

54

4.4 Program Evaluation Improvements

capabilities are deactivated during the call to execl(3), since the program to be
evaluated does not have any capabilities.

Since this approach to improve security does not aim to improve measurement
stability, we hypothesize that this approach does not worsen measurement stability:

Hypothesis 6 (Chroot Jail) Securing evaluation of programs using a chroot jail
does not negatively affect the measurement stability of the CMB system.

4.4.2.2 Limiting Memory Usage

According to Forišek, if the OS can be forced to run out of memory, any process
can be killed if it tries to request more memory when all memory has already been
allocated [For06]. This can have unpredictable results, potentially killing other
processes required by the CMB system.

To mitigate such problems, memory-limiting has been implemented. Using Bash’s
built-in command ulimit it is possible to restrict many features of the process
including data segment size, stack size, resident set size (in RAM), and more [Bas].
The ulimit command is a wrapper around setrlimit(2) [Setb]3.

For the CMB system this is implemented by prepending the ulimit command to
the command starting run_chroot (see Section 4.4.2.1). Memory is limited to
1GB by default, but this is configurable. The effect of this change on measurement
stability is not measured.

4.4.3 Run-Time Error Feedback

This thesis has made some changes to how errors are handled and generated on
the back end. The error handling is moved from the entry point of the back end, the
Bash script runscript_v2.sh, to a new Python script, generate_error_messages.py,
which is called from runscript_v2.sh. This has multiple benefits: Bash support
for JSON is rather poor, and generating correctly formatted JSON in Python is
simpler, cleaner and more readable; error message handling, which was previously
scattered in the Bash script, are moved into a script with a single purpose, result-
ing in DRY4 code; and finally, this approach simplifies changing and extending the
way error messages are handled.

3After finishing the implementation, some problems with setrlimit(2)-based approaches for
multi-threaded programs have been discovered. More information here: http://coldattic.info/
post/40/. Alternative approaches are discussed in Section 7.4.2.4.

4The DRY principle: “Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.”, or, Don’t Repeat Yourself. [HT99, p. 28]

55

http://coldattic.info/post/40/
http://coldattic.info/post/40/

Chapter 4. Implementation

4.4.4 Refactorings and Bug Fixes on the Back End

In addition to all the other improvements previously listed, other improvements
have been made to the back end to increase system maintainability and reliability.
This section list some of the more prominent changes.

The back end previously used Python 2.7. The Python code has been ported to
Python 3.6 in anticipation of the upcoming EOL of Python 2.7 in 2020 [Pep].
Python 3.6 was chosen since this is the default Python 3 version on Ubuntu 18.04.
For environment isolation and easier dependency tracking, Python packages are
now installed in virtual environments using the virtualenv package [Vir].

To help get clean, good code conforming to best practices, linters were installed to
perform analysis of the code. For Python the pylint package [Pyl] was adopted,
and configured using a .pylintrc in the root directory of the cmb-board repository.
For Bash scripts a shellcheck [She] was adopted. Most linter errors have been
fixed.

The entry point now supports arguments that can configure the behavior when
called from tests or from the server. The command line options supported are
outlined in Table 4.1. If no options are specified, the script performs a measurement
using default settings—maintaining API compatibility.

--debug Enables debugging mode with more log messages.
--memory-limit arg Sets the memory limit for a program (in kilo bytes).

Default value: 1 000 000
--no-energy Disables energy monitoring.
--no-security Disables some of the security measures.
--no-cleanup Does not remove program source files from the

workspace. Useful for measurement stability tests
and debugging when a program is run repeatedly.

--timeout-length arg Sets the maximum amount of wall clock time a pro-
gram can use during measurement.
Default value: 90

Table 4.1: The configuration options supported by the entry point runscript_v2.sh

4.5 Measurement Stability Experiments

A measurement framework had to be implemented to quantify the effect the dif-
ferent approaches had on measurement stability. The measurements made for a
program must be unchanged over time to be “fair” to the users; keeping the mea-
surements stable over time is of a higher priority than using less time or energy.

56

4.5 Measurement Stability Experiments

A suitable statistic that quantifies measurement instabilities had to be chosen ac-
cording to these priorities.

4.5.1 Measurement Stability Statistic

The coefficient of variation, Cv, is the chosen statistic for quantifying measurement
instabilities. Cv is defined in Eq. (4.1c) as the ratio between the sample standard
deviation (Eq. (4.1b)), s, and the sample mean (Eq. (4.1a)), x̄.

x̄ = 1
N

N∑
i=1

xi (4.1a)

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (4.1b)

Cv = s

x̄
(4.1c)

N is the number of samples and xi is sample i.

The standard deviation might have been chosen as a statistic. However, the stan-
dard deviation is unsuitable for direct comparison between two data sets with
different means, because the interpretation is dependent on the mean (e.g., a stan-
dard deviation of 0.1 might be large when the mean is 1, but small when the mean
is 100). The coefficient of variation, however, is independent of the mean and the
unit of measurement, and can therefore be used for comparison when the means
are different. It should be noted that the coefficient of variation is rather sensitive
when the mean is close to zero; small variations in standard deviation have a large
impact.

4.5.2 Measurement Stability Experimental Setup

For every test program described in Section 4.5.3 100 iterations of measurements
are performed. The programs run using the same entry point as the server when
evaluating programs on the back end (i.e., for every measurement sample, it re-
compiles the program, runs the small correctness test, clears the cache, adjusts the
temperature and then runs the measurement test). The tests run contiguously,
controlled by a script collecting and storing the measurement data.

57

Chapter 4. Implementation

The measurement experiment scripts are committed to the cmb-board repository.
The experiments are controlled by two scripts: run_measurement_tests.sh and
measure.sh, where the latter receives input arguments and runs a given number
of iterations of a given test program and writes the measurement results to a given
file, and the former script is a wrapper around the measure.sh script and runs
this script for every test program. All tests are run while having an open SSH
connection to the board, similar to the connection from the server to the board
when evaluating user-submitted programs.

The experiment script measure.sh was originally written as a Python script,
measure.py, but since the Python runtime might affect the measurements to a
larger degree than Bash, the script was rewritten and all the experiments per-
formed up to that point were performed once more. The original script used the
JSON format, but this is not the case for the Bash implementation. Therefore a
script was created, clean, to transform the data into JSON format.

The scripts plot and calc_statistics can be used to plot the measurements and
calculate the relevant statistics shown in Chapter 5, respectively. These scripts
expect the data in a JSON format.

After upgrading the back end to Ubuntu 18.04, a set of measurements were per-
formed to create a baseline against which the experiments were compared. Upgrad-
ing the OS is a change that might have a large effect on measurement stability.
As previously stated in Section 4.1, a great amount of effort has been put into not
making more changes to the system than absolutely necessary when upgrading, in
order to have a baseline that is comparable to the old system.

In order to decrease the number of necessary experiments and speed up development
time, it is assumed that refactoring that does not change the implementation within
the critical section of the scripts, also does not affect the measurement stability.

4.5.3 Measurement Stability Test Programs

The measurements are performed using five different test programs: Hello World,
Mandelbrot (single-threaded), Mandelbrot (using OpenMP), Mandelbrot (using
OpenCL), and Sort. These programs are chosen due to their different properties.
The source code for all the programs are given in Appendix C.

Hello World is a simple, short program only outputting the string “Hello World!”.
This program is mainly included to observe how very short programs behave in the
experiments performed, but is not representative of typical problems given to the
users.

58

4.6 Refactorings and Bug Fixes on the Server

Mandelbrot calculates the Mandelbrot set in the range x ∈ [−2, 0.5], y ∈ [−1, 1]
for a maximum of 255 iterations. The input parameters (width and height) decide
the resolution, in other words, how many discrete points in the 2D plane that
the Mandelbrot set should be calculated for. In order to avoid that the program
becomes I/O-bound, the program outputs the number of points that are inside the
Mandelbrot set only.

The OpenMP and OpenCL versions of the Mandelbrot program calculates works
similarly to the single-threaded version, but have larger input parameters to ensure
that the programs do not run for a too short amount of time. The OpenCL version
counts the number of points in the Mandelbrot set in a single-threaded manner
(after generating the Mandelbrot set on the GPU in OpenCL). These programs can
be used to examine how the experiments affect OpenMP and OpenCL programs.

Sort is a simple program that reads a large amount of numbers, sorts them using
std::sort and outputs the sorted numbers. This program is used to examine how
I/O-bound programs behave in our experiments.

In a single experiment a version of the Sort program that uses the implementation
of RandInt in Listing 3.6 is also used. The goal is to examine the difference
between programs reading numbers from standard input and programs generating
numbers. Note that the RandInt version does not use the same random sequence
of numbers, but uses the same amount of numbers in the same range. This leads
to an additional hypothesis:

Hypothesis 7 (I/O impact) I/O-bound programs have worse measurement sta-
bility than non-I/O-bound programs.

4.6 Refactorings and Bug Fixes on the Server

Although the main focus of this thesis has been on the back end, some changes
have been made on the server in addition to upgrading the OS to Ubuntu 18.04.
Some of these changes have been listed in this section.

A systemd service to automatically start the Flask server after reboot has been
created. This has the additional benefit of reducing restarts of the Flask server to
simple systemctl commands if a restart (but not a reboot) is required.

Python packages have been upgraded to newer versions to get the latest security
patches. Necessary updates to the code to fix breaking changes in the packages
have been made.

59

Chapter 4. Implementation

An API performance issue has also been fixed. When requesting data from the
/api/problems API endpoint, the full list of problems was returned. For each
problem in the list of problems, the id and name fields was returned, in addition to
extra, unnecessary data (including submission details for every submission made
to a given problem). The extra data was never used because it was requested from
other API endpoints when needed, but was requested from the database, serialized
and transported to the client, which resulted in a huge delay.

By modifying the SQL Alchemy query for the /api/problems endpoint to only
request the id and name column from the database, response time for this API
endpoint was reduced from around 16 s to around 0.5 s. The size of the transferred
data was reduced from 1.67 MB to 1.99 KB. These measurements were repeated
three times on a laptop using the Mozilla Firefox browser, with the browser cache
disabled.

60

Chapter 5
Results and Discussion

This chapter presents and discusses the measurement results from the experiments
performed as part of this thesis. Section 5.1 presents prior measurements per-
formed on the CMB system to act as a baseline. The measurement results from
the experiments performed as part of this thesis are given in Section 5.2, along
with a discussion of each hypothesis. Section 5.3 discusses errors and threats to
the validity of the results presented.

5.1 Prior Experiments Using the CMB System

This section presents results from prior measurements performed on the CMB
system to act as a baseline. For each set of results, the experimental test setup
used is outlined, along with comments on how the results should be interpreted.

Table 5.1: Cv (lower is better) from experiments performed by Støa and Follan [SF15].

Experiment Time Energy
Shortest-Path 0.15% N/A
Blackscholes-serial 0.25% 3.8%
Blackscholes-OpenMP 0.51% 0.6%
Freqmine-serial 0.25% 1.4%
Freqmine-OpenMP 7% 11%

61

Chapter 5. Results and Discussion

The results from experiments performed by Støa and Follan [SF15] are shown in
Table 5.1. Their experiments used different programs than this thesis: Shortest-
Path, Blackscholes and Freqmine. The Shortest-Path experiment is based on the
Shortest Path problem available to users of the CMB system.1 The Blackscholes
and Freqmine benchmarks are part of the PARSEC benchmark suite [Bie11], and
both serial and OpenMP versions were used. Shortest-Path and Blackscholes are
computation-bound, while Freqmine is memory-bound. Freqmine-OpenMP is not
able to use caches efficiently, leading to poor concurrent behavior [SF15].

Støa and Follan used a different experimental test setup than the experiments
performed in this thesis: a cron [Cro] job runs the programs every 15 minutes over
the course of several days. The Shortest-Path measurements were repeated 500
times, while the number of repetitions for the benchmarks was not stated by the
authors.

Table 5.2: Cv (lower is better) from experiments performed by Ingebrigtsen [Ing17].

Experiment Time
Shortest-Path 0.7%
Shortest-Path w/o outliers 0.15%

Ingebrigtsen [Ing17] tries to reproduce the Shortest-Path experiment performed by
Støa and Follan [SF15]. The results are shown in Table 5.2. Ingebrigtsen removed
outliers that occurred during an unexplained spike that lasted 12 hours (see original
thesis for details). With outliers removed the results are equal to those presented
by Støa and Follan, with Cv = 0.15%. These results show that the measurement
stability of the CMB system has not significantly changed from system version
one (by Støa and Follan) and system version three (by Ingebrigtsen), allowing
comparison of the results from Støa and Follan to the results presented in this
thesis in Section 5.2.

Ingebrigtsen used a test setup similar to the original experiment by Støa and Follan.
The experiment was performed using the same platform, program and test input
as the original experiments. The number of repetitions is not explicitly given, but
can be estimated to be more than 500 based on figures presented.2

The CMB project coordinator performed measurements on the Sigma Unique3

problem, which was used for the CMB Challenge 2018 competition. The measure-
ment results are shown in Table 5.3. Programs solving the Sigma Unique problem
have to read up to 65 000 numbers and perform relatively simple operations to

1https://climb.idi.ntnu.no/#/problem/1
2The figures show that the measurements were repeated over more than six days. Subtracting

the 12 hour period of outliers gives 5.5 days with measurements every 15 minutes. 5.5 × 24 ×
60/15 = 536 > 500

3https://climb.idi.ntnu.no/#/problem/63

62

https://climb.idi.ntnu.no/#/problem/1
https://climb.idi.ntnu.no/#/problem/63

5.2 Experimental Results

Table 5.3: Sample mean, sample standard deviation and Cv (lower is better) from
measurements performed by the CMB project coordinator in April, 2018.

Experiment Time Energy
mean stddev Cv mean stddev Cv

s s % J J %
Sigma_no 32.36 0.08 0.24 79.46 0.71 0.89
Sigma_s 2.34 0.01 0.58 8.75 0.65 7.41
Sigma_su 2.00 0.03 1.32 7.99 0.57 7.20

produce a result, making it a I/O-bound problem. The Sigma_no experiment uses
a minimal solution without optimizations. The Sigma_s optimizes the solution by
using ios::sync_with_stdio() to speed up I/O-operations, while the Sigma_su
also uses more specialized data types for the problem (uint16_t instead of int).
Every experiment repeated the measurements 10 times, by running the programs
from the CMB website. These results give insight into the behavior of I/O-bound
programs running on the CMB system prior to the upgrade.

5.2 Experimental Results

This section presents the results received from the experiments performed as part
of this thesis. First, the main results will be presented, followed by one subsection
for each hypothesis. The experimental test setup and the test programs were
previously described in Section 4.5. The results relevant for each hypothesis will
be discussed along with other relevant observations and each hypothesis will be
accepted or rejected. A summary of the conclusions to the hypotheses is given in
Section 5.2.2.8. Additional data gathered in the experiments that are not presented
in this section are summarized in Tables D.1 to D.4 in Appendix D.

5.2.1 Baseline Comparison

The Baseline experiment was performed right after the upgrade to Ubuntu 18.04.
The results are shown in Fig. 5.1. By comparing the results in the baseline to the
prior measurements in Section 5.1 it is possible to examine changes in measurement
stability introduced by the OS upgrade.

The Mandelbrot programs are computation-bound, and are therefore comparable
to the Shortest-Path and Blackscholes experiments from Støa and Follan [SF15]
presented in Table 5.1. The time Cv from the Baseline experiment for Mandel-

63

Chapter 5. Results and Discussion

Figure 5.1: Baseline experiment results, showing the Cv (lower is better) for the test
programs.

brot is slightly lower than the time Cv for both Shortest-Path and Blackscholes-
serial, while the energy Cv for Mandelbrot is slightly higher than the energy Cv

for Blackscholes-serial. When comparing the OpenMP version of the Mandelbrot
program to Blackscholes-OpenMP, the time Cv is slightly lower, but the energy Cv

is much higher (2.3 percentage points). It is apparent that the results from the
Baseline experiment are similar (but with minor variations) to the results achieved
by Støa and Follan for computation-bound programs—with the exception of the
energy Cv for the OpenMP programs, where the source of the difference between
the results is unknown.

The Sort program is I/O-bound and comparable to the measurements performed by
the CMB project coordinator for the Sigma Unique problem. The Sort program will
be compared to the Sigma_s because both programs use the same optimization.4
The Sort program has a much higher time Cv (1.6 percentage points) than Sigma_s,
but a much lower energy Cv (3.6 percentage points). A limitation of this comparison
is the large difference of I/O: the Sort program reads 40 000 000 numbers, while
the Sigma Unique problem only has 65 000.

Since the I/O might have a large impact on the Cv for I/O-bound programs, it is
excluded in the discussion and evaluation of the hypotheses, except hypothesis 7
which concerns the effect of I/O on programs. The impact of I/O on programs and
hypothesis 7 is treated further in Section 5.2.2.7.

The Hello World program’s execution time is close to zero (see Table D.1), meaning
small variations in standard deviation or mean have a large impact on the Cv. This
is an inherent flaw of the chosen statistic. The Hello World program is—due to
this flaw—excluded from the discussion and evaluation of hypotheses.

As a result of excluding the Hello World and Sort program, only the three versions
of the Mandelbrot program—Mandelbrot, Mandelbrot (OpenMP) and Mandelbrot
(OpenCL)—will be considered when discussing and evaluating hypotheses 1 to 6.

4Using ios::sync_with_stdio(false).

64

5.2 Experimental Results

5.2.2 Discussion and Evaluation of Hypotheses

The approaches described in Section 4.4 have been combined in the experiments
shown in Fig. 5.2. Baseline corresponds to the Baseline experiment also presented
in Fig. 5.1, No Fail2Ban corresponds to removing fail2ban (Section 4.4.1.1), Per-
formance governor corresponds to using the performance governor (Section 4.4.1.2),
C++ corresponds to implementing measurement functionality in C++ (Section 4.4.1.3),
chroot corresponds to using a chroot jail (Section 4.4.2.1), taskset corresponds to
setting core affinity (Section 4.4.1.4), and nice corresponds to changing process
priority using nice (Section 4.4.1.5).

(a) With outlier. (b) Without outlier.

Figure 5.3: The Mandelbrot program in the Perf + C++ + chroot + taskset + nice
experiment.

Fig. 5.3 shows that that the Mandelbrot program in the Perf + C++ + chroot
+ taskset + nice experiment have a single outlier. By removing the outlier more
accurate results can be calculated. Fig. 5.2a shows the calculated results with the
outlier removed.5

The rest of this subsection will consider each of the hypotheses in turn, along with
the relevant results. When considering each hypothesis (except hypotheses 4 and 7)
the time and energy Cv for each of the three versions will be taken into account.
Hypothesis 4 considers taskset, for which no measurements have been performed
with Mandelbrot (OpenMP). Hypothesis 7 compares I/O-bound to non-I/O-bound
programs, therefore both versions of the Sort program will be considered.

5Calculation using the outlier gives Cv = 2.614 for time and Cv = 3.132 for energy.

65

Chapter 5. Results and Discussion

(a) Mandelbrot

(b) Mandelbrot (OpenCL)

(c) Mandelbrot (OpenMP)

Figure 5.2: The Cv results for all versions of the Mandelbrot program.

66

5.2 Experimental Results

5.2.2.1 Removing Fail2Ban

Hypothesis 1 (Fail2ban) Removing Fail2ban improves the measurement stabil-
ity of the CMB system.

The Remove Fail2Ban experimented tested the impact of the fail2ban program
on the measurement stability (described in Section 4.4.1.1). When comparing the
Remove Fail2Ban experiment to the Baseline experiment (Fig. 5.2) it is clear that
the results are ambiguous; for each program, the Cv for either time or energy
improves while the other Cv worsens, thus hypothesis 1 should be rejected.

The rejection of the hypothesis does not entail that the fail2ban program does not
affect the measurements—Støa and Follan [SF15] showed that programs running
in the background can affect measurements (e.g., LightDM)—but that fail2ban
does not affect the measurements enough to be distinguishable from other (un-
known) factors in the experiments performed. Since fail2ban has some security
benefits, the removal of fail2ban was reverted and subsequent experiments have
been performed with fail2ban running in the background.

5.2.2.2 Performance Governor

Hypothesis 2 (Performance Governor) Using the performance governor im-
proves the measurement stability of the CMB system.

The Performance governor experiment tests the impact of using the performance
governor (described in Section 4.4.1.2). When comparing the Performance gover-
nor experiment to the Baseline experiment, this has a significant impact on the
Mandelbrot and Mandelbrot (OpenMP) programs, which run on the CPU. Mandel-
brot (OpenCL) sees a slight improvement in energy Cv, while the time Cv slightly
worsens.

Even if the time Cv for Mandelbrot (OpenCL) program slightly worsens, the re-
sults forMandelbrot andMandelbrot (OpenMP) strongly suggests that hypothesis 2
should be accepted.

The increase from 84 J to 114 J in mean energy consumption ofMandelbrot (OpenCL)
is noteworthy (Table D.4) from the Baseline experiment to the Performance gover-
nor experiment. Since the OpenCL program performs the main chunk of computa-
tion on the GPU, the ondemand governor likely reduced the frequency of the CPU
cores to save power during the Baseline experiment. When using the performance
governor the cores are at max frequency and will as a result use more power, even
if the cores are not utilized. However, the measurements do not collect any data

67

Chapter 5. Results and Discussion

that might prove or disprove that the ondemand governor reduced the frequency of
the cores.

5.2.2.3 Measurements in C++

Hypothesis 3 (C++ measurements) Performing measurements in C++ im-
proves the measurement stability of the CMB system.

The Performance governor + C++ experiment tests performing measurements in
C++ as described in Section 4.4.1.3. The measurement stability improves for all
programs when comparing the results in Fig. 5.2 for the Performance governor
+ C++ and Performance governor experiments, which strongly suggests that hy-
pothesis 3 should be accepted.

Moving energy measurements from a process to a more lightweight thread, as well
as using system calls over command line utilities to improve measurements improves
the mean running time and energy consumption of all versions of the Mandelbrot
program, with one exception: the energy consumption of Mandelbrot (OpenMP)
doubles. This is a surprising result, and the cause is not known.

Moving measurements to C++ also mitigates another issue with the energy mea-
surements that can be observed in Fig. 5.4: Fig. 5.4a shows that the measurements
divide into two groups where one group has a relatively higher energy consump-
tion than the other—this grouping was also present in the Baseline and Remove
Fail2Ban experiments. This grouping disappears in the Perf + C++ experiment
(Fig. 5.4b) and subsequent experiments.

(a) Performance governor experiment. (b) Performance governor + C++ experiment.

Figure 5.4: Time-energy plots for the Mandelbrot program showing that the grouping
of measurements disappears when implementing measurements in C++.

68

5.2 Experimental Results

5.2.2.4 Chroot Jail

Hypothesis 6 (Chroot Jail) Securing evaluation of programs using a chroot jail
does not negatively affect the measurement stability of the CMB system.

The Performance governor + C++ + chroot experiments tests the impact of secur-
ing measurements using a chroot jail. When comparing the Performance governor
+ C++ + chroot to the Performance governor + C++ experiment, the evidence
strongly suggests that hypothesis 6 should be rejected as the Cv for all the versions
of the Mandelbrot program worsens.

In our opinion, the security benefits of the chroot jail outweighs the drawbacks of
less stability in measurements. The chroot jail is therefore enabled by default, and
used in subsequent experiments.

After completing the experiments, an improvement to the current implementation
of chroot jails was discovered that could give more precise time measurements and
mitigate—if not completely remove—the negative impact on measurement stability.
This improvement was discovered too late in the thesis work, and is therefore
outlined in Section 7.4.1.1.

5.2.2.5 Nice

Hypothesis 5 (Nice) Setting priority using nice(1) improves the measurement
stability of the CMB system.

Giving higher priority to the program under evaluation using nice, was tested in
two separate experiments: Performance governor + C++ + chroot + nice and
Performance governor + C++ + chroot + taskset + nice.

When comparing the Performance governor + C++ + chroot + nice experiment to
the Performance governor + C++ + chroot experiment in Fig. 5.2 only the energy
Cv for Mandelbrot (OpenMP) worsens. The energy Cv for Mandelbrot improves
significantly, while the Cv is equal or improves slightly for the other measurements.

When comparing the Performance governor + C++ + chroot + taskset + nice
experiment to the Performance governor + C++ + chroot + taskset experiment
in Fig. 5.2, the Cv for both time and energy improve for the Mandelbrot and
Mandelbrot (OpenCL) programs. Measurements involving taskset(1) were not
performed for Mandelbrot (OpenMP), as explained in Section 4.4.1.4.

69

Chapter 5. Results and Discussion

The combined evidence from both experiments using nice(1) suggests that hy-
pothesis 5 should be accepted.

5.2.2.6 Taskset

Hypothesis 4 (Taskset) Setting core affinity using taskset(1) improves the
measurement stability of the CMB system for programs not using OpenMP.

The taskset(1) program is used to bind the program under evaluation to a given
core in two experiments: Performance governor + C++ + chroot + taskset and
Performance governor + C++ + chroot + taskset + nice.

When comparing the Performance governor + C++ + chroot + taskset experi-
ment to Performance governor + C++ + chroot in Fig. 5.2, the time Cv improves
for both Mandelbrot and Mandelbrot (OpenMP). The energy Cv improves for Man-
delbrot, but worsens for Mandelbrot (OpenMP).

When comparing the Performance governor + C++ + chroot + taskset + nice
to the Performance governor + C++ + chroot + nice experiment in Fig. 5.2, the
Cv is either equal to or improves for both time and energy for Mandelbrot and
Mandelbrot (OpenMP).

The combined evidence from both experiments using taskset(1) suggests that
hypothesis 4 should be accepted. However, due to the problems with taskset(1)
with OpenMP programs, taskset(1) is not used by default.

5.2.2.7 The Effect of I/O on Measurement Stability

Hypothesis 7 (I/O impact) I/O-bound programs have worse measurement sta-
bility than non-I/O-bound programs.

From Fig. 5.5 it is clear that the computationally bound Sort w/RandInt program
is significantly more stable than the I/O-bound Sort program. This suggest that
hypothesis 7 should be accepted.

Comparing the Sigma_su program from the CMB Challenge 2018 (in Table 5.3)
to the Sort and Man from the Baseline experiment (in Fig. 5.1) suggest that the
amount of I/O is correlated to the degree of measurement instability for I/O-
bound programs. No conclusions can be drawn here, but the impact of I/O on
measurement stability and possible mitigations to reduce the impact of I/O should
be studied further.

70

5.3 Errors and Threats to Validity

Figure 5.5: Comparison of the I/O-bound program Sort to the computation-bound
program Sort w/RandInt in the Performance governor + C++ + chroot experiment.

The measurement stability issues related to I/O-heavy problems should affect the
design of future problems for the CMB system. All students answering the ques-
tionnaire after CMB Challenge 2019 (Section 3.4) preferred generating random
numbers over reading numbers, which suggests that random number generation
should be the default method for problems requiring large amount of input.

5.2.2.8 Summary

For all hypotheses the relevant results have been presented, and the hypotheses
have been discussed and concluded. A summary of the hypothesis conclusions is
shown in Table 5.4.

Table 5.4: A summary of the conclusion to the hypotheses.

Hypothesis Conclusion
Hypothesis 1 (Removing Fail2Ban) Rejected
Hypothesis 2 (Performance governor) Accepted
Hypothesis 3 (C++ measurements) Accepted
Hypothesis 4 (Taskset) Accepted
Hypothesis 5 (Nice) Accepted
Hypothesis 6 (Chroot jail) Rejected
Hypothesis 7 (I/O impact) Accepted

5.3 Errors and Threats to Validity

The Hello World and Sort programs was removed from the evaluation of the hy-
potheses. The Cv is flawed when the mean is close to zero, which is the cause
for the Hello World program: the mean time and energy consumption is close to
zero, causing small variations to have a large impact on the Cv. For the Sort pro-
gram, we’ve seen that I/O has a significant impact on the measurement stability.
We argue that exclusion of these programs from the analysis of hypotheses 1 to 6

71

Chapter 5. Results and Discussion

strengthens the internal validity, since we eliminate factors that causes uncontrolled
variations in the Cv.

Errors in the experimental setup might also have affected the internal validity of
these results. In Fig. 5.6 we observe that the energy in the Perf and Perf +
C++ experiments decreased in the first couple of measurements. The Mandelbrot
program was the first program to be run, so it might have been affected by the
tasks performed before starting measurements—usually running the test suite, or
rebooting. If the starting conditions had been set up properly the previous task
should not have had any effect on the measurements.

Figure 5.6: Plot of the time and energy measurements for the Mandelbrot program in the
Performance governor and Performance governor + C++ experiments that shows that
measurements might be affected by tasks performed prior to the beginning measurements.

The current method of adjusting temperatures is imprecise, and testing has shown
that a temperature difference of 8℃ or more between two or more cores occurs
frequently. Experiments performed by Cebrián and Natvig suggests that a temper-
ature increase of 8–10℃ increases energy consumption on second generation Intel
Core processors by 5% on average [CN13]. The Odroid-XU3 has ARM cores that
likely exhibit similar behavior. The temperature adjustment is therefore likely a
source of accuracy loss—although it’s likely better than running on “cold” cores—
and could be improved.

72

5.3 Errors and Threats to Validity

Implementation details might affect the actual measurements (e.g., invoking nice(1)
command instead of the nice(2) system call). These differences were not consid-
ered, but should be subject to further experimentation.

73

Chapter 6
Evaluation and Conclusion

6.1 Evaluation

This section discusses whether the objectives of the problem statement have been
fulfilled.

Main Objectives

1. Improve feedback given to CMB users about typical compilation
and runtime errors.
Partially implemented by this thesis. Due to the extra unknown complexity
of this and other objectives, this objective was deprioritized. Changes to im-
prove run-time errors are described in Section 4.4.3. Testing for correct error
messages is covered by Section 4.2. Compilation errors are not implemented,
but suggestions to implementing this is described in Section 7.3.1.

2. Implement mitigations for security challenges related to evaluating
user code and giving feedback, and (optionally) any other part of
the system.
Considered covered by Sections 4.1, 4.2 and 4.4.2. The security features focus
mainly on the program evaluation step, but are implemented to be extensible
to compilation and profiling steps in the future.

3. Improve the stability of measurements, especially focusing on en-
ergy measurements, but also time measurements.

75

Chapter 6. Evaluation and Conclusion

Considered covered by Sections 4.4.1 and 4.5. The improvements were im-
plemented as a series of experiments, and the hypotheses were discussed and
concluded in Chapter 5.

4. Continuously refactor and improve the quality of the code base
during the thesis work, including implementing more tests and im-
proving logging, in order to increase system maintainability and
reliability.
This is considered covered by Chapter 4. Implementation choices have been
made to benefit the CMB projects in the long term. The back end now also
provides logs that can be read and stored by the server.

Secondary Objectives

A. Conduct a user experiment to evaluate how improved feedback
affects usability.
Not covered by this thesis, since improving feedback (objective 1) was depri-
oritized.

B. Propose improvements to the testing of submitted programs in
order to give better feedback to the user.
Considered covered by Section 7.4.2.1.

C. Propose solutions for implementing support for multiple languages
and compilers.
Considered covered by Section 7.4.3.1.

D. Propose solutions for handling multiple XU3-boards and different
execution platforms (back ends).
Considered covered by Section 7.4.3.2.

E. Suggest general improvements and bug-fixes to improve any other
aspect of the CMB project.
Considered covered by Chapter 7.

F. Develop a command line client for automated uploads to the CMB
system from the user’s command line (instead of using the website).
Not considered covered by this thesis. Suggestions on how to implement this
are given in Section 7.2.4.

G. Implement some of the proposed solutions after approval by CMB
project’s coordinator.
Considered covered by Sections 4.4.4 and 4.6.

76

6.2 Conclusion

6.2 Conclusion

The purpose of this thesis was to improve and add features to the CMB sys-
tem, mainly related to measurement stability and program evaluation security, but
progress have also been made on CMB system maintainability and user feedback.
The OS used by the CMB system has been upgraded to a newer version.

The measurement stability has been improved after the OS upgrade. The coeffi-
cient of variation has improved from 0.13% to 0.012% for time and from 4.4% to
0.45% for energy for computation-bound, single-threaded programs. The energy
measurement stability for computation-bound OpenMP programs has been im-
proved significantly, at the cost of a slight decrease in time measurement stability.
Progress has been made in understanding the behavior of multi-threaded programs
running on the CMB system. The measurement stability of OpenCL programs has
been improved by an order of magnitude for both time and energy measurements.

The program evaluation security has been improved. The primary improvement
restricts the access of the program under evaluation to only library files, and makes
execution of shell programs impossible. Progress on limiting resource usage of
programs under evaluation has been made, and further improvements in this area
have been suggested.

The maintainability and reliability of the CMB system has been improved. The
back end has an installation script that ensures that the back ends are set up in
the exactly same way every time, and implementation of tests on the back end has
uncovered several bugs that have been fixed, and made future changes simpler.

Improvements have been made on feedback given to users through changes in how
feedback messages are generated, resulting in more consistent formatting and more
verbose error messages.

In conclusion, this thesis has contributed toward improving measurement stability,
program evaluation security and maintainability of the CMB system. Moreover
this thesis has contributed feature proposals, possible improvements and imple-
mentation details for future development of the CMB system.

77

Chapter 7
Future Work

7.1 Project Management and Development Pro-
cess

7.1.1 Change Repository Hosting

BitBucket is currently used as host for the repositories used in the CMB project.
However, another competitor, GitHub, have features that could be useful for the
CMB project. Integrated project management tools, wikis, team discussions and
release management are notable features that are useful for the CMB project. This
makes it easier to create documentation and track issues and ideas in a single place.
Due to the nature of the CMB project, where all development is done during a
master’s thesis, a central place for documentation is especially important. Release
management can be used to create and store builds of open source software packages
that are specially built for the Odroid-XU3 in order to speed up the installation
process (see also Section 4.3).

7.1.2 Continuous Integration

The CMB system previously used Jenkins [Jen] as a continuous integration (CI)
tool, as described by Magnussen [Mag16] and Støa and Follan [SF15]. However, at
the beginning of this project the CI tool did not work as previously described. Some
efforts were made to revive the CI tool, but no progress was made. Reconfiguring

79

Chapter 7. Future Work

and setting up Jenkins from scratch was not prioritized during this thesis. A CI
tool simplifies automatic testing (and possibly also automatic deployment) and an
effort to setup a new CI tool should therefore be prioritized.

7.2 Front end

7.2.1 Upgrade or Rewrite Web Application

The application is written in AngularJS 1.4. The Angular 2 (and later versions)
are based on entirely different abstractions, making upgrading a hard process.
Completely rewriting the front end in another framework might be a more feasible
approach, depending on the knowledge of the developer and how much the site will
change.

7.2.2 Improve HowTo

The CMB website has a HowTo on the front end. This page should be updated
with newer developments of the CMB system, possibly adopting a more “wiki-like”
structure. It should also have more relevant information to get users started with
the CMB system. For instance, examples on how to use OpenMP or OpenCL, and
more technical information about compilers and how programs are compiled on the
back end. More technical details are also relevant for researchers using the system.

7.2.3 Contest Features

The current group functionality is used for running contests on the system, and
has also been used previously for managing programming classes. However, some
central features for contest management are missing from the group functional-
ity, such as score boards, countdown timers and competition rules. Splitting the
functionality into separate entities customized for their intended use case would be
better than a general, “one-size-fits-all” solution.

7.2.4 Command Line Client

A command line interface (CLI) would benefit power users and researchers using the
CMB system. The CLI would use the server API directly, instead of the website,

80

7.3 Server

allowing users to upload submissions and download results. The CLI could be
characterized as a second front end for the CMB system.

To make a CLI maintainable the server API should be stabilized and versioned.
Since the CLI script is stored at the users’ computers is not necessarily updated
frequently, changes in the API can break the CLI. Making sure the API is always
backwards-compatible will ensure that the CLI always works, even if it does not
have access to the newest versions.

7.3 Server

7.3.1 Improving Compilation Error Messages

Many users of the CMB system use Windows or macOS. These OSs may use
different compilers than the one used by the CMB system: Windows users often
use the MSVC compiler, while macOS users using Xcode use the LLVM Clang
compiler. Compilers often implement features that do not strictly adhere to the
C++ standard. When users upload code using such features, the compilation will
fail on the CMB system, even if it compiles correctly on their local computers.
Implementing error messages designed to identify these compiler-specific errors
would be helpful to users.

Parsing error messages could be difficult depending on the features of the compiler.
The GCC 9.1 compiler, released in May, 2019, can present error messages in a JSON
format, which makes parsing easier.1

Compilation error messages could be used by users to gain access to restricted
files. Therefore, properly securing the compilation step and filtering of compilation
messages are important.

7.3.2 Upgrade to Python 3

The server is implemented in Python 2, and should be upgraded to Python 3,
since Python 2 reaches EOL in 2020. This would also give access to more modern
features and abstractions in the language.

1https://gcc.gnu.org/onlinedocs/gcc/Diagnostic-Message-Formatting-Options.html#
index-fdiagnostics-format

81

https://gcc.gnu.org/onlinedocs/gcc/Diagnostic-Message-Formatting-Options.html#index-fdiagnostics-format
https://gcc.gnu.org/onlinedocs/gcc/Diagnostic-Message-Formatting-Options.html#index-fdiagnostics-format

Chapter 7. Future Work

7.3.3 Logging

Improving logging would make it easier to track down errors. A systematic logging
scheme would also make searching and navigating logs easier. Errors and system
crashes should be handled specially, by storing details and possibly notifying system
developers about errors.

7.3.4 Securing Compilation

The compilation on the server is not secured and susceptible to attacks. DoS attacks
against the server-side compilation step would cause harm to all users requesting
data from the server. A possible fix would be moving the compilation step to the
back end, and secure it properly there, as described in Section 7.4.2.3.

7.4 Back End

7.4.1 Improving Measurement Stability

7.4.1.1 Reducing the Size of the Critical Section

By moving the start of the timing into the run_chroot executable, the critical
section would be reduced, and the timings would be more accurate. This imple-
mentation detail was an oversight during the development work performed as part
of this thesis, as discussed in Section 5.3.

7.4.1.2 Collect and Store Additional Measurement Data

Collecting and storing additional data when running measurements would give
more insights into what affects the measurement stability. Such data could include
CPU core temperatures, RAM and cache usage, running programs, CPU frequency,
and power usage measured by each power monitor over time. Data that is collected
when a program runs should be enabled as an “analysis mode” (e.g., enabled by a
flag or as an extension to profiling), so that it does not interfere with measurements.

82

7.4 Back End

7.4.1.3 Limiting Impact of Other Programs

In order to limit the effect of other programs running on the back end (e.g., kernel
workers), all programs could be limited to only run on a single, small core using
cgroups(7). These programs would possibly interfere less with the programs in-
volved in the measurement (e.g., no pre-emption). Also, temporarily disabling pro-
grams or services (e.g., unattended-upgrades) not needed during measurements
is another way of limiting impact of other programs.

7.4.1.4 Improve Temperature Control

Temperature differences up to 8℃ or more have been observed. The tempera-
ture can have a significant impact on energy consumption [CN13], and should be
controlled more carefully.

The speed of the fan on the Odroid-XU3 can be controlled manually. The fan
should be set to a constant speed during measurement to remove possible effects
on measurement stability.

7.4.1.5 Limit Effects of I/O Operations

Performing I/O operations to and from RAM instead of disk could improve the
speed and reduce measurement stability. To implement this tmpfs(5), or other
lower-level tools such as memfd_create(2) could be used.

7.4.1.6 Improve Energy Estimation

Energy estimation is done by sampling certain registers at a frequency of 100 Hz.
However, the registers are updated at an unknown frequency that is less than
100 Hz, resulting in several identical entries in a row when measuring energy. Look-
ing more closely at the inner workings of the INA231 sensor [Tii] can give insights
about energy measurements to improve the accuracy of the energy estimates.

7.4.1.7 OpenMP and Multi-threading

The behaviour of OpenMP and multi-threaded programs should be subject to fur-
ther studies. During our measurements, the OpenMP program doubled the energy

83

Chapter 7. Future Work

consumption when performing energy measurements in C++. No experiments have
been performed using the built-in thread functionality in C++.

The problematic behavior of the OpenMP program when run with taskset(1)
resulted in disabling running of programs using taskset(1) by default. A possible
workaround is giving users control of which cores programs should run on (e.g.,
only run on small the cores or on a single big core), or what type of program it is
(e.g., single-threaded programs are run on one core by default using taskset(1),
and programs using OpenMP have access to all cores). Possible solutions that work
for both OpenMP, and other multi-threaded programs should be studied.

7.4.2 Improving Security

7.4.2.1 Improving Correctness Testing of Programs

Currently the system only has one hidden test case. As illustrated in Listing 3.5
this can give students insights about details of the test case, resulting in solutions
that do not work in general.

To mitigate this problem, multiple hidden correctness tests should be implemented.
These should test different edge cases of the program to ensure that the programs
work correctly.

7.4.2.2 Further Restrict Access in the Chroot Jail

Two way approaches to give access to necessary files in the chroot jail were described
in Section 4.4.2.1. The approach not implemented, which gave access to fewer files
could be implemented to strengthen security.

7.4.2.3 Compilation and Profiling in Secure Environments

Attacks on the system can also occur during compilation and profiling of programs.
The chroot jail can be modified to be used for securing these steps. This would
make the system more secure to attacks.

84

7.4 Back End

7.4.2.4 Reimplementing Resource Limitations

Memory limitations were implemented using setrlimit(2). However, this ap-
proach restarts accounting for every child process spawned, meaning the imple-
mented memory limiting only is effective for single-threaded programs. However,
cgroups(5) can be used to limit resources for process groups.

7.4.3 Other

7.4.3.1 Supporting Multiple Languages and Compilers

Support for multiple languages can be implemented by creating abstractions that
do not depend on a specific language. The judges in Section 2.2.3 use abstractions
called Runner (or something similar), where all language- and compiler-specific
commands are collected in a single object.

To implement this, the database must add support for different languages and
compiler versions. The front end must have the ability to select language when
uploading, and scoreboards must show the languages used.

The improvements to measurement stability and security that are implemented in
this thesis are implemented in a language-agnostic way, and could be adapted for
use with other languages with minimal modifications.

7.4.3.2 Supporting Multiple Back Ends

Supporting multiple back ends have to separate use cases, which can be solved using
the same tools: supporting multiple different back ends, and supporting multiple
equal back ends.

By using a tool to manage queues and a broker to distribute submissions to back
ends, both use cases can be covered. The queue management tool would have
one queue for each type of back end, and the broker would pop submissions from
a queue and run them on the respective back end—preferably running multiple
submissions on multiple back ends asynchronously.

When multiple back ends of the same type are connected, the broker can run
different submissions on different back ends. However, great care must be taken to
ensure that the back ends produce equal results.

85

Chavez [Cha16] implemented a prototype broker for the CMB system, and his work
should be considered if implementing support for multiple back ends.

7.4.3.3 Installing a Newer Compiler

Installing a newer version of the GCC compiler can give access to newer features
of the C++ language. Most notably, GCC 9.1 provides execution policies which is
interesting when studying energy-efficiency for multi-threaded programs.

GCC 9.1 can be installed by following the instructions here: https://launchpad.
net/~jonathonf/+archive/ubuntu/gcc-9.1. The scripts compiling programs must
be updated to use the new version.

7.4.3.4 Implementation Language

Magnussen [Mag16] suggested that all scripts should be implemented in Python
for easier debugging and testing. This was partially implemented by Ingebrigtsen
[Ing17], but code that could interfere with measurements was still written in Bash.
Scripts in different languages make the system harder to maintain. This thesis has
moved much of the code related to measurements to C++.

It is unclear whether script implemented in Python can interfere with measurement
stability. However, Python lacks good interfaces to system calls and implementing
all scripts in Python would be impossible.

We suggests implementing all functionality on the back end in C++. This provides
a good compromise: C++ is more well behaved than Bash, making it easier to de-
bug; it has good testing frameworks, it has access to lower level utilities of the Linux
kernel through system calls and it should have minimal impact on measurement
stability compared to Bash and Python.

86

https://launchpad.net/~jonathonf/+archive/ubuntu/gcc-9.1
https://launchpad.net/~jonathonf/+archive/ubuntu/gcc-9.1

Bibliography

[AER18] Tab Atkins, Elika Etemad, and Florian Rivoal. CSS Snapshot 2018
W3C Working Group Note. Working Group Note. W3C, 2018. url:
https://www.w3.org/TR/css-2018/.

[ALSU07] A Aho, M Lam, R Sethi, and J Ullman. Compilers: Principles,
Techniques and Tools, 2nd Editio. Pearson Higher Education, 2007.

[Ang] AngularJS. url: https://angularjs.org/ (visited on 11/19/2018).
[Asy] std::async. url:

https://en.cppreference.com/w/cpp/thread/async (visited on
07/18/2019).

[Bas] bash (1) — Linux man pages. url:
http://man7.org/linux/man-pages/man1/bash.1.html (visited
on 07/18/2019).

[Bie11] Christian Bienia. “Benchmarking Modern Multiprocessors”.
PhD thesis. Princeton University, Jan. 2011.

[Big] big.LITTLE. url:
https://developer.arm.com/technologies/big-little (visited
on 11/21/2018).

[Bra17] Tim Bray. The JSON Data Interchange Syntax. Standard 404.
Geneva, CH: ECMA International, 2017.

[Cap] capabilities (7) — Linux man pages. url:
http://man7.org/linux/man-pages/man7/capabilities.7.html
(visited on 07/18/2019).

[Cha16] Christian Chavez. “Climbing Mont Blanc and Scalability”.
MA thesis. IDI, NTNU, 2016.

87

https://www.w3.org/TR/css-2018/
https://angularjs.org/
https://en.cppreference.com/w/cpp/thread/async
http://man7.org/linux/man-pages/man1/bash.1.html
https://developer.arm.com/technologies/big-little
http://man7.org/linux/man-pages/man7/capabilities.7.html

[Chr] chroot (2) — Linux man pages. url:
http://man7.org/linux/man-pages/man2/chroot.2.html (visited
on 07/18/2019).

[CKC12] Hongsuk Chung, Munsik Kang, and Hyun-Duk Cho. Heterogeneous
Multi-Processing Solution of Exynos 5 Octa with ARM big.LITTLE
Technology. White Paper. Samsung Electronics Co., Ltd., 2012. url:
https://www.arm.com/files/pdf/Heterogeneous_Multi_
Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_
Technology.pdf.

[Clo] clock_getres (2) — Linux man pages. url:
http://man7.org/linux/man-pages/man2/clock_gettime.2.html
(visited on 07/18/2019).

[CN13] J. M. Cebrián and L. Natvig. “Temperature effects on on-chip energy
measurements”. In: 2013 International Green Computing Conference
Proceedings. June 2013, pp. 1–6. doi: 10.1109/IGCC.2013.6604484.

[Coda] Codecademy. url: https://www.codecademy.com/ (visited on
11/27/2018).

[Codb] Codewars. url: https://codewars.com/ (visited on 12/07/2018).
[Cora] Cortex-A15. url:

https://developer.arm.com/products/processors/cortex-
a/cortex-a15 (visited on 12/01/2018).

[Corb] Cortex-A7. url:
https://developer.arm.com/products/processors/cortex-
a/cortex-a7 (visited on 12/01/2018).

[Cppa] Pseudo-random number generation. url:
https://en.cppreference.com/w/cpp/numeric/random (visited on
06/25/2019).

[Cppb] Standard for the C++ Language. Standard. Geneva, CH:
International Organization for Standardization, Dec. 2017.

[Cro] Cron Howto. url:
https://help.ubuntu.com/community/CronHowto (visited on
07/22/2019).

[DDC+19] Marc Duranton, Koen De Bosschere, Bart Coppens,
Christian Gamrat, Madeleine Gray, Harm Munk, Emre Ozer,
Tullio Vardanega, and Oliver Zendra. The HiPEAC Vision 2019.
Tech. rep. HiPEAC, 2019.

[DDG+17] Marc Duranton, Koen De Bosschere, Christian Gamrat,
Jonas Maebe, Harm Munk, and Olivier Zendra. The HiPEAC Vision
2017. Tech. rep. HiPEAC, 2017.

88

http://man7.org/linux/man-pages/man2/chroot.2.html
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
http://man7.org/linux/man-pages/man2/clock_gettime.2.html
https://doi.org/10.1109/IGCC.2013.6604484
https://www.codecademy.com/
https://codewars.com/
https://developer.arm.com/products/processors/cortex-a/cortex-a15
https://developer.arm.com/products/processors/cortex-a/cortex-a15
https://developer.arm.com/products/processors/cortex-a/cortex-a7
https://developer.arm.com/products/processors/cortex-a/cortex-a7
https://en.cppreference.com/w/cpp/numeric/random
https://help.ubuntu.com/community/CronHowto

[Din70] E. A. Dinic. “Algorithm for solution of a problem of maximum flow
in networks with power estimation”. In: Soviet Math. Doklady 11
(1970), pp. 1277–1280. url:
https://ci.nii.ac.jp/naid/10021311931/en/.

[Doc] Docker. url: https://www.docker.com/ (visited on 12/08/2018).
[Doma] DOMjudge. url: https://www.domjudge.org/ (visited on

11/27/2018).
[Domb] DOMjudge (GitHub repository). url:

DOMjudge(GitHubrepository) (visited on 11/27/2018).
[EK72] Jack Edmonds and Richard M Karp. “Theoretical improvements in

algorithmic efficiency for network flow problems”. In: Journal of the
ACM (JACM) 19.2 (1972), pp. 248–264.

[EKN+11] Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman,
and Viggo Kann. “Five years with kattis—using an automated
assessment system in teaching”. In: Frontiers in Education
Conference (FIE), 2011. IEEE. 2011, T3J–1.

[Ene] Hardkernel EnergyMonitor (GitHub repository). url:
https://github.com/hardkernel/EnergyMonitor (visited on
11/27/2018).

[Exea] exec (3) — Linux man pages. url:
http://man7.org/linux/man-pages/man3/exec.3.html (visited
on 07/18/2019).

[Exeb] exec (3p) — Linux man pages. url:
http://man7.org/linux/man-pages/man3/exec.3p.html (visited
on 07/18/2019).

[Exec] execve (2) — Linux man pages. url:
http://man7.org/linux/man-pages/man2/execve.2.html (visited
on 07/18/2019).

[Fai] Fail2Ban. url:
https://www.fail2ban.org/wiki/index.php/Main_Page (visited
on 07/18/2019).

[FEL+17] Steve Faulkner, Arron Eicholz, Travis Leithead, Alex Danilo, and
Sangwhan Moon. HTML 5.2 W3C Recommendation. Standard.
W3C, 2017.

[Flaa] Flask. url: http://flask.pocoo.org/ (visited on 11/19/2018).
[Flab] Flask-SocketIO. url:

https://flask-socketio.readthedocs.io/en/latest/ (visited
on 06/11/2019).

[For06] Michal Forišek. “Security of programming contest systems”. In:
Information Technologies at School (2006), pp. 553–563.

89

https://ci.nii.ac.jp/naid/10021311931/en/
https://www.docker.com/
https://www.domjudge.org/
DOMjudge (GitHub repository)
https://github.com/hardkernel/EnergyMonitor
http://man7.org/linux/man-pages/man3/exec.3.html
http://man7.org/linux/man-pages/man3/exec.3p.html
http://man7.org/linux/man-pages/man2/execve.2.html
https://www.fail2ban.org/wiki/index.php/Main_Page
http://flask.pocoo.org/
https://flask-socketio.readthedocs.io/en/latest/

[FT02] Roy T. Fielding and Richard N. Taylor. “Principled Design of the
Modern Web Architecture”. In: ACM Trans. Internet Technol. 2.2
(May 2002), pp. 115–150. issn: 1533-5399. doi:
10.1145/514183.514185. url:
http://doi.acm.org/10.1145/514183.514185.

[Gcc] Using the GNU Compiler Collection (GCC).
https://gcc.gnu.org/onlinedocs/gcc/index.html. Free Software
Fundation, Inc. 2019.

[Gev] gevent. url: http://www.gevent.org/ (visited on 06/20/2019).
[Goo] Google Analytics. url: https://www.google.com/analytics

(visited on 11/19/2018).
[Guna] Gunicorn. url: https://gunicorn.org/ (visited on 11/19/2018).
[Gunb] Gunicorn Architecture. url:

https://docs.gunicorn.org/en/stable/design.html (visited on
06/20/2019).

[Hac] HackerRank. url: https://www.hackerrank.com/ (visited on
12/08/2018).

[HHSR13] Steven Halim, Felix Halim, Steven S Skiena, and Miguel A Revilla.
Competitive Programming 3. Lulu Independent Publish, 2013.

[HT99] Andrew Hunt and David Thomas. The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley, 1999. isbn:
0201612622X, 9780201616224.

[Icp] International Collegiate Programming Contest (ICPC). url:
https://icpc.baylor.edu/ (visited on 12/08/2018).

[Idi] IDI Open 2015. 2015. url:
https://idiopen.idi.ntnu.no/open15/ (visited on 04/17/2019).

[Inga] INGInious. url: https://inginious.org/ (visited on 12/08/2018).
[Ingb] INGInious GitHub repository. url:

https://github.com/UCL-INGI/INGInious (visited on
12/08/2018).

[Ing17] Fredrik Pe Ingebrigtsen. “Climbing Mont Blanc – Back-end
Improvements”. MA thesis. IDI, NTNU, 2017.

[Jen] Jenkins CI. url: https://jenkins.io/ (visited on 12/04/2018).
[Jut] Jutge.org. url: https://jutge.org/ (visited on 11/27/2018).
[Kat] Kattis. url: https://kattis.com/ (visited on 12/07/2018).
[LM16] Johannes Omber Lier and Thea Christine Mathisen. “Experiments

towards digital exam with auto-grading in C++ programming
courses”. MA thesis. IDI, NTNU, 2016.

[Mag16] Sindre Magnussen. “Improving System Usability of Climbing Mont
Blanc – An Online Judge for Energy Efficient Programming”.
MA thesis. IDI, NTNU, 2016.

90

https://doi.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
https://gcc.gnu.org/onlinedocs/gcc/index.html
http://www.gevent.org/
https://www.google.com/analytics
https://gunicorn.org/
https://docs.gunicorn.org/en/stable/design.html
https://www.hackerrank.com/
https://icpc.baylor.edu/
https://idiopen.idi.ntnu.no/open15/
https://inginious.org/
https://github.com/UCL-INGI/INGInious
https://jenkins.io/
https://jutge.org/
https://kattis.com/

[McC04] Steve McConnell. Code Complete. 2nd ed. Redmond, WA, USA:
Microsoft Press, 2004. isbn: 0735619670, 9780735619678.

[Min] Minimal — Ubuntu Wiki. url:
https://en.cppreference.com/w/cpp/numeric/random (visited on
07/10/2019).

[Mon] The Mont-Blanc project. url: http://montblanc-project.eu/
(visited on 11/16/2018).

[Mys] MySQL. url: https://www.mysql.com/ (visited on 11/19/2018).
[Neg12] Christopher Negus. Linux Bible. 8th ed. John Wiley & Sons, 2012.
[NFS+15] L. Natvig, T. Follan, S. Støa, S. Magnussen, and A. Garcia Guirado.

“Climbing Mont Blanc - A Training Site for Energy Efficient
Programming on Heterogeneous Multicore Processors”. In: ArXiv
e-prints (2015). arXiv: 1511.02240.

[Ngi] NGINX. url: https://nginx.com/ (visited on 11/19/2018).
[Nic] nice (1) — Linux man pages. url:

http://man7.org/linux/man-pages/man1/nice.1.html (visited
on 07/18/2019).

[Nod] Node.js. url: https://nodejs.org/ (visited on 11/16/2018).
[NSLH19] Lasse Natvig, Magnus Själander, and Magnus Lie Hetland. Climbing

Mont Blanc – A Case Study in Challenging the Most Eager Students
in a Large Programming Class. This report presents the status of the
project per June 2018. July 2019. doi: 10.5281/zenodo.3345829.
url: https://doi.org/10.5281/zenodo.3345829.

[Num] NumPy. url: https://numpy.org (visited on 07/18/2019).
[Odra] Odroid Wiki. url: https://wiki.odroid.com/ (visited on

12/12/2018).
[Odrb] Odroid XU3. url:

https://www.hardkernel.com/shop/odroid-xu3/ (visited on
11/21/2018).

[Opea] OpenCL C++ Bindings Documentation. url:
https://github.khronos.org/OpenCL-CLHPP/ (visited on
07/15/2019).

[Opeb] OpenMP Comilers & Tools. url:
https://www.openmp.org/resources/openmp-compilers-tools/
(visited on 08/02/2019).

[Pep] PEP 373 — Python 2.7 Release Schedule. url:
https://www.python.org/dev/peps/pep-0373/ (visited on
12/05/2018).

91

https://en.cppreference.com/w/cpp/numeric/random
http://montblanc-project.eu/
https://www.mysql.com/
https://arxiv.org/abs/1511.02240
https://nginx.com/
http://man7.org/linux/man-pages/man1/nice.1.html
https://nodejs.org/
https://doi.org/10.5281/zenodo.3345829
https://doi.org/10.5281/zenodo.3345829
https://numpy.org
https://wiki.odroid.com/
https://www.hardkernel.com/shop/odroid-xu3/
https://github.khronos.org/OpenCL-CLHPP/
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.python.org/dev/peps/pep-0373/

[PGR12] Jordi Petit, Omer Giménez, and Salvador Roura. “Jutge.Org: An
Educational Programming Judge”. In: Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education. SIGCSE ’12.
New York, NY, USA: ACM, 2012, pp. 445–450. isbn:
978-1-4503-1098-7. doi: 10.1145/2157136.2157267. url:
http://doi.acm.org/10.1145/2157136.2157267.

[Pyl] Pylint. url: https://www.pylint.org/ (visited on 07/18/2019).
[Pyta] Pytest. url: https://docs.pytest.org/en/latest/ (visited on

07/18/2019).
[Pytb] Python. url: https://www.python.org/ (visited on 11/19/2018).
[Ren] renice (1) — Linux man pages. url:

http://man7.org/linux/man-pages/man1/renice.1.html (visited
on 07/18/2019).

[Rev] What is a reverse proxy server? url: https:
//www.nginx.com/resources/glossary/reverse-proxy-server/
(visited on 11/19/2018).

[RML08] Miguel A. Revilla, Shahriar Manzoor, and Ruijia Liu. “Competitive
Learning in Informatics: The UVa Online Judge Experience”. In:
Olympiads in Informatics 2 (2008), pp. 131–148.

[Sch] sched_setaffinity (2) — Linux man pages. url: http:
//man7.org/linux/man-pages/man2/sched_setaffinity.2.html
(visited on 07/18/2019).

[Scia] SciPy. url: https://www.scipy.org/ (visited on 07/18/2019).
[Scib] scipy.integrate.simps. url: https://docs.scipy.org/doc/scipy-

0.14.0/reference/generated/scipy.integrate.simps.html
(visited on 11/26/2018).

[Sel] SELinux. url: https://selinuxproject.org/page/Main_Page
(visited on 12/08/2018).

[Seta] setcap (8) — Linux man pages. url:
http://man7.org/linux/man-pages/man8/setcap.8.html (visited
on 07/18/2019).

[Setb] setrlimit (2) — Linux man pages. url:
http://man7.org/1inux/man-pages/man2/setrlimit.2.html
(visited on 07/18/2019).

[Setc] setuid (2) — Linux man pages. url:
http://man7.org/linux/man-pages/man2/setuid.2.html (visited
on 07/18/2019).

[SF15] Simen Støa and Torbjørn Follan. “Climbing Mont Blanc – A
Prototype System for Online Energy Efficiency Based Programming
Competitions on ARM Platforms”. MA thesis. IDI, NTNU, 2015.

92

https://doi.org/10.1145/2157136.2157267
http://doi.acm.org/10.1145/2157136.2157267
https://www.pylint.org/
https://docs.pytest.org/en/latest/
https://www.python.org/
http://man7.org/linux/man-pages/man1/renice.1.html
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/resources/glossary/reverse-proxy-server/
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
https://www.scipy.org/
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.simps.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.simps.html
https://selinuxproject.org/page/Main_Page
http://man7.org/linux/man-pages/man8/setcap.8.html
http://man7.org/1inux/man-pages/man2/setrlimit.2.html
http://man7.org/linux/man-pages/man2/setuid.2.html

[She] ShellCheck. url: https://www.shellcheck.net/ (visited on
07/18/2019).

[Soc] Socket.io. url: https://socket.io/ (visited on 11/19/2018).
[Sqla] SQLAlchemy. url: https://sqlalchemy.org/ (visited on

11/19/2018).
[Sqlb] SQLite. url: https://sqlite.org/ (visited on 11/19/2018).
[Sysa] Generic Thermal Sysfs driver How To. url: https:

//www.kernel.org/doc/Documentation/thermal/sysfs-api.txt
(visited on 07/28/2019).

[Sysb] std::system. url:
https://en.cppreference.com/w/cpp/utility/program/system
(visited on 07/18/2019).

[Tas] taskset (1) — Linux man pages. url:
http://man7.org/linux/man-pages/man1/taskset.1.html
(visited on 07/18/2019).

[Tdta] TDT4102 coursepage. url:
https://www.ntnu.edu/studies/courses/TDT4102 (visited on
11/16/2018).

[Tdtb] TDT4120 coursepage. url:
https://www.ntnu.no/studier/emner/TDT4120 (visited on
12/08/2018).

[Tdtc] TDT4200 coursepage. url:
https://www.ntnu.edu/studies/courses/TDT4200#tab=omEmnet
(visited on 04/17/2019).

[Ter17] Brian Terlson. ECMAScript 2018 Language Specification. Standard
262. Geneva, CH: ECMA International, 2017.

[Tii] INA231 High- or Low-Side Measurement, Bidirectional Current and
Power Monitor With 1.8-V I2C Interface. SBOS644C. Rev. C. Texas
Instruments. Mar. 2018.

[Ufw] Uncomplicated Firewall. url:
https://wiki.ubuntu.com/UncomplicatedFirewall (visited on
07/18/2019).

[Uhu] uHunt — UVa Hunting. url: https://uhunt.onlinejudge.org/
(visited on 11/27/2018).

[Uni] unittest. url:
https://docs.python.org/3.6/library/unittest.html (visited
on 07/18/2019).

[Uva] UVa Online Judge. url: https://uva.onlinejudge.org/ (visited
on 11/27/2018).

[Vir] Virtualenv. url: https://virtualenv.pypa.io/en/stable/
(visited on 07/18/2019).

93

https://www.shellcheck.net/
https://socket.io/
https://sqlalchemy.org/
https://sqlite.org/
https://www.kernel.org/doc/Documentation/thermal/sysfs-api.txt
https://www.kernel.org/doc/Documentation/thermal/sysfs-api.txt
https://en.cppreference.com/w/cpp/utility/program/system
http://man7.org/linux/man-pages/man1/taskset.1.html
https://www.ntnu.edu/studies/courses/TDT4102
https://www.ntnu.no/studier/emner/TDT4120
https://www.ntnu.edu/studies/courses/TDT4200#tab=omEmnet
https://wiki.ubuntu.com/UncomplicatedFirewall
https://uhunt.onlinejudge.org/
https://docs.python.org/3.6/library/unittest.html
https://uva.onlinejudge.org/
https://virtualenv.pypa.io/en/stable/

[WAB+18] Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and
Tomasz Sternal. “A Survey on Online Judge Systems and Their
Applications”. In: ACM Comput. Surv. 51.1 (Jan. 2018), 3:1–3:34.
issn: 0360-0300. doi: 10.1145/3143560. url:
http://doi.acm.org/10.1145/3143560.

[Wys17] Rafael J. Wysocki. The Linux kernel user’s and administrator’s
guide — CPU Performance Scaling. 2017. url:
https://www.kernel.org/doc/html/v4.14/admin-
guide/pm/cpufreq.html (visited on 07/16/2019).

[YL06] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Protocol
Architecture. RFC 4251. IETF, Jan. 2006.

94

https://doi.org/10.1145/3143560
http://doi.acm.org/10.1145/3143560
https://www.kernel.org/doc/html/v4.14/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/v4.14/admin-guide/pm/cpufreq.html

Appendix A
Installation Instructions

A.1 Back End

1. Download the Ubuntu 18.04 Minimal image from https://wiki.odroid.
com/odroid-xu4/os_images/linux/ubuntu_4.14/ubuntu_4.14. Flash the
image to a SD-card or eMMC-card (e.g., by using dd(1)).

2. On first boot, some configuration is done automatically before the board
shuts down. The board is shut down when no LEDs are blinking (only a
constant red LED). Start the board again.

3. To locate an Odroid connected to the internet, use arp-scan. Note that the
computer running the command must be wired to the same switch (or router)
as the Odroid.

sudo arp-scan --interface=eth0 --localnet

The Odroid will have a MAC address starting with 00:1e:06 in the list of
discovered devices.

4. Connect to the board by using SSH. The default user/password combination
is root/odroid.

ssh root@<IP-address>

5. Change the default password:

passwd

95

https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.14/ubuntu_4.14
https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.14/ubuntu_4.14

6. The MAC address of the board can be changed by (replace XX with wanted
number):

echo '00:e1:06:61:7a:XX' >> /media/boot/boot.ini.default
/usr/share/bootini/bootini-persistence.pl

7. Install git, clone the repository and install the system:

apt-get install git
git clone <repository-url>
cd cmb-board
PASSWORD=<climber-password> ./install.sh

A.2 Server and Front End

For the server and front end set up, the instructions from Magnussen [Mag16] can
be followed with a few exceptions:

1. Use a Ubuntu 18.04 Minimal disk image.

2. Add the following content to /lib/systemd/system/cmb.service:

[Unit]
Description=CMB system
After=nginx.service

[Service]
User=climber
Type=forking
EnvironmentFile=/srv/climber/cmb/server/cmb-flask/env
ExecStart=/srv/climber/cmb/server/cmb-flask/scripts/init_cmb.sh start
ExecStop=/srv/climber/cmb/server/cmb-flask/scripts/init_cmb.sh stop
Restart=on-failure

[Install]
WantedBy=multi-user.target

3. Enable and start the service using with the following commands:

sudo systemctl enable cmb
sudo systemctl start cmb

96

Appendix B
CMB Challenge 2019

B.1 General information, rules and technical in-
formation

This document contains general information, rules and technical information about
the CMB Challenge 2019 competition. This was published to the students on the
course page the day before the competition started.

97

CMB Challenge 2019

Introduction

There are 6 problems in the competition. All problems are unrelated and can
be solved in any order. Problems 1-5 make use of randomly generated numbers,
which is explained in the task document (you can find it on Blackboard when
the competition has started). Problem 6 only uses input from stdin.

In order to participate in the competition you have to sign up on the CMB web-
site (climb.idi.ntnu.no), and join the group “TDT4102 CMB Challenge 2019”.

If you need some help to get started, the HowTo-page on the CMB website
might give useful hints. The Piazza-forum in the course has a tag for CMB-
related questions, please do not hesitate to ask questions by posting on piazza.
If you experience technical difficulties with the system, e.g., system crash or
messages to contact the system administrator, you can send an email to ok-
peders@stud.ntnu.no — please give enough details (username, problem name,
code) about your problem in order for us to help you faster.

Thanks for helping to improve the CMB system, and good luck!

General information

Specification of the problems will be published to the folder “CMB Challenge”
on Blackboard when the competition starts. There will be a prize for the three
best programmers, but the prizes have not yet been decided.

Competition rules

• Only for students in the TDT4102 course spring 2019

• Competition starts on the 13th of March, 12:00.

• Competition ends on the 3rd of April, 12:00.

1

98

Scoring rules

a) 1 point for every problem with a valid solution.

b) 3 points for the fastest solution to a problem, 2 points for the second
fastest solution and 1 point for the third fastest solution to a problem
(except for problem 6, see below).

c) 3 points for the most energy-efficient solution to a problem (measured by
the EDP-value), 2 points for the second most energy-efficient solution to
a problem and 1 point for the third most energy-efficient solution to a
problem (except for problem 6, see below).

d) For problem 6, the best, second best and third best solutions will get
6, 4 and 2 points, respectively. The “pareto-metric” EDP ∗ distance is
used here, where the distance is the distance of the path generated by the
submitted solution.

e) Points can be shared among multiple students if the difference in one of
the competition metrics is smaller than the precision of that CMB metric.
E.g., if no 1 and no 2 are very close, the judges might decide that both
will get (3 + 2)/2 = 2.5 points.

Technical note

The system will test your uploaded solution by running two separate test cases,
one big and one small test case. The energy and time measurements are per-
formed while running the program on the big test case. The results will be
displayed if you pass both test cases.

The CMB system runs on an Ubuntu Linux system and compiles the code using
a gcc/g++ compiler. The compiler uses the C++11 standard, so code using
C++14/17/20 features will not compile.

Previously, some users received compilation errors on the system, but not lo-
cally. MS-VS and Xcode sometimes have a couple of extra (read: non-standard)
features in the language, and these will usually not compile on the system. Also,
these IDEs sometimes include some extra headers for you, but the compiler on
the system doesn’t necessarily include the same headers. Make sure that you
include all of your headers explicitly to avoid errors (include too many, rather
than too few).

The std lib facilities.h-header used in this course is not available in
the system, so you will receive compilation errors if you try to use it.

2

99

B.2 Problem descriptions

This document contains the problem descriptions for the problems given in the
competition.

100

CMB Challenge 2019 — Problems

March 13, 2019

About pseudo-random numbers

In problems 1-5 you have to generate random numbers using the code below.
The code below gives the same random numbers on all systems, do not use
rand() or <random> for these tasks!

#include <algorithm>
using namespace std;
class RandInt {
private:

static const unsigned int INCREMENT = 0xC39EC3;
static const unsigned int MULTIPLIER = 0x43FD43FD;
unsigned int m_nRnd;

public:
RandInt(unsigned int nSeed) : m_nRnd(nSeed) {};
int getInt(int nFrom, int nTo) {

if (nTo < nFrom)
swap(nTo, nFrom); // include algorithm

else if (nTo == nFrom)
return nTo;

m_nRnd = (m_nRnd*MULTIPLIER + INCREMENT) & 0xFFFFFF;
float fTmp = (float)m_nRnd / 16777216.0;
return (int)((fTmp*(nTo - nFrom + 1)) + nFrom);

}
};

The class RandInt has a constructor taking a seed to initialize the random
number generation. It also has a member function getInt which takes two
numbers, from and to and return a random integer in the closed range [from, to],
(i.e., a number n such that from ≤ n ≤ to).

1

101

Example:

A typical task will require you to read some numbers (including a seed) from
stdin (you can use cin for this), and then do some calculations before you
write the answer to stdout (you can use cout for this). The program below
demonstrates how you can read variables from stdin, generate N numbers in
the closed range [0, 100] (i.e., both 0 and 100 are in the range), and write the
sum of these to stdout.

#include <algorithm>
#include <iostream>
using namespace std;
class RandInt {

// skipped for brevity, same as above
};

int main() {
int N, S; // N, and the seed
cin >> N >> S;
RandInt generator(S);
int sum{0};
for (int i = 0; i < N; i++) {

int random_number = generator.getInt(0, 100);
sum += random_number;

}
cout << sum << '\n';

}

Input:

10 452

Output:

409

2

102

1 To Quote Hamlet..

A lot of seabirds, like puffins and certain types of seagulls, are considered to
be endangered or threatened, due to human interference. To gain a better
understanding of the situation, as well as observing how effective the attempts
to make up for the damage are, special methods for counting and observing the
birds has been developed.

You are going to observe a part of a large seabird sanctuary, and you will have
to walk for several hours to get there. You are joined by another observer, Dr.
K. Meis, to make sure the resulting data is as accurate as possible. Dr. Meis is
really talkative, and can’t seem to stop quoting more or less brilliant fictional
characters. You start counting who Dr. Meis is quoting as a way of preparing
your brain for the bird counting. To make it easier you give each person Dr.
Meis is quoting a number, see the table below.

0 Hamlet 10 Mrs Hudson
1 Macbeth 11 Luna Lovegood
2 Lady Trent 12 Ferguson Bishop
3 Professor McGonagall 13 Gandalf the Grey
4 Mycroft Holmes 14 Cruella de Vil
5 Pippi Longstocking 15 Sherlock Holmes
6 Vera Stanhope 16 Professor Dumbledore
7 Hercule Poirot 17 Professor Trelawney
8 Professor Kroll 18 Lindelin Rosenquist
9 Veronica Mars 19 Keith Mars

Input:

The program is supposed to read two integers from standard input. They are
both situated on the first line. The first number, N , is the number of quotes.
The second number, S, is a seed used to generate the needed data. (See the
section about random numbers at the beginning of this document). Generate
N integers in the closed interval [0, 19]. Every number represents a quotation,
and the numbers corresponds with the numbers in the table above. You can
assume that 0 < N ≤ 1 000 000 000 and 0 < S ≤ 2 000 000 000.

Output:

The program is supposed to write the name of the person Dr. K. Meis quoted the
most, followed by how many times this person was quoted to standard output.

3

103

For format see example below. Make sure to use the exact same format with
uppercase/lowercase letters in the right places. Every place containing white
characters (space) is to contain exactly one white character.

Example:

Input:

23 11

Output:

Lady Trent 3

4

104

2 Pirates and probability

There is a pressing need to find a safe place to hide your amazing treasure
after yet another successful raid. As captain, deciding where to hide it is your
responsibility. This is a huge responsibility, and making the right choice is
crucial. But the list containing all the possible hiding places seems endless, how
in the name of Jacquotte Delahaye “Back from the Dead Red” are you going to
pick the best place? After hours of frowning, headache, and pondering you are
about to give up. You climb the main mast in a last desperate attempt to sort
this mess out. And that’s when it hits you: There are only three factors you
need to take into account when picking the perfect hiding place. These three
are:

1. The probability that you will be able to recover it.

2. The probability that NO ONE ELSE will find it.

3. The probability that animal life and the environment WILL NOT be neg-
atively affected by it. A habitable planet is, after all, crucial to pirate
activity. And there is no planet B, not even for pirates.

After this epiphany you proceed to go through the list of hiding places and write
the probability (in percent) for each of the three factors stated above.

The three factors are weighted as follows: factor 1 has weight 0.4, factor 2 and
3 are both weighted with 0.3 (i.e. w1 = 0.4, w2 = w3 = 0.3).

Pleased with this brilliant method for solving the most difficult problem of the
week, you decide to write a little program to solve it for you. The list is, after
all, incredibly long. . .

Input:

The program is supposed to read two integers from standard input. They are
both situated on the first line. The first number, N , is the number of hiding
places. The second number, S, is a seed used to generate the needed data. (See
the section about random numbers at the beginning of this document). You
can assume that 0 < N ≤ 5 000 000 and 0 < S ≤ 2 000 000 000.

When generating the numbers:

• All numbers are to be generated in the closed interval [0, 100].

5

105

• The N first values are the probability for factor 1, the N next values are
the probability for factor 2 and the last N values are the probability for
factor 3. (Where the first value for factor 1 is the factor 1 value for place
1, etc).

The first place on the list is called 1, the second is called 2,, the N th is called
N . Calculate the score for each place using the probabilities and the weights.

When sorting, comparing or printing numbers you should use integers. Use
floating point values in intermediary calculations if necessary.

Output:

Your program should write the following to standard output:

A list of the five places with the highest score, and a list of the five places with
the lowest score. The list of the five best places should be sorted accordingly:
The places with the highest score are to be written before the places with lower
score. If several places have the same score, the place with the lowest number
(name) is to be written first.

The list of the five places with the lowest score should be sorted accordingly:
The places with the lowest score are to be written before the places with higher
score. If several places have the same score, the place with the lowest number
(name) is to be written first.

For format see example below. Make sure to use the exact same format with
commas, dots and uppercase/lowercase letters at the right places, as well as
correct sorting. Every place containing white characters (space) is to contain
exactly one white character.

p1 is the probability for factor 1, p2 is the probability for factor 2, p3 is the
probability for factor 3.

Example:

Input:

50 8

6

106

Output:

The 5 places with the highest score are:
place: 23, score: 89, p1: 92, p2: 75, p3: 100.
place: 4, score: 82, p1: 94, p2: 95, p3: 53.
place: 47, score: 79, p1: 93, p2: 82, p3: 57.
place: 42, score: 76, p1: 97, p2: 44, p3: 79.
place: 45, score: 76, p1: 65, p2: 87, p3: 80.
The 5 places with the lowest score are:
place: 34, score: 17, p1: 15, p2: 30, p3: 6.
place: 37, score: 22, p1: 24, p2: 14, p3: 28.
place: 2, score: 27, p1: 37, p2: 30, p3: 9.
place: 30, score: 27, p1: 58, p2: 8, p3: 5.
place: 28, score: 30, p1: 30, p2: 57, p3: 3.

7

107

3 The Huckybucky forest

Climate change is one of the biggest issues humanity is currently facing. The
increase in the emissions of greenhouse gases increases the greenhouse effect,
which in turn leads to global warming. To try and calculate how much an indi-
vidual, country or event emits, one often uses carbon footprint. To compare the
emissions from the different greenhouse gases one usually converts the values to
CO2-equivalents. When calculating someone’s or something’s carbon footprint
one adds all the CO2-equivalents emitted by this person/thing. The emissions
can be both direct and indirect carbon emissions; direct emissions can be a
result of for instance transport, indirect emissions are usually a result of the
products we consume, such as food and clothes. Studies have shown that a
meat-based diet emits more CO2-equivalents than a plant-based diet.

You have decided to reduce your carbon footprint by eating more plant-based
food. Two seconds later you realise that this is the perfect moment for moving
into the Huckybucky forest (Norwegian: Hakkebakkeskogen), because their new
law makes it illegal to eat meat. But then you start wondering; will moving into
the Huckybucky forest actually reduce your carbon footprint? The emissions
resulting from your food will most definitely decrease, but will the emissions
resulting from other parts of your life (such as transport and heating) increase,
decrease or stay stable?

Calculate the amount of CO2-equivalents emitted as a result of your life in the
city and your life in the Huckybucky forest.

Input

Your program is supposed to read three integers from standard input. All three
are situated on the first line. The first number, N , is the number of emissions
per month. The second number, M , is the number of years. And the third
number, S, is a seed used to generate the needed data. (See the section about
random numbers at the beginning of this document). You can assume that
0 < N ≤ 500 000, 0 < M ≤ 2 000 and 0 < S ≤ 2 000 000 000.

When generating the numbers:

• All values are to be generated in the closed interval [0, 1000].

• Two sets of values are to be generated, generate the set for the city first,
then the set for the Huckybucky forest.

In each set the N first values are the emissions in the first month of the first

8

108

year, the N next are the emissions in the second month of the first year, . . . , the
N last are the emissions in the 12th month of the M th year. The sets represent
the CO2-equivalents you would emit if you lived in the city and the Huckybucky
forest respectively.

When sorting, comparing or printing numbers you should use integers. Use
floating point values in intermediary calculations if necessary.

Output

Your program should write the following to standard output:

The first line of your output should include the total increase in CO2-emissions
from the M years, comparing the emissions from your new life in the Hucky-
bucky forest with the emissions from life in the city, i.e. the increase in CO2-
emissions as a result of you moving to the Huckybucky forest. The value is to
be given as percent. A decrease in emissions is to be stated with a minus-sign
(−) in front of the percentage-value, as you can see from the example.

Your output should also include a list with one line for each year, stating which
months living in the Huckybucky forest decreased your CO2-emissions. If living
in the Huckybucky forest didn’t decrease your CO2-emissions in any month in
a given year, this year is to be excluded from the list.

For format see example below. Make sure to use the exact same format with dots
and uppercase/lowercase letters in the right places, as well as correct sorting.
Every place containing white characters (space) is to contain exactly one white
character. Please note that the first year is referred to as year 0 in the output.

Example:

Input:

20 3 8

Output:

A total of -3% more CO2 than usual was emitted.
Living in the Huckybucky forest reduced CO2 emissions in:
March April June August September October in year 0
January March June July September October November in year 1

9

109

January February March April July August September November in year 2

10

110

4 In Ventus

Everyone who has walked outside on a windy day knows that the wind is full
of power. Wind turbines make it possible to convert the energy in the wind
into electrical energy. And seeing as wind power doesn’t consume any water,
uses little land, is renewable, clean, doesn’t emit any greenhouse gases during
operation, has declining installation costs and wind is plentiful, it comes as no
surprise that this is a sustainable power source growing in popularity.

A new wind turbine is going to be connected to the grid. There are, however,
several vertices (nodes) between the turbine and the main grid. The power
will have to flow via several of these vertices, and the vertices themselves are
connected in a somewhat chaotic manner. The lines (edges) connecting the
vertices all have different capacities, so the flow they can carry varies. Find the
maximum possible flow from the wind turbine to the main grid with the three
following constrains:

1. Flow on an edge (line) doesn’t exceed the given capacity of the edge.

2. Incoming flow is equal to outgoing flow for every vertex except the wind
turbine and the final vertex.

3. For a given edge, with start vertex u and end vertex v, flow can only be
transported over the edge from u to v and not from v to u.

Input:

The first line of in standard input contains four integers: E, V , S and C in that
order.

• 0 < E ≤ 9 000 000, is the number of lines (edges).

• 0 < V ≤ 10 000, is the number of vertices (nodes).

• 0 < S ≤ 2 000 000 000, is the seed used to generate the needed data.

• 0 < C ≤ 10 000, is the maximum capacity of any line (edge).

See the beginning of this document for information about generating random
numbers.

You are to generate a maximum of 3 · E numbers because each edge has both
a start vertex, end vertex and capacity. When generating numbers, do the
following:

11

111

1. Generate the start node of the first edge, u, in the closed interval [0, V −2].

2. Generate the end node of the first edge, v, in the closed interval [1, V −1].

3. If, and only if, u and v are different nodes, generate the capacity, c, in
the closed interval [1, C]. Edges which starts and ends in the same node
(“loops”) are considered non-existent, meaning the generated network may
contain fewer than E edges.

4. There can be multiple edges with different capacities between two nodes.
These can be considered as a single “large” edge by summing the capacity
of all the “smaller” edges between the two nodes.

The wind turbine is located at node 0, and the main grid is located at node
V − 1.

Output:

Your program should write one line containing the maximum flow from the
wind turbine to the main grid to standard output. For format see example
below. Make sure to use the exact same format. Every place containing white
characters (space) is to contain exactly one white character.

Example:

Input:

10 4 897 10

Output:

max flow 14

12

112

5 Flower power

Due to climate change and human interference, many species are threatened
with extinction. Ecosystems are fragile structures, thus losing one species might
upset the entire system. There are several different ways of preventing this from
happening. One can, for instance, make an area of importance to wildlife, flora
or fauna into a nature reserve, i.e. a protected area. This enables the species
to live with as little human interference as possible, hopefully preventing them
from going extinct.

A rectangular shaped area of size w ·h is going to be made into a nature reserve
in order to prevent a rare flower from going extinct. The nature reserve is to
be somewhere inside the much larger area W ·H, with w parallel to W and h
parallel to H. You join a group of scientists, and together you survey the area
W · H. Every observed individual of the endangered species, in this case the
rare flower, is counted and the coordinates of the observed individual is added
to the list. After hours of hard work, you have finally finished this part of the
job. Now you’ll have to try and find suitable candidates (areas of size w · h) to
become a nature reserve. It has been decided that an area is suitable if there are
at least k individuals of the endangered flower inside it, i.e. at least k points.

Find an area (rectangle) w · h with at least k points inside it, i.e. a suitable
candidate to become a nature reserve. In reality, this problem is not always
solvable, but you can assume that the given input makes it solvable.

Input:

Your program is supposed to read seven integers from standard input (N S W
H w h k). They are all situated on the first line. The first number, N , is the
number of points, i.e. observations of the rare flower, in W · H. The second
number, S, is a seed used to generate the needed data (See the section about
random numbers at the beginning of this document). The third number, W ,
is the width of the area. The forth integer, H, is the height of the area. The
fifth number, w, is the width of the nature reserve. The sixth number, h, is the
height of the nature reserve. And the seventh number, k, is the number of points
required for an area to be considered a suitable candidate to become a nature
reserve. The origin is in the top left corner, and only integers are used, i.e. no
coordinates are floating point values. You can assume that 0 < N ≤ 5 000 000,
0 < S ≤ 2 000 000 000, 0 < W ≤ 40 000, 0 < H ≤ 40 000, 0 < w ≤ W ,
0 < h ≤ H and 0 < k ≤ N .

You are to generate 2 ·N numbers because there are N points and each point
has both a x- and a y-coordinate. The first generated value is the x-coordinate

13

113

of the first point, the second value is the y-coordinate of the first point, the
third value is the x-coordinate of the second point . . . the 2N th value is the
y-coordinate of the N th point. The x-coordinates are to be generated in the
closed interval [0,W − 1], the y-coordinates are to be generated in the closed
interval [0, H − 1].

Output:

Your program should write one line containing the coordinates of the top left
corner of the nature reserve to standard output. For format see example below.
Make sure to use the exact same format. Every place containing white characters
(space) is to contain exactly one white character.

Example:

Input:

10 4 10 12 2 3 3

Output (one valid solution based on the given input):

x: 7 y: 8

14

114

6 There and Back Again

Cars using fossil fuels contribute to both global and local pollution, because
they emit greenhouse gases and contribute to particulate matter. Thus, using
other means of transportation is usually preferable from an environmental point
of view. This is, sadly, not always possible. One can, however, try and make
sure that the emissions are as small as possible. For instance, the quickest and
shortest route is often better than the long one, because the amount of fuel used
depends on the distance travelled.

You are going on an adventure. To make your adventure as environmentally
friendly as possible you have decided to spend some time on picking the best
travelling route. This took longer than expected, thus you decide to implement
an algorithm to decrease your workload. You are pleased to notice that this is
a version of the travelling salesperson problem (TSP) – a classic NP-hard com-
binatorial optimization problem – though it in this case should be called the
travelling adventurer problem instead, or maybe the travelling burglar prob-
lem? Find the shortest closed walk in a complete undirected graph with the
requirement that you visit every vertex/city exactly once.

Input:

Note: This task does not use random numbers!

Read from standard input. The first character in a line defines the type of
information you are given.

c are comments
p contain the number of nodes in the graph
v describe the location of a node
q describe the starting node

They have the following format:

c text just skip these
p n 0 < n ≤ 10 000 is the number of nodes/vertices
v t x y t is the number given to a node (1 ≤ t ≤ n)

x and y are the coordinates of the node, 0 ≤ x, y ≤ 10 000
q b b is the source (and destination) node

All the numbers in the input are integers.

15

115

Output:

The output contains a single line with the order the nodes should be visited:

s v1 v2 ... vn vn+1

The line must contain all the nodes in the dataset, including both source (v1)
and destination (vn+1). Note that since you have to get back to the starting
city, v1 = vn+1.

Answers that produce a valid solution will be accepted, and the total distance of
the given solution is calculated by the CMB-system and shown on the scoreboard
(i.e., you don’t have to produce the optimal solution). The big correctness test
is so large that trying all possibilities is not a feasible solution.

Example:

Input:

c This is a comment, ignore me
p 8
v 1 2104 1968
v 2 1401 1968
v 3 295 1968
v 4 1235 1956
v 5 1347 1962
v 6 1401 1944
v 7 1211 1944
v 8 1211 1932
q 5

Output:

This is one of many possible answers, and might not be the optimal solution.

s 5 2 6 4 7 8 1 3 5

16

116

B.3 Questionnaire

This questionnaire was digitally distributed to the students using Google Forms
after the competition ended.

117

CMB Challenge 2019 - feedback
Spørreundersøkelse for studenter i fag TDT4102 som deltok i CMB Challenge 2019. Svarene som
samles inn vil kun bli brukt som feedback til CMB-prosjektet og vi bli anonymisert.

Skjemaet har bare 10 spørsmål og kan fylles ut på under 5 minutter, men bruke gjerne lenger tid i
kommentarfeltet dersom du har lyst --- all feedback er meget nyttig for prosjektet!

* Required

Hvor mye bakgrunn har du i programmering ut over IT-GK ved NTNU (eller tilsvarende) og dette
kurset TDT4102 (C++) ? *

Mark only one oval.

Ingen

Litt

Programmering som hobby mer enn 1 år

Har hatt deltidsjobb eller jobbet på programmeringsprosjekter på fritiden

Enda mer, spesifiser gjerne på siste side (andre kommentarer)

1.

I CMB-challenge hadde vi to ulike typer oppgaver. (a) Frittstående "tall-oppgaver" som
involverer summering eller telling (eks. "To Quote Hamlet...", "Pirates and Probabilites" eller
"The Huckybucky Forest") (b) Klassiske algoritmisk problem med mange anvendelser (eks. "In
Ventus" = Maximum Flow, "There and Back Again" = Travelling Salesperson Problem) Hvilken
av de to ulike oppgavetypene likte du best ?--- prøv å se bort i fra at de hadde ulik
vanskelighetsgrad *

Mark only one oval.

(a) Frittstående "tall-oppgaver"

(b) Klassiske problem med mange anvendelser

2.

Hvor kjent er du med bruk av Kattis eller andre websteder for trening el. konkurranse i
programmering? *

Mark only one oval.

Har aldri brukt det

Begynte å bruke det imens jeg har tatt faget, har brukt det LITT

Begynte å bruke det imens jeg har tatt faget, har brukt det MYE

Begynte å bruke det før jeg begynte i dette faget (TDT4102), har brukt det LITT

Begynte å bruke det før jeg begynte i dette faget (TDT4102), har brukt det MYE

3.

118

Det er tradisjon i programmingskonkurranser at oppgaver ofte er formulert med en god del
ekstra tekst (ofte med et litt humoristisk preg) og informasjon som en ikke har bruk for. Slik har
vi gjort det også for de fleste oppgavene i denne konkurransen. En annen type oppgaver er
mer korte og presise, kan være uten spesiell anvendelse (såkalte "toy examples") og
spesifiserer bare det du må vite. En tredje type er reelle problemer med beskrivelse av
anvendelsen (f.eks. "In Ventus"), men ikke mer tekst enn nødvendig. Hvilken type
oppgaveformulering liker du best? *

Mark only one oval.

Oppgaver med ekstra (humoristisk) tekst (slik som de fleste oppgavene i denne

konkurransen).

Korte og presise, med minst mulig anvendelser.

Oppgaver om "anvendelser" (F.eks. "In Ventus")

4.

Andre kommentarer eller ideer om *oppgavetyper* for CMB?5.

I de fleste oppgavene i denne konkurransen genererte du tallene selv. Hvor godt synes du dette
fungerte? *

Mark only one oval.

Veldig bra

Bra

Middels

Dårlig

Veldig dårlig

6.

Vi har i denne konkurransen brukt generering av randomiserte tall (a). En annen måte å hente
inn input på kan være å lese det inn fra stdin (b) (dvs. bruke cin eller tilsvarende). Hvilken måte
foretrekker du? *

Mark only one oval.

(a) Generering av randomiserte tall

(b) Lese input fra stdin.

Other:

7.

Hvor brukervennlig synes du CMB er? *

Mark only one oval.

Veldig bra

Bra

Middels

Dårlig

Veldig dårlig

8.

119

Powered by

Har du kommentarer eller forslag på hvordan CMB kan forbedres mhp. brukervennlighet og ev.
tekniske løsninger?

9.

Har du gjort *andre* CMB-oppgaver enn de som ble gitt i konkurransen? *

Mark only one oval.

Nei

Ja, prøvd meg på andre oppgaver ETTER at konkurransen startet

Ja, prøvd meg på andre oppgaver FØR (og evt. etter) at konkurransen startet

10.

I hvilken grad synes du det å få feedback på kjøretid og energi-effektivitet på kode du har
skrevet gir deg økt forståelse for din egen kode? *

Mark only one oval.

I svært stor grad

I meget stor grad

I noen grad

Ikke i det hele tatt

Det bare forvirrer meg

11.

Kommentarer og meninger om bruk av CMB i faget TDT4102 og hvordan det påvirker
motivasjon for faget og interesse for videre studier?

12.

120

Appendix C
Test Programs

This appendix displays the test programs used during experiments. TheMandelbrot
(OpenCL) program uses depends on two files, while the remaining programs only
have a single file.

#include <iostream>
using namespace std;
int main() {

cout << "Hello World!\n";
}

Listing C.1: The Hello World test program.

121

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int main() {
ios::sync_with_stdio(false);
vector<long> vec;
long x;
while (cin >> x) {

vec.push_back(x);
}
sort(begin(vec), end(vec));
for (auto& x : vec)

cout << x << '\n';
}

Listing C.2: The Sort test program.

122

#include <iostream>
#include <algorithm>
#include <vector>
#include <random>
#include <limits>
using namespace std;

using engine = linear_congruential_engine<unsigned, 0xFD43FD,
0xC39EC3, 0x1000000>;

class RandInt {
engine m_eng;
constexpr static auto range = engine::max() - engine::min() + 1;

public:
RandInt(unsigned int nSeed)

: m_eng(nSeed)
{}

int getInt(int nFrom, int nTo) {
int num = m_eng();
float fTmp = (float)num / range;
return (int)((fTmp * (nTo - nFrom + 1)) + nFrom);

}
};

int main() {
ios::sync_with_stdio(false);
unsigned N, S;
cin >> N >> S;
RandInt rng{S};
vector<int> vec;
for (unsigned i = 0; i < N; i++) {

vec.push_back(rng.getInt(-20000000, 20000000));
}
sort(begin(vec), end(vec));
cout << vec[N/2] << '\n';

}

Listing C.3: The Sort w/RandInt test program.

123

#include <iostream>
#include <fstream>
#include <sstream>
#include <cstddef>
#include <cmath>
#include <sys/time.h>
#include <vector>

using namespace std;

#define MAX_ITER 255

int main(void)
{

/* Width and height of the Mandelbrot data (i.e., # pixels) */
int32_t width, height;
cin >> width >> height;

vector<uint8_t> image(width*height);

for (int32_t y = 0; y < height; y++) {
for (int32_t x = 0; x < width; x++) {

// We're only interested in x \in [-2, 0.5], y \in [-1, 1]
float initialReal = -2 + (x / (float)width * 2.5f);
float initialImaginary = -1 + (y /(float)height * 2);

float real = initialReal;
float imaginary = initialImaginary;
int iterations = 0;
while (iterations < MAX_ITER &&

real*real + imaginary*imaginary <= 4.0f) {
iterations++;
if (iterations > MAX_ITER) {

break;
}
float oldReal = real;
real = real*real - imaginary*imaginary + initialReal;
imaginary = 2 * oldReal * imaginary + initialImaginary;

}

124

image[y*width + x] = iterations;
}

}

int32_t count = 0;
for (int32_t i = 0; i < height*width; i++) {

count += image[i] < MAX_ITER;
}
printf("%d\n", count);

}

Listing C.4: The Mandelbrot test program.

125

#include <iostream>
#include <fstream>
#include <sstream>
#include <cstddef>
#include <cmath>
#include <sys/time.h>
#include <vector>
#include <sched.h>
#include <omp.h>

using namespace std;

#define MAX_ITER 255

int main(void)
{

/* Width and height of the Mandelbrot data (i.e., # pixels).*/
uint32_t width, height;
cin >> width >> height;

vector<uint8_t> image(width*height);

#pragma omp parallel for shared(image, height, width) \
collapse(2) schedule(dynamic)

for (uint32_t y = 0; y < height; y++) {
for (uint32_t x = 0; x < width; x++) {

// We're only interested in x \in [-2, 0.5], y \in [-1, 1]
float initialReal = -2 + (x / (float)width * 2.5f);
float initialImaginary = -1 + (y /(float)height * 2);

float real = initialReal;
float imaginary = initialImaginary;
int iterations = 0;
while (iterations < MAX_ITER &&

real*real + imaginary*imaginary <= 4.0f) {
iterations++;
if (iterations > MAX_ITER) {

break;
}
float oldReal = real;
real = real*real - imaginary*imaginary + initialReal;
imaginary = 2 * oldReal * imaginary + initialImaginary;

126

}

image[y*width + x] = iterations;
}

}

uint32_t count = 0;
for (uint32_t i = 0; i < height*width; i++) {

count += image[i] < MAX_ITER;
}
printf("%d\n", count);

}

Listing C.5: The Mandelbrot (OpenMP) test program.

127

#include <CL/cl.hpp>
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstddef>
#include <cmath>
#include <sys/time.h>
#include <vector>

using namespace std;
using namespace cl;

void errorAndExit(string error_message) {
cout << error_message << endl;
exit(1);

}
int main(void)
{

// get all platforms (drivers)
vector<Platform> all_platforms;
Platform::get(&all_platforms);

if (all_platforms.size() == 0)
errorAndExit("No platforms found.\n");

Platform default_platform = all_platforms[0];

vector<Device> all_devices;
default_platform.getDevices(CL_DEVICE_TYPE_ALL, &all_devices);

if (all_devices.size() == 0)
errorAndExit("No devices found.");

Device default_device = all_devices[0];

Context context({default_device});

Program::Sources sources;
ifstream ifs("mandelbrot.cl");
if (ifs.fail()) errorAndExit("Failed to open mandelbrot.");
string kernel_source {

istreambuf_iterator<char>(ifs), istreambuf_iterator<char>()
};
sources.push_back({kernel_source.c_str(), kernel_source.size()});

128

Program program(context, sources);
if (program.build({default_device}) != CL_SUCCESS)

errorAndExit("Error building program!");

/* Width and height of the Mandelbrot data (i.e., # pixels). */
cl_int width, height;
cin >> width >> height;

/* The output buffer is the size of the Mandelbrot data. */
std::size_t bufferSize = width * height * sizeof(cl_uchar);

/* Create an output buffer for final data. */
Buffer image_buffer(context,

CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR,
bufferSize);

CommandQueue queue(context, default_device);

cl::Kernel mandelbrot(program, "mandelbrot");
mandelbrot.setArg(0, image_buffer);
mandelbrot.setArg(1, width);
mandelbrot.setArg(2, height);

queue.enqueueNDRangeKernel(mandelbrot, NullRange,
NDRange(width/4, height), NullRange);

vector<u_char> image(width*height);
queue.enqueueReadBuffer(image_buffer, CL_TRUE, 0,

bufferSize, image.data());

int32_t count = 0;
for (int32_t i = 0; i < height*width; i++) {

count += image[i] < 255;
}
printf("%d\n", count);

}

Listing C.6: The Mandelbrot (OpenCL) test program.

129

#define MAX_ITER 255

float4 createStartX(int x)
{

return (float4)(x, x + 1, x + 2, x + 3);
}

__kernel void mandelbrot(__global uchar* restrict output,
const int width, const int height) {

int x = get_global_id(0) * 4;
int y = get_global_id(1);

float4 initialReal = -2 + (createStartX(x) / (float)width * 2.5f);
float4 initialImaginary = -1 + (y / (float)height * 2);

float4 real = initialReal;
float4 imaginary = initialImaginary;

int4 iterationsPerPixel = (int4)(0, 0, 0, 0);
int iterations = 0;
int4 mask;

do {
iterations++;
if (iterations > MAX_ITER) break;

float4 oldReal = real;
real = real * real - imaginary * imaginary + initialReal;
imaginary = 2 * oldReal * imaginary + initialImaginary;

float4 absoluteValue = real * real + imaginary * imaginary;
mask = islessequal(absoluteValue, (float4) 4.0f);
iterationsPerPixel -= mask;

} while(any(mask));

vstore4(convert_uchar4(iterationsPerPixel), 0,
output + x + y * width);

}

Listing C.7: The kernel used with the Mandelbrot (OpenCL) test program.

130

Appendix D
Additional Data

This appendix presents additional measurement data not presented in Chapter 5.
Tables D.1 to D.4 show mean, standard deviation and Cv for all experiments per-
formed as part of this thesis.

Table D.1: Sample mean time, sample standard deviation and Cv (lower is better) for
Hello World, Sort and Sort w/RandInt.

Experiment Hello World Sort Sort w/RandInt
mean stddev cv mean stddev cv mean stddev cv

s s % s s % s s %
Baseline 0.090 0.003 3.269 39.332 0.876 2.226
Remove Fail2ban 0.090 0.004 4.585 39.069 0.834 2.134
Performance governor 0.071 0.004 5.313 38.236 0.661 1.728
Performance governor + C++ 0.079 0.004 4.767 38.690 2.239 5.786
Performance governor + C++ + chroot 0.020 0.000 0.000 37.016 1.341 3.622 8.159 0.006 0.074
Performance governor + C++ + chroot + nice 0.080 0.002 2.140 35.371 0.187 0.529
Performance governor + C++ + chroot + taskset 0.020 0.001 4.950 35.242 0.358 1.017
Performance governor + C++ + chroot + taskset + nice 0.080 0.003 3.675 35.240 0.286 0.811

Table D.2: Sample mean time, sample standard deviation and Cv (lower is better) for
the Mandelbrot programs.

Experiment Mandelbrot Mandelbrot (OpenMP) Mandelbrot (OpenCL)
mean stddev cv mean stddev cv mean stddev cv

s s % s s % s s %
Baseline 45.213 0.061 0.134 82.873 0.370 0.447 37.853 1.047 2.765
Remove Fail2ban 45.212 0.057 0.126 82.597 0.442 0.535 37.892 0.855 2.258
Performance governor 45.127 0.044 0.098 82.648 0.388 0.470 36.392 0.046 0.125
Performance governor + C++ 44.832 0.013 0.028 76.148 0.324 0.425 36.020 0.026 0.073
Performance governor + C++ + chroot 44.774 0.013 0.029 76.288 0.527 0.690 35.964 0.035 0.097
Performance governor + C++ + chroot + nice 44.839 0.013 0.029 76.749 0.485 0.632 35.958 0.034 0.096
Performance governor + C++ + chroot + taskset 44.764 0.005 0.012 35.913 0.031 0.085
Performance governor + C++ + chroot + taskset + nice 44.815 0.006 0.012 36.015 0.021 0.060

131

Table D.3: Sample mean energy consumption, sample standard deviation and Cv (lower
is better) for Hello World, Sort and Sort w/RandInt.

Experiment Hello World Sort Sort w/RandInt
mean stddev cv mean stddev cv mean stddev cv

J J % J J % J J %
Baseline 0.233 0.105 44.892 128.002 4.927 3.849
Remove Fail2ban 0.237 0.105 44.225 128.298 5.124 3.994
Performance governor 0.108 0.029 26.843 127.612 4.489 3.518
Performance governor + C++ 0.120 0.058 48.324 109.632 4.004 3.652
Performance governor + C++ + chroot 0.017 0.006 36.039 106.458 3.590 3.372 20.478 0.179 0.875
Performance governor + C++ + chroot + nice 0.180 0.016 8.776 100.866 0.620 0.615
Performance governor + C++ + chroot + taskset 0.024 0.009 35.054 101.669 2.929 2.881
Performance governor + C++ + chroot + taskset + nice 0.154 0.024 15.306 102.370 3.509 3.428

Table D.4: Sample mean energy consumption, sample standard deviation and Cv (lower
is better) for the Mandelbrot programs.

Experiment Mandelbrot Mandelbrot (OpenMP) Mandelbrot (OpenCL)
mean stddev cv mean stddev cv mean stddev cv

J J % J J % J J %
Baseline 107.208 4.688 4.373 159.575 4.591 2.877 83.547 2.712 3.247
Remove Fail2ban 106.624 4.788 4.491 162.948 4.593 2.819 84.023 2.817 3.353
Performance governor 106.733 1.872 1.754 157.436 4.484 2.848 114.471 1.306 1.141
Performance governor + C++ 83.863 0.409 0.488 339.712 1.621 0.477 96.520 0.370 0.383
Performance governor + C++ + chroot 83.716 1.016 1.214 336.922 2.676 0.794 96.264 0.397 0.412
Performance governor + C++ + chroot + nice 83.700 0.468 0.559 334.318 2.924 0.875 95.952 0.346 0.360
Performance governor + C++ + chroot + taskset 83.257 0.472 0.567 95.827 0.432 0.451
Performance governor + C++ + chroot + taskset + nice 83.152 0.371 0.446 96.044 0.342 0.357

132

Appendix E
Digital Appendix

The digital appendix included contains the cmb-board (back end), cmb-flask (server)
and climbing-mont-blanc (front end) repositories.

133

