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Preface
When choosing a theme for the master thesis, the selection of the topic was passion driven. Within
the last years, we have participated in case competitions and campaigns concerning this immense
challenge. The main topic of this thesis, plastic and its expansive consequences, is close to our
hearts and is genuinely engaging us. Hopefully, and very likely, our commitment will remain - also
after this thesis.

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of
Science (M.Sc.) at the Norwegian University of Science and Technology (NTNU). The main work
is completed at the Department of Marine Technology, NTNU, while part of the work has been
conducted at the Department of Electronic Systems, NTNU, the Department of Biology, NTNU,
the Department of Materials Science and Engineering, NTNU, SINTEF Ocean and from a boat,
MS Hasse, in Lofoten.

In December 2018, a project thesis was delivered as a pre-project to the master thesis. The research
and results from the project thesis have, partly, created the grounds for the work done in the master
thesis. The master thesis can, therefore, be viewed as a continuation of the project thesis, Stien
and Dahl (2018).

The work supporting this thesis is three-folded. In order to achieve consistent and precise knowl-
edge, a study of relevant literature was done. This study includes research on both specific methods
and techniques used, as well as initiatives and solutions to solving the problem in general. The
research regarding these topics was done mainly by studying a set of scientific papers.

However, even with the most recent publications, there is still research done - not yet published.
The second part of this thesis was, therefore, to travel around Trondheim meeting with the experts,
acquiring new knowledge. After which, the problem description finally took form.

We realized that we wanted to arrange and manage the entire research process, from start to finish.
We did everything from mapping the field, to collecting and processing the material, to creating
the laboratory set-up and building the database, and finally analyzing the data. This execution
and completion of the research represent the third and last part of the three-folded process.

Last semester, we attended two, particularly relevant, module courses, TTK19 Structures and
Contexts in Complex Systems - a course on how to handle Quantitative Big Data, and TTK20
Hyperspectral remote sensing - providing in-depth knowledge on relevant hyperspectral imaging
techniques. This insight helped the understanding of the task at hand, giving valuable knowledge,
much reflected in this thesis.

Trondheim, June, 2019

Emilie M. H. Dahl Andreas Ø.R Stien
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Abstract
The ocean plays a great part in life on earth, not only as a source of oxygen and food for living
beings but also as a vital influence on the climate and weather. The ocean, with all that comes
with it, is simply a necessity for life on earth. Nevertheless, that same ocean is not taken care of.
Plastic and subsequently microplastic contamination is currently present at the highest and lowest
points on the planet, permeating almost every aspect of modern day life with its wide applicability.

The road towards a clean sea contains several legs and does at the very least require a mapping
of the ocean columns, determining critical areas. Proper methods and technology for mapping
and monitoring need to be addressed. This promptly calls for the development of in-situ detection
methods. Hyperspectral Imaging and Raman spectroscopy may be such technologies, in principle
able to extract the chemical structure of the object to be viewed by collecting spectral signatures
at the areas of illumination. This study will cover whether it is possible to classify specific types
of microplastics underwater by identifying their spectral signatures. The research includes the in-
vestigation of plastic identification using NIR Hyperspectral imaging, Hyspex SWIR 320-e, Norsk
Elektro Optikk AS, Skedsmokorset, Norway (2019), in the interval of 960-2400 nm and Raman
Spectroscopy, Witec UHTS 300 SMFC VIS Raman Spectroscope, WITec GmbH (2019), at 532
nm.

Moving across the two techniques, the general lines of the experiments are more or less identi-
cal. The studied material consists of plastic samples ordered from CARAT GmbH. These samples
are of different type, color and condition (varying from pristine samples to sorted, recycled plastic,
to post-consumer particles). In addition, the samples were milled to add a category - size, creating
a total of 25 categorized samples. These samples are meant to build a supervised model, predicting
unknown plastics. The unknown particles were collected from the sea outside Svolvær, Lofoten -
17 particles in total. In order to retrieve data, sample measurements were performed in three ways,
using bare plastic, plastic in water and the untreated, unclassified, sea-influenced samples.

Within the two methods, the data was unequally processed and analyses. The Raman data was
filtered using a Savitzky–Golay filter, before building a partial least squares discriminant analysis
(PLS-DA) model, analyzed in Unscrambler X, CAMOAnalytics (2019). The infrared hyperspec-
tral data, on the other hand, was analyzed using K-means clustering and Spectral Angle Mapper
(SAM) algorithms for classification purposes.

The conclusions suggested by the results are that the predictions, and hence the models, seem
to classify plastics independent on size, color and environment. This reasoning also applies to
plastics under a film of water, as well as sea-influenced plastic particles. However, variations in
condition appear to influence the spectral signature of the associated plastic type, altering the
general signature of the specific type. This leaves the mapping and classification method more
suitable for plastics that recently entered the ocean.
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Sammendrag
Dagens Næringsliv (DN) hadde følgende overskrift 28. Mai i år (forfatter: Jørn Aass); ”Alarmerende
forskning: Plast i havet påvirker oksygenet vi puster inn”. Plastforsøpling påvirker havet, som igjen
er en sentral del av livet på jorden – både i vann og på land. Likevel, blir ikke havet tatt vare på.
I dag, er plastforurensning et faktum, både på de høyeste fjelltoppene og i de laveste havgropene.
Med sin brede anvendelighet gjennomsyrer forurensningen nesten alle aspekter av det moderne liv.

Veien mot et rent hav inneholder flere etapper og krever, på det minste, en kartlegging av havrom-
met for å bestemme kritiske områder. Dette krever en omgående utvikling av in situ-deteksjonsmetoder.
Hyperspektral avbildning og Raman spektroskopi kan være slike teknologier. I prinsippet skal de
begge kunne trekke ut den kjemiske strukturen til det observerte objektet ved å samle spektrale
signaturer fra områdene belyst. Denne rapporten vil dermed forsøke å avdekke om det er mulig å
klassifisere mikroplast under vann, ved å identifisere deres respektive spektrale signaturer. Studiet
som støtter avhandlingen, omfatter undersøkelser av plastidentifikasjon ved hjelp av nær infrarød
hyperspektral avbildning (Hyspex SWIR 320-e, Norsk Elektro Optikk AS, Skedsmokorset, Norway
(2019), i intervallet 960-2400 nm) og Raman spektroskopi (Witec UHTS 300 SMFC VIS Raman
Spectroscope, WITec GmbH (2019), ved 532 nm).

Ved anvendelsen av de to teknikkene, er de generelle linjene i forsøkene stort sett identiske. Det
studerte materialet er det samme, bestående av plastprøver fra CARAT GmbH. Disse prøvene er
av forskjellig type, farge og tilstand. Tilstanden varierer fra uberørte, til sortert, resirkulert plast,
til plast kastet fra seg av forbrukere. I tillegg ble prøvene malt med formål om å legge til ”størrelse”
som enda en kategori. Totalt ble dette 25 kategoriserte prøver. Formålet med disse kjente prøvene
er å bygge en supervised maskinlæringsmodell, som skal kunne predikere plasttypen på ukjent
plast. Testsettet med ukjente plastprøver, er basert på prøver samlet fra havet utenfor Svolvær,
Lofoten. Disse ukjente partiklene, utgjør 17 av totalt 42 prøver. For å hente ut representativ
data, ble prøvemålingene gjennomført på tre måter. Først, ved måling av ren, kjent plast, dernest
målinger av samme plast i vann, før, tilslutt, målinger av de ukjente plastpartiklene fra Lofoten.

Innenfor de to metodene ble dataene ulikt behandlet og analysert. Raman-dataene ble filtrert
ved hjelp av et Savitzky-Golay-filter, før det ble konstruert en partial least squares discriminant
analysis (PLS-DA)-modell, analysert i Unscrambler X, CAMOAnalytics (2019). De hyperspektrale
dataene ble derimot analysert ved hjelp av algoritmer som K-means clustering og Spectral Angle
Mapper (SAM). Dette for klassifikasjonsformål.

Foreslått konklusjonen er at prediksjonen av plast synes å klassifisere plast uavhengig av stør-
relse, farge og tilstand. Dette gjelder også plast under et tynt lag med vann, og sjøpåvirket plast.
De spesifikke spektrene kan imidlertid ikke variere for mye når det gjelder industri- og miljøen-
dringer. Dermed kan det se ut som klassifiseringsmetodene kun er egnet for plast nylig entret
havet.
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Chapter 1

Introduction

The tremendous amount of plastic entering the ocean is affecting the marine environment to a
large degree. The first step towards a plastic-free ocean is discovering ways to detect microplastic.
This chapter will address the "big picture", motivating the work supporting this thesis, before
highlighting the main findings obtained in this area.

1.1 Motivation

Today, the applications of plastics are many, making the material popular worldwide. 381 million
metric tons of plastic is produced yearly, and the production is projected to nearly double within
the next 10-15 years, Geyer et al. (2017). As pieces of plastic degrade over time, the resulting tiny
pieces, defined as microplastic, float around as deadly toxins. In 2014, 15 to 51 trillion particles
of microplastic were estimated to hover the seas, van Sebille et al. (2015). A vast number of sea
animals are known to confuse microplastics with food, often carrying fatal consequences for sea
life, again harming human health.

No doubt the motivation towards solving one of this worlds most significant challenges is vast.
However, the essential sources to plastics in the seas come from humans dumping garbage in
oceans and rivers. 80% of microplastics found in the ocean, originates from human-made, land-
based sources, such as bags and bottles, Jambeck et al. (2015). If all dumping ended today, the
plastic would still remain in the ocean, causing damage over and over again. In order to reduce
the impact, one must first identify the particles.

A good way to work with materials, identify them or learn about their properties, is to study
how light interacts with them, one of these studies being spectroscopy. By definition, spectroscopy
examines how light behaves in the target and may recognize materials based on their different spec-
tral signatures. An object’s respective fingerprint is described through a spectrum. This spectrum
is the resulting representation of the amount of light in different wavelengths, showing how much
light is reflected, emitted and transmitted from the target. The analysis of the spectrum can reveal
unique molecular properties of an object, contributing to an identification of the object.

Spectral signatures can, thus, be thought of as fingerprints. While fingerprints are often used
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to identify a person, spectral signatures can be used to identify materials. The objective of this
study is, hence, to identify different types of plastic using their spectral signatures. Within spec-
troscopy, the authors are curious about using two techniques for this purpose, namely hyperspectral
imaging and Raman spectroscopy, Pettersen et al. (2013).

The research question driving this project is therefore centered around whether microplastics and
their related spectral signatures, in fact, can be separated. Going even further, the question should
also involve water, formulating the following research question.

1.2 Research Question

Is it possible to identify plastics in various sizes and in various conditions, underwater, using a
hyperspectral imager in infrared light or the Raman spectroscopy? The conclusion of this report
will, accordingly, also include a recommendation on whether there is any point in going further
with the research - towards an in situ investigation.

1.3 Main Contributions

The main scientific contribution is that the results, from the study completed in this thesis, suggests
that both the hyperspectral imager and the Raman spectroscopy methods succeed in identifying,
and classifying, microplastics underwater. However, restrictions on both methods are a fact. When-
ever organic marine matter block the field of view, e.g. growth, the method fails to identify the
microplastics beneath. Also, the specific spectra will vary in terms of industrial or environmental
changes, leaving the mapping and classification method suitable for plastics that recently entered
the ocean.

1.4 Thesis Outline

This section describes the outline of the thesis. Figure 1.4.1 is a visual description trying to catch
the relationships within and between the chapters presented below.

CHAPTER 1

Chapter 1 is an introduction containing the motivation behind the research question, and a short
answer to this question, highlighting the main contributions of the work.

CHAPTER 2

Chapter 2 gives a background view on the topic. What has been done so far? What type of sensors
and methods has been proven sufficient? And what are the key takeaways relevant when embarking
this study?
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CHAPTER 3

Chapter 3 takes care of the fundamentals of light, describing, in detail, the properties of light and
its areas of usage. In addition, spectral signatures are introduced.

CHAPTER 4

Chapter 4 introduces the optics of spectrometry. The information in this chapter explains the
blocks building the basis of the hyperspectral technology.

CHAPTER 5

Chapter 5 elaborates on imaging, the imaging process and different aspects of it. This chapter
reveals how hyperspectral imaging and Raman spectroscopy utilize light to extract information
from an object - this, based on the details of Chapter 4.

CHAPTER 6

Chapter 6 describes how the data retrieved from the plastic measurements can be computed and
analyzed. In this thesis, several methods for classification have been used, all elaborated here.

CHAPTER 7

Chapter 7 describes the structure of the process for the entire study, both scientifically relevant
and for pure knowledge-gaining discussion sessions.

CHAPTER 8

Chapter 8 presents Paper I, Identification of Marine Plastics using Hyperspectral Imaging in In-
frared Light. This chapter also contains extended material and discussion, beyond what is included
in the articles, yet complementing scientific paper I.

CHAPTER 9

Chapter 9 presents Paper II, Identification of Marine Plastics using Raman Spectroscopy. This
chapter also contains extended material and discussion, beyond what is included in the articles,
yet complementing scientific paper II.

CHAPTER 10

Chapter 10 compare and discusses the two papers. This chapter is not only an extended discussion
of the results, but a comparison of the two approaches used in each article.
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CHAPTER 11

Chapter 11 gives a short conclusion, pulling strings from the results and discussions. In addition,
ideas on further work are presented.

Figure 1.4.1: Thesis outline, roughly sketched

5



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

Chapter 2

Background

2.1 Plastic

The following paragraphs are largely inspired by Callister and Rethwisch (2018).

Plastic is a term used in a wide range of fields to describe properties and behavior of materi-
als, in addition to the common type of materials. This report will use the term plastic solely to
describe the type of material.

2.1.1 Chemistry

Polymers are large macromolecules, consisting of several repeated units. The molecules have a
broad range of properties, resulting in polymers playing an essential part in society. Wool, cotton,
DNA, wood and leather are all naturally occurring polymers, utilized for centuries. In recent times,
it became possible to synthesize polymers and manufacture a sub-group of polymers called, plastics.

The majority of polymers are hydrocarbons, meaning they mostly consist of hydrogen and car-
bon bonded to each other in addition to miscellaneous other elements. The molecules consist of
extremely long backbones of carbon, with side bonds to other elements or new branched chains.
The backbone is the combination of thousands of basic hydrocarbons. The term polymer refers
to many repeated, poly-, units, mer. Basic hydrocarbon units are combined, either naturally or
synthetically in the case of plastics, to form the large molecules. It could either be one or multiple
kinds of base units. Depending on the base units, the polymer will have different properties.

A crucial aspect determining the properties of a polymer is the structure of the chains. Dif-
ferent polymers will form different chains, either linear, branched or crosslinked. The chain type
will determine how the molecules will pack and form intermolecular bonds. The chain types are
largely determined by the base units. Modern techniques allows control over the polymer structure
during the synthesizing.

Due to the simple nature of the molecule, linear chains will pack tightly. Subsequently, the
molecules will form extensive "van der Waals" and hydrogen bonds. The resulting polymers are
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therefore strong. Branched chains are linear molecules with branched side-chains. The increased
complexity of the molecule makes it more difficult to pack and, consequently, reduces the density.
The intermolecular bonds are, as a result, generally weaker and the polymer is less strong. Fi-
nally, the crosslinked polymers are parallel linear chains that are joined together by covalent bonds,
rather than intermolecular bonds. The result is a strong, but flexible, polymer.

The molecular structure and base units of the polymer, affect the properties. The elements of
the base units, apart from the hydrogen and carbons, will determine properties due to the chemi-
cal properties of the side groups. Also, the molecular weight of the polymer plays a significant role
in the strength of the polymer. A higher molecular weight will result in a stronger polymer. In
addition, the molecular structure is the basis for the packing of the molecule. The tighter packing
will result in a more dense polymer, with less surface area and, subsequently, a generally lower
level of degradation. The packing will also determine the level of crystallinity, which again results
in stronger intermolecular bonds.

2.1.2 Common Plastics and Applications

All of these properties are essential as they are the cause of the unique position that plastics hold
in society. The materials typically have low densities, with mechanical properties different from
metallic and ceramic materials. Plastics are usually less stiff, and weaker than metals and ce-
ramics. However, on account of the strength and stiffness per mass, the plastics are comparable.
The combination of strength, weight and elasticity has made the material extremely popular, with
it being used in everything from food wrapping to prostheses. The properties of plastic highly
vary depending on the type and the side chains of the basic polymer structure, as well as the
additives blended into most plastics. The latter could potentially be highly toxic and a source of
the toxicity of plastic. Another key property making plastic popular is its chemical and biological
inertness, generally making it non-biodegradable. In short, plastics are inexpensive, lightweight,
strong, durable, corrosion-resistant materials, with high thermal and electrical insulation proper-
ties. The result is the annual production in 2015, as previously mentioned, exceeding 380 million
tonnes and plastic penetrating all aspects of life Geyer et al. (2017).

Plastics are classified in different groups according to their chemical structure. Besides containing
Carbon-Hydrogen bonds, these are all structurally different and they are classified accordingly. The
result of the varying structure is varying properties. Different groups of plastic, therefore, have
different typical use. Polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET),
polyvinyl chloride (PVC) and polystyrene (PS), are the five most common types of plastic, in large
part covering the global plastic production, Johnson (2017).

Polyethylene

The monomers in polyethylene (PE) has the chemical formula C2H4. Polyethylene is the most
common type of plastic. The reason is the broad application of it in consumer products. Plastic
bags, bottles and food wrapping are examples of polyethylene. However, these three products seem
to have significantly different material. For instance, plastic bags are rarely as rigid and durable
as bottles. This variation in polyethylene creates two sub-types defined by the degree of density –
HDPE and LDPE, high-density polyethylene and low-density polyethylene, respectively.
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The LPDE-monomers are more branched, meaning that a chain is replacing an atom - for in-
stance a hydrogen atom. As a result, the monomers are less tightly packed, leading to a lower
density. As LDPE is more branched than HDPE, its intermolecular forces are weaker.

Polypropylene

Polypropylene (PP) is the second most common plastic consistent of propylene with the chemical
formula C3H6. PP has properties similar to polyethylene, but it is slightly harder and more
resistant to fatigue. The plastic type is found in a variety of products like food packaging, labeling,
and clothing.

Polyvinyl Chloride

Polyvinyl chloride (PVC) with a number of vinyl chloride monomers formulated by C2H3Cl, is in
third, as the third most produced types of plastic. PVC can be both rigid and flexible. The rigid
form is used in constructional applications in piping and electrical wire insulation, while the softer
and more flexible form is used in many applications replacing rubber.

Polyethylene Terephthalate

Polyethylene terephthalate (PET) consists of repeated ethylene terephthalate monomers, with the
chemical formula C10H8O4. Typically PET is used in plastic bottles and fibers for clothing. For
the latter use, the type is commonly known as polyester. Depending on the specific particle size
and crystal structure, the semi-crystalline material, PET, might appear transparent.

Polystyrene

Polystyrene (PS) is an inexpensive plastic type commonly used for packaging purposes, with the
chemical formula being (C8H8)n. PS increasingly exists in the outdoor environment, particularly
along shores. The plastic is naturally clear, hard and brittle. The latter fact is perhaps the main
reason to why larger pieces of PS easily turn into microplastic.

2.1.3 Microplastics

There is no agreed upon definition of microplastic. However, the most common definition is based
on the size. The term micro stems from microscopic, which refers to particles smaller than 1
millimeter. However, the first international research workshop on the occurrence, effects and fate
of microplastic marine debris, in 2008 and hosted by NOAA Arthur et al. (2009), suggested an
upper size limit of 5 millimeters. GESAMP (Group of Experts on the Scientific Aspects of Marine
Environmental Protection), an independent group of experts on the marine environment, advising
the UN and other major international organizations, chose to define microplastics in the range of
1 nanometer to 5 millimeters, GESAMP (2015). This thesis will adopt the same definition.
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The following paragraphs are inspired by GESAMP (2015), Browne et al. (2007) and Booth et al.
(2018)

Microplastics are small particles of plastic in the size range of 1 nanometer to 5 millimeters, larger
particles are called mesoplastic, while the smaller particles are called nano plastic. The microplastic
either enters the environment as microplastic or larger pieces of plastic deteriorate and fragment
into microplastic. The origins of microplastics are classified as primary or secondary. Particles that
entered the environment as microplastic are called primary. If it deteriorated and disintegrating
as a consequence of interacting with the environment and other external forces, it is classified as
secondary. The distinction helps distinguish sources of particles, as there will be different channels
for the plastic entering the environment. Primary microplastic mainly consists of scrubbers used
to clean surfaces. The cleaning materials contain microbeads of plastic in order to scrape off an
outer layer. This could either be in the cosmetic industry, industrial or home cleaning products.
Secondary microplastics are microplastics originating from larger pieces of plastic fragmenting into
smaller particles, or particles fragmenting of the larger pieces.

The most significant source of microplastic is secondary. Plastic debris fragment in the envi-
ronment as a result of photolytic, chemical, mechanical and/or biological degradation. Sunlight
and oxygen will cause the plastic to oxidize, deteriorating the chemical structure by bond cleavage
which reduces the molecular mass of the polymer. The result is a more brittle plastic, which frag-
ments more easily. The plastics experience different levels of oxidization due to additives, causing
differences in how easily it will result in microplastic. In a marine environment, there will also be
a higher level of environmental stress on the plastic due to waves and abrasion from sediment par-
ticles. Weathering would occur rapidly on beaches, but at low rates in floating debris. In general,
floating debris will have a slow rate of degradation due to the aphotic and low-oxygen environment.

The density of the microplastic will influence the fate of the plastic. The particles will either
sink or float with a varying rate depending on their buoyancy. However, due to the marine envi-
ronment, the buoyancy will change. Marine snow and growth on the particles will result in the
plastic sinking at slow rates, and the majority of microplastics ending up at the sea bottom. How-
ever, the sinking rate is very low, and it takes a long time for the particles to reach the bottom.
The particles could subsequently be carried large distances by underwater currents on the way
down. Resulting in consequences of the microplastic could, therefore, occur far from its origin.

2.1.4 Impact

The impact of microplastics on marine biota is vast. Ingestion of plastic particles has been detected
in all oceanic regions and numerous species Oluniyi Solomon and Palanisami (2016). However, re-
search is lacking as the field is relatively new.

The main impacts of microplastics on marine biota are measured to be through ingestion and
general exposure, with ingestion being of the greatest concern. The general exposure is mainly a
concern due to gills, as the size and shape of microplastic makes entanglement highly unlikely. The
smallest of the microplastics, in the range of 8 to 10 micrometers, were discovered to enter and
be retained in shore crabs through their gills Watts et al. (2014). The study shows the impact of
microplastics, apart from ingestion, which is by far the most significant impact.
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The relative size of the microplastic will cause the particles to accumulate in smaller organisms
similar to what has been seen in larger organisms Browne et al. (2007). The effect of an accumu-
lation of plastic relative to an animals size has been thoroughly documented in larger species such
as whales and birds, and is, without doubt, a negative impact. The effect on smaller organisms is
similar and comparable to larger organisms.

Furthermore, once ingested, the plastic particles may leach chemicals into different systems of
the organisms. Additives in the original plastic are known to be toxic. The additives are meant
to improve certain properties of the plastic, but when exposed to wildlife, it is discovered to be
toxic. It can leach, either during and after the accumulation in the digestive system, or the plastic
could transition into the body tissue Hussain et al. (2001) and leach directly into other parts of the
organism Gallo et al. (2018). The result is organisms being exposed to chemicals from the plastic
as a result of its presence.

Further, adsorption to the particle surface will cause an introduction of toxins in the organism. Hy-
drophobic organic chemicals (HOC) may latch onto the microplastic. It has been shown that toxic
chemicals are attracted to the polymers due to their common hydrophobic properties Hartmann
et al. (2017). Research has shown some types of plastic having 105−106 times higher concentration
of the toxins PCB and DDE than the surrounding seawater Mato et al. (2001). Subsequently, when
the microplastic is ingested, the organism will be exposed to the chemicals Ziccardi et al. (2016).
In all situations where microplastic result in an exposure to toxins due to ingestion, th eplastic
particle will act as a vector. Due to the introduction of toxins into the foodweb, the microplas-
tic is, as mentioned, regarded as a vector for the chemicals. Either as a result of the chemicals
accumulating on the particle or due to the preexisting chemicals in the particle.

2.1.5 Issue with Microplastics

The biggest issue with microplastic is, as mentioned, due to ingestion by marine biota. It has been
shown that a large variety of marine life across trophic levels, indeed, ingest microplastics. The
issue, therefore, penetrates the whole food chain and will affect human life as well. A recent study,
not yet published and awaiting peer-review, has even shown presence of microplastics in humans
from several different places in the world Parker (2018). Ingestion of microplastics poses several
issues. The plastic could accumulate, transition into tissue, leach chemicals, or introduce toxins
through adhesion, as discussed in the previous section.

It is important to keep in mind that the effect of microplastic is much larger indirectly than
the direct effect on the organisms. The largest concern is bioaccumulation. When the microplastic
acts as a vector for toxins, it does so on species at the very bottom of the food chain. Even though
it might not be fatal for the organisms directly affected by the plastic, species higher up in the
food chain are severely affected. As a consequence of 10% of energy being transferred between
trophic levels, higher level species will indirectly ingest large amounts of the organisms, directly
affected by the microplastics and its role as a vector for toxins. The result is bioaccumulation.
Small amounts of toxins accumulate through the food chain, causing severe problems in higher
level species. The chemicals are stored in tissue and fat of the organisms, and when the higher
level organisms indirectly ingest the originally affected organisms, in a matter 10 to the power of
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the trophic level, the exposure to the toxins are also tenfold. The consequences could be severe.
A famous example of the effect of bioaccumulation is the polar bear. The animal, located at the
top of its food chain, rarely directly exposed to mercury. However, due to bioaccumulation, the
bear exhibit high levels of the toxic element St. Louis et al. (2011). Microplastic pose the same
problem. It introduces toxins at a base level of the food chain, causing severe ripples throughout.

Due to the nature of the food chain, the direct effects of microplastics could, potentially, be disas-
trous. If species on the bottom of the food chain are severely affected by the effects of microplastic,
they could affect higher level species. Smaller species make up the foundation for other species in
the form of being the main source of feed. If the foundation falls due to the toxins or effects of the
microplastics, there could be severe effects on the species based on the original species. The result
could be a domino effect, causing widespread ripples.

In summation, the size of the microplastics results in it negatively affecting the very base of the
food chain. Also, the properties of the material itself, result in it attracting toxins. The combina-
tion of the two makes microplastic a vector of dangerous, and often unnatural, substances in the
marine environment. The vector hits the very core of many marine ecosystems and pose a danger
to a number of organisms, either directly or indirectly.

2.1.6 Sample Collection & Analysis

As of today, the collection of microplastics is tedious work, regardless of environment. Marine
microplastics are collected similar to marine plankton: by towing a manta sampler at slow speeds
behind a vessel. The trawl-like tool filters the water and collects the filtered samples in a container
at the cod end. The collected filtered water is, subsequently, filtered again using a fine filter and a
pump.

Finally, the filters are prepared in the lab using chemicals to remove the organic matter from
the particles. Towards the end, the particles are individually analyzed in order to identify mi-
croplastics. Based on the measured volume of trawled water, one may calculate the concentration
of microplastics.

The work is time-consuming, expensive and impractical. It illustrates the need for a change and
technological innovation. As part of the thesis research, the authors collected microplastics via the
traditional process described above. The process took two full days at sea.

Partly the reason why it is such a time-consuming process to identify plastics, is the wide range
of varieties. As previously mentioned, plastics are used in almost all aspects of life and industry,
resulting in the need for a high range of different properties. In order to achieve this quality, a
range of additives added to the material, makes the sub materials differ from each other. Even
though the additives only make up for a marginal part of the materials, it makes them possible to
distinguish them from each other.

Plastics are carbon-based polymers - nothing unique, merely naturally occurring polymers based
on carbon, but without the backbone of carbon, formed based on oil. In order to identify plastic
from naturally occurring polymers or other particles in general, one uses the traits due to the
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unique properties of the material or its chemical composition.

Many of these traits are similar across materials. However, based on a given set of character-
istics, one may identify plastic particles. The issue arise when having to recognize and combine a
wide number of properties, as it requires several dimensions of information about the particle. In
order to achieve this, one may sort to a combination of sensors and sensor merging. Each sensor
identifies certain properties, and based on these, one may easier boil it down to either plastic in
general or a specific plastic type.

2.2 Marine Environment

The following section will introduce the marine environment and its effect on plastics. The ocean
is a complex and intricate environment, affecting everything related to it. Therefore, this section
will include a brief introduction to interactions between oceans and plastics, with its biological,
chemical and physical effect. The section largely based on a report by Booth et al. (2018), delivered
to the Norwegian environmental agency, and lecture Ocean systems for marine biomass production,
held by Nicole Aberle-Malzahn in the course TMR 4137: Sustainable use of Marine Resources.

2.2.1 Marine Ecosystem

Covering over 70% of the planet and 99% of habitable space on the planet, the ocean is the biggest
ecosystem on the planet. Food production in the sea is critical to the planet, and arguably all
species depend upon the ocean - directly or indirectly. With 25 % of all species in the ocean being
smaller than 1 millimeter, and 99% smaller than 10 centimeter, Bar-On et al. (2018), it is hard to
argue against the importance of plastic introduced to the ecosystem of these species. Photosynthe-
sis and phytoplankton, creates the basis of all biomass production in the sea is the photosynthesis
and phytoplankton. These are eaten by the zooplankton, subsequently eaten by a larger organism,
moving up the food chain, and resulting in it being a crucial resource for life. Given the large
number of species within the size range of microplastic, the effects could be catastrophic.

When organisms in the marine ecosystem die and deteriorate, marine snow is formed. The particles
have a large sinking rate and are an essential aspect of transporting energy down the water column.
The marine snow plays a crucial role in the marine ecosystem Lampitt (2001). The microplastic
will mix with the marine snow. The result is a reduced buoyancy for the plastic and an inaccessible
surface. The conclusion is plastic possibly entering the food web as a hitchhiker, but also a reduced
deterioration, apart from the biodegradation, due to the inaccessible surface.

As a result of microbial colonization, growth will be caused by bacteria and other organisms
in the ocean. The growth will form a biofilm around the plastic, and similar to the marine snow,
reduce the photolytic degradation. The biofilm will also contribute to increased biodegradation and
lowered density. It is also shown to increase the trophic transfer, due to the increased nutritional
value, as a result of the biofilm Rummel et al. (2017). Therefore, the interaction between particles
and the marine ecosystem, goes beyond the ingestion and exposure. The microplastic will also
cause problems to due exposure to other aspects of the ecosystem as well.
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2.2.2 Chemical Reactiveness

The reactions happening in the marine environment are affected by a great number of parameters.
Each of, which plays an individual role, as well as in combination with other parameters. These
decide the rate of reaction happening in the ocean, either chemical or biological, regardless of the
plastic. The main parameters handled in this report are temperature, amount of sunlight, oxygen
and the water itself. These greatly affect many processes concerning the ocean.

Temperature is crucial in any chemical reaction, and plays a role in the reaction rate. The higher
the temperature, generally, the higher the reaction rate. The rate doubles with every 10 ◦C tem-
perature increase. In a marine environment, the temperature will depend on the geographical
position and the depth at which one measures. Therefore, warmer and shallower climates will be
more reactive. This affects the plastic as the degradation will occur faster closer to the equator,
due to both the higher temperature and the higher amounts of sunlight.

Sunlight is one of the main reasons for plastic degradation. The same mechanisms that enable
photosynthesis and provides the basis for marine biomass production, also degrade plastic. Tem-
perature and sunlight have a clear correlation, with an increasing amount of sunlight closer to the
equator. Therefore, photolytic degradation will occur more rapidly closer to the equator. Also,
due to water diminishing the light, depth will also play a part, resulting in the same dependence
as with temperature.

Oxygen is a key component in photolytic degradation. The oxygen will oxidize the plastic and
therefore help degrade it. The result is oxygen levels being important to the level of plastic degra-
dation, but also for biodegradation and microbial community. With high levels of oxygen, there is
more marine life. The biota will interact with the plastic and take part in breaking it down through
biodegradation. The degree of response to biodegradation varies across plastic types, based on their
structure. The biofilm will, however, be susceptible to photodegradation due to the fact that the
surface is covered to a larger degree.

Finally, the water itself plays an important role. It contains other substances which will affect
the chemical reactions in the sea. For example, the level of suspended material will affect the
penetration of sunlight. The presence of algae or sediments will filter the sunlight. Thus, more
unclear the waters, will result in less sunlight being present. Also, hydrolysis plays a part, as the
water molecules will react with substances. The reactions will be catalyzed by the presence of
acid, base or enzymes. With regards to plastic, a more hydrophobic plastic will be less receptive
to hydrolysis. However, hydrophobic materials have a tendency to attach to each other, which is
one of the reasons for toxic chemicals attaching to the plastic.

2.2.3 Oceanic Forces

Several forces act within the ocean, creating a complex environment. Currents and waves affect all
matters of the ocean. Due to the forces, water is transported and often mechanically degraded. The
forces, in combination with land, also promote mechanical degradation, such as seen at beaches or
in shallow waters.
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Currents transport large amounts of water around the world. These go in distinct paths. When
the water travels great distances, so does the materials suspended or floating on top of that water.
The result is material in the sea possible moving great distances. The effects of the pollution
is possibly no longer occurring at the pollution site. The currents also move different tempera-
tured water, making areas of the globe inhabitable, acting as an essential parts of the world climate.

Waves are mostly caused by the wind. The wind blows consistently over large bodies of water,
causing waves with possibly large forces involved. Combined with the plastic mechanical degrada-
tion occurs, the waves will fragment the plastic, causing it to break down faster. In shallow waters,
where the waves will cause increased movement, microplastic will occur more rapidly. The effect
of the grinding caused by wave and shore, results in a higher rate of degradation.

2.3 Sensor-carrying Platforms

In order to perform underwater detection and mapping, for continuous autonomous monitoring of
the oceanic microplastics concentration, a suitable sensor carrying platform is needed.

As mentioned earlier, plastics are circling the entire ocean, including the ocean surface, water
columns, and seabed. Platforms like Unmanned Aerial Vehicle (UAV), often used as a sensor car-
rier in on-land missions, can, therefore, be out-ruled. When further deciding on a suitable platform
to carry the sensors, Unmanned Underwater Vehicles (UUV), are typically relevant, including plat-
forms such as Autonomous Underwater Vehicle (AUV), Remotely Operated Vehicle (ROV) and
Gliders, Stein M. Nornes (2017).

ROVs are robots that are remotely maneuvered from a control room, often from a ship or a
platform. These provide detailed mapping and sampling in the target area, with high-resolution
data on the target. The umbilical attached to the ROV at one end, and the ship at the other
end, gives unlimited electrical power and high bandwidth communication. However, the need of
this umbilical limits the spatial coverage (usually lower than 1000 m2, Nilssen et al. (2015), Stein
M. Nornes (2017).

An AUV however, is independent of an umbilical and can operate without ships or associated
platforms present. Similar to the ROV, the AUV has a high spatial resolution data, providing
detailed seafloor and water column mapping. In addition, the covered area per time is more than
ten times the range of an ROV. Furthermore, comparing the AUV and the Glider, in the literature
of Nilssen et al. (2015), an even larger spatial range can be observed for the Glider. Nevertheless,
the wide payload capacity of the AUV and the high spatial resolution data, makes the AUV a more
suitable choice for the desired purpose described above.

2.4 Previous Related Work

As the problem is becoming more visible and threatening, a manifold of initiatives and technolo-
gies, with the purpose of solving the problem, have been developed within the past years. REV
Ocean is an initiative by Kjell Inge Røkke, who, together with Nina Jensen, have established REV
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Ocean to contribute to saving the world’s oceans. The idea is research-ships acquiring knowledge,
creating awareness and collecting plastic waste, REV Ocean (2018). The Ocean Cleanup is an-
other initiative, solely determined to collect plastics from the five largest garbage patches in the
world, using currents to catch and concentrate the plastic, The Ocean Cleanup (2018). Tomra is a
company exploiting the characteristics of spectroscopy, identifying specific chemical and molecular
properties of the objects to be viewed, TOMRA (2018).

In this thesis, however, the plastic identification will concern other, existing, technologies. Existing
technologies are often used in new ways, generating innovation. In further reading, utilization
and exploitation of hyperspectral imaging and Raman spectroscopy, within different fields, will be
presented.

The use of Raman spectroscopy and hyperspectral imaging is not particularly new and is already
widely used in several fields, such as geology. In previous studies, it has been used in a wide range
of experiments and testing. However, not all of these apply to the focus established within this
thesis. This is mainly because many of the previous applications focus on, and utilize, different
aspects of the data. The following section will thus focus on the use of Raman spectroscopy and
hyperspectral imaging for classification purposes, and mainly in relation to the ocean or under
water.

2.4.1 Underwater Hyperspectral Imaging with Remote Operated
Vehicles

The use of hyperspectral imaging (HI) has been exploited in several fields for a long time. How-
ever, the use of HI under water, is relatively new. In combination with Remote Operated Vehicles
(ROVs) or Autonomous Underwater Vehicles (AUVs), it opens the possibility for autonomous un-
derwater imaging.

Johnsen et al. (2016a) gives an overview of the use of underwater hyperspectral imaging (UHI)
deployed on an ROV. The paper identifies the benefits of using UHI as increased number of resolu-
tions (e.g., spatial resolution, spectral resolution, radiometric resolution and temporal resolution).
It delivers a photomosaic of the are of interest, which lets the end user detect and classify Objects
Of Interest (OOI), and of course the possibility of increased autonomy and the benefits that comes
with it - such as reaching more inaccessible areas etc.

2.4.2 Monitoring, Identification & Taxonomy

The use of hyperspectral imaging, in relation to water, often revolves around the identification of
pigmented marine biota, mainly plankton and algae. This is either done for monitoring purposes or
taxonomy. Concerning Raman spectroscopy, this relation rather involves identification if chemical
composition.

Mehrubeoglu et al. (2013) investigated the hyperspectral image response in pure and mixed algal
cultures in a lab environment. The paper aimes to identify the algal composition using constrained
linear spectral unmixing and the system’s performance. The laboratory set up consisted of a halo-
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gen lamp, spectrometer, lens, camera and sample. Measuring transmittance, the light source was
placed beneath the sample instead of above. It achieved a high prediction rate. The paper goes in
great detail on noise elimination. The focus gives an insight into the error prediction and noise on
spectral signatures, even though these are not much different than noise in general.

Pettersen et al. (2014) elucidate reflection signatures of marine organisms and the correspond-
ing species-specific absorption and discuss the use of optical fingerprint from UHI for automated
identification of organisms through the use of a UHI mounted on an ROV. Identification was made
based on an existing library of signatures acquired in a laboratory setting. The study seeks to
accomplish the same recognition with respect to organisms, as this project is seeking with respect
to plastic. Thus, some elements are relevant for the classification of plastic using the UHI.

Dumke et al. (2018) used underwater hyperspectral imaging to identify marine megafauna. To
identify the benthic megafauna, the paper established a set of reference spectra from already iden-
tified organisms and performed semi-autonomous supervised classification. The paper uses a UHI
mounted on an ROV. There is relevancy concerning the classification of objects based on a preex-
isting set of signatures in an inaccessible environment with low to no natural light.

Volent (2011) seeks to detect and monitor the phytoplankton bloom, spatially and temporally,
through the use of water sample, bio-optical data from satellites and a Ferrybox in combination.
The paper presents an improved monitoring scheme. The report does not go in particular detail
on the actual use of hyperspectral imaging, but rather on the water sampling and processing.
However, the Ferrybox is relevant for an alternative microplastic monitoring system apart from
an AUV. In that case, the sensor cabinet of a ship would contain a hyperspectral imaging unit to
detect the plastic. The system would not be too different from the preexisting fluorescence sensor.
It is important to keep in mind that such a system is beyond the scope of the current project.

Karlsson et al. (2016) consists of the most similar research, to the authors’ knowledge. The paper
aims to identify microplastics from filtrates, based on hyperspectral imaging, to gain information
on the spatial location of the plastic. The samples used in testing were obtained from filtrates of
surface water collected using a trawl. Further, the collected microplastic was tested in a laboratory
setting and compared to spectra of household plastics. The reference spectra were obtained by
scanning the household plastic on a white reflective Teflon background. The results were most
prominent in the wavelength range from 1000 nm to 2500 nm, yielding a 100% recognition. This
shows the possibility of identifying plastics in the infrared spectrum. The paper has several key
aspects relevant for the project and was a source of references and execution concerning the project.

C. Epstein et al. (2019) claims to have used Raman spectroscopy to monitor the speedy char-
acterization of carrier proteins, explaining the grounds of the chain sequestration mechanism. The
rapid motions of carrier proteins pose a challenge when it comes to locating and capturing the
proteins. Conventional spectroscopic methods are inadequate. Due to the fundamental part, the
carrier proteins play in the biosynthesis, this detection is, however, a necessity. This way of using
Raman Spectroscopy can undoubtedly compare to the method used in this thesis, as it concentrates
on chemical texture and molecular recognition.

Gulick et al. (2019) have been diving into the relationship between a change in type I Colla-
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gen and aging, examining a rat tail. When a person ages, or is exposed to a disease, the type I
collagen protein experiences structural and biochemical changes, possibly impacting the organs.
Using Raman spectroscopy, the researchers observed an increase in Raman bands as the collagen
went from adult to old, indicating higher straightness of type I collagen fibers. Using Polarized
Raman mapping to confirm, the conclusion was indeed higher straightness of collagen tissues with
aging. This is, again, an example of how Raman spectroscopy is used to study molecular charac-
teristics, with resemblances to the research done in this document. However, the organic material
of a rats tail appears different than the pieces of plastics.

To give a broader spectrum of dimensions of data, the Raman method has also been researched
used in combination with other methods. Xiong et al. (2019) poses to combine Raman spectroscopy
with the common fluorescence detection, recovering a more significant number of functionalities
and grounds for analyses. As the fluorescence detection allows exquisite sensitivity on a molecule
level but lacks adequate chemical information, while the Raman technique, in fact, assures the
lacked information within the molecular structure, the combination ensures a highly detailed sen-
sor. The idea is to develop hybrid spectroscopy by implementing vibrational Raman characteristics
into the fluorescence spectrum. Looking into different methods as this thesis does, the success of
this merge appears inspiring.

2.4.3 Identification of Man-made Objects

Underwater archaeology and the identification of plastic isn’t the most obvious overlapping fields.
However, the identification of man-made objects with large variations has several similar aspects.
Man-made objects often depict certain properties not found in nature. Successfully identifying
objects or materials, are often critically dependent on having a library of signatures to compare
with - in this regard, the two largely overlap. The following paragraphs summarize relevant articles
concerning the identification of man-made objects or materials using either hyperspectral imaging
or Raman spectroscopy.

Similarly, man-made objects and synthetic materials exhibit, are normally not found in nature,
neither on a physical, nor on a chemical level. In this sense, the classification of objects based
on exclusion depending on characteristic properties, is shared with a wide range of fields. In
this regard, Raman spectroscopy has previously been used to identify man-made objects based on
chemical composition.

Ødegård et al. investigated the use of ROV-based UHI in marine archaeology. The paper chose
to not use end-member recognition to classify the objects in 48 optical classes, but rather used
Spectral Angle Mapper based on a library of end-members. It also identified the possible use of
underwater robotics in combination with UHI, and future possibilities of robotics in the field of
archaeology. The results showed few, if any, instances of false positives and a potential for UHI
used in detection and identification.

Ødegård et al. (2018) is an extension of the previous paper. It depicts the use of UHI in ma-
rine archaeology. From the laboratory testing to the in situ testing and the data analysis and
classification method used. Similarly to the previous paper, this one also uses SAM in order to
classify the data into different classes. Nevertheless, the number of classes is greatly reduced, and
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the final total is six classes based on the different materials, expected to be found in archaeolog-
ical detection. Furthermore, the report also presents the raw data conversion and the principal
component analysis of the data. The results are somewhat mixed. However, the conclusion is
that it successfully classified objects and that it shows a promising new method. The level of
misclassification varied between materials. The paper is highly useful concerning the classification
of plastic as it depicts all the steps from testing to data analysis, which is all relevant for this project.

Zada et al. (2018) describes the use of Scattered Raman Spectroscopy for quick identification
of microplastics by having measurements at fewer wavelengths. It is aimed at being a proof of con-
cept, and thus limits the testing on live samples. The paper uses the most common plastics, based
on volume, and seeks to find a limited number of wavelengths from their respective full-Raman
spectra. After extracting said wavelengths, the classification was tested on filtered microplastics
originating from the Rhine and filtered glitter nail polish. The five most discriminant wavenum-
bers in the range 1250 cm−1 to 1800 cm−1 were chosen based on Partial Least-Square Discriminant
Analysis. The method favored points with a large overlap between the spectra, rather than clean
peaks. The paper managed to reduce the time needed to identify the particles successfully. The
collection and processing of the spectra before choosing the wavenumbers are highly relevant for
this thesis. Also, the general aim to identify plastics largely overlap. However, there are some
differences in the approaches chosen.

Allen et al. (1999) aims to compare Raman spectroscopy to NIR spectroscopy in the use of iden-
tifying common household plastics for recycling purposes. The paper uses K nearest neighbor
and Cyclic subspace regression to identify the plastic types. These methods are closely related
to K-means clustering and PCA. The plastic samples were collected from a common household,
and the full spectra were collected. These were subsequently preprocessed using second-derivative
Savitsky-Golay. The full spectra were used in the identification as opposed to peak information.
The paper managed to correctly identify all types of plastic included. Even though the paper is
20 years old, it aims to investigate large parts of the same as the author, minus the water. It is
highly relevant in the sense of data processing and subsequent logic. Also, considering the similar
approaches between the two, the approach shows its relevance.

Lenz et al. (2015) is an assessment of the possibility of using Raman micro-spectroscopy for clas-
sification. The study compared visual microscopy and Raman micro-spectroscopy. It also aims to
analyze plastic particles collected from the North-Atlantic. The paper successfully identified the
degraded particles. The study used qualitative analysis of each spectrum to identify the plastic.
It concluded on Raman being more effective than regular microscopy and having the potential for
both bench-top analysis and in situ-testing.

2.4.4 Key Take-Aways

There are several similarities between previous work and the project. Despite the fact that, there
is only one other article directly the same issue of identifying plastics through hyperspectral imag-
ing, there are still several aspects of the research that are relevant. There are also several papers
aiming to identify materials using Raman Spectroscopy. Mainly the data processing, classification
and gathering are relevant across the papers. This is due to the material being identified being
secondary to the way it is identified.
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Among the main takeaways, are the use of PCA, PLS-DA, SAM and other algorithms, as well
as the preprocessing of the data. The methods utilized to recognize objects of interest and prepare
the data, are, in essence, the same as the objective of the thesis. There are somewhat different
detection criteria due to the nature of the OOI. However, the mentined detection methods are
highly relevant techniques. The papers also provide relevant references on the emerging field of
Underwater Hyperspectral Imaging and research conducted in the field of Raman Spectroscopy.

Furthermore, the takeaways from Karlsson et al. (2016) and Zada et al. (2018) are more obvi-
ous. The papers aim to identify the same particles, however, it does so of filtrates. The use of
the infrared spectrum is also highly relevant. The PCA performed on the data will have a lot of
the same aspects. It is also interesting to see the focus of the papers and what aspect of plastic
they aim to identify. In addition, the laboratory testing in order to obtain the reference spectra, is
highly relevant for the project. Finally, Lenz et al. (2015) is relevant and highly accurate, offering
a number of decidedly useful points. When conducting the research for this thesis, these articles
proved essential guidance and learning.
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Chapter 3

Fundamentals of Light

In order to understand how an image is retrieved at the end of a spectrometer, knowledge regarding
properties of light, is important. This chapter, therefore, describes the fundamentals of light, its
behavior and how it can be utilized. Light has different properties in different environments,
determining the degree of utilization. The lecture notes from TTK20: Hyperspectral Remote
Sensing, Signernes (2018), have been used in large part throughout this chapter, and have also
provided all illustrations - if not stated otherwise.

3.1 Light

Light is electromagnetic radiation. The human eye can detect electromagnetic radiation within
wavelengths of 400 and 750 nm, approximately. This electromagnetic spectrum is called visible
light. Radiation with a shorter wavelength than 400 nm is called ultraviolet, whereas infrared
radiation has a longer wavelengths than visible light.

3.1.1 Infrared and Near-Infrared

The following paragraphs are largely based on Peatross (2015).

Infrared and Near-Infrared light is identical to visible light apart from its wavelength. Both are
electromagnetic radiation, but with different wavelengths. The infrared spectrum spans from 780
nanometers in the Near-Infrared region, to 50.000 nanometers in the Far-Infrared region. The
radiation is also commonly known as heat radiation, even though all electromagnetic radiation will
heat any surface that absorbs them. However, most objects in room temperature will emit infrared
radiation as thermal radiation.

All objects with a temperature different from absolute-zero will emit thermal radiation. This
is a result of the change in the dipole moment of molecules and atoms when they interact. The
interaction will cause the electrons of the atoms or molecules to shift, causing a change in the poles.
This change results in electromagnetic radiation. The emitted radiation is determined by Planck’s
law. It so happens that at room temperature, most objects radiate in the infrared spectrum.
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The distribution and available electrons depend on the molecular bonds. The bonds between
the atoms will put restraints on the types and possible vibrations of the materials. Hence, the
vibrations causing the radiation will be dependent on the chemical composition. Similarly, the ab-
sorption of radiation of an object depends on the chemical composition. As a result, one may gain
great insight into the chemical composition of the material, depending on the emitted or absorbed
energy. At room temperature, this radiation will be in the infrared spectrum, opening possibilities
for identifying materials based on infrared radiation.

3.1.2 Fundamental Behaviour of Light

When light from a light source hits an object surface, the light is reflected before eventually reach-
ing the eye. In this task, the endpoint will not only be the human eye, but other viewpoints, for
instance, a camera lens. The observation of the reflected colors in the viewpoint is affected by
properties of the object surfaces, the light intensity of the light source and the traveling distance
of the light, Yamashita et al. (2007).

Light can be defined as tiny packets of energy called photons. These have wave-like properties.
Because of this, a wave of light can be represented as a sine function. The two-dimensional wave
amplitude can be expressed as follows

E(x, t) = E0 sin(kx± ωt) (3.1)

E0 represents the maximum amplitude of the wave. The wave repeats itself periodically with the
period T. k is the wave number defined by k = 2π

λ , λ is the wavelength, while ω is the angular
velocity expressed as ω = 2π

T .

The wave can also be expressed as the real part of a complex number, z = E0(cos(φ) + i sin(φ)),
where φ is the phase shift represented by φ = kx+ωt. Using Euler’s formula: eiφ = cos(φ)+i sin(φ),
a three-dimensional wave can be expressed by

E(r, t) = E0e
iφ, (3.2)

where r ∈ R3 is the position of the phase now defined as

φ = k · r− ωt+ ξ, (3.3)

where k ∈ R3 is the three-dimensional wavenumber and ξ is the initial phase of the wave.

3.2 Interference

Interference considers the case when two or more waves act together. At a given point where the
waves interact, the result will be the sum of the waves. Depending on the phase difference, the
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interference is either constructive or destructive. Constructive interference will result in an ampli-
fied wave, while destructive will result in the opposite.

Starting with two solitary waves, respectively S1 and S2, interacting with each other at P, as
illustrated in Figure 3.2.1. From (3.2), the S1 and S2 are represented by

E1 = E01e
iφ1

E2 = E02e
iφ2

(3.4)

with their associated phase shift expressed as illustrated in (3.3)

φ1 = k1 · r1 − ωt+ ξ1

φ2 = k2 · r2 − ωt+ ξ2
(3.5)

Figure 3.2.1: Two waves, S1 and S2, interfering

At a given point, the two waves will act together. One can conclude that the resulting wave, E,
must be the sum of the two vectors interacting, E = E1 + E2. This applies to the resulting phase
difference too, which thereby can be retrieved from (3.5): σ = k1 · r1 − k2 · r2 + (ξ1 − ξ2). Now,
the intensity of the final wave can be found by multiplying this resulting wave-vector, E, with its
conjugate, E∗

I ≈ E ·E∗ = (E01e
iφ1 + E02e

iφ2) · (E01e
−iφ1 + E02e

−iφ2)

= E01
2 + E02

2 + E01 ·E02(ei(φ1−φ2 + e−i(φ1−φ2)

= E01
2 + E02

2 + 2E01 ·E02 cos(φ1 − φ2)

= E01
2 + E02

2 + 2E01 ·E02 cosσ

(3.6)

The intensity in the equation above, (3.6), represents constructive interference at its maximum,
whenever cos(σ) is equal to 1, and expresses destructive interference at its minimum, when cos(σ)

equals -1. Constructive interference is hence present when the phase shift, σ is expressed as:

σ = 2nπ, (3.7)
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where n is the spectral order, a positive or negative integer.

The equation may be extended to include N number of waves with a constant phase difference
between the waves and the same wave number and amplitudes for all waves considered, illustrated
in Figure 3.2.2.

Figure 3.2.2: N number waves propagating with a constant distance a

The N waves are emitted by SN coherent and monochromatic sources separated by a constant
distance, a, at an angle β. As the waves are coherent, the phase difference between the waves are
constant. This means that the second term in (3.5) can be ignored because ξ1 = ξ2 = ... = ξN . The
phase difference is thus a result of the path difference between the waves, σ = k · r. From Figure
3.2.2 r can be retrieved as asin(β), while k = 2π

λ . Combining this with (3.7), the grating equation
is found

nλ = asin(β) (3.8)

Through rotating vector sums, the equation for the total amount of waves may be obtained.

E = E01

sin( 1
2Nσ)

sin( 1
2σ)

(3.9)

The intensity is proportional to E2, and if plotted as a function of the wavelength λ and angle β the
maxima occur when constructive interference occurs, which illustrates 3.8, the grating equation.
The resulting intensity plot is depicted in Figure 3.3.1b. The plot shows the intensity for various
wavelengths in different spectral orders at different diffracted angles.

I = I0

(
sin( 1

2Nσ)

sin( 1
2σ)

)2

= I0

[
sin(Nπa sin(β)/λ)

sin(πa sin(β)/λ)

]2

(3.10)

3.3 Diffraction

While interference is a result of individual sources interacting with each other, diffraction is present
when a wave is distorted by an external object, with a comparable dimension to the wavelength of
the wave. Figure 3.3.1a exemplifies diffraction with a slit as the external object.
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(a) Diffraction at a slit (b) Intensity as a function of wavelength and spectral
order

Figure 3.3.1: Single slit diffraction with the corresponding intensity plot

Huygens-Fresnel principle treats every point of a wavefront as a source of secondary wavelets. These
sources form new wavefronts defined as the diffracted waves with amplitudes of dE01. Combined,
these form a new united wavefront. The resulting amplitude and intensity is derived in the same
fashion as with interference from multiple sources. The result is

E = E0

[
sin(πb sin(β)/λ)

πb sin(β)/λ

]
(3.11)

I = I0

[
sin(πb sin(β)/λ)

πb sin(β)/λ

]2

(3.12)

In order to obtain the desired diffraction one uses multiple slits, which results in a grating, shown
in figure 3.3.2. The grating will result in a number of new waves equal to the number of slits in
the grating.

Figure 3.3.2: Grating of multiple slits

The resulting intensity is, therefore, the interference caused by the number of slits, N, modulated by
the diffraction from one slit. As previously seen, the combined intensity is due to the interference
of waves from multiple sources is multiplied by the intensity due to interference per source. The

24



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

resulting intensity plot is shown in figure 3.3.3. The plot is similar to the 3.3.1b concerning the
intensity, spectral orders and diffracted angle. However, the effect of the two components modulated
results in the depicted graph and the "double" graph as a result of the modulation.

I = I0

[
sin(Nπa sin(β)/λ)

sin(πa sin(β)/λ)

]2

×
[

sin(πb sin(β)/λ)

πb sin(β)/λ

]2

(3.13)

Figure 3.3.3: Intensity of diffracted light by a grating as a function wave length and spectral order

3.4 Geometric Properties of Photons

All electromagnetic radiation, including light, consists of photons. Just as all objects that have mass
are built up of atoms, light rays are the result of many energy-consistent photons. To determine
the amount of light (number of photons) passing through a spectrometer, etendue and throughput
must be defined, Linder and Hansen (2019).

3.4.1 Etendue

The amount of light detected by the instrument is described by the acceptance area, or the field
of view, photons can travel into. Etendue is the maximum geometric extent allowing traveling
photons and thereby characterizing an optical system’s ability to accept light. Figure 3.4.1 is an
illustration showing how to review etendue.
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Figure 3.4.1: Set-up explaining Etendue

S describes the emitting source of light, while Q is the solid angle of which the light propagates
into (or out of). By definition, etendue, G is found by G :=

∫ ∫
dSdQ. For a simple spectrometer

like the one viewed in this assignment, G = S ·Q = πSsin2(Ω).

An instrument is defined to be optimally constructed when it can ensure an absence of light loss.
This requires constant etendue throughout the instrument without any reduction from geometrical
blocking. The latter implies the similarity G2 = G3, or πS2sin

2(Ω2) = πS3sin
2(Ω3). The relations

between the latter properties will be easier to understand after looking at the figure describing a
spectrometer, Figure 4.3.1 in Section 4.3.

The optimal exit slit width can be calculated from constant etendue through the elements in-
volved - starting at the entrance slit, eventually reaching the exit slit. From the entrance slit, the
etendue can be expressed by

G2 =
GAcos(α)

f2
2

· w · h (3.14)

Similarly can the etendue from the exit slit be described as follows

G3 =
GAcos(β)

f2
3

· w′ · h′ (3.15)

w and h, is the entrance width and height, while w′ and h′, explain similar properties at the exit
slit. GAcos(α) and GAcos(β) defines the illuminated area of the grating as seen from the entrance
and exit slit, respectively. Using similarity of form, h · f2 = h′ · f3. Using all of the above, the
resulting optimal exit slit width can be found by the following similarity

w′ =
cos(α)

cos(β)
· f3

f2
· w (3.16)

Expressing the exit slit as a function of the entrance slit, reveals useful information on the spectral
bandpass and resolution discussed in Section 4.3.1.
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3.4.2 Flux

Flux is defined as the number of photons traveling into a solid angle Q, when emitted from a source,
S, per unit time [sec]. By this definition, flux Φ can be expressed as

Φ =
photons

s
(3.17)

Flux can describe both the light intensity and the radiance. The intensity, I, can be found by
computing the flux, Φ per unit solid angle [sr]

I =
Φ

Q
=
photons

sr · s (3.18)

The radiance, B, is the intensity through a unit surface area, A [cm], where A is the yellow area in
Figure 3.4.1. Given (3.17), B can also be described as the flux of photons per unit area and solid
angle.

B =
I

A
=

photons

cm2 · sr · s (3.19)

Applying the terms above to the definition of etendue, the photon flux through the geometric
extent being the etendue, can be described as a function of etendue and radiance.

Φ := B ·G (3.20)

As will be shown in Section 3.4.3, (3.20) is useful when evaluating the fluxes of photons entering
and leaving a spectrometer.

3.4.3 Throughput

Throughput defines the amount of flux hitting the detector, charge-coupled device (CCD), at the
end of the spectrometer. Simply put, throughput is the usable flux. From (3.14) and (3.15), the
following similarities can be stated. Assuming that B2 is the total radiance of the light source,
(3.21) describes the flux entering the entrance slit, while (3.22) describes the flux exiting the
spectrometer system.

Φ2 = B2 ·G2 = B2 ·
GAcos(α)

f2
2

· w · h (3.21)

Φλ = Br ·G3 = Bλ · Enλ · Tλ ·
GAcos(β)

f2
3

· w′ · h′ (3.22)

In (3.22), Br, describes the remaining radiance at the end of the spectrometer, and includes the
spectral radiance, Bλ, multiplied with reducing factors due to loss. Enλ describes the efficiency
of the used grating at spectral order n. Tλ is a factor describing losses due to the geometry of
the components in the spectrometer. For an optimal spectrometer with an unrealistically efficient
gradient, both Enλ and Tλ are equal to 1.
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3.5 Light in Fluid

The light in any fluid diminishes due to two factors: absorption and scattering. The absorption will
cause the light to diminish altogether, as the fluid molecules absorb the radiant energy and convert
it into kinetic, chemical energy or both. The scattering causes the light to change direction, without
changing the wavelength. The photons are dispersed as they penetrate the fluid. This will increase
the chance of absorption due to the direction change extends the travelled distance. The total
attenuation is a result of the complex and nonlinear interaction between the two. The complexity
has lead to the radiative transport equations having no exact solution. Apart from the inher-
ent properties of the medium, the particles suspended in the fluid column will also play a part in
diminishing the light. These two main effects are illustrated in figure 3.5.4 by the end of the section.

The previous and following sections are largely inspired by Yamashita et al. (2007) and Smith
and Baker (1981) as well as lectures from TMR4240:Marine Control Systems 1, which also pro-
vided illustrations.

3.5.1 Inherent Optical Properties (IOP)

The optical properties of a fluid may be divided into inherent and apparent optical properties.
The inherent optical properties (IOP) are those that have operational values invariant of changes
in the radiance distribution at a given point in the medium. On other words, the properties are
constant with respect to light distribution. The properties directly describe the true characteristics
of the medium with respect to scattering and absorption. IOP are dependent on the electromag-
netic properties of the medium and any dissolved and suspended material. The inherent optical
properties are particularly important in high-resolution imaging.

The inherent optical properties describe the scattering and absorption of the light in the fluid,
and are crucial with respect to the radiative transfer in water. The flux of the light passing
through a fluid is reduced compared with the entering light. The change per length z is described
by

dΦ

dz
(z) = −µ(z)Φ(z) (3.23)

Where dΦ
dz is the flux change per length, Φ the original flux and µ is the attenuation coefficient

describing the combined effect of scattering and absorption on the photons.

Apparent Optical Properties

The apparent optical properties (AOP) on the other hand, have operational values that depend
on the radiance distribution at a given point in the medium. Similar to the inherent optical prop-
erties, AOP is also dependent on the dissolved and suspended material in the medium. However,
the properties also depend on the geometry of the light distribution. AOP are important when
investigating the penetration of radiant energy to depth in the ocean water.
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3.5.2 Light Attenuation

The attenuation in water is describe by the attenuation coefficient. A nonlinear coefficient de-
pending on the wavelength, it is derived for pure, clear water. It is the sum of the absorption and
scattering coefficients. In reality, the effect of salinity and other material dissolved and suspended
in the medium will also affect the penetration depth of the light. The total coefficient is a sum of
the different effects resulting from the properties of water, all having a nonlinear relationship with
the wavelength.

The effect of light attenuation on intensity rather than flux is described by the equation below. It
is derived by integrating the equation above 3.23 with respect to intensity, instead of flux. Iλ(z)

is the light intensity of the wavelength, λ is the wavelength of the light, z is the distance between
the light source and the viewpoint, I0,λ is the light intensity of the wavelength at the light source
and cλ is the attenuation coefficient of wavelength λ.

Iλ(z) = I0,λexp(−cλ · z) (3.24)

Do keep in mind that the light attenuation coefficient is empirical and, therefore, cover a large
range of complex interactions.

Absorption

Atoms, and thereby molecules, contain electrons. Given the specific atom, these electrons hold a
specific natural frequency. When light hits a molecule and the photon matches the gap between
the energy levels in the targeted atom, the electrons will be given a vibrating motion. Then the
frequency of the light is equal to the electrons natural frequency. The vibration is a result of energy
absorption – energy taken from the light. This way, the electrons absorb the energy of the light by
turning it into vibrational energy, which cannot, directly, be converted back to light.

The light absorption coefficient of water varies depending on the wavelength of the light. Fig-
ure 3.5.1 depicts the increase in absorption with increased wavelength. The increase describes why
underwater photography is blue tinted. Longer wavelengths are not able to penetrate the depths,
due to the lower energy in the radiation, and thus red colors diminish. Wavelengths of even greater
magnitude, such as near-infrared and infrared, are absorbed at an even higher rate. Subsequently,
measurements of infrared radiation underwater are more difficult.
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Figure 3.5.1: The absorption coefficient as a function of the wavelength, Smith and Baker (1981)
.

Water absorbs wavelengths covering a wide range of electromagnetic radiation. For light with
wavelengths larger than 200 nm, this absorption is due to rotational transitions and intermolecular
vibrations. As the H2O-molecule has a particularly small moment of inertia on rotation, a rich
vibrational-rotational spectrum appears, sometimes containing millions of absorption lines.

The water absorption spectrum is, therefore, very complex. The water molecule may vibrate
in several ways, at several states affected by the environment. For the specific case of H2O, the
absorption spectrum is displayed in Figure 3.5.2. The spectrum may vary based on the condition
of the water and placement of measurement - for instance, whether one looks at the open sea or
the coastal areas. However, the trends, represented in the figure, should more or less remain. The
spectrum clearly shows how the water absorption is at its lowest in visible light, making this range
of wavelengths more optimal when detecting objects underwater, Chaplin (2018). Moving beyond
infrared light, the radiation is, at a larger degree, absorbed. Nevertheless, an intensive NIR-source
can leave sufficient light if the distance between the light source, object and imager is small enough.
However, as the source close up on the target, the spatial coverage, commonly exploited using a
hyperspectral imager, goes away.

Figure 3.5.2: Absorption spectrum of liquid water, Kebes (2016)
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Scattering

During the photon-fluid interaction, the photon might either change its direction, its energy, or
both. Either of these processes is called scattering. More precisely, scattering can be described
as the change in the direction of light flux produced by individual parcels of particulate matter
called ‘scatterers’. This means that light, or other moving particles, are forced to deviate from the
straight trajectory they were on to begin with, due to the collision between the light wave and the
fluid.

As mentioned, inherent optical properties are dependent on several properties. Similar to wa-
ter, materials absorb and scatter light as a function of wavelength. If comparing particles of the
same volume, they will scatter light differently based on shape. Also, particles with the exact same
shape will scatter light differently based on volume. A change in the material, size or shape (or
the composition) will alter the optical properties, Williams (1973).

In the ocean, the physical characteristics of the fluid are highly affected by the surroundings,
as previously mentioned with the AOP. As an example, a change in the concentration of plankton
or being in coastal waters instead of the open ocean, will contribute to a significant change in both
the resulting absorption and scattering.

The vast majority of the light is scattered elastically at the same wavelength and frequency, and
thus energy, as the incoming light. However, a tiny portion of the light is scattered inelastically
at a different wavelength and frequency. This is due to the fact that the electrons excited by the
incident light either absorbs some of the energy or adds to it. Due to the law of conservation of
energy, the change in energy in the light is inversely matched in the material. Usually in the form
of vibrational energy, which in turn is largely based on the molecular bonds in the material. The
result is a small fraction of the scattered light being emitted at a different energy level based on
the composition of the material. The phenomenon is called Raman scattering and is the basis of
Raman spectroscopy, more thoroughly described later in this chapter.

3.5.3 Transmittance

The remaining light after the effect of light attenuation is the transmitted light. It will have been
affected by the medium it has crossed and subsequently will have changed. The result is a possible
signature of the suspended particles in the fluid. As previously mentioned, the properties of fluids
change depending on the matter suspended. Hence, it is possible to account for the inherent effect
of the fluid and then attain the effect other particles will have had on the light.

3.5.4 The Behavior of Light in Air

Light in air behaves differently than in water. In the air, the light will next to no attenuation,
which means that the reflection can be expressed by the light intensity, Iλ, describing the colors
observed on the object.

Iλ(L, z) =
S0 · κλ · cos3(α)

z2
(3.25)
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In (3.25), Iλ represents the reflected light intensity at a given wavelength, lambda, while S0 is the
light source. L is the distance between the object and the viewpoint, while z describes the distance
from the object to the light source. Furthermore, κλ describes the reflectance ratio of the object’s
surface at a given wavelength, λ. α is the angle between the ray vector from the light source and
the normal vector of the object surface. Figure 3.5.3 illustrate this with a simple set-up.

Figure 3.5.3: Light reflection in liquid

However, these properties cannot be directly drawn when doing the same underwater. In water,
light attenuation will be present and affect how the light is reflected. In addition, light is possibly
scattered at stages resulting in a change in the direction. In the figure, these stages are leaving the
light source and after hitting the object, Sørensen (2018). This will be elaborated in the following
sections.

3.5.5 Artificial Lighting

Natural light is only available in the top 50 meters of the ocean, due to the absorption of light in
water. Even in shallower waters, a light source is essential in order to achieve satisfactory results.
In photography, the light has to travel twice the distance from the source to the object, given the
viewpoint and the light source are at the same point, as it has to reflect off the object and return.
Figure 3.5.4 illustrates the effect the marine environment will have on artificial light.
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Figure 3.5.4: Artificial light positioned relative to the object and camera. The illustration also
depicts inherent optical properties of the water. A: Outward scattering of emitted light B: At-
tenuation of emitted light C: Back-scattering of emitted light D: Attenuation of reflected light E:
Scattering of reflected light F: Outward scattering of reflected light, Sørensen (2018)

The effect of light attenuation of a light source is previously described by the equation 3.24. Iλ(z)

is the light intensity of the wavelength, i is the wavelength of the light, z is the distance between
the light source and the viewpoint, I0,λ is the light intensity of the wavelength at the light source
and cλ is the attenuation coefficient of wavelength i.

Iλ(z) = I0,λexp(−cλ · z) (3.26)

When a camera and an artificial light source is used under water, there is the effect of light
attenuation, but also the effect of reflection of light. Both will have an impact on the intensity of
a given wave length at the viewpoint. By combining the equation of reflection of light in air and
the attenuation equation above, the result is the equation for diffuse reflection of light in liquid.
It describes the light intensity of a given wavelength depending on the distance from the object to
the light source and the distance from the viewpoint to the object.

Iλ(l, z) =
I0,λκλ cos3 α

z2
exp
(
− cλ

( z

cosα
+

l

cos θ

))
(3.27)
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Where α is the angle the light hits the object relative to the normal of the object, θ is the angle
of the reflected light from the object relative to the same normal, κλ is the reflectance ratio of the
reflective surface, l is the distance from the object to the viewpoint, z the distance from the light
source to the object surface, I0,λ is the light intensity of the wavelength at the light source and cλ
is the attenuation coefficient, the wavelength is specified by λ.

Calculating the intensity is still not as straight forward as the equation suggests. The light in-
tensity at the light source I0,λ and the reflectance ratio of objects, κλ, is often hard to obtain.
These may be estimated by color registration of acquired images. Furthermore, the light source in
underwater photography are often close to overlapping, making the z ≈ l and thus α and θ close
to 0, subsequently cosα, cos θ ≈ 1. The resulting equation is

Ii(z) =
I0,λκλ
z2

exp
(
− cλ · 2z

)
(3.28)

3.6 Spectral Signatures

The aforementioned effects on light differ based on materials. Light will be absorbed or reflected
differently depending on the surface it has interacted with. The light returning from any given
object, will have been affected differently at different wavelengths. The result is that it is possible
to identify the materials which have affected the light based on the difference in the incident and
transmitted light. The materials will reflect and absorb based on their chemical composition, and
with the right instruments, this effect will be possible to record. The effect may be far from visible
to the human eye, either due to the limited number of wavelengths we are able to see, or because
of slight differences too small to notice.

However, by dispersing the light, one may detect the intensity of different wavelengths. If there is a
sufficient amount of recorded wavelengths, the attained signature will be unique. The intensity will
vary based on the interactions the light has had. By comparing the relative change, one can iden-
tify the interaction. This final measure is called a spectral signature and can be obtained through
spectroscopy. The different intensities make up a continuous line, unique to different materials and
possible to recognize.
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Chapter 4

Optics of Spectrometry

This chapter addresses building blocks essential to understand the field and utilization of spec-
troscopy. The chapter also acts as a foundation sustaining the scope of imaging, presented in the
next chapter, Chapter 5, Imaging. Chapter 5 takes spectroscopy levels further, by presenting its
real exploitation value. Similar to Chapter 3, the following sections are largely inspired by the
lecture notes from TTK20: Hyperspectral Remote Sensing, Signernes (2018). The source has also
provided illustrations, if not stated otherwise.

4.1 Fundamentals

4.1.1 Spectral Reflectance

Reflection occurs when the wavelength of the light do not match the natural frequencies of the
object it reflects off. Whenever the waves strike the object, the electrons in the atoms will vibrate.
However, this is not the same type of vibration as the one discussed above (Section 3.5.2). Now,
the electrons vibrate in small amplitudes for no more than brief periods of time. This causes the
energy to re-emit as a wave of light, rather than turn into vibrational energy and be absorbed at
resonance vibration.

The spectral reflectance, also called the optical fingerprint, can be described as the percentage of
the light amount reflected off an object at each wavelength. As mentioned, different objects absorb
and reflect different wavelengths. In plants, red and blue wavelengths are highly absorbed, leaving
the reflected color to be more or less green. Mathematically speaking, the spectral reflectance,
R(λ) is upwelling irradiance coming off the object, Lu(λ), divided by the spectral downwelling
irradiance towards the object, Ed(λ), Johnsen et al. (2013).

R(λ) =
Lu(λ)

Ed(λ)
(4.1)

Where Lu(λ) denotes the raw data of the object, including signature from light source, while Ed(λ)

is the spectral radiance from measurements of spectrally neutral reflectance standard, Johnsen et al.
(2016b).
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Note: For (4.1) to hold true, all surfaces are assumed to behave like Lambertian reflectors, Johnsen
et al. (2016b), meaning that the reference surface has a perfectly diffuse/matte property. This
ensures that the radiant intensity, regardless of the reflected direction, is proportional to the cosine
of the angle of the surface’s normal. This is known as Lamberts Cosine law, Signernes (2018).

In order to build a tool able to detect this spectral reflectance, and return the optical finger-
print, properties of spectroscopy are essential to explain. The remaining part of this chapter are
components of such a tool.

4.1.2 Reflective Gratings

The grating equation, (3.8), assumes a grating transmitting light. The reflective grating, however,
reflects the light. This grating consists of a polished surface with parallel grooves - as shown in
Figure 4.1.1. Between the grooves, parallel mirrors constitute the grating, each mirror acting as a
source of interference.

Figure 4.1.1: (1) Reflective grating. (2) Resulting rays, where the red lines describe the associated
phase difference

As explained in Section 3.1, the phase difference of waves propagating from coherent sources is
σ = 2π

λ · r. Of the figure above, Figure 4.1.1, r can be calculated as (BC − (−AD)). Hence, the
phase difference as a function of reflective grating can be presented as

σ =
2π

λ
(BC +AD)

=
2π

λ
(a sin(α) + a sin(β))

(4.2)

At maximum intensity, σ = 2/pin, the reflecting grating equation is found

nλ = a(sin(β) + cos(α)) (4.3)

Once again, n is the spectral order. α is the incident angle, and β represents the diffracted angle
of the grating.
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If there is a blazed grating, i.e., each reflective surface between the grooves are tilted relative
to the grating, the equation is modified in order to account for the blaze angle, ωb.

λb =
2a

n
sin(ωb) cos(α− ωb) (4.4)

4.1.3 Angular Dispersion

Angular dispersion is a measure of how the diffracting waves are spread, per unit wavelength. The
angular dispersion of a grating is defined as dβ/dλ. This can be derived by differentiating the
grating equation, (4.3).

dβ

dλ
=

n

acos(β)
(4.5)

4.2 The GRISM

A GRISM is a combination of a grating and a prism - hence the name. The GRISM is a prism
stacked in series with a transmission grating, as can be observed in Figure 4.2.1.

Figure 4.2.1: GRISM: Light passing through a prism, P, dispersing blue light more than red, and
a grating, G, diffracting red light more than blue

For a grating, the intensity maximum for each spectral order n, increases with increasing wave-
length. A prism, however, has no spectral orders and refracts blue light more than red. The net
effect is a compact spectrum able to obtain a straight through center wavelength, parallel to the
optical axis of the system. This on-axis effect makes it easy to stack additional optics in both ends
of the GRISM. Due to the absence of off-axis effects, image quality is preserved.

When calculating the angular dispersion of a GRISM, the result is equal to the angular disper-
sion of a grating (4.5), except for one additional term. This turns out to be a non-negative term,
implying that the GRISM has an increased angular dispersion compared to a grating alone.
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4.3 System Optics

Rays travelling through a spectrometer can be described by an optical diagram like the one pre-
sented below in Figure 4.3.1.

Figure 4.3.1: Optical diagram of a Spectrometer

S represents the source of light. S illuminates the front lens, L1, with the incident angle Ω. Fur-
thermore the front lens focuses the light onto the entrance slit, resulting in the imaged area, S1. G
is the grating, either transmitting or reflecting, in which L2 collimates with light passing through
the entrance slit area, S2, at an angle Ω2. The diffracted beam of light from the grating is then fo-
cused onto the exit slit by L3, as a function of wavelength. This makes S3 the area of the diffracted
entrance slit image.

f2 and f3 are the corresponding focal lengths of L2 and L3. Note that as long as L1, L2 and
L3 are able to focus or collimate the beam of light, they can be mirrors instead of lenses.

4.3.1 The Spectral Bandpass and Resolution

Spectral bandpass and resolution both characterize the instrument’s ability to separate adjacent
spectral lines. The bandpass specifically defines the spectral interval to be isolated. This is assum-
ing the light source is a continuum. As will be shown below, the bandpass is mainly dependent on
the width of the grating, entrance and exit slit widths and the spatial resolution of the CCD.

The isolated spectral interval (bandpass) can be found from the recorded Full Width at Half
Maximum (FWHM) of a monochromatic spectral line. In reality, there is no perfect spectrometer.
This is why the bandpass is approximated to FWHM. Figure 4.3.2 shows the effect of the spectral
resolution of a monochromatic line. As displayed, the bandpass at wavelength λ0 can be found at
half intensity, B.
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Figure 4.3.2: Spectral resolution of monochromatic line

Note that the assumption of a monochromatic spectral line does not restrict to only one line. Any
spectral structure can be considered as the sum of infinite single monochromatic lines at different
wavelengths.

The spectral bandpass can then be calculated as the wavelength distribution along the x-axis
multiplied by the exit slit width. This wavelength distribution is called the linear dispersion, and
is defined as dλ/dx. Using the angular dispersion from (4.5) and the similarity dx = f3dβ, the
spectral bandpass can be calculated. As known from (3.16) in Section3.4.1, the exit slit width, w′

is dependent on the entrance slit width, w through w′ = cos(α)
cos(β) ·

f3
f2
· w.

FWHM =
dλ

dx
· w′ =

dλ

dβ

dβ

dx
· w′ =

acos(β)

n

1

f3
· w′ =

acos(α)

n · f2
· w (4.6)

In (4.6), α is the incident angle and β is the diffracted angle. f2 and f3 are, as mentioned, the
focal lengths associated with the lenses L2 and L3 respectively.

4.3.2 The GRISM Spectrograph

In section 4.2, the GRISM, and how it could obtain a straight through center wavelength parallel
to the optical axis, was elaborated. Therefore, using a GRISM as the dispersive element is popular
when designing a spectrometer. Figure 4.3.3 shows a typical 3D configuration of a GRISM spec-
trograph in hyperspectral image mode, illustrating the basic elements of hyperspectral imaging.
Of the illustration, one can observe how the elements are stacked at the right next to each other
(on axis), supporting the previously stated properties of the GRISM. This on-axis design reduces
geometrical aberrations and thereby improves the resolution.

Similar to the spectrometer already discussed above (section 4.3), the front lens focuses light
onto the entrance slit S1, while L2 collimates the GRISM. The diffracted light is then focused onto
the image detector (CCD), by L3.

39



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

Figure 4.3.3: The GRISM spectrograph
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Chapter 5

Imaging

This chapter illuminates the imaging process - from the commonly known digital image to the
hyperspectral image, containing an additional dimension of information improving the resolution
of the image.

5.1 The Digital Image

From the mid-20th century, images have been stored in a digital format, Geladi et al. (2007). A
digital image is an array of rows i, and columns j, consistent of i x j gray-values. A gray-value,
better known as an intensity or a pixel, is simply one of many small squares in an image. If the
image is to consist of colors, however, a third dimension is needed. This dimension is characterized
as the depth, and can be found as the height in Figure 5.1.1b). The depth is three layers deep,
consisting of red, green and blue. What was previously a gray pixel is now a voxel illustrated
in 5.1.1b), with the triplet of red, green and blue - each of which contains different information.
Note that the height of the voxel is almost undetectable, as the voxel only consists of the tiniest
distinguishable element (with three wavelengths) of a 3D object, Geladi et al. (2007).

However, if the interval separating the layers is chosen to be a shorter wavelength, the number
of layers will increase. The resulting image is then called a multivariate image, illustrated in Fig-
ure 5.1.1c). If k denote the depth dimension and thus determine the number of wavelengths which
in turn will constitute the number of layers, the resulting array will be of the size i x j x k.

For the human eye to be able to perceive a color image, only three wavelengths/layers are needed,
namely red, green and blue. It, therefore, rarely makes sense to create multiple layers unless the
goal is to capture information the eye cannot see. This is where hyperspectral imaging enters, by
definition it has more than 100 layers and can express each pixel as a spectrum.
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(a) Pixel (b) Voxel (c) Multivariate Image

Figure 5.1.1: a) Pixel, b) Voxel and c) Multivariate image

5.2 Hyperspectral Imaging

In order to study the reflecting light from the target, or the transmitting light through the target,
a spectrometer is needed. A spectrometer, presented in Chapter 4, is an instrument that splits the
incoming light into a spectrum. Measuring these spectra is the most common way to use hyper-
spectral imaging.

Hyperspectral imaging uses a hyperspectral camera (imaging spectrometer) to collect spectral
information. As mentioned, the difference between a hyperspectral image and a regular photo
is that the hyperspectral camera measures hundreds of thousands of spectra instead of a single
spectrum, creating not only a multispectral image, but a hyperspectral image. In contrast to
multispectral imagers, sensitive in only a few wavebands, the hyperspectral imagers measure the
spectral reflectance per image pixel of the particular OOI, leaving a complete reflectance spectrum
for each pixel in the image, Pettersen et al. (2013).

In detail, a spectrograph, illustrated in Figure 4.3.3, generates images from the entrance slit, as a
function of wavelength. The amount of images detected by the CCD at the exit slit is dependent on
the entrance slit width and the element’s ability to diffract colors. The width of the exit slit, being
dependent on the width of the entrance slit, was derived in (3.16) in Section 3.4.1, describing opti-
mal etendue. A large number of detected images at the exit slit will directly improve the spectral
resolution of the instrument. The resulted image recorded by the CCD is called a spectrogram (an
illustration of a spectrogram can be found as the last element in Figure 4.3.3). The spectrogram
contains both spectral and spatial information and can be described by the intensity distribution
and position along the slit.

However, the information retrieved is information about the covered area of the target object,
which is nothing but a film covering only a small part of the object. In order to obtain the object’s
full spatial extent, the entire object surface needs to be sampled.

In order to do so, the recording instrument must be moved relative to the target. The velocity, ν
of the instrument is crucial, and must be coupled with the sampling frequency. The instrument
will undersample (miss samples of the target area) if the distance moved during readout time, τ ,
exceeds the length of the measured area, dx (displayed in Figure 5.2.1). This requirement is shown
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in (5.1).

ν · τ ≤ dx (5.1)

This way, the image at the entrance plane moves across the slit so that the CCD can record spec-
trograms for each track of the object. This is called the push broom technique, which will be
illustrated in Section 5.2.2. When summarizing all samples, information on the continuous image
can be retrieved.

The required movement is based on the instrument and target moving relative to each other.
Hence the movement can be created in two ways. Either the instrument can move, or the viewed
target can be moved while keeping the imager still. If the target is located at a conveyor belt,
it might be suitable to keep the instrument still. However, as mentioned, the magnitude of the
relative movement is important. This means that if the conveyor belt is moving too fast, the
instrument needs to move as well, in order to reduce the relative movement.

Figure 5.2.1 describes the situation where a hyperspectral imager is attached to an airplane moving
at a velocity, ν. In the illustration, S is the slit, while w is the associated width. z describes the
altitude above ground level. The front lens is denoted L1, and has a focal length of f1.

Figure 5.2.1: Spatial resolution - field of view from a moving airplane, Signernes (2018)

It is common to believe that the spatial resolution is dependent on the number of pixels present
along the wavelength axis of the detector. However, the amount of information is described by the
number of spectral layers the hyperspectral imager can produce (illustrated as the height of the
column in Figure 5.1.1c)). The spectral layers define a dimension independent of the pixel-plane,
only dependent on the bandpass (see section on bandpass) and the spectral range of the instrument.
Using the similarity of form, dx can be calculated from the lengths of the figure.

dx =
z · w
f1

(5.2)

During the exposure, the airplane has moved from the first state to the second. This distance can
be calculated from the time spent at the constant velocity held: distance = ν · (t1 − t0) = ν ·∆t.
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The spatial resolution becomes equal to the distance from A to B. Of the figure, this distance is
observed as

∆x = dx+ ν ·∆t (5.3)

(5.2) shows how dx, an thereby also the spatial resolution, is connected to the spectral bandpass
through the slit width, w, as described in Section 4.3.1.

Concerning plastic, this translates to receiving both spatial and spectral information on the plas-
tic material composition. The hyperspectral imager can be used as a taxonomical identification
tool to make optical fingerprints of marine organisms. This is only if the pigment composition
and corresponding absorption signature of the organism are known and can be used to verify the
reflectance signature, Pettersen et al. (2013).

When the hyperspectral camera is taken underwater, the lighting is limited. The UHI is, therefore,
using its own light sources, in contrast to passive techniques using ambient light, Johnsen et al.
(2016b).

For the purpose of this project, there are two methods for camera configurations relevant, point-
scanning image and line-scanning image.

5.2.1 Point-Scanning Image

Point-scanning image can be used to measure a complete spectrum in one pixel. In every spot, all
layers are measured vertically from this spot. To make the whole picture, the camera must scan
across the entire surface, spot by spot, Geladi et al. (2007).

Figure 5.2.2: Point-scanning

5.2.2 Line-Scanning Image

The line-scanning image technique uses a two-dimensional detector, perpendicular to the surface
of the measured target. This detector collects the spectrum of a whole line in the image, in one
single scan. By moving the scan line with a push broom technique, one can map the entire image
by combining all sets of spectra, Geladi et al. (2007).
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Figure 5.2.3: Line-scanning

5.3 Raman Spectroscopy

As mentioned, spectroscopy can be utilized in several ways. The optical signature can be retrieved
using a hyperspectral imager, viewing reflected (or transmitted) light, or extracted from the light
scattered from the OOI. The Raman method is based on the latter property, scattered light (Section
3.5.2) - more specifically, Raman scattering. By diffracting the Raman scattering, one may measure
its intensity at the different wavelengths. The intensities are then compared to the incident light
and the difference is identified. Based on the change, due to specifics in the material scattering the
light, one can retrieve a spectrum unique to the material, the Raman spectrum.

5.3.1 Fundamental Theory

Whenever a sample is exposed to light, the light will either be transmitted through the sample
or scattered. Nevertheless, a small part of the light is always scattered by the sample at different
wavelengths. To characterize the scattering light beam, the properties of emitting photons are
compared to incident photons. Let us name the frequency of the incident light beam fi, while fs
is the frequency of the scattered beams.

Inside the molecules of the sample, electrons have different vibrational levels based on energy
differences. Whenever a photon interacts with an electron in the sample, the electron absorbs en-
ergy from the incident photon. This energy, transferred from the incident photon to the electron,
can be expressed by Planck’s constant times the frequency of the incident light, E = h · fi. The
result is the electron being excited to a higher vibrational level. The electron will, in turn, fall back
in position as it release the energy. If the energy is equal to the energy of the incident photon, the
electron will settle at its initial level, and emerge another photon - with the same frequency as the
incident photon: Ei = Es → fi = fs. This is called Rayleigh scattering and is the most common
type of scattering, Band and Avishai (2013).

However, when losing energy from the virtual energy state, the electrons can sometimes respond
differently. It might emit photons with a different frequency than that of the incident photon,
fs 6= fi. This scattering is approximately 10−5% of the total scattered light and is called the
Raman scattering, Inagaki and Kang (2016).

When an excited electron releases energy, defined within the Raman scattering, it can either return
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to a higher energy state or a lower energy state than the initial state. The nature of these states can
be observed in the Raman spectrum. When electrons absorb energy, fs is less than fi, and Stokes
lines appear in the spectrum. Similar when fs > fi, the electron emits energy, and anti-stokes lines
can be observed.

The emitted light, at different wavelengths, is diffracted with a regular spectroscope, resulting
in a spectrum of Stokes lines. This way, by studying the resulting spectral peaks, one can identify
molecules within the sample. The intensity of the spectral lines determines the concentration of a
molecule in a sample.

Due to the fact that only 1 in 10 million photons are affected by Raman scattering, it is es-
sential that the incident light is highly concentrated. Also, in order for it to be easier to compare,
one strives to use a monochromatic light source due to the predictable signature. As a result, lasers
are used in Raman spectroscopy as it delivers high-intensity uniform light.

In summation, Raman spectroscopy is the spectroscopy of the Raman scattering and identifying
the change in intensity per measured wavelength. It is essential to recognize that the fundamen-
tals of Raman spectroscopy are identical to the theory laying the grounds for the hyperspectral
techniques, namely Chapter 3 and Chapter 4. Raman spectroscopy is similar to any other spec-
troscopy in that light is dispersed and the intensity is measured at a number of wavelengths. The
spectroscopy is performed in a similar fashion, carrying the same possibilities. The main difference,
however, separating the Raman method from the hyperspectral technique, is the type of diffracted
light - producing the final spectrum. As mentioned, the Raman spectrometer separates the limited
portion of Raman scattering, holding a change in energy, while the hyperspectral spectrometer
includes all light emitted and transmitted. Due to the clear stokes lines, the resulting Raman
spectrum has more distinct peaks associated with specific frequencies.

When performing measurements using the Raman scattering technique, it is essential to recog-
nize that the Raman spectrum contains information from no more than a thin layer of the object
surface. The measured surface thickness, with the WITec instrument used in this thesis, is approxi-
mately 30–60 nm. Therefore, to ensure the correct signature of the object, homogeneity throughout
the sample is important, WITec GmbH (2019).

5.3.2 Spectral Characteristics

As previously mentioned, there are clear peaks in Raman spectra, which corresponds to distinct
covalent bonds. The following paragraphs aim to cover the interpretation of such peaks, and are
mostly based on Socrates (2002).

Peaks in Raman spectra are not described based on the specific properties of the correspond-
ing bonds. On the other hand, the peaks are acquired through systematic empirical measuring and
mapping.

The functional groups of materials may be identified based on their respective peaks. Based on
known peaks, it is possible to identify a given substance based on the presence or absence of char-
acteristic peaks from aggregates. However, it is important to note that there are variations in the
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peaks due to differences in bonds. The bonds may either be of different geometric shapes or vibrate
in a certain way. The mode of vibration is dependent on both the spatial geometry and the elec-
tronegativity of neighbouring atoms or functional groups. In other words, the bonds may twist and
bend such that the peaks change. Also, there might be noise or other contaminants affecting the
spectra. The result is the occurrence of peaks in certain intervals, rather than at exact wavelengths.

The position of bands is in part a result of the amount of energy absorbed by the bonds. The
bonds will have different levels of strength and different possible modes of vibration. All of which
will have different stiffness. The stiffer the bonds, the more energy is required to create vibrations.
The same goes for the vibrational modes of the bonds. Certain types of motion require more en-
ergy. Subsequently, when larger amounts of energy are absorbed, it is reflected in bands at higher
frequencies. Do note that considering individual vibrations in groups or atoms of molecules, is a
simplification. Molecules do generally vibrate as a whole.

Furthermore, functional groups may not have one peak, but several. This is a consequence of
their complexity. There are often multiple bonds acting together, forming the group and resulting
in multiple peaks. Also, some might not be present at all. Due to inactivity caused by geometric
properties or the measured wavelength interval.

In addition, the spectra reflect the composition of skeletal groups, i.e., the backbone of the molecule.
This is highly important in the identification of polymers. The bonds forming the base of the
molecule will naturally appear in the spectra. These will often have high intensities due to their
sheer quantity - at least concerning polymers.

The intensities of the peaks varies. Mainly due to the number of a given functional group in
the substance molecule. A high amount of a functional group will result in a higher number of
given bonds, and thus higher intensities. Hence, the relative intensities of the peaks may indicate
the relative presence of groups.

In summation, the presence of one particular peak should not be used individually to prove the
presence of a group or the identity of a material. There are variations one must be aware of, which
could make the peaks ambiguous. The observation of peaks based on expectation, due to a priori
knowledge, should not be regarded as conclusive evidence of the presence of a particular group. In
order to qualitatively confirm the presence of a substance, one should rather use correlation charts
that depict the presence of correlated bands. One should also keep in mind that the absence of
peaks is equally an indication as the presence.

Due to the highly sensitive nature of Raman Spectroscopy, one might encounter spurious bands.
These are bands that do not belong to the sample. Mostly, they are due to poor sampling tech-
nique, general sample handling, instrumental effect, or others. The presence of contaminants is
the most common reason for these, and one must be careful to handle them and be aware of their
possible presence.

Below are some of the most common peaks in organic chemistry, the table is collected from Adar
(2016).
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Figure 5.3.1: Table of Raman frequencies of common functional groups
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Chapter 6

Data Analysis

This chapter is intended to leave the reader with the insight required to analyze data acquired
using spectroscopy. It covers methods of signature recognition, in addition to general classification
techniques. The latter are techniques applied in a wide range of fields, but also commonly used
with spectral data. Finally, basic methods of signal processing are presented.

6.1 Signature Recognition

The following paragraphs are largely based on the theory presented in Keshava and Mustard (2002)
and Graña and Veganzones (2012).

6.1.1 Endmember Signatures

A large number of spectral signature recognition methods are based on endmemberso. The use of
endmembers is common practice in geology, a field with a tradition of using spectral recognition.
These represent the extremes with respect to purity. The same rationale is used in signature recog-
nition. There are signatures from completely pure samples, which represent the correct signature
of the material. The endmember signatures are the signatures that are chosen to represent the
pure surface of the material.

An aspect of the laboratory testing is to investigate whether it is possible to find such endmember
signatures for plastic, and if so, record them. This would be beneficial, not only in recognition of
plastic, but also for future work where the identification of each type of plastic is desired.

6.1.2 Spectral Angle Mapper

Spectral Angle Mapper (SAM) maps the difference in angle between unidentified spectra and
reference spectra. The spectra are treated as vectors in an n-dimensional space, where n is the
number of bands, i.e. wavelengths. The spectra will be represented in the space based on the
intensities per band, which have a respective axis. A small angle between the two spectra will
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indicate a high similarity, while a large angle will indicate a low similarity. The angle is calculated
by

α = cos−1

( ∑n
i=1 tiri√∑n

i=1 t
2
i ·
√∑n

i=1 r
2
i

)
(6.1)

where α is the angle, t is the target pixel, r is the reference pixel, n the number of bands and i the
given band. Do keep in mind that bands and wavelengths are used interchangeably, however, these
are correlated such that λi = X/n · i. λ, the wavelength of a band is equal to the band number, i,
multiplied by the measured interval, X, divided by the total number of bands, n.

The classification based on the angle is typically based on a given limit value. If the angle does
not fall below the value for any spectrum, it is unclassified.

6.1.3 K-means Clustering

The following paragraphs are largely based on James (2013a).

K-means clustering is a common unsupervised classification method. This means it will classify
samples with similar values without any indication of what is being classified. The algorithm seeks
to structure the data based on the data set itself. K-means clustering will in this sense classify
samples by creating a specified number of subgroups, or clusters, with similar properties.

More specifically, the algorithm will create sets satisfying two properties:

1. C1 ∪ C2 ∪ · · · ∪ CK = 1, . . . , n. All observations of the data set must belong to at least one
of the K clusters.

2. Ck ∩ Ck′ = ∅. The clusters do not overlap. Hence, observations will only belong to one
cluster.

However, these properties do not determine what observation belongs to what cluster. As previously
mentioned, one seeks to cluster similar observations. This will result in a minimized variation within
each cluster. Or, one may relate observations to each cluster by minimizing the variation in the
cluster, which will result in the desired outcome. In other words,

min
C1,...,CK

{
K∑

n=1

W (Cn)

}
(6.2)

where W (Cn) is the measure of the variation in cluster Cn, which is a measure of how much the
observations differ from each other in the given cluster.

The most common way to solve this problem is to use the Squared Euclidean Distance. Also
known as the length of a straight line in any dimensional room, and the basis for the Pythagorean
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theorem. The distance is defined as

W (Cn) =
1

Cn

∑

i,i′∈Cn

p∑

j=1

(xij − xi′j)2 (6.3)

where Cn is the number of observations in cluster k. The variation is, in other words, defined as
the sum of all the pairwise squared Euclidean distances between the observations of the cluster,
divided by the number of observations in the given cluster. The result is the following equation,
which states the optimization problem defining K-means clustering,

min
C1,...,CK





K∑

n=1

1

Cn

∑

i,i′∈Cn

p∑

j=1

(xij − xi′j)2



 (6.4)

However, the problem that arises is the large number of ways to partition all observations, and it
being next to impossible to find the optimal solution. As a result, one aims to find a satisfactory
solution as a local optimum rather than the optimal. This is achieved by initially assigning the K
clusters randomly. Then calculate the cluster centroid, which is the vector of the p feature means
of the observations in the given cluster. Finally, each observation is assigned to the cluster with
the closest centroid, with respect to the Euclidean distance. These steps are repeated until an
improved solution is no longer found and a local optimum is achieved.

6.2 Principal Component Analysis

Principal Component Analysis (PCA) proposes a method to simplify complex high-dimensional
data. The method will simplify while simultaneously retain the trends and patterns, making it
ideal in analyzing data. It summarizes features, transforming the data into fewer dimensions. The
lower dimensional, simplified, data has a lower computational cost and a decreased error rate due to
less test correction as a result of fewer features associated with outcomes. PCA may be compared
to clustering, and is an unsupervised learning method. It will recognize patterns regardless of the
source of the data.

The following theory is based on lecture notes given in the course TTK20: Introduction to Big Data
Cybernetics, which also provided the illustration, combined with The Unscrambler User Manual
(1996), Shlens (2005) and Lever et al. (2017).

6.2.1 Principal Components

The lower dimensional data are called principal components (PCs). The inputs are projected on
to the principal components with the goal of finding the most ideal summary of the data, using a
limited number of PCs. The components are chosen based on the variance. The first component
is chosen with minimum distance between the data and their projection onto the components.
Minimizing the distance that coincides with maximizing the variance. Therefore, PC1 is chosen as
the line holding the highest variance along the line. In order to create a new space, the components
need to be uncorrelated. Linear algebra dictates that the PCs thus must be orthogonal. Therefore,
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the following components are based on the previous criterion in addition to orthogonality. The
result is the maximum possible number of PCs being either the number of samples or features,
whichever is smaller. A higher number of PCs will result in a combination of either features or
samples causing correlation and thus violating the orthogonality. The PCs are evaluated based on
the percentage captured by each component. The sum of all components used in the analysis will be
the total percentage captured. The projection of the original measurements to a two-dimensional
plane may be seen in Figure 6.2.1. The figure also depicts the principal components being chosen.
The projection is equivalent to a larger number of dimensions, but is impossible to illustrate due
to the requirements of more than three dimensions.

Figure 6.2.1: Fundamentals of Principal Component Analysis (PCA)

6.2.2 Fundamental Mathematics

The data set is assumed to be represented by a m × n matrix X. The n columns are the sam-
ples/observations, while the m rows are the variables. The matrix is to be linearly transformed
into the matrix Y of the same dimensions, which requires an m×m matrix P.

Y = PX (6.5)

The equation represents a change of basis, andP is a transformation matrix. The resulting equation
is seen below. Here pi are the rows of P, xi are the columns of X, and yi are the columns of Y.

PX =




p1

p2

...
pm




[
x1 x2 . . . xn

]

Y =




p1 · x1 . . . p1 · xn

...
. . .

...
pm · x1 . . . pm · xn




(6.6)
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The standard Euclidean inner product tells ut that the original data, X, is being projected on to
the columns of P. The rows of P, therefore, form the new set of basis vectors for representing
the columns of X. The rows of P will represent the principal component direction, and thus the
principal components. Hence, it is essential to choose the appropriate change of basis in order to
have the most accurate or best re-expression of X.

As previously mentioned, the principal component analysis is based on the variance of the data in
the original basis in order to define independence. The original data is intended to be de-correlated
through finding what directions the data has the largest variance, which subsequently define the
new basis. The variance of a random variable, Z, with mean µ is defined as

σ2
Z = E[(Z − µ)2] (6.7)

By extending the definition to include vectors, the result is

σ2
r =

1

n
rrT (6.8)

Where r is a translated set of n measurements, where each discrete measurement in the vector
r̃ = (r̃1, r̃2, . . . , r̃n) has had the mean µr subtracted.

The definition can be further extended to include other measurements. Given a second vector
of the same number of measurements, n, and zero mean, s = (s1, s2, . . . , sn), the covariance of the
two, r and s, measurements can be obtained. The above-mentioned variance is in fact a special
case of the covariance where the two variables are identical. To account for the variables not being
identical, n in the division is exchanged with n-1.

σ2
rs =

1

n− 1
rsT (6.9)

The definition can be generalized to include a data matrix X, with m columns representing the
number of variables and n rows representing the number of samples. The matrix therefore consists
of m row vectors, each of length n. These represent all the samples per variable.

X =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn




=




x1

x2

...
xm




(6.10)

Therefore, the equation for the matrix of covariances will follow the same pattern as for the two
sample covariance. The matrix will contain the covariances everywhere apart from the diagonal
axis, which will contain the variances.

CX =
1

n− 1
XXT =




x1x1
T x1x2

T . . . x1xm
T

x2x1
T x2x2

T . . . x2xm
T

...
...

. . .
...

xmx1
T xmx2

T . . . xmxm
T




(6.11)

Principal Component Analysis builds on linearly transforming the original data into Y, and a
fundamental assumption is that the variables of Y are orthogonal or as close as possible. From
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linear algebra it follows that variables being orthogonal corresponds to them being independent or
uncorrelated. Therefore, the covariance matrix of Y, CY, should maximize the diagonal entries
and minimize the off-diagonal entries. The minimum possible covariance is zero, and thus CY

should be a diagonal matrix in order to achieve an optimal Principal Component Analysis.

The vectors of the new basis, p1,p2, . . . ,pm are assumed to be orthogonal, which results in the
possibility of proceeding with the use of linear algebra.

CY =
1

n− 1
YYT

=
1

n− 1
(PX)(PXT)

=
1

n− 1
(PX)(XTPT)

=
1

n− 1
P(XXT)PT

S = XXT ⇒

CY =
1

n− 1
PSPT

(6.12)

Where S is an m×m symmetric matrix, since (XXT)T = XXT. Every square matrix is orthogo-
nally diagonalisable, such that S = EDET. D is the diagonal matrix, containing the eigenvalues
of S as its diagonal entries and E are the ortonormal eigenvectors of S. It is at this point the
design of P becomes essential. If the transfomation matrix is chosen to have its rows equal to the
eigenvectors of S, P = ET. Combined with the fact that ETE = I, then

CY =
1

n− 1
PSPT

=
1

n− 1
ET(EDET)E

=
1

n− 1
D

(6.13)

As previously mentioned, the size of the variances relate to their importance. Since the variances
are equivalent to the diagonal entries of the matrix D, the size of the diagonal entries tells what
variables are most essential in the analysis.

6.2.3 Score Plot

The results of the PCA are summarized in score plots and loading plots. These are interpreted
based on patterns. Due to the orthonormality of the PC matrix, any trends apparent in the original
data will be kept intact. The score plot is the transformed data represented in a scatter plot, where
the principal components make up the axes. Therefore, patterns in the score plot will represent
patterns in the original data. Specifically, three main patterns are interesting in the scatter plots:
clustering, outliers and time-based patterns. Clustering will show what data cause similar effects,
and will possibly have similar properties. Clusters may be used to classify new data obtained after
the first analysis. Simply because similar data would depict similar trends and thus lie in the same
clusters. Outliers will portray properties dissimilar to the other. This may be caused by errors in
the data or from large deviations. The latter will be of interest. A result of the large deviation is
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also a higher contribution to the PCs, giving it higher leverage. To interpret the contributions of
each factor, one often also create bar plots in order to assess what has the most significance on the
results. Finally, any sequence of data will possibly portray trends which will be apparent in the
PCA results. Figure 6.2.2 illustrates the scores of a scatter plot. The axis consists of the principal
components.

Figure 6.2.2: Example of a score plot

6.2.4 Loading Plot

Loading plots are plots depicting the influence each feature has on the principal components.
The plots will thus show what feature has the most significance. As a result, variables with
little contribution will have close to zero loading, variables with strong positive correlation will
have similar weights and variables with strong negative correlation will be positioned diagonally
opposite each other with similar loading (except for the sign). The loading plot will also make
it possible to further simplify the data as insignificant features, variables with low loading may
be eliminated. One can also see redundancy in the variables. Variables causing the same score
plot positioning will overlap in the loading plot. Figure 6.2.3 depicts the loading plot for PC2 and
PC1 combined. The vertical axis defines the effect on the second principal component and the
horizontal axis illustrates the effect on the first principal component. Each point is a variable with
the corresponding variable name labeled above. The ellipse on the plot depicts the Hotelling’s T 2

plot, which is described below.

Figure 6.2.3: Example of a loading plot with an hotelling’s T 2 ellipse
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6.2.5 Residuals

Furthermore, the PCA provides a model and thus predicted values, in the new space. These will
differ from the data resulting in errors, also called residuals. The measured data will, therefore,
equal the sum of the PCA model and the model error or residuals. A plot of the residuals will thus
reveal coherency with the model. Large deviations could reveal an inconsistency with the model,
which could reflect a problem with the process at the time of capturing the data in question.
In order to break down what variables causing the deviation, one would, normally, generate a
contribution plot showing the residuals for each PC - as opposed to the squared prediction error
utilized in the residual plot. The derivation of the residuals are described below, where E is the
matrix of residuals, X the data and TP’ the model, where P’ marks the transposed of P

E = X− X̂ = X−TP′ (6.14)

To interpret the residuals, one equates the Square Prediction Error, which is simply the absolute
value of the residuals. The value is then plotted to see what observations have the highest residuals.
The plot will include a line depicting a given percentage, such that all residuals above the line will
be of the percentage, e.g., top 5% deviation. The equation below describes the calculation, and
the figure 6.2.4 depicts the plot. The vertical axis describes the residual value. The horizontal red
line describes the 95% percent, i.e., 95% of samples are located below the line.

SPE =
√

e′i,Aei,A (6.15)

Figure 6.2.4: Plot of residuals and hotellings T 2

6.2.6 Hotelling’s T 2

Finally, there is the Hotelling’s T 2 value. The value help screen the components of the PCA,
summarizing all the score-values. Considering a model of 2 components, the value is highly useful.
Depending on a percentage limit, the equation will form an ellipse. The points inside the ellipse
will be within the respective percentage limit. It is expected that the percentage of the confidence
limit lies within the ellipse. The confidence limit is equivalent to the confidence limit one would
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expect for a normal distribution. The ellipse will help identify outliers, but only as a guide. Figure
6.2.5 illustrates the ellipses of Hotelling’s applied to the previously depicted Loading plot. The
outer ellipse represents 99%, while the inner represents 95%.

Combined with the residuals, it allows for the identification of poorly modeled measurements
and measurements with high leverage. Figure 6.2.4 depicts the residuals and the Hotelling’s value.
The Hotelling’s will depict the leverage and the residual the model fit. A high Hotelling’s T 2, but
a low residual would be concerning as it might indicate a model that is designed to describe the
high leverage measurement.

Figure 6.2.5: Example of a Hotelling’s T 2 plot

6.3 Partial Least Square Discriminant Analysis

Partial Least Square Discriminant Analysis is a method of processing large amounts of data and
utilize it in order to make predictions. The following paragraphs will describe the basic principles
of the method.

6.3.1 Partial Least Square - Regression

Partial Least Square - Regression(PLS-R) is a technique that combines features from PCA and re-
gression. PLS-R differs from PCA in that instead of finding the maximum variance of the samples
by projecting onto a hyperplane, it rather finds the linear regression by projecting both predicted
and observable variables to a new space.

The basic notions of a PLS analysis are to locate the latent variables which best explain Xi,
Yi and the relationship between the two. The method hence seeks to describe the X-space, the
Y-space and the relationship between the two spaces.

More precisely, the method extracts two sets of scores. ti = Xiwi for the X-space and ui = Yici

for the Y space.

The final objective of building the PLS model is to find the scores that result in the maximum
covariance. That is, Cov(ti,ui) = ε{(ti− t̄i)(ui− ūi)}. When the scores are found and the model
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built, one simply needs to input new X-variables for a response, based on the aforementioned cor-
relation, between the X and Y space.

The actual calculation of the scores is usually performed using iterative methods, such as NI-
PALS. These methods will not be presented in this thesis, as they are deemed unnecessary and
irrelevant when understanding the final results.

To perform the intended regression, one can use the found latent variables of the X-space, fol-
lowed by the correlation between the X and Y space to find the resulting y-variables.

Due to the similar nature of PLS and PCA, the interpretation of the results are highly simi-
lar. PLS will have loading and score plots interpreted in the same fashion as with PCA, only that
there will also be plots for the Y space. Another difference, is that there will be a prediction of
how well the model fits, if one includes a test set. The test set will reveal the quality of the model
by assessing how well the model predicts y-values compared to the actual value.

6.3.2 Linear Discriminant Analysis

Discriminant analysis seeks to classify samples into two or more categories based on linear combi-
nations of features. The method is closely related to PCA in that it seeks linear combinations of
variables to describe the data. The following is largely based on James (2013b).

Based on a set of observations, X, and known categories, Z, the method tries to find a combi-
nation of the observation variables which predicts the respective category.

Discrimination is achieved by setting the variable weights to maximize the ratio of the variance
between the classes and the variance in the class itself. The combination is achieved through a
discriminant function. The function linearly combines variables, and their respective weights, of
an observation and yields a score per predetermined class.

Zik = b0i + b1iX1k + · · ·+ bJiXJk (6.16)

where Zik is the discriminant score of the discriminant function i of observation k, with i =

1, . . . , G− 1. The number of discriminant functions must be smaller than the number of classes G.
Xjk is the variable j of observation k, with j = 1, . . . , J , where J is the number of variables per
observation. bji is the discriminant weight of variable j and function i.

max =

∑Q
g=1 IG(Z̄g − Z̄)2

∑Q
g=1

∑Ig
i=1(Z̄gi − Z̄g)2

=
SSb
SSW

(6.17)

where is the dicriminant criteria, Ig the size of class g, Z̄g the mean of group g, Zgi the ith dis-
criminant value of class g, SSb the sum of squared deviations between classes and SSb the sum of
squared deviations within classes.

Following the calculation of each discriminant function, these are simply to be used to find the
resulting discriminant scores and subsequent discriminations.
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6.3.3 PLS-DA

By performing a discriminant analysis based on a PLS model, one gets the PLS-DA method. The
PLS model is built on the training data, which also includes category or class variables for the
discriminant analysis. The resulting model will be able to predict the class of the sample data
according to the previously built model.

6.4 Picture Processing

The following section describes basic methods to process hyperspectral images and their respective
spectra.

6.4.1 Standard Normal Variate Transform

The standard normal variate transform makes it possible to compare similar spectra, but of different
intensity. The transform alters the data by centering it and making it relative to its own standard
deviation. Thus, making peaks comparable as they are no longer absolute, but rather relative.

6.4.2 Savitsky-Golay

The Savitsky-Golay filtering technique is a form of polynomial smoothing. The filter aims to in-
crease the precision of the data, without distorting the signal tendencies. In order to smooth the
signal, the method uses Linear Least Square to perform linear regression on a subset of adjacent
points. This regression is performed for every point of the graph, with the subset centered at the
given point, Savitzky and Golay (1964).

After a polynomial has been fitted to the subset, it is evaluated at the given point, e.g., by
derivation.

Uniquely for the Savitsky-Golay method is that the points are equally spaced, making it possible
to predict the coefficients of the polynomial of finite order related to the regression. The samples,
which may be regarded as discrete, are subsequently combined with the predetermined coefficients
through convolution. In turn, the signal will be smoother, but still retaining key features with
respect to spectral analysis.

Maximum Noise Fraction (MNF)

Based on a principal component analysis. However, instead of ordering the components based
on variance, the components are ordered increasingly, with respect to signal-to-noise ratio(SNR),
(S/N ). Thus, one can heavily filter the components as it will reduce noise, while minimum signal
degradation, Green et al. (1988).

Depending on the SNR of a component, one may either completely remove it or smooth it. Com-
plete removal is only a viable option if the component has a high amount of noise. Even if the
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lower order components do contain more noise, they still have a significant effect on the total signal.
Therefore, these require smoothing. Because the lower components contain a larger noise fraction,
one may assume a smaller information loss due to smoothing, than with higher level components.
The smoothing is based on the between-band correlation.
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Chapter 7

Research Process

Given the exploratory character of the project, the work process was far from linear. The research
largely included meetings, literature searches and experiments. The result was an iterative work
process which gradually revealed the necessary steps required to move forward. The nature of the
progress made it difficult to fit the process in the standardized IMRaD methodology, as decisions
were continuously made based on results from either meetings or experiments. The following chap-
ter is intended to give the reader insight and understanding of the underlying research process.
This includes introducing leads we did not follow - after all. Compared to the rest of this report,
the format is atypical, communicating in a tone that combines the language of preface and method.
Note that a more detailed description of the scientific portion of the process will follow in the next
chapters, Chapter 8 and Chapter 9.

The process tree below, Figure 7.0.1, illustrates the framework and structure of the process, while
Figure 7.0.2 displays a table that complements the tree with details.
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Figure 7.0.1: The process tree, consisting of meetings and experiments
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Figure 7.0.2: The process tree table, complimenting the process tree

At the starting line (M1), several methods for mapping and classification of plastics were discussed.
Among the most prominent, SilCam and hyperspectral imaging stuck out as the winning two, re-
sulting in the focus of the thesis. The idea was to combine the shape and size information from the
SilCam, with the object color information from the Hyperspectral imager in visible light, Stien and
Dahl (2018). By using the same light source for both technologies combined, a beam splitter could
collimate the light into the spectrometer and the SilCam at the same time, using transmittance
(M2). Due to a large number of properties recognized, this combined sensor would possibly be able
to identify the object. (However, as it turned out, this was not going to be the focus of our thesis.)

We decided to move forward with the plan and measure the plastic particles in transmittance.
In order to do so, significantly smaller particle sizes were needed. Therefore, we bought a coffee
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grinder at Clas Ohlson and went down to the Department of Biology to freeze and grind the plas-
tic particles (M3). Since we had realized we needed to ensure brittleness also when grinding the
particles, the liquid nitrogen freezing of the samples, was essential. Then we returned to SINTEF
Ocean to complete the experiment (E1). As it turned out, the pieces were still too large, float-
ing on top of the water tank. We realized we could place the plastic particles in a cuvette, and
shake the cuvette to suspend the particles just long enough to retrieve in-water measurements (E2).

Furthermore, inspired by the discussions in M1 and supplementary literature, we were optimistic
and eager to embark the hyperspectral imaging using infrared light. We reached out to Silja, who
three years ago, wrote her master thesis on a related subject. She gave us the name of her brilliant
supervisor. This is how we came in contact with Lise Lyngsnes Randeberg (M4). Over the next
few days, we had several meetings with Lise. We later changed the focus of the thesis — infrared
hyperspectral imaging was the new main theme. Lise made us aware of a few challenges when
embarking on the laboratory experiment. First, the plastic particles needed to be pulverized down
to 200 microns. Our "coffee ground" particles were no longer sufficient. Second, the laboratory
set-up for transmitting infrared light needed to be designed and formed.

First things first, we contacted Martin Wagner from the department of biology (M5), by rec-
ommendation from Torfinn. Martin had recently bought a brand new tissuelyser (cryomill) for
the exact purpose of pulverizing materials — such as plastic. The process was long lasting and
thorough. After two weeks of milling with assistance from Trude and Grethe (E3), the plastic
samples were fully pulverized.

Figure 7.0.3 shows the intended laboratory set-up. This was built with help from a friend at
TrollLabs, Fredrik (M6). The result was laser cut petri dish holders in wood, pictured in Figure
7.0.4. In addition, as the infrared radiation is absorbed by glass, the petri dishes had to be custom
made to our experiment. After doing some research, we found the least infrared-absorbing material
to be fused silica. This material was ordered as optically purposed discs, before being weld into
petri dishes by Sebastian Bete (M7) from the glassblower-workshop at NTNU.

Figure 7.0.3: Designed sample holder
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Figure 7.0.4: Laser cutting the dish-holder

Now, the plastic was pulverized and the laboratory set-up completed - (M)E4 was in order. A
thorough description of the experiment can be found in the method section in Paper I, Identifica-
tion of Marine Plastics using Hyperspectral Imaging in Infrared Light, Chapter 8.

Later, we received an email from Emlyn about venturing the field of Raman spectroscopy. In
our previous meeting with Emlyn, we had expressed our interest in the field, and he responded
accordingly by introducing us to Bartlomiej Gawel and Andreas Erbe. We met with Bartlomiej
the next day (M8). This meeting was mainly driven by curiosity and was never entirely meant to
result in another experiment — yet, it did. (M)E5 was then commenced. A thorough description
of the experiment can be found in the method section in Paper II, Identification of Marine Plastics
using Raman Spectroscopy, Chapter 9.

Furthermore, a trip to Lofoten was arranged. Emlyn, Frode and Bjarne from SINTEF, was at-
tending a field trip to Lofoten in early April, and Emlyn had organized for us to join them. We
exploited the trip by bringing a manta sampler, a net trawled by the side of the boat to collect
mass from the sea — hopefully containing microplastic. Figure 7.0.5 shows two photos from the
collection process in Svolvær, Lofoten.
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Figure 7.0.5: Photos from collecting plastic samples outside Lofoten, Norway. Photos courtesy of
Emlyn John Davies.

Returning home, (M)E4 and (M)E5 were repeated using collected Lofoten particles as samples.
Lastly, the data retrieved from the lab measurements were analyzed. The resulting product of this
entire process, constituting our master thesis, is two papers, one abstract, one poster and, last but
not least, this report.
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Chapter 8

Paper I: Identification of Marine
Plastics using Hyperspectral Imaging
in Infrared Light

The following chapter contains the first paper which constitutes a significant part of the work. The
paper describes the method, acquired results, and the analysis of said results, using hyperspectral
imaging in infrared light to identify plastic. The paper contains all relevant methods and work
performed to achieve the results. In this regard, both papers combined replaces the standardized
Methods and Results usually found. It is also an independent deliverable, to be submitted to a
relevant scientific journal. Furthermore, the format of a scientific paper puts restraints on the
amount of included results and method. This chapter also contains additional results and work
relevant for the thesis. These are meant to leave the reader with a more in-depth understanding of
the process than from the paper alone. The latter describes work excluded due to it not yielding
promising results, but nonetheless being a prominent method.

8.1 Identification of Marine Plastics using Hyperspectral Imag-

ing in Infrared Light
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Identification of Marine Plastics using
Hyperspectral Imaging in Infrared Light

Andreas Ø. R. Stien (NTNU), Emilie M. H. Dahl (NTNU), Lise Lyngsnes Randeberg (NTNU),
Asgeir J. Sørensen (NTNU) and Emlyn John Davies (SINTEF)

Centre for Autonomous Marine Operations and Systems (AMOS), Department of Marine Technology,
Norwegian University of Science and Technology (NTNU) , NO-7491, Trondheim, Norway

Abstract—Plastic and subsequently microplastic pollution is currently present at the highest and lowest points on the planet. Proper
methods and technology for mapping and monitoring need to be addressed. This promptly calls for an in-situ detection method to be
developed. The research supporting this paper includes the investigation of underwater plastic identification using Near-Infrared
Hyperspectral imaging in the interval of 960-2400 nm. The studied samples vary from pristine samples to sorted recycled plastic, to
marine plastic particles collected from the sea in Northern Norway, outside Svolvær, Lofoten. The measurements are performed using
bare plastic, plastic in water and the untreated in situ samples. K-means clustering, and Spectral Angle Mapping (SAM) algorithms are
utilized for classification purposes. The results indicate the possibility of distinguishing plastic from biological matters. The research,
however, failed to correctly identify the type of plastic, due to contaminants on the particle surface. Still, the use of hyperspectral
imaging for underwater particle classification appears promising.

F

1 INTRODUCTION

TODAY the applications of plastics are many, making
the material popular worldwide. More than 380

million metric tons of plastic are produced yearly, and the
production is projected to nearly double within the next
10-15 years [1]. In the oceans, the critical outcomes of plastic
pollution have been eye-opening [2]. Today, a manifold
of initiatives and research within the field is introduced.
As plastic is non-degradable, and the debris currently
polluting the oceans need to be removed. This requires
methods for in-situ plastic mapping and monitoring for
efficiently targeting areas of interest.

Concerning plastic detection, several recent studies
have been carried out. These mainly concern sorting land-
based garbage and plastics. H. Kawazumi, A. Tsuchida,
T. Yoshida, and Y. Tsuchida [3], have successfully used
Raman spectroscopy to sort polystyrene, polypropylene and
acrylonitrile-butadiene-styrene copolymer from shredded
post-consumer plastics. Y. Zheng, J. Bai, J. Xu, X. Li, and
Y. Zhan [4], claim to have identified a test-set of unknown
plastic waste with an identification accuracy of 100%. The
latter study was performed using a near-infrared(NIR)
(1000–2500nm) hyperspectral imager, combining two-
dimensional object imaging with spectroscopy.

Furthermore, microplastics contamination from seawater
filtrates have been proven recognizable [5]. The mentioned
discovery is at the forefront of this area of research, taking
a step towards classifying sea influenced plastic. T. M.
Karlsson, H. Grahn, B. van Bavel, and P. Gelad [5], have
tested the hyperspectral method within three different
wavelength intervals, concluding with 1000-2500 nm as the
most applicable wavelength range for this purpose.

Most of the research completed within the field of plastic
identification is land-based, and likewise concerning the use
of a hyperspectral camera. It is not until recently that the

hyperspectral technology has been tested underwater. This
was done by the NTNU spin-off company Ecotone, which
is the first industrial mover in underwater-application,
separating living tissue in underwater seaweed [6].

In 2018, Ø. Ødegård, A. A. Mogstad, G. Johnsen, A.
J. Sørensen [7], studied and applied the underwater
hyperspectral imager (UHI) on the seabed at 61m. They
managed to retrieve spectral signatures from archaeological
artifacts and classify the material. Yet, hyperspectral
underwater plastic detection seems to remain uncovered.

The literature presented above provides valuable
knowledge, allowing this research to take an additional step.
This paper aims to combine the hyperspectral identification
of plastics with underwater testing. In order to classify
plastic, the experiments should be performed within the
frequency range proven fit (approximately 1000-2500 nm).
However, longer optical wavelengths are highly sensitive
for under water applications and are rapidly attenuated
by seawater. Hence, the procedure is challenging when
performed in-situ in the oceans [8].

The study’s laboratory setup and methodical approach
are as follows. As transmittance is measured, the set-up
includes two Hyspex halogen light sources within the
near-infrared range below the measured sample. The
hyperspectral camera is of type Hyspex SWIR 320-e [9]. The
measurements are performed with known plastic samples
in various sizes and various conditions - with and without
water in between the sample and the imager. Using k-means
and spectral angle mapper as classification methods, the
known plastic samples function as the ground-thruthed
dataset, and is correspondingly used to build the model. A
portion of the dataset contains measurements with water.
This subset constitutes the first test set. The second test set
applied includes unknown plastic contamination collected
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from seawater.

This paper is organized as follows. In Section 2,
the spectroscopy is presented. Section 3 explains the
hyperspectral imaging and its likely underwater challenges.
Materials and methods are elaborated in Section 4, while
the results are displayed in Section 5. Section 6 discusses
the results presented in the previous section along with
possible sources of error, before the conclusions in Section
7.

2 SPECTROSCOPY

A way to work with materials, identify them or learn
about their properties, is to study how light interacts
with them, one of these studies being spectroscopy. Light
absorption, reflection and transmittance from an object
can be measured over several wavelengths.. This leaves
a spectrum describing the receiving light, which again
gives rise to the spectral signature of the object measured.
Spectral signatures can be thought of as fingerprints. While
fingerprints are often used to identify people, spectral
signatures can be used to identify materials.

If the frequency (wavelength) of the incoming radiation is
resonant to the frequency of the molecule vibration level,
the molecules in the illuminated target will vibrate. In this
case, measurements of the resulting spectrum, provided by
the spectrometer, may reveal relevant molecular properties.

All types of plastics consist of organic bonds. The
vibrational frequencies of organic bonds correspond to
infrared wavelengths. Hence, infrared radiation may be a
necessity when identifying the characteristics of plastic on
a molecular level. Whenever a plastic molecule is exposed
to infrared radiation, the organic bonds will absorb the
radiation energy. This will, again, excite the molecules to
a higher vibrational energy state. The wavelength of the
absorbed radiation is thus directly associated with the
difference in energy between the present and the previous
vibrational energy state [10].

3 IMAGING

For the human eye to be able to perceive a color image, only
three wavelengths are needed, namely red, green and blue
(RGB). It therefore rarely makes sense to create multiple lay-
ers unless the goal is to capture information the eye cannot
see. This is where hyperspectral imaging enters the playing
field, which by definition has more than 100 layers and
can express each pixel as a spectrum. The following section
describes the imager, highly inspired by [9]’s website.

3.1 Hyperspectral Imaging
The most common way of using imaging spectroscopy
(hyperspectral imaging), is to measure the resulting spectra
from the spectrometer [11]. Hyperspectral imaging com-
bines digital imaging and spectroscopy, measuring hun-
dreds of continuous spectral bands for each pixel in a
digital image, allowing access to a spatial dimension. This
allows the hyperspectral imager to classify objects in the

scene based on their spectral properties. When an object
is exposed to infrared light, molecules may, as previously
explained, vibrate due to the absorption of the infrared
radiation. A hyperspectral imager will be able to register this
vibrational transition, making it possible for the detector to
recognize the specific substances of the material. Concerning
plastic, this translates into receiving information on plastic
material composition, based on the chemical bonds the
plastic type consists of.

3.2 Operating Principle
Moving across the scene of the image, the hyperspectral
imager is line-scanning the scene. The technique uses a
two-dimensional detector, perpendicular to the surface of
the measured target. This detector collects the spectrum of
a whole line in the image, in one single scan. By moving the
scan line with a push broom technique, one can map the
entire image by combining all sets of spectra, [12].

More detailed, as the camera moves across the image
scene, the light from the specific line passes through the
entrance and onto the focusing mirror, further focusing the
light towards the next mirror, as shown in Fig. 1. After
collimation, the different wavelengths are separated by a
transmission grating. From here, the light goes through
a lens, focusing it onto the detector array at the end
of the system. For every pixel interval along the line, a
corresponding spectrum is projected in the detector array. In
this way, the data retrieved from this array will, piece-wise,
contain two-dimensional hyperspectral images. Putting
these thin slit images together, a data cube is created,
adding a third dimension to the image. The final product
is then a three-dimensional hyperspectral image with one
spectral dimension and two spatial dimensions [12].

Fig. 1: Optics of a Hyperspectral Imager, inspired by [9]

3.3 Underwater Challenges
Light behaves differently in water than in air. The main
difference is that, in contrast to in the air, light in water is
attenuation to a much greater degree, [8]. Water absorbs
wavelengths covering a wide range of electromagnetic
radiation. As the H2O-molecule has a particularly small
moment of inertia on rotation, a rich vibrational-rotational
spectrum appears, sometimes containing millions of
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absorption lines. The water absorption spectrum is
therefore very complex. The water molecule may vibrate in
several ways, at several stages affected by the environment.
For the specific case of H2O, the absorption is at its lowest
when the light frequency spans the visual interval. Moving
beyond infrared light, the radiation is, at a larger degree,
absorbed. Nevertheless, an intensive NIR-source can leave
sufficient light if the distance between the light source,
object and imager is small enough. However, as the source
moves closer to the target, the spatial coverage, commonly
exploited using a hyperspectral imager, goes away.

Infrared light is more sensitive than visible light, leaving the
signal vulnerable to small variations, causing the intensity
to rapidly decrease. To mention a few; the scattering of light
can be dominant, leaving useful rays at wastage. Shadow
patterns underwater can also be an issue, as it contributes
to variations in the lighting, making the extracted image
less representative when describing the surroundings, [6].
Another important concern is the condition of the water.
The signal intensity can, for instance, be dependent on
temperature and salinity [13].

3.4 Data Analysis

3.4.1 K-means

The theory behind the k-means clustering is based on as-
signing each data point to a cluster. The number of clusters
is pre-specified and determines the number of randomly
placed centroids in the space. For each iteration the algo-
rithm runs, two operations are performed. First, all data
points are assigned to the closest centroid, grouping the
associated points into one class per centroid. Next, an
average of all samples per class provides a new position
for the center of the centroid. Once again, all points are
assigned to the closest centroid, and so on. Eventually, the
result of a new iteration involves an identical mapping as
for the previous run, and every sample is assigned the most
correspondingly accurate class [14].

3.4.2 Spectral Angle Mapper

Spectral Angle Mapper (SAM) maps the difference in angle
between an image spectra and a reference spectra. The
spectra are treated as vectors a n-dimensional space, where
n is the number of bands used each time. A small angle
between the two spectra will indicate a high similarity and
a large angle will indicate a low similarity. The angle is
calculated based on the inverse cosine of the sum of the
target pixel multiplied by the reference pixel over all bands
divided by the length of the target pixel and reference pixel
multiplied with each other [15],

α = cos−1

( ∑n
i=1 tiri√∑n

i=1 t
2
i ·
√∑n

i=1 r
2
i

)
(3.1)

where α is the angle, t is the target pixel, r is the reference
pixel, n the number of bands and i the given band. The
classification based on the angle is typically based on a given
limit value. If the angle does not fall below the value for any
spectrum, it is unclassified.

4 MATERIALS AND METHODS

For the research behind this paper, five types of plastic
have been studied. These are the most common types of
plastic, in large part covering the global plastic produc-
tion [16], namely Polyethylene (PE), polypropylene (PP),
polyethylene terephthalate (PET), polyvinyl chloride (PVC)
and polystyrene (PS). Within these five types, samples with
varying conditions have been used, as presented in Table
1. These samples are ordered from CARAT AS in Germany
[17], while the remaining samples are collected from the sea
outside Svolvær, Lofoten.

Condition Type

Post-Industrial Recyclate Pellets PE: LDPE/LLDPE
Post-Consumer Recyclate Regrind PE-HD
Environmental Pellets PE: LDPE/HDPE
Environmental Fragments (Regrind) PE-HD
Pristine Pellets PP-Homopolymer
Post Consumer Recyclate: Pellets PP Mixture
Pristine Pellets PS General purpose
Post Consumer Recyclate Regrind PS Mixture
Pristine Pellets PET Amorphous
Post Consumer Recyclate Regrind PET Amorphous
Pellets PVC Soft
Pellets PVC Hard

TABLE 1: Table of tested plastic types, including condition
and associated type

The ordered plastics are intended to serve as the foundation
of the model classifying unknown microplastics collected
from Lofoten.

4.1 Pulverizing Plastics
In order to pulverize the ordered plastic, the samples
were milled into microplastic using a tissuelyser, Retsch -
Mixer Mill MM 400. The apparatus consists of two steel
containers and one steel bullet per container. To avoid
samples adhering to the inside of the containers and the
ball, they are clad in teflon. The equipment shakes the
containers with a given sample, and their respective steel
bullet, at a predetermined frequency for a predetermined
amount of time. The result is that both bullet and sample
are being shaken, causing the bullet to break up the sample
in small particles of varying sizes.

The act of shaking the containers and the bullet, breaking
the sample, induces heat in the chambers. Working with
plastic, the heat will lead to the plastic softening or even
partly melting, leaving the particles flattened or melted.
At this stage, it is hard to crush the pieces, extracting the
desired particle sizes. In order to ensure the brittleness of
the plastic, liquid nitrogen was used. With a boiling point
of -196 degrees, the samples were chilled sufficiently.

Once the containers and samples were sufficiently cooled,
the samples were run in intervals ranging from 2 to 5
minutes before being re-chilled - see Table 2 for a detailed
procedure for each plastic type. Re-chilling occurs at every
dashed line in the table. Depending on the plasticity of
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the samples, the plastic was chilled more rapidly and
milled shorter in order to maintain the desired brittleness
caused by the low temperature. The samples were milled
and re-chilled until they visually appeared adequately
fine. Between the different samples, the containers and
bullet were thoroughly cleaned in order to minimize
contamination.

Type of plastic Frequency in Hz Minutes milled

PP pristine 30 0,5-0,5-2-2-3-5-5
HDPE 30 5-5-10
LDPE 30 5-10
PS pristine 30 5-5
PP recycled 30 5-5-5-5-5-5-5
PET flakes 30 5-5-5-5
PET pristine 30 5-5
PVC modified 30 5
PVC soft 30 2-5

TABLE 2: The milling process, described by the amount of minutes
the specific plastic type was milled, at what frequency

After being milled, the samples were sifted in order to
control what particle sizes were available. The particles
were run through two sieves, one with a grid of 630 microns
and the second of 200 microns. The remaining particles
at the bottom and at the second sieve were collected. The
procedure assured the finest samples being smaller than
200 microns, while the middle stage was in the interval of
630 microns down to 200 microns. The samples were sifted
for 30 minutes each, using a Retsh AS-200 basic - vibratory
sieve shaker. The samples were collected in glass vials
according to their size interval. The sieves were cleaned
using pressurized air in between samples.

Even though most materials are brittle at low temperatures,
the PE samples did not respond in a similar fashion. As a
consequence, the samples did not pulverize when milled.
Rather than fragment into fine particles, the plastic flattened
or shredded. This occurred for all PE samples, regardless of
density. In order to still acquire particles of PE, the samples
were frozen and run through a coffee grinder.

The plastic was placed in a petri dish and liquid nitrogen
was added. After the liquid nitrogen was next to fully
evaporated, the mixture was poured into the coffee grinder.
In an effort to maintain some of the cold temperatures,
some of the residue liquid nitrogen was also poured into the
grinder. To avoid having to thoroughly clean the collection
tray, it was clad in aluminum foil. The foil is also less
affected by static electricity. This makes it easier to retain
more of the sample when transferring it to a different
container. Between each different sample, the grinder was
thoroughly cleaned using water and pressurized air.

Even though the samples were to be measured in the
infrared and near-infrared spectrum, they were separated
by color, to test if the colorant has an effect, also outside the
visible spectrum.

4.2 Collecting Plastic in Lofoten
When collecting plastic from the sea outside Svolvær, Lo-
foten, a "manta sampler" was used, as shown in Fig. 2. The
manta ray consists of a head (3), a body (4) and a tail (5). The
head is an aluminum mouth serving as a collection frame
with an area of 60, 6 · 17, 6 cm, collecting water (1) from the
sea surface. To create desired buoyancy, foils (2) are attached
on each side of the head. The body, attached to the back of
the head, is a net – narrowing down to a diameter of 5 cm
towards the tail. The body can be seen as a trawl of masks
with a mesh size of 300 microns. At the end of the trawl, the
tail is attached. The tail is a bottle gathering the mass that
enters the trawl, like a cod end. The bottle partly consists of
a net with a similar mesh size as in the trawl. This way, the
bottle is not completely sealed but will allow excess water to
flow through without carrying the masses to be examined.

Fig. 2: Sketch of the Manta Sampler used to collect debris
from the sea. 1 is the incoming water. 2 is foils keeping the
sampler on the surface. 3 is the inlet at 17,6x60,6. 4 is the
net with a mask size of 300 microns. 5 is the end bottle,
collecting mass

The collection procedure was carried out as follows. The
manta was attached to a large crane fixed to the boat, MS
HASSE. The crane operator on board led the net down to
the sea surface so that the manta was placed in a position
leading the surface water through the net (1). Furthermore,
the skipper was asked to keep a constant speed of 3 knots.
The manta was kept in a stable position for a variety of
time, see Table 3.

After the given amount of time, the manta was lifted
back up, by the same crane, and led to the gunwale. Here,
a regular water hose was used to clean the net, so that all
mass attached to the side of the net, was flushed down into
the tail along with the water from the water hose. Finally,
the bottle (tail) was detached from the manta and carried to
the next station, addressing further filtration of the collected
mass.

The filtration process began with pouring the contents
of the bottle into a funnel. The bottom of the funnel was a
filter with a mesh size of 100 microns. In order to capture
the excess water, a glass bottle was placed below the filter.
To accelerate the filtration process, the funnel was attached
to a pump, creating a vacuum below the filter. The filter
and resulting unfiltered sea mass were placed in a glass
tube and frozen down in a freezer.

Both the collection process and the filtering process
were repeated for each sample. The location, length (in
time), and sample number of the takes are listed in Table 3.
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Location Length (minutes) Day Sample no.

68 19.864N 14 43.890E 30 1 1
68 18.677N 14 43.760E 5 1 2
68 17.030N 14 42.424E 5 1 3
68 15.391N 14 41.655E 1 1 4
68 14.484N 14 41.523E 1 1 5
68 13.134N 14 37.766E 1 1 6
68 11.520N 14 35.648E 1 1 7
68 13.439N 14 33.660E 1 1 8
68 13.785N 14 34.126E 1 1 9
68 14.054N 14 34.494E 1 1 10
68 14.173N 14 34.551E 1 1 11
68 11.493N 14 35.642E 1 2 12
68 07.343N 14 29.641E 2 2 13
68 04.102N 14 18.301E 3 2 14
68 04.388N 14 02.358E 3 2 15

TABLE 3: Manta sampler process specifications, including the day
of the trawling, the position of collection, the amount of minutes the
manta net was trawled for at this location.

4.3 The Laboratory Experiment

The execution of all the following experiments was carried
out in laboratory A073-326 at NTNU. A hyperspectral
camera was used to image the samples in transmission in
infrared light. The imager used was a SWIR-320m-e imaging
spectrometer from Norsk Elektro Optikk AS (Norway) [9],
operating in the spectral range from 960-2400 nm. In order
to adjust the camera to wanted working distance, a close-up
lens was inserted in the entrance aperture. The software
used was Hyspex version 3.5, a program designed to
operate and assist the imager.

Fig. 3 presents an illustration of the laboratory set-up.
First, the samples were placed in a fused silica petri dish
(2), custom made for this purpose – ordered from UQG
optics and modified at NTNU Glassblåserverksted. When
measuring in infrared, fused silica (quartz) is among the
few materials suitable. This is because quartz does not
absorb the wavelengths within the infrared range, such
as for instance glass would. Since the measurements are
based on transmittance, the light needs to penetrate the
sample. Using a petri dish of quarts will thereby leave the
rays from the light source undisturbed when penetrating
the dish. Furthermore, the petri dishes were placed in a
spoon-like holder (3), made of wood and custom made
for the dimensions of the petri dishes. The spoon is cut
from a wooden plate, using a laser cutter, Laser Solution
by Gravograph, at TrollLabs at NTNU. The light sources
(4) used are Hyspex halogen lamps, placed at each side
of the samples. The light sources were placed below the
sample, pointing upwards. The petri dishes were placed in
the spoons, which again were attached to an arm (5). The
arm was adjustable and rigidly attached to the operation
table using a powerful magnet. This way, the position of
the samples was fixed.

Fig. 3: Laboratory set-up. 1 is the Norsk Elektro Optikk
(NEO) SWIR-320m-e imaging spectrometer. 2 is the sample
(or the water) placed in the petri dish. 3 is the petri dish of
fused silica. 4 is the hyspex infrared halogen light source. 5
is the arm holding the petri dishes with samples and water

When the lab was set, the imaging process could begin.
First, a test scan was done, in order to make sure the
samples were in focus. The imager, using the push broom
technique, Section 3.2, Operating Principle, starting from one
side of the petri dish to the other, created an image of the
microplastic samples. The test scan outputted a preview of
the image, revealing any saturation due to reflection (as
the red spots in Fig. 4). In these cases, the integration time
was reduced step-wise until the test-scan no longer showed
areas of contained saturated pixels. The frame period of
the imager was adjusted according to the integration time.
When necessary adjustments were completed, the software
was set to record the image, storing the data in a folder on
the computer. The data stored was three files per taking,
one .hdr-file containing the associated settings, one .bmp-
file displaying quality control graphs, and one .hyspex-file
containing data for every pixel of the image.

Fig. 4: PS pristine, with (left) and without (right) saturation

For every sample, an additional recording was done in-
cluding water. 78, 5cm3 of Sterilized water was placed in
a petri dish inside the upper spoon, while the petri dish
containing the samples, remained in the lower spoon, both
illustrated in Fig. 3. This way the image was taken through
water, simulating an underwater scenario. This procedure
was repeated for every new plastic type measured.

4.3.1 Data Analysis
The data was analyzed using K-means clustering and Spec-
tral Angle Mapping (SAM) algorithms. These were mainly
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based on pre-existing software in the Sci-Kit learn and spec-
tral package, which is a machine learning package [18], and
a spectral processing package for Python. The algorithms
were run separately in order to achieve independent pre-
dictions but also combined. Independently, SAM was run
using both plastic, and plastic and water for endmember
signatures, and K-means clustering with means based on
several types of plastic. The K-means clustering was run
with eight clusters and ten iterations. The relative tolerance
to declare convergence was 1e−4. By combining the two
algorithms one could utilize strengths from both methods.
SAM was used to identify the means of a K-mean analysis,
and subsequently classifying the clustered data. The result
was turning the unsupervised method of K-means cluster-
ing into a supervised method. The signatures were extracted
by taking the average of all signatures in a 20X20 pixel frame
centered on the hyperspectral image.

5 RESULTS

This section consists of both qualitative and quantitative
analyses. The qualitative analysis includes a representa-
tive selection of spectral signatures from the microplastics
measured. The plots displaying the signatures has inten-
sity along y-axis and wavenumber along the x-axis. The
quantitative analysis covers a selection of images from
the supervised and unsupervised method, displaying type-
predictions. These have pixel number along both axes.

5.1 Signatures & Qualitative Analysis
The following section depicts the notable spectral signatures
captured from the plastic particles. The following signatures
illustrate signatures of different sizes, colors and conditions.
Also illustrated are the effect of water on the signatures
and the signatures from the marine plastic particles. The
signatures have been used in qualitative analysis and as
endmember signatures in SAM.

The following plots in Fig. 5 show the signatures of
same-sized HDPE particles, but with different color. The
particles are in the size range 200 to 630 micron. The
signatures show some minor differences. The apparent
differences are similar to those seen in other samples
different-sized, with more prominent features.

(a) Sample of yellow HDPE. (b) Sample of blue HDPE.

Fig. 5: Signatures of same-size HDPE with different color.

The signatures below are of blue HDPE particles in water
and coarser, larger than 630 micron, particles than in Fig.
5. One may observe that the coarser sample of blue HDPE
has a next to identical signature to that of fine yellow HDPE
in Fig. 5a. The signature with water depicts the expected

characteristics which correspond to the absorption spectra
of water.

(a) Sample of HDPE in water. (b) Sample of coarse HDPE.

Fig. 6: Signatures of HDPE with and without water.

Fig. 7 show the signature of different-sized PP pristine. The
fine particles are smaller than 200 microns, while the more
coarse samples are in the interval 200 to 630 micron. One
may see a rather significant difference between the two
samples. The exact reason is unknown but will be discussed
in the subsequent section.

(a) Sample of fine PP pristine. (b) Sample of coarse PP pristine.

Fig. 7: Signatures of different-size PP pristine, depicting
differences in spectra due to size.

The signatures of PET pristine and PET flakes, presented in
Fig. 8, show next to identical signatures. This is regardless
of the previous use of the PET flakes sample. The flakes
are post-consumer, and most likely used in bottles. This
differs from other samples, which depicted large differences
between plastic types with different additives than the pris-
tine.

(a) Sample of fine PET pristine. (b) Sample of PET flakes.

Fig. 8: Signatures of plastic in different conditions.

The signatures below are of the particles collected in
Lofoten, Norway. These depict an effect from the water
present, this can be seen in the significant dip at 1450 nm.
The signatures are still significantly different from that of
organic matter.
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(a) Particle 2. (b) Particle 10.

Fig. 9: Signatures of particles from Lofoten.

5.2 Spectral Angle Mapper (SAM)

The following section presents the result from the
classification of dry samples using Spectral Angle Mapper
(SAM). The endmember signatures for the model are of dry
plastic.

The illustrations show the resulting classification from
the SAM algorithm. It is apparent that the algorithm
largely classifies the plastic types correctly. This illustrates
the possible effectiveness of the algorithm. The tested
samples are PVC soft of size 200 to 630 microns and PET
flakes smaller than 200 microns. The latter depicts the
aforementioned similarity in signatures, as the particles are
classified as PET pristine.

(a) Sample of PVC soft. (b) Sample of PET flakes.

Fig. 10: Results of SAM analysis with dry plastic for the
endmember signatures.

5.3 SAM with Water

Here, the results from samples in water with a SAM
algorithm based endmember signatures from plastic in
water. Running a regular SAM algorithm did not manage
to classify anything due to the large influence of the water.

Fig. 11 shows tests using the same plastic types as
dry SAM. The difference is the presence of water and
the particle size of the PVC soft, which is less than 200
micron. One may observe that the algorithm is unsuccessful
in classifying the plastic. There is no clear edge on the
identified plastics and it appears to be dependent on the
thickness of the plastic or water layer.

(a) Sample of PVC soft in water. (b) Sample of PET flakes in water.

Fig. 11: Results of SAM analysis with plastic in water for the
endmember signatures.

5.4 K-means Clustering
The following results are from the use of K-means
clustering. The models are either trained and run by
themselves or a similar type and subsequently run. The
algorithm classifies based on similarity, without an initial
definition. Thus, none of the colors are classified. The
corresponding classes are merged, resulting in a more
intuitive illustration.

The presented results are of a model trained on a PET
pristine sample with particles smaller than 200 microns.
Fig. 12b shows the results of the model run by itself and
thus illustrating the training of the model. Fig. 12a show
the model, but with PET flakes particles smaller than 200
microns in water. The results appears promising with
respect to classifying the plastic.

(a) Model based on PET Pristine
sample.

(b) PET flakes in water vs. PET pris-
tine model.

Fig. 12: Results of K-means clustering with a model based
on a PET Pristine sample, and the prediction for PET flakes
in water based on said model.

5.5 K-means - Concatenated Photos
As previously mentioned, K-means clustering does not
classify the samples involved. Thus, including a known
truth in the sample will yield a form of classification. The
following result has trained and run K-means clustering on
a concatenated image of two PP types of size 200 to 630
micron and an unknown sample from Lofoten.

Additional results from K-means clustering on concatenated
photos were left out to reduce space. However, the results
from the tenth sample showed a clear indication of LDPE
or HDPE.

Fig. 13 shows the principle of ground-truthing and
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possible classification of one of the Lofoten samples. The
similar clusters are merged in order to picture the reality
of the clusters. One can observe the same clusters of the
known plastic and the unknown sample from Lofoten. The
result leaves an indication of the identity of the unknown
sample.

(a) PP pristine (b) PP recycled

Fig. 13: Concatenated photo of second sample from Lofoten
and PP and K-means clustering.

5.6 SAM Combined with K-means

In order to identify the clusters formed, SAM was applied
to the means of each cluster. Each cluster was subsequently
changed to the respective classified type, eliminating the
need to merge clusters. The result is an algorithm that
classifies the plastic based on clusters. The following
algorithm had endmember signatures based on solely
plastic samples.

The depicted result is of PVC soft between 200 and
630 microns. The result shows high accuracy, which is to be
expected based on the previous results.

Fig. 14: K-means clustering of PVC soft, where the means
of the clusters are classified using SAM based on dry end-
member signatures

5.7 SAM with Water Combined with K-means

The previous method was combined with endmember
signatures based on samples influenced by water based on
previously improved results. The following results depict
the highly improved result of the change.

The depicted result is of PVC soft smaller than 200
microns classified using SAM based on samples with water
and K-means clustering. The results were more successful,
with a higher degree of correct identification.

Fig. 15: K-means clustering of PVC soft, where the means of
the clusters are classified using SAM based on endmember
signatures in water

5.8 Identifying Samples from Lofoten

The following results illustrate the efforts made to identify
the samples collected in Lofoten. The algorithm only
yielded noteworthy results for the depicted samples, due to
size. The included results illustrates the indications attained
to identify the samples.

Sample 2, see table 3, did not respond to the aforementioned
techniques. As pictured in Fig. 16a, certain areas of the
samples are clearly non-organic matter. The organic matter
dominating in other methods, Fig. 16b, illustrates this point.
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(a) Kmeans Clustering (b) SAM

Fig. 16: Results of classification of the second sample from
Lofoten.

Sample 2, table 3, responded better. However, as is shown in
Fig. 17a, the sample responded similarly to sample 10 with
respect to being classified as organic matter. The combined
algorithm of SAM and K-means yielded some indication of
the identity of the sample, as may be seen in Fig. 17b. The
result indicates LDPE as for both particles depicted in the
image.

(a) SAM (b) SAM - K-means Clustering

Fig. 17: Results of classification of the tenth sample from
Lofoten.

Furthermore, sample 11 and sample 14 were also believed
to be PP by the use of ground-truthing and concatenated
images. The total indicated plastic types are summarized in
the table below.

Location Assumed Plastic Type Day Sample no.

68 18.677N 14 43.760E PP 1 2
68 14.054N 14 34.494E PE 1 10
68 14.173N 14 34.551E PP 1 11
68 04.102N 14 18.301E PP 2 14

TABLE 4: Results from the identification of the samples collected in
Lofoten.

6 DISCUSSION

From the results, there are particularly a few attributes
that need to be looked into. First, as plastic is known to
come in a variety of sizes and colors, measurements of the
specific types at different sizes and colors, are completed.
Of these results, one can discuss whether these properties
affect the resulting common signature for the associated
type. Furthermore, the samples studied are of different
conditions. The discussion should include whether a general

type-signature can endure such environmental or industrial
impact, altering the condition of the particle. Moreover,
in-situ characteristics are applied at best efforts. As the
samples are tested in and out of water, the contributing
differences should be elaborated, as well as the comparison
of sea-influenced plastic debris versus pure microplastics.

From the plots presented in the qualitative analysis,
one can observe how significant peaks in the spectral
signatures seem relatively independent of sample size.
However, a common trend is that the characteristics appear
more prominent in coarser samples. Peaks were sharper
and the valleys deeper, as shown in Fig. 5b and Fig.6b. This
is assumed to be an effect of the difference in light being let
through. Coarser samples will have larger space between
grains and larger surfaces. The assumption is that this
results in higher reflectance internally among the particles
and thereby more prominent characteristics in the resulting
spectra - not to be mistaken with a higher transmittance,
which the intensities illustrate.

Related differences can be found when comparing the
two spectra of PP pristine samples of different sizes, i.e.
Fig. 7. Considering that both samples are milled and hence
have received much of the same stress, but with different
duration, the reason behind the differences can be assumed
equal to what is described above. However, due to different
material properties of this specific type, the differences are
more prominent than registered within the other samples.

Moving towards even smaller sample pieces, less than
200 microns, none of the algorithms managed to distinguish
the plastic particles. The size of the pixels might be the
reason why. A possible solution to this could be anomaly
detection, identifying the outliers.

With respect to the question on whether sample color
impacts the signature, the HDPE signature, representative
for all samples with distinctive color measurements, show
small differences between samples of different colors as
can be seen in Fig. 5. The same trend was apparent in the
LDPE samples. Even though the HDPE plots reveal some
differences due to color, it does not persist in the different-
sized samples, illustrated in Fig. 5a and Fig. 6b. The notion
of there being minimal difference in the NIR spectra due
to color and the subsequent additives is underlined by the
SAM model recognizing the same different colored samples.

Concerning the impact of the condition of the plastic,
the results were inconsistent. PET flakes and PET pristine
classified as PET, while the remaining same-type samples
did not classify according to their base type. Their
signatures did not resemble each other, and the models
classified the types individually based on condition. As a
result, there is reason to expect the additives to alter the
signatures. Furthermore, the change in the signature will
require more advanced models to identify the individual
types.

Looking at the results from samples containing water,
these can be compared to the signature from identical
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samples without water. Of the signature plots, Fig. 6, the
distinction in the peaks comparing a) and b), are clear.
However, the model manages to classify the water-included
samples correctly. All samples containing water display
the same properties. There is a prominent valley around
1400-1450 nm, and next to nothing after 1850-1900 nm.
These features are coherent with the absorption spectrum of
water and are not surprising. The same feature is displayed
in the organic samples. These were frozen instantly after
collection. Hence, large amounts of water were retained,
which explains the similar characteristics.

The sea-influenced samples proved difficult to identify
at this stage. In Fig. 13 and Fig. 16a the same areas are
identified by the models. The result was consistent across
models indicating an ability to classify the area as plastic
despite what is seen in the SAM analysis. The same trend
was apparent in particles no. 10. The area identified as
LDPE in Fig. 17b was consistently identified as different
from organic matter.

Based on the results of the testing it is hard to determine the
exact type of plastic in sample 10. However, the results show
a consistent separation between areas in the sample seen in
Fig. 17b. Based on the consistent separation, results seen in
the concatenated photo of sample 10 and LDPE/HDPE and
the indication given in Fig. 17b, the particles in Fig. 17 are
believed to be LDPE or HDPE.

The dark blue area is generally classified as different
plastic types in Fig. 16. The consistent separation indicates
the possibility of discriminating plastic from organic matter.
Furthermore, the consistency in the concatenated photos in
13 indicates that the second sample from Lofoten may be PP.

Do note the size limitation. The lack of a quantitative
measure of similarity in the clusters makes it difficult to
assess the identity of the smaller particles. There might
be variation that clusters the particles differently than the
organic matter. However, this might also occur for other
variations. Hence, it is difficult to assess the identification
of smaller particles compared to natural variations as there
is no consistent area of clustering. If one observes the
signatures of the samples in figure7, one may observe a
quite drastic difference from the plastic signatures presented
in figure 9. These are still classified as plastic. Nonetheless,
one could argue for the use of manual and qualitative
identification each time this occurs. However, the scope of
the project is to assess the possibility of an autonomous
classification, which this is not. Also, it could be argued
that the the smaller clustering on what was believed to be
plastic particles was only investigated due to the a priori
notion of it being plastic.

6.1 Sources of error

6.1.1 General
By pre-processing the data, one might expect there to
be more clear results. The authors intended to keep the
intensity of the samples and limit added noise by not
pre-processing the data. The decision does result in noise

not being excluded from the data. Also, the intensities are
absolute, rather than relative to a standard.

Based on the aforementioned results and discussion, it
might prove difficult to classify the exact type of plastic.
However, using an approach based on K-means clustering
and concatenated images, one could expect promising
results. Also, it might have been wise to pre-process
the images to have fewer clusters based on rather small
differences, yet retain differences in intensities.

6.1.2 Spectral Angle Mapper
The SAM models, built with dry plastic, managed to
correctly to identify the type of plastic regardless of color
or size. However, the SAM algorithm does not have a
Not Applicable (NA) class, which may result in overly
optimistic results. Without an unclassified-class, every
sample is forcefully classified. As a result, the samples are
being classified to the class they are the closest to, regardless
of them being far away from the specific class. This is a
result of the untested robustness of the model.

Also, in situ measurements will involve an uncontrolled
environment. One may therefore expect there to be
unknown, or unmapped samples being measured. This
may result in false positives if there are materials that are the
most similar to plastic. Due to the controlled environment in
which the tests were conducted, this was not of particular
concern. It should, however, be taken into account before
tesning in situ.

The endmember signatures in the SAM-water model
were not collected with the mindset of them becoming
endmembers. As a result, one would naturally expect a
potential for improvement by collecting the signatures
for this purpose. The measurements were made for the
purpose of testing the original model. The need to build
a SAM model based on samples with water occurred at a
later stage. Hence, the model was built with the existing
measurements as base. Clearer signatures and possibly
different focus are, hence, believed to improve the results
achieved in this paper.

6.1.3 K-means Clustering
The K-means models based on dry plastic managed to
correctly identify the type of plastic regardless of color or
size. Not surprisingly, combining it with SAM also yielded
favorable results. It is important to notice that these results
are based on dry plastic.

However, K-means models yield false positives when
they are trained on one plastic type and applied to another.
One may encounter false positives as the algorithm will
classify samples according to their means. Naturally, the
plastic will have more similar means than the empty petri
dish. Resulting in overly positive results.

In order to prevent the false positives due to training
on other models, the approach concatenating the images
with a sufficiently high number of means is preferred. The
approach will leave room for differences while containing a
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ground truth. However, it requires more computing time as
there will either have to be all plastic types in one photo or
several photos with different plastic types.

K-means chooses its locations for the clusters randomly,
with a minimum distance. The resulting clusters are
hence non-consistent. The exact definition of the clusters
is assumed to be somewhat the same, but not entirely
identical. This reduces the robustness of the model.

The number of clusters was chosen based on visual
improvement. This could have been done in a more
scientific and accurate manner. An approach was tried
with the use of SAM to classify the clusters. However, an
improved and more accurate method is called for.

Also, the data was neither scaled nor centered. This
resulted in clusters (meant to be one cluster), being
separated due to differences in intensity, rather than
features. By pre-processing the data, it might have been
avoided. More relative data makes it easier to compare and
hence cluster. Pre-processing would also have made the
k-means method more effective, as it would have made the
differences relative.

7 CONCLUSIONS

The hyperspectral imager method appeared to classify mi-
croplastics using infrared radiation. The work involved
same-type plastic at various sizes or samples in different
colors. Despite promising results for particles sized more
than 200 microns, the method did not respond well to plastic
particles in the range below 200 microns. Moreover, the
model seemed to map correctly even when the infrared rays
had to penetrate water. Variations in condition appeared
to influence the spectral signature of the associated plastic
type, altering the general type-signature. Concerning sea-
plastics, the method appeared to function. However, the
results cannot be validated as the nature of the samples are
unknown. In order to verify the method as a working in-
situ approach, additional research is needed. This reseach
should covering experimental an set-up one step closer
to the underwater scenery. Nevertheless, this investigation
has furnished promising results. Consequently, the authors
sincerely recommend an extensive commitment to further
research within this field. The focus of the next steps should
be experiments with larger amounts of water (preferably sea
water) and a lower sample concentration - slowly moving
towards in situ.
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8.2 Complementary Results

In order to assess the identity of the samples from Lofoten, the results from testing the particles
collected from the sea outside Lofoten, are presented.

8.2.1 Signatures

The following are the signatures captured from the samples in Lofoten. The signatures were
retrieved by taking the average signature of areas of the particles believed to be plastic. The
results show the effect the organic material has on the plastic. The center dip is likely due to the
water on the sample. The samples were instantly put in the freezer after they were collected, and
subsequently, when the particles were isolated, they were still covered in seawater or matter with
high water content.

(a) Sample 2 (b) Sample 10

(c) Sample 11 (d) Sample 14

Figure 8.2.1: Signatures from Lofoten samples

8.2.2 Spectral Angle Mapper

The Spectral Angle Mapper (SAM) endmember signatures were based on dry plastic samples with
the most consistent layer thickness. The signatures were acquired taking the average signature
of all pixels at the center ten by ten pixels. The organic signature was attained using the image
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containing the most organic matter and averaging this area, making sure there was no plastic
contained in the matter. Figure 8.2.2 shows the results of running the algorithm on two of the
collected samples. Based on the images, one may observe that the algorithm has troubles identifying
the sea-influenced samples. This is likely due to the effect the water and organic matter has on the
plastic.

(a) Sample 2 (b) Sample 10

Figure 8.2.2: Results from the SAM Analysis

8.2.3 Spectral Angle Mapper - Endmember Signatures Including Water

The images below show the results from running an equivalent SAM analysis on two of the samples
from Lofoten, only that the endmember signatures are based on samples including water. From
the lack of improvement in results, by adding the water-based endmembers, SAM alone is assumed
to be not particularly efficient. Note that the light blue 9 represents organic matter from Sample
9.

(a) Sample 2 (b) Sample 10

Figure 8.2.3: Results from the SAM analysis using samples with water for the endmember signa-
tures
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8.2.4 K-means

The following images portray the results from the K-means clustering algorithm on the samples
from Lofoten believed to be identified. The results clearly display areas on the plastic that are
locally different. Even though the cluster signatures were not combined at this point, the pattern
persisted. Note that the colors of the clusters do not have meaning between the images, only
locally.

(a) Sample 2 (b) Sample 10

(c) Sample 11 (d) Sample 14

Figure 8.2.4: Results from K-means clustering on the Lofoten samples

8.2.5 K-means Concatenated Images

Below are the results from concatenating the sample image with a number of plastic types, and sub-
sequently running the K-means clustering algorithm. As variation in intensity results in individual
clusters, the clusters containing similar spectral signatures have been merged. The featured images
are those showing the most promising results. These were Sample 2 and PP pristine, Sample 10
and LDPE, Sample 11 and PP pristine, and Sample 14 and PP pristine. The fact that these were
identified aligns with the fact that PP and PE are the most abundant particles in the sea, Lenz
et al. (2015).
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(a) Sample 2 concatenated with PP
pristine

(b) Sample 10 concatenated with
LDPE

(c) Sample 11 concatenated with
PP pristine

(d) Sample 14 concatenated with
PP pristine

Figure 8.2.5: Results from the K-means clustering on the Lofoten samples concatenated with plastic
types
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The results from Paper 2 indicate sample 10 to be PP rather than LDPE. Following the contra-
dicting results, both were revised. Below is the result of testing sample 10 against PP pristine and
PP recycled. The results show the clear indication that the sample might be PP rather than PE
as previously indicated.

(a) Sample 10 concatenated with
PP pristine

(b) Sample 10 concatenated with
PP recycled

Figure 8.2.6: Revised results from the K-means clustering on the Lofoten samples concatenated
with plastic types after reviewing the results from Raman spectroscopy

8.2.6 Combined SAM and K-means

Rather than manually combining clusters, they were also identified using SAM and then merged
based on the classification. Below are the results of the stated method. Namely, Sample 2 and
Sample 10 from Lofoten is presented. The exact reason why the background was identified as PP
pristine is unknown.
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(a) Sample 2 (b) Sample 10

Figure 8.2.7: Results from the SAM combined with K-means clustering on the Lofoten samples

8.3 Additional Work and Expanding Description

Due to the format of scientific papers, certain parts of the work performed was not included.
However, the scope and format of an article and a master’s thesis, are different. Hence, description
and work not included in Paper I is included below with more in-depth explanations.

8.3.1 PCA and PLS-DA

Additional work performed in processing and analyzing the data were PCA and PLS-DA. The
data was processed using software designed for hyperspectral data, developed by Prediktera, called
Evince. Unfortunately, the method did not yield favorable results and was consequently emitted
from the article. The PLS-DA model failed to recognize the samples in water and any of the
particles from Lofoten. However, to support the methods chosen in the paper, the technique used
is included below.

8.3.2 Preprocessing

In order to make the spectra comparable, a baseline is needed. This is achieved by dividing all the
signals on the reference. The reference was chosen to be a measurement of "nothing". All signals
were divided on the reference ensuring the possibility of directly comparing spectra.

The ROI is of such a small magnitude that is assumed to be uniformly illuminated, hence it
was not necessary with a correction of uneven light distribution.

Due to the fact that when multiple spectra interact, the result is a convolution of them, one
had to remove the spectra of the water when working with samples containing water. The water
will largely dominate the spectra, making it difficult to predict samples as the water spectrum will
result in a prediction of water. Similarly, the organic matter had large portions of water, making
the water spectrum dominate the prediction. Thus, the effect had to be removed. The closest thing
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to removing the spectrum from the final spectra was to divide them by the water spectrum due to
the nature of spectra interacting. Unfortunately, this also introduces additional noise to the data.

8.3.3 Building the PCA model

The samples chosen to form the model were identified as the hyperspectral images with the most
consistent layers of plastic. This was to avoid background being identified as plastic samples, re-
sulting in a faulty model. An even layer makes it easier to remove the background from the image.

The identified samples are then regarded as the “virgin” samples. These are merged into a single
hyperspectral image along with two images of the references, with and without water. Also, a
sample from Lofoten, containing large portions of the organic matter clearly distinguishable from
plastic, was included. The latter was to have a class for the organic matter.

Once the merged file containing all the virgin files and the reference was imported into Evince,
a PCA is formed, based on the aforementioned image. The resulting scatter diagram depicted a
clear cluster representing the background which was marked and excluded from the model, and
the PCA updated. Similarly, to limit the effects of irregular measurements on the model, far off
measurements on the scatter diagram were also excluded. Illustrations depicting the process may
be found in Appendix B.

After the most prominent background measurements were excluded, less prominent background
measurements and weaker plastic measurements were also excluded. Due to the large amounts of
data and the resulting redundancy, measurements close to the background were also excluded. This
was to avoid background wrongly classified as plastic, affecting the predictive ability. Tn order to
solely retain the organic matter as a virgin sample, the hyperspectral image containing the organic
matter excluded all measurements from the edges. The plastic particles contained in the sample
were known to be along the edges, and thus easily excluded.

Following the exclusion of the background, a Standard Normal Variation transform was run on
the remaining data. The transform would leave clear clusters in the following scatter diagram.
Each cluster was marked and classified with their respective type — the type of plastic or organic
matter. However, due to overlap in the scatter diagram, plastic types were present in other clusters
than their respective clusters. To avoid misclassification, samples present in other clusters were
unmarked based on the contour diagram. The procedure was repeated until every plastic type was
classified. To avoid misclassification, the plastic was classified based on the clusters instead of the
contour diagram, taking advantage of the large amount of data and redundancy.

The classification based on the scatter diagram results in a relatively large amount of data be-
ing unclassified. Nevertheless, the misclassification is reduced because of it. With every plastic
type and organic matter labeled, a PLS-DA was made based on the classification.
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8.3.4 Testing and PLS-DA

Consequently, samples were classified using the PLS-DA model and qualitative analysis. Even
though "another type" had the highest classification percentage, one could clearly see from the
contour plot that a large amount of background and non-relevant areas were predicted to be an-
other type, and largely mixed with other classified types. The correctly identified types were in
large parts identified in the correct areas and were consistently predicted over the same area.

Tested samples were chosen based on samples not included in the creation of the model. Also,
samples containing water were tested. Due to the presence of water, the samples were adjusted
using a petri dish containing water as the reference, rather than the empty petri dish. Sadly, the
model did not manage to classify the samples containing water and was severely affected by noise.

8.3.5 Conclusion

Due to the misclassification of water as organic matter and subsequently categorizing the pieces as
solely organic matter, the PCA and PLS-DA was proved unsuccessful in identifying the samples
from Lofoten .
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Chapter 9

Paper II: Identification of Marine
Plastics using Raman Spectroscopy

The following chapter contains the second paper which constitutes a significant part of the work.
The paper describes the method, acquired results, and the analysis of said results, using Raman
spectroscopy to identify plastic. The paper contains all relevant methods and work performed to
achieve the results. In this regard, both papers combined replaces the standardized Methods and
Results usually found. It is also an independent deliverable, submitted to Oceans 2019 in Seattle –
Ocean Conference and Exposition. Furthermore, the format of a scientific paper puts restraints on
the amount of included results and method. This chapter also contains additional results and work
relevant for the thesis. These are meant to leave the reader with a more in-depth understanding
of the process than from the paper alone.

9.1 Identification of Marine Plastics using Raman Spectroscopy
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Emilie M. H. Dahl (NTNU), Andreas Ø. R. Stien (NTNU), Asgeir J. Sørensen (NTNU) and
Emlyn John Davies (SINTEF)
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Norwegian University of Science and Technology (NTNU) , NO-7491, Trondheim, Norway

Abstract—Plastics have permeated almost every aspect of modern day life with its wide applicability. The tragic consequence is
millions of pieces of plastic polluting and eradicating sea life every day. The road towards a clean sea contains several legs and does at
the very least require a mapping of the ocean columns, determining critical areas. Determining technologies and methods for the
detection of microplastics underwater are hence a necessity. Raman spectroscopy is such a technology, in principle able to extract the
chemical structure of the object to be viewed by collecting spectral signatures at the point illuminated. This creates the foundation for
the research done in this paper, covering whether it is possible to classify specific types of microplastics underwater by identifying their
respective spectral signatures. Raman spectroscopy has been carried out on three different cases of samples. The first case involves
known plastic, ordered from CARAT AS, meant to create the foundation of a partial least squares discriminant analysis (PLS-DA)
model. The second case holds the same base but includes drops of water on top of the original sample. This case is meant to provide
data testing the prediction of the PLS-DA model. The third case includes raw plastic pieces, collected from the sea outside Svolvær,
Lofoten. The measurements of these samples create the grounds for the last test-set. The results suggest that the method indeed can
classify microplastic correctly, both in water and sea-influenced pieces. However, the specific spectra cannot vary too much in terms of
industrial and environmental changes, altering the condition and leaving the mapping and classification method only functional, and
thereby suitable, for plastics that recently entered the ocean.

F

1 INTRODUCTION

TODAY the applications of plastics are many, making the
material popular worldwide. 381 million metric tons of

plastic are produced yearly, and the production is projected
to nearly double within the next 10-15 years [1]. Over
time, sun rays, wind and currents tear apart large pieces of
floating plastic. The result is often tiny pieces at no more
than a few millimeters a piece, defined as microplastic.
In 2014, 15 to 51 trillion particles of microplastic were
estimated to hover the sea [2].

If not for the toxic additives added to the plastics, the
presence of these pieces would not be as damaging.
However, additives are commonly added to plastics,
designing the material for a specific application. As
the plastic material is non-degradable, the result is a
toxic-carrying vector, doing damage over and over [3].
Unfortunately, a vast number of sea animals are known
to confuse microplastics with food [4]. As the additives
accumulate up the food chain, the concentration of toxins
increases - often carrying fatal consequences for sea life [5].
As plastic is non-degradable, the debris currently polluting
the oceans need to be removed. This requires methods for
in-situ plastic mapping and monitoring.

A way to work with materials, identify them, or learn
about their properties, is to study how light interacts
with them - spectroscopy. Light absorption, reflection,
and transmittance can be measured, leaving the spectral
signature of the object measured. Spectral signatures can
be thought of as fingerprints. While fingerprints are often
used to identify people, spectral signatures can be used to
identify materials.

Besides containing Carbon-Hydrogen bindings, the
different types of plastics are all structurally different

[6]. Because of this, every type is classified according
to its chemical structure, meaning that they all contain
unique spectral fingerprints relative to each other. This
creates the foundation for the research done in this paper,
covering whether it is possible to classify specific types of
microplastics underwater by identifying their associated
spectral signatures. The research, therefore, requires an
instrument able to isolate and withdraw this type of
information. This is where the field of spectroscopy enters
the court.

Raman spectroscopy is the method used in this paper.
Similar to regular spectroscopy, Raman spectroscopy is
based on different levels of intensity at different optical
wavelengths. However, whereas regular spectroscopy is
based on the intensity relative to a defined standard,
Raman spectroscopy is based on the change in intensity
from the incident light. The reason for this intensity change
is a type of scattering, the Raman scattering, holding an
abnormal frequency distinguishable to the detector in the
spectrometer [7].

Previously, there have been studies to assess the possibility
of using Raman spectroscopy to identify plastic and other
polymers. Twenty years ago a study managed to identify
post-consumer plastic using Raman spectroscopy and data
processing closely related to those in this study [8]. Also,
studies have concluded on the possible use in automatic
plastic detection as opposed to manual detection using
microscopy [9]. Similar, more recent, articles have come to
the same conclusion [10].

The main scientific contribution of the research in this
paper, answers the previously asked question as follows. It
is indeed possible to classify specific types of microplastics
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underwater by identifying their respective spectral
signatures using Raman spectroscopy. However, the piece
corresponding with the specific spectra, must not have
undergone too much variation as a result of changes
in condition, such as post-industrial, post-consumer or
recycled.

The paper is organized as follows, the Raman scattering,
properties and spectroscopy are presented more thoroughly
in Section 2, communicating how spectral signatures were
retrieved using a laser to initiate changes in the molecules,
recognizable to the spectrometer. Furthermore, materials
and methods describe the preparations and execution of the
main experiment. This includes how the data was collected,
both modification of known plastics from CARAT AS as
well as the collection of raw plastics from the sea outside of
Lofoten. The execution of the experiment is then presented
in Section 3, explicating the set-up and procedure at the
laboratory, measuring the plastics with and without water.
Next, results are presented in Section 4, largely through
plots. Finally, the results are discussed, compared and
validated in Section 5.

Fig. 1. Photos from collecting Plastic Samples outside Lofoten, Norway.
Photos courtesy of Emlyn John Davies.

2 THEORY

This section will explain details of Raman spectroscopy, as
well as properties of plastics relevant to the spectroscopy
itself. Taking the whole sensor below the surface, can require
addition consideration, also illuminated here.

2.1 Fundamentals of Raman Spectroscopy
Whenever a sample is exposed to monochromatic light in
the visible region, photons are either scattered or absorbed
by the sample. A small component of the scattered light,
known as Raman scattering, involves an energy shift in
the photos due to molecular vibrations instigated from the
incident light, [7]. In order to characterize the scattering light
beam, the properties of emitting photons are compared to
incident photons. As illustrated in Fig. 2, the incident light
beam has a frequency of fi, while the scattering beams have
a frequency, fs.

Fig. 2. Scattering with incident photon frequency, fi and emitted photon
frequency fs. When fs 6= fi, the scattering is called Raman scattering
[7]

Inside the molecules of the sample, electrons have different
vibrational levels, based on energy differences. Whenever
a photon from a monochromatic light interacts with an
electron in the sample, the electron absorbs energy from the
incident photon. This energy, transferred from the incident
photon to the electron, can be expressed by Planck’s
constant, h times the frequency of the incident light, fi,
E = h · fi. The result in the electron being pushed to a
higher vibrational level. The electron will, in turn, fall back
in position as it loses the energy. If the energy lost is equal to
the energy of the incident photon, the electron will settle at
its initial level, and emerge another photon - with the same
frequency as the incident photon: Ei = Es → fi = fs. This
is called Rayleigh scattering and is the most common type
of scattering [11]. However, when losing energy from the
virtual energy state, the electrons can sometimes respond
differently, emitting photons with a different frequency
than the frequency of the incident photon, fs 6= fi. This
scattering is approximately 10−5% of the total scattered
light and is, as mentioned, called the Raman scattering [7].
When an electron looses energy, defined within the Raman
scattering, it can either return to a higher energy state or
a lower energy state than the initial state of the electron.
The nature of these states can be observed in the Raman
spectrum. When electrons absorb energy, fs is less than
fi, and Stokes lines appear in the spectrum. Similar when
fs > fi, the electron emits energy, and anti-stokes lines can
be observed. The excited light is diffracted with a regular
spectroscope, resulting in a spectrum of Stokes lines. This
way, by studying the resulting spectral peaks, one can
identify molecules within the sample. The intensity of the
spectral lines determines the concentration of a molecule in
a sample.

In order to detect the Raman shift, monochromatic
light is common as it recognizes the Raman scattering as
all scattering detected, apart from photons holding the
incident frequency. This, combined with the fact that the
Raman scattering occurs in such a low percentage of the
total scattering, implies the need for strong incident light.
The common result is the use of lasers.

2.2 Plastics
Polyethylene (PE), polypropylene (PP), polyethylene
terephthalate (PET), polyvinyl chloride (PVC) and
polystyrene (PS), are the five most common types of
plastics, in large part covering the global plastic production,
[6]. These types are categorized by their respective
chemical composition, which gives rise to individual
optical fingerprints. Some bonds creating specific molecules
leave spectral lines at correlated wavelengths, provided
in the same fashion as described above, Section 2.1. [8]
holds a map of chemical bonds and corresponding peaks,
frequently used when evaluating the resulting signatures in
this paper.

2.3 Light (Laser) in Water
In order to use the sensor under water, the effects of water,
inherent optical properties, need to be considered. In water,
the light intensity decreases with the distance to the object.
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This is due to light attenuation present in water, which again
depends on the wavelength of the light. A. Yamashita, M.
Fujii, and T. Kaneko [12], describes the variation of light
intensity within the visible light spectrum, which includes
the Raman laser, operating at a wavelength of 532 nm. A
rough estimate of the remaining intensity of light at a 532
nm wavelength, shows that the intensity is more or less
intact with approx. 90% intensity at a meters distance and
attenuation length is 8.6 metres [13]. This is merely an es-
timate, as light attenuation varies with depth, temperature,
and salinity. Nevertheless, the estimate implies that the light
intensity of the laser is sufficient when viewing an object
in the near distance. However, as the laser is focusing on
a small area, the laser is highly sensitive to disturbances
or uncertainties. The scattering of light can be dominant,
leaving useful rays at wastage. Shadow patterns underwater
can also be an issue, as it contributes to variations in the
lighting, making the extracted image less representative
when describing the surroundings, [14]. In addition, the
restricted measurement interval of approximately one to
two minutes can pose a challenge as the underwater scenery
is seldom still.

3 MATERIALS AND METHODS

Within this research, the five types of plastics presented
in Section 2.2, have been tested. Individually, the types
can vary depending on size, color, and condition. Ordered
from CARAT AS in Germany, the resulting types include
different conditions and colors; HDPE and LDPE (both in
blue, gray, yellow, red), PET flakes (Post Consumer), PET
pristine, PP pristine, PP recycled, PS pristine, PVC modified
(hard) and PVC soft, [15]. Shredding these samples, leaves
an additional categorization, categorization by size. In total,
this results in a variety of different samples, all measured,
compared, and analyzed. The remaining 17 samples are
taken from the sea outside Svolvær, Lofoten. This way, the
classified plastics from Germany are intended to serve as the
foundation in the model classifying unknown microplastics
collected in Lofoten.

3.1 Preparations

3.1.1 Pulverizing Plastics
In order to prepare the laboratory experiment, the ordered
plastic was pulverized into microplastics at the laboratory
in EU2-115, NTNU. The plastic pieces were milled using a
tissuelyser, more specifically, Retsch - Mixer Mill MM 400.
The tissuelyser consisted of a steel container and a steel
bullet placed inside the container. Prior to the tissuelysing
procedure, the container, bullet, and the plastics were
cooled using liquid nitrogen. This was to ensure the
brittleness of the plastic. After placing the plastics inside
the container, the Mixer Mill shook the container so that the
steel bullet was thrown back and forth with a frequency
of 30 Hz, crushing the plastic pieces and eventually
pulverizing them. As the milling process left the plastic
heated, the cooling process was frequently executed, every
fifth minute, maintaining clean breaks, cutting the bonds
within the plastics instead of stretching them.

Even though most materials are brittle at low temperature,
the brittleness of all the PE samples, regardless of density,
were not sufficient. As a consequence, the samples did
not respond well to the milling. Rather than fragment
into fine particles, the plastic flattened or shredded. In
order to still acquire particles of PE, the samples were
frozen and run through a regular coffee grinder. The
plastic was placed in a petri dish, and liquid nitrogen
was added. When the liquid nitrogen had evaporated, the
PE samples were poured into the coffee grinder and ground.

In order to control the available particle sizes, the samples
were sifted using a Retsh AS-200 basic - vibratory sieve
shaker. The particles were run through two sieves, one
with a grid of 630 microns and the second of 200 microns,
before the remaining particles in the bottom and at the
second sieve were collected. The procedure assured the
finest samples being smaller than 200 microns, while the
middle stage was in the interval of 630 microns down to
200 microns.

3.1.2 Collecting Plastics
When collecting plastic at sea, a 300-micron mask sized
mesh was attached to a large crane on board the MS HASSE.
The crane led the net towards the surface, allowing surface
water to flow through the net. At the end of the net, a
bottle was attached, collecting material caught by the net.
After a few minutes, the manta was lifted back up and
led to the gunwale. Here, a water hose was used to clean
the net, so that useful mass attached to the side of the
net, was flushed down into the bottle. The bottle was then
detached and examined. The content was poured into a
funnel. The bottom of the funnel was a filter with a mesh
size of 100 microns. Below the filter, a glass bottle was
placed, meaning to capture the excess water. To accelerate
the filtration process, the funnel was attached to a pump,
creating a vacuum below the filter. The filter and resulting
unfiltered sea mass were placed in a glass tube and frozen
down in a fridge freezer. This procedure was repeated for
each take.

3.2 The Laboratory Experiment

The laboratory experiment consisted of retrieving spectral
signatures from the plastic samples using a laser and Raman
spectroscopy. The laboratory set-up is illustrated in Fig. 3
and consisted of the following components, a Witec UHTS
300 SMFC VIS Raman Spectroscope [16], a Witec WMT
50 microscope, two lenses - Zeiss - 10x/0,25 (3) and Zeiss
EC epiplan - 50x/0,75 (2) and a laser, Witec - wavelength:
532, <80 mW (1). The components were connected to the
software used, Control FIVE.

Before retrieving valid data, parameter adjustments
had to been done. As the laser was focusing a single
point on the sample, the sample was moved relative
to the laser and camera, scanning three times for every
sample. This was done to avoid measurement errors by
reducing the risk of scanning impure areas. Whenever these
areas were discovered, as a clear deviation from the other
signatures, the scan was removed, and the sample was
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rescanned focusing on another area. The experiment was
then conducted with the assumption that the probability of
scanning the same kind of impurity was sufficiently low.

As each sample holds a difference in size, thickness,
and individual properties, focusing the samples was done
with different light intensity and different distance between
the camera and the sample. However, due to the nature
of the experiment, these parameters did not need to be
identical. As the sought after properties were the signatures
of the plastics, and because the peaks and outline of each
signature are independent of the parameters mentioned
above, it was deemed unwise to keep them constant. In
addition, some particle surfaces help properties triggering
saturation. Whenever this was the case, the laser intensity
was reduced. The integration time was then increased
compensating for the low laser intensity and reducing
noise. After adjusting the parameters above, every scan
could be taken from a clear and focused area of the sample.

First, the samples were scanned without water, Fig.3
(5a). Each plastic type was put on a 1 mm thick, 75 mm
by 26 mm, microscope slide of glass (4). The microplastic
was evenly spread throughout the slide. Furthermore, the
sample was placed under the microscope, connected to
the spectroscope (1). In order to do an initial search for
single particles, the sample was viewed using the Zeiss -
10x/0,25 microscope (3). When a particle was located, the
lens was switched to a finer one, the Zeiss EC epiplan -
50x/0,75 (2). This lens was used to give a clear focus on
one particle. The operators were manually zooming and
adjusting the brightness of the view, eventually settling
when the preview frame on the software appeared sharp.
Nevertheless, the focus aspect of the high precision tool
picturing the particle was solely to find particles instead
of the space between them. The laser would reflect on the
particles regardless of the focus.

Fig. 3. Raman Spectroscopy, set-up. 1 is the WiTec Laser and Spec-
troscope, 2 is the ZeissEC epiplan 50x/0,75 microscope lens, 3 is the
Zeiss 10x/0,25 microscope lens, 4 is the microscope slide carrying the
sample, 5a,b,c is the three separate test cases.

In order to see if the resulting signatures were affected
by particle size, the different sizes from the milling and

sifting were scanned. However, as the PE samples acted
abnormally relative to the other types and were ground,
this type was not possible to pulverize into a size lower
than 200 microns. As a result, the samples from the size
category between 200 and 630 microns were tested first. The
remaining size categories were then scanned and compared
to the previous results.

Next, the same procedure was completed, but this
time with water, Fig.3 (5b). Approximately 0.5 milliliters
of distilled water was added to the sample. This was done
using a pipette, placing the water as droplets on top of the
sample before stirring the water and sample together. These
samples were scanned as explained above.

However, because of the density and hydrophobic
properties of the plastic, some particles tended to float.
Since the experiments were conducted using reflection,
the floating particles would not be measured as particles
in water. In order to ensure water coverage, a 22x22mm
top glass plate was added, bursting the water droplet and
thereby forcing water in between plastic particles, Fig.3 (5c).
These scans were also conducted the same way as previous
scans.

In the latter case, it is essential to recognize that in
order to reflect the plastic, the laser has to pass through the
top glass twice. This makes conservation of purity critical
concerning the top glass, as dirt or scratches could affect
the transmittance of the laser. Therefore, the covering glass
was thoroughly cleaned and repeatedly changed.

Finally, an empty sample containing the top glass and
distilled water was scanned, both together and individually.
These were retrieved so that they later could be extracted
from the final signatures of the samples.

3.2.1 Data Analysis
Before conducting the analysis, dark noise was measured
by having a sensor measure the signature without any light
or laser. Subsequently, the acquired signature was extracted
from each of the samples. Similarly, every signature being
measured through water and a glass cover had the signature
of the water and glass cover extracted from them. Due
to the measurements being point-scans, variations in the
measured signatures occurred. In order to make sure that
the model was built on consistent signatures, these were
chosen based on qualitative assessments by the authors. The
dataset was then divided into one model-set, as the larger
part of the initial dataset consisting chosen signatures,
and two test-sets. The test-sets consisted of a set with data
similar to the model-set, but randomly chosen samples, and
one set with data from the measurements with water.

After cleaning the raw data, the analysis could begin.
The software Unscrambler X, a commercial product
designed for calibration of multivariate data, [17], was used
to assist in interpreting the data. In order to recognize the
plastic, each measured wavelength was assigned a variable.
In order to be used in a partial least squares discriminant
analysis (PLS-DA) model at a later stage, the samples were
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subsequently classified based on their respective plastic
type. The type would be the Y-variables with boolean
values, while each measured wavelengths would be the
X-variables with the measured intensity representing the
values.

In order to dampen the noise of the measurements,
while at the same time retaining characteristic peaks of
the spectra, a Savitsky-Golay derivative transform was
run on the dataset, [18]. The transform used the second
derivative based on 13 data points. Thus, the first and last
13 measurements were lost. Losing 26 measurements per
1650 was deemed insignificant.

Following the transform, the PLS model was built
based on the previously mentioned X- and Y-variables. The
model was modified based on the residuals and influence
of individual samples. Samples with high influence and
residuals, i.e. influential and poorly described, were
omitted. Due to the rather small sample size per plastic
type, only samples with both high influence and residual
were omitted.

Next, the dataset containing randomly chosen samples
was transformed in the same manner and predicted based
on the PLS model, leaving a PLS-DA. The factors chosen to
predict the plastic types were chosen based on the loading
of the factor. The loading line depicted the weight put on
certain peaks and areas revealed which, compared to the
absorption spectrum of water, made it possible to assess
the possibility of utilizing the factor in situ. Even though
the program itself recommended higher factors with lower
deviation. The factors used to predict the plastic types were
also based on the scatter plots depicting a high effect on
a given plastic type. Subsequently, the factors with a high
level of explaining would be emphasized in the process of
predicting a given plastic type.

Also, given that the variables were either assigned 0
or 1, based on whether they belonged to a type or not,
the cut-off rate would be 0,5. However, the model would
still predict a correct plastic type with a clear margin, even
when the sample would appear below the cut off rate. As
all types had low levels of prediction, the lowered cut off
rate was deemed justified.

4 RESULTS

4.1 Qualitative Analysis (Signatures)
4.1.1 Varying Color

Fig. 4. HDPE gray (left), yellow (right), size between 200 and 630 micron

Fig. 4 presents two spectral signatures at different colors.
However, the peaks appear to resemble each other at all

associated wavelengths. Showing color-independent signa-
tures.

4.1.2 Varying Size

Fig. 5. HDPE size between 200 and 630 micron (left), HDPE size
between more than 630 micron (right)

Fig. 5 presents two spectral signatures at different sizes.
However, the peaks appears to be identical at all associated
wavelengths.

4.1.3 Varying Condition

Fig. 6. PET flakes (left) vs PET pristine (right), size less than 200 micron

Fig. 7. PVC modified (left) vs PVC soft (right), size less than 200 micron

Fig. 6 reveals that PET at different conditions appears to
have significant differences in their signatures. However,
characteristic peaks are associated to similar wavelengths.
Likewise for the PVC signatures in Fig. 7.

4.1.4 Water/No Water

Fig. 8. HDPE without water (left), HDPE in water (right), size between
200 and 630 micron

Fig. 8 displays the signatures of HDPE in and out of water.
The resemblance is strong. However, the intensity is, as
expected, lower for HDPE in water.
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4.1.5 Varying Density

Fig. 9. HDPE (right and left top), LDPE (left bottom)

In Fig. 9, the HDPE on the right appears to resemble both
HDPE and LDPE on the left.

4.1.6 Plastic from Lofoten/Clean Dry Plastic

Fig. 10. A Lofoten collected plastic sample (left) that appears to resem-
ble with the pure HDPE-samples

Fig. 11. Lofoten collected plastic samples (left top (10) and left bottom
(5)) that appears to resemble with the pure PPpristine-samples (right)

Fig 10 presents the signature from a particle collected in
Lofoten, which seems to resemble the pure signature for
HDPE. Similar to the two plots on the left in Fig. 11 con-
taining the spectral signatures from two particles collected
at different places in Lofoten, resemble the pure signature
for PP pristine.

4.2 Quantitative Analysis (PLS)
The model, based on known plastic, delivers loading plots
represented by the plot presenting factor 1, displayed in Fig.
12, through the unscarmbler analysis. Comparing significant
peaks in the plot with the optical signature of PET pristine
- right plot in Fig. 6, the loading plot might indicate that
facor 1 describes the specific plastic type of PET pristine.

This procedure is completed for all factors (6 in total) and
associated type of plastic.

Fig. 12. Loading plot, factor-1

Moreover, the score-plots are viewed. From the score plot
below, Fig. 13, the axis are chosen to be factor-1 and factor-
2, respectively. It can be observed how the PET pristine (and
PET-flakes with some deviation) type has a large variation
in x, while PS pristine varies on the y-axis. PET pristine can
thus be explained by factor-1 and so on - confirming the
type description, based on factor, from the loading plots.

Fig. 13. Score plot, (factor-1,factor-2)

Three of the plastic types, PP rec, LDPE and PVC mod
respectively, did not respond well to the modeling. These
types did not give any variation within any of the factors.
In the further prediction of new data, classifying these types
is, hence, not realistic.

The first prediction is executed on a data set originating
from the same samples used to create the model foundation.
Viewing a representative prediction plot, Fig. 14, the same
factors and associated plastic types, as learned from the
scoring plot, were chosen (factor-2 with PS pristine).
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Fig. 14. Prediction plot, factor-2 with PS pristine

Fig. 14 shows a box plot prediction of PS pristine for
samples representing all types of plastic included in the
study. In the box plot, the sample acting as the most
prominent, reflects the type predicted for. The height of
the box, describes the variation. The result is a relatively
superior prediction of the sample known to be PS pristine,
as PS pristine. This with a factor prediction percentage of 0,5
and a relatively standard variation. This result represents
the six remaining types.

Next, identical samples were tested, but this time in
water. Fig. 15 is more or less representative for five of the
previous six correctly classified types, them being PVC soft,
PET pristine, PET flakes, HDPE and PS pristine.

Fig. 15. Prediction plot, factor-1 with PET pristine in water

The plot above describes the prediction of PET pristine. All
samples to be predicted are placed in water. In total, they
represent all types of plastic included in the study. PET
pristine in water-sample was successfully as PET pristine
with a factor prediction percentage of 0,65.

Lastly, the plastic pieces from Lofoten were predicted,
displayed in Fig. 16.

Fig. 16. Prediction plot, factor-3 with PP from the sea

Of the retrieved samples, Fig. 16 states that only one particle
seems to consist of plastic, more specifically, PP pristine.

5 DISCUSSION

From the results, there are especially a few attributes
that need to be looked into. First, as plastic is known to
come in a variety of sizes and colors, measurements of the
different properties within the specific types, are completed.
Regarding these results, one can discuss whether the
properties affect the general optical signature for the given
type. Furthermore, the samples studied are in different
conditions. The section should include whether a general
type-signature can endure such environmental impact.
Moreover, in-situ resembling characteristics are applied. As
the samples are tested in and out of water, the contributing
differences should be elaborated, as well as the comparison
of sea-influenced plastic debris versus pure plastics.

As for the mentioned properties, the size and color
impact appears to be minimum. From the qualitative
analysis, Fig. 4 reveals minor peak variation in wavelength
positioning when comparing the signature from HDPE
samples in gray and the corresponding signature for the
yellow HDPE samples. Nevertheless, as same-type plastic
at different sizes were equally classified, the analysis
supports the assertion of color-independency. Similarly, the
classification of same-type plastic at different sizes, showed
an even lower variation in classifying the samples. This is
also indicated in Fig. 5, revealing similar peaks at similar
wavelengths. The signature from HDPE in water holds a
lower intensity than the pure HDPE signature in air. This
may be due to reduced intensity from attenuation by the
water. For a quantitative verification from the model, Fig.
14, displaying the prediction of PS pristine, presents a
representative result for six types, out of nine in total.

Looking at the results from plastics at various conditions,
the trend is that most samples originating from the same
type, yet holding distinct conditions, did not fully classify
as the same type. An example can be found in the prediction
plot in Fig. 15, predicting PET in water. The model manages
to predict PET pristine with a factor prediction percentage
of 0,65, while PET flakes only reached 0,25 in comparison.
As the PET samples building the model is either PET
pristine or PET flakes, one can argue that a data set
including the variations of the two types, may succeed in
classifying them as one, PET.

Looking at the spectral signatures in Fig. 6 and Fig.
7, displaying PET and PVC at different conditions,
respectively, one can witness a resemblance. Comparing
the associated signatures, significant peaks appear at the
equivalent wavelength. This implies that the organic bonds
within the plastic pieces are intact, again suggesting that
the chemical structure of the piece might also be intact. Still,
the shapes and intensities of the peaks are inconsistent,
and the surrounding wavelengths carry a variety of signals
detected by the CCD, leaving two different spectra.

This suggests that the industrial and environmental
forces alter the chemical composition of the microplastic.
The presumption can also be supported by the apparent
change in signature based on density variations. Fig. 9
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display the signatures of PE, the upper subplot show the
signature of high-density PE, while the lower the signature
of low-density PE. The middle plot, however, is also
representing high-density PE, but seems to explain a hybrid
of the two with important characteristics from them both.
This is believed to be a result of the milling process of
PE, carrying a risk of tearing and shredding the particles,
rather than cleanly fragmenting them into fine particles. As
a consequence of this, some high-density PE particles are
assumed stretched, lowering the density of the particle and
consequently adopting characteristics that indicate LDPE.

Earlier arguments supported the theory that the chemical
composition of the microplastic did not change with color,
size or condition. However, as this new observation shows
that the peaks, associated with organic bonds, clearly differ
with density, the earlier argument might no longer hold.
One can hardly expect environmental forces to make clean
milled-like breaks when tearing down the plastic pieces. If
tear and wear from a coffee grinder can alter the chemical
composition as much as the signature indicates, the strong
forces of weather and oceans are believed to do the same.
This may suggest that some environmentally affected
microplastics may no longer be identifiable based on its
spectral signature.

Studying the plots predicting samples with water, the
prediction appears promising. Fig. 15 shows how the
model predicts PET pristine in water as PET pristine, and
thereby manages to classify the sample, despite possible
disturbances from the water. As it turns out, this result
is representative for five types out of the six types that
were correctly classified for dry samples. Yet, additional
test validation might be needed to verify the results from
the samples containing water. This is due to the static
properties of some types of plastic, making the plastic
particles float on top of the water. If the laser focus was on
these particles when measuring microplastics in water, the
result may not represent microplastics in water. However,
as several measurements were completed, at different
sample areas for a variety of samples, the assumption of
correct classification for plastic in water appears to hold.

Concerning the sea-influenced particles collected from
Lofoten, the model appears to predict one of them as
PP pristine, Fig. 16. Nonetheless, viewing the specific
signatures, Fig. 11, a qualitative analysis may reveal that
two particles, one collected at station 5 and one collected
at station 10, resemble the spectral signature of PP pristine
to a significant degree. Additionally, a particle retrieved
from the station 6 collection, contains a signature matching
the respective signature of HDPE as can be observed in
Fig. 10. These results suggest plastic particles in 3 out of 17
collections in total. However, as the nature of the collected
particles is unknown, the classification of the particles
cannot be verified.

6 CONCLUSIONS

The results suggested that it is possible to recognize and
classify some types of microplastics under water by iden-

tifying their spectral signatures, using Raman spectroscopy.
Among the marine particles, three were identified as plastic.
However, more research into how the effects of environmen-
tal changes affect the performance of the method is needed.
Still leaving the mapping and classification method suitable
for plastic that recently entered the ocean.
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9.2 Additional Work and Expanding Description

Pre-processing of the data and manual control of the results was completed. Here complementing
the paper, Paper II.

9.2.1 Extension of the Data Cleaning Process

In addition to locating outliers, and subsequently analyze and remove them accordingly, the Raman
data were scaled. Viewing the intensities of the separate types, Figure 9.2.1, this seemed necessary,
as large variation in intensity occurs across types. The top plot in Figure 9.2.2 also shows how
the signatures of some samples could dominate. PET flakes is the type responsible for the intense
spectrum. The signature has intensive peaks, reaching towards 60.000 - see Figure 9.2.9. This
was characteristic for many PET flakes measurements. As can be viewed in all box-plots in Paper
II, this sample, therefore, holds a notable variation. The challenge was then to lower the noise
of the measurements, while at the same time retaining characteristic peaks of the spectra. After
trying out a few scaling algorithms, the sense behind a derivative filter came to mind. Savitsky-
Golay derivative transform filter with a second derivative was, consequently, applied. The resulting
signatures can be viewed in the bottom plot in Figure 9.2.2

Figure 9.2.1: Intensities — Prior to Scaling
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Figure 9.2.2: All signatures in the interval of up to 3800 [1/cm], unfiltered (top), filtered and scaled
(bottom)

9.2.2 Choosing a Representative Frequency Interval

The results presented in the paper, suggest that the signature of plastics across conditions, even
if originating from the same type, are too different to classify them as one. However, viewing and
comparing the specific signatures, similarities can be found. The wavelengths corresponding to
characteristic peaks, appear to lie in the intervals 800-1800 and 2700-3300 [1/cm] (these intervals
are supported by Figure 5.3.1, defining peaks at specific wavelengths related to specific bonds in
the molecules). A quick comparison of a smaller part of the resulting plots with literature plots
illustrated in Figure 9.2.3, might expose a possible fingerprint within this range.

97



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

Figure 9.2.3: Comparing signatures with literature

However, the peaks in the latter interval tend to hold significantly higher intensities, possibly
outweighing the lower interval. This means that if the lower interval consists of signatures able
to distinguish the type of plastic, important information might be undermined and the spectral
fingerprint not recognizable.

Based on this observation, another analysis was run. This analysis was completed with a re-
duced interval of wavelength, displayed in Figure 9.2.4. Apart from altering the dataset, using
frequencies spanning only 800-1800 [1/cm], the procedure was the same as before. Regardless, the
results of this analysis did not change the initial conclusion, rather reassured it.

Figure 9.2.4: All signatures, 800-1800 [1/cm] interval

9.2.3 Manual Control of Signatures

The spectral signatures were controlled and verified in two ways. First, the signatures were com-
pared to literature as presented above, Figure 9.2.3. All types seem to have a least one sub-type
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(specific condition) with a signature close to the spectral signatures plotted to the right. However,
a few types appears to deviate significantly. These are LDPE and PP recycled to a large degree,
and PET flakes and PVC modified to a certain degree.

Moreover, the specific peaks within the signatures were compared to their related bonds 5.3.1.
Section 2.1.2, describes the bonds of specific plastic types. PE, with double carbon bonds as well
as carbon-hydrogen bonds, is expected to have peaks at 1060 and 1127 [1/cm], as well as at 2845
and 2880 [1/cm]. Looking at Figure 9.2.5, this seems accurate for the upper figure, HDPE. The
signature representing LDPE however, hold peaks at more or less opposite positions.

Figure 9.2.5: HDPE (top), LDPE (bottom)

Moreover, PP is exclusively consistent of CH3 molecules, pointing towards significant peaks at
2870 and 2905 [1/cm]. Figure 9.2.6 displays the plotted signatures of PP pristine (left) and PP
recycled (right). Unlike PE, the signature does not have carbon-carbon bonds, and the significant
peak should be located in the specified area. Looking at PP recycled in the bottom plot, the trend
appears similar to PE, with an unfamiliar, unexplainable signature.
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Figure 9.2.6: PP pristine (top), PP recycled (bottom)

PS holds a chemical composition consisting of the following molecules, C8H8. The focus should,
hence, be at carbon-carbon bonds, as well as carbon-hydrogen bonds. Looking at the table in
Figure 5.3.1, these bonds correspond to somewhere between 700 and 1260 [1/cm] (C-C), and at
2900, 3015, 3065 and 3280-3340 [1/cm]. Based on this, it appears likely that the signature in Figure
9.2.7, is the correct signature for PS.

Figure 9.2.7: PS pristine

PVC consists of molecules subsequently consistent with carbon bonds, hydrogen bonds and chlorine
atoms. It appears that chlorine atoms do not have a significant impact on the peaks within this
range. The focus is hence on carbon-carbon bonds, as well as carbon-hydrogen bonds. Therefore,
the relations found for PS apply to PVC as well. Looking at Figure 9.2.8, the peaks are positioned
at almost identical wavelengths as for PS.
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Figure 9.2.8: PVC soft (top), PVC modified (bottom)

PET, however, has a chemical composition represented by (C10H8O4)n. According to the ta-
ble, carbon-oxygen bonds give rise to peaks at a different wavelength than the rest of the types.
These peaks are found at 1620-1690 and 1710-1745 [1/cm] - quite accurate when looking at the
representing signatures below, Figure 9.2.9.

Figure 9.2.9: PET pristine (top), PET flakes (bottom)

In sum, HDPE, PET pristine, PP pristine, PS pristine and PVC soft seem to hold accurate signa-
tures. PET flakes appear to resemble by trends. These short analyses correspond to the types that
were classified by the model. Thus, some types or some measurements within LDPE, PP recycled
and PVC modified, on the other hand, may be incorrect or holding such a considerable variation
across the samples that the pattern is absent and, consequently, challenging to describe by the
factors in PLS regression.
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Chapter 10

Paper Comparison and Extended
Discussion

The following chapter will summarize and compare the conclusions made by the scientific papers,
which make up the backbone of this thesis. Also, extended results and methods will be included
in the comparisons. The final goal is to assess whether the two are complementary and may be
combined to achieve a general conclusion on the identity of the plastic collected in Lofoten.

10.1 Results & Discussion

The following paragraphs are the summarized results and discussion of their extended methods of
the two papers.

10.1.1 I: Identification of Marine Plastics using Hyperspectral Imaging
in Infrared Light

The results from the NIR hyperspectral imaging illustrates an indication for four of the collected
plastic samples. These were respectively sample 2 as PP, sample 10 as PE, sample 11 as PP, and
sample 14 as PP. In total, four samples have been identified as plastic with a relatively high margin
of certainty. Other samples showed indications, but were emitted due to the lack of certainty. All
samples were also classified based on the results of the individual imaging method.

The use of PCA and PLS-DA was proven unsuccessful when applied to the NIR hyperspectral
images. Dry plastics were correctly classified. Nevertheless, none of the other samples were suc-
cessfully classified. The reason might be the large difference between the samples due to thickness
and focus, or the more drastic effect of water on the infrared spectra. The latter might cause larger
trends of the spectra to be difficult to attain.

K-means based algorithms proved to be the most successful. However, the need for manual merging
is problematic. In order to use the ground-truthed K-means algorithms, which solves the issue of

102



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

K-means being unsupervised, one will have to process the data manually. This is, in turn, not
viable. The use of a supervised algorithm in combination could be a possible solution. Still, this
must be a more refined classification than presented in the paper. The combined algorithm did
not correctly classify particles, in contrast to the use of ground truthing.

10.1.2 II: Identification of Marine Plastics using Raman Spectroscopy

Through the use of Raman spectroscopy, three plastic samples were identified to be plastic and
showed indications of their respective types. Of the three, one was classified using PLS-DA while
the other two used qualitative classification. These three were respectively sample 5 as PP via
PLS-DA, and sample 10 as PP and sample 6 as HDPE via qualitative classification. In total, three
samples identified as plastic with a relatively high margin of certainty. Other samples, showed
indications, but were emitted due to the lack of certainty.

Despite only classifying one sample from Lofoten, PLS-DA still proved successful. The method
managed to classify the samples in water and consequently performed satisfactorily at this stage.
The exact reasons for not identifying a larger number of samples are unknown. One explanation
could be the change in the plastic due to the environmental impact from the sea. Also, given the
nature of the collected data, PCA and PLS-DA was by far the superior choice.

10.2 Comparison

PLS-DA proved unsuccessful in NIR HI, despite being used with the data collected using Raman
spectroscopy. This could be due to the nature of Raman signatures. It is less affected by glass and
water and subsequently more consistent. Also, the essence of the data is different. The Raman
signatures are collected individually, and thus being continuously double checked. The result was
purer signatures and subsequently, less faulty data. The same followed from the single scans being
individually chosen, and, therefore, not affected by falsely classified data. The latter was an issue
with respect to HI. The large volume of background and varying focus could have affected the
results. However, this measure will be made beforehand with respect to the building of the model.
Subsequently, it is hard to rule out the use of PCA/PLS-DA as it could be argued that the fault
lies in the model, and its data, rather than the method, and subsequent, the results.

Not much is preventing the implementation of the same methods used in Paper I, in the Ra-
man spectroscopy experiment (Paper II). However, the scan size is increased if one is to do a full
image using Raman. Transmittance was specifically chosen as it would circumvent the need to
localize individual particles and reduce manual labor. However, the reasoning did not withhold in
reality. Subsequently, one could fully combine the two using reflectance Raman spectroscopy and
the algorithms from HI.

Due to the nature of the prediction algorithms used on the hyperspectral images, the level of
certainty is not quantified in the HI classification. The lack of a clear measure makes it difficult to
rule on contradicting predictions. One could argue that the size of clusters relative to the sample
size in K-means, and angles in SAM, could be used. However, the algorithms utilized at this stage
of the project did not include these. For further use and sensor merging, this would be an essential
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feature.

The difference in results between the Raman spectroscopy and hyperspectral imaging, resulted
in a re-evaluation of the results from sample 10. As may be seen in the extended results, in Figure
8.2.6, the revised results from hyperspectral imaging indicate that the sample might be PP. This
corresponds well with the Raman results. However, the Raman results are unambiguous. The
latter only indicates the sample being PP. Hence, there is a strong indication that the sample
is indeed PP given the exclusion of PE from the Raman results. One could still argue that the
SAM - K-means algorithm also had indications of PE. Nevertheless, SAM has previously proven
to underperform, as may be seen in the results from sample 2 in figure 8.2.7a. Thus, sample 10 is
believed to be PP rather than PE.

Both methods show size and color independent signatures, as expected. This proves the parti-
cles could be classified based on endmember signatures from consumer plastic. On the other hand,
it is important to keep in mind that this project has tested a limited number of samples. One
should acquire a more extensive endmember library using more likely plastics to be found in the
ocean. This would also account for any other additives. This need is apparent when observing the
different spectra of PP and PVC.

Given the limited results on samples collected in-situ, the superior algorithm is hard to deter-
mine. One could decide based on the results from the classification through water. Nevertheless,
due to the different nature of the measurements, the results would not be directly comparable.
Raman spectroscopy is less affected by the presence of water than the NIR-HI. Hence, it is hard
to determine the most successful algorithm, which coincides with the varying preferences in the HI
community.
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Chapter 11

Conclusion and Further Work

11.1 Overall Conclusion

Now, at the end of this report, the research question asked at the beginning, Is it possible to iden-
tify plastics in various sizes and in various conditions, underwater, using a hyperspectral imager
in infrared light or the Raman spectroscopy?, can be answered.

In conclusion, the plastic was classified independent of size, color and condition, by both imaging
techniques. The two methods combined were able to detect 7 marine plastic particles. These were
not only identified as plastic, but also as individual types. The exact choice of the preferred clas-
sification algorithm and imaging technique is undecided. With certain refinements, both methods
are believed to have great potential for in situ use, individually and combined. Lastly, further work
to improve the algorithms and methods of classification is recommended.

11.2 Further Work

The path to a functioning in-situ solution is comprehensive. This thesis is merely the beginning of
a larger research process. This section, therefore, addresses the primary lines and key challenges
along the way. It is intended to summarize the obstacles and necessary improvements, with respect
to the two imaging techniques, identified throughout the work.

The road ahead can be divided into different areas of significance. A vast challenge when operating
in-situ is the water mass, water quality and additional disturbances underwater, not accounted for.
Moreover, optical restrictions may not cooperate with the underwater conditions, nor the available
density of plastic particles. Finally, the plastic identification of the technologies and methods might
deviate underwater.
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11.2.1 Sampling

In this study, the water between the sample and lens is of millimeter size. In addition, the remain-
ing surroundings have all consisted of air. A natural, and necessary next step would be to study
a more considerable amount of water. For instance, a tank of water filled with plastic particles.
Besides, rather than sterilized water, the tank could consist of sea water. This would account for
the possible effects of salinity and other contaminants affecting the light, and subsequent image
quality, as discussed in Chapter 2.

The research was done using portions of pulverized plastic particles. In situ, these particles are
rarely clustered to the size of the experimental portion. The further process would, therefore,
naturally include the use of a lower particle-amount, within the sample, when completing the mea-
surements.

A set-up including a more humble particle-amount in a wider space of water is moving towards in
situ resemblance. Using this approach, the experiment is forced to resemble reality. However, it
is suggested to, simultaneously, work on getting the reality to resemble the experiment. This can
be done by designing a sensor-carrying platform that can collect pulp from the water, filtering out
the water, before performing measurements on the remaining mass. The mass thus contains, most
likely, more plastic pieces than at the initial state.

Entering the topic of designing the sensor, optical challenges emerge. The hyperspectral imager
utilizes a push broom technique. As explained in Section 5.2.2, this technique requires movement
of the imager at an exact and kept velocity. Wind and underwater currents can, hence, have fatal
consequences for this necessity. A thought for further research is thus to look at the possibility of
designing a conduit that the water can flow through. This cable can have a turbine (or similar) at
one end and thereby, positively or negatively, accelerate the water. This way the velocity can be
adapted to the desired imager flow rate.

Point-scanning (Section 5.2.1), performed when completing the Raman measurements, is highly
sensitive, as it requires the entire scenery to hold still throughout the entire processing time. Focus-
ing on one specific particle over time can, therefore, seem unlikely. Further work should, therefore,
include line-scanning of the Raman samples, possibly using a similar push broom technique as the
hyperspectral imager.

Lastly, if the methods (Raman and NIR HI), single-handedly, do not hold up, an idea could
be to combine them. When initiating this study, the plan was to combine the size and shape iden-
tification from the SilCam with man-made color-detection in the hyperspectral imager in visible
light. As the infrared radiation made the plastic samples detectable to the hyperspectral imager,
this became the focus. However, combining methods to retrieve more information appears even
more productive and should be approached within the next steps - especially if using one of the
strengthened methods from this study.
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11.2.2 Data Processing

Concerning the classification algorithms, SAM and K-means, certain improvements are believed to
be needed. These are specifically related to the introduction of a Not-Applicable class. Due to the
nature of both classifications algorithms, all samples will be classified regardless of the distance to
the given class as long as its the closest class. By introducing a maximum distance or angle, one
could rely on the results having a base accuracy to them.

Furthermore, a quantitative measure of accuracy would make it easier to compare contradict-
ing results. Given contradicting results, one has no way to compare the predictions directly. A
measure would make the ruling easier as it would describe a level of certainty.

Given the previously explained nature of the work, the measurements were not made with the
use of SAM in mind. Hence, one would expect there to be room for improvement with regards to
the endmember signatures. Not only with respect to the specific measurements, but also to the
signatures. The measured samples could be ensured to have more consistent layers and a higher
degree of even focus. Also, the types of plastics creating the endmember signatures could include
known post-consumer plastic, which could possibly cover the effects of contaminants and other
effects not included in the clinically ordered post-consumer plastic.

On the last note, the primary focus in this thesis involves separating the plastic types from each
other. However, in the long run, it is essential rather to be able to separate plastic from other
organic material. This study has slightly entered the field, which, in further work, should be a
more prominent focus - possibly the main focus. A recommendation for further action is hence
to alter focus and look at plastic in its entirety, up against marine snow, algae, and other organic
material.
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Appendix A

The Set-Up

A.1 Collecting and Pulverizing Plastics

Figure A.1.1: Filtering sea-mass aboard the boat
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Figure A.1.2: Poring liquid nitrogen

Figure A.1.3: Pulverizing plastic in the tissuelyser
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Figure A.1.4: Grinding plastic in the coffee grinder

Figure A.1.5: The particles were sifted to retrieve different sizes
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Figure A.1.6: Trying to count the plastic particles with the Beckman Coulter

A.2 SilCam Laboratory

Figure A.2.1: SilCam laboratory set-up
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A.3 NIR HI Laboratory

Figure A.3.1: Hyperspectral imaging laboratory set-up
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A.4 Raman Laboratory

Figure A.4.1: Raman set-up with the microscope and laser
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Appendix B

NIR HI - Results

B.1 NIR HI - Signatures

B.1.1 HDPE

(a) HDPE Blue, Larger than 630 microns (b) HDPE Blue, Smaller than 630, but larger than 200
microns

(c) HDPE Gray, Smaller than 630, but larger than 200
microns

(d) HDPE Yellow, Smaller than 630, but larger than
200 microns

Figure B.1.1: NIR HI signatures of HDPE
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In Water

(a) HDPE Blue in Water, Smaller than 630, but larger
than 200 microns

(b) HDPE Yellow in Water, Smaller than 630, but larger
than 200 microns

Figure B.1.2: NIR HI signatures of HDPE in Water

B.1.2 LDPE

(a) LDPE Blue, Smaller than 630,
but larger than 200 microns

(b) LDPE Green, Larger than 630
microns

(c) [LDPE Green, Smaller than
630, but larger than 200 microns

Figure B.1.3: NIR HI signatures of LDPE
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In Water

(a) LDPE Green in Water, Smaller than 630, but larger
than 200 microns

Figure B.1.4: NIR HI signatures of LDPE in Water

B.1.3 PET

(a) PET Flakes, Smaller than 200
microns

(b) PET Pristine, Smaller than 200
microns

(c) PET Pristine, Smaller than
630, but larger than 200 microns

Figure B.1.5: NIR HI signatures of PET

In Water

(a) PET Prstine in Water, Smaller
than 200 microns

Figure B.1.6: NIR HI signatures of PET in Water
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B.1.4 PP

(a) PP Pristine, Smaller than 200 microns (b) PP Pristine, Smaller than 630, but larger than 200
microns

(c) PP Recycled, Smaller than 200 microns (d) PP Recycled, Smaller than 630, but larger than 200
microns

Figure B.1.7: NIR HI signatures of PP
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In Water

(a) PP Pristine in Water, Smaller than 200 microns (b) PP Recycled in Water, Smaller than 630, but larger
than 200 microns

Figure B.1.8: NIR HI signatures of PP in Water

B.1.5 PS

(a) PS Pristine, Smaller than 200 microns (b) PS Pristine, Smaller than 630, but larger than 200
microns

Figure B.1.9: NIR HI signatures of PS
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In Water

(a) PS Prstine in Water, Smaller than 200 microns

Figure B.1.10: NIR HI signatures of PS in Water
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B.1.6 PVC

(a) PVC Modified, Smaller than 200 microns (b) PVC Modified, Smaller than 630, but larger than
200 microns

(c) PVC Soft, Smaller than 200 microns (d) PVC Soft, Smaller than 630, but larger than 200
microns

Figure B.1.11: NIR HI signatures of PVC
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In Water

(a) PVC Modified in Water, Smaller than 200 microns (b) PVC Soft in Water, Smaller than 200 microns

Figure B.1.12: NIR HI signatures of PVC in water

B.1.7 Reference and Organic

(a) Organic material from Sample 7 (b) Organic material from Sample 9

(c) Reference

Figure B.1.13: NIR HI signatures of organic matter and reference
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B.2 NIR HI - Evince Plots

(a) Classified contour plots from Evince (b) PLS-DA Scatter plot

(c) Prediciton on dry PP (d) Prediciton on dry PET flakes

Figure B.2.1: Representative selection of plots from Evince
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Appendix C

Raman Spectroscopy - Signatures

C.1 Dry Microplastic

C.1.1 HDPE

Figure C.1.1: HDPE blue
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Figure C.1.2: HDPE gray

Figure C.1.3: HDPE yellow
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C.1.2 LDPE

Figure C.1.4: LDPE blue

Figure C.1.5: LDPE gray
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C.1.3 PET Flakes

Figure C.1.6: PET flakes
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C.1.4 PET Pristine

Figure C.1.7: PET pristine
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C.1.5 PP Pristine

Figure C.1.8: PP pristine

XXII



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

C.1.6 PP Recycled

Figure C.1.9: PP recycled
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C.1.7 PS Pristine

Figure C.1.10: PS pristine

XXIV



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

C.1.8 PVC Modified

Figure C.1.11: PVC modified
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C.1.9 PVC Soft

Figure C.1.12: PVC soft

C.2 Microplastic in Water

Figure C.2.1: Water signature
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C.2.1 HDPE

Figure C.2.2: HDPE blue

Figure C.2.3: HDPE gray in water

Figure C.2.4: HDPE yellow in water
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C.2.2 LDPE

Figure C.2.5: LDPE blue in water

Figure C.2.6: LDPE gray in water

XXVIII



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

C.2.3 PET Flakes

Figure C.2.7: PET flakes in water

C.2.4 PET Pristine

Figure C.2.8: PET pristine in water
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C.2.5 PP Pristine

Figure C.2.9: PP pristine in water

C.2.6 PP Recycled

Figure C.2.10: PP recycled in water

C.2.7 PS Pristine

Figure C.2.11: PS pristine in water
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C.2.8 PVC Modified

Figure C.2.12: PVC modified in water

C.2.9 PVC Soft

Figure C.2.13: PVC soft in water
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C.3 Micro Particles from Lofoten

C.3.1 I

(a) Station 2 (b) Station 2, take2

(c) Station 5 (d) Station 5, dirt

(e) Station 6 (f) Station 6, take2

Figure C.3.1: Lofoten particles day 1
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C.3.2 II

(a) Station 6, new particle (b) Station 7

(c) Station 8 (d) Station 8, new particle

(e) Station 8, new particle II (f) Station 8, new particle III

Figure C.3.2: Lofoten particles day 1
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C.3.3 III

(a) Station 8, new particle IV (b) Station 8, new particle V

(c) Station 10 (d) Station 11

(e) Station 11, new particle

Figure C.3.3: Lofoten particles day 1 and 2
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C.3.4 IV

(a) Station 1, Day 2 (b) Station 1, Day 2, take2

(c) Station 1, Day 2, take3 (d) Station 2, Day 2

(e) Station 1, Day 2, organic particle (f) Station 6, Day 2

Figure C.3.4: Lofoten particles day 1 and 2
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Appendix D

Photos of the Samples

D.1 HDPE

(a) HDPE Blue, larger than 630
microns

(b) HDPE Blue, smaller than 630,
but larger than 200 micron

(c) HDPE Red, larger than 630 mi-
cron

(d) HDPE Red, smaller than 630,
but larger than 200 micron

Figure D.1.1: Pictures of HDPE samples
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D.2 LDPE

(a) LDPE Blue, larger than 630 micron (b) LDPE Blue, smaller than 630, but larger
than 200 micron

(c) LDPE Green, larger than 630 micron (d) LDPE Green, smaller than 630, but larger
than 200 micron

Figure D.2.1: Pictures of LDPE samples
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D.3 PET

(a) PET Flakes, smaller than 200 micron (b) PET Flakes, smaller than 630, but larger
than 200 micron

(c) PET Pristine, smaller than 200 micron (d) PET Pristine, smaller than 630, but larger
than 200 micron

Figure D.3.1: Pictures of PET samples
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D.4 PP

(a) PP Recycled, smaller than 200 micron (b) PP Recycled, smaller than 630, but larger
than 200 micron

(c) PP Pristine, smaller than 200 micron (d) PP Pristine, smaller than 630, but larger
than 200 micron

Figure D.4.1: Pictures of PP samples
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D.5 PS

(a) PS Pristine, smaller than 200 micron (b) PS Pristine, smaller than 630, but larger
than 200 micron

Figure D.5.1: Pictures of PS samples

D.6 PVC

(a) PVC Modified, smaller than
200 micron

(b) PVC Modified, smaller than
630, but larger than 200 micron

(c) PVC Soft, smaller than 630,
but larger than 200 micron

Figure D.6.1: Pictures of PVC samples
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D.7 Through Microscope

(a) PSpristine, smaller than 630, but larger
than 200 micron, take 1

(b) PSpristine, smaller than 630, but larger
than 200 micron, take 1 with water

(c) PSpristine, smaller than 630, but larger
than 200 micron, take 2

(d) PVCmodified, smaller than 630, but larger
than 200 micron, take 1

(e) PVCsoft, smaller than 630, but larger than
200 micron, take 2

(f) PPpristine, smaller than 630, but larger
than 200 micron, take 2

(g) PETflakes, smaller than 630, but larger
than 200 micron, take 2

Figure D.7.1: Plastic samples through the microscope
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Appendix E

Photos from Field trip to Lofoten

Figure E.0.1: Photos from field trip to Lofoten

XLIII



Identification of Marine Plastics using
Hyperspectral Imaging & Raman Spectroscopy

Emilie M. H. Dahl &
Andreas Ø.R. Stien

Figure E.0.2: Photos from field trip to Lofoten II
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