
Speeding up mesh descriptors by
implementing them on the GPU

May 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Hans Brenna

2019
H

ans Brenna

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce





Speeding up mesh descriptors by
implementing them on the GPU

Informatics
Submission date: May 2019
Supervisor: Theoharis Theoharis
Co-supervisor: Bart Iver van Blokland.

Norwegian University of Science and Technology
Department of Computer Science





Summary

3D feature descriptors are capable of providing point-to-point correspondence on differ-
ent surfaces. They are therefore used in a variety of different applications within visual
computing. However, these applications often find the computation of feature descriptors
to be a bottleneck for their performance. A key observation is that these feature descrip-
tors can be computed independently of each other, and are therefore good candidates for
parallel computation. Modern GPUs, together with specialized APIs, can be utilised for
such highly parallel problems. This thesis has examined various GPU implementations
of four popular feature descriptors: Spin Images, Point Feature Histograms, Signature of
Histograms of Orientations and Fast Point Feature Histograms. As a result, the thesis
suggest different approaches to GPU based feature descriptors and applicable GPU opti-
mizations.

3D egenskapsbeskrivelser er en måte å skape punkt-til-punkt korrespondanse mellom forskjel-
lige overflater. De brukes derfor i en rekke applikasjoner innenfor visuell datababehan-
dling. Ytelsen til disse applikasjonene er ofte begrenset av hvor fort egenskapsbeskrivelser
kan beregnes. Det viser seg imidlertid at egenskapsbeskrivelser kan beregnes uavhengig
av hverandre. De er derfor godt egnet til parallel beregning. Moderne grafikkprosessorer,
sammen med spesialiserte APIer, kan utnyttes for parallel beregninger av denne typen.
Denne oppgaven har sett på GPU implementasjoner av fire populære egenskapsbeskriv-
elser: Spin Images, Point Feature Histograms, Signature of Histograms of Orientations
og Fast Point Feature Histograms. Dette har resultert i forslag for hvordan algortimer for
egenskapsbeskrivelser kan implementers på grafikkprossesorer, og hvordan disse algor-
timene kan optimaliseres.
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Chapter 1
Introduction

In the field of computer vision, 3D feature descriptors are used in shape retrieval, object
recognition and modelling. The purpose of a feature descriptor is to describe the neighbor-
hood of a surface vertex in such a way that vertices of different surface may be compared
against one another. A good feature descriptor is characterized as being robust, descriptive
and compact (Guo et al., 2016). Robustness means that the feature descriptor is insensi-
tive to noise, clutter and occlusion which might be attributed to sampling variations. A
descriptor is said to be descriptive if it manages to encompass the geometric information
of the underlying surface. Lastly the compactness is a measure on how much each value
in a computed feature descriptor contributes towards its performance(Guo et al., 2016).
Throughout this thesis the term feature extraction refers to the process of using a particu-
lar algorithm in order to create a descriptor of a point.

Modern graphical processing units (GPU) are capable of solving highly problems, despite
the problems not being inherently related to graphics rendering. Frameworks such as
CUDA and OpenCL enables developers to utilize the GPU for computation that would
traditionally be done on the CPU. This is accomplished by invoking kernel functions that
are executed in massively parallel fashion on the GPU.

Section 1.1 details the motivation for computing feature descriptors using the GPU. Sec-
tion 1.2 outlines the research questions for the thesis.

1.1 Motivation

Feature descriptors are a vital part of the pipeline in many tasks related to computer vi-
sion. However, the feature extraction often becomes the bottleneck of such tasks. (Palossi
et al., 2013). A key observation is that each descriptor can be computed independent of
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Chapter 1. Introduction

the others. Because of this, feature description algorithms are well suited for GPU im-
plementation (Hu and Nooshabadi, 2015). Several feature descriptors have already been
implemented on the GPU. Some of them providing runtime speeds 40 times faster than on
the CPU. (Hu and Nooshabadi, 2015).

Other algorithms, not related to feature descriptors, have also been implemented on the
GPU. Well known examples includes, but are not limited to, N-Body, Reduction and Scan
(Nylons, 2007)(Wilt, 2013). By applying knowledge of the GPU hardware, it is possible
to apply optimizations in order to make them run faster (Wilt, 2013). Extensive research
has been done on how to optimize the mentioned algorithms not related to feature de-
scriptors. While there exists several GPU implementations of feature descriptors, there
exists little research comparing the degree to which these methods are able to utilise the
available computational power of the GPU, both by the algorithm’s design and their actual
implementation. By determining the best characteristics, faster feature extraction imple-
mentations could be developed for the GPU. This in turn could alleviate the bottleneck
where feature extraction has previously incurred a relatively high computational expense,
in some cases allowing for faster visual computing applications.

1.2 Research Questions

The work done in this thesis aims to answer the following:

Research Question: How can efficient computation of feature descriptors be imple-
mented on the GPU? Implementations are considered to be efficient if they exhibit the
following characteristics. The algorithms should be designed with parallel execution in
mind. They should also be optimized by leveraging the GPU architecture. To this end,
these follow-up questions are derived:

RQ1: How have CPU based feature descriptor algorithms been implemented on the
GPU?

RQ2: What measures can be taken in order to optimize them with regards to utilisation
of the GPU?

2



Chapter 2
Background

This chapter supplies the theoretical background required in order to answer the research
question. Section 2.1 explains a selection of feature descriptors and the steps related to
computing feature descriptors in general. It also gives a detailed explanation of the fol-
lowing feature descriptors: Signature of Unique Histograms of Orientations (SHOT), Spin
Images (SI), Point Feature Histograms (PFH) and Fast Point Feature Histograms. This the-
sis concerns itself with algorithms written for the GPU. Therefore section ?? introduces
parallel programming using CUDA.

2.1 Feature Descriptors

The computation of feature descriptors generally consists of the following steps: First,
3D data along with properties such as normal information is acquired.Then one selects
which vertices to compute feature descriptors for. Any such vertex will, for the sake of
disambiguation, be referred to as a feature vertex.

The next step is to identify the neighborhood of any feature vertex. Ideally the neigh-
borhood should contain, or be equivalent to the support region of the feature vertex. The
support region can be thought of as a geometric primitive, such as a sphere or cylinder.
This primitive is then centered around the feature point. Only neighbor vertices contained
within the support region will contribute in computing a descriptor for the feature ver-
tex.

Once the support region for a feature vertex has been defined, its feature descriptor can
be computed. Feature descriptors creates a function that maps vertices within the support
to a vector of values. By comparing these vectors, one can discern the similarity between
surface points. (Guo et al., 2016) provides a benchmark comparison of popular feature
descriptors. Among these, SHOT, SI, PFH and FPFH have been implemented on the
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Chapter 2. Background

GPU. With the exception of SHOT, all of these had source code that was available to
the author. GPU implementations of these descriptors have also been examined in an
academic setting, with the exception of PFH. As a result, this thesis examines these four
feature descriptors and their GPU implementations in detail.

The first subsection looks at how neighborhoods can be efficiently determined, the second
subsection explains how the selected types of feature descriptors are extracted.

2.1.1 Nearest neighbor searches

As mentioned earlier, nearest neighbor searching must be done for every feature descriptor
that is computed. Therefore the impact of this step should be examined. This section aims
to explain how neighbor searches can be sped up using data structures known as K-D trees
and Octrees.

Octrees and K-D Trees

The aim of both octrees and k-D trees is to provide a form of spatial partitioning. They do
this using slightly different approaches.

The steps required to construct an octree are the following: First,the node at the top level
of the tree contains all vertices one wishes to partition. A plane is then placed for each
of the X,Y and Z-axis. Each plane is orthogonal to its respective axis, and contains the
center point of the node. These planes then together splits the node into eight equally sized
children. The same procedure is then performed recursively for every child node.

Whether or not a node should be divided or treated as a leaf-node depends on the break
conditions. These conditions are usually related to the depth of the node in the tree, or
the number of vertices contained within. In a k-d tree, each parent node has two children.

Figure 2.1: Octree partitioning of the Stanford Bunny model (Kammerl et al., 2012)

4



2.1 Feature Descriptors

Each node is split along one of its dimensions by a threshold value. In the context of 3D
models, the term dimension refers to either the X, Y or Z axis of the model. A different
dimension is selected for each level of the tree. It is common to select dimensions in order
of descending dimension variance. Another approach is to select dimensions in order of
descending dimension length (Silpa-Anan and Hartley, 2008). The threshold, or split,
value used to partition items among the child nodes must be determined. This can be
the middle of the splitting dimension, however this might lead to children not containing
items (Elseberg et al., 2012). A different approach is to observe the items of the current
node, and use the median value of the splitting dimension among these items. Figure
2.2 shows a k-d tree partitioning with the first split marked by a red plane, the second
split marked by a green plane and the third split marked by a blue plane. By applying

Figure 2.2: K-D Tree Partitioning,

one of the aforementioned spatial structures, efficient nearest neighborhood searches can
be implemented reducing complexity from (O(nm) down to O(n log m) Elseberg et al.
(2012)

2.1.2 Signature of Histograms of Orientations

Signature of Histograms of Orientations (SHOT) is a feature descriptor that provides a
description of the underlying neighborhood by employing a spherical partitioning scheme
of its support region. This results in several volumes, each with their own local histogram
(Tombari et al., 2010). The total histogram size is the product of the number of local
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Chapter 2. Background

histogram bins, and the number of local histograms. In the context of computer program-
ming, this can be described as a 2D array. Each row index corresponds to a volume’s
local histogram, and the column index would represent the local histogram bin. Figure
2.3 shows the support volume divided using two radial, two elevation and four azimuth
divisions. This results in sixteen local histograms.

Figure 2.3: SHOT sub-volumes (Tombari et al., 2010)

A local reference frame (LRF) is created for every SHOT descriptor, so that it remains
unique and invariant to scaling and translation of the model. The LRF is created by first
assembling the covariance matrix C of the sum of all vertices in the support region and
performing an Eigenvalue decomposition on this matrix. Each of the X,Y and Z-axis of
the LRF are assigned to the Eigenvectors of C. In order to disambiguate the sign of the
axes, the technique in (Bro et al., 2008) is applied.

6



2.1 Feature Descriptors

After the LRF has been constructed, initial bin values are assigned to every vertex within
the support. Given a vertex and its associated normal N , the initial bin value is given by
equation 2.1

Dot Product = ~LRFZ · ~N
Dot Product = [−1, 1]

Initial Bin V alue =
Dot Product+ 1

2
· number of bins

(2.1)

The same vertex then needs to be mapped to a histogram bin in one of the support sphere’s
local histograms. This means that both the volume index (row index) and the local his-
togram index (column index) must be computed. Thus its position within the spherical
partitioning must be determined. First, the coordinates of the vertex are translated to the
local ones within the LRF. Based on the local coordinates of the vertex, its volume in-
dex can be computed. The equation used for determining this index depends on the exact
number divisions of the spherical support region.

After computing the global index for the vertex, its contribution is smoothed across the
histogram. This is done by performing a quadrilinear interpolation with respect to the
adjacent volumes in the spherical support region, and adjacent bins in the local histogram.
The output of the SHOT descriptor is the concatenation of all its local histograms.

2.1.3 Point Feature Histograms

Point feature histogram (PFH) descriptors are based on how points in a spherical support
region are placed relative to each other (Rusu et al., 2008). The steps to compute this
descriptor are as follows: First the members of the support region are identified by means
of a nearest neighbor search, limited by a radius r. Then every possible pair of vertices
(Pi, Pj) ∈ Support(Vfeature) is processed. For each pair, a source vertex Ps and target
vertex Pt are selected, such that the angle between the line connecting the points and the
normal of Ps is as small as possible. Figure 2.4 shows that he angle β between Ni and
the connecting line is the smallest. Vertex Pi will be therefore be chosen as the source
vertex.

Figure 2.4: Source and Target Vertex

7



Chapter 2. Background

Using the vertices from the pair and their respective normals a Darboux frame is created
for every pair. The axes of the frame, represented by vectors u, v, w is defined by equation
2.2.

u =ns

v =(Pt − Ps)× u
w =u× v

(2.2)

The output of the PFH algorithm is a histogram, where every pair of neighbor vertices
contributes to one of the histogram bins.To select the bin, the functions given in equation
2.3 are computed. Henceforth, these functions will be referred to as pair features.

f1 = ~nt · ~v
f2 = ||Pt − Ps||

f3 =
~u · (Pt − Ps)

f2

f3 = atan(~w · ~nt, ~v · ~nt)

(2.3)

Since all dot products are computed using normalized vectors, the definition interval of f1
and f3 is [−1, 1]. The definition interval of f2 is [0, r], and f4 has the definition interval of
[−π, π].

The pair features then undergoes discretization. For every function fi a step size stepi
is supplied. The definition interval of each function is then divided into bj equally sized
intervals by the step size. The discrete value dfi is given by equation 2.4.

Offseti =

{
stepi·bi

2 , if i 6= 2

0, otherwise

dfi =

{⌊
fi+offset

stepi

⌋
, if fi +Offseti < bi · stepi

bi − 1, otherwise

(2.4)

The bin that the pair should contribute to is given by equation 2.5.

bin = df1 +

k=i∑
k=2

dfk k−1∏
j=1

bj

 (2.5)

Once the the bin is determined, the corresponding value in the output is incremented. The
exact increment is defined by equation 2.6

Increment =
100

Number of processed pairs
(2.6)
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2.1 Feature Descriptors

2.1.4 Fast point feature histograms

Closely related to PFH, fast point feature histograms trades of some of its descriptiveness
in exchange for faster computation (Rusu et al., 2009). The FPFH descriptor is built upon
another one, namely Simplified Point Feature Histograms (SPFH). Thus computing FPFH
descriptors is a two step process.

The first step is computing SPFH descriptors for every vertex in the model. As in PFH
computation, a support region and its members are determined using a nearest neighbors
search. Every neighbor vertex forms a vertex pair with the feature vertex. Using the same
technique as in PFH computation, discrete pair features are created for all vertex pairs. In
PFH, the Euclidean distance between vertices is one of the pair features. However, this
is not the case for FPFH descriptors. The reason is that the Euclidean distance has little
impact on the robustness of the descriptor (Rusu et al., 2009).

Unlike the PFH algorithm, the pair features are not correlated to each other. In other
words, each pair feature fi has its own histogram with bi bins. This fact reduces the final
size of the histogram from

∏i
i=1 bi to

∑i
i=1 bi. Each discrete feature value represents

which bin in the histogram to be incremented. While PFH descriptors consists of one
large histogram, FPFH is the concatenation of several smaller ones, each representing one
of the pair features.

Once SPFH descriptors have been computed, the next step is to compute FPFH descrip-
tors. To compute the FPFH of a feature vertex, a spherical support and its members are
determined as before. Then, the weighted sum of the neighbours’ SPFH is computed us-
ing equation 2.7. Here pk is a member of the support, and wk is the distance between the
feature vertex and pk.

FPFH(fp) = SPFH(fp) +
1

k
=

k∑
i=1

1

wk
SPFH(pk) (2.7)

.

Once the weighted sum has been computed, the final histogram is normalized. While the
complexity of the PFH algorithm is O(n · k2), FPFH reduces this to O(n · k Where k is
the maximum number of members in a support region and n is the number of descriptors.
Additionally the size of the descriptor is reduced.

2.1.5 Spin Image

The Spin Image (Hebert and Johnson, 1999) descriptor represents a cylindrical support
region containing 3-D vertices as a 2-D image. This requires a function that translates from
3-D to 2D. First a 2D coordinate system is defined. The first axis is the line containing the
normal of the feature vertex. The second axis is the distance from this line. We call these
axes the β-axis and the α-axis respectively. Vertices whose β and α coordinates exceeds
the user-defined maximum values will not be evaluated. These maximum values can be

9



Chapter 2. Background

visualized as the height and radius of the cylindrical support volume, or the width and
height of the 2D image.

For every member of the support, theirα and β coordinates are given by equation 2.8.

β = || ~D|| · cosθ

α = || ~D|| · (1− cosθ2)
(2.8)

Here ~D represents the vector between the feature point and the support member. The
angle θ is the angle between ~D and normal of the feature point. By defining a step size,

Figure 2.5: The feature point along with its normal N

or pixel size, s, the axes of the support volume is divided into b bins. After (β and α have
been calculated, they need to be mapped to pixel coordinates i and j. This is done using
equation 2.9 where W.

i =

⌊
β + W

2

s

⌋
, j =

⌊α
s

⌋
(2.9)

Once the member vertex has been mapped to the image, its contribution is smoothed across
four adjacent bins in the image using bilinear interpolation. The interpolated weights
A and B, as well as the increments of spin image bins are computed as in equation
2.10.

A = α− j · s , B = β − i · s
SI(i, j) = SI(i, j) + (1−A) ∗ (1−B)

SI(i+ 1, j) = SI(i+ 1, j) + (A) ∗ (1−B)

SI(i, j + 1) = SI(i, j + 1) + (1−A) ∗ (B)

SI(i+ 1, j + 1) = SI(i+ 1, j + 1) + (A) ∗ (B)

(2.10)

10



2.2 Parallel Computing on the GPU

2.2 Parallel Computing on the GPU

. Several hallmarks of an efficient GPU implementation are listed in section ??. One of
these concerns itself with the design of the algorithm. Therefore, an understanding of how
one can design parallel algorithms is required. As such, subsection 2.2.1 introduces the
reader to parallel programming. Another hallmark concerns itself with how the implemen-
tation in question can leverage the GPU. Therefore the subsequent subsections introduces
GPU programming using CUDA and outlines the architecture of the GPU.

2.2.1 Introduction to Parallel Computing

The speed at which a program takes to run, is often bound by the throughput of the pro-
cessing unit. The throughput of the processing unit is the number of instructions it can
process in a given time interval. Modern CPUs have multiple cores that can run simulta-
neously. This increases the theoretical throughput available. However, to take advantage
of this, an algorithm must partition its instructions over multiple threads. These threads
can then be executed on different cores, at the same time.

When deciding on which instructions to assign which thread, certain considerations must
be taken into account. For example, instructions might be dependent on each other, or the
workload might become uneven among threads. Threads might even need to communicate
to each other during their execution. To tackle these challenges, one should attempt to di-
vide the original problem into several smaller ones. Dependencies between threads might
lead to one thread idling while waiting for another thread to catch up. Communication be-
tween threads can be complex. Therefore, these considerations must be taken into account
when dividing the original workload into sub-problems. Once suitable sub-problems are
identified they can be distributed to the available threads.

The design of modern GPUs allows them to be effective for highly parallel problems not
related to graphics rendering (Owens et al., 2008). The GPU, or device, contains a number
of multiprocessors which are all tailored towards a high throughput of instructions. In
addition to the processors, the device also has its own dedicated memory known as device
memory. In order to write parallel programs that uses the GPU, developers may use either
CUDA or OpenCL. CUDA (Nvidia, 2019d) is Nvidia’s own proprietary API created for
Nvidia GPUs. OpenCL on the other hand is a cross-platform open-source API designed
to be used on a multitude of multiprocessor types (Kronos Group, 2019). All but one
of the GPU implementations of feature descriptors available to the author, were written
using CUDA. Therefore the rest of this thesis will focus on CUDA and Nvidia GPUs.
Despite being different APIs, they share several core concepts. As a result, the thesis
should contribute to CUDA and OpenCL development alike. Figure 2.6 gives an overview
of CUDA and OpenCL terminology.

11



Chapter 2. Background

Figure 2.6: Cuda and OpenCL Terminology

2.2.2 GPU Architecture

The problems that are suited for GPU processing are those that can be expressed as data-
parallel problems (Nvidia, 2019d). For this type of computation where the same instruc-
tions are issued for multiple data in parallel, the need for features such as optimized con-
trol flow becomes redundant to a certain degree. With this in mind, it becomes evident
that these features can be replaced with ones focused on increasing the compute capac-
ity of the processing unit as illustrated in Fig 2.7 In order to provide a higher throughput

Figure 2.7: Allocation of transistors on CPU and GPU

than their CPU counterparts Nvidia GPUs introduces multiple Streaming Multiprocessors
(SM) organized together as show in figure 2.9. The SM is a multi-core processor spe-
cialized for high computation throughput, achieved by having far more cores than a CPU.
Each CUDA core is however much slower and much simpler than a typical CPU core.
Essentially a CUDA core only provides a mathematical pipeline that can be used for arith-

12



2.2 Parallel Computing on the GPU

metic computation. In addition to CUDA cores, there are also special function units (SFU)
and units for reading and writing to memory (LD/ST units). Newer architectures have also
seen specialized cores being added to the SM, such as tensor cores and ray tracing cores.
For the SM to issue instructions to its cores, LD/ST and SFU units, every SM has a number
of units related to warp scheduling, these are detailed in section 2.2.4. The different types
of memory on each SM, are outlined in section 2.2.5. Figure 2.8 shows the SM used in the
Pascal architecture.

2.2.3 CUDA Runtime and SIMT

The CUDA runtime enables developers to write applications for the GPU using C/C++
language extensions. In CUDA, functions known as kernels are invoked by the CPU,
henceforth known as the host, and executed on the device. Upon invocation a number of
threads structured in a thread hierarchy are made available to the developer. The thread
hierarchy consists of a grid composed of blocks which in turn contain several threads.
Both the number of blocks in the grid and the block size are passed along as additional
arguments to the kernel invocation, these can be either single values or 3-D tuples.

Through the threads made available on the the device, an architecture known as SIMT -
Single Instruction Multiple Threads is be employed (Nvidia, 2019d). Take for example the
case of vector addition where you want to add vector A and vector B in order to obtain the
resultant output vector. A common solution to this is to iterate through the vector using
some kind of loop. However using the CUDA runtime, the same could be achieved by the
following source code:

#include "cuda_runtime.h"
#include <iostream>
#define N 320

__global__ void add_vectors(int *input_a, int *input_b, int *output){
int i = blockIdx.x*blockDim.x+threadIdx.x;
output[i] = input_a[i] + input_b[i];

}

int main(){
int *dev_a,*dev_b,*dev_out;
int *host_a,*host_b,*host_out;
host_a = new int[N];
host_b = new int[N];
host_out = new int[N];

size_t size = N*sizeof(int);
cudaMalloc(&dev_a,size);
cudaMalloc(&dev_b,size);
cudaMalloc(&dev_out,size);

13



Chapter 2. Background

Figure 2.8: SM layout of the Pascal architecture. (Nvidia, 2016)
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2.2 Parallel Computing on the GPU

Figure 2.9: Block diagram of the GP-104 with the Pascal architecture (Nvidia, 2016)
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Chapter 2. Background

for(int i = 0;i<N;i++){
host_a[i] = 1;
host_b[i] = 1;
host_out[i] = 0;

}
cudaMemcpy(dev_a,host_a,size,cudaMemcpyHostToDevice);
cudaMemcpy(dev_b,host_b,size,cudaMemcpyHostToDevice);
cudaMemcpy(dev_out,host_out,size,cudaMemcpyHostToDevice);
add_vectors<<<10,32>>>(dev_a,dev_b,dev_out);
cudaMemcpy(host_out,dev_out,size,cudaMemcpyDeviceToHost);
int total = 0;
for(int i = 0;i<N;i++){

total += host_out[i];
}
std::cout<<total<<std::endl;
delete [] host_a;
delete [] host_b;
delete [] host_out;
cudaFree((void**)dev_a);
cudaFree((void**)dev_b);
cudaFree((void**)dev_out);
return 0;

}

Note how the add vectors exposes the current thread index and use it as an index for
accessing elements in the different vectors. This way, each thread does exactly one addi-
tion. In this program we launch a totalt of 320 threads, using 10 blocks with 32 threads
each.

2.2.4 Execution Model

When a kernel is invoked, the thread blocks of the kernel grid are distributed among the
SMs. This means that the threads of the block are guaranteed to be executed on the same
SM. The threads of the block are grouped together in groups of 32 threads called warps.
During every cycle on the device, instructions of the kernel are scheduled to eligible warps
in the block. All active threads in the warp will then perform the same instruction. For a
warp to be eligible, it must have active threads whose instructions are ready to be executed.
If a warp is not eligible, it is said to have stalled. If this is is the case, the warp scheduler
will select another eligible warp from the block that is ready to execute.

As mentioned, instructions are issued and executed for active threads on a per-warp ba-
sis. If threads within the same warp becomes inactive as a result of divergent execution
branches, the branches will execute sequentially. Take for example an if-statement that
evaluates to true for the first 16 threads of the warp, and false for the remainder of the
warp’s threads. Despite not having any instruction to execute, the inactive threads need to
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wait for the execution branch inside the if-clause to complete. As a result, any number of
divergent code branches within a warp is going to extend the time it takes for a warp to
finish by a factor of the number of divergent branches (Wilt, 2013).

2.2.5 Memory

There are several types of memory available on the SM, each serving a specific purpose.
These are the register file, shared memory, L1 cache and texture cache. In addition to the
memory on board the SM, there also exists types of memory that are shared between SMs.
These are the global memory and L2 cache.

The register file contains the values declared inside the kernel function. In some cases
the kernel requires more register memory than the register file can provide. If this is the
case, registers are freed by writing their contents to the L1 cache. However, the L1 cache
employs a first-in-first-out strategy. This means that the L1 contents could be evicted to
L2 cache and then to global memory (Micikevicius, 2017). This method of freeing up
registers is known as register spilling.

Shared memory is allocated per block. When shared memory is allocated, every thread
within the block is capable of reading and writing to the same area of memory. This
allows shared memory to be used for communication between threads. It is about ten
times slower for a thread to access its shared memory, compared to accessing its registers.
However, accessing global memory is about ten time as slow as shared memory (Wilt,
2013). Because of this, shared memory is often used as a manually controlled cache. To
provide a high bandwith, the shared memory is organized into several banks. Each of the
banks can be accessed simultaneously. If different addresses within the same bank are
accessed at the same time, the accesses are serialized (Nvidia, 2019e).

Global memory is the largest memory resource available, and also the one with the highest
latency, akin to the RAM of traditional homogeneous CPU systems. When performing
operations on global memory the application should strive to make those in a coalesced
fashion. Memory operations are coalesced on a per- warp basis given that the following
criteria are met. The words that are written must be at least 32 bits in size, their addresses
contiguous and increasing. Also,the address being accessed by the first thread in each warp
must be aligned, with the alignment size itself being dependent on the word size (Wilt,
2013). When coalescence occurs, the compiler will merge multiple memory requests from
different threads of the warp into a single request (Nvidia, 2019d). Seeing as accessing
global memory takes a relatively high number of cycles, few global memory transactions
are desirable.

2.2.6 Occupancy and Throughput

While the GPU has the ability to process a large number of elements in parallel, any one
thread could be executed significantly faster on the CPU. When a warp is issued an in-
struction , a certain number of cycles is going to be needed for the instruction to complete.
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These cycles are known as the latency. Finding ways of reducing the impact of the la-
tency is known as hiding the latency. In practice this is achieved by supplying enough
instructions to the warp schedulers such that a new instruction can be issued for every cy-
cle during the latency. This way, instructions can run concurrently and the different units
in the SM are saturated.

A contributing factor to throughput, is occupancy. Since the resources of an SM are lim-
ited, there can only be certain number of active warps at any give time on each SM. Oc-
cupancy can be described as the ratio of active warps to the number of potentially active
warps.

Occupancy =
Warps per SM

Max. Warps per SM
(2.11)

There are several factors that can limit the occupancy of a kernel, such as the amount of
shared memory used per block, registers used per thread and so forth.

While occupancy is an important aspect when it comes to maximizing throughput, several
other strategies such as instruction level parallelism can be leveraged in order to hide the
latency caused by both arithmetic computation as well as memory operations. (Volkov,
2010) shows how algorithms that reduces occupancy can, in some cases, more than double
the throughput. This illustrates that doing more work per thread can in some cases be a
viable strategy.
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Previous work in both academic settings and in the open-source community has resulted
in several GPU implementations of 3D feature descriptors. Some descriptors even having
multiple, independent, GPU implementations. In an effort to address the research ques-
tions, previous work has been examined in detail. The implementations whose source
code was available to the author, have been given a thorough description in section 3.1. In
addition to these, several implementations are mentioned in literature. The core ideas of
these are outlined in section 3.2.

3.1 Implementations

3.1.1 Point Cloud Library Implementations

The Point Cloud Library (PCL) is an open-source library for processing 3D data (Rusu
and Cousins, 2011). It offers CPU implementations of all the descriptors examined in
this thesis. In addition, it also offers GPU implementations of PFH, FPFH, and SI. These
implementations have been written using CUDA. (Hu and Nooshabadi, 2015) claims to
have implemented the SHOT descriptor on the GPU, and integrated it into PCL. This is
not the case at the timne of writing.

All of the PCL implementations share a common requirement for nearest neighbor search-
ing. The CPU implementations by default first constructs a k-d tree before any feature
descriptors are computed. During each descriptor computation , this k-d tree is used to
search for nearby neighbors. The GPU implementations on the other hand uses an Octree.
The octree is implemented on the GPU using CUDA. Building the octree and searching
for neighbors is done by two separate kernels.
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The first kernel, responsible for building the octree, takes the surface vertices as an input.
The second kernel, which searches for neighbors, requires an array of size n where each
value represents the index of a feature vertex. In addition, a search radius r and a maximum
number of neighbors m must be specified.

There are three outputs of the search. The first is an array of size Number of feature
vertices . Each value represents the number of neighbors found for the respective feature
vertex. The second array is of size n · m. Each feature vertex is assigned to an interval
of size m. Every value within the interval maps to indices in the surface array. This
way the neighborhood of a feature vertex is determined prior to the computation of its
descriptor.

As an example, a neighbor search is done specifying 10 as a maximum neighborhood size.
The neighbors array has a value of 7 at index 42. This means that the vertex at index 7 in
the surface array is a neighbor of the the fifth feature vertex. The third output is m.

Figure 3.1: The structure of input and output elements in a GPU Octree search

3.1.2 Point Feature Histograms on the CPU

Upon inspection there are some differences between the implementation provided by PCL
and of that described in (Rusu et al., 2008). Notably the exclusion of length as one of the
functions for computing the pair feature, as well as the usage of five subdivisions instead
of two. As a consequence of these adjustments, each PFH now has 53 = 125 bins. (Rusu
et al., 2009) argues that the exclusion of length as one of the feature functions has little
impact on the robustness of the descriptor.

When computing the features of the vertex pairs, these are stored in a key-value map.
Here the key is the combination of vertex indices, and the value is the features of the
vertex pair. This effectively caches vertex pairs and reduces the computation required.
The motivation behind caching is that feature vertices which are neighbors, are also likely
to have a number of other common neighbors. This is illustrated in figure 3.2. The caching
scheme is presented in (Rusu et al., 2009).
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Figure 3.2: Feature vertices sharing neighbors

3.1.3 Point feature histogram on the GPU

Before computation of the PFH descriptors can take place, all feature vertices, neighbor
information, surface vertices and their associated normals are transferred to the device
from the host. Once the transfer completes the first kernel is invoked.

Repack Kernel

The purpose of the first kernel is to create a 2D array as shown in figure 3.4.

Figure 3.3: Input structure to the repack kernel

Each neighborhood is assigned a warp which is responsible for doing the fetching and
restructuring. By default each block contains 256 threads, thus giving a total of 8 warps
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Figure 3.4: Output structure to the repack kernel

per block. The block therefore needs to complete the restructuring of 8 neighborhoods. A
mathematical definition of the launch size is given by equation3.1.

Warps per Block =
Block Size

32

Grid Size =
Number of Feature Vertices

Warps per Block

(3.1)

Each warp uses its global warp index to access a corresponding interval of the neighbors
array. The size of this interval is supplied when invoking the nearest neighbor search
kernel earlier, and passed along as a member of its output structure. Each thread in the
warp then reads a neighbor element offset by the thread’s lane (the thread’s position within
the warp).

The neighbor element contains an index, which corresponds to a surface vertex element
and a normal element. By using this index the thread retrieves the vertex and normal value,
assemble them into the 2D format, and stores them in the output.

For example, lane l of the warp with global warp index Idx is going to read the value i
stored at index Idx · Max Elems + l in the neighbors array. Once retrieved, the thread
stores the values in each respective output array (the 2D output contains 6 arrays) at index
Idx · Max Elems + l. In the event that there are more than 32 neighbors, the process is
repeated as many times as needed. For every repetition, l is incremented by the warp size.
The value stored at index Idx in the neighborhood size array, represents the number of
neighbors n that should be processed by the warp. Any thread that does not satisfy the
condition l < n is exited. The restructure process is illustrated in figure 3.5.
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Figure 3.5: Restructure of vertex data

PFH Kernel

The PFH kernel is launched with a block assigned to each feature vertex. Each block
contains 256 threads. There are three inputs to the kernel. The first input to the kernel is
a pointer to the 2D array created by the previous kernel. The second is a pointer to the
array containing neighborhood sizes, created by the neighbor search kernel. The third is
the maximum neighborhood size.

Each thread looks up the size s of the neighborhood for the block’s respective feature
vertex. Afterwards every thread initializes a value l = threadIdx.x. Following this there
is a loop with the constraint that l < s2. In every iteration of the loop, a vertex pair is
processed. The indices used to select the pair is given in equation 3.2

shift = Block Index ·Maximum Neighborhood Size

i =

⌊
l

s

⌋
+ shift

j = l mod s+ shift

(3.2)

The values of the coordinates and normals of vertex i and j are then retrieved from the
2D array created by the repack kernel. Using these values, the same pair features are
computed as in the CPU version. From these features the thread computes the correct bin
index.
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This index is used to increment an array allocated in shared memory representing 8 differ-
ent histograms (one for each warp of the block), representing the descriptors computed by
the block. Each value in this array represents a bin in the histogram. When every pair has
been processed, the histogram is written to global memory.

3.1.4 Fast point feature histograms on the CPU

As mentioned previously in section 2.7, computing FPFH descriptors is a two step pro-
cess. First the SPFH histograms of all vertices in the input surface is created. The PCL
implementation does this by performing a nearest neighbor search for every surface ver-
tex, it then computes the vertex’s respective SPFH. This is stored in an array of SPFH
descriptors. In addition, a lookup table is created such that each vertex in the input surface
references a SPFH descriptor.

The next step is to compute the FPFH descriptor. To do this a nearest neighbor search is
performed for every vertex considered a feature vertex. Once the neighborhood is deter-
mined, the SPFH descriptors of the neighbors is looked up, weighted by the distance to
the feature vertex, and summed together. This process computes the final FPFH descrip-
tor. One distinction from the algorithm described in (Rusu et al., 2009) is that the SPFH
descriptor of the feature vertex is omitted from the computation of the feature vertex’s
descriptor such that

FPFH(pq) =
1

k

k∑
i=1

1

wk
SPFH(pk) (3.3)

By default the algorithm is configured to use 11 subdivisions for each of the 3 features,
resulting in a histogram size of 33.

3.1.5 Fast point feature histograms on the GPU

The implementation consists of two kernels, one creating the initial SPFH histograms, and
the other one creating the final FPFH histogram. Unlike the GPU implementation of the
PFH descriptor, there is no kernel responsible for restructuring.

SPFH Kernel

The SPFH kernel is launched with the same grid configuration as the repack kernel de-
scribed in 3.1.3. Thus its launch parameters are given by equation 3.1. Every warp within
the block is responsible for computing a SPFH descriptor of a feature vertex i. Each warp
starts by retrieving the coordinates and normal of the vertex i considered to be the feature
vertex. This is done by using the warp’s global id as an index. The coordinate and normal
values are stored in shared memory for later use.
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Next, the global warp index idx is used to reference an interval of sizem in the neighbours
array, and retrieve the size s of the warp’s neighborhood.

To compute the feature of a vertex pair, every lane l of the warp looks up the value j stored
at index idx · m + l in the neighbors array. The lane then retrieves the coordinates and
normals of vertex j and forms a pair with vertex i. Pair features are created as described
by section 2.1.4. Each feature is used to increment values of an array stored in shared
memory. This array represents w different SPFH descriptors, where w is the number of
warps per block. Each thread increments its l value by the warp size and checks to see if
the condition l < s is satisfied. The thread will fetch neighbors, compute pair features,
increment the histogram and increment l, then check the same condition again, as long this
condition is met.

After all SPFH histograms of the block have been computed they are written to global
memory. The final format is 2D array where each row correspond to a SPFH descriptor.
The vertex of index i will have its SPFH descriptor in row i.

FPFH kernel

The grid configuration of the FPFH kernel is identical to that of the SPFH kernel. To be
able to look up neighbors of feature vertices, the outputs of the nearest neighbor search is
supplied, as well as the surface vertices. Another input is the 2D array containing SPFH
descriptors from the previous kernel.

The warp retrieves the coordinates of the feature vetex i and its neighborhood size. The
warp then uses the neighbors array to look up values which maps to corresponding rows
in the 2D-array of the SPFH kernel. As mentioned earlier, each row in the array represents
a SPFH descriptor. The warp weights each of these descriptors using the squared distance
between the feature vertex and the neighbor, and sums them together in a temporary array
allocated in shared memory. When all SPFH descriptors have been weighted and added
to the temporary array, the array is written to the output residing in global memory. The
output structure is a 2D array similar to the one from the SPFH kernel.

3.1.6 Spin Image on the CPU

The SI CPU implementation works by creating a spin image for every feature vertex sub-
mitted. In order to create a spin image, a local reference axis needs to be determined. By
default the feature vertex’s normal will be chosen. The spin image’s pixel size is calculated
using equation 3.4

bin size =

search radius
image width√

2
(3.4)

In order to estimate the neighborhood, a KD-Tree radius search is performed, each of the
neighbors are then subjected to spin image mapping. Mapping is done by calculating the
α and β coordinates of the current neighbor.
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beta bin =

⌊
beta

bin size

⌋
+ image width

alpha bin =

⌊
alpha

bin size

⌋ (3.5)

Whilst the original description of spin images calls for a different beta bin calculation,
the one used for this implementation is justified given that the cylindrical is set to 2 ∗
image width opposed to the originally proposed height set to image width. The weights
a and b used for biliniear interpolation of the spin image are given by equation 3.6

a =
alpha

bin size
− alpha bin

b =
beta

bin size
− (beta bin− image width)

(3.6)

Even though they may appear different from the original algorithm, it can be shown that
they represent the exact same value. The values of the Spin Image histogram are then
incremented similarly to what was described in 2.10.

3.1.7 Spin Images on the GPU

The spin image GPU implementation used in this paper is provided by Bart van Blokland
(van Blokland et al., 2018). There are several kernels that takes part in the computation
of the spin images, most notable is the kernel used for the actual spin imgage generation.
Other utility kernels are also used for initializing histogram values, sampling the mesh,
calculating triangle areas and performing the accumulation of these areas.

3.1.8 Utility kernels

The first kernel being launched is to initialize the values of the spin image to zero. Next,
the triangle area and cumulative triangle area calculated using equation 3.7

triangle area =
|side one× side two|

2

cumulative areak =

k∑
i=1

triangle areai

(3.7)

The goal of the sample kernel is to create a uniform random distribution of points across the
model in such a way that the number samples on a triangle is reflected by the triangle’s size.
In other words, a large triangle should contain a large percentage of the samples, while a
small triangle should contain a small percentage of samples.This is achieved through first
initializing an array of pairs of random coefficients with size equal to that of the sample
size. This is done using the CURAND library.The sample kernel is responsible for creating
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the sample points, although first it needs to decide on how many samples there should be
for a specific triangle. It does this by looking up the surface area of the triangle and
comparing it to the total surface area of the model. The position of a sample point P of a
triangle ABC is computed using 3.8 from (Osada et al., 2002).

P = (1−
√
r1)A+

√
r1(1− r2)B +

√
r1r2C (3.8)

3.1.9 Create descriptors kernel

When launched, the kernel will create the final spin images. In this implementation, the
launch parameters for the grid is designed to be a number of blocks equal to the number of
vertices in the model, each using 32 threads. At the beginning of the kernel, each thread
identifies their block and fetches the corresponding normal and vertex information from
global memory. Then every thread in the block is assigned to one of the model’s triangles
by means of a for-loop which increments by the block size, until every triangle has been
iterated. During each iteration the sample bounds of the triangle are calculated, and the
corresponding sample points subsequently fetched. For every sample point, alpha and
beta are calculated through equation 3.9

beta =
(Sample point − V ertex point) · V ertex normal

V ertex normal · V ertex normal

alpha = |(V ertex point+ beta · V ertex normal)− Sample point|

(3.9)

After alpha and beta are obtained, bilinear interpolation can be performed the same way as
described in section 2.1.5. In order to avoid race conditions when modifying the histogram
values, atomic operations are used for the additions performed by equation 2.10
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3.2 Implementations Described In Litterature

3.2.1 SHOT Using OpenCL

(Palossi et al., 2013) describes an implementation of the SHOT descriptor using OpenCL.
To create the implementation, the algorithm is broken down into multiple steps. These are
extrapolated as kernel functions which are used to form the final SHOT GPU implementa-
tion.

.

Figure 3.6: The steps of SHOT algorithm and their contribution to the overall computation on the
CPU (Palossi et al., 2013)

Nearest Neighbor Search Kernel

The radius neighbor search identifies neighbour vertices of the feature vertex. A vertex is
considered to be a neighbor of the feature vertex if the Euclidean distance d between is less
than a specified radius r. The search is done using a kernel with a number of work-groups
equal to the number of feature vertices. The number of work-items per work-group is not
mentioned in detail. Every work-item then looks up up vertices in the model whose index
is a multiple of the work-item’s local id.

During each lookup, the vertex’s distance d from the feature vertex is calculated. If the
vertex is considered a neighbor, its index and distance are stored in arrays residing in
private memory. A value in shared memory indicating the number of neighbors found
by the work-item is also incremented. The work-item then repeats the process for the
next vertex of the surface. After all vertices of the surface have been processed by the
work-group, the neighbor indices and their distances are written to global memory.

Local Reference Frame Kernels

To create the LRF there are two kernels involved. The first one creates covariance matrices
required. The kernel launches 6 work-groups per feature vertex, one for each unique value
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in the covariance matrix of the neighborhood. The final covariance matrix is stored in
global memory by reducing the partial results of the work-groups.

The next kernel is responsible for performing Eigenvalue Decomposition and sign disam-
biguation as described in (Tombari et al., 2010). This kernel is launched with a number
of work-groups equal to the number of feature vertices. The Eigenvector computation
and sign disambiguation is assigned to a single work-item of the work-group. If the sign
disambiguation does not yield a valid result (the sign still being ambiguous), another dis-
ambiguation using only 5 neighbors is performed on the host.

Histogram Kernel

The histogram kernel assigns each neighbor vertex to a local histogram based on its loca-
tion within the spherical support. As mentioned before, the spherical support of the SHOT
descriptor has several sub-volumes, each of these have their own local histogram. The ker-
nel uses a grid which assigns a work group to each feature vertex. Each work-item fetches
a neighbor vertex of the feature vertex, determines which local histogram it belongs to,
and writes the result to global memory.

Interpolation Kernel

The interpolation step is by far the one incurring the highest computational expense as
shown in figure 3.6. The kernel launches a grid with a number of work-groups assigned to
each feature vertex. Each work-group contains a number of work-items equal to the warp
size. The work-items then iterates over the neighbors of the feature vertex.

During each iteration, the coordinates of the neighbor must be fetched. The contribution of
the neighbor, in its respective local histogram, is computed. The vertex also contributes to
the local histograms of adjacent volumes within the support region. All in all this requires
four interpolations to be performed for each neighbor vertex

Normalization Kernel

Finally a kernel performs L2 normalization of the histograms. The grid used for this con-
tains a work-group for each feature vertex. Each work-item reads a histogram value and
stores it in an array in local memory. The array is then reduced, resulting in the normal-
ization value. This value is then used by every work-item to normalize a corresponding
histogram bin.
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Results

The OpenCL implementation shows an increase in speed for all steps, as illustrated by
figure 3.7. Note that the normal computation step is not mentioned in this section. This is
because it is particular to point cloud data, whereas the thesis concerns itself with surface
meshes.

.

Figure 3.7: The speed-up of the steps involved in computing the SHOT descriptor, when imple-
mented on the GPU. 10 000 descriptors were computed for a model containing 90190 vertices.
(Palossi et al., 2013)

3.2.2 FPFH using CUDA

(Garrett et al., 2016) presents a GPU implementation of the FPFH descriptor. Unlike
the GPU implementations of the PCL, a KD-Tree is used for nearest neighbor searches.
The KD-Tree is also built using CUDA. The output of the neighbor search is similar to the
Octree of PCL, however each local neighborhood is cached. This means that the neighbors
array contains actual coordinates instead of a value representing a surface index. As with
the PCL implementation, SPFH and FPFH computation is split into two kernels.

SPFH Kernel

The SPFH kernel is launched with a block per feature vertex, and block size of k2 where
k is the maximum neighborhood size. This means that each thread is assigned a pair of
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neighbors. Each thread retrieves their assigned pair and computes their features. Using
these features, the corresponding bins in the SPFH histogram is incremented. The SPFH
histogram is located in global memory.

FPFH Kernel

The FPFH kernel launches a grid with a block per feature vertex, and block size of k.
Each thread loads a SPFH histogram from global memory and stores a weighted version
into shared memory. Once every thread of the block has completed this step, reduction is
applied to the values in shared memory. This results in the final FPFH descriptor.

3.2.3 SHOT Descriptor Using CUDA

(Hu and Nooshabadi, 2015) proposes a GPU implementation of the SHOT descriptor. In
this approach, there are two kernels. The first kernel computes the LRFs of the feature ver-
tices, while the second kernel maps neighbors to sub-volumes within the spherical support
and performs quadrilinear interpolation.

Nearest neighbor searching is done on the host using the KD-Tree implementation of the
PCL. In

The LRF kernel assigns a thread to each feature vertex, this ways a single thread computes
a single LRF. The number blocks used is given by equation 3.10.

block size = 256

number of blocks =
number of feature vertices

number of blocks
(3.10)

The threads has to iterate through the neighbours of their respective feature vertex, com-
pute the covariance matrix, perform Eigenvalue decomposition and resolve the sign of the
Eigenvectors.

Equation 3.10 can also be used to calculate the grid of the histogram kernel. However, the
block size used is decreased to 128. As with the previous kernel, each thread is responsible
for a single feature vertex. The thread has to determine the local histogram volume, and
contribution, of each neighbour.
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Chapter 4
Discussion

4.1 Designing a Parallel Feature Descriptor Algorithm For
the GPU

4.1.1 Nearest Neighbor Considerations

With the exception of SI, all of the GPU implementations considered for this thesis per-
forms some sort of nearest neighbor search in order to determine support members. All
of the PCL implementations used a GPU based octree, whilst (Garrett et al., 2016) used a
GPU based k-d-tree. The OpenCL version (Palossi et al., 2013) of SHOT performs a naive
nearest neighbour search using the GPU. (Guo et al., 2016) uses the CPU based k-d tree
from the PCL.

All of the GPU based nearest neighbor searches stores their result in an array residing in
global memory. The total size of this array can be expressed as in equation 4.1 where n is
the number of feature descriptors to compute, k is the maximum number of neighbors and
s is the element size.

array size = n · k · s (4.1)

All of the implementations that performs a GPU based neighbor search requires the max-
imum number of neighbors to be specified on kernel invocation. This is likely due to the
fact that memory should be allocated to the kernel prior to its launch. While dynamic
allocation is possible (Nvidia, 2019a), it is still limited by the heap size. In addition, the
expansion and compression of the neighbors array size is likely to add significant com-
plexity when compared to fixed neighborhood sizes.
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However, a fixed neighborhood size may impact the final descriptor. This is because there
can exist support members that are not evaluated due to the neighbor search already having
found the specified maximum amount of neighbors. This can to some extent be prevented
by increasing the neighborhood size, thus increasing the recall of the neighbor search.
Since any increase in neighborhood size increases the overall size of the neighbors array
proportionally, a moderate maximum neighborhood size should be chosen.

When computing feature descriptors, the workload associated with each descriptor is di-
rectly related to how many neighbors that are contained within the support region. This
means that the workload can become uneven when computing descriptors with a varying
number of neighbors. (Guo et al., 2016) shows that setting the maximum neighbor count to
the median neighbor count (when performing a nearest neighbor search with perfect recall)
reduces the descriptiveness of the (SHOT) descriptor by 5% whilst decreasing the compu-
tation time by 15%. This was done on a model where the support count for all descriptors
had a minimum value of 6, a median value of 90 and maximum value of 1172.

The CPU implementations that have been examined in this thesis all use the k-d tree pro-
vided by the PCL. When a descriptor is extracted, the k-d tree is used to find the respective
neighbors of the feature point. These are stored in a std::vector, which is automatically
resized as needed. This means that the CPU neighbor search can guarantee a result with
perfect precision and recall.

4.1.2 Using Lookup Tables

All of the PCL GPU implementations, as well as the OpenCL version of SHOT, stores
the result of the nearest neighbor search as values corresponding to indices in the original
surface and normal arrays. For a thread to look up any actual values, it must first determine
the correct index in the neighbors array, retrieve the value stored, and read the correspond-
ing index from the surface and normals array. Instead of storing a lookup value to a vertex
p in the surface input, one can instead copy the coordinate and normal values into a 2d
array as illustrated in figure 3.4.

In fact, the repack kernel in section 3.1.3 describes the conversion to this format from a
lookup table. The computational complexity of PFH is O(n · k2) where n is the number
of descriptors to be computed, and k is the maximum number of neighbors. For every
descriptor, k2 pairs of vertices must be fetched for computation. If this step used a lookup
table, it would thus require 2 · k2 coalesced requests to the array containing neighbor
indices residing in global memory. Each of theses transactions would be followed up by
non-coalesced accesses to the surface array and the normal array, in order to retrieve the
actual values. Because of the prior repack kernel , the thread can instead access the actual
values directly based on its lane id.

The repack kernel requires n · k coalesced transactions to global memory for fetching
neighbor indices, these result in several non-coalesced transactions each in order to retrieve
coordinate and normal values of the neighbors. The values can then be stored in global
memory by coalesced transactions. In the PFH GPU implementation, the repack kernel
ultimately reduces the need for non-coalesced memory transactions.

34



4.2 Optimizing for the GPU

Another approach is to modify the nearest neighbor search. Since the coordinates must
be fetched in order to check if a vertex is a neighbor, one could store the coordinates
directly instead of storing the vertex index. By modifying the nearest neighbor algorithm,
one could remove the need for the repack kernel in its entirety. In fact, this design would
benefit all GPU based feature descriptor implementations examined in this thesis, that
performs nearest neighbor searching. This is a result of no longer needing to perform
non-coalesced accesses to neighbor values via a lookup table.

4.2 Optimizing for the GPU

4.2.1 The Importance of Coalescing

Whenever reading or writing to global memory, the threads within the same warp should
access memory in such a way that their access pattern is aligned as illustrated in figure 4.1.
This will make the compiler try to service multiple memory requests from the same warp

Figure 4.1: Each thread accesses contiguous 4 byte words in global memory

using as few memory transactions as possible. A single memory transaction is capable of
transferring 32,64 or 128 bytes of contiguous data to and from global memory (Nvidia,
2019c). This means that given an optimal access pattern, a warp where each thread re-
quests a float (or other 4 byte word) would require a single memory transaction. Figure
4.2 illustrates a non-contiguous access pattern. Since the difference in memory locations
accessed by the threads of the warp is greater than what can be covered by a single trans-
action, multiple transactions will be required. This particular example will require two
memory transactions. Even more transactions will be required as the stride between ac-
cess locations increase. Eventually, each of the threads’ memory request would result in
their own transaction.

Because of this, any feature descriptor implementations for the GPU should take care to
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coalesce any requests to global memory. Examples of such requests are reading normal
values, coordinates or writing the computed descriptor to global memory. The result of
performing any of these steps in a non-coalesced fashion is that the effective bandwidth
becomes severely reduced. The GPU implementations that have been examined for this
thesis all employ strategies to ensure coalescence occurs when possible.

36



4.2 Optimizing for the GPU

Figure 4.2: Each thread accesses non-contiguous 4 byte words in global memory. This requires two
separate fetch instructions to be issued. The data pertaining to each respective transaction is marked
with a dotted line.

4.2.2 Avoiding Register Spilling

(Hu and Nooshabadi, 2015) cites register spilling as one of the limiting factors for their
computation of the SHOT descriptor using CUDA. The performance can be shown to
decrease as much as 38% with 116 bytes being used by local memory (Wilt, 2013). This
is due to local memory residing in global memory, which requires a high latency memory
transactions.

There are several ways to decrease the requirement for local memory. Devices of compute
capability 3.2 and greater can use a maximum of 255 registers per thread.The amount of
registers per block varies between 32K and 64K depending on the exact compute capa-
bility (Nvidia, 2019b). Evidently, a block of max size (1024 threads) cannot allocate 255
registers to each thread. The block size must therefore be reduced in order to increase the
amount of available registers per thread. Failure to so will result in a decrease in perfor-
mance from spillage to local memory.

Another approach is using non-caching loads when reading data from global memory.
From compute capability 5 and greater, data that the compiler identifies as read only, will
be cached in L1 (Nvidia, 2019b). This means that global memory reads and registers
will contend for cache resources. It is not a given that non-cached loads will increase
the overall performance, as cache utilization is going to depend on the program being
executed. Depending on the architecture of the device, L1 cache and shared memory may
or may not reside on the same physical unit of memory (Nvidia, 2018)(Nvidia, 2016).
The CUDA runtime enables developers to specify if a larger L1 cache is desirable, at the
expense of a smaller shared memory. The increased size in L1 cache could help alleviate
register spilling ,although it might also lead to reduced occupancy and throughput, due
to the smaller amount of shared memory available to each thread block. Therefore, this
optimization technique and its performance impact, like non-caching loads, depends on
the algorithm as a whole.
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4.2.3 Optimal Launch Parameters

The launch parameters for kernels should not be overlooked when developing CUDA ap-
plications. The size of the grid and its blocks is directly related to the throughput of the
application. The examined GPU feature descriptors have used a number of different con-
figurations for their kernel. A general rule of thumb appears to be that the size of a thread
block is inversely proportional to the complexity of its respective kernel. In this context,
the complexity refers to the amount of resources that must be allocated for each thread
block and the number of instructions each thread warp performs.

The GPU implementations from the PCL all assigns a warp of threads to the computation
of each descriptor. These warps are then grouped into blocks of 8 warps (256 threads per
block). The amount of blocks that fit on each SM depends on the resources that must be
allocated for each block, such as shared memory, the number of threads and their use of
registers. Each block stays allocated on the device for as long as there are warps containing
threads that have not finished their execution.

This means that potentially inactive warps might take up resources that could’ve been
utilized. Since the amount of neighbors for each computed feature descriptor varies (?),
the warps might end up with relatively uneven workloads. For example, assume that 7
out of 8 warps process sparse neighborhoods and thus finish quickly. This means that
the processing of the warp 8 keeps the block allocated, with a smaller number of warps
potentially eligible for execution.

(Garrett et al., 2016) uses a block size of k2 and k for their SPFH and FPFH kernel (where
k is the maximum number of neighbors for each descriptor), respectively. This means that
the block size, and resources available for each thread will vary depending on what value
is chosen for k. When considering the variable neighborhood size, it becomes clear that
many of the threads in the block might become redundant when choosing inappropriate
values of k. This leads to the same problems as discussed earlier in this section.

Some of the GPU implementations, namely SI and the OpenCL version of SHOT, use a
block size equal to that of the warp size for select kernels. The limiting factors are said to
be transactions to global memory and register spilling, respectively (van Blokland et al.,
2018) (Palossi et al., 2013) .

4.2.4 Atomic Operations and Shared Memory

Shared memory has several use cases when computing feature descriptors. Since shared
memory is located on aboard the SM,its access time is lower than that of global mem-
ory. Further more, threads within the same block can access the same locations in shared
memory. Shared memory is controlled explicitly by the programmer, which means that it
will not be spilled to registers. The FPFH implementation of the PCL stores the values of
the feature point when executing the FPFH kernel. This acts a caching mechanism when
iterating over the neighbors, preventing the values of the feature point from being spilled
to global memory.
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Histogram computation in parallel requires that the write operations are atomic. This
means that when two threads tries to modify the same data, the writes should not overwrite
each other. Instead, the write operations should be performed in sequence. The default
result of two CUDA threads writing to the same memory location during the same warp
is undefined. Starting with the Maxwell architecture, CUDA introduced native shared
memory atomics (Nvidia, 2015).

All of the feature descriptors examined outputs a histogram implemented as an array, with
histogram bins corresponding to array indices. Since the bin to increment must be com-
puted, and most likely scattered, transactions modifying the histogram are not going to be
coalesced. A workaround is to buffer the histogram in shared memory, and use its atomic
operations to modify its bins. Once the histogram has finished computing, it can be written
to global memory using coalescent transactions. This is illustrated by figure 4.3. A differ-
ent algorithm has been shown to increase its computation time by up to 200% using this
technique. This algorithm created a 2-D histogram based on RGB color channel values in
images (Nvidia, 2015).

Figure 4.3: Values are written to scattered histogram bins. The threads of the warp then transfer the
output to global memory using a coalesced access pattern.

Figure 4.4: The exact speedup with respect to entropy of the data (Nvidia, 2015)
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Chapter 5
Conclusion

This section presents a conclusion to the research questions stated in section 1.1. The
background for the the answers provided is the accumulated knowledge and observations
made from the previous chapters of the thesis.

During this thesis the theory and GPU algorithms of several implementations have been
studied in detail. Each of the steps that goes into the different feature descriptors have
been examined. It turns out that the different feature descriptors share several steps in
their computation. Some examples of such steps are nearest neighbor search, interpolation
and histogram computation. Based on the approaches in different implementations, the
thesis suggests which ones are likely to give the best computational performance.

When programming for the GPU there are several constraints which, if not considered,
may decrease overall performance. The exact impact of these have been shown in other
algorithms. The thesis has observed which of these are most relevant when implementing
feature descriptors, and suggests which precautions to take in order to ensure that imple-
mentations are optimized for GPU execution.
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