
Enabling Energy-Efficient Advertising for
Mobile Applications

Irena Prochkova

Master in Security and Mobile Computing

Supervisor: Yuming Jiang, ITEM
Co-supervisor: Jukka K.Nurminen, Aalto University

Department of Telematics

Submission date: June 2013

Norwegian University of Science and Technology

Aalto University

School of Science

Degree Programme in Security and Mobile Computing

Irena Prochkova

Enabling Energy-Efficient Advertising
for Mobile Applications

Master’s Thesis

Espoo, June 30, 2013

Supervisors: Professor Jukka K. Nurminen, Aalto University School of

Science

Professor Yuming Jiang, Norwegian University of Science

and Technology

Instructor: Jukka K. Nurminen

Aalto University

School of Science

Degree Programme in Security and Mobile Computing

ABSTRACT OF

MASTER’S THESIS

Author: Irena Prochkova

Title:

Enabling Energy-Efficient Advertising for Mobile Applications

Date: June 30, 2013 Pages: 64

Professorship: Data Communication Software Code: T-110

Supervisors: Professor Jukka K. Nurminen

Professor Yuming Jiang

Instructor: Jukka K. Nurminen

Advertisements are the main source of revenue for many free mobile applications,

however, they increase the energy consumption of the mobile device. In particu-

lar, the radio communication used for the advertisement data transfer is energy

hungry, so advertisement sponsored applications (free) consume more energy than

paid applications.

In this thesis, we analyse the effect that advertisements have on the mobile device

performance, especially, the energy consumption of transferring and displaying

advertisements. Our results, based on evaluating 5 mobile games, show that

advertisements consume up to ≈25% of application’s total power consumption.

To make advertising energy-efficient, we propose and implement a solution (eeAd-

Network) that reduces energy consumption by intercepting advertisement re-

quests and serving them from a local cache. The proposed solution acts as an

extension to the AdMob advertising network. We also run measurements to eval-

uate the performance of our proposed solution. Our results show that the power

consumption of delivering and displaying advertisements is decreased from 27%

to 4% of the application’s total power consumption.

Keywords: advertising, energy-efficiency, mobile advertising, AdMob,

power consumption, caching, caching strategy

Language: English

2

Acknowledgements

The thesis would not have been completed without the help and support of

several people. I wish to thank my supervisor and instructor Jukka Nurminen

for his timely instructions and guidance before and during the thesis. I am

especially appreciative for his positive thinking and optimism that helped me

complete this task. I would also like to thank my other supervisor, Yuming

Jiang for providing thoughtful comments and feedback on the thesis.

I also appreciate the ideas, comments and feedback from my colleagues

and friends at Aalto University, Department of Data Communications Soft-

ware. My time at Aalto University and NTNU would not have gone so

smoothly without the help of the NordSecMob co-ordinators: Anna Stina

Sinisalo, Mona Nordaune and Misela Väisänen.

Finally, I thank my family for their love, care and support.

Espoo, June 30, 2013

Irena Prochkova

3

Abbreviations and Acronyms

3G Third Generation

API Application Program Interface

CPA Cost per Action

CPC Cost per Click

CPM Cost per Thousand Impressions

CPU Central Processing Unit

CSS Cascading Style Sheet

CSV Comma Separated Value

DNS Domain Name Service

GPRS General Packet Radio Service

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IPTABLES Internet Protocol Tables

MMA Mobile Marketing Association

MMS Multimedia Messaging Service

OS Operating System

RAM Random Access Memory

REST Representational State Transfer

SDK Software Development Kit

SMS Short Message Service

TTL Time To Live

TV Television

UTF8 Unicode Transformation Format (8-Bit)

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7

1.1 Objectives and Research Goals 8

1.2 Author’s Contribution . 9

1.3 Structure of the Thesis . 9

2 Mobile Advertising 11

2.1 The Mobile Advertising Ecosystem 11

2.1.1 Types of Mobile Advertisements 12

2.1.2 Pricing Models of Mobile Application 14

2.1.3 Ad Networks . 17

2.2 Advertisement Delivery Process 18

2.3 Challenges of Mobile Advertising 20

3 Energy Implications 23

3.1 Background . 23

3.2 Evaluating Power Consumption of Advertisements 26

3.2.1 Methodology . 27

3.2.2 Energy Consumption of Mobile Games 27

3.2.3 Impact of Advertising Interval 29

3.2.4 Summary . 30

4 Energy Aware Solution 31

4.1 eeAdNetwork Design . 31

5

4.2 eeAdNetwork Implementation 34

4.2.1 Interception . 35

4.2.2 Local Cache . 36

4.2.3 Analytics and Targeting 37

5 Performance Evaluation 39

5.1 Measurement Environment . 39

5.2 Methodology . 42

5.3 Choosing the right cache size 43

5.4 Results . 44

5.4.1 Baseline . 44

5.4.2 Passive Cache . 46

5.4.3 Active Cache . 46

5.4.4 Passive vs. Active Caching 50

6 Discussion 51

6.1 Summing up the Results . 51

6.2 Comparison to other published results 52

6.3 Limitations . 53

6.3.1 Changing User’s context 53

6.4 eeAdNetwork in the Real World 55

7 Conclusions 57

A Source Code 64

6

Chapter 1

Introduction

The number of smartphone users (≈1 billion [15]) have increased significantly

over the last few years. The explosive adoption rate has been driven by a

number of factors, with the most important influence being the emergence

of mobile applications (apps) and application markets. Mobile applications

are software applications that run natively on smartphones, tablet computers

and other mobile devices. Application markets on the other hand are digital

distribution platforms for applications that allow users to browse and down-

load application on their mobile devices. Example of application markets

are: Google Play1, Apple’s App Store2 and Windows Phone Store3. The ap-

plication market mainly publishes two types of mobile applications on: free

and paid applications. Free applications are downloaded free of cost but use

advertisements to generate revenue, while paid applications are purchased for

a fixed price and do not show advertisements. Currently, free applications

account for 90% of all applications on the application markets [10], which

gives the impression that advertising is the preferred form of monetization

for mobile applications.

Mobile advertising is defined as a form of marketing through mobile de-

vices, that promotes products, services, or businesses to the end-users. Ad-

vertisements in mobile devices can be displayed inside mobile web pages,

1https://play.google.com/store?hl=en
2http://www.apple.com/iphone/from-the-app-store/
3http://www.windowsphone.com/en-us

7

CHAPTER 1. INTRODUCTION 8

mobile applications or even through Short Message Service (SMS) messages.

Mobile applications usually display advertisements as graphical banners (im-

age and text) at the top or bottom of the screen and the advertisement

content is downloaded from an advertising network’s server (for example,

AdMob4). The current advertisement delivery process requests advertise-

ments at fixed intervals (every 30, 60, 90, or 120 seconds), which involves

frequent data transfers over the network that increases the energy consump-

tion of the mobile device [2]. Consequently, fetching advertisements at short

intervals requires an always-on Internet connection that some applications

do not necessarily require. For example, mobile arcade games (e.g., Angry

Birds5) do not require Internet access and only use the Internet to receive

advertisements.

While managing energy consumption in desktop computers is not very

important, in mobile devices it is crucial for extending the mobile phone’s

battery life. Unfortunately, mobile phone’s battery life have not advanced

as rapidly as the other mobile components [1], therefore, we need to make

sure that applications utilise the battery in an energy-efficient manner. We

find that applications that only use the Internet to fetch advertisements, in

particular mobile games, can be optimised to deliver advertisements more effi-

ciently. In this thesis, we propose, implement and evaluate an energy-efficient

approach of delivering and displaying advertisements in mobile applications.

1.1 Objectives and Research Goals

The main goals of the thesis are to: 1) study the current mobile advertising

ecosystem and analyse the interaction between the advertising parties, 2)

measure the energy consumption of delivering advertisements using current

methods in mobile applications, 3) propose and implement an energy-efficient

solution for delivering advertisements, and 4) evaluate the performance of our

proposed solution.

4http://www.google.com/ads/admob/
5http://www.angrybirds.com

CHAPTER 1. INTRODUCTION 9

1.2 Author’s Contribution

Mobile advertising is relatively new area that requires interpretation with a

broad view. The mobile advertisement eco-system is rather complex, consist-

ing of many components (such as brands, advertising agencies, advertisers

and publishers), each of them working together to deliver advertisements to

the end users. In this thesis, the objective is to study the mobile advertising

eco-system from broad a perspective, including all forms of advertising and

all components involved in the process.

In this thesis, I analysed the effect of advertising on mobile phone’s bat-

tery, by running experiments to measure the power consumption of delivering

and displaying advertisements. My experiments show that the existing meth-

ods of delivering advertisements are not energy-efficient.

To decrease the energy consumption, I developed and implemented a

caching solution, eeAdNetwork, that works as a middleware between the mo-

bile application and the advertising network. It is backwards compatible and

works within the constraints posed by the mobile operating system and the

advertising platform.

I evaluate the performance of the proposed solution and my results show

a decrease in energy consumption. Furthermore, in my evaluation, the ap-

plication fetches advertisements over both 3G and WiFi networks. It should

be noted that preliminary results have been published in [27].

1.3 Structure of the Thesis

The thesis is structured as follows. After the introduction, in Chapter 2 we

discuss the mobile advertising eco-system and the process of delivering adver-

tisements in mobile application. We also state the main concerns of mobile

advertising. Chapter 3 analyses the impact of advertising on mobile phone’s

battery. This includes a thorough literature review and initial experiments

that measure the energy consumption of fetching advertisements in mobile

applications. Chapter 4 is the design and the implementation of our solu-

tion, while Chapter 5 evaluates the proposed solution in multiple scenarios

CHAPTER 1. INTRODUCTION 10

and different caching strategies. Chapter 6 contains an extensive discussion

and Chapter 7 concludes the thesis.

Chapter 2

Mobile Advertising

The mobile advertising ecosystem is a complex system that consists of dif-

ferent entities (e.g., brands, advertising agencies, advertising networks and

developers) that works together to deliver advertisements to the end-user.

In this chapter, we discuss about the characteristics of the different entities

in the mobile advertising ecosystem, the advertisement delivery process, and

the main challenges which affect mobile advertising, such as, privacy, security

and energy concerns.

2.1 The Mobile Advertising Ecosystem

The mobile advertising ecosystem consist of the following entities [34]: Brands,

Agencies, Ad Networks, Publishers and Consumers.

Figure 2.1: Mobile advertising ecosystem.

Brands : are advertising companies that want to promote products or

services to the consumers, such as Nike, Coca Cola, McDonalds and Disney.

11

CHAPTER 2. MOBILE ADVERTISING 12

Brands can also be small unknown companies that choose to advertise their

products on mobile devices because of its easy usage, compared to print

advertising.

Agencies : are marketing companies that create advertising campaigns

and strategies for the brands.

Ad Networks : are companies that interlink the brand and the publisher.

The Ad Network stores advertisements created for the brands and sends

them to the appropriate publisher for presentation. Example of Ad Networks

are: AdMob and iAd1. The characteristics of the Ad Networks and their

relationship are discussed in 2.1.3.

Publishers : are developers of mobile applications that integrate the

advertisement in their applications. This is similar to Internet advertising

where the advertisements are embedded into the web site. The publishers

are motivated to integrate the advertisement because it provides a way to

monetize the application/service.

Consumers : are the end-users that engage with the mobile application

and interact with the advertisement.

Figure 2.1 shows the workflow in the mobile advertising ecosystem. Typi-

cally, brands initiate the process by collaborating with an advertising agency

to create the advertisement. To distribute the advertisement over the mobile

Internet, the agency or the brand approaches an Ad Network which provides

the platform (or service) to distribute the advertisement to a targeted audi-

ence. The developers integrate the advertisements from the Ad Network into

their application, which are consumed by the end-users.

2.1.1 Types of Mobile Advertisements

Mobile advertisements differ from Internet advertisements because they can

be distributed not only via mobile webpages but can be integrated into native

applications by the developers. Different types of mobile advertisements

have emerged in the recent years, each of them using a specific distribution

1http://advertising.apple.com

CHAPTER 2. MOBILE ADVERTISING 13

channel in the mobile device. The Mobile Marketing Association (MMA)2

categorises the different advertisements distribution channels into five units:

Mobile Web, Text Messaging (SMS), Multimedia Messaging (MMS), Mobile

Video and TV, and Mobile Applications [19].

Mobile Web allows delivery of web content to users via a mobile web

browser. It is similar to PC-based Internet advertising, except that the ad-

vertisements have been tailored to meet the requirements of the mobile phone

(for example, the screen size). Typically, they are presented as banner or tex-

tual advertisements. Banner advertisements are images or animations placed

at the top or bottom of the mobile webpage. Text advertisements are text-

based links embedded anywhere on the webpage. In both cases, a user can

interact with the advertisement by clicking on it to obtain more information

about the product/service being advertised. Figure 2.2 shows an example of

a banner advertisement at the top of a webpage.

Text Messaging (SMS) allows users to communicate with one another

using short messages, usually up to 160-characters (text). Some brands may

use SMS to send advertisements to their consumers. Because of the wide

range of mobile devices that can send and receive SMSes advertisers can

reach a very large number of users. In some countries the consumer has to

opt-in to receive these SMS advertisements. Figure 2.3 shows an example of

an advertisement sent over an SMS.

Multimedia Messaging (MMS) is similar to an SMS, but instead of

just textual information, it also contains rich multimedia (images, audio or

video) content. Figure 2.4 shows an example of an image advertisement sent

over MMS.

Mobile Video and TV is similar to the television advertisements, where

video content is mixed with video advertisements, except in this case the

content is adapted to the constraints of a mobile device (such as, screen size,

memory). Like the television advertisements, the video advertisements in

mobile video are embedded either at the beginning, in the middle, or at the

end of the video content.

2it provides the technical specification for each type of mobile advertisement and also
provides recommendations on advertisement creation and delivery process.

CHAPTER 2. MOBILE ADVERTISING 14

Figure 2.2: An example
of mobile web
advertisement

Figure 2.3: An example
of SMS-based
advertisement

Figure 2.4: An example
of MMS-based
advertisement

Mobile Application’s advertisements are usually presented as a static

image or rich media banner, similar to the one in web pages. Nowadays, many

popular mobile games use in-app advertising as a method to monetize their

applications (e.g Angry Birds on Android). Figure 2.5 shows an example of

an in-app advertisement in a mobile game.

2.1.2 Pricing Models of Mobile Application

Mobile applications are sold in two ways: 1) directly by the developer’s web-

site, or 2) via an application market. With the emergence of the application

markets, self publishing of applications by a developer has fallen out of favour

in recent years (since 2009). The main reason is that the application market

provides important services like, discovery (indexing and cataloging), sign-

ing (security), billing and in some cases verification of quality (by the app

approval process). However, for these services, the application market takes

CHAPTER 2. MOBILE ADVERTISING 15

Figure 2.5: Angry Birds game displaying an advertisement in the bottom
right corner.

a fraction (≈ 30%) of the application sales. One major constraint for the

application developer selling an application via application market is that it

is priced once, i.e., the user buys the application and pays for it once, there

is no method for subscription payments (monthly/yearly). Alternatively, the

application is available for free of cost and the developer monetizes the appli-

cation by displaying advertisements. In this case, the application developer

shares the revenue (generated due to the engagement of the advertisement)

with the Ad Network.

The basic pricing models for mobile applications available nowadays are:

free applications (with advertisements), paid applications and in-app pur-

chases (e.g., Books inside the Kindle application on an iPhone or additional

levels/add ons in a game). Other ways to generate revenue from the applica-

tion are freemium subscriptions (e.g., Spotify or Netflix), where the mobile

application enables a service sold outside the application. Table 2.1 shows

the share of free compared to paid applications’ downloads. According to

Gartner, Inc [10] free applications account for 90% of the downloads in 2013

which clearly indicates that free applications dominate the market. In terms

of paid applications, 90% of the paid applications cost less than 3$ each.

While the market is moving toward free and lower priced applications in-app

purchase model should not be ignored. Gartner expects that the number

of downloads featuring in-app purchase will increase from 5 percent of total

CHAPTER 2. MOBILE ADVERTISING 16

downloads in 2011 to 30 percent in 2016.

2011 2012 2013 2014 2015 2016
Free Downloads 22,044 40,599 73,280 119,842 188,946 287,933
Paid Downloads 2,893 5,018 8,142 11,853 16,430 21,672
Free Downloads % 88.4% 89.0% 90.0% 91.0% 92.0% 93.0%

Table 2.1: Mobile App Store Downloads, Worldwide, 2010-2016 (Millions of
Downloads). Source: Gartner [10].

For the rest of the sub-section, we discuss in detail the advertising-based

pricing model. The mobile advertisements’ pricing model is similar to the

Internet-based advertising. There are generally three categories of pricing

models [3]:

• CPM (Cost per Thousand Impressions): the brand pays the Ad Net-

work every time the advertisement is displayed in any application.

• CPC (Cost per Click): the brand pays the Ad Network every time a

user interacts with the advertisement. Typically, an event is counted

as an interaction when the user clicks on the advertisement.

• CPA (Cost per Action): the brand pays the Ad Network every time a

user engages in an action after interacting with an advertisement. Typ-

ically, this happens when a user buys the advertised product/service

after seeing or clicking on the advertisement.

In practice the above pricing model works in the following way: the brand

allocates a daily budget for each type of engagement (impressions, click,

action) and it may prefer one over the others. The Ad Network takes the

allocated money into account when displaing the advertisements and stops

sending the advertisement to the application when any of the daily budget

targets (CPM, CPC, CPA) are met.

In all the cases, the Ad Network shares the revenue with the associated

application developer. For example, for each engagement (impression, click

and/or action) on the advertisement the Ad Network keeps a portion of the

cost for itself (e.g, 30%) and gives the rest to the publisher of the application.

CHAPTER 2. MOBILE ADVERTISING 17

2.1.3 Ad Networks

The Ad Network acts as an intermediary between the brands and the publish-

ers and provides multiple distribution channels to target the consumer. The

Ad Network stores the advertisement in its distribution servers and whenever

the mobile application requests an advertisement, the Ad Network delivers

the advertisement.

Currently, there are multiple mobile Ad Networks available to a publisher,

which means that the market is very fragmented and no Ad Network is

dominant. This is partly due to the fact that each mobile operating system

is linked to its own Ad Network. For example, Android uses AdMob, while

iOS uses iAd. Next, we give a short description of some of the most common

Ad Networks on the market.

AdMob is an advertising network owned by Google available for Android

and iOS platforms. It delivers advertisements to mobile webpages and mobile

applications. It charges based on CPC, CPM pricing model, or both and is

one of the advertising networks with the highest publisher base [8].

iAd is an advertising network created by Apple, and it is adopted only

on the iOS platform (for iPhone/iPad devices). It is the biggest advertising

network for the iPhone and iPad devices and uses either CPC or CPM pricing

model [8].

Millenia Media3 is an independent network, its main focus is a bit differ-

ent, because its primary goal is to create positive brand awareness. Millenia

Media publishers are among the Nielsen top 100 sites, meaning that they

have a quality publisher base and mainly uses CPM pricing model [8].

InMobi4 and MadHouse5 are mobile advertising networks for the Asian

market. InMobi is developed and widely used in India, while MadHouse is

prevalent in the Chinese market. Similar to the previous advertising net-

works, both of these advertisement networks implement advertisements for

mobile webpages and mobile applications, however both prefer mobile web-

pages and the CPC pricing model [8].

3http://www.millennialmedia.com
4http://www.inmobi.com
5http://www.madhouse.cn/cn/index.php?sid=

CHAPTER 2. MOBILE ADVERTISING 18

2.2 Advertisement Delivery Process

The Ad Network plays a central role in delivering advertisements, it uses the

following steps:

1. A brand creates an advertisement (such as, text, image, video) and

registers it with the Ad Network. It also sets a daily budget and the

preferred pricing model (CPC, CPM, CPA).

2. A publisher integrates the Ad Network ’s Software Development Kit

(SDK) to enable advertisements within its application. The publisher

also chooses the type of advertisement (typically, banner or interstitials)

to display in the application, and has no control over the content of the

advertisement. However, the actual content of the advertisement is

controlled by the Ad Network.

3. The SDK specifies the area and the size of the advertisement, maximum

and minimum interval for changing the advertisements (refresh inter-

val) and gathers information about the consumer to provide relevant

advertisements (targeting).

Targeted advertising is a type of advertising where advertisements are

sent based on various traits specific for the consumers [38]. In particu-

lar, Ad Networks send advertisements based on demographics (location

of the user), psyhogaphics (personality, values, attitudes, interests, and

lifestyles), behaviour habits (purchase history) or other personal infor-

mation that Ad Networks use to reach as many consumers as efficiently

as possible. Currently, Ad Networks receives this information with each

advertisement request as part of the HTTP message.

4. Next, the mobile application picks a refresh interval to routinely fetch

advertisements from the Ad Network. If the consumer interacts with

the displayed advertisement, the SDK collects the appropriate statistics

and updates the analytics.

CHAPTER 2. MOBILE ADVERTISING 19

Figure 2.6 shows the basic interaction between a mobile device and an

Ad Network. The mobile application integrates the advertisement container,

which requests advertisements from the Ad Network. The Ad Network con-

tains multiple servers to balance the load across multiple geographical loca-

tions, so that it is able to target the consumer in the best possible way. The

Ad Network also implements additional servers for collecting analytics about

the advertisements it serves.

Figure 2.6: Interaction between a mobile device and an Ad Network
(AdMob).

The Ad Network ’s SDK provides simple functions and methods that hide

the protocol and communication complexity from the developer. The SDK

also provides guidelines for better advertisement engagement, they are:

• How advertisements are embedded?: Most common form of ad-

vertisements inside mobile applications is the banner advertisement

and interstitials. Both advertisements are presented with an image

and text. Banner advertisements appear at the top or bottom of the

CHAPTER 2. MOBILE ADVERTISING 20

screen. However, the interstitials show up as full screen advertisements

when the user opens the application.

• Delivery method: The advertisements are delivered over Hypertext

Transfer Protocol (HTTP), using a Representational State Transfer

(REST) Application Programming Interface (API). Figure 2.7 shows

an example HTTP dialog between a mobile application and an adver-

tisement server. One can notice, that multiple HTTP requests/replies

are used for fetching an advertisement. Also, after each advertisement

request there is a time period of no activity, due to the refresh interval.

This refresh interval can cause costly transitions between the different

radio power modes as a result of staying in high radio state even after

the communication is over.

• Refresh rate/interval: Advertisements are fetched routinely by the

application at a defined interval, which indicates the time period be-

tween each advertisement request. This interval is normally set by the

publishers. For AdMob, the minimum refresh interval is 30s and the

maximum is 120s.

2.3 Challenges of Mobile Advertising

The main concerns of mobile advertising are privacy and security-related is-

sues [11, 25]. These issues have been studied extensively and mainly result

from inappropriate advertising practices such as, exposing private informa-

tions. One concrete example is that free applications on the Android market

use targeted and personalised advertising which takes advantage of user’s

private information (location, user’s contacts, messages) to send advertising

messages. If this private information is not transferred using a secure proto-

col (i.e., over HTTPS) then intermediate nodes can also see this information.

Also, if the databases that stores the private information are not adequately

protected, the data can be compromised.

CHAPTER 2. MOBILE ADVERTISING 21

Figure 2.7: HTTP communication between a mobile device and Ad
Network ’s servers for advertisement delivery. Modified from [37]

.

A number of studies [5, 9, 11, 17] have found that advertising has privacy

problems. In AdRisk [11] the authors found that most of the free applica-

tions on the Android market use 3rd-party advertising libraries, which upload

sensitive information aggressively (for example, call logs, address book and

browser bookmarks) to the advertising servers and run unsafe source code.

Similarly, authors of [17] noticed that some free applications on the market

request 2-3 times more permissions than paid ones, including user’s loca-

tion, contacts, and messages. [17] proposes to solve the problem by using

a privacy-protection mechanism based on feedback control loop that adjusts

the privacy level in response to advertisement generated revenue.

MobiAd [14] and PrivAd [13] on the other hand, suggest local profiling

of advertisements. The mobile phone gathers and stores user’s interests so

it can download advertisements that are only relevant to the user. The

advertisements are downloaded from a third party proxy which also takes

care of user’s clicks (to maintain anonymity of the user’s preferences). These

CHAPTER 2. MOBILE ADVERTISING 22

proposed solutions involve CPU-intensive cryptographic computations, which

on the mobile device directly affects the battery life. Also the communication

overhead increases as result of many network operations.

Chapter 3

Energy Implications of Mobile Ad-

vertising

In this chapter, we provide background information on energy concerns for

mobile devices, starting from battery limitations to identifying applications

and components that drain the battery. Additionally, we measure the energy

consumption of downloading, and rendering advertisements.

3.1 Background

Nowadays, mobile devices are like small computers, i.e., they are compu-

tationally powerful, have always-on Internet, more storage and sensing ca-

pabilities. These features encourages developers to create more engaging

applications but, they also consume more power and hence, limit the mobile

phone battery to few hours of operation. Unfortunately, in recent years, the

capacity of batteries has not evolved at the same rate as the other physical

components. Therefore, the only way to prolong the battery life is to build

energy-efficient applications and services. [36] suggests that the only way

to increase battery life is to implement energy-efficient mobile OS/platform,

smarter and less energy consuming resource management techniques and

energy-friendly applications.

One of the major energy consuming components in a mobile phone is the

23

CHAPTER 3. ENERGY IMPLICATIONS 24

network interface, i.e., transfering data over the network [2, 23, 26]. Hence,

mobile applications should consider using the network resources efficiently.

Another important consideration is the difference in energy consumption for

data transfer over WiFi and 3G networks. The main reason for the difference

in the energy consumption is the 3G tail-energy, which appears because the

3G network interface does not go to sleep and remains in higher power state

for several seconds after completing a data transfer [28]. To overcome the

3G’s high-tail energy consumption, [2] proposes to schedule data transfers

over low cost networks (e.g., GPRS and WiFi) instead of the 3G interface,

to minimise the overall time spent in high energy states when transferring

data.

Not just the network usage needs to be optimised but optimising at the

application-level also results in preserving battery. [35] shows that many

web pages and components (CSS, JavaScript, images) are rendered in an

inefficient manner which leads to an increase in battery consumption. [23, 24]

profiles applications and identifies the most energy consuming components

of an application. Their analysis of popular mobile games shows that 65-75%

of the total application energy is spent on advertisements, 20-30% on user’s

location (due to analytics), whereas, only 10-30% is spent on running the

core of the application.

[6, 17] found that the mobile advertising ecosystem is mainly based on

free mobile applications that use targeted advertising to generate revenues.

Because mobile applications transfer the advertisements in small and fre-

quent data transfers theres is an increase in the consumed energy. [39] found

that mobile applications that use advertisements seem to have higher energy

consumption than mobile applications who do not. [39] have tested ten ap-

plications on the Android Market and found that free applications seem to

generate more data overhead (advertisements + analytics) than paid applica-

tions (see Figure 3.1(a)). They describe the overhead traffic as a combination

of advertisements and analytics. While the advertisement traffic is related to

text, images or graphic content that is displayed when the application is used,

the analytics traffic refers to the smartphone data that is sent to third party

servers to analyse user’s behaviour. Beside that, [39] found that (see Fig-

CHAPTER 3. ENERGY IMPLICATIONS 25

(a) Overhead data of free and paid applications on Android.

(b) Extra energy consumption caused by overhead traffic on iPhone and Android.

Figure 3.1: Taken from [39].

ure 3.1 (b)) the overhead traffic generates as additional energy consumption

on the mobile device.

[16] and [2] propose a framework (CAMEO) that aims to preserve the de-

CHAPTER 3. ENERGY IMPLICATIONS 26

livery and display of mobile advertisements, while dramatically lowering the

advertisement related consumption of metered wireless bandwidth. CAMEO

acts as an intermediary solution between the mobile application and the Ad

Network and it uses caching and prefetching mechanisms. To ensure that

only the most relevant advertisements are requested, CAMEO uses a predic-

tion component for guessing the user’s context. Unfortunately, [16] does not

provide implementation and evaluation of its framework.

[37] analysed a day of advertising traffic containing 3 million subscribers.

Their analysis involve comparing advertising and aggregate traffic from the

users, obtaining frequency of advertisements and average number of requests

required for fetching an advertisement. Also, they measure the energy con-

sumption of delivering advertisements to a simple bogus mobile application.

Their results show that the advertising traffic is a significant fraction of the

total traffic of mobile users and that it increases the energy consumption of

the mobile device.

[37] also proposes a solution for reducing the energy consumed by ad-

vertisements (fetching and rendering) in mobile applications. Their solution

employs caching and pre-fetching custom made advertisements from their

proprietary advertising server. However, their implementation does not work

with existing advertising networks. A more suitable implementation would

be one that reduces energy consumption and integrates well with existing Ad

Networks (e.g., AdMob, iAd).

3.2 Evaluating Power Consumption of Ad-

vertisements

In this thesis, we aim to reduce the energy consumption in a backwards

compatible way. While the design of our proposal is similar to the proposed

by [37], it differs in implementation and therefore, the energy consumed

will be different. To provide a solid foundation to our proposal, we start

by establishing the performance of mobile applications by 1) evaluating 5

stand-alone games that use the network only to fetch advertisements, and 2)

CHAPTER 3. ENERGY IMPLICATIONS 27

varying the advertisement interval of a custom application.

It is important to note that, in this section, we use the term power instead

of energy when we specifically discuss results.

3.2.1 Methodology

We run our experiments on Samsung Galaxy1 mobile device with Android

OS v3.2. For the measurements, all background applications on the device

are turned off and no other Internet traffic is present, except the one gen-

erated from the advertisements. The only services running on the device

are the Android stock services, which uses 85MB from the available 300 MB

memory. To measure the energy consumption, we use a hardware tool, Power

Monitor[20]. For more details on energy measurements with Power Monitor

refer to Section 5.1.

It is important to note that, the results in this chapter are published

at [27].

3.2.2 Energy Consumption of Mobile Games

We evaluate the power consumption of 5 games: Angry Birds [29], Frag-

ger [18], Yoo Ninja [32], Skater Boy [31] and Ceramic [30]. The games are

published on the Android Market and use AdMob as the main Ad Network.

These games do not need to use the network interface actively except for

fetching advertisements. We measure the ∆PowerUsage by comparing the

power usage with and without advertisements and represents the power con-

sumed by the application to fetch advertisements.

Table 3.1 shows the power usage of the advertisements in the games.

We observe that the ∆PowerUsage increases for applications which fetch

more advertisements. For instance, Angry Birds (15%) and Fragger (15%),

utilise more power than Yoo Ninja (8%), Skater Boy (4%) and Ceramic (4%),

because the former set fetches more advertisements compared to the latter.

We also observe that in some cases the AdMob server frequently responds

1http : //www.samsung.com/global/microsite/galaxys/index2.html

CHAPTER 3. ENERGY IMPLICATIONS 28

Game ∆PowerUsage [in mW] % PowerUsage Total no. of No. of Ad Requests
(Min–Max) (Average) by Ads Ads Served denied by Ad Server

Angry Birds 110–136 (131) 15% 67–80 21–30
Fragger 157–225 (157) 15% 32–39 12–14

Yoo Ninja 70–158 (71) 8% 14–17 2–7
Skater Boy 40–53 (42) 4% 6–8 0–1

Ceramic 66–88 (43) 4% 6–7 0

Table 3.1: Average power consumption of advertisements in mobile games
over WiFi. The gameplay duration is 15 minutes.

to advertisement requests with an HTTP 304 (Resource Not Changed) Re-

sponse. When an application requests for advertisements with shorter refresh

intervals then allowed (e.g., every 10s instead of the minimum 12s), the Ad

Network responds with HTTP 304 Response, which means that the adver-

tisement content has not changed and new advertisement is not sent back.

We speculate that this happens when a user completes or resets a game level

quickly. The following are fraction of the HTTP requests that result in no new

advertisements: Angry Birds (37%), Fragger (35%), and Yoo Ninja (11%).

Figure 3.2 shows all the advertisement requests over time for Fragger, as well

as the successful (HTTP 200) and unsuccessful (HTTP 304) responses.

Figure 3.2: Advertisement Server responds with a HTTP 304 (Not
Changed) Response.

In Table 3.1, we compare fetching advertisements over 3G with WiFi. We

CHAPTER 3. ENERGY IMPLICATIONS 29

Game Ads Ads
over WiFi over 3G

Angry Birds 15% 27.7%
Yoo Ninja 8% 18.4%
Ceramic 4% 9.6%

Table 3.2: Comparison of average power consumption of advertisements
over 3G and WiFi network

.

observe that in some cases the power consumption for fetching advertisements

over 3G reaches up to 27% of the total application’s energy consumption.

This increase in energy consumption is due to: a) capacity dissimilarity, the

3G bandwidth is lower than WiFi, hence, downloading content takes more

time, attributing to higher power usage ; b) tail-energy, the 3G radio stays

in the high energy state for a longer duration before returning to the idle

state [28], this is particularly harmful when transferring small amounts of

data [2, 7].

3.2.3 Impact of Advertising Interval

We built a custom application to just fetch advertisements from the AdMob

servers. The application contains an advertisement slot at the bottom of the

screen, and no other components to avoid any additional CPU, network, or

memory overhead, which might affect the energy measurements. We mainly

use this methodology to accurately measure the energy cost of fetching and

displaying advertisement in the application. The advertisement slot size

used in all experiments is 480x800 pixels. Advertisements are requested with

specific refresh intervals (12-120 seconds) over WiFi and 3G networks. The

3G connection is a 1 Mbit/s connectivity from Elisa, whereas the WiFi is

connected to the Aalto university’s infrastructure.

Table 3.3 shows the average power consumed by the application to request

and display advertisements. We observe that for short refresh intervals, the

power consumed by the application is higher, while for long intervals it is

lower. In particular, when advertisements are fetched with a 30s refresh

CHAPTER 3. ENERGY IMPLICATIONS 30

Advertisement ∆PowerUsage [in mW] % PowerUsage Total No. of No. of Ad Requests
Frequency (Average) by Ads Ad Req. in 15 mins denied by Ad Server

every 12s 97 21% 75 17
every 15s 90 19% 60 9
every 30s 82 18% 30 5
every 45s 80 17% 20 0
every 60s 67 15% 15 0
every 90s 52 12% 10 0
every 120s 56 13% 7 0

Table 3.3: Average power consumption of advertisements in a baseline
application running for 15 minutes. Advertisements are downloaded over
3G network. The baseline power consumption for an application without
wireless and advertisements is about 370 mW. The total number of Ad
Requests include the requests that were denied by the AdMob Server.

interval, the power consumed is 82 mW, and when it is fetched with a 90s

interval, it is 52 mW.

3.2.4 Summary

To summarise, the current approach of delivering advertisements at fixed in-

tervals over a 3G network can be up to a quarter (27.7%) of the applications’

total power consumption. We also observe that the Ad Network occasion-

ally responds with a HTTP 304 (Resource Not Changed) when requesting

advertisements, which suggests that the application is needlessly requesting

for advertisements without actually receiving new ones.

Chapter 4

Energy Aware Solution for Mo-

bile Advertising

The current mobile ecosystem encourages publishers to use advertisements in

their mobile applications for the purpose of increasing their advertising rev-

enues. Many applications that do not require Internet connection as part of

the application, are turning to online applications where the Internet connec-

tion is necessary. In recent years, the advertisement traffic volume increased

significantly, nearly 1% of mobile users downloaded 2MB of advertisement

traffic data per day [37]. In Section 3.2.3 we show that the energy consump-

tion of receiving advertisements in mobile games can reach up to a quarter

of the total power consumption of the app.

In this chapter we propose an Energy Efficient Ad Network (eeAdNet-

work) that aims to reduce energy consumption for delivering advertisements

over the Internet. eeAdNetwork is compatible with existing Ad Networks

(i.e., AdMob for Android platform). In the following sections, we discuss the

eeAdNetwork ’s design and implementation in more details.

4.1 eeAdNetwork Design

eeAdNetwork is a middleware that aims to reduce the energy consumption

of delivering advertisements by 1) pre-fetching multiple advertisements in

31

CHAPTER 4. ENERGY AWARE SOLUTION 32

Figure 4.1: eeAdNetwork as a intermediary solution between the mobile
device and the Ad Network servers.

a single request and storing them in a local cache, and 2) serving appro-

priate (context relevant) advertisements from the local cache. Technically,

eeAdNetwork works between the mobile application and Ad Network. Fig-

ure 4.1 shows the eeAdNetwork positioned between the mobile device and

the Ad Network. Whenever a mobile application requests an advertisement,

eeAdNetwork intercepts the requests, and instead of fetching the advertise-

ment provides one from the local cache to the application. The eeAdNetwork

prefetches the advertisements from the Ad Network.

This proposed solution aims to solve three problems; First, reduce the

number of advertisement requests to a minimum without actually decreas-

ing the number of advertisements shown to the user. Second, generate an

appropriate advertisement from the local cache. Lastly, fill up the cache

with advertisements when WiFi (or GPRS instead of 3G/LTE) is enabled,

or when the network interface is actively used by another application.

To enable this, at first the eeAdNetwork intercepts all the HTTP re-

quests from the application, hence, the requests are received and interpreted

CHAPTER 4. ENERGY AWARE SOLUTION 33

by eeAdNetwork on the mobile device, instead of the Ad Network. Once

eeAdNetwork identifies an advertisement request, it responds with an adver-

tisement from the local cache (on the mobile device).

The eeAdNetwork can fill-up the cache with advertisements in multiple

ways: a) passively, b) actively, and c) opportunistically. To passively fill

the cache, the eeAdNetwork intercepts the advertisement requests but passes

them through, instead it intercepts the responses (containing advertisements)

and stores them in the cache. To clarify, the cache will store advertisements

only when the mobile application asks for an advertisement. Once the cache

is full, it intercepts the advertisement requests and sends the application an

advertisement from the local cache. Thus, in the passive case, advertisements

are fetched individually by the mobile application. This is particularly useful,

if the Ad Network does not allow fetching the advertisements in a burst.

To actively fill-up the cache, advertisements are downloaded concurrently,

usually when triggered by some action (i.e., the cache needs to be refreshed,

or cache is empty, or user-context changes). In this case, the advertisement

are fetched in a burst instead of one by one and multiple advertisements are

received in one network transfer.

To opportunistically fill-up the cache, the eeAdNetwork monitors the ac-

tivity on the network interfaces. If the network interface is being actively

used by another application, the eeAdNetwork uses this occasion to fetch ad-

vertisements from the Ad Network and this does not cause any penalty on the

energy savings because another application was already using the network

interface.

The advertisements stored in the cache are replayed multiple times. To

guarantee their freshness a Time To Live Value (TTL) is assigned to each

advertisement. When the TTL expires, the advertisement is removed from

the cache and new advertisement is requested from the Ad Network. If the

user-context changes (new geographical location), the cache can be flushed

and refreshed immediately by the eeAdNetwork. In this case the current

advertisement are deleted and new ones are downloaded.

User’s context is personal information gathered by the Ad Network, typ-

ically, the location, the types of applications installed, age-range, male or fe-

CHAPTER 4. ENERGY AWARE SOLUTION 34

male [16]. Ad Networks use this information to send targeted advertisements

or advertisements that are relevant to the current user. While location has

been demonstrated to affect the displayed advertisements for web applica-

tions [12], the range of context used for mobile devices is potentially much

larger. Therefore, eeAdNetwork should support targeted advertisements.

One way for eeAdNetwork to support targeted advertisements is by learn-

ing user’s context over time and predicting it. Another way is to track user’s

context changes and whenever there is a change in context information, the

eeAdNetwork flushes the cache and fetches new advertisements. However,

if the user’s context changes too often (user is driving), eeAdNetwork can

choose between two options: 1) caching - show the current advertisements

from the cache beside their irrelevance for the current location or 2) disable

caching - the application uses the standard approach of delivering advertise-

ments relevant to user’s context. The main trade-off is between both options

is the advertisement relevancy and energy savings.

4.2 eeAdNetwork Implementation

The design discusses the high-level concepts and features involved in eeAd-

Network. In this section, we discuss the implementation details of eeAdNet-

work. Figure 4.2 shows the complete eeAdNetwork system. It consists of two

parts: a) a mobile part and b) a server part.

The mobile part consists of the following components:

• Advertisement Selector component responsible for choosing advertise-

ments from the cache and sending it back to the requesting application.

• Local Cache component that stores advertisements on the filesystem of

the mobile phone.

• Advertisement Optimiser component that maintains and monitors the

Local cache. Advertisement Optimiser component is able to flush the

cache and fetch new advertisements in collaboration with the Ad Pre-

Fetch server.

CHAPTER 4. ENERGY AWARE SOLUTION 35

Beside these components, the mobile client also runs a socket server as a

background service. The service listens on a port for advertisement requests.

The server part mainly consists of an Ad Pre-Fetch server that acts as

a gateway between the mobile device and the Ad Network servers. It is

also capable of storing and prefetching advertisements from the Ad Network.

Additionally, the mobile part communicates with server part to fetch adver-

tisements in a burst because this feature is not yet implemented by the Ad

Networks.

Ads requesting application (Ads app) is any mobile application that re-

quests advertisements. For our experiments, we built a custom application

that requests advertisements at specific refresh intervals. The advertisement

refresh interval is configurable and adjusted in each of our experiment.

4.2.1 Interception

When the Ads app requests for an advertisement, the background service of

the eeAdNetwork intercepts and redirect the request to its local cache.

One way to implement this functionality is using a Web proxy that simply

inspects the target domain names (of the Ad Network) in the HTTP requests.

If the domain names involve any of the AdMob servers then it redirects the

message to the mobile phone instead of the AdMob servers. Implementing

this technique is fairly simple, however, there are implications on energy con-

sumption. A Web proxy consumes high CPU & network resources, therefore,

we use a simpler and more energy-efficient approach.

Rather than intercepting HTTP messages, we intercept DNS queries and

redirect them to our background application that handles them. We perform

the DNS redirects by modifying the host names mappings in the host names

file. On linux-based platforms this can be achieved easily by modifying the

/etc/hosts file, but for other platforms (e.g., Windows Mobile) using a

Web proxy might be easier choice. The details of the name mappings for

/etc/hosts file is explained in Section 5.1.

CHAPTER 4. ENERGY AWARE SOLUTION 36

4.2.2 Local Cache

Once the advertisement requests are intercepted and redirected, if the lo-

cal cache contains advertisements, the eeAdNetwork provides an appropriate

advertisement from the cache.

The cache is implemented as a hash map data structure stored in a file on

the persistent storage (filesystem) of the mobile phone. To prevent modifica-

tion or deletion by the mobile phone owner, the file is assigned with special

access rights (permissions). The file ownership and actions are only available

to the eeAdNetwork service and no other user. This way, the file can not be

viewed, modified or deleted by other users of the mobile device.

In eeAdNetwork, we implemented two approaches to fill-up the cache with

advertisements: passive and active. In the first case, the eeAdNetwork inter-

cepts advertisement requests made by the ads app and stores the advertise-

ments returned by the Ad Network into its cache. Therefore, the eeAdNet-

work only relays the advertisement requests to the Ad Network, but it stores

the HTTP responses (containing the actual advertisement). Finally when the

cache is full, the Advertisement Selector component picks an advertisement

from the cache and sends it to the ads app.

In the active case, Ad Optimiser component is used to pre-load the cache.

Since the AdMob platform does not allow fetching advertisements in a burst,

we implemented this feature as an add-on in our Ad Pre-Fetch Server. Cur-

rently, the AdMob platform only allows fetching advertisements at a fixed

interval, therefore, the Ad Pre-fetch Server, works on behalf of the user and

pre-fetches and stores the advertisements in the Ad Pre-fetch Server cache.

The Ad Optimiser collaborates with the Ad Pre-Fetch server, to fetch these

advertisements in a burst. To summarise, the Ad Pre-Fetch server downloads

and stores the advertisements using a fixed interval. And when requested by

the Ad Optimiser, it returns a group of advertisements in a burst.

The TTL value of the advertisements is represented with a numeric value

that is decreased every time an advertisements is shown to the user. When

TTL reaches zero, the cache replaces that specific advertisement with a new

one.

CHAPTER 4. ENERGY AWARE SOLUTION 37

4.2.3 Analytics and Targeting

The Ad Optimiser is capable of flushing the cache and requesting a new set of

advertisements from the Ad Pre-Fetch server. However, our system is not yet

deployed and is a proof of concept. Therefore, the advertisement targeting

is a work in progress that we discuss in Chapter 6.3.1.

CHAPTER 4. ENERGY AWARE SOLUTION 38

Figure 4.2: Integration of eeAdNetwork and eeAdNetwork components.

Chapter 5

Performance Evaluation

In this chapter, we evaluate the performance of our proposal, eeAdNetwork

and compare it with the standard approach. To measure the performance in

a controlled environment, we build a custom-made mobile application that

requests advertisements at specific intervals, we measure the power consump-

tion of this application when eeAdNetwork is enabled and disabled. Before

discussing the results, we present the methodology and the measurement

environment (hardware and software setup, power measurement tool).

5.1 Measurement Environment

All the experiments are performed on a Samsung Nexus S (developer’s ver-

sion) [33]. The technical specifications of the mobile device and the eeAdNet-

work Ad Pre-Fetch Server can be found in Table 5.1. Nexus S runs Android

4.1.2 Jelly Bean operating system.

Figure 5.1 shows the network topology, the smartphone runs the custom-

Nexus S MacBook Pro
OS Android 4.1.2 Jelly Bean OS X Mountain Lion 10.8
Processor 1 GHz Cortex-A8 Intel Core i5 2.5 GHz
RAM 512 MB 8GB of 1600MHz DDR3L
WiFi 802.11 b/g/n 802.11 a/b/g/n

Table 5.1: Devices used in the experiments.

39

CHAPTER 5. PERFORMANCE EVALUATION 40

Figure 5.1: A network topology of the devices.

made mobile application. The Ad Pre-Fetch Server that relays advertise-

ments requests/replies enables refreshing of the phone’s cache at once is run-

ning on the laptop machine. The mobile device uses WiFi or 3G network for

fetching advertisement. When WiFi is enabled on the device, cellular data

transfers are disabled, and, vice versa, to avoid the OS from automatically

switching between the radio interfaces. We use the Power Monitor [20] to

measure the power consumption of the device.

Android operating system is based on the Linux kernel, therefore access

to some low level services on the device requires administrator permissions1.

The main purpose for rooting the device is to allow administrator permission

for intercepting the advertisements by configuring IPTABLES2 and modify-

ing /etc/hosts.

To intercept the advertisement requests, we do the following: 1) imple-

ment a server socket on the mobile device that listens for traffic and 2)

we redirect all advertisement requests for the AdMob servers to the server

socket by resolving the DNS queries to it. We map the the AdMob’s host-

name to our server socket in hosts.txt file. For example, we map http:

1To root the Samsung Nexus S, follow the procedure documented in [21].
2http://www.netfilter.org/projects/iptables/

http://media.admob.com
http://media.admob.com
http://media.admob.com

CHAPTER 5. PERFORMANCE EVALUATION 41

localhost 127.0.0.1
127.0.0.1 media.admob.com
127.0.0.1 googleads.gdoubleclick.net
127.0.0.1 pagead2.googlesyndication.com
127.0.0.1 csi.gstatic.com

Table 5.2: Contents of /etc/hosts file on the smartphone.

//media.admob.com to 127.0.0.1, and hence, intercept and forward all ad-

vertisement requests for the AdMob servers to our server socket. The content

of the /etc/hosts file is shown in Table 5.2.

Additionally, the requests intercepted by /etc/hosts file is by default

sent to port 80. We use IPTABLES to forward these requests to our server

socket listening on a specific port (8080) [22]:

$iptables -t nat -A OUTPUT -p tcp --dport 80 --to-destination:127.0.0.1:8080

Figure 5.2: Power Monitor hardware device connected to a mobile phone to
measure energy consumption. Taken from [20]

We use the Power Monitor [20] hardware device to measure the mobile

phone’s energy consumption. The Power Monitor is a robust and efficient

tool that can measure power (in mW), current (in mA), voltage (in V),

and consumed energy (in uAh) for any mobile device. The Power Monitor

measures power by directly connecting to the mobile device’s battery com-

http://media.admob.com
http://media.admob.com

CHAPTER 5. PERFORMANCE EVALUATION 42

Figure 5.3: Power Tool user interface displaying current energy details
(power and current).

partment with copper wires (see Figure 5.2). In particular, the battery of

the the mobile phone is bypassed, and the power terminals of the mobile

device are directly connected to the power supply of the Power Monitor.

Consequently, the phone is powered by the Power Monitor instead of its own

battery. Power Monitor measures energy (all related metrics) at a resolution

of 200 microseconds.

The Power Monitor hardware is complemented with measurement soft-

ware that shows the measured power with graphs and tabular data. Fig-

ure 5.3 shows an example of power (blue line) and current (red line) con-

sumption in mW and mA, respectively. In addition to the graphical repre-

sentation of the measured data, Power Tool software can also export the data

in comma-separated values (CSV) files that can be later used for analysis.

5.2 Methodology

We implement a custom-made application that fetches advertisements at

fixed intervals. To evaluate the power consumption of eeAdNetwork we mea-

sure the power consumption of the custom-made application when 1) eeAd-

Network is enabled (caching on), and 2) eeAdNetwork is disabled (caching

CHAPTER 5. PERFORMANCE EVALUATION 43

off). We use 30, 60 and 90s refresh intervals and run each experiment for 1

hour. Additionally, we run each experiment over WiFi and 3G to measure

the impact of these access technologies on the energy consumption.

It is important to note that our main goal is not to change the current

way of showing advertisements. We do not build new Ad Network, but we

propose and implement a backwards compatible solution that works with

existing Ad Networks (e.g., AdMob on Android) and that aims to make

advertising energy-efficient.

5.3 Choosing the right cache size

In our earlier experiments with mobile games (See Section 3.2.2), we observe

that the AdMob Server repeatedly responds with an HTTP 304 (Content

Not Changed) when requesting advertisements. Moreover, while running our

experiments, we observed that the advertisements were not changing often

and the same advertisement was shown multiple times. To verify, we run the

custom-made application with varying advertisement refresh interval for 12

hours while the eeAdNetwork keeps track of the advertisement requests and

responses.

Figure 5.4: An example of an HTTP response header used for discovering
unique advertisements.

Our analysis of the logs shows that the eeAdNetwork receives 120 adver-

CHAPTER 5. PERFORMANCE EVALUATION 44

tisement requests per hour, from which only 8 are unique. Therefore, we set

the cache size of eeAdNetwork to 8 advertisements. At the end of each hour

the cache is flushed and 8 new advertisements are requested from the Ad

Pre-Fetch Server. During the hour, the advertisements are replayed equal

number of times.

An example of detecting unique advertisements is shown in Figure 5.4.

We detect the unique advertisements by parsing the HTTP response header

and note the adurl.

5.4 Results

The results of the experiments show the comparison of the energy consump-

tions of the custom-made mobile application when the eeAdNetwork is dis-

abled (no caching) and when it is enabled (caching is on). Furthermore, we

test the performance of passive and active caching strategies.

5.4.1 Baseline

Table 5.3 shows the baseline power values of Samsung Nexus S in suspended,

idle and active modes. The suspended and idle values refer to the power

mode of the device e.g., the suspended mode of the phone is when the back-

light is switched off (no visible display activity), while idle mode is when

the backlight is switched on. The active mode is when the custom made

application is running in the foreground, but in this case is not fetching ad-

vertisements. These values for the active mode aim to describe the minimum

power usage of the mobile application running in the foreground, without any

CPU or network activity. We observe that when the mobile device is in idle

mode the power consumption is higher than in suspended mode. This is as

result of the high power consumption that the display consumes. Also, we

observe that higher display brightness leads to higher power consumption.

Similar observations are found in the work of [4, 26]. The values for all modes

are very similar for 3G and WiFi network because network connectivity is

not used.

CHAPTER 5. PERFORMANCE EVALUATION 45

Baseline Power usage Power usage
3G [mW] WiFi [mW]

Suspended 26 (22.0) 32 (19.6)
Idle (Min Brigthness) 617 (8.7) 633 (3.9)
Idle (Max Brigthness) 1199 (14.3) 1196 (7.6)
Application in foreground 965 970

Table 5.3: Average baseline values of Samsung Nexus S. In brackets, the
standard deviation.

Advertisement Power usage Power usage
Frequency 3G [mW] WiFi [mW]
every 30 sec 1204 (52.2) 1029 (7.7)
every 60 sec 1102 (17.1) 1026 (11.4)
every 90 sec 1065 (24.5) 1015 (14.9)
every 120 sec 1061 (14.3) 1029 (39.9)

Table 5.4: Average power consumption of a custom-made application that
fetches advertisements at specific intervals. In brackets, the standard

deviation.

We measure the energy consumption of the custom-made mobile appli-

cation when eeAdNetwork is disabled (no caching). The application uses

the following advertisement refresh intervals: 30s, 60s, 90s and 120s. These

intervals determin the number of advertisements downloaded in an hour.

For example, using a 30s advertisement refresh interval the application will

request 120 advertisements in an hour. While using a 120s advertisement

refresh interval the application will request 30 advertisements in the same

period. Therefore, the variation in energy consumption of the application is

directly related to the advertising interval or the number of advertisement

requests. The Table 5.4 shows that the power consumption is higher when

requesting more advertisements and lower when requesting fewer advertise-

ments. It also shows that the power consumption for 3G is much higher than

in the WiFi case, mainly due to the 3G tail-energy. The results in Table 5.4

are different from the one in Section 3.2.3 because they use different devices

with different hardware specifications (CPU, memory).

CHAPTER 5. PERFORMANCE EVALUATION 46

5.4.2 Passive Cache

In passive caching the application requests the advertisements independently

and the cache relays the requests until 8 unique advertisements are down-

loaded after which it replays the advertisements from the cache. The time

required to download 8 advertisements varies for the different refresh inter-

vals (30, 60 or 90). Figure 5.5 shows the results from passive caching, where

we observe that the power consumption of passive caching is lower than no

caching.

We also evaluate the performance of the passive cache when using 3G

(see Figure 5.5 (a)) and WiFi (see Figure 5.5 (b)). The power savings in

the 3G case are much higher because after the cache is filled up, the cache

avoids the penalty of 3G tail-energy. While the power savings in the WiFi

case are much lower than the 3G case, they are still important because the

cache avoids fetching extra advertisements. Therefore, we conclude that

eeAdNetwork enables higher energy savings for 3G than for WiFi, and in

general the passive cache lowers energy consumption.

5.4.3 Active Cache

In active caching the cache is flushed and refreshed in the background, there-

fore advertisements are already pre-loaded in the cache. Whenever an appli-

cation requests for advertisement, it is replayed from the cache immediately.

Figure 5.6 shows the results of active cache experiments. As expected the

results show that the energy consumption of the mobile application using

active caching is lower than without caching.

As before with passive caching, we observe that the energy consumption

of active caching is much lower for 3G, than for WiFi, because in this case

the advertisements are fetched in a burst and it bears the penalty of 3G tail

energy only once.

CHAPTER 5. PERFORMANCE EVALUATION 47

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

30s 60s 90s

Av
er

ag
e

Po
w

er
 [m

w
]

Advertisement Referesh Interval [s]

Passive cache
No cache

(a) Mobile Network (3G).

 985

 990

 995

 1000

 1005

 1010

 1015

 1020

 1025

 1030

30s 60s 90s

Av
er

ag
e

Po
w

er
 [m

w
]

Advertisement Referesh Interval [s]

Passive cache
No cache

(b) Mobile Network (WiFi).

Figure 5.5: Average power consumption of the custom-made application in
passive mode.

CHAPTER 5. PERFORMANCE EVALUATION 48

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

30s 60s 90s

Av
er

ag
e

Po
w

er
 [m

w
]

Advertisement Referesh Interval [s]

Active cache
No cache

(a) Mobile Network (3G).

 985

 990

 995

 1000

 1005

 1010

 1015

 1020

 1025

 1030

30s 60s 90s

Av
er

ag
e

Po
w

er
 [m

w
]

Advertisement Referesh Interval [s]

Active Cache
No cache

(b) Mobile Network (WiFi).

Figure 5.6: Average power consumption of the custom-made application in
active mode.

CHAPTER 5. PERFORMANCE EVALUATION 49

 960

 980

 1000

 1020

 1040

30s 60s 90s

Av
er

ag
e

Po
w

er
 [m

w
]

Advertisement Referesh Interval [s]

Passive cache
Active cache

(a) Mobile Network (3G).

 960

 980

 1000

 1020

 1040

30s 60s 90s

Av
er

ag
e

Po
w

er
 [m

w
]

Advertisement Referesh Interval [s]

Passive cache
Active cache

(b) Mobile Network (WiFi).

Figure 5.7: Comparison of power usage of active and passive caching in
eeAdNetwork.

CHAPTER 5. PERFORMANCE EVALUATION 50

5.4.4 Passive vs. Active Caching

In active caching, the eeAdNetwork fetches the 8 advertisements at once,

while in for passive caching it waits for the application to fetch the advertise-

ments. Therefore, the energy consumption in the passive cache is dependent

on the advertising refresh interval. Figure 5.7 compares the power consump-

tion of the active and passive caches over WiFi and 3G network access. We

clearly note that the power consumption due to active caching does not vary

too much across advertisement refresh intervals, while the power consump-

tion due to passive caching decreases with increasing advertisement refresh

interval.

To conclude, by using caching the eeAdNetwork reduces energy consump-

tion. We observe that the advertisements account for up to 4% of the appli-

cation power consumption when eeAdNetwork is enabled and 25% when it is

disabled.

Chapter 6

Discussion

In this chapter, we summarise the results and compare it to results obtained

by previous research work. Additionally, we discuss the limitation of our

current solution, possible solutions and considerations for deploying eeAd-

Network.

6.1 Summing up the Results

From the results obtained in this thesis we make the following conclusions:

• We show that advertisements use up to 27% of application’s total en-

ergy consumption when fetching advertisements at fixed intervals.

• We implemented our own solution - eeAdNetwork that improves the

energy consumption and the advertisements only account for 4% of the

application’s total power consumption.

• We show that AdMob sends only 8 unique advertisements per hour and

configure eeAdNetwork to cache 8 advertisements per hour.

• Active cache allows higher energy savings than passive cache.

It is important to note that the experiments performed in this thesis cover

only the Android and AndMob platform. While our solution can be ported to

51

CHAPTER 6. DISCUSSION 52

other platforms, the energy consumption is expected to be different. Using a

different advertising network (not AdMob) may also result in different results,

if the advertising network behaves differently.

6.2 Comparison to other published results

Many papers [2, 16, 17] discuss energy concerns of mobile advertising, but do

not provide an implementation of their solutions. [37] on the other hand, pro-

poses and implements a caching and pre-fetching solution (called AdCache)

that preserves energy in mobile advertising. [37] found that AdCache halves

the power consumption of the application while using a 20s refresh interval.

There are key differences between AdCache and our proposal eeAdNet-

work : First, AdCache is not compatible with existing Ad Networks, it pro-

poses its own Ad Network with its own mechanisms for delivering advertise-

ments. eeAdNetwork on the other hand, is a backwards compatible solution

and works with the current Ad Network. Also, eeAdNetwork uses AdMob’s

existing functionality for delivering advertisements to the device, but it im-

plements energy-efficient add-ons or mechanisms for fetching and displaying

advertisements inside mobile applications. Second, AdCache uses a bogus

server for delivering advertisements to the mobile device. However, the au-

thors do not clarify how these advertisements are requested and delivered to

the device. The main open issue is: does the AdCache use single or multiple

HTTP requests to fetch the advertisements? are the advertisements concate-

nated in one HTTP message? [37]. This information is rather crucial to

compare to our design, because if AdCache uses only one server to deliver

advertisements and only one request to achieve it, their results differs from

AdMob’s which requires multiple HTTP messages to download a single ad-

vertisement (as observed in Section 2.2).

For this reasons, we can conclude that AdCache and eeAdNetwork are

actually different architectures based on different implementations and there-

fore the results are not comparable.

CHAPTER 6. DISCUSSION 53

6.3 Limitations

In this section, we list the main limitations of eeAdNetwork :

User’s context change: the eeAdNetwork design is capable of handling

user’s context change (see Section 6.3.1) but the current implementation

ignores the changes in user’s context and refreshes the cache every hour.

Therefore, if user’s context changes (e.g., the location, application, etc.) the

eeAdNetwork keeps sending the cached advertisements which may not be

most appropriate advertisement for that location. While the implementation

is easily fixed, the caching strategies require some further study and analysis.

Administrator privileges: The interception and redirection of adver-

tisement messages on the mobile device are implemented using a low level

commands and techniques that require root access on the device. This is one

limitation that users would face if they are deploying our solution on their

devices. However, this concern goes away if eeAdNetwork is incorporated

into AdMob.

Number of advertisements to cache: eeAdNetwork caches 8 adver-

tisements, this valus was picked by running a simple experiment. However,

this requires further study, but this value is configurable. Alternatively, this

can be configured by the Ad Netowrk (e.g., by AdMob).

6.3.1 Changing User’s context

User’s context is normally related to personal information that is important

to the Ad Network for targeting advertisements. Currently, AdMob receives

user’s context with each advertisement request as part of the HTTP request.

AdMob takes this context information and decides if it needs to respond

with a new advertisement. For example, AdMob will send an advertisement

containing information for a store in a shopping mall, whenever the user is

at the shopping mall.

According to [16], served advertisements in mobile application are based

on the following context data:

• Mobile network in use (evidence by advertisements suggesting switching

CHAPTER 6. DISCUSSION 54

to different carrier).

• Application in use (evidenced by advertisements for other products

from the developer).

• Model of the phone in use (evidenced by the advertisements for newer

phones).

• Location of the user, on city-level granularity (evidenced by advertise-

ments for an event in the city).

For the purpose of displaying the most relevant advertisements to the

users, we have considered the following changes to eeAdNetwork :

Mobile network in use: If the mobile network changes (e.g., WiFi to

3G), eeAdNetwork will wait a few minutes before flushing and refreshing the

cache with new advertisements relevant to the current network. We speculate

that the switching between networks does not occur at short timescales,

therefore this would not cause any major energy side effects.

Application in use: If the category of the mobile applicaiton in use

changes1, eeAdNetwork would update the cache again with relevant adver-

tisements.

Model of the phone: on a new phone, the cache will download adver-

tisements appropriate for it.

Location of the user is the most important context data, because Ad

Networks use it to send relevant advertisements to the users. eeAdNetwork

can receive user’s location information from two sources: 1) the device and

2) the mobile network. On the device, the GPS sensor or Android’s Passive

Location Provider2 provides location information. In addition, the Ad Net-

work can query services like, Skyhook3 to keep track of the user. By using

Skyhook, the mobile phone saves one HTTP request. Obtaining location in-

formation from the device (GPS & Android’s Passive Location Provider) is

the most convenient way, however it is also the more energy consuming cite.

1the category is typically available in the metadata of the application store
2AndroidÕs PassiveLocationProvider reports location changes ob- tained from A-GPS
3http://www.skyhookwireless.com

CHAPTER 6. DISCUSSION 55

Therefore, the best approach for eeAdNetwork is to obtain location infor-

mation from the GPS sensor or the Android’s Passive Location Provider only

if thye are active. If either option is unavailable, eeAdNetwork would use a

service similar to Skyhook for positioning. Once the location information is

obtained, eeAdNetwork updates the cache. If the user is moving (in a car or

bus), their location is changing rapidly, however, this requires further study

because the cache does not know the range for which the advertisement is

valid. This range information for each advertisement needs to be shared

between the cache and the Ad Network.

To keep the cache fresh and filled with relevant advertisements to the

user’s location and maintain low energy consumption, we need to answer the

following questions:

• How quickly does the user move on average: walking, driving.

• What is the location specification required by the Ad Networks : city

level granularity, region level granularity or latitude and longitude.

6.4 eeAdNetwork in the Real World

So far we have implemented a prototype solution that can be deployed as

is, with minor modifications. eeAdNetwork ’s current implementation can be

modified to run on various mobile devices and to support increase in user

traffic (scalability).

In the current mobile advertising eco-system eeAdNetwork can be de-

ployed by different entities: a) Ad Networks b) mobile service operators and

c) mobile phone users. Ad Networks can integrate the mobile side of eeAd-

Netowrk (interception and caching) within their SDK. To implement the

interception, the Ad Network can redirect all the advertising requests to the

background service on the mobile phone. The server side of eeAdNetwork

can be added to the existing Ad Network servers that can easily share in-

formation (for e.g., user’s-context, advertisement preference, etc.) with the

eeAdNetwork mobile component.

CHAPTER 6. DISCUSSION 56

Mobile operators can integrate eeAdNetwork with their current advertise-

ment platform. The necessary modifications (/etc/hosts and IPTABLE)

for interception and redirection of advertisement traffic on the mobile device

can be configured by the operator before selling the device to the user. The

server side of eeAdNetwork can work as a gateway as detailed in this thesis

or integrated into their Ad Network.

Lastly, eeAdNetwork can be run by a third party or by the user’s them-

selves. Users will need to download and install the eeAdNetwork application

(running the background service, cache and communication to the Ad Net-

work) from the application store. To make the intercepting work, users will

have to root their devices [21]. The server side service can run in the public

cloud (e.g., Amazon EC2) and communicate directly with the existing Ad

Networks (e.g., AdMob).

Chapter 7

Conclusions

In this thesis, we discuss the impact of mobile phone advertisements on

the phone’s battery. We focus on mobile applications that use the Internet

connection mainly for fetching advertisements, for example, mobile arcade

games do not necessarily require Internet connectivity and only use it to

fetch advertisements. Currently, applications use a fixed interval to fetch

advertisements, typically, at 30s, 60s, 90s, 120s intervals. We investigate the

power consumed by advertisements in 5 popular mobile games and observe

that the advertisements consume from 9%–27% of the application’s total

power consumption. The variation in power consumption of the different

applications is due to the use of different refresh intervals.

Since, accessing advertisements over 3G and WiFi interfaces should re-

sult in different amount of power consumption, we observe that delivering

advertisements at fixed intervals can consume up to 27% of the application’s

total energy consumption over 3G and 15% over WiFi. We also observe that

the advertisement server routinely responds with the same advertisement,

which suggests that the application is needlessly requesting for more adver-

tisements. Consequently, we observe that the advertisement server sends

roughly 8 unique advertisements/hour, i.e., an application requesting adver-

tisements at 30s intervals receives, sends 120 requests in an hour but receives

only 8 unique advertisements.

To reduce the energy consumption, we propose and implement a eeAd-

57

CHAPTER 7. CONCLUSIONS 58

Network, a transparent cache that intercepts the advertisement requests and

caches the response on the mobile phone. Thereafter, all forthcoming re-

quests are served from the local cache. The number of advertisements cached

in the eeAdNetwork is configurable, but our implementation caches 8 new

advertisements/hour. At the end hour, the cache is refreshed with new ad-

vertisements from the advertisement server. Our results show that by using

the eeAdNetwork the share of the power consumption for delivering adver-

tisements drops from 25% to ≈ 4%.

These are preliminary results and are focused on a custom made appli-

cation, for more detailed analyses the experiments with eeAdNetwork should

be run on mobile games published on the market. This is left as a task for

future work.

Bibliography

[1] Armand, M., and Tarascon, J.-M. Building better batteries. Na-

ture 451, 7179 (2008), 652–657.

[2] Balasubramanian, N., Balasubramanian, A., and Venkatara-

mani, A. Energy consumption in mobile phones: a measurement

study and implications for network applications. In Proceedings of the

9th ACM SIGCOMM conference on Internet measurement conference

(2009), ACM, pp. 280–293.

[3] Bureau, I. A. Iab platfrom status report: A mobile advertising

overview. webpage, July 2008. http://www.iab.net/media/file/moble_

platform_status_report.pdf/. Accessed 13.3.2013.

[4] Carroll, A., and Heiser, G. An analysis of power consumption

in a smartphone. In Proceedings of the 2010 USENIX conference on

USENIX annual technical conference (2010), pp. 21–21.

[5] Chin, E., Felt, A. P., Greenwood, K., and Wagner, D. An-

alyzing inter-application communication in android. In Proceedings of

the 9th international conference on Mobile systems, applications, and

services (2011), ACM, pp. 239–252.

[6] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J.,

McDaniel, P., and Sheth, A. N. Taintdroid: an information-flow

tracking system for realtime privacy monitoring on smartphones. In

Proceedings of the 9th USENIX conference on Operating systems design

and implementation (2010), pp. 1–6.

59

http://www.iab.net/media/file/moble_platform_status_report.pdf/
http://www.iab.net/media/file/moble_platform_status_report.pdf/

BIBLIOGRAPHY 60

[7] Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S.,

and Estrin, D. A first look at traffic on smartphones. In Proceedings of

the 10th ACM SIGCOMM conference on Internet measurement (2010),

ACM, pp. 281–287.

[8] Favell, A. mobithinking guide to mobile advertising networks (2012).

webpage, 2012. http://mobithinking.com/mobile-ad-network-guide/.

Accessed 13.3.2013.

[9] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner,

D. Android permissions demystified. In Proceedings of the 18th ACM

conference on Computer and communications security (2011), ACM,

pp. 627–638.

[10] Gartner, Inc. Gartner says free apps will account for nearly 90

percent of total mobile app store downloads in 2012, 2012. http:

//www.gartner.com/newsroom/id/2153215. Accessed 20.6.2013.

[11] Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R. Unsafe

exposure analysis of mobile in-app advertisements. In Proceedings of the

fifth ACM conference on Security and Privacy in Wireless and Mobile

Networks (2012), ACM, pp. 101–112.

[12] Guha, S., Cheng, B., and Francis, P. Challenges in measuring

online advertising systems. In Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement (2010), ACM, pp. 81–87.

[13] Guha, S., Reznichenko, A., Tang, K., Haddadi, H., and Fran-

cis, P. Serving ads from localhost for performance, privacy, and profit.

In Proceedings of the 8th Workshop on Hot Topics in Networks (Hot-

Nets? 09), New York, NY (2009).

[14] Haddadi, H., Hui, P., and Brown, I. Mobiad: private and scalable

mobile advertising. In Proceedings of the fifth ACM international work-

shop on Mobility in the evolving internet architecture (New York, NY,

USA, 2010), MobiArch ’10, ACM, pp. 33–38.

http://mobithinking.com/mobile-ad-network-guide/
http://www.gartner.com/newsroom/id/2153215
http://www.gartner.com/newsroom/id/2153215

BIBLIOGRAPHY 61

[15] Inc., G. Worldwide Mobile Phone Sales. http://www.gartner.com/

newsroom/id/2335616. Accessed 10.04.2013.

[16] Khan, A. J., Subbaraju, V., Misra, A., and Seshan, S. Mitigat-

ing the true cost of advertisement-supported free mobile applications.

In Proceedings of the Twelfth Workshop on Mobile Computing Systems

& Applications (2012), ACM, p. 1.

[17] Leontiadis, I., Efstratiou, C., Picone, M., and Mascolo, C.

Don’t kill my ads!: balancing privacy in an ad-supported mobile ap-

plication market. In Proceedings of the Twelfth Workshop on Mobile

Computing Systems & Applications (New York, NY, USA, 2012),

HotMobile ’12, ACM, pp. 2:1–2:6.

[18] Miniclip.com. Fragger. https://play.google.com/store/apps/

details?id=com.miniclip.fraggerfree.

[19] Mobile Marketing Association (MMA. Mobile Advertis-

ing Guidelines. http://www.mmaglobal.com/files/mmaglobal.com/file/

mobileadvertising.pdf. Accessed 10.04.2013.

[20] Monsoon Solutions Inc. Mobile Device Power Monitor Man-

ual. http://msoon.github.io/powermonitor/PowerTool/doc/Power%

20Monitor%20Manual.pdf. Accessed 10.04.2013.

[21] Nexus S Hacks. How to Root Nexus S and Nexus S 4G on ICS, Gin-

gerbread, or Jelly Bean! http://nexusshacks.com/nexus-s-root/

how-to-root-nexus-s-or-nexus-s-4g-on-ics-or-gingerbread/

#comment-6216. Accessed 10.04.2013.

[22] nixCraft. Linux iptables: Port Redirection. http://www.cyberciti.

biz/faq/linux-port-redirection-with-iptables/.

[23] Pathak, A., Hu, Y. C., and Zhang, M. Where is the energy spent

inside my app?: fine grained energy accounting on smartphones with

eprof. In Proceedings of the 7th ACM european conference on Computer

Systems (2012), ACM, pp. 29–42.

http://www.gartner.com/newsroom/id/2335616
http://www.gartner.com/newsroom/id/2335616
https://play.google.com/store/apps/details?id=com.miniclip.fraggerfree
https://play.google.com/store/apps/details?id=com.miniclip.fraggerfree
http://www.mmaglobal.com/files/mmaglobal.com/file/mobileadvertising.pdf
http://www.mmaglobal.com/files/mmaglobal.com/file/mobileadvertising.pdf
http://msoon.github.io/powermonitor/PowerTool/doc/Power%20Monitor%20Manual.pdf
http://msoon.github.io/powermonitor/PowerTool/doc/Power%20Monitor%20Manual.pdf
http://nexusshacks.com/nexus-s-root/how-to-root-nexus-s-or-nexus-s-4g-on-ics-or-gingerbread/#comment-6216
http://nexusshacks.com/nexus-s-root/how-to-root-nexus-s-or-nexus-s-4g-on-ics-or-gingerbread/#comment-6216
http://nexusshacks.com/nexus-s-root/how-to-root-nexus-s-or-nexus-s-4g-on-ics-or-gingerbread/#comment-6216
http://www.cyberciti.biz/faq/linux-port-redirection-with-iptables/
http://www.cyberciti.biz/faq/linux-port-redirection-with-iptables/

BIBLIOGRAPHY 62

[24] Pathak, A., Hu, Y. C., Zhang, M., Bahl, P., and Wang, Y.-

M. Fine-grained power modeling for smartphones using system call

tracing. In Proceedings of the sixth conference on Computer systems

(2011), ACM, pp. 153–168.

[25] Pearce, P., Felt, A. P., Nunez, G., and Wagner, D. Addroid:

Privilege separation for applications and advertisers in android. In Pro-

ceedings of the 7th ACM Symposium on Information, Computer and

Communications Security (2012), ACM, pp. 71–72.

[26] Perrucci, G., Fitzek, F., and Widmer, J. Survey on energy con-

sumption entities on the smartphone platform. In Vehicular Technology

Conference (VTC Spring), 2011 IEEE 73rd (2011), IEEE, pp. 1–6.

[27] Prochkova, I., Singh, V., and Nurminen, J. K. Energy cost

of advertisements in mobile games on the android platform. In Next

Generation Mobile Applications, Services and Technologies (NGMAST),

2012 6th International Conference on (2012), IEEE, pp. 147–152.

[28] Qian, F., Wang, Z., Gerber, A., Mao, Z. M., Sen, S., and

Spatscheck, O. Characterizing radio resource allocation for 3g net-

works. In Proceedings of the 10th ACM SIGCOMM conference on Inter-

net measurement (New York, NY, USA, 2010), IMC ’10, ACM, pp. 137–

150.

[29] Rovio Mobile. Angry Birds. https://play.google.com/store/apps/

details?id=com.rovio.angrybirds.

[30] Runnergames. Ceramic Destroyer. https://play.google.com/store/

apps/details?id=com.game.CeramicDestroyer.

[31] Runnergames. Skater Boy. https://play.google.com/store/apps/

details?id=com.game.SkaterBoy.

[32] Runnergames. Yoo Ninja! Free. https://play.google.com/store/

apps/details?id=com.RunnerGames.game.YooNinja_Lite.

https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.game.CeramicDestroyer
https://play.google.com/store/apps/details?id=com.game.CeramicDestroyer
https://play.google.com/store/apps/details?id=com.game.SkaterBoy
https://play.google.com/store/apps/details?id=com.game.SkaterBoy
https://play.google.com/store/apps/details?id=com.RunnerGames.game.YooNinja_Lite
https://play.google.com/store/apps/details?id=com.RunnerGames.game.YooNinja_Lite

BIBLIOGRAPHY 63

[33] Samsung. Nexus S Android Smartphone. http://www.samsung.com/

us/mobile/cell-phones/GT-I9020FSTTMB. Accessed 10.04.2013.

[34] Smaato. The mobile advertising ecosystem. webpage, Au-

gust 2010. http://www.smaato.com/media/Smaato_WhitePaper_Mobile_

Advertising_Ecosystem_082010.pdf/. Accessed 13.3.2013.

[35] Thiagarajan, N., Aggarwal, G., Nicoara, A., Boneh, D., and

Singh, J. P. Who killed my battery?: analyzing mobile browser energy

consumption. In Proceedings of the 21st international conference on

World Wide Web (2012), ACM, pp. 41–50.

[36] Vallina-Rodriguez, N., and Crowcroft, J. Energy management

techniques in modern mobile handsets. Communications Surveys & Tu-

torials, IEEE, 99 (2012), 1–20.

[37] Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunen-

berger, Y., Papagiannaki, K., Haddadi, H., and Crowcroft,

J. Breaking for commercials: Characterizing mobile advertising. In

Proceedings of the 2012 ACM conference on Internet measurement con-

ference (2012), ACM, pp. 343–356.

[38] Wikipedia. Targeted Advertising. http://en.wikipedia.org/wiki/

Targeted_advertising. Accessed 10.04.2013.

[39] Zhang, L., Gupta, D., and Mohapatra, P. How expensive are

free smartphone apps? SIGMOBILE Mob. Comput. Commun. Rev. 16,

3 (Dec. 2012), 21–32.

http://www.samsung.com/us/mobile/cell-phones/GT-I9020FSTTMB
http://www.samsung.com/us/mobile/cell-phones/GT-I9020FSTTMB
http://www.smaato.com/media/Smaato_WhitePaper_Mobile_Advertising_Ecosystem_082010.pdf/
http://www.smaato.com/media/Smaato_WhitePaper_Mobile_Advertising_Ecosystem_082010.pdf/
http://en.wikipedia.org/wiki/Targeted_advertising
http://en.wikipedia.org/wiki/Targeted_advertising

Appendix A

Source Code

The source code of the Android mobile application and the server side ap-

plication can be found at https://github.com/iprockova/ProxyServer and

https://github.com/iprockova/RelayServer, respectivly. Android Support

library1 is required to run the mobile application.

1http://developer.android.com/tools/extras/support-library.html

64

https://github.com/iprockova/ProxyServer
https://github.com/iprockova/RelayServer

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Objectives and Research Goals
	1.2 Author's Contribution
	1.3 Structure of the Thesis

	2 Mobile Advertising
	2.1 The Mobile Advertising Ecosystem
	2.1.1 Types of Mobile Advertisements
	2.1.2 Pricing Models of Mobile Application
	2.1.3 Ad Networks

	2.2 Advertisement Delivery Process
	2.3 Challenges of Mobile Advertising

	3 Energy Implications
	3.1 Background
	3.2 Evaluating Power Consumption of Advertisements
	3.2.1 Methodology
	3.2.2 Energy Consumption of Mobile Games
	3.2.3 Impact of Advertising Interval
	3.2.4 Summary

	4 Energy Aware Solution
	4.1 eeAdNetwork Design
	4.2 eeAdNetwork Implementation
	4.2.1 Interception
	4.2.2 Local Cache
	4.2.3 Analytics and Targeting

	5 Performance Evaluation
	5.1 Measurement Environment
	5.2 Methodology
	5.3 Choosing the right cache size
	5.4 Results
	5.4.1 Baseline
	5.4.2 Passive Cache
	5.4.3 Active Cache
	5.4.4 Passive vs. Active Caching

	6 Discussion
	6.1 Summing up the Results
	6.2 Comparison to other published results
	6.3 Limitations
	6.3.1 Changing User's context

	6.4 eeAdNetwork in the Real World

	7 Conclusions
	A Source Code

