
SOME RESULTS ON HARD LEFSCHETZ CONDITION

ADRIANO TOMASSINI AND XU WANG

Abstract. We discuss the Hard Lefschetz Condition on various cohomology groups and verify
them for the Nakamura manifold of completely solvable type and the Kodaira-Thurston manifold.

A general Demailly-Griffiths-Kähler identity is also given.
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1. Introduction

A special class of symplectic manifolds is represented by those ones satisfying the Hard Lefschetz
Condition (shortly HLC), i.e., those compact 2n-dimensional symplectic manifolds (X,ω) for which
the maps

[ω]k : Hn−k
dR (X,R)→ Hn+k

dR (X,R) , 0 ≤ k ≤ n

are isomorphisms. In particular, a classical result states that if (X, ω, J) is a compact Kähler
manifold, then (X, ω) satisfies the HLC (see e.g., [8]) and the de Rham complex (Ω∗(X), d) is a
formal DGA in the sense of Sullivan (see [6]); furthermore, HLC symplectic manifolds have some of
the cohomological properties of a Kähler manifold (e.g., the odd Betti numbers b2k+1(X) are even,
bk(X) ≤ bk+2(X) , 0 ≤ k < n− 1, b2k(X) > 0).
On any almost symplectic manifold (X,ω), i.e., X is a 2n-dimensional manifold endowed with a
non-degenerate 2-form ω, it is defined a symplectic codifferential operator dΛ : Ωk(X)→ Ωk−1(X),
by using the symplectic star operator. If ω is closed, for such an operator the following basic
symplectic identity holds

[d,Λ] = dΛ,

where Λ is the symplectic adjoint of the Lefschetz operator L. Furthermore, in the symplectic
case, (Ω∗(X), d, dΛ) is a differentiable Gerstenhaber-Batalin-Vilkovisky (dGBV) algebra, that is
integrable (i.e., the ddΛ-lemma holds), if and only if (X,ω) satisfies the HLC (see [13], [11], [2],
[18]).

In the present paper, we will generalize such an identity to the context of almost symplectic and

almost complex manifolds. Then we will give a notion of ∂∂
Λ

-Lemma on special complex manifolds.
First of all, starting with a Lefschetz space (A,L), where A = ⊕2n

k=0A
k is a direct sum of complex

vector spaces and L ∈ End(A) satisfies L(Al) ⊂ Al+2 for every 0 ≤ l ≤ 2(n − 1), L(A2n−1) =
L(A2n) = 0 and Lk : An−k → An+k is an isomorphism for every 0 ≤ k ≤ n, we prove the following
general Demailly-Griffiths-Kähler identity (see page 307 in [7] and Theorem 4.6 in [16])

Theorem A (see Theorem 3.6). Let (A,L) be a Lefschetz space. Let d be a C-linear endomorphism
of A such that d(Al) ⊂ Al+1. Let us define

dΛ := (−1)k+1 ∗s d∗s

on Ak. Assume that [L, [d, L]] = 0. Then

[dΛ, L] = d+ [Λ, [d, L]], [d,Λ] = dΛ + [[Λ, dΛ], L].

As a direct consequence (see Theorem 5.2), if (X,ω) is a symplectic manifold, A = ⊕2n
k=0Ωk(X)

and L := ω∧, then we recover the basic symplectic identity above. Furthermore, for an almost
symplectic manifold, by applying the Theorem above, we derive the following identity (see Theorem
5.1)

[dΛ, L] = d+ [Λ, [d, L]], [d,Λ] = dΛ + [[Λ, dΛ], L].

Then we show that the fundamental form of a compact almost Kähler manifold (X,ω, J, g) restricted
to ker2d∩ker2dc satisfies the Hard Lefschetz Condition (see Theorem 6.2). We will provide explict
computations on two non-Kähler manifolds: the Kodaira-Thurston manifold and the Nakamura
manifold of completely solvable type.

In Section 9, we will define the notion of ∂∂
Λ

-Lemma on special complex manifolds. Namely, we
consider a complex manifold (X, J) endowed with a symplectic form ω such that J is ω-symmetric,
or equivalently, ω is a symplectic form of (1, 1)-type with respect to the decomposition induced by
J . In this situation, by using the symplectic Hodge operator ∗s, the symplectic adjoint Λ of the

Lefschetz operator L and the ∂ operator, one can define ∂
Λ

= (−1)k+1 ∗s ∂∗s.
By applying Theorem 3.6 we obtain complex symplectic identities (see Corollary 9.4). In particular,
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∂
2

= (∂
Λ

)2 = 0 and ∂∂
Λ

+ ∂
Λ
∂ = 0, so that it is natural to consider the complex (Ω•(X), ∂, ∂

Λ
);

by definition, (X, J, ω) is said to satisfy the ∂ ∂
Λ

-Lemma if

ker ∂ ∩ ker ∂
Λ ∩ (Im ∂ + Im ∂

Λ
) = Im ∂∂

Λ
.

We show that any compact Kähler manifold satisfies the ∂ ∂
Λ

-Lemma and we provide a family of

non Kähler manifolds satisfying the ∂ ∂
Λ

-Lemma. Finally, we apply our construction to holomorphic

vector bundles over special complex manifolds (section 8.6). Our results on the ∂ ∂
Λ

-Lemma include

Theorem B. Let (X,J) be a compact complex manifold with a J-symmetric symplectic structure
ω. Then we have

(1) The Dolbeault cohomology satisfies the HLC if and only if the ∂ ∂
Λ

-Lemma holds (special
case of Theorem 3.12);

(2) Nakamura manifold of completely solvable type (see Example 2 and the appendix) satisfies

the ∂ ∂
Λ

-Lemma (see section 8.3) and the ∂∂-Lemma (see [1]);

(3) The holomorphic parallelizable Nakamura manifold in section 8.4 satisfies the ∂ ∂
Λ

-Lemma,
but it does not satisfy the ∂∂-Lemma;

(4) The Kodaira-Thurston manifold in section 8.5 does not satisfy the ∂ ∂
Λ

-Lemma.

2. Preliminaries

2.1. Hard-Lefschetz-theorem on symplectic vector spaces. Let V be an N -dimensional real
vector space. Let ω be a bilinear form on V . We call ω a symplectic form if ω is non-degenerate
and ω ∈ ∧2V ∗, i.e., ω(u, v) = −ω(v, u), ∀ u, v ∈ V . We have the following well-known proposition

Proposition 2.1. Assume that there is a symplectic form ω on V . Then N = 2n for some integer
n and there exists a base, say {e∗1, f∗1 ; · · · ; e∗n, f

∗
n}, of V ∗ such that

ω =

n∑
j=1

e∗j ∧ f∗j .

One may use ω to define a bilinear form, say ω−1, on V ∗ such that

ω−1(f∗j , e
∗
k) = −ω−1(e∗k, f

∗
j ) = δjk, ω

−1(f∗j , f
∗
k ) = ω−1(e∗j , e

∗
k) = 0.

Remark: In [15], the bilinear form on V ∗ is defined to be −ω−1.

Let Tω : V → V ∗ be the linear isomorphism defined by

Tω(u)(v) = ω(v, u), ∀ u, v ∈ V.

Then we have

T−1
ω = Tω−1 ,

thus the definition of ω−1 does not depend on the choice of bases in the above proposition. We shall
also use ω−1 to denote the following bilinear form on ∧pV ∗, defined on simple elements as

(2.1) ω−1(µ, ν) := det(ω−1(αi, βj)), µ = α1 ∧ · · · ∧ αp, ν = β1 ∧ · · · ∧ βp,

and then extended linearly.
Then we can have

Definition 2.2. The symplectic star operator ∗s : ∧pV ∗ → ∧2n−pV ∗ is defined by

(2.2) µ ∧ ∗sν = ω−1(µ, ν)
ωn

n!
.

The following theorem is well known, see [16].
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Theorem 2.3 (Hard Lefschetz theorem). For each 0 ≤ k ≤ n,

u 7→ ωn−k ∧ u, u ∈ ∧kV ∗,

defines an isomorphism between ∧kV ∗ and ∧2n−kV ∗.

Definition 2.4. We call u ∈ ∧kV ∗ a primitive form if k ≤ n and ωn−k+1 ∧ u = 0.

The following Lefschetz decomposition theorem follows directly from Theorem 2.3.

Theorem 2.5 (Lefschetz decomposition formula). Every u ∈ ∧kV ∗ has a unique decomposition as
follows:

(2.3) u =
∑

ωr ∧ ur, ωr :=
ωr

r!
,

where each ur is a primitive (k − 2r)-form.

By the above theorem, it is enough to study the symplectic star operator on ωr ∧ u, where u is
primitive, see [16].

Theorem 2.6. If u is a primitive k-form then ∗s(ωr ∧ u) = (−1)k+···+1ωn−k−r ∧ u.

Definition 2.7. We call {L,Λ, B} the sl2-triple on ⊕0≤k≤2n ∧k V ∗, where

Lu := ω ∧ u, Λ := ∗−1
s L∗s, B := [L,Λ].

We have

ω−1(Lu, v) = ω−1(u,Λv).

Hence Λ is the adjoint of L. Put

Lr := Lr/r!, L0 := 1, L−1 := 0.

We have:

Proposition 2.8. If u is a primitive k-form then

Λ(Lru) = (n− k − r + 1)Lr−1u, B(Lru) = (k + 2r − n)Lru,

for every 0 ≤ r ≤ n− k + 1.

Definition 2.9. We call a linear map J : V → V an almost complex structure on V if J(Ju) = −u
for every u ∈ V .

Definition 2.10. An almost complex structure J is said to be tamed by ω if

ω(u, Ju) > 0,

for every non-zero u ∈ V . J is said to be symmetric with respect to ω if

ω(u, Jv) = ω(v, Ju),

for every u, v ∈ V . We say J is ω-compatible if it is both taming and symmetric.

If J is an almost complex structure on V then

J(v)(u) := v(Ju), ∀ u ∈ V, v ∈ V ∗,

defines an almost complex structure on V ∗.

Definition 2.11. We call

J(v1 ∧ · · · ∧ vk) := J(v1) ∧ · · · ∧ J(vk),

the Weil operator on ⊕0≤k≤2n ∧k V ∗.
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Since the eigenvalues of J are ±i, its eigenvectors lie in C⊗ V ∗. Put

Ei := {u ∈ C⊗ V ∗ : J(u) = iu}, E−i := {u ∈ C⊗ V ∗ : J(u) = −iu},
we know that

Ei = {u− iJu : u ∈ V ∗}, E−i = {u+ iJu : u ∈ V ∗}.
and C⊗ V ∗ = Ei ⊕ E−i. Put

∧p,qV ∗ := (∧pEi) ∧ (∧qE−i).
Then we have

C⊗ (∧kV ∗) = ∧k(C⊗ V ∗) = ⊕p+q=k ∧p,q V ∗,
and

Ju = ip−qu, ∀ u ∈ ∧p,qV ∗.
We call ∧p,qV ∗ the space of (p, q)-forms.

Proposition 2.12. An almost complex structure J on (V, ω) is compatible with ω iff

(α, β) := ω−1(α, Jβ̄),

defines a Hermitian inner product structure on ∧p,qV ∗, 0 ≤ p, q ≤ n.

Definition 2.13. The Hodge star operator ∗ : ∧p,qV ∗ → ∧n−q,n−pV ∗ is defined by

u ∧ ∗v̄ = (u, v)ωn.

The above proposition gives
∗ = ∗s ◦ J = J ◦ ∗s.

3. Hard Lefschetz Condition and the ddΛ-Lemma

In this section, we shall introduce the Hard Lefschetz Condition on a general (can be infinite
dimensional) linear space and the general ddΛ-Lemma.

3.1. Lefschetz spaces.

Definition 3.1. Let A = ⊕2n
k=0A

k be a direct sum of complex vector spaces. We say that L ∈ End(A)
satisfies the Hard Lefschetz Condition and (A,L) is a Lefschetz space if

L(Al) ⊂ Al+2, ∀ 0 ≤ l ≤ 2(n− 1), L(A2n−1) = L(A2n) = 0,

and each Lk : An−k → An+k, 0 ≤ k ≤ n, is an isomorphism.

Definition 3.2. Let (A,L) be a Lefschetz space. We call u ∈ Ak a primitive form if k ≤ n and
Ln−k+1u = 0.

The Hard Lefschetz Condition implies the following Lefschetz decomposition theorem (see [16]
for the proof).

Theorem 3.3. Let (A,L) be a Lefschetz space. Then every u ∈ Ak has a unique decomposition as
follows:

(3.1) u =
∑

Lru
r, Lr :=

Lr

r!
.

where each ur is a primitive form in Ak−2r.

Definition 3.4. We call the following C-linear map ∗s : A→ A defined by

∗s(Lru) := (−1)k+···+1Ln−r−ku,

where u ∈ Ak is primitive, the Lefschetz star operator on A.

Notice that ∗2s = 1. We know from the last section that the Lefschetz star operator is a general-
ization of the symplectic star operator.

Definition 3.5. Put Λ = ∗−1
s L∗s, B := [L,Λ]. We call (L,Λ, B) the sl2-triple on (A,L) (Proposi-

tion 2.8 is also true for general Lefschetz space).
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3.2. General Demailly-Griffiths-Kähler identity. We shall use the following general Demailly-
Griffiths-Kähler identity [7], see also Theorem 3.1 in [16].

Theorem 3.6. Let (A,L) be a Lefschetz space. Let d be a C-linear endomorphism of A such that
d(Al) ⊂ Al+1. Let us define

dΛ := (−1)k+1 ∗s d∗s
on Ak. Assume that [L, [d, L]] = 0. Then

[dΛ, L] = d+ [Λ, [d, L]], [d,Λ] = dΛ + [[Λ, dΛ], L].

Proof. We shall follow the proof of Theorem 3.1 in [16]. By the Lefschetz decompostion theorem,
it suffices to prove the theorem for Lru, where u ∈ Ak is primitive. Put

θ := [d, L].

Step 1 : Since [L, θ] = 0, we have

(3.2) d(Lpu) = θLp−1u+ LdLp−1u = 2Lp−1θu+ L2dLp−2u = · · · = pLp−1θu+ Lpdu.

Thus

0 = d(Ln−k+1u) = Ln−k(θu+
Ldu

n− k + 1
).

Put

v := θu+
Ldu

n− k + 1
.

Ln−kv = 0 implies that the primitive decomposition of v contains at most three terms. Thus we
can write

v = v0 + Lv1 + L2v2,

where v0, v1, v2 are primitive. Moreover, since Ln−k+1θu = θLn−k+1u = 0, we can write

θu = e+ Lf + L2g + L3h.

where e, f, g, h are primitive. Thus

v0 = e, du = (n− k + 1)(v1 − f + L(v2 − g)− L2h).

Let us write

du = a+ Lb+ L2c,

where a, b, c are primitive and

(3.3) c = −(n− k + 1)h.

Step 2 : Notice that

[dΛ, L] = (−1)k+1(∗sd ∗s L− L ∗s d∗s),
on Ak. Using ∗sΛ = L∗s, we get

[dΛ, L] = (−1)k+1 ∗s (dΛ− Λd)∗s,

on Ak. Now

(dΛ− Λd) ∗s (Lru) = (−1)k+···+1(dΛ− Λd)(Ln−r−ku).

Put

m := n− r − k.
By Proposition 2.8, we have

dΛ(Lmu) = (r + 1)dLm−1u = (r + 1)(Lm−2θu+ Lm−1du)

= (r + 1)
[
Lm−2e+ (m− 1)Lm−1f + (m− 1)mLmg + (m− 1)m(m+ 1)Lm+1h

+Lm−1a+mLmb+m(m+ 1)Lm+1c
]
,
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and

Λd(Lmu) = Λ(Lm−1θu+ Lmdu) = (r − 1)Lm−2e+ rmLm−1f

+ (r + 1)m(m+ 1)Lmg + (r + 2)m(m+ 1)(m+ 2)Lm+1h

+ rLm−1a+ (r + 1)(m+ 1)Lmb+ (r + 2)(m+ 1)(m+ 2)Lm+1c.

By (3.3), we have

(dΛ− Λd)(Lmu) = 2Lm−2e+ (m− r − 1)Lm−1f − 2(r + 1)mLmg

+ 2(r + 1)(r + 2)(m+ 1)Lm+1h+ Lm−1a− (r + 1)Lmb.

Thus

[dΛ, L](Lru) = −2Lr−1e+ (m− r − 1)Lrf + 2(r + 1)mLr+1g

+ 2(r + 1)(r + 2)(m+ 1)Lr+2h+ Lra+ (r + 1)Lr+1b.

Step 3 : Since

d(Lru) = Lr−1θu+ Lrdu,

and

θΛ(Lru) = (m+ 1)Lr−1θu.

We have

(d− θΛ)(Lru) = Lrdu−mLr−1θu.

Notice that

Lrdu = Lra+ (r + 1)Lr+1b+ (r + 1)(r + 2)Lr+2c,

and

Lr−1θu = Lr−1e+ rLrf + r(r + 1)Lr+1g + r(r + 1)(r + 2)Lr+2h.

Moreover, since

Λθ(Lru) = ΛLr(e+ Lf + L2g + L3h),

by Proposition 2.8, we have

Λθ(Lru) = (m− 2)Lr−1e+ (m− 1)(r + 1)Lrf

+ (r + 1)(r + 2)mLr+1g + (r + 1)(r + 2)(r + 3)(m+ 1)Lr+2h.

Thus

(d+ [Λ, θ])(Lru) = Lrdu−mLr−1θu+ Λθ(Lru),

can be written as

Lra+ (r + 1)Lr+1b+ (r + 1)(r + 2)Lr+2c

−2Lr−1e+ (m− r − 1)Lrf

+ 2m(r + 1)Lr+1g + (r + 1)(r + 2)(r + 3m+ 3)Lm+1h,

which is equal to [dΛ, L](Lru) by Step 2 and (3.3). Thus

[dΛ, L] = d+ [Λ, [d, L]].

By definition of dΛ and Λ, we know that [dΛ, L] = d + [Λ, [d, L]] is equivalent to [d,Λ] = dΛ +
[[Λ, dΛ], L]. Thus the proof is complete. �

Remark: In case [d, L] = 0, then the above theorem is just the general Kähler identity and its
proof is much simpler. The general Kähler identity implies the following result.

Theorem 3.7. Let (A,L) be a Lefschetz space. Let d be a C-linear endomorphism of A such that
d(Al) ⊂ Al+1. If [d, L] = 0 then

(1) (ker d ∩ ker dΛ, L) and (ker d ∩ ker dΛ,Λ) are Lefschetz;
(2) (Im d+ Im dΛ, L) and (Im d+ Im dΛ,Λ) are Lefschetz;
(3) Assume further that d2 = 0. Then (Im ddΛ, L) and (Im ddΛ,Λ) are Lefschetz.
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Proof. Notice that ker d ∩ ker dΛ is ∗s invariant and Λ = ∗sL∗s. (ker d ∩ ker dΛ,Λ) is Lefschetz if
(ker d∩ ker dΛ, L) is Lefschetz. Now let us prove that (ker d∩ ker dΛ, L) is Lefschetz. Since (A,L) is
Lefschetz, it suffices to prove that the primitive decomposition preserves (ker d∩ ker dΛ, L). Thus it
is enough to show

L(ker d ∩ ker dΛ) ⊂ ker d ∩ ker dΛ,

and
Λ(ker d ∩ ker dΛ) ⊂ ker d ∩ ker dΛ,

which follows from
[d, L] = 0, [dΛ, L] = d, [d,Λ] = dΛ, [Λ, dΛ] = 0.

Thus (1) follows from general Kähler identity. (2) and (3) can be proved by a similar argument. �

3.3. ddΛ-Lemma for a general Lefschetz complex.

Definition 3.8. Let (A,L) be a Lefschetz space. Let d be a C-linear endomorphism of A such that
d(Al) ⊂ Al+1. We call (A,L, d) a Lefschetz complex if d2 = 0.

Let (A,L, d) be a Lefschetz complex. In case [d, L] = 0, Theorem 3.6 implies that

[d, dΛ] = 0,

thus (A, d, dΛ) is a double-complex.

Definition 3.9. Let (A,L, d) be a Lefschetz complex. Assume that [d, L] = 0. We say that (A,L, d)
satisfies the ddΛ-Lemma if

ker d ∩ ker dΛ ∩ (Im d+ Im dΛ) = Im ddΛ,

on each Ak, 0 ≤ k ≤ 2n.

Definition 3.10. Let (A,L, d) be a Lefschetz complex. We shall define

Hd = ⊕2n
k=0H

k
d , Hk

d :=
ker d ∩Ak

Im d ∩Ak
,

and

HdΛ = ⊕2n
k=0H

k
dΛ , Hk

dΛ :=
ker dΛ ∩Ak

Im dΛ ∩Ak
.

The following theorem is due to Mathieu [12] and Yan [18], we will follow the proof in [18].

Theorem 3.11. Let (A,L, d) be a Lefschetz complex. Assume that [d, L] = 0. Then the following
facts are equivalent:

(1) ker d ∩ ker dΛ → Hd is surjective;

(2) For each 0 ≤ k ≤ n, Lk : Hn−k
d → Hn+k

d is surjective;
(3) ker d ∩ ker dΛ → HdΛ is surjective;

(4) For each 0 ≤ k ≤ n, Λk : Hn+k
dΛ → Hn−k

dΛ is surjective.

Proof. By Theorem 3.7, we know that for each 0 ≤ k ≤ n,

Lk : (ker d ∩ ker dΛ) ∩An−k → (ker d ∩ ker dΛ) ∩An+k,

is an isomorphism. Thus (1) implies (2). The same proof gives that (3) implies (4). Since ker d ∩
ker dΛ is ∗s-invariant and ∗s defines an isomorphism from Hn−k

d to Hn+k
dΛ , we know that (1) is

equivalent to (3) and (2) is equivalent to (4). Thus it is enough to prove that (2) implies (1), which
follows directly from the argument in the proof of Theorem 0.1 in [18] (the idea is: (2) implies that
each class in Hd has a Lefschetz decomposition and the primitive class has a primitive representative
which lies in ker d ∩ ker dΛ). �

Now we can prove the following result:

Theorem 3.12. Let (A,L, d) be a Lefschetz complex. Assume that [d, L] = 0. Then the followings
are equivalent:
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(1) (A,L, d) satisfies the ddΛ-Lemma;
(2) the natural map ker d∩ker dΛ → Hd is surjective and the sl2-triple (L,Λ, B) on ker d∩ker dΛ

induces the sl2-triple on Hd;
(3) (Hd, L) satisfies the Hard Lefschetz Condition;
(4) (HdΛ ,Λ) satisfies the Hard Lefschetz Condition.

Proof. (1) implies (2): If u ∈ ker d then [d, dΛ] = 0 implies that d(dΛu) = 0. Thus the ddΛ-Lemma
implies

dΛu ∈ Im ddΛ.

Let us write dΛu = ddΛv. Thus

u+ dv ∈ ker dΛ,

which implies that ker d ∩ ker dΛ → Hd is surjective. Notice that

∗s(ker dΛ ∩ Im d) = ker d ∩ Im dΛ.

Thus ddΛ-Lemma gives

∗s(ker dΛ ∩ Im d) ⊂ Im ddΛ ⊂ Im d,

which implies that ∗s is well defined on Hd (using representatives in ker d ∩ ker dΛ). Now we can
define Λ := ∗sL∗s on Hd. Thus (1) implies (2).

(2) implies (3) is well known (see [9]). The fact that (3) and (4) are equivalent follows from that

for each k, ∗s defines an isomorphism from Hk
d to H2n−k

dΛ and Λ = ∗−1
s L∗s.

Now it suffices to show (3) implies (1). By Theorem 3.7, we only need to prove the ddΛ-Lemma
on the primitive space P , i.e.,

(3.4) P ∩ ker d ∩ (Im d+ Im dΛ) ⊂ Im ddΛ.

We shall follow the proof by Merkulov (see page 4 in [13]). First, let us prove (3.4) is true on P 0.
Let u ∈ P 0 ∩ ker d ∩ Im dΛ, we know that Ln[u] = 0. Thus u = [u] = 0 = P 0 ∩ Im ddΛ. In general,
we shall prove that

(3.5) P ∩ ker d ∩ (Im d+ Im dΛ) = P ∩ Im d.

Assume that u ∈ P k, 1 ≤ k ≤ n. If u ∈ ker d ∩ (Im d+ Im dΛ) then

Ln−k[u] = 0.

Thus [u] = 0 by the HLC-condition, which gives (3.5). Now we know that (3.4) is equivalent to

(3.6) P ∩ Im d ⊂ Im ddΛ.

Let us first prove that (3.6) is true on P 1. In fact, since A0 ⊂ ker dΛ, Theorem 3.11 implies that for
every u ∈ A0, there exists a ∈ A1 and b ∈ ker d ∩ ker dΛ such that

u = dΛa+ b.

Thus

du = ddΛa,

which implies that (3.6) is true on P 1. Assume that the ddΛ-Lemma is true on Ak, let us prove
that (3.6) is true on P k+2. Take u = da ∈ P k+2. Primitivity of u implies that u ∈ Im dΛ. Thus
dΛa ∈ ker d. Now the ddΛ-Lemma on Ak implies that there exists b ∈ Ak such that

dΛa = dΛd b.

By Theorem 3.11, we know that there exists e ∈ Ak+1 and f ∈ ker d ∩ ker dΛ such that

a− db = dΛe+ f,

which implies that u = ddΛe. Thus (3.6) is true on P k+2. The proof is complete. �
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4. Kähler identity for arbitrary degree operators

4.1. su(2)-representation. In this section, we shall follow Wells’ book [17]. It is known that (see
page 172 in [17]) the Lie algebra sl(2,C) of the special linear group SL(2,C) is generated by

X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
,

which satisfy

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y.

Let (A,L) be a Lefschetz complex with sl2-triple (L,Λ, B). Then we know that

ρ(X) = L, ρ(Y ) = Λ, ρ(H) = B,

defines an sl(2,C)-action on (A,L). It is also known that the Lie-algebra su(2) of the special unitary
group is a real form of sl(2,C), i.e.

sl(2,C) = su(2)⊗R C.

Moreover, su(2) is generated by

iH, X − Y, i(X + Y ).

Put

W (t) = eit(X+Y ), #(t) = ρ(W (t)) = eit(L+Λ).

Then we have the following formula (same as the proof in page 187 in [17]):

Proposition 4.1. #(π2 )u = ik
2+n∗s, for every u ∈ Ak, where ∗s denotes the Lefschetz star operator.

Definition 4.2. Let (A,L) be a Lefschetz space. We call D a degree p map if D is a C-linear
endomorphism of A such that D(Al) ⊂ Al+p for each l. We shall define D# := #(−π2 )D#(π2 ).

Remark: It is easy to check that

D#u = ip
2

(−1)p(k+1) ∗s D ∗s u,

for every u ∈ Ak if D is degree p.

Definition 4.3. If D1 is degree p1 and D2 is degree p2 then we shall write

adD1D2 = [D1, D2] := D1D2 − (−1)p1p2D2D1,

and

[adD1
, adD2

] = adD1
adD2

− (−1)p1p2adD2
adD1

.

Remark: The super Jacobi identity is equivalent to the following formula

[adD1 , adD2 ] = ad[D1,D2].

We shall use the following lemmas:

Lemma 4.4. If D is degree p then adBD = p ·D.

Proof. For every u ∈ Ak, we have

adBD (u) = [B,D]u = (p+ k − n)Du− (k − n)Du = p ·Du,

which gives our formula. �

It is convenient to introduce the following definition:

Definition 4.5. (adΛ)k := (adΛ)k/ k!, (adL)k := (adL)k/ k!.

We have the following generalization of Lemma 4.4.
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Lemma 4.6. If D is degree p then

[adL, (adΛ)k]D = (p− k + 1)(adΛ)k−1D,

and

[adΛ, (adL)k]D = (−p− k + 1)(adL)k−1D,

for every k ≥ 1.

Proof. Follows directly by induction on k and the following formula

[adD1
, (adD2

)k] = ad[D1,D2](adD2
)k−1 + adD2

[adD1
, (adD2

)k−1],

for even degree maps. �

4.2. A List of formulas. Put

Ajk := (adL)j(adΛ)kD, Bjk := (adΛ)j(adL)kD, T := adL + adΛ.

Then Lemma 4.6 gives

(4.1) T (Ajk) = (j + 1)A(j+1)k + (k + 1)Aj(k+1) + (2k − j + 1− p)A(j−1)k,

and

(4.2) T (Bjk) = (j + 1)B(j+1)k + (k + 1)Bj(k+1) + (2k − j + 1 + p)B(j−1)k.

Remark: By induction on k, Lemma 4.6 also gives

(4.3) Bkk =

k∑
j=0

Cjp−1+j(−1)jA(k−j)(k−j), Akk =

k∑
j=0

Cj−p−1+j(−1)jB(k−j)(k−j),

where

C0
m := 1, Cjm+j :=

(m+ j)(m+ j − 1) · · · (m+ 1)

j!
, ∀ m ∈ Z, j ≥ 1.

Since (k + 1)B(k+1)k = ΛBkk, (4.3) gives

(4.4) B(k+1)k =

k∑
j=0

Cjp−2+j(−1)jA(k−j)(k−j+1).

By a similar argument, we also have

(4.5) A(k+1)k =

k∑
j=0

Cj−p−2+j(−1)jB(k−j)(k−j+1).

In this paper we will not use (4.3), (4.4) and (4.5). A direct consequence of (4.1) is:

Lemma 4.7. If D is degree p then we can write

T lD =
∑

j+k≤2l

ajkAjk,

where ajk are integer constants that only depend on l and p.

Notice that

et(adL+adΛ)D =
∑
l≥0

tl

l!
T lD =

∑
j,k

∑
l≥0

tl

l!
ajk

Ajk.

Since for every N ≥ n, we have

Ajk ≡ 0, if max{j, k} > N.

Let us fixed N ≥ n and define

aNjk = ajk, if max{j, k} ≤ N, aNjk = 0 if max{j, k} > N.
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Then we have

et(adL+adΛ)D =
∑
j,k≤N

bNjkAjk, bNjk :=
∑
l≥0

tl

l!
aNjk.

Lemma 4.8. Each bNjk defines a holomorphic function on C.

Proof. By definition of aNjk, we have

T lD =
∑

j+k≤2l

aNjkAjk.

Thus (4.1) gives

(4.6) aNjk(l, p) = j aN(j−1)k(l − 1, p) + k aNj(k−1)(l − 1, p) + (2k − j − p)aN(j+1)k(l − 1, p).

Put

Ml := sup{|aNjk(l, p)|}.
Then (4.6) gives

Ml ≤ (4N + p)Ml−1,

which implies ∑
l≥0

|t|l

l!
|aNjk| ≤M0 e

(4N+p)|t|.

Thus the Lemma follows. �

Our Key Lemma is the following:

Lemma 4.9 (Derivative of exponential map). Let X be a finite sum of even degree maps. Then for
every C-linear endomorphism D of A, we have

etXDe−tX = et·adXD, ∀ t ∈ R.

Proof. Put

f(t) = etXD e−tX , g(t) = et·adXD.

Then we have

f(0) = g(0),
dg

dt
= adXg(t).

Moreover, since X is a sum of even degree maps, we have

df

dt
= Xf(t)− f(t)X = [X, f(t)] = adXf(t).

Thus f and g satisfy the same equation, which gives f = g. �

4.3. Main theorem. Apply the above Lemma to

X = (L+ Λ), t = −πi
2
,

we get the following universal version of the Kähler identity.

Theorem 4.10 (Main theorem). For each p ∈ Z there exists a sequence {cpj}j≥0 such that

D# =
∑

j,j+p≤n

cpj (adL)j(adΛ)j+pD,

if D is degree p.

Proof. Follows from Lemma 4.8 and the fact that D# is degree −p. �
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Remark: Consider Bjk instead of Ajk, we know that there also exists a sequence {apj}j≥0 such
that

(4.7) D# =
∑

j,j+p≤n

apj (adΛ)j+p(adL)jD,

if D is degree p. One may compute apj and cpj by taking special D. In case D is degree zero, our

main theorem implies the following generalization of the main theorem in [16]:

Theorem 4.11. Let (A,L) be a Lefschetz space. If D is degree zero and (adL)3D = 0 then

D# = ∗sD∗s = (1− adLadΛ + (adL)2(adΛ)2) D.

Proof. Since D is degree zero, (4.3) gives

(adL)k(adΛ)kD = (adΛ)k(adL)kD.

Now (adL)3D = 0 implies that it suffices to compute c0j for j = 0, 1, 2. Take D = 1, we get

c00 = 1.

Take D = B, we get

D# = −B = B + c01 · (2B),

Thus

c01 = −1.

Take D = B2, we know that

adΛ(B2) = 4Λ + 4BΛ, (adΛ)2(B2) = 4Λ2,

Thus

D# = (−B)2 = B2 − adL(4Λ + 4BΛ) + c02 · (4(adL)2(Λ2)).

Since

(adL)2(Λ2) = adL(Λ +BΛ),

we get

c02 = 1.

The proof is complete. �

5. Kähler identities on almost symplectic manifolds

An almost symplectic manifold (X,ω) is a smooth manifold X with a non-degenerated 2-form ω.
Denote by ∗s the symplectic star operator with respect to ω. Let d be the usual exterior derivative
on X and denote by Ωk(X) the space of k-forms on X. By applying Theorem 3.6 to

A =

2n⊕
k=0

Ωk(X), L := ω∧,

where dimX = 2n, we get

Theorem 5.1. [dΛ, L] = d+ [Λ, [d, L]], [d,Λ] = dΛ + [[Λ, dΛ], L].

The above theorem implies the following well known Kähler identities on symplectic manifolds,
see e.g., [18, 4].

Theorem 5.2. If dω = 0 then [dΛ, L] = d and [d,Λ] = dΛ.
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Now let J be an almost complex structure on X. We shall also use J to denote the associated
Weil-operator. Denote by Ωp,q(X) the space of smooth (p, q)-forms on X. Then

Ju = ip−qu, ∀ u ∈p,q .
We shall define

dc := J−1dJ,

where J is the Weil-operator. If J is compatible with ω then J commutes with ∗s and we call

? := ∗s ◦ J,
the Hodge star operator on X. If J is compatible with ω then (ω, J) defines a pointwise Hermitian
inner product structure, say (·, ·), on the space of differential forms such that

(u, v)(x)ωn(x) = u ∧ ?v̄, ωn := ωn/n!.

Assume that X is compact. Denote by d∗ and (dc)∗ the adjoint of d and dc with respect to the
following inner product

(u, v) :=

∫
X

(u, v)(x)ωn(x).

By integration by parts, we have

d∗ = − ? d?, (dc)∗ = − ? dc ? .
Thus

d∗ = − ∗s JdJ∗s = − ∗s J2dc∗s = (−1)k ∗s dc∗s,
on Ωk(X) and

(dc)∗ = − ? dc? = (−1)k+1 ∗s d∗s = dΛ,

on Ωk(X). Moreover, since JJ∗ = 1, we have (dc)∗ = J−1d∗J . Thus we get

Theorem 5.3. If J is compatible with ω then [(dc)∗, L] = d+ [Λ, [d, L]] and

[L, d∗] = dc + [Λ, [dc, L]].

Assume further that dω = 0. Then

[(dc)∗, L] = d, [L, d∗] = dc.

6. Hard Lefschetz Condition on almost complex manifolds

Let (X,ω, J, g) be a compact almost symplectic manifold with a compatible almost complex
structure J , where the Riemannian metric g is defined by

g(u, v) = ω(u, Jv).

Set

H•d (X) =
ker d

Im d
, H•dc(X) =

ker dc

Im dc
.

By the Hodge theory, we have

Theorem 6.1. Set 2d = dd∗ + d∗d, 2dc = dc(dc)∗ + (dc)∗dc, then

H•2d := ker2d ' H•d (X), H•2dc := ker2dc ' H•dc(X).

We now study the Hard Lefschetz property of ker2d. Let us start from the following example.

Example 1 : Kodaira-Thurston manifold. On R4 with coordinate x1, . . . , x4 consider the
following product: given any a = (a1, . . . , a4), b = (b1 . . . , b4) ∈ R4, set

a ∗ b = (a1 + b1, a2 + b2, a3 + a1b2 + b3, a4 + b4).

Then (R4, ∗) is a Lie group and Γ = {(γ1, . . . , γ4) ∈ R4 | γj ∈ Z, j = 1, . . . , 4} is a lattice in (R4, ∗),
so that M = Γ\R4 is a 4-dimensional compact manifold. Then,

e1 = dx1, e2 = dx2, e3 = dx3 − x1dx2, e4 = dx4,
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are Γ-invariant 1-forms on R4, and, consequently, they give rise to a gobal coframe on M . It is
immediate to check that de3 = −e1 ∧ e2, the other differential vanishing. Define an almost Kähler
structure on M , by setting:

Je1 = −e3, Je2 = −e4, Je3 = e1, Je4 = e2,

and

ω = e13 + e24,

where eij = ei ∧ ej and so on. Then ω is a symplectic structure on M and J is an ω-compatible
non integrable almost complex structure so that (M,J, ω) is an almost Kähler manifold. Set g =∑4
i=1 e

i ⊗ ei. Then, a direct computation gives

H1
2d

= SpanR < e1, e2, e4 >

H2
2d

= SpanR < e13, e24, e14, e23 >

H3
2d

= SpanR < e234, e134, e123 >

and

H1
2dc

= SpanR < e2, e3, e4 >

H2
2dc

= SpanR < e13, e24, e14, e23 >

H3
2dc

= SpanR < e123, e134, e124 > .

Therefore,

ker2d ∩ ker2dc = R〈1〉 ⊕ R〈e2, e4〉 ⊕ R〈e13, e14, e23, e24〉 ⊕ R〈e123, e134〉 ⊕ R〈1〉

and ω restricted to ker2d ∩ ker2dc satisfies the Hard Lefschetz Condition. As a generalization of
the above fact, we have

Theorem 6.2. Let (X,ω, J, g) be a compact symplectic manifold with a compatible almost complex
structure J . Then ω restricted to ker2d ∩ ker2dc satisfies the Hard Lefschetz Condition.

Proof. As usual, put L := ω∧. It suffifes to show that

[2d + 2dc , L] = 0.

In fact, by the Jocobi identity, we have

[L, [d, d∗]] + [d, [d∗, L]]− [d∗, [L, d]] = 0,

and

[L, [dc, (dc)∗]] + [dc, [(dc)∗, L]]− [(dc)∗, [L, dc]] = 0.

Since [L, d] = [L, dc] = 0, [d∗, L] = −dc, [(dc)∗, L] = d and

[d, dc] = [dc, d] = ddc + dcd,

we have

[L, [d, d∗]] + [L, [dc, (dc)∗]] = 0,

which gives [2d + 2dc , L] = 0. �

Remark 6.3. The above proof gives

[L,2d] = [d, dc].

Since [d, dc] = 0 if and only if J is integrable. We know that, in the above theorem, X is Kähler if
and only if

[L,2d] = 0.

The following example tells us the above identity is strictly stronger than the Hard Lefschetz condition
on (ker2d, L) in general.
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Example 2: Completely solvable Nakamura manifolds. Let g be the 6-dimensional Lie
algebra whose dual space has a basis {ei}i∈{1,...,6} satisfying the following Maurer-Cartan equations:

(6.1)

{
de1 = 0, de2 = 0, de3 = e13,

de4 = −e14, de5 = e15, de6 = −e16.

Then it turns out that the connected and simply-connected Lie group G whose Lie algebra is g
admits a lattice Γ such that M = Γ\G is a compact solvmanifold of completely solvable type.

Then (J, ω, g) is defined respectively as

(6.2)


Je1 := −e2,

Je3 := −e4,

Je5 := −e6,

(6.3) ω := e12 + e34 + e56

and g(·, ·) = ω(·, J ·) give rise to an almost Kähler structure on M . It turns out that b0(M) = 1,
b1(M) = 2, b2(M) = 5, b3(M) = 8, b4(M) = 5, b5(M) = 2 and b6(M) = 1. Then, a straightforward
computation yields to:

H1
2d

= SpanR < e1, e2 >

H2
2d

= SpanR < e12, e34, e56, e36, e45 >

H3
2d

= SpanR < e134, e156, e136, e145, e234, e256, e236, e245 >

H4
2d

= SpanR < e3456, e1256, e1234, e1245, e1236 >

H5
2d

= SpanR < e23456, e13456 >

and,

H1
2dc

= SpanR < e1, e2 >

H2
2dc

= SpanR < e12, e34, e56, e36, e45 >

H3
2dc

= SpanR < e134, e156, e136, e145, e234, e256, e236, e245 >

H4
2dc

= SpanR < e3456, e1256, e1234, e1245, e1236 >

H5
2dc

= SpanR < e23456, e13456 >,

that is ker2d = ker2dc and (M,ω) satisfies the Hard Lefschetz Condition.

As a generalization of the above fact, we have

Theorem 6.4. Let (X,ω, J, g) be a compact symplectic manifold with an compatible almost complex
structure J . Then the followings are equivalent:

(1) ker2d = ker2dc ;
(2) Hard Lefschetz condition on (ker2d, L);
(3) Hard Lefschetz condition on (ker2dc , L).

Proof. We already know that (1) implies (2) and (3). Since

dc = (−1)k ∗s d∗∗s, (dc)∗ = (−1)k+1 ∗s d∗s,
one the space of k-forms, we have

ker2d = ∗s ker2dc .

Now (2) implies ∗s ker2d = ker2d thus (2) implies (1). A similar argument gives that (1) is
equivalent to (3). �

Remark 6.5. It is easy to see that the Hard Lefschetz condition on (ker2d, L) implies the Hard
Lefschetz condition on (H•d , L). But in general, we don’t know whether they are equivalent or not.
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7. Hard Lefschetz Condition for other cohomology groups

7.1. Dolbeault cohomology groups. Let (X, J, g, ω) be a compact Kähler manifold of dimension
n. Let (E, hE) be a holomorphic vector bundle on X with smooth Hermitian metric hE along the
fibres. Denote by

DE := ∂ + ∂E ,

the Chern connection on (E, hE). Let

ΘE := (DE)2,

be the Chern curvature. Then we have the following Kähler identity

[∂
∗
, L] = i∂E ,

which implies the following Bochner-Kodaira-Nakano identity

2∂ −2∂E = [iΘE ,Λ], 2DE = 2∂ + 2∂E ,

where

2∂ := ∂∂
∗

+ ∂
∗
∂, 2∂E := ∂E(∂E)∗ + (∂E)∗∂E , 2DE = (DE)∗DE +DE(DE)∗.

We have the following theorem:

Theorem 7.1. Let (X, J, g, ω) be a compact Kähler manifold of dimension n. Let (E, hE) be a
holomorphic vector bundle on X with smooth Hermitian metric hE along the fibres. Then (ker2∂ ∩
ker2∂E , L) satisfies the hard Lefschetz condition. Moreover, the followings are equivalent:

(1) ker2∂ = ker2∂E ;
(2) Hard Lefschetz condition on (ker2∂ , L);
(3) Hard Lefschetz condition on (ker2∂E , L).

Proof. (1)⇔ (2) follows from [L,2∂ + 2∂E ] = 0; ker2∂ = ? ker2∂E gives (2)⇔ (3). �

7.2. Symplectic cohomology groups and its analogies. Let (X,ω) be a compact symplectic
manifold. From [15], we know that

H•d+dΛ(X) :=
ker d ∩ ker dΛ

Im ddΛ
, H•ddΛ(X) :=

ker ddΛ

Im d ∪ Im dΛ

always satisfy the Lefschetz property. Let (X, J, g, ω) be a compact Kähler manifold. Since

∂∗ = i[Λ, ∂],

gives [∂, ∂∗] = 0, one may consider the following analogies of the above symplectic cohomology
groups

H•,•
∂+∂∗(X) =

ker ∂∗ ∩ ker ∂

Im ∂∗∂
, H•,•

∂∂∗(X) =
ker ∂∂∗

Im ∂∗ ∪ Im ∂
.

Then

Lemma 7.2. Let (X, J, g, ω) be a compact Kähler manifold. Then the following natural maps

H•,•
∂+∂∗(X)→ H•,•

∂
(X), H•,•

∂
(X)→ H•,•

∂∂∗(X),

are bijective.

Proof. Let α be a smooth (p, q)-form on X such that

(7.1) ∂α = 0, ∂∗α = 0

Assume that α = ∂β. Taking the Hodge decomposition of β with respect to 2∂ , we may write

β = βH + ∂λ+ ∂∗µ .

Since X is Kähler, we have 2∂ = 2̄∂ ; consequently,

α = ∂∂λ+ ∂∂∗µ.
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By (7.1), we get ∂∗∂∂λ = 0. Therefore,

0 = 〈∂∗∂∂λ, ∂λ〉 = |∂∂λ|2,

which implies ∂∂λ = 0. Hence α = ∂∂∗µ, that is the natural map

H•,•
∂+∂∗(X)→ H•,•

∂
(X), α+ Im ∂∗∂ 7→ α+ Im ∂

is injective. On the other hand, since 2∂ = 2̄∂ , we know the ∂-harmonic representative of a class
in H•,•

∂
(X) is always ∂∗-closed. Thus the above map is also surjective.

For the second isomorphism, let u be a smooth (p, q)-form on X such that ∂u = 0. Asume that
u = ∂∗v. Taking the Hodge decomposition of v with respect to 2∂ , we may write

v = vH + ∂a+ ∂
∗
b.

Since X is Kähler, we have 2∂ = 2̄∂ ; consequently,

u = ∂∗∂a+ ∂∗∂
∗
b.

Now ∂u = 0 gives ∂∂∗∂
∗
b = 0, thus

0 = 〈∂∂∗∂∗b, ∂∗b〉 = −|∂∗∂∗b|2,

which implies ∂∗∂
∗
b = 0. Thus u = −∂∂∗a and the second map is injective. In order to prove the

surjectivity, let φ be a smooth (p, q)-form onX such that ∂∂∗φ = 0. Taking the Hodge decomposition
of φ with respect to 2∂ , we may write

φ = φH + ∂ψ + ∂
∗
ϕ.

Since X is Kähler, we have 2∂ = 2̄∂ ; consequently,

0 = ∂∂∗φ = ∂∂∗∂
∗
ϕ,

by the same argument, we get ∂∗∂
∗
ϕ = 0. Thus we can write

∂
∗
ϕ = θH + ∂∗σ, θH ∈ ker2∂ .

Now we know that ρ := φ− ∂∗σ is ∂-closed. Thus the second map is surjective. �

Corollary 7.3.

dimCH
•,•
∂+∂∗(X) = dimCH

•,•
∂

(X) = dimCH
•,•
∂∂∗(X) <∞.

Corollary 7.4. Let X be a compact Kähler manifold. Then X satisfies the ∂∂∗-Lemma, that is

ker ∂ ∩ ker ∂∗ ∩ (Im ∂ + Im ∂∗) = Im ∂∂∗.

Remark: It is well known that if X is compact Kähler then H•,•
∂

(X) satisfies the Hard Lefschetz

Condition and ∂∗ = i[Λ, ∂]. Thus the above corollary also follows from Theorem 3.12.

In general, let (E, hE) be a holomorphic vector bundle over a compact Kähler manifold (X,ω, J).
The Kähler identity (∂E)∗ = i[Λ, ∂] gives [∂, (∂E)∗] = 0, which suggests us to define

H•,•BC(X,E,L) =
ker(∂E)∗ ∩ ker ∂

Im (∂E)∗∂
, H•,•A (X,E,L) =

ker ∂(∂E)∗

Im (∂E)∗ ∪ Im ∂
.

The following theorem is a generalization of Theorem 3.11 and Theorem 3.22 in [15].

Theorem 7.5. Let (E, hE) be a holomorphic vector bundle over a compact Kähler manifold (X,ω, J).
Then H•,•BC(X,E,L) and H•,•A (X,E,L) satisfies the Hard Lefschetz Condition (for a bigraded spaces,
it means the Hard Lefschetz Condition on its associated graded space H•, where Hk := ⊕p+q=kHp,q).
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Proof. Applying the elliptic operator theory (see the remark below), we have

H•,•BC(X,E,L) ' ker2BC , 2BC := ∂
∗
∂ + ∂E(∂E)∗ + (∂E)∗∂∂

∗
∂E .

It is easy to check that [2BC , L] = 0. Thus H•,•BC(X,E,L) satisfies the hard Lefschetz condition.
For H•,•A (X,E,L), we have

H•,•A (X,E,L) ' ker2A, 2A := ∂∂
∗

+ (∂E)∗∂E + ∂
∗
∂E(∂E)∗∂,

and [2A, L] = 0, which implies that H•,•A (X,E,L) satisfies the hard Lefschetz condition. �

Remark 7.6. In general, we have the following natural maps

H•,•BC(X,E,L)→ H•,•
∂

(X,E)⊕H•,•
(∂E)∗

(X,E),

and

H•,•
∂

(X,E)⊕H•,•
(∂E)∗

(X,E)→ H•,•A (X,E,L).

The elliptic operator theory implies that both H•,•BC(X,E,L) and H•,•A (X,E,L) are finite dimen-
sional. For instance, we have

ker2A = ker4A, 4A := 2A + (∂E)∗∂
∗
∂∂E + (∂E)∗∂∂

∗
∂E + ∂∂E(∂E)∗∂

∗
.

It is easy to check that the principal symbol of 4A equals to that of (2∂)2, which is elliptic. Thus
H•,•A (X,E,L) is finite dimensional.

8. Complex surfaces

Proposition 8.1. Let (X, J, ω, g) be a compact Hermitian manifold. Assume that

[∂, ∂∗] = 0.

Then

2d = 2∂ + 2∂ = 2dc .

In particular, 2d preserves the bi-degree, ker2d is J-invariant and the first Betti number of X is
even.

Proof. The conjugate of [∂, ∂∗] is [∂, ∂
∗
]. Thus if [∂, ∂∗] = 0 then

[d, d∗] = [∂ + ∂, ∂
∗

+ ∂∗] = [∂, ∂
∗
] + [∂, ∂∗].

Similar proof for 2dc . 2d preserves the bi-degree since 2∂ and 2∂ do. The fact that b1(X) is even
follows from

H1
2d

= SpanR〈e1, · · · , ej ; Je1, · · · , Jej〉.

�

Corollary 8.2. Let X be a compact complex surface. Then X is Kähler if and only if there is a
Hermitian metric on X such that [∂, ∂∗] = 0.

Remark 8.3. The above proof also implies: if [∂, ∂∗] = 0 then

2dλ = 2∂ + |λ|22∂ ,

where dλ := ∂ + λ∂, λ ∈ C.
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9. The ∂ ∂
Λ
-Lemma on special complex manifolds

9.1. Taming and symmetric almost complex structures. Recall the following definition (see
Definition 2.10):

Definition 9.1. Let X be a 2n-dimensional manifold with an almost symplectic form ω. Let J be
an almost complex structure on X. Then J is said to be tamed by ω if

ω(u, Ju) > 0,

for every non-zero vector u; J is said to be symmetric with respect to ω, or ω-symmetric if

ω(u, Jv) = ω(v, Ju),

for every vectors u, v. We call J an ω-compatible almost complex structure if it is both taming and
symmetric.

9.2. ∂ ∂
Λ
-Lemma. Let us define ∂

Λ
first.

Definition 9.2. Let (X, J) be a complex manifold. Let ω be an almost symplectic form on X. Put

Λ = ∗sL∗s, L := ω ∧ ·,

where ∗s denotes the symplectic star operator. Set

∂
Λ
u := (−1)k+1 ∗s ∂ ∗s u,

for every k-form u.

Apply Theorem 3.6 to (⊕Ωk(X), ω∧, ∂), we get

Theorem 9.3. Let (X,J) be a complex manifold with an almost symplectic form ω. Then

(9.1) [∂
Λ
, L] = ∂ + [Λ, [∂, L]], [∂,Λ] = ∂

Λ
+ [[Λ, ∂

Λ
], L].

As a consequence of the previous Theorem, we get the following

Corollary 9.4. Let (X, J) be a complex manifold with a symplectic form ω. Assume that J is
symmetric with respect to ω, then we have

[∂
Λ
, L] = ∂, [∂, ∂

Λ
] = 0.

Proof. Since J is symmetric with respect to ω, we know that ω is degree (1, 1). Thus dω = 0 is
equivalent to ∂ω = 0. Hence [∂, L] = 0 and it is enough to apply the previous theorem. �

Definition 9.5. Let (X, J) be a complex manifold with a symplectic form ω. Assume that J is

symmetric with respect to ω, so that the differential operators ∂ and ∂
Λ

satisfy

∂
2

= 0, (∂
Λ

)2 = 0, ∂∂
Λ

+ ∂
Λ
∂ = 0.

Then X is said to satisfy the ∂ ∂
Λ

-Lemma if

ker ∂ ∩ ker ∂
Λ ∩ (Im ∂ + Im ∂

Λ
) = Im ∂∂

Λ
.

Remark: ∂ ∂
Λ

-Lemma is a generalization of the ∂∂∗-Lemma on a compact Kähler manifold. In

fact, since ∂∗ = −i∂Λ
, we know that Corollary 7.4 is equivalent to:

Theorem 9.6. Let (X,J, ω) be a compact Kähler manifold. Then X satisfies the ∂ ∂
Λ

-Lemma.

The following examples also suggest to study the ∂ ∂
Λ

-Lemma on non-Kähler manifolds.
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9.3. Nakamura manifold of completely solvable type. We shall show that the Nakamura

manifold of completely solvable type M = Γ\G in Example 2 satisfies the ∂ ∂
Λ

-Lemma. Consider
the almost complex structure JM on M defined by requiring that a co-frame for the space of complex
(1, 0)-forms is given by

(9.2)


ϕ1 := 1

2 (e1 + ie2),

ϕ2 := (e3 + ie5),

ϕ3 := (e4 + ie6).

We know that JM is integrable. Indeed,
dϕ1 = 0

dϕ2 = ϕ1 ∧ ϕ2 − ϕ2 ∧ ϕ1

dϕ3 = −ϕ1 ∧ ϕ3 + ϕ3 ∧ ϕ1

and, consequently, 
∂ϕ1 = 0

∂ϕ2 = ϕ1 ∧ ϕ2

∂ϕ3 = −ϕ1 ∧ ϕ3

and 
∂ϕ1 = 0

∂ϕ2 = −ϕ2 ∧ ϕ̄1

∂ϕ3 = ϕ3 ∧ ϕ̄1

.

According to Kasuya (see section 5.1 (C) in [10]), the Lie group G admits a lattice Γ such that the
Dolbeault cohomology is given by

H0
∂

(M) = SpanC 〈1〉 ,

H1
∂

(M) = SpanC

〈
ϕ1, ϕ1

〉
,

H2
∂

(M) = SpanC

〈
ϕ23, ϕ11̄, ϕ23̄, ϕ32̄, ϕ2̄3̄

〉
,

H3
∂

(M) = SpanC

〈
ϕ123, ϕ123̄, ϕ132̄, ϕ231̄, ϕ12̄3̄, ϕ21̄3̄, ϕ31̄2̄, ϕ1̄2̄3̄

〉
,

H4
∂

(M) = SpanC

〈
ϕ11̄2̄3̄, ϕ232̄3̄, ϕ131̄2̄, ϕ121̄3̄, ϕ1231̄

〉
,

H5
∂

(M) = SpanC

〈
ϕ231̄2̄3̄, ϕ1232̄3̄

〉
,

H6
∂

(M) = SpanC

〈
ϕ1231̄2̄3̄

〉
,

where ϕij̄ = ϕi ∧ ϕj and so on. Consider the symplectic form ω on M defined by (6.3), then we
know that

ω = 2iϕ1 ∧ ϕ1 +
1

2
ϕ2 ∧ ϕ3 +

1

2
ϕ2 ∧ ϕ3.

In particular, we know that JM is ω-symmetric. Then a direct computation shows that

ωk : H3−k
∂

(M)→ H3+k

∂
(M) for 0 ≤ k ≤ 3

is an isomorphism. Thus, by Theorem 3.12, it follows that M satisfies the ∂ ∂
Λ

-Lemma.
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9.4. Holomorphically parallelizable Nakamura manifold. On C3 with coordinates (z1, z2, z3)
consider the following product ∗

(w1, w2, w3) ∗ (z1, z2, z3) = (w1 + z1, e
−w1z2 + w2, e

w1z3 + w3).

Then G = (C3, ∗) is a solvable Lie group, which is the semidirect product C n C2, admitting a
uniform discrete subgroup Γ = Γ′nΓ′′, where Γ′ ⊂ C is given by Γ′ = λZ⊕ i2πZ and Γ′′ is a lattice
in C2; thus N := Γ\C3 is a compact complex 3-dimensional manifold (see the appendix and [14,
case (III)(b)]). It turns out that h0,1(N) = 3 ([14, p.90]). It is immediate to check that

ψ1 = dz1, ψ2 = ez1dz2, ψ3 = e−z1dz3

are G-invariant holomorphic 1-forms on C3, so that they induce holomorphic 1-forms on N , namely
{ψ1, ψ2, ψ3} is a global holomorphic co-frame on N and the complex manifold N is holomorphically
parallelizable. We have

dψ1 = 0, dψ2 = ψ1 ∧ ψ2, dψ3 = −ψ1 ∧ ψ3.

By the construction of N , it follows that e
z1−z1

2 is a well-defined complex-valued smooth function
on N . Let

ω =
i

2
ψ1 ∧ ψ1 +

1

2
ez1−z1 ψ2 ∧ ψ3 +

1

2
e−z1+z1 ψ2 ∧ ψ3.

Then

ω = ω, ω3 = −3

4
(idz1 ∧ dz̄1) ∧ (idz2 ∧ dz̄3) ∧ (idz3 ∧ dz̄3) < 0,

and explicitly,

ω =
i

2
dz1 ∧ dz1 +

1

2
dz2 ∧ dz3 +

1

2
dz3 ∧ dz2 ,

so that dω = 0 and the complex structure on N is ω-symmetric. By noting that

ez1−z1 ψ2 = ez1dz, e−z1+z1 ψ3 = e−z1dz3,

in view of [1, p. 86], we have

H0
∂

(N) = SpanC 〈1〉 ,
H1
∂

(N) = SpanC 〈dz1, e
z1dz2, e

−z1dz3, dz̄1, e
z1dz̄2, e

−z1dz̄3〉 ,

H2
∂

(N) = SpanC
〈
ez1dz12, e

−z1dz13, dz23, dz11̄, e
z1dz12̄, e

−z1dz13̄, e
2z1dz22̄, dz23̄, e

−z1dz31̄, dz32̄,

e−2z1dz33̄ e
z1dz1̄2̄, e

−z1dz1̄3̄, dz2̄3̄

〉
,

H3
∂

(N) = SpanC
〈
dz123, e

z1dz121̄, e
2z1dz122̄, dz123̄, e

−z1dz131̄, dz132̄, e
−2z1dz133̄, dz133̄, dz231̄,

ez1dz232̄, e
−z1dz233̄, dz31̄2̄, dz21̄3̄, e

z1dz11̄2̄, e
−z1dz11̄3̄, e

2z1dz21̄2̄, e
z1dz22̄3̄,

e−2z1dz31̄3̄, e
−z1dz32̄3̄, dz1̄2̄3̄

〉
,

H4
∂

(N) = SpanC
〈
dz1231̄, e

z1dz1232̄, e
−z1dz1233̄, e

2z1dz121̄2̄, dz121̄3̄, e
z1dz122̄3̄, dz131̄2̄, e

−2z1dz131̄3̄,

e−z1dz132̄3̄, e
z1dz231̄2̄, e

−z1dz231̄3̄, dz232̄3̄, dz11̄2̄3̄, e
z1dz21̄2̄3̄, e

−z1dz31̄2̄3̄〉 ,
H5
∂

(N) = SpanC 〈ez1dz1231̄2̄, e
−z1dz1231̄3̄, dz1232̄3̄, e

z1dz121̄2̄3̄, e
−z1dz131̄2̄3̄, dz231̄2̄3̄〉 ,

H6
∂

(N) = SpanC 〈dz1231̄2̄3̄〉 ,
where dzhk̄ = dzh ∧ dzk and so on. A straightforward computation shows that

ωk : H3−k
∂

(N)→ H3+k

∂
(N) for 0 ≤ k ≤ 3

is an isomorphism. Thus, by Theorem 3.12, it follows that N satisfies the ∂ ∂
Λ

-Lemma.

Remark 9.7. It has to be noted that the Nakamura manifold of Example 2 satisfies the ∂∂-Lemma
(see [1]). Indeed, from the table ([10, Section 5.1 (C)]) recalled in subsection 9.3,

Hk(M ;C) '
⊕
p+q=k

Hp,q

∂
(M) Hq,p

∂
(M) =' Hp,q

∂
(M)
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so that M satisfies the ∂∂-Lemma. On the contrary, the holomorphically parallelisable Nakamura
manifold N does not satisfy the ∂∂-Lemma.

9.5. Kodaira-Thurston manifold. Similar computations can be performed also for the Kodaira-
Thurston manifold. Consider the almost complex structure JM on M assigning a complex co-frame
of (1, 0)-forms by

(9.3)

{
ϕ1 := (e1 + ie2),

ϕ2 := (e3 + ie4).

Then

(9.4)

{
dϕ1 = 0,

dϕ2 = − i
2ϕ

1 ∧ ϕ1.

Thus JM is integrable. Consider the symplectic form ω on M defined by

ω =
1

2
(ϕ1 ∧ ϕ2 + ϕ1 ∧ ϕ2);

then JM is ω-symplectic.

We can prove that (M,JM , ω) does not satisfy the ∂ ∂
Λ

-Lemma. In fact, assume that it satisfies

the ∂ ∂
Λ

-Lemma. Then Theorem 3.12 implies that H∂ satisfies the Hard-Lefschetz property. Notice
that

[ω ∧ ϕ1]∂ =
1

2
[ϕ1 ∧ ϕ2 ∧ ϕ1]∂ .

Since ϕ1 ∧ ϕ1 is ∂-exact and ϕ2 is ∂-closed, we know that [ω ∧ ϕ1]∂ = 0. Thus the Hard-Lefschetz

property implies [ϕ1]∂ = 0, which gives (use ∂(ϕ1 ∧ ϕ2 ∧ ϕ2) = 0) the following contradiction

2[ω2]∂ = [ϕ1 ∧ ϕ2 ∧ ϕ1 ∧ ϕ2]∂ = 0.

Thus (M,JM , ω) does not satisfy the ∂ ∂
Λ

-Lemma.

9.6. ∂E ∂
Λ

E-Lemma.

Definition 9.8. Let (X,J) be a complex manifold. Let E be a holomorphic vector bundle on X.
We shall write the ∂-operator on E as ∂E. Let ω be an almost symplectic form on X. Put

Λ = ∗−1
s L∗s, L := ω ∧ ·,

where ∗s denotes the symplectic star operator. We shall define the symplectic adjoint of ∂E as

∂
Λ

Eu := (−1)k+1 ∗s ∂E ∗s u,
where u is a smooth E-valued k-form.

Theorem 3.12 implies:

Theorem 9.9. Let (X, J) be a complex manifold with an almost symplectic form ω. Let E be a
holomorphic vector bundle on X. Then

(9.5) [∂
Λ

E , L] = ∂E + [Λ, [∂E , L]], [∂E ,Λ] = ∂
Λ

E + [[Λ, ∂
Λ

E ], L].

As a consequence of the previous Theorem, we get the following

Corollary 9.10. Let (X, J) be a complex manifold with a symplectic form ω. Let E be a holomorphic
vector bundle on X. Assume that J is symmetric with respect to ω, then we have

[∂
Λ

E , L] = ∂E , [∂E , ∂
Λ

E ] = 0.

Proof. Since J is symmetric with respect to ω, we know that ω is degree (1, 1). Thus dω = 0 is
equivalent to ∂ω = 0. Hence [∂E , L] = 0 and it is enough to apply the previous theorem. �
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Remark: Consider the complex (Ω•(X,E), ∂E , ∂
Λ

E) of smooth E-valued (k)-forms on X, where

the differential operators ∂E and ∂
Λ

E satisfy

∂
2

E = 0, (∂
Λ

E)2 = 0, ∂E∂
Λ

E + ∂
Λ

E∂E = 0,

Definition 9.11. Let (X, J) be a complex manifold with a symplectic form ω. Let E be a holomor-
phic vector bundle on X. Assume that J is symmetric with respect to ω. Then X is said to satisfy

the ∂E ∂
Λ

E-Lemma if

ker ∂E ∩ ker ∂
Λ

E ∩ (Im ∂E + Im ∂
Λ

E) = Im ∂E∂
Λ

E .

Theorem 3.12 implies

Theorem 9.12. Let (X, J) be a complex manifold with a symplectic form ω. Let E be a holomorphic

vector bundle on X. Assume that J is symmetric with respect to ω. Then X satisfies the ∂E ∂
Λ

E-
Lemma if and only if its Dolbeault cohomology H∂E

satisfies the Hard Lefschetz Condition.

Thus by the Hodge theory, we get

Theorem 9.13. Let (X, J, ω) be a compact Kähler manifold. Let E be a holomorphic vector bundle
on X. Assume that there exists a smooth Hermitian metric hE on E such that the Chern curvature

Θ(E, hE) ≡ 0. Then X satisfies the ∂E ∂
Λ

E-Lemma.

10. Appendix

We briefly recall the construction of completely solvable Nakamura manifolds (see e.g., [14], [5]
and [3]). Let A ∈ SL(2,Z) have two real positive distinct eigenvalues

µ1 = eλ, µ2 = e−λ.

Set

Λ =

(
e−λ 0

0 eλ

)
and let P ∈M2,2(R) be such that

Λ = PAP−1

Consider Γ := PZ2 + iPZ2; then Γ is a lattice in C2. Let T2
C = C2/Γ be a 2-dimensional complex

torus.
Then the map

Φ : C2 −→ C2

Φ(z) = Λz, where z = (z1, z2)t,

induces a biolomorphism of T2
C by setting Φ̃([z]) = [Φ(z)].

First of all, Φ̃ is well-defined, since if z′ and z are equivalent, i.e., z′ = z + P (γ1 + iγ2), with γ1,
γ2 ∈ Z2, then

Φ(z′) = Λz′ = Λz + ΛP (γ1 + iγ2)

= Λz + PAP−1P (γ1 + iγ2)

= Λz + PA(γ1 + iγ2)

= Λz + P (λ1 + iλ2)

= Φ(z) + P (λ1 + iλ2) with λ1, λ2 ∈ Z2,

so that Φ(z′) ∼ Φ(z). Furthermore Φ̃−1([z]) = [Φ−1(z)].
We identify R×C2 with R5 by (s, z1, z2) 7−→ (s, x1, x2, x3, x4), where z1 = x1 + ix3, z2 = x2 + ix4,
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and consider

T1 : R5 −→ R5

T1(s, x1, x2, x3, x4) = (s+ λ, e−λx1, eλx2, e−λx3, eλx4),

then
T1(s, x1, x2, x3, x4) = T1(s, z1, z2) = (s+ λ,Φ(z1, z2)) .

Hence T1 induces a transformation of R× T2
C, by setting

T1(s, [(z1, z2)]) = (s+ λ, [Φ(z1, z2)]).

Define

M :=
R
bZ
× R× T2

C
< T1 >

.

Then, we obtain a family of compact 6-dimensional solvmanifold of completely solvable type M ,
called Nakamura manifolds.

We give a numerical example. Let

A =

(
3 −1
1 0

)
A ∈ SL(2,Z). Then µ1,2 = 3±

√
5

2 . We set

µ1 =
3−
√

5

2
= e−λ and µ2 =

3 +
√

5

2
= eλ,

i.e., λ = log(3+
√

5
2 ). Then

P−1 =

(
3−
√

5
2

3+
√

5
2

1 1

)
,

and

P =

(
1 − 3+

√
5

2

−1 3−
√

5
2

)
and the lattice Γ is given by

Γ = SpanZ <


−
√

5
5√
5

5
0
0

 ,


5+3
√

5
10

5−3
√

5
10
0
0

 ,


0
0
−
√

5
5√
5

5

 ,


0
0

5+3
√

5
10

5−3
√

5
10

 > .

Remark 10.1. Note that, according to Kasuya [10], the Dolbeault cohomology of (M,JM ) depends
on b. In particular, if b 6= nπ, then the Dolbeault groups have been computed in [10, Section 5.1
(C)], see Section 6, Example 2 for the list of the explicit representatives.
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