SOME RESULTS ON HARD LEFSCHETZ CONDITION

ADRIANO TOMASSINI AND XU WANG

ABSTRACT. We discuss the Hard Lefschetz Condition on various cohomology groups and verify
them for the Nakamura manifold of completely solvable type and the Kodaira-Thurston manifold.
A general Demailly-Griffiths-Kahler identity is also given.
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1. INTRODUCTION

A special class of symplectic manifolds is represented by those ones satisfying the Hard Lefschetz
Condition (shortly HLC), i.e., those compact 2n-dimensional symplectic manifolds (X, w) for which
the maps

W HiZF(X,R) — HIFF(X,R), 0<k<n

are isomorphisms. In particular, a classical result states that if (X, w, J) is a compact Ké&hler
manifold, then (X, w) satisfies the HLC (see e.g., [8]) and the de Rham complex (2*(X),d) is a
formal DGA in the sense of Sullivan (see [6]); furthermore, HLC symplectic manifolds have some of
the cohomological properties of a Kéhler manifold (e.g., the odd Betti numbers bo41(X) are even,
bk(X) < bk+2(X) ,0<k<n—1, bgk(X) > 0)

On any almost symplectic manifold (X,w), i.e., X is a 2n-dimensional manifold endowed with a
non-degenerate 2-form w, it is defined a symplectic codifferential operator d* : QF(X) — QF~1(X),
by using the symplectic star operator. If w is closed, for such an operator the following basic
symplectic identity holds

[dv A] = dAa

where A is the symplectic adjoint of the Lefschetz operator L. Furthermore, in the symplectic
case, (Q*(X),d,d") is a differentiable Gerstenhaber-Batalin-Vilkovisky (dGBV) algebra, that is
integrable (i.e., the dd*-lemma holds), if and only if (X,w) satisfies the HLC (see [13], [11], [2],
18)).

In the present paper, we will generalize such an identity to the context of almost symplectic and
almost complex manifolds. Then we will give a notion of 85A—Lemma on special complex manifolds.
First of all, starting with a Lefschetz space (A, L), where A = @i’;oAk is a direct sum of complex
vector spaces and L € End(A) satisfies L(A') C A!*2 for every 0 < [ < 2(n — 1), L(A*" 1) =
L(A?") =0 and L* : A»% — A"*F is an isomorphism for every 0 < k < n, we prove the following
general Demailly-Griffiths-Kéahler identity (see page 307 in [7] and Theorem 4.6 in [16])

Theorem A (see Theorem 3.6). Let (A, L) be a Lefschetz space. Let d be a C-linear endomorphism
of A such that d(A') C AL, Let us define

dd = (—1)]”'1 xg dxg
on AF. Assume that [L,[d,L]] = 0. Then
[d L] =d+[A[d,L])], [dA]=d+][[A,d", L)
As a direct consequence (see Theorem 5.2), if (X,w) is a symplectic manifold, 4 = &2 QF(X)

and L := wA, then we recover the basic symplectic identity above. Furthermore, for an almost
symplectic manifold, by applying the Theorem above, we derive the following identity (see Theorem
5.1)

[d* L) =d+ [A,[d, L], [d,A]=d"+][[A,d"], L]

Then we show that the fundamental form of a compact almost Kéhler manifold (X, w, J, g) restricted
to ker OgNker Oge satisfies the Hard Lefschetz Condition (see Theorem 6.2). We will provide explict
computations on two non-Kéahler manifolds: the Kodaira-Thurston manifold and the Nakamura
manifold of completely solvable type.

In Section 9, we will define the notion of 85A—Lemma on special complex manifolds. Namely, we
consider a complex manifold (X, J) endowed with a symplectic form w such that J is w-symmetric,
or equivalently, w is a symplectic form of (1,1)-type with respect to the decomposition induced by
J. In this situation, by using the symplectic Hodge operator *g, the symplectic adjoint A of the
Lefschetz operator L and the 0 operator, one can define 5[\ = (—1)kH1 «, Ox,.

By applying Theorem 3.6 we obtain complex symplectic identities (see Corollary 9.4). In particular,
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7 = (51\)2 —0and 99" + 33 = 0, so that it is natural to consider the complex (Q*(X),0, 51\);

by definition, (X, J,w) is said to satisfy the 88" -Lemma if
kerd Nkerd N (Im 0 + IméA) = Imdd .

==A
We show that any compact Kéhler manifold satisfies the 0 0 -Lemma and we provide a family of
==A
non Kéahler manifolds satisfying the 0 0 -Lemma. Finally, we apply our construction to holomorphic
==A
vector bundles over special complex manifolds (section 8.6). Our results on the 99 -Lemma include

Theorem B. Let (X,J) be a compact complex manifold with a J-symmetric symplectic structure
w. Then we have

(1) The Dolbeault cohomology satisfies the HLC if and only if the 99" -Lemma holds (special
case of Theorem 3.12);

(2) Nakamura manifold of completely solvable type (see Example 2 and the appendix) satisfies
the 89" -Lemma (see section 8.3) and the 00-Lemma (see [1]);

(3) The holomorphic parallelizable Nakamura manifold in section 8.4 satisfies the 55A-Lemma,
but it does not satisfy the 00-Lemma;

(4) The Kodaira-Thurston manifold in section 8.5 does not satisfy the 55A—Lemma.

2. PRELIMINARIES

2.1. Hard-Lefschetz-theorem on symplectic vector spaces. Let V' be an N-dimensional real
vector space. Let w be a bilinear form on V. We call w a symplectic form if w is non-degenerate
and w € A2V*, ie., w(u,v) = —w(v,u), ¥ u,v € V. We have the following well-known proposition

Proposition 2.1. Assume that there is a symplectic form w on V. Then N = 2n for some integer
n and there exists a base, say {e3, fr;---;el, fx}, of V* such that

n
_ * *
w = E e; NIy
=1

One may use w to define a bilinear form, say w™!, on V* such that
WSS en) = —w e f7) = 0, w TS fR) = w e ) = 0.
Remark: In [15], the bilinear form on V* is defined to be —w™!.
Let T, : V — V* be the linear isomorphism defined by
T, (uw)(v) = w(v,u), ¥V u,veV.
Then we have
T;h =T,

thus the definition of w™! does not depend on the choice of bases in the above proposition. We shall
also use w™! to denote the following bilinear form on APV*, defined on simple elements as

(21) wil(,uvy) = det(wil(aiaﬂj))a p=ar NNy, V= JC AR /\ﬂpa

and then extended linearly.
Then we can have

Definition 2.2. The symplectic star operator *, : APV* — A2""PV* s defined by

- w"
(2.2) WA kg = w 1(,u,y)ﬁ.

The following theorem is well known, see [16].
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Theorem 2.3 (Hard Lefschetz theorem). For each 0 <k <n,
w W FAu, ue APV,
defines an isomorphism between N*V* and N*VFV*.
Definition 2.4. We call u € A*V* a primitive form if k < n and W™ *1 Au = 0.
The following Lefschetz decomposition theorem follows directly from Theorem 2.3.

Theorem 2.5 (Lefschetz decomposition formula). Every u € AFV* has a unique decomposition as
follows:

w
(2.3) u:Zwr/\ur, Wy 1= —,
where each u” is a primitive (k — 2r)-form.

By the above theorem, it is enough to study the symplectic star operator on w, A u, where u is
primitive, see [16].

Theorem 2.6. If u is a primitive k-form then *,(w, Au) = (=1)*FTlw, 1. Au.
Definition 2.7. We call {L, A, B} the sly-triple on ©o<p<an A¥ V*, where
Lu:=wAu, A:=x;'Lx,, B:=][L,A]
We have
w N (Lu,v) = w™ ! (u, Av).
Hence A is the adjoint of L. Put
L.:=L"/r!, Ly:=1, L_4 :=0.
We have:
Proposition 2.8. If u is a primitive k-form then
ALu)=(n—k—r+1)L,_yu, B(L,u) = (k+ 2r —n)L,u,
forevery0<r<n-—~k+1.

Definition 2.9. We call a linear map J : V. — V an almost complex structure on V' if J(Ju) = —u
for everyu e V.

Definition 2.10. An almost complex structure J is said to be tamed by w if
w(u, Ju) > 0,
for every non-zero u € V.. J is said to be symmetric with respect to w if
w(u, Jv) = w(v, Ju),
for every u,v € V. We say J is w-compatible if it is both taming and symmetric.
If J is an almost complex structure on V then
J)(u) :=v(Ju), YVueV, veV",
defines an almost complex structure on V*.
Definition 2.11. We call
Jwr A Awvg) = J(v) A A J(vg),

the Weil operator on @o<k<2n AE TV
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Since the eigenvalues of J are =i, its eigenvectors lie in C® V*. Put
E={ueCoV*:Ju)=iu}, E_;:={uecCV*:J(u)=—iu},
we know that
Ei={u—iJu:ueV*}, E_;={u+iJu:ueV"}.
and CV*=F;® E_;. Put
APAV* .= (APE;) A (N E_;).
Then we have
C® (NV*) = AFC R V™) = @pp gk APV,
and
Ju=1iP" %, ¥V u e APV,
We call AP9V* the space of (p, ¢)-forms.
Proposition 2.12. An almost complex structure J on (V,w) is compatible with w iff
(@, B) :=w™ (e, JB),
defines a Hermitian inner product structure on AP1V* 0 < p,q < n.
Definition 2.13. The Hodge star operator  : AP4V* — A"=SPV* 4s defined by
u A *0 = (u,v)wy,.
The above proposition gives
x* = %5 0J = J o *,.

3. HARD LEFSCHETZ CONDITION AND THE dd*-LEMMA

In this section, we shall introduce the Hard Lefschetz Condition on a general (can be infinite
dimensional) linear space and the general dd*-Lemma.

3.1. Lefschetz spaces.

Definition 3.1. Let A = 2" A* be a direct sum of complex vector spaces. We say that L € End(A)
satisfies the Hard Lefschetz Condition and (A, L) is a Lefschetz space if

LAY c A2 v 0<1<2(n—1), L(A*™ 1) = L(A*) =0,
and each LF : A=k 5 Antk 0 <k <mn, is an isomorphism.

Definition 3.2. Let (A, L) be a Lefschetz space. We call u € AF a primitive form if k < n and
LP—F+ly, = 0.

The Hard Lefschetz Condition implies the following Lefschetz decomposition theorem (see [16]
for the proof).

Theorem 3.3. Let (A, L) be a Lefschetz space. Then every u € A* has a unique decomposition as
follows:

r Lr
(3.1) u= ZLT.u s L=

where each u” is a primitive form in AF=2".

Definition 3.4. We call the following C-linear map *s : A — A defined by
*s(Lyw) = (1)L,

where u € AF is primitive, the Lefschetz star operator on A.

Notice that *2 = 1. We know from the last section that the Lefschetz star operator is a general-
ization of the symplectic star operator.
Definition 3.5. Put A = *_'Lx,, B :=[L,A]. We call (L, A, B) the sla-triple on (A, L) (Proposi-
tion 2.8 is also true for general Lefschetz space).
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3.2. General Demailly-Griffiths-Kahler identity. We shall use the following general Demailly-
Griffiths-Kahler identity [7], see also Theorem 3.1 in [16].

Theorem 3.6. Let (A, L) be a Lefschetz space. Let d be a C-linear endomorphism of A such that
d(AY C AL, Let us define
d = (1R, dx,g
on A, Assume that [L,[d, L]] = 0. Then
[@* L) =d+[A[d, L], [d,A] =d* +[[A,d"], L].

Proof. We shall follow the proof of Theorem 3.1 in [16]. By the Lefschetz decompostion theorem,
it suffices to prove the theorem for L,u, where u € A* is primitive. Put

0:=1d,L].
Step 1: Since [L, 0] = 0, we have
(3.2) d(LPu) = OLP ™ u + LALP™'u = 2LP " 0u + L*dLP %y = - - - = pLP " '0u + L,du.
Thus
Ldu
=d(L, _ =L, _ _).

0 d( n kJrlu) n k(eu+n7k+1)

Put
v = B+ Ldu
o n—k+1

L,,_1v = 0 implies that the primitive decomposition of v contains at most three terms. Thus we
can write

v=uvg+ Lvi + L2v2,
where vg, v1,v9 are primitive. Moreover, since L, _r+10u = 0L, _;11u = 0, we can write
Ou=e+ Lf+ L*g+ L3h.
where e, f, g, h are primitive. Thus
vo=-e, du=(n—k+1)(vy — f+ L(va — g) — L*h).
Let us write
du=a+ Lb+ L?c,
where a, b, ¢ are primitive and
(3.3) c=—(n—-k+1)h
Step 2: Notice that
[d*, L) = (1) (xod %s L — L *4 dxy),
on A*. Using *;A = Lx,, we get
[dM, L] = (=D)L s, (dA — Ad)x,,
on A*. Now
(dA — Ad) *, (Lyu) = (=D (dA — Ad)(Lp_p_pu).
Put
m:=n—1r—k.
By Proposition 2.8, we have
dA(Lypu) = (r+1)dLy—1u = (r+ 1)(Lyp—20u+ Ly—1du)
= (r+1)[Lm—2e+ (m—=1)Lp_1f+ (m—1)mLyg+ (m — )m(m + 1)Lp41h
+Ly—1a+ mLypb+m(m + 1)Lm+1c] ,
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and
Ad(Lpu) = A(Lm—10u+ Lypdu) = (r —1)Ly—ce+rmLy,—1 f
+(r+1)ym(m+1)Lyg + (r+2)m(m + 1)(m + 2)Lyyq1h
+rLp—1a+ (r+1)(m+1)L,b+ (r+2)(m+ 1)(m + 2)Ly41c.
By (3.3), we have
(dA — Ad)(Lpu) = 2L se+(m—7—1)Ly_1f —2(r+1)mLpng
+2(r+1)(r+2)(m+1)Lmsrh+ Lyy—1a — (r+ 1) Lyd.
Thus
[dM L)(Lyu) = —2L,_1e+(m—r—1)L.f42(r+ 1)mL,. 419
+2(r +1)(r+2)(m+1)Lyy2h + Lya+ (r + 1)Ly 1b.
Step 8: Since
d(Lyu) = Ly—16u + L,du,
and
OA(L,u) = (m + 1)L,—16u.
We have
(d —0A)(Lyu) = Lydu — mL,._16u.
Notice that
Lydu=Lra+ (r+1)Ly1b+ (r+1)(r +2)L,42c,
and
L,_10u=L,_qe+rL.f+r(r+1)Lyp19+7r(r+1)(r+2)L,i2h.
Moreover, since
AO(L,u) = AL.(e + Lf + L?g + L*h),
by Proposition 2.8, we have
AO(L,u) = (m—2)Ly_1e+(m—1)(r+1)L,.f
+(r+1)(r+2)mLyy19+ (r+1)(r +2)(r + 3)(m + 1)L, 2h.
Thus
(d+ [A,0])(Lyu) = Lydu — mLy_10u + AO(L,u),
can be written as
Lya+ (r+1)Lyyib+ (r +1)(r +2)Lyyac
—2L,_je+(m—r—1)L,.f
+2m(r+1)Lyy1g+ (r+ 1)(r +2)(r + 3m + 3) Li11 A,
which is equal to [d*, L](L,u) by Step 2 and (3.3). Thus
[d* L] =d+ A, [d, L]].
By definition of d* and A, we know that [d*, L] = d + [A,[d, L]] is equivalent to [d,A] = d* +
[[A,d™], L]. Thus the proof is complete. O

Remark: In case [d, L] = 0, then the above theorem is just the general Kéhler identity and its
proof is much simpler. The general Kahler identity implies the following result.

Theorem 3.7. Let (A, L) be a Lefschetz space. Let d be a C-linear endomorphism of A such that
d(AY c AL If[d, L) = 0 then

(1) (kerd Nkerd®, L) and (kerd Nkerd®, A) are Lefschetz;

(2) (Imd+Imd* L) and (Imd + Imd™, A) are Lefschetz;

(3) Assume further that d*> = 0. Then (Imdd™, L) and (Imdd™, A) are Lefschetz.
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Proof. Notice that kerd N ker d® is x4 invariant and A = %, Lx,. (kerd N ker dA,A) is Lefschetz if
(ker d Nker d*, L) is Lefschetz. Now let us prove that (kerd Nker d®, L) is Lefschetz. Since (A, L) is
Lefschetz, it suffices to prove that the primitive decomposition preserves (ker d Nker d®, L). Thus it

is enough to show
L(ker d Nker d*) C kerd Nker d®,

and
A(ker d Nker d*) C kerd Nker d*,

which follows from
[da L] =0, [dAa L] =d, [da A] = dAv [A’d/\] =0.
Thus (1) follows from general Kéhler identity. (2) and (3) can be proved by a similar argument. O

3.3. dd*-Lemma for a general Lefschetz complex.

Definition 3.8. Let (A, L) be a Lefschetz space. Let d be a C-linear endomorphism of A such that
d(AY ¢ A, We call (A, L,d) a Lefschetz complex if d = 0.

Let (A, L,d) be a Lefschetz complex. In case [d, L] = 0, Theorem 3.6 implies that
[d,d"] =0,
thus (4,d,d") is a double-complex.

Definition 3.9. Let (A, L,d) be a Lefschetz complex. Assume that [d, L] = 0. We say that (A, L, d)
satisfies the dd™-Lemma if

kerd Nkerd® N (Imd + Im d*) = Tm dd™,
on each A*, 0 < k < 2n.

Definition 3.10. Let (A, L,d) be a Lefschetz complex. We shall define

kerd N A*
_ m2n k k.
Hao=@iolla, Ha = 1 e aw
and A N
n kerd®* N A
Hp = &itoHan,  Hin = 3 onr

The following theorem is due to Mathieu [12] and Yan [18], we will follow the proof in [18].

Theorem 3.11. Let (A, L,d) be a Lefschetz complex. Assume that [d,L] = 0. Then the following
facts are equivalent:

(1) kerd Nkerd™ — Hy is surjective;

(2) For each 0 <k <mn, LF: H?™% — HI™ is surjective;

(3) kerd Nkerd™ — Hya is surjective;

(4) For each 0 < k <n, AF: Hg,{"k — Hg,\_k is surjective.

Proof. By Theorem 3.7, we know that for each 0 < k < n,
L* : (kerd Nkerd®) N A" ™% — (kerd Nkerd*) N A"*F,

is an isomorphism. Thus (1) implies (2). The same proof gives that (3) implies (4). Since kerd N
ker d® is ,-invariant and %, defines an isomorphism from Hg_k to H;L:r k¥ we know that (1) is
equivalent to (3) and (2) is equivalent to (4). Thus it is enough to prove that (2) implies (1), which
follows directly from the argument in the proof of Theorem 0.1 in [18] (the idea is: (2) implies that
each class in H, has a Lefschetz decomposition and the primitive class has a primitive representative
which lies in ker d N ker d*). |

Now we can prove the following result:

Theorem 3.12. Let (A, L,d) be a Lefschetz complex. Assume that [d, L] = 0. Then the followings
are equivalent:
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(1) (A, L,d) satisfies the dd®-Lemma;

(2) the natural map ker dnker d® — Hy is surjective and the sly-triple (L, A, B) on ker dNker d®
induces the sls-triple on Hg;

(8) (Hg, L) satisfies the Hard Lefschetz Condition;

(4) (Hga, ) satisfies the Hard Lefschetz Condition.

Proof. (1) implies (2): If u € kerd then [d,d"] = 0 implies that d(d*u) = 0. Thus the dd*-Lemma
implies
d*u € Im dd™.
Let us write d*u = dd™v. Thus
u+ dv € kerd?,

which implies that ker d Nker d® — Hy is surjective. Notice that

%4 (ker d* NTm d) = kerd N Im d*.
Thus dd®-Lemma gives

ss(ker d* NImd) C Imdd® C Imd,

which implies that #, is well defined on H, (using representatives in kerd N kerd®). Now we can
define A := x,L*; on Hy. Thus (1) implies (2).

(2) implies (3) is well known (see [9]). The fact that (3) and (4) are equivalent follows from that
for each k, x4 defines an isomorphism from HZ; to HdQX_k and A = x; 1 Lx,.

Now it suffices to show (3) implies (1). By Theorem 3.7, we only need to prove the dd*-Lemma
on the primitive space P, i.e.,
(3.4) Pnkerdn (Imd +Imd*) C Imdd™.

We shall follow the proof by Merkulov (see page 4 in [13]). First, let us prove (3.4) is true on P°.
Let u € P’ Nkerd N Imd*, we know that L"[u] = 0. Thus u = [u] = 0 = P° N Imdd"*. In general,
we shall prove that

(3.5) PnkerdN (Imd +Imd*) = PNImd.
Assume that u € P*, 1 <k <n. Ifu € kerdN (Imd + ImdA) then
L™ *u] = 0.

Thus [u] = 0 by the HLC-condition, which gives (3.5). Now we know that (3.4) is equivalent to
(3.6) PNImd C Imdd*.

Let us first prove that (3.6) is true on P'. In fact, since A° C ker d*, Theorem 3.11 implies that for
every u € A, there exists a € A' and b € ker d Nker d* such that

u=da +b.

Thus
du = dd"a,

which implies that (3.6) is true on P'. Assume that the dd*-Lemma is true on A¥, let us prove
that (3.6) is true on P**2. Take u = da € P**2. Primitivity of u implies that v € Imd*. Thus
d*a € kerd. Now the dd®-Lemma on A* implies that there exists b € A* such that

d*a = d*db.
By Theorem 3.11, we know that there exists e € A*T! and f € kerd Nker d* such that
a—db=d%+ f,
which implies that v = dd*e. Thus (3.6) is true on P**2. The proof is complete. (]
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4. KAHLER IDENTITY FOR ARBITRARY DEGREE OPERATORS

4.1. su(2)-representation. In this section, we shall follow Wells’ book [17]. It is known that (see
page 172 in [17]) the Lie algebra s[(2,C) of the special linear group SL(2,C) is generated by

0 1 0 0 10
S R ER R )

(X,Y]=H, [H,X]=2X, [HY]=-2Y.
Let (A, L) be a Lefschetz complex with sla-triple (L, A, B). Then we know that
p(X) =L, p(Y)=A, p(H) =B,

which satisfy

defines an sl(2, C)-action on (4, L). Tt is also known that the Lie-algebra su(2) of the special unitary
group is a real form of sl(2,C), i.e.

5((2,C) = su(2) ®r C.
Moreover, su(2) is generated by
iH, X-Y, i(X+Y).
Put
W(t) = "X (1) = p(W(t) = 4,
Then we have the following formula (same as the proof in page 187 in [17]):

Proposition 4.1. #(5)u = ik2+”*s, for every u € A¥, where 4 denotes the Lefschetz star operator.

Definition 4.2. Let (A, L) be a Lefschetz space. We call D a degree p map if D is a C-linear
endomorphism of A such that D(A') C AP for each I. We shall define D¥ := #(—2) D #(%).

Remark: It is easy to check that
D#u =i (—1)P*++D & D s, u,
for every u € A¥ if D is degree p.
Definition 4.3. If Dy is degree p1 and Dy is degree ps then we shall write
adp, Dy = [D1, D3] := D1Dgy — (—1)PP2 Dy Dy,

and
[ale,adDQ] = aleadDQ — (—1)p1pzadD2adDI.

Remark: The super Jacobi identity is equivalent to the following formula
[adp,,adp,] = ad[p, p,]-
We shall use the following lemmas:
Lemma 4.4. If D is degree p then adgD = p- D.
Proof. For every u € A*, we have
adpD (u) = [B,Dju= (p+k—n)Du— (k—n)Du=p- Du,

which gives our formula. O

It is convenient to introduce the following definition:
Definition 4.5. (ady)x := (adp)*/ k!, (adp)r := (adp)*/ k!

We have the following generalization of Lemma 4.4.
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Lemma 4.6. If D is degree p then
[adr, (adp)g] D = (p — k + 1)(adp)g—1D,
and
[ada, (adr)g]) D = (—p — k + 1)(adp)g—1D,
for every k > 1.
Proof. Follows directly by induction on k and the following formula
[adp,, (adp,)*] = ad[D1,D2](adD2)k71 +adp,[adp,, (adp,)

for even degree maps.

kfl]

Y

4.2. A List of formulas. Put
Ajk = (adL) (adA)kD Bjk = (adA) (adL)kD T —adL+adA.

Then Lemma 4.6 gives

(4.1) T(Aj) = (G +DAGioe + (K +DAjgq1) + 2k — 5+ 1= p)AG_1)k,
and
(4.2) T(Bjx) = (j + 1)B(jriyr + (K +1)Bjgg1) + (2k —j + 1+ p)B_1yk-

Remark: By induction on k, Lemma 4.6 also gives

(43) Bkk = Z 1+j A(k —3)(k—3)» Akk - ZC p— 1+j( l)jB(k?—])(k_])’
=0
where
1 i—1)..- 1

Since (k + I)B(k+1)k = AByg, (43) gives
(4.4) By = Z o (D Ay kg
By a similar argument, we also have

k
(4.5) Alpernr = Y Ol o5 (<1 By (e—jr)-

§j=0

In this paper we will not use (4.3), (4.4) and (4.5). A direct consequence of (4.1) is

Lemma 4.7. If D is degree p then we can write
TlD = Z ajkAjk,
jHE<21

where aj are integer constants that only depend on | and p.
Notice that

t(mdL+adA)D Z 0 TlD Z Z l' jk-

1>0 jk \1>0
Since for every N > n, we have

A =0, if max{j,k} > N.
Let us fixed N > n and define
a% = ajp, if max{j,k} <N, a% =0 if max{j,k} > N.
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Then we have

#

t(adp +ada _ 2 N N .__ E N

(& (adp )D = bjk:Aij b]k = ﬁ ajk'
k<N >0

Lemma 4.8. Fach bé\,@ defines a holomorphic function on C.

Proof. By definition of a%, we have
TZD = Z aj-\,[cAjk.
j+k<2l
Thus (4.1) gives

(46)  a(lp) = jaf_y (= 1,p) +kaj_y) (I = 1,p) + (2k — j = p)afi )l — 1,p).
Put
M, := sup{|afy, (I, p)[}-
Then (4.6) gives
M < (4N +p) My,
which implies
Z |§7!l ‘a%| < My eUN+p)It,
1>0
Thus the Lemma follows. |

Our Key Lemma is the following:

Lemma 4.9 (Derivative of exponential map). Let X be a finite sum of even degree maps. Then for
every C-linear endomorphism D of A, we have

e XDe X = etadx p. ViteR.
Proof. Put

ft)=e*D e X g(t)=e"xD.
Then we have

£(0) = 9(0), % = adxg(r).

t
Moreover, since X is a sum of even degree maps, we have

U X§0) = 10X = X, 0] = s ).

Thus f and g satisfy the same equation, which gives f = g. O

4.3. Main theorem. Apply the above Lemma to
X=(L+A), t= —%,
we get the following universal version of the Kahler identity.

Theorem 4.10 (Main theorem). For each p € Z there exists a sequence {c?}jzo such that

D¥ = 3" #(adp);(ads)j4pD,
Jj+p<n

if D is degree p.
Proof. Follows from Lemma 4.8 and the fact that D# is degree —p. (]
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Remark: Consider By instead of Aji, we know that there also exists a sequence {aé’ }j>o0 such
that

(4.7) D#* = 3" al(adp)jsp(adp);D,
J,j+p<n

if D is degree p. One may compute af and c? by taking special D. In case D is degree zero, our

main theorem implies the following generalization of the main theorem in [16]:
Theorem 4.11. Let (A, L) be a Lefschetz space. If D is degree zero and (adp)3D = 0 then
D# = x,Dx, = (1 —adpada + (adp)2(adp)z2) D.
Proof. Since D is degree zero, (4.3) gives
(ad)*(adp)*D = (adp)*(adp )" D.

Now (adz)?D = 0 implies that it suffices to compute c(; for j =0,1,2. Take D =1, we get

Take D = B, we get
Thus

Take D = B?, we know that
ada(B?) = 4A +4BA, (adp)o(B?) = 4A%,

Thus
D# = (=B)? = B? —adp(4A + 4BA) + ¢ - (4(adp)2(A?)).
Since
(adp)2(A?) = adr (A + BA),
we get
g =1.
The proof is complete. |

5. KAHLER IDENTITIES ON ALMOST SYMPLECTIC MANIFOLDS

An almost symplectic manifold (X,w) is a smooth manifold X with a non-degenerated 2-form w.
Denote by *4 the symplectic star operator with respect to w. Let d be the usual exterior derivative
on X and denote by QF(X) the space of k-forms on X. By applying Theorem 3.6 to

2n
A=Pr(X), L:=wA,
k=0

where dim X = 2n, we get
Theorem 5.1. [d* L] =d+ [A,[d,L]], [d,A] =d" +[[A,d"], L).

The above theorem implies the following well known Ké&hler identities on symplectic manifolds,
see e.g., [18, 4].

Theorem 5.2. If dw = 0 then [d*, L] = d and [d,A] = d*.
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Now let J be an almost complex structure on X. We shall also use J to denote the associated
Weil-operator. Denote by QP9(X) the space of smooth (p, ¢)-forms on X. Then

Ju =P, ¥V uel?,

We shall define

d°:=J1dJ,
where J is the Weil-operator. If J is compatible with w then J commutes with %4 and we call

* 1= %4 0 J,
the Hodge star operator on X. If J is compatible with w then (w, J) defines a pointwise Hermitian
inner product structure, say (-, ), on the space of differential forms such that

(u, v)(2)wn () = U AXT, wy, :=w"/nl.

Assume that X is compact. Denote by d* and (d°)* the adjoint of d and d® with respect to the
following inner product

(u,v) := /X(u, v)(x)wp ().

By integration by parts, we have
d* = —xd*, (d°)" =—xd°*.
Thus
d* = — %y JdJxs = — % J2d%, = (—1)F 5, d°,
on Q%(X) and
(d°)" = — % d% = (—1)FH1 s dxy = d,
on QF(X). Moreover, since JJ* = 1, we have (d°)* = J~'d*J. Thus we get
Theorem 5.3. If J is compatible with w then [(d°)*, L] = d + [A, [d, L]] and
[L,d*] =d° + [A, [d° L]].

Assume further that dw = 0. Then

[(d®)*,L] =d, [L,d*] =d".

6. HARD LEFSCHETZ CONDITION ON ALMOST COMPLEX MANIFOLDS

Let (X,w,J,g) be a compact almost symplectic manifold with a compatible almost complex
structure J, where the Riemannian metric g is defined by
g(u,v) = w(u, Jv).

Set
_ kerd _ kerd®

~ Imd’ a-(X) = Imde

Hi(X)
By the Hodge theory, we have
Theorem 6.1. Set Oy = dd* + d*d, Oge = d°(d®)* + (d°)*d°, then
My, =kerOg ~ Hy(X), Hg,. = ker Oge =~ Hi.(X).
We now study the Hard Lefschetz property of ker Oy. Let us start from the following example.

4

Example 1: Kodaira-Thurston manifold. On R* with coordinate z!,..., 2% consider the

following product: given any a = (a',...,a%),b= (b'...,b*) € R%, set

axb=(a' +0b', 0%+ 0%, 0>+ a'b? + b3, a* +b*).
Then (R*, %) is a Lie group and I' = {(7',...,7*) € R* | v, € Z,j =1,...,4} is a lattice in (R, ),
so that M = I'\R* is a 4-dimensional compact manifold. Then,

el =dzt, e? =dz?, € =da®—alda?, et =dz?,
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are [-invariant 1-forms on R?*, and, consequently, they give rise to a gobal coframe on M. It is

immediate to check that de® = —e' A €2, the other differential vanishing. Define an almost Kihler
structure on M, by setting:

Jel = -3, Je? = —et, Jed =el, Jet =¢?
and

w = 613 +624,

where e = e’ A e/ and so on. Then w is a symplectic structure on M and J is an w-compatible
non integrable almost complex structure so that (M, J,w) is an almost Kéhler manifold. Set g =
S} et @el. Then, a direct computation gives

H,ljd = Spang < e',e? et >

H%d = Spang < e'3 e et e?® >

HE = Spang < e***, €' e >

and
’Hédc = Spang < e?,e3 et >
’H%dc = Spang < e'3 €2 et 23 >
”H%dc = Spang < el23 o131 o124 5
Therefore,

ker Og Nker Oge = R(1) @ R(e?, e*) D R(e!3 e, 3 ) o R(e'?,e!3) @ R(1)

and w restricted to ker Oy N ker Og4e satisfies the Hard Lefschetz Condition. As a generalization of
the above fact, we have

Theorem 6.2. Let (X,w, J, g) be a compact symplectic manifold with a compatible almost complex
structure J. Then w restricted to ker Oy Nker Oye satisfies the Hard Lefschetz Condition.

Proof. As usual, put L := wA. It suffifes to show that

[Dd + Oge, L] =0.
In fact, by the Jocobi identity, we have

[L7 [d7 d*]] + [d’ [d*’ LH - [d*v [L’ d]] =0,
and
(L, [d°, (d°)"]] + [a°, [(d°)", L]] = [(d°)", [L, d°]] = O.
Since [L,d] = [L,d°] =0, [d*, L] = —d°, [(d°)*,L] = d and
[d,d°] = [d°,d] = dd° + d°d,
we have
(L, [d,d"]] + [L, [d°, (d°)"]} = O,

which gives [dg + Oge, L] = 0. O
Remark 6.3. The above proof gives

[L7 Dd} = [dv dc]'
Since [d,d°] = 0 if and only if J is integrable. We know that, in the above theorem, X is Kdhler if
and only if

[L,04] = 0.

The following example tells us the above identity is strictly stronger than the Hard Lefschetz condition
on (ker Og, L) in general.
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Ezample 2: Completely solvable Nakamura manifolds. Let g be the 6-dimensional Lie

algebra whose dual space has a basis {ei}ie{lv_”ﬁ} satisfying the following Maurer-Cartan equations:
de! =0, de? =0, de3 = el3,
(6.1) det = —e'*, de® =el®, deb = —e'S.

Then it turns out that the connected and simply-connected Lie group G whose Lie algebra is g
admits a lattice I' such that M = T'\G is a compact solvmanifold of completely solvable type.
Then (J,w, g) is defined respectively as

Jel := —e?,
(6.2) Jed = —64,

Je® = —eb,
(6.3) wi=e? 43t 4 50

and ¢(-,-) = w(-, J-) give rise to an almost Kéhler structure on M. It turns out that bo(M) = 1,
by(M) =2,ba(M) =5, bs(M) =8, by(M) =5, b5(M) =2 and bg(M) = 1. Then, a straightforward
computation yields to:

/Héd = Spang < e, e* >

’H%d = Spang < 612, 634, 656, 636, e >

H%d — SpcmR < 6134,6156, 6136,6145, 623476256, 623676245 >

34567 61256, 61234, 61245 61236

’Héd:SpanR<e >

)

Hgd _ SpanR < 623456,613456 >

and,

’H‘ljdc = Spang < e',e* >

HE . = Spang < e'?,e*,e70 €%, >

H%dc — SpanR < 6134, 6156, 6136, 6145, 6234, 62567 6236, 6245 >

Hédc _ SpanR < 634567 612567 61234, 61245, 61236 >

23456 13456
, €

H%dc = Spang < e >,

that is ker Oy = ker O4e and (M, w) satisfies the Hard Lefschetz Condition.
As a generalization of the above fact, we have

Theorem 6.4. Let (X,w,J,g) be a compact symplectic manifold with an compatible almost complex
structure J. Then the followings are equivalent:

(1) ker Oy = ker Oge;

(2) Hard Lefschetz condition on (ker Og, L);

(3) Hard Lefschetz condition on (ker Oge, L).
Proof. We already know that (1) implies (2) and (3). Since

d® = (=1)F s d*s,, (d°)* = (=11 x, dx,,
one the space of k-forms, we have
ker O4 = *4 ker Oge.

Now (2) implies #4ker Oy = ker Oy thus (2) implies (1). A similar argument gives that (1) is
equivalent to (3). O

Remark 6.5. It is easy to see that the Hard Lefschetz condition on (ker Oy, L) implies the Hard
Lefschetz condition on (H3,L). But in general, we don’t know whether they are equivalent or not.
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7. HARD LEFSCHETZ CONDITION FOR OTHER COHOMOLOGY GROUPS

7.1. Dolbeault cohomology groups. Let (X, J, g,w) be a compact Kéhler manifold of dimension
n. Let (E,hg) be a holomorphic vector bundle on X with smooth Hermitian metric h¥ along the
fibres. Denote by

D¥ .= 09+ 0",

the Chern connection on (E, hg). Let
oF .= (DF)?,

be the Chern curvature. Then we have the following Kahler identity
[0, L] =id”,

which implies the following Bochner-Kodaira-Nakano identity
Oz — Oge = [i0F,A], Opr = Oz + Oys,
where
Oy:= 00 +38 9, Oge := 0P (8F)* + (87)*8F, Ope = (DF)*DF + DP(DP)*.
We have the following theorem:
Theorem 7.1. Let (X,J,g,w) be a compact Kihler manifold of dimension n. Let (E,hg) be a

holomorphic vector bundle on X with smooth Hermitian metric h® along the fibres. Then (ker O30
ker Oy=, L) satisfies the hard Lefschetz condition. Moreover, the followings are equivalent:

(1) ker Oz = ker Oy ;

(2) Hard Lefschetz condition on (ker Og, L);

(8) Hard Lefschetz condition on (ker Oge, L).

Proof. (1) < (2) follows from [L, Oz + Ogre] = 0; ker Oz = xker Ogr gives (2) < (3). O

7.2. Symplectic cohomology groups and its analogies. Let (X,w) be a compact symplectic
manifold. From [15], we know that

. kerd Nkerd® ker dd”

a0 = g gn o B ()= g s
always satisfy the Lefschetz property. Let (X, J, g,w) be a compact Kéhler manifold. Since

0" =i[A, 0],

gives [0,0*] = 0, one may consider the following analogies of the above symplectic cohomology
groups

.o ker 0* Nker 0 .o ker 00*

HY (X)=— - Y (X) = ——

8+8*( ) Im 9*0 50+ (%) Im9* UImo

Then

Lemma 7.2. Let (X, J,g,w) be a compact Kahler manifold. Then the following natural maps
HY® (X) = HY*(X), HY*(X) > Hm (X)),
are bijective.
Proof. Let a be a smooth (p, ¢)-form on X such that
(7.1) da =0, Fa=0
Assume that o = 9. Taking the Hodge decomposition of 3 with respect to Oy, we may write
B=0g+0N+0"u.

Since X is Kahler, we have Oy = O; consequently,

a = 0O\ + 90* .
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By (7.1), we get 9*00\ = 0. Therefore,
0 = (9*00N, ON) = |00\N|?,
which implies 90X = 0. Hence o« = 90* 1, that is the natural map
Hg;a*(X)%Hg’ (X), a+Imd*0— a+Imo

is injective. On the other hand, since Oy = Oy, we know the O-harmonic representative of a class
in H%"(X ) is always 9*-closed. Thus the above map is also surjective.

For the second isomorphism, let u be a smooth (p, ¢)-form on X such that Ou = 0. Asume that
u = 0*v. Taking the Hodge decomposition of v with respect to Oz, we may write

vV =vg +da+9b.
Since X is Kahler, we have Oy = O; consequently,
u=0da+ 9 b.
Now Ju = 0 gives 0070"b = 0, thus
0= (80*0 b,0"b) = —|0"0 b[?,
which implies 9*0"b = 0. Thus u = —09*a and the second map is injective. In order to prove the

surjectivity, let ¢ be a smooth (p, ¢)-form on X such that 99*¢ = 0. Taking the Hodge decomposition
of ¢ with respect to Oz, we may write

b=du+0Y+09 .
Since X is Kahler, we have Oy = Og; consequently,

0=200"¢ =000 ¢,
by the same argument, we get 8*5*@ = 0. Thus we can write

5*<p =0y + 0%0, 0 € ker Op.
Now we know that p := ¢ — 9*c is O-closed. Thus the second map is surjective. ([
Corollary 7.3.
dimg¢ H%:a* (X) = dimg H3*(X) = dime Hy" (X) < co.
Corollary 7.4. Let X be a compact Kéihler manifold. Then X satisfies the 0" -Lemma, that is
ker & Nker 0* N (Im 0 + Im 9*) = Im 9*.

Remark: It is well known that if X is compact Kahler then H%"(X ) satisfies the Hard Lefschetz

Condition and 9* = i[A, J]. Thus the above corollary also follows from Theorem 3.12.

In general, let (F, hg) be a holomorphic vector bundle over a compact Kéhler manifold (X, w, J).
The Kéhler identity (0F)* = i[A, 9] gives [0, (0F)*] = 0, which suggests us to define
k B\ * k ) k I aE\x*
HYye(X, B, L) = ker(97)" N ker 9 HY (X, E,L) = _ kerd(97)"
Im (0F)*0 Im (0F)* UIm 0
The following theorem is a generalization of Theorem 3.11 and Theorem 3.22 in [15].
Theorem 7.5. Let (E, hg) be a holomorphic vector bundle over a compact Kahler manifold (X, w, J).
Then Hp (X, E, L) and HY* (X, E, L) satisfies the Hard Lefschetz Condition (for a bigraded spaces,
it means the Hard Lefschetz Condition on its associated graded space H®, where H := Bprq=kH?).
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Proof. Applying the elliptic operator theory (see the remark below), we have
Hyo(X,E,L) ~kerOpc,  Opc:=0 0+ 9P(0F)" + (9F)*99 97,
It is easy to check that [Ope, L] = 0. Thus Hyo (X, E, L) satisfies the hard Lefschetz condition.
For HY*(X, E, L), we have
HY(X,E,L) ~kerO,, Oy :=00 +(8%)*0" +9 9% (0%)*d,
and [Oy4, L] = 0, which implies that Hy*(X, E, L) satisfies the hard Lefschetz condition. O

Remark 7.6. In general, we have the following natural maps

38 (X, B, L) = H3*(X, B) © Highy (X, ),

and

HS* (X, E) & Hie, (X, E) — HY* (X, B, L).
The elliptic operator theory implies that both Hyl(X,E,L) and HY*(X,E,L) are finite dimen-
sional. For instance, we have

ker Oy = ker Aa, Oa =04+ (9)79°00" + (9)"90" 0" + 99" (0")"9".

It is easy to check that the principal symbol of A4 equals to that of (O5)?, which is elliptic. Thus
HY*(X,E, L) is finite dimensional.

8. COMPLEX SURFACES

Proposition 8.1. Let (X, J,w,g) be a compact Hermitian manifold. Assume that

,0°] = 0.
Then
O4 = D5+ Op = Oge.

In particular, Oy preserves the bi-degree, ker Oy is J-invariant and the first Betti number of X is
even.

Proof. The conjugate of [, %] is [0, ]. Thus if [d,8*] = 0 then
[d,d*] =[0+ 0,0 +8=1[0,0]+ 10,0

Similar proof for Oge. Og preserves the bi-degree since Oz and Oy do. The fact that by (X) is even
follows from
'Hlljd = Spang (e, - ,e;;Jer, -, Je;).

O

Corollary 8.2. Let X be a compact complex surface. Then X is Kdhler if and only if there is a

Hermitian metric on X such that [0,0%] = 0.
Remark 8.3. The above proof also implies: if [0,0] = 0 then
Ogx = Oz + [A[*Og,

where d* := 0+ X0, A € C.



20 ADRIANO TOMASSINI AND XU WANG

==A
9. THE 00 -LEMMA ON SPECIAL COMPLEX MANIFOLDS

9.1. Taming and symmetric almost complex structures. Recall the following definition (see
Definition 2.10):

Definition 9.1. Let X be a 2n-dimensional manifold with an almost symplectic form w. Let J be
an almost complex structure on X. Then J is said to be tamed by w if

w(u, Ju) > 0,
for every non-zero vector u; J is said to be symmetric with respect to w, or w-symmetric if
w(u, Jv) = w(v, Ju),

for every vectors u,v. We call J an w-compatible almost complex structure if it is both taming and
symmetric.

9.2. 55A-Lemma. Let us define 51\ first.
Definition 9.2. Let (X, J) be a complex manifold. Let w be an almost symplectic form on X. Put
A = xzLxg, L:=wA-,
where x¢ denotes the symplectic star operator. Set
7= (=1)* 1 %, 0 %5 u,
for every k-form u.
Apply Theorem 3.6 to (DQF(X),wA, d), we get
Theorem 9.3. Let (X, J) be a complex manifold with an almost symplectic form w. Then
(9.1) P L) =3+ [A [0, L], [0,A]=38" +[A,3"],L).
As a consequence of the previous Theorem, we get the following

Corollary 9.4. Let (X,J) be a complex manifold with a symplectic form w. Assume that J is
symmetric with respect to w, then we have

P, 11=3, [0, =0.

Proof. Since J is symmetric with respect to w, we know that w is degree (1,1). Thus dw = 0 is
equivalent to dw = 0. Hence [0, L] = 0 and it is enough to apply the previous theorem. |

Definition 9.5. Let (X,J) be a complex manifold with a symplectic form w. Assume that J is

symmetric with respect to w, so that the differential operators O and O satisfy
5 =0, (@)2=0, 90 +39=0.
Then X is said to satisfy the 55A—Lemma if
kerd Nkerd N (Imd + ImgA) —Imdo.

— A —
Remark: 00 -Lemma is a generalization of the 09*-Lemma on a compact K&hler manifold. In
. A . .
fact, since 0* = —i0 , we know that Corollary 7.4 is equivalent to:

Theorem 9.6. Let (X, J,w) be a compact Kahler manifold. Then X satisfies the 55A-Lemma.

The following examples also suggest to study the 55A—Lemma on non-Kéhler manifolds.
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9.3. Nakamura manifold of completely solvable type. We shall show that the Nakamura

manifold of completely solvable type M = I'\G in Example 2 satisfies the 55A—Lemma. Consider
the almost complex structure J™ on M defined by requiring that a co-frame for the space of complex
(1,0)-forms is given by

pli=g(e! +ie?),
(9.2) % = (€3 +ied),
@3 = (e* 4 ieb).

We know that J is integrable. Indeed,

dpt = 0
de? = ©'AQ?—@? Al
de® = —p' AP+ Al
and, consequently,
ot = 0
0 = @l Ny
0p° = —plAp?
and
! = 0
9p* = —p?ng!
9> = g

According to Kasuya (see section 5.1 (C) in [10]), the Lie group G admits a lattice I" such that the
Dolbeault cohomology is given by

HY(M) = Span (1) ,

Hy (M) = Spanc<<p1, 1>

HZ (M) = 5pa%< 2, oM, 0%, 0%, o >

H% (M) = Spang <<,0123 P32 G231 123 213 312 90123> 7
H%(M) = Spanc <<p1ié:§ 2823 1312 1213 <p12ﬁ> :

HS (M) = Spang (@128, p1292%) |

HS (M) = Spang <<P 231§3>7

where ¢ = ¢ A 7 and so on. Consider the symplectic form w on M defined by (6.3), then we
know that
1 1
w = 2ip! Al —5—5@2/\3034— 5(,02/\@3.
In particular, we know that J» is w-symmetric. Then a direct computation shows that

PrHZTE (M) — HIPE (M) for0 < k<3

is an isomorphism. Thus, by Theorem 3.12, it follows that M satisfies the 55A—Lemma.
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9.4. Holomorphically parallelizable Nakamura manifold. On C? with coordinates (z1, 22, 23)
consider the following product
(w1, w2, ws) * (21, 22, 23) = (w1 + 21,€ 29 + w2, " 23 + w3).
Then G = (C3,%) is a solvable Lie group, which is the semidirect product C x C?, admitting a
uniform discrete subgroup I' = IV x I/, where IV C C is given by IV = A\Z @ i27Z and I'” is a lattice
in C%; thus N := I'\C? is a compact complex 3-dimensional manifold (see the appendix and [14,
case (III)(b)]). It turns out that h®1(N) = 3 ([14, p.90]). It is immediate to check that
Pt =dz, P? = e*dzy, P = e *dzg

are G-invariant holomorphic 1-forms on C?, so that they induce holomorphic 1-forms on N, namely
{ap*, 42,4} is a global holomorphic co-frame on N and the complex manifold NV is holomorphically
parallelizable. We have

AL =0, A= AP gt = gt Ayt
By the construction of N, it follows that e is a well-defined complex-valued smooth function
on N. Let
¢ /\wl el Z1 ¢2 /\w?) - —zl+21 wQ /\ﬁ.
Then

€l
I

€
S

3= fZ(idzl Adzy) A (idzg A dZ3) A (idzs A dZzs) < 0,
and explicitly, ‘
w = %dzl Adz + %dfg Adzs + %dzg Adzy,
so that dw = 0 and the complex structure on N is w-symmetric. By noting that
P12 = iz, e AP Y3 = ez,
in view of [1, p. 86], we have
HY(N) = Span (1) ,

H% (N) = Spang (dz1,e* dza, e **dz3, dZy, €7 dZa, e~ dZs3)

H% (N) = Spanc (e*dz12, e dz13, dzag, dz11, € dzy5, €~ *1d2y3, €27 dzg3, dzoz, € * d231, 233,
e a1 dzs3 €*'dz73, e~ "1 dz13, d2§3> R

H2(N) = Spanc (dzi23, " dz1a1, € d2193, dz13, € " d2131, 2133, € 27 dzys3, d2133, d2ast,
¥ dzyzz, €% dzgaz, degia, dzots, € dzis, € F d2g, €27 dzota, €7 d2oag,
e~ P dzyi3, e~ P dzssg, dzizg)

HZ(N) = Spang (dz1931, €% d21933, €~ 7 dz1933, €% d21913, d21915, €7 d21933, 21313, € 27 d21513,
€ dz1333, €7 d2azis, € 7 o313, d2azas, d2i1as, €7 dzaizs, € M d2sisg)

H3(N) = Spanc (e*1dz19312, € * dz19313, 212323, €7 219123, € ' d213123, d203123)

Hg (N) = Spanc (dz123133) -
where dz;; = dz, A\ dZy, and so on. A straightforward computation shows that

FLHZTE(N) - HIPE(N) for0 <k <3

is an isomorphism. Thus, by Theorem 3.12, it follows that N satisfies the 55A—Lemma.

Remark 9.7. It has to be noted that the Nakamura manifold of Example 2 satisfies the 0-Lemma
(see [1]). Indeed, from the table ([10, Section 5.1 (C)]) recalled in subsection 9.3,

HY(M;C)~ P HZY(M HEP(M) =~ HEU(M)
pt+a=k
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so that M satisfies the 85—Lemmg. On the contrary, the holomorphically parallelisable Nakamura
manifold N does not satisfy the 00-Lemma.

9.5. Kodaira-Thurston manifold. Similar computations can be performed also for the Kodaira-
Thurston manifold. Consider the almost complex structure J» on M assigning a complex co-frame
of (1,0)-forms by

1 1 5.2
@ = (e +ie”),
(9-3) 2 (B ih
= (e° + ie*).
Then
dot =0,
(0.4 A
dp* = -5 Al
Thus JM is integrable. Consider the symplectic form w on M defined by
1 .
W= AP+t AG);
then JM is w-symplectic.

==A
We can prove that (M,.JM w) does not satisfy the 99 -Lemma. In fact, assume that it satisfies

the 55A—Lemma. Then Theorem 3.12 implies that H satisfies the Hard-Lefschetz property. Notice
that

WA BT = 5ot A2 ATl
Since ! A ¢! is D-exact and ¢? is O-closed, we know that [w A ¢l]z = 0. Thus the Hard-Lefschetz
property implies [¢!]5 = 0, which gives (use d(p* A @2 A ¢?) = 0) the following contradiction
2’5 =" A2 AL A Q%5 =0,
Thus (M, JM,w) does not satisfy the 55A—Lemma.
9.6. Op gg-Lemma.

Definition 9.8. Let (X, J) be a complex manifold. Let E be a holomorphic vector bundle on X.
We shall write the 0-operator on E as Og. Let w be an almost symplectic form on X. Put

A:*S_lL*S, L:=wA-,
where *, denotes the symplectic star operator. We shall define the symplectic adjoint of O as
giﬂu = (=D %, Op *4 u,
where u is a smooth E-valued k-form.
Theorem 3.12 implies:

Theorem 9.9. Let (X,J) be a complex manifold with an almost symplectic form w. Let E be a
holomorphic vector bundle on X. Then

=A = = = =A =A
As a consequence of the previous Theorem, we get the following

Corollary 9.10. Let (X, J) be a complex manifold with a symplectic form w. Let E be a holomorphic
vector bundle on X. Assume that J is symmetric with respect to w, then we have

Proof. Since J is symmetric with respect to w, we know that w is degree (1,1). Thus dw = 0 is
equivalent to dw = 0. Hence [0, L] = 0 and it is enough to apply the previous theorem. O
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Remark: Consider the complex (2°(X, E),EE,EQJ) of smooth E-valued (k)-forms on X, where
the differential operators 0 and EIE\ satisfy

9o=0, (9n)2=0, Opde+dnds=0,

Definition 9.11. Let (X, J) be a complex manifold with a symplectic form w. Let E be a holomor-
phic vector bundle on X. Assume that J is symmetric with respect to w. Then X is said to satisfy

the Op 5% -Lemma if
ker O N kergg N (Imdg + Imgg) = Inggg.
Theorem 3.12 implies

Theorem 9.12. Let (X, J) be a complex manifold with a symplectic form w. Let E be a holomorphic

—~ =A
vector bundle on X. Assume that J is symmetric with respect to w. Then X satisfies the O Op-
Lemma if and only if its Dolbeault cohomology Hp_ satisfies the Hard Lefschetz Condition.

Thus by the Hodge theory, we get

Theorem 9.13. Let (X, J,w) be a compact Kihler manifold. Let E be a holomorphic vector bundle
on X. Assume that there exists a smooth Hermitian metric hg on E such that the Chern curvature

O(E,hg) =0. Then X satisfies the Op EIE\-Lemma.

10. APPENDIX

We briefly recall the construction of completely solvable Nakamura manifolds (see e.g., [14], [5]
and [3]). Let A € SL(2,Z) have two real positive distinct eigenvalues

Set

and let P € M3 2(R) be such that
A =PAP™!

Consider I' := PZ? + iPZ?; then I is a lattice in C2. Let TZ = C?/T" be a 2-dimensional complex
torus.
Then the map

d:.C* —C?
®(z) = Az, where z=(z', 2%,

induces a biolomorphism of T% by setting ®([2]) = [®(z)].
First of all, @ is well-defined, since if z’ and z are equivalent, i.e., 2/ = z + P(y1 + i72), with 71,
Y2 € Z2, then

&) =N = Az + AP(v1 +iy2)
= Az + PAP 'P(y; +i72)
=Az+ PA(y1 +i7y2)
= Az + P(A\ +i)y)
=®(2) + P(\; +i)o) with A, )\ € Z2,

so that ®(2') ~ ®(z). Furthermore ®~'([2]) = [®~1(2)].
We identify R x C2 with R® by (s, 21, 22) — (s, 21,22, 23, 2%), where 2! = 2! +i23, 22 = 22 +ix?,
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and consider
T, :R®* — R®
Ti(s,at, 2%, 23, 2%) = (s + N e Pal, era? e Ma?, erat),
then
Ti(s,xt, 2 2% at) = Ti(s, 24, 22) = (s + A, ®(21, 22)) .
Hence T} induces a transformation of R x T%, by setting
Ta(s, [z, 2%)]) = (s + A, [@(21, 22))).

Define o
Mo R RxTg

= — X .
bZ <T) >

Then, we obtain a family of compact 6-dimensional solvmanifold of completely solvable type M,
called Nakamura manifolds.
We give a numerical example. Let

A

Il
N
—

|
S
~~_

A€ SL(2,Z). Then o = 353, We set
3B _

= —5 = e and o 5 )
ie, A= log(3+2‘/5). Then
3-v5  3+v5
p1l= 2 2 ,
(7T
and
1 _3+\/5
P= 2
-1 3—V5
2
and the lattice I' is given by
_ A5 5+3v5 0 0
5 10
5 5-3v5 0 0
I' = Spangz < 5 , 10 A v || sasvE | >
NN
0 0 5 10

Remark 10.1. Note that, according to Kasuya [10], the Dolbeault cohomology of (M, JM) depends
on b. In particular, if b # nx, then the Dolbeault groups have been computed in [10, Section 5.1
(C)], see Section 6, Example 2 for the list of the explicit representatives.
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