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Abstract We consider Large Time Step (LTS) methods, i.e. the explicit finite vol-
ume methods not limited by the CFL (Courant–Friedrichs–Lewy) condition. The
original LTS method [R. J. LeVeque, SIAM J. Numer. Anal., (22) 1985] was con-
structed as an extension of the Godunov scheme, and successive versions have been
developed in the framework of Roe’s approximate Riemann solver. Recently, Prebeg
et al. [in press, 2017] developed the LTS extension of the HLL and HLLC schemes.
We perform the modified equation analysis and demonstrate that for the appropriate
choice of the wave velocity estimates the LTS-HLL scheme yields entropy satisfying
solutions. We apply the LTS-HLL(C) schemes to the one-dimensional Euler equa-
tions and consider the Sod shock tube, double rarefaction and Woodward-Colella
blast-wave problem.

1 Introduction

We consider the hyperbolic system of conservation laws:

Ut +F(U)x = 0 , (1a)
U(x,0) = U0(x) , (1b)

where U ∈ Rm, F : Rm → Rm, x ∈ R and t ∈ R+. We are interested in solving (1)
with an explicit finite volume method not limited by the CFL (Courant–Friedrichs–
Lewy) condition.

A class of such methods has been proposed by LeVeque [1, 2, 3]. Therein,
the Godunov scheme was extended to the LTS-Godunov and LTS-Roe schemes
and applied to the one-dimensional Euler equations. Most recent applications of
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these ideas include shallow water equations (Murillo, Morales-Hernández and co-
workers [4, 5, 6, 7, 8] and Xu et al. [9]), three-dimensional Euler equations (Qian
and Lee [10]), high speed combustion waves (Tang et al. [11]), Maxwell’s equations
(Makwana and Chatterjee [12]) and two-phase flows (Lindqvist and Lund [13] and
Prebeg et al. [14]). All the methods discussed above share the feature of starting
from a Godunov or Roe-type Riemann solver and extending it to the LTS frame-
work. In addition to these applications, Lindqvist et al. [15] studied the TVD prop-
erties of LTS methods and introduced the LTS-Lax-Friedrichs scheme. Several au-
thors [1, 3, 5, 9, 10, 13, 15] reported that the LTS-Roe scheme yields entropy violat-
ing solutions even more often than the standard Roe scheme. Therein, this issue is
solved by splitting the rarefaction wave into several expansion shocks [1, 3, 5, 9, 10]
or by varying the time step [13, 15].

Prebeg et al. [16] developed the LTS extension of the HLL (Harten–Lax–van
Leer) [17, 18, 19] and HLLC (HLL–Contact) [20] schemes and applied them to
a one-dimensional Euler equations. They observed that the LTS-HLL(C) schemes
with the wave velocity estimates according to Einfeldt [18] yield entropy satisfy-
ing solutions. This observation motivates the present paper, which is structured as
follows: in Sect. 2 we outline the problem and the numerical methods we will con-
sider, most importantly the LTS-HLL(C) schemes; in Sect. 3 we discuss the entropy
violation associated with the LTS methods and use the modified equation analysis
to demonstrate that the LTS-HLL scheme with the choice of the wave velocities es-
timates according to Einfeldt [18] yields entropy satisfying solutions; in Sect. 4 we
perform numerical investigations; while in Sect. 5 we end with conclusions.

2 Preliminaries

We specify the particular hyperbolic conservation law we will investigate and out-
line the framework of the numerical methods we will use.

2.1 Problem Outline

As an example of (1) we consider the one-dimensional Euler equations where:

U = (ρ,ρu,E)T , (2a)

F(U) =
(
ρu,ρu2 + p,u(E + p)

)T
, (2b)

where ρ,u,E, p denote the density, velocity, total energy density and pressure,
respectively. The system is closed by the definition of the total energy density,
E = ρe+ ρu2/2, where e is the internal energy given by the equation of state as
e = p/(ρ(γ−1)). We use γ = 1.4 for air. We can also write (1) in a quasilinear form
as:
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Ut +A(U)Ux = 0 , A(U) =
∂F(U)

∂U
. (3)

We assume that the system of Eqs. (3) is hyperbolic, i.e. the Jacobian matrix A has
real eigenvalues and linearly independent eigenvectors.

2.2 Numerical Methods

We discretize (1) by the explicit Euler method in time and the finite volume method
in space:

Un+1
j = Un

j −
∆t
∆x

(
Fn

j+1/2−Fn
j−1/2

)
, (4)

where Un
j is an approximation of the average of U in the cell j at time level n and

Fn
j+1/2 is a numerical approximation of the flux function at the cell interface x j+1/2

at time level n. In standard (3-point) methods the numerical flux depends only on
the neighboring cell values and we may write the numerical fluxes in the numerical
viscosity form:

Fn
j+1/2 =

1
2
(
Fn

j +Fn
j+1
)
− 1

2
Qn

j+1/2

(
Un

j+1−Un
j
)
, (5)

where Fn
j = F(Un

j) and Qn
j+1/2 is the numerical viscosity matrix. To simplify the

notation, the time level n will be implicitly assumed in the absence of a temporal
index. In the numerical viscosity framework (5) the HLL scheme is obtained by
setting:

QHLL =
S+R +S−L
S+R −S−L

Â−2
S−L S+R

S+R −S−L
I , (6)

where Â is the Roe matrix [21], SR and SL are the wave velocity estimates, and the
superscripts denote S+R = max(0,SR) and S−L = min(0,SL). The choice of the wave
velocity estimates will be addressed in Sect. 2.3. We note that Q can be diagonalized
as:

Q = R̂ΩΩΩ R̂−1 , (7)

where R̂ is the matrix of the right eigenvectors of the Roe matrix, and ΩΩΩ =
diag

(
ω1, . . . ,ωm

)
is the matrix of the eigenvalues of Q, where the superscript

denotes the particular characteristic field. Then we may define the HLL scheme
through the diagonal entries of ΩΩΩ as:

ωHLL =
S+R (λ̂ −S−L )−S−L (S

+
R − λ̂ )

S+R −S−L
, (8)

where λ̂ are the eigenvalues of the Roe matrix Â. For more details on the derivation
of the HLL scheme we refer to [17, 18, 19, 22].

For the 3-point method (5) the time step ∆t is limited by the CFL condition:
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C = max
p, j
|λ p

j |
∆t
∆x
≤ 1 , (9)

where λ
p
j are the eigenvalues of the Jacobian matrix A(U j) in (3), and the super-

script p denotes the particular characteristic field, p = 1, . . . ,m. We are interested in
explicit methods not limited by the condition (9).

2.2.1 Large Time Step HLL Scheme

The natural LTS extension of the numerical viscosity formulation (5) is [15]:

F j+1/2 =
1
2
(
F j +F j+1

)
− 1

2

∞

∑
i=−∞

Qi
j+1/2+i

(
U j+1+i−U j+i

)
. (10)

We note that (10) differs from [15] in the sense that we scale Qi with ∆x/∆t. By
using the results from [16] we write the LTS-HLL scheme in the numerical viscosity
form (10) by defining:

Qi
j+1/2 =

(
R̂ΩΩΩ

iR̂−1
)

j+1/2
, (11)

where the diagonal entries of ΩΩΩ are defined as:

ω
0
HLL =

S+R (λ̂ −S−L )−S−L (S
+
R − λ̂ )

S+R −S−L
, (12a)

ω
∓i
HLL = 2

λ̂ −SL

SR−SL
max

(
0,±SR− i

∆x
∆t

)
+2

SR− λ̂

SR−SL
max

(
0,±SL− i

∆x
∆t

)
for i > 0 . (12b)

We refer to [16] for the derivation of these formulae.

2.2.2 Large Time Step HLLC Scheme

The HLL scheme assumes a two-wave structure of the solution and leads to poor
resolution of the contact discontinuity in the one-dimensional Euler equations (2).
Toro et al. [20] introduced the HLLC solver where the missing contact wave is
restored. Following [22], the main idea consists of assuming a three-wave structure
of the solution, thus splitting the Riemann fan into two intermediate states:
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Ũ(x, t) =


U j if x < SLt ,

UHLLC
L if SLt < x < SCt ,

UHLLC
R if SCt < x < SRt,

U j+1 if x > SRt ,

(13)

where the intermediate states are:

UHLLC
K = ρK

(
SK−uK

SK−SC

) 1
SC

EK
ρK

+(SC−uK)
(

SC + pK
ρK(SK−uK)

) , (14)

where index K denotes left (L) or right (R) state in (13). The contact discontinuity
velocity is given by:

SC =
pR− pL +ρLuL(SL−uL)−ρRuR(SR−uR)

ρL(SL−uL)−ρR(SR−uR)
. (15)

For details on the derivation of these formulae we refer to the book by Toro [22].
Herein, we present the LTS-HLLC scheme in the conservation form as derived
in [16]. The numerical flux to be used in (4) is:

FLTS-HLLC
j+1/2 = F0

j+1/2 +
∞

∑
i=1

F−i
j+1/2−i +

∞

∑
i=1

F+i
j+1/2+i , (16)

where F0
j+1/2 is defined as:

F0
j+1/2 =


F j if 0 < SL ,

FHLLC
L, j+1/2 if SL < 0 < SC ,

FHLLC
R, j+1/2 if SC < 0 < SR ,

F j+1 if 0 > SR .

(17)

In the interesting case, SL < 0 < SR, the numerical flux function has the form:

FHLLC
L, j+1/2 = F j +SL

(
UHLLC

L, j+1/2−U j

)
, (18)

FHLLC
R, j+1/2 = F j+1 +SR

(
UHLLC

R, j+1/2−U j+1

)
. (19)

The remaining terms in (16) are:

F−i
j+1/2−i = S−i

R, j+1/2−i

(
UHLLC

R, j+1/2−i−U j+1−i

)
+S−i

C, j+1/2−i

(
UHLLC

L, j+1/2−i−UHLLC
R, j+1/2−i

)
+S−i

L, j+1/2−i

(
U j−i−UHLLC

L, j+1/2−i

)
, (20)
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F+i
j+1/2+i = S+i

L, j+1/2+i

(
UHLLC

L, j+1/2+i−U j+i

)
+S+i

C, j+1/2+i

(
UHLLC

R, j+1/2+i−UHLLC
L, j+1/2+i

)
+S+i

R, j+1/2+i

(
U j+1+i−UHLLC

R, j+1/2+i

)
. (21)

Herein, the modified velocities are:

S−i
[L,C,R], j+1/2−i = max

(
S[L,C,R], j+1/2−i− i

∆x
∆t

,0
)

, (22)

S+i
[L,C,R], j+1/2+i = min

(
S[L,C,R], j+1/2+i + i

∆x
∆t

,0
)

. (23)

We refer to [16] for the derivation of these formulae.

2.3 Estimates for Wave Velocities SL and SR

In the present paper, the choice of the wave velocity estimates is made according to
Einfeldt [18]:

SL, j+1/2 = min
(

λ
1(U j), λ̂

1(Û j+1/2)
)
, (24a)

SR, j+1/2 = max
(

λ̂
3(Û j+1/2),λ

3(U j+1)
)
, (24b)

where Û denotes the Roe average of conserved variables. The HLL scheme with (24)
is usually denoted as the HLLE scheme. Einfeldt et al. [23] showed that the standard
(3-point) HLLE scheme yields entropy satisfying solutions and preserves positivity.
Batten et al. [24] showed that the HLLC scheme [20] with (24) also preserves pos-
itivity. In the following section we demonstrate that the LTS-HLLE scheme yields
entropy satisfying solutions.

3 Entropy Violation

A weak solution to a conservation law is not necessary unique [25, p. 217]. For
the numerical scheme to select the physically relevant solution, we need to impose
so-called entropy conditions. Entropy violation is most commonly associated and
discussed as it appears in the Roe scheme [21]. We start by following the same
approach and consider the numerical viscosity interpretation of the entropy viola-
tion [25].

Consider a standard (3-point) Roe scheme written in the numerical viscosity for-
mulation (5). The eigenvalues of the numerical viscosity matrix QRoe are given by:
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ωRoe = |λ̂ | . (25)

In the transonic case a particular eigenvalue ω
p
Roe (p = 1, . . . ,m) may be close to

zero, corresponding to no viscosity in the field p associated with the eigenvalue ω p.
We define the interface Courant number Cp

j+1/2 = ω
p
j+1/2∆t/∆x and observe that if:

Cp
j+1/2 = 0 , (26)

we may expect an entropy violation in the particular field p. For the standard (3-
point) method these situations are well understood and we refer to [25] and refer-
ences therein for a detailed discussion.

Lindqvist et al. [15] showed that for the LTS-Roe scheme the entropy violation
may also appear when:

Cp
j+1/2 =−i , ∀i ∈ Z . (27)

To clarify this phenomenon and to show how it is avoided in the LTS-HLL scheme
we employ the modified equation analysis.

3.1 Modified Equation Analysis

For scalar conservation laws, Lindqvist et al. [15] showed that the LTS method (10)
gives a second-order accurate approximation to the equation:

ut + f (u)x =
1
2

∆x

[
∆x
∆t

(
k−1

∑
i=1−k

Q̄i ∆t
∆x
− c2

)
ux

]
x

, (28)

where Q̄i = Qi (u, . . . ,u) is the numerical viscosity coefficient of the (2k+1)-point
method, and c = f ′(u)∆t/∆x. Therein, the expression:

D(u) =
k−1

∑
i=1−k

Q̄i ∆t
∆x
− c2 , (29)

is interpreted as the amount of numerical diffusion inherent to the scheme. In [15]
D(u) for the LTS-Roe scheme is determined as:

DLTS-Roe = (d|c|e− |c|)(1+ |c|−d|c|e) , (30)

where dce = min{n ∈ Z |n≥ c} is the ceiling function. We may observe that D
vanishes when (27) is satisfied. If the solution is supposed to be a rarefaction wave,
this will lead to an entropy-violating expansion shock. We note that in [15] the
modified equation (28) is defined for scalar conservation laws. Herein, we use it for
systems of conservation laws by treating each characteristic field p separately.
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Proposition 1. The numerical diffusion Dp in the p-th characteristic field for the
LTS-HLL scheme (11)–(12) is:

Dp
LTS-HLL =

c− cL

cR− cL
(d|cR|e− |cR|)(1+ |cR|−d|cR|e)

+
cR− c

cR− cL
(d|cL|e− |cL|)(1+ |cL|−d|cL|e)

+(c− cL)(cR− c) , (31)

where cL = SL∆t/∆x, cR = SR∆t/∆x and c = λ̂ p∆t/∆x.

Proof. Use (12) in (29). ut

Proposition 2. If the exact solution in the p-th field is a rarefaction wave, i.e.:

λ
p
j < λ̂

p
j+1/2 < λ

p
j+1 , (32)

the numerical diffusion Dp for the LTS-HLLE scheme satisfies:

Dp
LTS-HLLE > 0 . (33)

Proof. If (32) holds, Eq. (24) yields:

SL, j+1/2 < λ̂
p
j+1/2 < SR, j+1/2 . (34)

By using this in (31) we observe that:

Dp
LTS-HLLE ≥ (c− cL)(cR− c)> 0 . ut (35)

Numerical investigations in the following section suggest that the above also ap-
plies to the LTS-HLLC scheme with the wave velocity estimates according to [18].

4 Results

In this section we compare the LTS-HLL(C) schemes with their non-LTS coun-
terparts and the LTS-Roe scheme. We note that all the results presented for LTS-
HLL(C) schemes are obtained with the wave velocity estimates (24). Further, the
input discretization parameters are the Courant number C and ∆x. Then, the time
step ∆t is evaluated at each time step according to:

∆t =
C∆x

max
p, j
|λ p

j |
. (36)
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4.1 Sod Shock Tube

We consider the Sod shock tube problem [26] with initial data:

U(x,0) =

{
(1,0,2.5)T if x < 0 ,

(0.125,0,0.25)T if x > 0 ,
(37)

with the solution evaluated at t = 0.4 on a grid with 200 cells. Figure 1 shows
the comparison between LTS methods. We observe that the LTS-HLL(C) schemes
yield entropy satisfying solutions, while the LTS-Roe scheme leads to an entropy
violation at x≈−0.25.
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Fig. 1 Comparison between different LTS methods at C = 3.5 for problem (37)

4.2 Double Rarefaction Problem

Next, we consider the double rarefaction test case which is often used as a bench-
mark test case for the positivity preserving. The initial data is:

U(x,0) =

{
(1,−2,1)T if x < 0 ,

(1,2,1)T if x > 0 ,
(38)

with the solution evaluated at t = 0.05 on a grid with 200 cells. Figure 2 shows
that the LTS-HLL(C) schemes successfully handle the near-vacuum conditions. In
addition, the accuracy is very close to that of the non-LTS methods.
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Fig. 2 Comparison between the standard HLL(C) and LTS-HLL(C) schemes for problem (38)

4.3 Woodward-Colella Blast-wave Problem

As the last test case we consider the Woodward-Colella blast-wave problem [27].
The initial data is given by uniform density ρ(x,0) = 1, uniform velocity u(x,0) = 0,
and two discontinuities in the pressure:

p(x,0) =


1000 if 0 < x < 0.1 ,

0.01 if 0.1 < x < 0.9 ,

100 if 0.9 < x < 1 ,

(39)

with the solution evaluated at t = 0.038 on a grid with 1000 cells. The reference
solution was obtained by the Roe scheme with the superbee wave limiter on the grid
with 16000 cells. The boundary walls at x = 0 and x = 1 are treated as reflective
boundary conditions. In Fig. 3 we can see that all LTS methods correctly capture
positions of shocks and contact discontinuities. In the density plot, we observe that
both the LTS-Roe and the LTS-HLLC are much more accurate than the standard
HLLC scheme.
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Fig. 3 Comparison between the standard HLLC and different LTS methods for problem (39)
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However, the LTS-Roe scheme produces an entropy violation at x≈ 0.69, while
LTS-HLL(C) schemes do not. This can be seen in Fig. 4 where we zoomed in the
area of interest in the plot for the velocity.
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Fig. 4 Entropy violation with the LTS-Roe scheme for problem (39)

5 Conclusions

We used the modified equation analysis to demonstrate that the LTS-HLL scheme
proposed by Prebeg et al. [16] with the choice of the wave velocity estimates ac-
cording to Einfeldt [18] yields entropy satisfying solutions. We applied the scheme
to the one-dimensional Euler equations and numerically demonstrated that the LTS-
HLL(C) schemes with the same wave velocity choice also yield entropy satisfying
solutions. In addition, we applied both schemes to the double rarefaction test case
and showed that both schemes successfully handle near-vacuum conditions.
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14. M. Prebeg, T. Flåtten, B. Müller, Appl. Math. Model. 44, 124 (2017). DOI
10.1016/j.apm.2016.12.010
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