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In recent years the demand for large LNG ships has increased. Ship owners are now 

requesting larger LNG ships with a cargo capacity up to 180 000 m
3

, with ship dimensions 

being compliant with the limitations of the new locks of the Panama Canal. A challenge with 

the Moss LNG tanks is that increase in cargo capacity is most efficiently dealt with by 

increasing the tank diameter. Spherical tank ships of cargo capacity 165 000 m
3 

are in 

compliance with the Panama canal restrictions, but for larger capacities modification of tank 

shape is necessary, as discussed below.  

The Moss-type LNG tank is an independent aluminium tank, supported by a cylindrical 

skirt, which provides the structural connection to the ship double bottom structure. The 

cylindrical skirt connects to the LNG tank through a central horizontal ring (the equator 

profile). The Moss LNG tank is very robust and is preferred by many ship owners, with more 

than 20 vessels in construction in early 2017.  

As discussed above, increasing the cargo capacity without increasing number of tanks is 

challenging because the maximum ship width must remain within the Neo-panamax 

limitations. An option for increasing the cargo capacity is to modify the shape of the tank. An 

example of an altered tank shape is the apple-shaped tanks designed by Mitsubishi shown in 

Figure 1. The apple shape gives the tank a larger capacity than a spherical tank, while 

maintaining the ship width within the limitations of the Panama Canal. The center of gravity 

of the tank is also lower than for a vertically stretched tank, which makes it easier to meet the 

stability requirements. Although the tank shape is altered, the tank support system is not. 

Many of the important characteristics of the spherical Moss LNG tank are therefore 

maintained.  

 
Figure 1 Illustration of apple shaped tanks on a LNG Ship.  

 Changing the tank shape to a non-spherical shape introduces some challenges with regard 

to calculating the tanks structural capacity for the Ultimate Limit State (ULS) especially. 

Simplified equations for structural capacity available in Classification codes are only valid for 

purely spherical tanks. When the tank shape deviates from a pure sphere more complex 
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analyses must be performed to verify the tanks ULS capacity. For the Mitsubishi design, non-

linear finite element analyses (NLFEA) were performed to verify the tank’s structure 

integrity. One should however note that non-linear finite element analyses are very time 

consuming both with regard to modelling and computation time, and may not be an efficient 

tool in the design phase.  

 An accurate estimate of the buckling capacity of the tank shell when the shell has a 

different curvature in the different directions is needed. This should also include the 

secondary effects of thermal contraction, as the tank shape deviate from the initial shape once 

it is filled. Estimates for second order geometrical loads are easily included when performing 

NLFEA, so the focus should first be on establishing a method for determining the buckling 

capacity of a non-spherical tank.  

NLFEA is not a very efficient method for designing structures even with the recent increases 

in computation capacities. Simple estimates are preferred in the design stage. The availability 

and validity of these simple methods is however not known.  

 

The work shall address the following topics:  

 

1. A brief description of various type of various types of gas carriers. Outline the design 

of Moss Rosenberg spherical tank and extension of this into alternative shapses. 

 

2. Based on the work carried out in the Project thesis, provide a summary of relevant 

code and/or literature formulas for estimation of the buckling capacity of spherical 

shells. Focus should be placed on estimates of the critical pressure for different shapes. 

  

3. Conduct modal analysis on the sphere to determine the tank’s deformation patterns.   

4. Perform non-linear analysis in LS-DYNA to determine the critical pressure on a 

sphere with  realistic imperfections. Perform the analysis with both elastic and 

elasto-plastic materials. Compare the results from the finite element analyses to 

simplified theory.  

5. Perform non-linear analysis of tank shapes deviating from a spherical shell, and 

compare results with available buckling theories.  

 

6. Condense the results and observations from the nonlinear calculations into extensions 

of analytical formula or propose new empirical calculation methods for future use. 

   

7. Conclusions and recommendations for further work 

 

Moss Maritime will support the work with relevant background data and discussions 

throughout the work execution, such as examples of tank size/scantlings, measured as-built 

imperfections, proposed altered tank shape geometry etc.  

 

Literature studies of specific topics relevant to the thesis work may be included. 

 

The work scope may prove to be larger than initially anticipated.  Subject to approval from the 

supervisor, topics may be deleted from the list above or reduced in extent. 
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Preface
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concepts of the subject. This master’s thesis counts as thirty points of study, and the entire

spring semester of 2019 was spent on this report.

I will like to thank my supervisor Jørgen Amdahl for his help and guidance during the work

with this master’s thesis. His knowledge was most important for this work. This thesis was

also written by the help of Moss Maritime. I will therefore like to thank Martin Slagstad as

the contact person at the company. He was always willing to help with problems along the

way, and he provided scantlings of design and important knowledge for this thesis. I will thank

the postdoctoral fellows Yanyan Sha and Zhaolong Yu, in addition to the support team at

Dynamore Nordic for their help in understanding the FEM software LS-Dyna. The analyses

conducted in this report would not have been possible without their help. Finally I will thank

Frank Klæbo at Sintef Ocean for his help in creating the geometrical models in Patran.

The subject of this master’s thesis is the buckling strength of non-spherical LNG storage tanks

in LNG carriers. Consequently the buckling strength of spherical tanks are considered, then

the knowledge is extended to non-spherical shapes.
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Summary

The demand of LNG carriers with larger capacities has increased in the recent years according

to Moss Maritime. In order to carry more LNG in each ship, the spherical independent tank

type B from Moss Maritime need to be modified. The tank can not be extended in the trans-

verse ship direction because of limitations in the requirements from the Panama Canal. The

idea is to extend the tank in the longitudinal direction of the ship, with spherical end caps and

a cylindrical middle section. The buckling capacity of this new shape need to be analysed and

compared to existing rules, because existing rules are only valid for spherical LNG tanks. If

existing rules are insufficient, a proposition should be made on modification of the rules.

Finite Element Analyses are used to analyse the spherical and non-spherical LNG tank. Patran

was used to generate the geometric models. These were extracted to LS-Prepost, where spec-

ifications for each analysis were added. Finally the model was analysed in the finite element

software LS-Dyna. The first model was a half-sphere. This was analysed and extended further

to a full sized spherical tank. Then a non-spherical tank was analysed. The models were verified

against literature and existing formulas when possible, before it was extended further until the

desired complexity was obtained.

The scope of work was divided in different steps. The first steps include a description of differ-

ent gas carriers, and the design of the spherical tank from Moss Maritime. Then a summary of

relevant codes and literature is given. The finite element analyses include a modal analysis of a

sphere and a non-linear analysis of the spherical tank with realistic imperfections with elastic

and elasto-plastic material. A non-linear analysis of the non-spherical tank is performed and

these results are compared against relevant theory. Finally, a suggestion for modification of the

rules is given.

The main results of this thesis are given with respect to two loading conditions. First load-

ing condition contains only external pressure. The second loading condition contains external

pressure, weight of isolation on the tank, additional acceleration on the material due to ship

movements, and a sloshing load. The sloshing load arises due to ship movements, and this load

is modelled as a static, sloped liquid surface. This surface causes a hydrostatic pressure with

ii



a constant height and density for each point in the tank, but with an increasing acceleration.

The magnitude of this acceleration before the tank buckles is analysed in the second loading

condition.

The results from the first loading condition can be seen in table 0.0.1. The results from the

non-linear analysis are presented because these are more realistic than the linear results. A

linear analysis was first conducted, the ten lowest buckling modes from the linear analysis was

used as imperfections in the non-linear analysis for the spherical and non-spherical tank in both

loading conditions. It can be seen that the non-spherical tank has a 0.02 MPa lower capacity

than the spherical tank in the first loading condition.

Table 0.0.1: Results from non-linear analyses of spherical and non-
spherical tank in aluminium exposed to external pressure

Model Largest init. imp. Material model Buckling pressure
Spherical 0.0393 m Elasto-plastic 0.16 MPa

Non-spherical 0.040 m Elasto-plastic 0.14 MPa

The results from the second loading condition are shown in table 0.0.2. The non-spherical tank

can be seen to endure a lower acceleration on the fluid than the spherical tank. This causes

the rules in DNVGL (1997) to estimate a buckling point at 75% of the capacity compared

to LS-Dyna. While this point was estimated to 50% of the buckling capacity for the sphere

according to LS-Dyna. By replacing the equation for the elastic buckling pressure for a sphere

with the elastic buckling pressure for an ellipse in DNVGL (1997), the utilization was decreased

to 62.5%. This gives a larger safety factor for the non-spherical tank. It is emphasized that ad-

ditional analyses should be conducted in order to confirm the results. The analyses conducted

in this thesis are too few to determine the exact safety level.

Table 0.0.2: Results from non-linear analyses of spherical and non-
spherical tank in aluminium exposed to all loads

Model Largest init. imp. Ext. Pres. Accel. on mat. Critical acceleration on fluid
Spherical 0.04 m 0.0075 MPa 18.06 m/s2 36 m/s2

Non-spherical 0.04 m 0.0075 MPa 18.06 m/s2 24 m/s2

iii



Sammendrag

Etterspørselen etter skip som kan frakte mer LNG har økt de siste årene ifølge Moss Maritime.

Den uavhengige sfæriske tanken av type B fra Moss Maritime må modifiseres hvis et skip skal

frakte mer LNG. Tanken kan ikke utvides tverrskips p̊a grunn av regler i henhold til Pana-

makanalen. Derfor er ideen å strekke tanken langskips med en sylindrisk del p̊a midten, og en

halvkule p̊a hver ende. Kapasiteten med tanke p̊a knekking må analyseres for denne tanken.

Denne kapasiteten må sammenliknes med den ordinære sfæriske tanken, og med det gjeldende

regelverket. Regelverket er i dag kun gjeldende for sfæriske LNG tanker. Hvis dette regelverk

er utilstrekkelig for den avlange tanken skal derfor et forslag til modifikasjon gis.

Elementmetoden ble brukt for å analysere den sfæriske og den avlange tanken. Patran ble

brukt for å lage de geometriske modellene. Disse modellene ble eksportert til LS-Prepost, her

ble spesifikasjoner for hver analyse lagt til. Deretter ble modellene analysert i LS-Dyna. Den

første modellen som ble brukt var en halvkule. Denne ble analysert og utvidet til en full sfærisk

LNG tank. Den sfæriske tanken ble s̊a erstattet av en avlang tank. Underveis ble resultatene

sammenliknet med litteratur og regelverk hvis mulig. Hvis resultatene ble bekreftet ble mod-

ellene utvidet til de inneholdt tilstrekkelig mengde detaljer.

Omfanget av arbeidet ble delt inn i forskjellige steg. Det første steget innebærer en beskrivelse

av forskjellige typer LNG skip, og designet til den sfæriske tanken fra Moss Maritime. Et-

ter dette blir det presentert et sammendrag av relevante regler og litteratur. Analysene etter

elementmetoden inkluderer en lineær knekkingsanalyse av en kule, og en ulineær analyse av

en sfærisk LNG tank med realistiske imperfeksjoner samt elastisk og elasto-plastisk material.

Neste steg innebærer en ulineær analyse av den avlange tanken, hvor resultatene blir sammen-

liknet med relevant teori. Et forslag til endring av reglene blir gitt til slutt for å tilpasse dem

til den avlange tanken.

Hovedresultatene i denne oppgaven blir presentert i forhold til to lasttilfeller. Første lasttilfelle

innebærer kun ytre trykk. Andre lasttilfelle innebærer ytre trykk, i tillegg til vekten av isolasjo-

nen i tanken, akselerasjon av materialet p̊a grunn av skipets bevegelser i sjøen, og en last som

følge av bevegelser i væsken ved lavere fyllingsgrader enn 100%. Denne siste lasten blir mod-
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ellert i analysene som en statisk, skr̊a væskeflate. Denne væskeflaten for̊arsaker et hydrostatisk

trykk med konstant høyde og tetthet, men en økende akselerasjon for hvert punkt i tanken.

Størrelsen p̊a denne akselerasjonen før tanken knekker blir undersøkt i det andre lasttilfellet.

De mest realistiske resultatene kommer fra de ulineære analysene, derfor er disse presentert her.

Resultatene fra første lasttilfelle vises i tabell 0.0.3. En lineær analyse ble gjort først med første

lasttilfellet. De ti laveste knekkmodene fra den lineære analysen ble brukt som imperfeksjoner

i b̊ade den sfæriske og den avlange tanken for begge lasttilfeller. Den avlange tanken har 0.02

MPa mindre kapasitet enn den sfæriske tanken for det første lasttilfellet.

Table 0.0.3: Resultater fra ulineær analyse av sfærisk og avlang
tank i aluminium fra første lasttilfellet

Modell Største imperf. Materialmodell Knekktrykk
Sfærisk 0.0393 m Elasto-plastisk 0.16 MPa
Avlang 0.040 m Elasto-plastisk 0.14 MPa

Resultatene fra det andre lasttilfellet vises i tabell 0.0.4. De viser at den avlange tanken t̊aler

en mindre akselerasjon p̊a væsken før den knekker enn den sfæriske tanken. Dette gjør at

reglene i DNVGL (1997) estimerer punktet for knekking p̊a 75% av kapasiteten i forhold til

LS-Dyna. Dette punket for knekking ligger p̊a 50% av kapasiteten for den sfæriske tanken i

forhold til LS-Dyna. Ved å erstatte likningen for elastisk knekklast for kule i DNVGL (1997),

kan punktet for knekking senkes fra 75% til 62.5%. Dette gir en større sikkerhetsfaktor for den

avlange tanken. Men analysene som ble utført i denne oppgaven er for f̊a til å bekrefte nøyaktig

sikkerhetsfaktor. Flere analyser burde derfor gjennomføres for å bekrefte resultatene.

Table 0.0.4: Resultater fra ulineær analyse av sfærisk og avlang
tank i aluminium fra andre lasttilfellet

Modell Største imperf. Ytre trykk Aksel. av mat. Kritisk akselerasjon av fluid
Sfærisk 0.04 m 0.0075 MPa 18.06 m/s2 36 m/s2

Avlang 0.04 m 0.0075 MPa 18.06 m/s2 24 m/s2
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Nomenclature

λ Reduced slenderness ratio

ν Poisson’s ratio

σ Stress

σcr Elasto-plastic buckling stress

σE Elastic buckling stress

σy Yield stress

E Young’s modulus

P Pressure

R Radius

t Thickness

vi
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Chapter 1

Introduction

A large amount of the transported gas is done at sea by LNG (liquefied natrual gas) carriers.

LNG ships carry natural gas in different types of tanks. One example of a tank is the Moss

LNG tank. This is a spherical container for liquid natural gas. According to Moss Maritime,

the requests has increased for larger LNG tanks to carry larger amounts of gas per ship. In

order to do this, the spherical tank must be modified in order to comply with the restrictions

of the Panama Canal. A wider ship would violate the restrictions. The challenge by modifying

the shape of the tank is to predict the buckling capacity. Accessible rules today are mostly for

spherical tanks. A modified shape of the tank with different curvatures would need a modified

set of rules to predict the buckling load of the tank.

1.1 Objective

The objective of this thesis is to conduct finite element analyses on the spherical tank from Moss

Maritime, and to extend these analyses to account for a non-spherical tank. Existing design

formulas should be utilized with respect to the tanks. If the existing rules are not applicable

on the non-spherical tank, a proposition should be made on modification of the rules. This

modification should adjust the rules to account for the non-spherical shape.
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1.2 Scope of Work

What is mainly considered in this report is the buckling capacity of the tank. The rules and

regulations in DNVGL (2016b) defines a set of loading conditions that should be considered

when evaluating the strength of the spherical LNG tank. Mainly two loading conditions are

used in the analyses. The first loading condition contains only external pressure, while the

second loading condition contains several loads. Both linear and non-linear analyses are per-

formed for both loading conditions. The work is split up in the following steps according to

the task description given after the title page in this thesis:

1. A brief description of various types of gas carriers is given, in addition to an outline of

the design of Moss Rosenberg spherical tank and the extension of this into alternative

shapes.

2. Based on the work carried out in the project thesis, a summary of relevant code and

literature formulas for estimation of the buckling capacity of spherical shells are provided.

Focus is placed in estimates of the critical pressure for different shapes.

3. A modal analysis is conducted on the sphere to determine the tank’s deformation patterns.

4. A non-linear analysis is performed in LS-Dyna to determine the critical pressure on a

sphere with realistic imperfections. The analysis is performed with both elastic and

elasto-plastic materials. The results are then be compared to simplified theory.

5. A non-linear analysis of the tank shapes deviating from a spherical shell is performed and

the results are compared with available buckling theories.

6. The results and observations from the non-linear calculations are condensed into modifi-

cations of analytic formulas.

7. Conclusions and recommendations for further work are then given.

1.3 Structure of Thesis

This thesis starts by an introduction of natural gas and how it is transported today. A review

is given on the different gas carriers, in addition to the design of the Moss LNG tank. The

2



shape of the non-spherical tank is then explained.

The thesis continues by stating the method used followed by a literature study conducted on the

topic. This literature study includes buckling on different geometrical shapes, both spherical

shells and non-spherical shells. A compressed chapter on finite element theory is given after

this before the analyses are presented.

The main part of this thesis consists of several finite element analyses. These analyses build

upon each other. The first analysis in chapter 5 uses a simple half-sphere to verify the approach

in the finite element software. A linear analysis is performed to start with, and this is followed

by a non-linear analysis in chapter 6. When the analysis of the half-sphere is finished, the

model is extended to a full spherical LNG tank. The same types of analyses are performed

on this model, both linear and non-linear analysis. An additional loading condition containing

several loads is introduced on the spherical LNG tank. The linear and non-linear analyses

are performed for this loading condition also. The analyses on the spherical LNG tank are

presented in chapter 7. A model of the non-spherical LNG tank is made next and analysed in

chapter 8. This model is analysed when exposed to the two different loading conditions that

were applied on the spherical tank. Both linear and non-linear analyses are performed for each

loading condition. The last models that were analysed are the spherical and non-spherical tank

split into sections. Each section in the models has an individual thickness. These are the most

realistic models used in this thesis. Linear and non-linear analyses are attempted for both

loading conditions. Discussion, conclusion and recommendations for further work are given at

the end.

1.4 Background

This section will give an overview of the production and transport of natural gas today. After a

short overview of the movement of the natural gas, the focus will be on the transport of natural

gas. Types of gas-carrying ships will then be outlined.
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1.4.1 Natural Gas

Natural gas is a hydrocarbon product used for fuel in different types of engines. Natural gas

mainly consists of methane, but other hydrocarbon gases may also be a part of the mixture.

The gas is found deep down in the soil under numerous layers of rocks. It is formed by organic

material that is buried by layers of rock and sand. During millions of years, the layers on top

of the organic material will grow, and the pressure on the organic material increases. Finally,

hydrocarbons are made from the process. Among these hydrocarbons may natural gas be a

component. In order to find the gas, the most common way is to search for pockets of gas

in the soil. These pockets are formed because the gas travels up in the soil until it meets an

impermeable rock layer. The gas will stop under this layer, and the amount of gas will grow

as more gas finds the way up to this point. In order to collect the natural gas, a well can be

drilled through to the pocket, and the gas can be transported further (IGU, 2018).

1.4.2 Transport of LNG

In order to make use of the collected gas from the soil, it must be processed, thereafter trans-

ported to the desired place and customer. The gas may be drilled up from a well on land, or

at sea. Either way, the gas is transported to a processing facility. After the gas is processed, it

should be transported. The transport may happen in several ways, two of the ways are either

by pipelines, or by shipping of the gas. Shipping of gas can be done with liquefied gas, or

by pressurized gas. Figure 1.4.1 gives a short illustration of the movement of the natural gas

(IGU, 2018). The orange circle in figure 1.4.1 indicates the position of the LNG tankers in the

movement of the natural gas from collecting to usage.

The international gas union made a ”world report” for 2017 (IGU, 2017). This report stated

that there were 439 LNG carriers world wide at the end of 2017. During 2017, 31 new builds

entered the market. This report illustrates the growing need for LNG vessels as transport of

natural gas increases. The following quot from page 38 in the IGU-report substantiates the

statement from Moss Maritime about the need for larger transport capacity: “Tanker storage

capacity continues to grow as charterers prefer larger tankers that reduce the unit cost of

transported LNG. ”
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Figure 1.4.1: Movement of the natural gas

1.4.3 Types of Gas Carriers

The gas carriers are often classified by the type of cargo they carry. Different types of carriers

are designed to carry different types of cargo. The types of carriers are given below according to

Central Commission for the Navigation of the Rhine and Oil Comapnies International Marine

Forum (2010):

• fully pressurized tankers.

• semi-pressurized tankers.

• fully refrigerated tankers.

The fully pressurized tankers use containment systems that carry pressurized gas, and not liq-

uid. Because the gas is pressurized, and not liquefied, the amount of gas transported is smaller

than for liquefied gas transport. This type of ships are suitable for transport of gas between

small terminals. Semi-pressurized tankers are ships carrying liquefied gas at low temperatures.

Fully refrigerated tankers use a containment system that can carry liquefied gas at atmospheric

pressure and low temperatures.
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The different ships carrying gas has different types of containment systems. The distinctions

between the different types of tanks can be made on several properties of the construction.

Some tanks are an integrated part of the ship hull, and will contribute to stiffness of the total

ship hull. Some tanks are independent of the hull and self-supporting. These tanks do not

contribute to the strength of the hull. The main distinctions are made between an independent

tank and integrated tank. As well as the total arrangement of the tank. Some of the tanks are

explained according to Central Commission for the Navigation of the Rhine and Oil Comapnies

International Marine Forum (2010):

• type A.

• type B.

• type C.

• membrane tank.

Independent tank type A is prismatic, fully refrigerated tank. This tank consists of flat parts,

and carry cargo near atmospheric pressure in fully refrigerated condition. This tank needs a

secondary containment system in order to ensure safety because the tank is not safe enough

itself against leakage. Between the tank and the secondary barrier is a space filled with inert

gas in order to prevent fires and explosions.

Type B can be a tank consisting of flat surfaces, or it can be of spherical shape. This type

of tank does not need the secondary containment in the same extend as type A tanks. If the

tank is spherical, the part over deck is covered by a steel dome, while the part below deck has

a partly secondary barrier. The space between the tank and the barrier is filled with inert gas

or dry air. A spherical tank of type B is the most common shape of type B, and this is only

used for transport of LNG. The independent tank type B is considered in this report.

Type C tanks are most often spherical or cylindrical in shape, and this type has a higher capac-

ity of maximum pressure. The tanks are either fully or semi-pressurized. It is not a requirement

for this tank to have a secondary barrier.

Membrane tanks are constructed with a primary barrier and secondary barrier. The primary
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barrier is for membrane tanks very thin, and is mostly supported by the isolation of the tank.

This tank is not self-supporting, therefore the ship hull is strengthened by the tank. Figure

1.4.3 and 1.4.4 show a ship with independent tanks type B and membrane tanks respectively.

Figure 1.4.2 shows a cross-section of one independent tank type B.

Figure 1.4.2: Cross-section of one spherical tank type B, provided
by Moss Maritime

Figure 1.4.3: Cross-section of ship with spherical tank type B
(Zhan et al., 2015)

Figure 1.4.4: Cross-section of ship with membrane tanks (Zhan
et al., 2015)
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1.5 Design of Spherical LNG Tank

Figure 1.5.1: Outline of spherical tank type B (Odland, 1991)

The independent tank type B is the tank Moss Maritime use in their LNG carriers. One ex-

ample of this tank can be seen in figure 1.5.1. The tank itself is a sphere with a tower in the

middle. This tower is used to load, and unload the tank with LNG. The tank is supported

along the equator line. From the equator line and down to the ship bottom is a cylindrical skirt

supporting the tank. Between the tank and the bottom of the ship is a spacing that is filled

with inert gas or dry air to prevent explosions of leakage from the tank. Below the bottom of

the tank is a ”drip tray”. This is used to collect any LNG that leaks from the tank. The top

of the tank is covered by a hemispherical dome that is a part of the ship structure, and not

the tank itself. These covers support the strength of the ship (DNVGL, 2016b). Figure 1.5.2

shows a scantling of the tank and the skirt. The tank is divided into different zones. Each zone

has a separate height, thickness and weight. One reason for this is that the loads on the tank

is different in the different areas of the tank. Along the equator line and just below this line is

a thicker section than in the rest of the structure. Table 1.5.1 shows the thickness, height and

weight of the different zones.
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Table 1.5.1: Dimensions of different zones of the tank provided by
Moss Maritime

Zone Height [mm] Thickness [mm] Weight [tonnes]
1 1871 53 40
2 7173 53 152
3 10806 66 285

4L 3006 71 85
Equator-line 1350 195 76

4U 3006 57 68
5 10806 51 220
6 7173 32 92
7 1871 40 30

Figure 1.5.2: Scantling of spherical LNG tank provided by Moss
Maritime

Typical nomenclature for the spherical tank can be seen in figure 1.5.3. The figure shows a

cross section of the tank including the ship double bottom and the cover for the top of the tank.
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The space filled with dry air or inert gas can be seen between the tank and the ship structure.

Figure 1.5.4 illustrates the ship structure below the tank were the tank has been removed. The

nomenclature is also included in this figure.

Figure 1.5.3: Nomenclature of Spherical LNG Tank (DNVGL,
2016b)
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Figure 1.5.4: Nomenclature of cargo hold (DNVGL, 2016b)

1.6 Design of Non-spherical tank

The main objective of this thesis treats a non-spherical LNG tank. The purpose of the non-

spherical tank is to carry more LNG per ship, and the idea of this shape is to extend the tank in

the longitudinal direction of the ship. This can be done by introducing a cylindrical section in

the middle, with spherical or elliptic end caps. An illustration of the non-spherical tank can be

seen in figure 1.6.1. This figure has a cylindrical middle section with one half-sphere at each end.

The tank is composed by the shape of a sphere/ ellipsoid and a circular cylinder. This will cause

the supporting skirt to have an oval shape, instead of a circular cylinder as for the spherical

tank. The end caps of the tank may be elliptic, but only spherical end caps are used in this

thesis.
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Figure 1.6.1: Illustration of non-spherical tank

One important remark regarding the non-spherical shape is made on the load carrying behaviour

of the different sections. The spherical sections are curved in two directions normal to each

other, but the cylindrical section is only curved in one direction. This makes the stresses higher

in the cylinder than in the sphere. The circumferential stress in the cylinder is specifically two

times the circumferential and meridional stress in the spherical sections. The circumferential

and meridional stress in the sphere is given by equation 1.6.1, while the circumferential stress

in the cylinder is given by equation 1.6.2. Because of this, the cylindrical section needs to have

twice the thickness of the spherical sections when modelling the tank. The circumferential di-

rection of the cylinder goes around the circumference of the cylinder, while the circumferential

direction of the sphere goes in the horizontal direction in figure 1.6.1. The meridional direction

in the sphere is normal to the circumferential direction.

σSphereCircumferential =
PR

2t
(1.6.1)

σCylinderCircumferential =
PR

t
(1.6.2)
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Chapter 2

Method

This chapter presents the method used in this thesis. A description of the software that is

applied will be given first, then a general explanation on how the software was used to produce

reliable results is given.

2.1 Software

The programs used were Patran, Abaqus CAE and LS-Dyna in connection with LS-PrePost.

Python was used for interpretation of results and verification. Geogebra was used in a small

extent to visualize geometric challenges.

The finite element software used in this thesis were mostly LS-Dyna. The work was conducted

in collaboration with Moss Maritime, and they requested that LS-Dyna was used as finite ele-

ment solver. To solve a finite element model in LS-Dyna, three steps were used in this thesis.

First Patran was used to create the geometric model. This program has an user interface that

makes it easy to design different kinds of spherical shapes, along with minor details in the

model. Patran also has an option to convert the model into a key-file that can be interpreted

by LS-PrePost. The geometric model was therefore transported from Patran to LS-Prepost.

The different specifications for the analysis were specified in LS-Prepost, then the finite element

problem was solved using LS-Dyna finite element solver.
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The other finite element software used in this report was Abaqus CAE. Abaqus was used in

some of the introductory analyses. The reason for this was to compare the results from the

introductory analysis between LS-Dyna, Abaqus and analytic results. This would hopefully

verify that the results from LS-Dyna were reliable. The problems analysed in this thesis were

considered to be of static behaviour. A main distinction between Abaqus and LS-Dyna is

that Abaqus started out as a static software, and were expanded to dynamic application later

(Eworks Global, 2005). While LS-Dyna started out as a dynamic software, and were expanded

to static application (Livermore Software Technology Corporation, 2019). To perform a static

analysis in LS-Dyna may therefore by slightly more challenging than in Abaqus. But the two

finite element softwares seem to give approximately the same result. This is discussed in section

5.1.

Python was used for interpretation of results and calculations. This was useful for producing

different plots, and for doing the same calculations for different problems. Several python

scripts can be found in appendix.

2.2 General Apporach

The finite element software is used to produce the results in this thesis. A simple case is used

in the first analysis in order to verify the results. When these results are verified, the model

can be extended to include more details. The detailed model is then compared against analytic

results, before it is extended further. The general approach in this thesis is therefore to utilize

the finite element software, but to verify these results before the model is extended until the

desired complexity of the problem is reached.

With respect to the literature study in this thesis, it will primarily consist of primary and

secondary literature according to Schembri, 2007. Primary literature is most often published

scientific work, and it has been peer-reviewed. The rules and regulations provided by Moss

Maritime in connection with this thesis are examples of secondary literature. While the articles

presented are an example of primary literature. Tertiary literature is used in a small extent in

the form of textbooks.
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Chapter 3

Literature Study on Buckling of Spher-

ical and Non-spherical Shells

A compressed section on buckling of spherical shells is presented first. Then a summary of some

relevant articles concerning buckling strength of spherical and non-spherical shells is presented.

A summary of the relevant rules and guidelines from DNV GL will be given last.

3.1 Buckling of Shells

A shell can be made from a plate by making the surface curved in one or two directions. Shells

are usually thin structures, and can experience buckling if exposed to compressing forces. The

load carrying of a shell differs from a plate. A plate carry lateral load by bending stresses, while

a shell can carry lateral load by a larger part of membrane stresses than bending stresses (Moan,

2003). This makes the shells suitable for pressure vessels for instance. Because of the small

thickness in shells, they may experience buckling when exposed to large forces and pressures.

Figure 3.1.1 illustrates the relation between the normalized stress and the normalized strain

for a structure that buckles. The path for both a perfect and imperfect shell is shown in the

figure. The ”B” in the figure shows where the bifurcation point is located. This is the point

for buckling of a shell that has no imperfections. The ”L” shows the point of buckling load for

a shell that has initial geometric, and possibly material imperfections.
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Figure 3.1.1: Stress-strain relation for perfect and imperfect shell
(Amdahl, 2010)

3.2 Spherical Shells

Two relevant articles were chosen that were treating buckling strength of spherical shells. The

articles were ”Elastoplastic buckling and collapse of spherical shells under combined loadings”

by Tall et al. (2018), and ”Design buckling pressure for thin spherical shells: Development and

validation” by Evkin and Lykhachova (2018).

3.2.1 ”Elastoplastic buckling and collapse of spherical shells under

combined loadings” (Tall et al., 2018)

The objective of the article by Tall et al. (2018) was to develop a set of buckling capacity

curves for spherical shells exposed to a combination of external pressure and torsional loading.

The curves were constructed by plotting buckling capacity against slenderness. Slenderness

is defined in this article as the square root of buckling stress in material non-linear analysis,

divided by buckling stress from linear bifurcation analysis. These curves can be of assistance

when designing spherical shells against the specified loading condition. The article used a set

of parametric equations to describe these curves. The relevant part of the article for this report

were concerning the elastic buckling strength. The article uses an analytic expression for the

elastic buckling strength derived by Zoelly (1915). This expression for the critical pressure
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when considering elastic buckling is given in equation 3.2.1.

Pcr =
2E√

3(1− ν2)

(
t

R

)2

(3.2.1)

The article uses five different analyses to analyse the sphere exposed to external pressure. The

analysis procedures were:

• linear bifurcation analysis.

• material non-linear analysis.

• geometrically non-linear analysis.

• geometrically non-linear imperfect analysis.

• geometrically, and materially non-linear imperfect analysis.

The linear analysis gave an error of less than 1 % compared to the Zoelly critical pressure

(Tall et al., 2018). The other approaches were used to establish the buckling curves based on

numerical simulations in Abaqus.

3.2.2 ”Design buckling pressure for thin spherical shells: Develop-

ment and validation” (Evkin and Lykhachova, 2018)

This article focuses on clamped spherical caps exposed to external pressure. The article starts

by defining the Zoelly critical pressure given in equation 3.2.1. The article concludes by defin-

ing an equation for the buckling capacity of a spherical cap. This formula includes effect of

imperfections, plasticity and geometric non-linearities. It is therefore able to describe a more

accurate design buckling pressure than the elastic buckling pressure predicted by Zoelly. This

is wanted because thin shell structures experience bifurcation buckling which implies a signifi-

cantly higher linear buckling load than the non-linear buckling load. The resulting expression

for the buckling capacity was extensive and can be found in Evkin and Lykhachova (2018).
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3.3 Non-spherical Shells

Three articles were found to treat buckling of non-spherical shells. The article by Sano et al.

(2017) treats buckling of a non-spherical LNG tank. While the article by Zhang et al. (2017)

treats elastic buckling of egg-shaped shells. Finally the article by Jasion et al. (2015) treats

elastic buckling of a compounded shell. This shell is composed by a middle section of a clothoid,

and the end sections of a sphere. Figure 3.3.2 illustrates this shape.

3.3.1 ”Buckling of egg-shaped shells subjected to external pressure”

(Jasion et al., 2015)

The different shapes of eggs and their capacities were studied in this article. The authors

used Abaqus to determine the buckling capacity of these eggs. The buckling mode for an egg

analysed in the article can be seen in figure 3.3.1.

Figure 3.3.1: Buckling mode of an egg exposed to external pressure
(Zhang et al., 2017)

A previously derived formula by Babich (1993) was used to determine the linear buckling load

for the eggs. The formula can be seen in equation 3.3.1 to 3.3.3. The critical pressure is given

by equation 3.3.1, while the input parameters for this equation is given in equation 3.3.2 and

3.3.3. The parameters ”a” and ”β” defines the geometry of the egg. A value of β = 0 would

create a circle, while increasing β gives an egg-shape. Parameter ”a” is defined as half of the

length of the axis of revolution for the shell. While x̄ and r̄ are x̄ = x
a

and r̄ = r
a

respectively,

which are the normalized two-dimensional coordinates.

It can be seen from equation 3.3.1 when 2R1 − R2 are equal to 1, this formula reduces to the

Zoelly critical pressure in equation 3.2.1, with R2 as the governing radius. This can for instance
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be for R1 = R2 = 1. This formula for the elastic buckling pressure of egg-shaped shells can

therefore be interpreted as an extension of the Zoelly critical pressure. Were the extension

accounts for the geometry of the egg.

Pcr =
2Et2

(2R1 −R2)R2

1√
3(1− ν2)

(3.3.1)

1

R1

= − r̄
′′

a[1 + (r̄′)2]3/2
,

1

R2

=
1

ar̄[1 + (r̄′)2]1/2
(3.3.2)

r̄ =

√
3

2

√
x̄(2− x̄)

[
1− β2

(1 + x̄)2

]
r̄
′
=

3

4r̄

[
1− x̄+

(2x̄− 1)β2

(1 + x̄)3

]
r̄
′′

=
1

r̄

(
3

4

[
− 1 +

(5− 4x̄)β2

(1 + x̄)4

]
− (r̄

′
)2
) (3.3.3)

3.3.2 ”Elastic buckling of clothoidal–spherical shells under external

pressure – theoretical study” (Zhang et al., 2017)

The behaviour of the compounded shell is investigated in this article. Figure 3.3.2 illustrates

the shape of the shell. A large part of the article is devoted to analyse the geometry and the

stresses in the shell.

Figure 3.3.2: Clothoidal shell shape
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The results of the investigation of these shells shows that an analytic formula can be used to

determine the elastic buckling capacity of the shell. The formula can be seen in equation 3.3.4.

This formula can again be seen as an extension of the critical pressure from Zoelly in equation

3.2.1, where the thickness-to-radius relation has been replaced by a ratio including mass (ms)

of the shell, volume (Vs) of the shell, and density of the metal (ρs) used in clothoidal shell.

The article showed an important relation between the buckling strength of spheres compared

to the clothoidal shape. Spheres was seen to have higher buckling capacities than the clothoid.

The capacity gradually decreases as the sphere becomes more like a clothoid, and finally to the

resemblance of a cylinder.

Pcr =
2E√

3(1− ν2)

(
ts
R

)2

(3.3.4)

ts
R

=
ms

3Vsρs
(3.3.5)

3.3.3 ”Estimation of elastic buckling strength of a non-spherical

tank in the partially filled condition” (Sano et al., 2017)

Figure 3.3.3: Illustration of non-spherical tank

A non-spherical LNG tank is considered in this article. An illustration of the tank can be seen

in figure 3.3.3. The loading conditions used in this article were a tank with partially filled fluid

levels. The surface of the fluid will be located in the toroidal shell segment indicated in figure

3.3.3. An analytic expression for the elastic buckling load was derived in this article for the
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partially filled loading condition. Finite element analyses were performed in order to compare

the analytic results with numerical calculations in Abaqus. The load was applied as a pressure

located in the region of the toroidal segment in the simulations.

The analytic expression for the elastic buckling stress can be seen in equation 3.3.6 and 3.3.7.

Equation 3.3.6 gives the elastic buckling stress (σE) for the non-spherical tank. The parameter

K
′

is a factor containing a number of parameters concerning the forces in the shell, geometry

of the shell and material constants. The parameter r2 is a radial parameter used to describe

the geometry of the elliptic bottom of the tank. Equation 3.3.7 can again be seen to be very

similar to equation 3.2.1 which is the Zoelly critical pressure. Hutchinson (2016) presents the

exact same formula as in equation 3.3.7 in connection with the Zoelly critical pressure. These

formulas are presented as the elastic critical value for a perfect sphere. Hutchinson (2016) shows

that both equations fulfill the differential equation based on Donnel-Mushtari-Vlasov theory

for the elastic buckling problem. Equation 3.3.7 and the Zoelly critical pressure in equation

3.2.1 are therefore equivalent. Equation 3.3.7 gives the elastic critical stress while equation

3.2.1 gives the elastic critical pressure. The connection is shown in section 3.4.4. In the case of

the non-spherical tank, the critical level is modified by a factor (K
′
) to account for the shape

deviation from a sphere. The total expression for K
′

can be found in Sano et al. (2017).

σE = K
′
σcl (3.3.6)

σcl =
E√

3(1− ν2)
t

r2
(3.3.7)

3.4 Rules for design

The relevant rules for designing the spherical LNG tank are Classification Notes 30.1 (DNVGL,

2004), 30.2 (DNVGL, 2009) and 30.3 (DNVGL, 1997), in addition to Class Guideline DNVGL-

CG-0134 with the title ”Liquified gas carriers with spherical cargo tank of type B” (DNVGL,

2016b). Most of 30.2 is included in the Class Guideline, consequently only the Class Guideline

is presented in this thesis. These rules contain formulas that predict the buckling capacity of

the spherical tank. A summary of these formulas will be given in this section.
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3.4.1 Classification Notes 30.1

DNVGL (2004) presents a buckling criteria for spherical shells in general. The formula for the

critical stress of the spherical tank is defined based on the ϕ-method. This approach modifies

the critical stress because of plasticity. The expression for the critical stress can be found by

Merchant-Rankine formula shown in equation 3.4.1 (Odland, 1991). The first fraction accounts

for elastic buckling, while the second accounts for elasto-plastic buckling.

(σcr
σE

)2
+
(σcr
σy

)2
= 1 (3.4.1)

By introducing the reduced slenderness (λ) in equation 3.4.2, the formula for the critical stress

for a sphere used in DNVGL (2004) can be found. This formula is shown in equation 3.4.3. The

buckling capacity is calculated with respect to both elastic, and elasto-plastic buckling when

using this approach. Elastic buckling refers to when a structure buckles before yield stress is

reached in the material. While elasto-plastic buckling refers to when a structure buckles when

the material reaches yielding (DNVGL, 1997).

λ =

√
σy
σE

(3.4.2)

σcr =
σy√

1 + λ4
(3.4.3)

The equation for the elastic buckling stress (σE) can be seen in equation 3.4.4. This includes a

knock-down factor (ρ), and this is defined in equation 3.4.5. The knock-down factor is needed

because the realistic buckling load is significantly smaller then the elastic buckling load. The

reason for this is because shells in general, and especially spherical shells are very imperfection

sensitive (Tall et al., 2018).

σE = 0.606ρE
t

R
(3.4.4)

ρ =
0.5√

1 +
R
t

100

(3.4.5)
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3.4.2 Classification Notes 30.3

DNVGL (1997) includes formulas for computation of buckling stress for both the cylindrical

skirt supporting the tank, and the spherical tank itself. The formula for the elasto-plastic critical

buckling level for the sphere (ΛCR) is given in equation 3.4.6. This can be seen to be the same

as equation 3.4.3. The differences are that ΛCR is normalized with respect to equivalent stress

including load factors (σe0), and the equation for the slenderness (λE) is extended. This can

be seen in equation 3.4.7 where λE is the equivalent reduced slenderness.

ΛCR =
1√

1 + λ4E

σy
σe0

(3.4.6)

λE =

√
FE

σy
σe0

(3.4.7)

The equation for FE can be seen in equation 3.4.8. Here ρ is a knockdown factor to account for

geometrical imperfections, and ΛCR is the normalized elastic critical buckling value. Equation

3.4.10 gives the elastic buckling stress, and can be seen to be the same as in section 3.3.3 about

the non-spherical LNG tank. This formula is shown to be equivalent to the Zoelly critical

pressure in section 3.4.4.

FE =
1

ρΛCL

(3.4.8)

ΛCL =
σCL
σ10

(3.4.9)

σCL =
E√

3(1− ν2)
t

R
(3.4.10)

The skirt buckling has an equivalent equation for the buckling capacity (equation 3.4.6) with

a different calculation of FE and different stress components included in σe0. FE is calculated

according to equation 3.4.11. Here a, b and c forms a quite large set of formulas covering all

the different forms of buckling of a stiffened cylindrical shell. The expression for ΛE seems to

be the solution of a second degree equation, but which equation is not specified.
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FE =
1

ΛE

ΛE =
1

2a

[
b±
√
b2 − 4ac

] (3.4.11)

3.4.3 Class Guideline, DNVGL-CG-0134

The Class Guideline gives an extensive explanation of the approach for analysing the spherical

cargo tank. The guideline starts by defining how to do a global analysis of the ship and the

cargo hold. This is to establish the overall strength of the ship and the arrangement of the

cargo. When the cargo hold is analysed, the individual tank can be considered. Stresses and

loads from the global analysis are used to determine the loads on the tank. A brief outline of

the global analysis will first be done, then a more detailed review will be done on the part of

the guideline that focuses on the strength assessment of the spherical tank.

The global analysis of the ship and cargo hold is mainly done to determine the interaction

forces between the tank and the hull. One global analysis should be done for the whole ship.

This is needed to determine the strength of the total structure. In addition, one analysis is

needed in order to consider the cargo hold. To analyse the cargo hold, at least three of the

tanks need to be considered simultaneously in the analysis, or the two tanks in the front can be

considered in connection with the front of the ship. The loading conditions needed to consider

the strength of the cargo hold are given in table 2 on page 22 in the guideline. This table

includes 12 different loading conditions with different combinations of empty and full tanks.

Detailed instructions are given in order to preform a finite element analysis of the structure.

The tanks are covered by a steel dome that is connected to the hull. The strength of this cover

also needs to be considered individually. This is the next section in the guideline after the cargo

hold and the full ship is considered. The guideline uses four different loading conditions that

need to be investigated. Formulas for stress calculations and estimation of buckling loads on

the dome are given at page 33 to 36 in the guideline.

Section 5 in the guideline deals with strength analysis of the spherical cargo tank. The different

analysis procedures that need to be conducted for the tank are given here. There are ten of
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these on page 37 in the guideline (DNVGL, 2016b), and they are:

• Wave load analysis of the ship.

• Assessment of interaction forces.

• Analysis of sloshing loads in cargo tank.

• Analysis of skirt and tank structure including stationary thermal loads.

• Buckling analysis.

• Fatigue analysis.

• Crack propagation analysis.

• Leak rate analysis.

• Steady state temperature and stress analysis to determine the temperature distribution in

the tank system. The temperature gradient in the upper part of tke skirt is of particular

significance.

• Transient thermal stresses (cool down analysis). This is not a design analysis as such

but has to be carried out on the final tank design in order to ensure that the tank is not

overstressed due to too rapid cool down and filling up of the tank.

Where the most relevant point for this report is the buckling analysis in combination with

sloshing loads and thermal loads. Table 2 on page 39 (DNVGL, 2016b) gives relevant design

pressures for the buckling capacity check. This is the static loads that need to be considered.

At the point when the tank is empty and partly filled, the loading conditions are given in table

3.4.1.

Table 3.4.1: Design pressures for buckling analysis of spherical
tanks (DNVGL, 2016b, p. 39)

Loading case Pressure
Empty tank External overpressure P0 > 0.005 MPa

Partly filled tank External overpressure P0 > 0.005 MPa

Procedures for calculating dynamic loads, interaction forces and design loads for partial filled

tanks are given next. The design loads for partial filled condition includes one important case.

This is the sloshing load from the free fluid surface. Different sloshing behaviors can happen
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inside the tank, but the result of the sloshing is anyway a transverse force acting at the side

of the tank. The guideline presents an approach for calculating the circumferential force as a

result of the sloshing. Figure 13 on page 51 in the guideline (DNVGL, 2016b) illustrates the

approach. The approach is described later in this thesis in section 7.3.1.

The next part of the guideline deals with the finite element procedure of modelling the spherical

tank. Detailed instructions are given on type of elements and location of stress concentrations

that need to be considered more carefully. Boundary conditions are also suggested. Load cases

for stress assessment is then given, and subsequently are load cases for buckling assessment

given. This is given in table 8 on page 63 (DNVGL, 2016b). The load cases are:

1. Tank test condition.

2. Sea going with empty tank.

3. Sea going with partly filled tank.

The first load case includes few loads to be evaluated. The loads to be evaluated are:

1. Self weight of system.

2. Partial filled with fresh water.

3. Static interaction force due to still water bending moment and external pressure.

The second load case includes load 1 and 3 of the first, but in addition the following needs to

be evaluated:

1. External pressure of 0.005 MPa.

2. Dynamic interaction force due to wave bending moment and external wave pressure.

The third load case includes all of the loads from the second case, but the partial filling need

to be considered by:

1. Static and dynamic loads combined based on resulting skewed acceleration aR.

All of these cases should be evaluated with respect to buckling of the spherical tank. After the

finite element analysis is complete, the results should be verified by the DNV rules. The rules

relevant for this case is Class Notes 30.3 (DNVGL, 1997), the same rules are given in appendix

D in the Class Guideline (DNVGL, 2016b).
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The last part of section 5 deals with non-spherical tanks. The tank has the same shape as

was studied in Tall et al. (2018), which can be seen in figure 3.3.3. The shape considered in

this section is a sphere with a cylindrical part around the equator with a certain height. The

suggestion by the guideline when checking the capacity of this structure is to consider each

part by itself. Buckling of the cylindrical part can be checked by formulas for buckling of a

cylinder. While the buckling of the sphere can be checked by the formulas for buckling of a

sphere. This was the part of the guideline that treats the cargo tank. What also need to be con-

sidered is the strength of the skirt supporting the tank. This is done in section 7 of the guideline.

The first part states which loads that need to be considered for the skirt. These includes both

static and dynamic loads, and they can be found in the table on page 90 (DNVGL, 2016b). A

series of formulas for the stress components are then introduced in order to assess the stresses

and confirm that they are below the limit stated by DNV GL. With respect to the buckling

capacity of the skirt, this should also be verified by Class Note 30.3 (DNVGL, 1997). Table 2 on

page 97 (DNVGL, 2016b) illustrates the different buckling modes that need to be considered.

Because the skirt is a stiffened cylindrical shell, it can buckle in several different ways. For

instance the buckling can happen between stiffeners in the unstiffened shell segment, it can be

global shell buckling, or buckling of stiffeners. Figure 3.4.1 shows a stiffened cylindrical shell.

The full sized skirt supporting the spherical tank will look similar to this.

Figure 3.4.1: Stiffened cylindrical shell (DNVGL, 1997)

The remaining parts of the guideline treats the pump tower in the middle of the cargo tank,

and fatigue assessment of the structures. This is not within the subject of this report and will

therefore not be included in this review.
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3.4.4 Comments and Considerations on Formulas in Classifications

Notes 30.1 and 30.3

A comparison can be made for equation 3.4.4 against the elastic buckling stress for an unstiff-

ened cylindrical shell under axial compression. The expression for the elastic buckling stress

without the correction factor (ρ) can be seen to be the same for a sphere under external pres-

sure, and an unstiffened cylindrical shell exposed to axial compression according to Amdahl

(2010) and DNV-RP-C202 (DNVGL, 2017). This can be seen from eguation 5.62 in (Amdahl,

2010) and in section 3.3.2 in (DNVGL, 2017). It is emphasized that the similarities hold for

elastic buckling capacity without knockdown factors. The equations for the elastic buckling

strength of an unstiffened cylindrical shell can be seen in equation 3.4.12. Here L is the length

of the cylinder. It can be seen that the elastic buckling stress is the same as for the sphere in

equation 3.4.4 without knock-down factor (ρ). This is true even though a cylindrical shape is

curved in one direction, and a spherical shape is curved in both directions. This shows that

buckling of shells in general are related problems.

σE = C
π2E

12(1− ν2)
( t
L

)2
,

C = 0.702
L2

Rt

√
1− ν2 ⇒

σE = 0.605
Et

R

(3.4.12)

By simple considerations it can be seen that the elastic buckling stress is equivalent in equation

3.4.4 (DNVGL, 2004) and 3.4.10 (DNVGL, 1997). Which is again the same as the elastic

buckling stress for the cylinder in equation 3.4.12. This is shown by inserting ν = 0.3 and

calculating the fraction as shown in equation 3.4.13. Hence equation 3.4.10 and equation 3.4.4

are equivalent when disregarding geometrical knockdown factor ρ.

σCL =
E√

3(1− ν2)
t

R
= 0.6052

Et

R
= σE (3.4.13)

It can also be shown be simple considerations that equation 3.4.10 is equivalent to the Zoelly

critical pressure in equation 3.2.1. By inserting the principal membrane stresses for a sphere
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exposed to lateral pressure (DNVGL, 1997) as shown in equation 3.4.14, the Zoelly critical

pressure is found. Here σ1 and σ2 are the membrane stresses in the two different directions in

the shell. The connection between the Zoelly critical pressure and equation 3.4.10 is known

from Hutchinson (2016).

σ1 = σ2 =
PR

2t
⇒

PcrR

2t
=

E√
3(1− ν2)

t

R
⇒

Pcr =
2E√

3(1− ν2)

( t
R

)2
(3.4.14)

In addition to this, it can be seen that the equation for the critical stress in Classification Notes

30.1 (DNVGL, 2004), 30.3 (DNVGL, 1997) and DNVGL-RP-C202 (DNVGL, 2017) are similar.

All of them are based on the ϕ-approach as described in the beginning of section 3.4.1. And

the critical level is given as shown in equation 3.4.15 below.

σcr =
σy√

1 + λ4
(3.4.15)

The reduced slenderness for a cylinder is defined in DNVGL-RP-C202 as in equation 3.4.16.

All the parameters denoted with σ and f are stresses. The fractions in the bracket-parenthesis

are stress divided by elastic buckling stress for respectively axial stress, bending stress, circum-

ferential stress and shear stress.

λ2 =
σy
σj,Sd

[σa0,Sd
fEa

+
σm0,Sd

fEm
+
σh0,Sd
fEh

+
τSd
fEτ

]
(3.4.16)

For the sphere, the elastic buckling stress is the same in all directions, and we disregard shear

loading. This makes it possible to consider the elastic buckling stress as one parameter denoted

σE. The numerator will then be a sum of stresses in different directions, we denote this σ
′
10.

We can then rearrange the expression as shown in equation 3.4.17.
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λ =

√
σ

′
10

σE

σy
σj

(3.4.17)

If the knock-down factor (ρ) is disregarded in the formula from Classification Notes 30.3, the

reduced slenderness can be written as shown in equation 3.4.18. When inserted for FE in this

formula, σe0 is the equivalent stress for the sphere, while σj in equation 3.4.17 is equivalent

stress for the cylinder. The relevant stress components for the spherical and cylindrical shell is

summed up in respectively σ10 and σ
′
10.

λE =

√
σ10
σE

σy
σe0

(3.4.18)

From this it can be seen that the approach to determine the critical buckling load in cylindrical

shells and spherical shells are similar. The approach in DNGGL-RP-C202, Classification Notes

30.3 and 30.1 can be seen to be similar. One important difference between the three is that

30.1 does not include the equivalent stress σe0. This is included in 30.3 and RP-C202 for the

cylinder. Classification Notes 30.1 assumes that the stresses in circumferential and meridional

direction is the same in the spherical shell. This is not assumed in 30.3. Therefore 30.3 seems

to contain a more accurate approach to determine the critical buckling level.

This section has shown that there are a lot of similarities between the different approaches to de-

termine the critical buckling load on shells in general. It seems that all the different approaches

use the same foundation to determine the different elastic buckling levels. Hutchinson (2016)

shows that the Zoelly critical pressure can be derived based on Donnel-Mushtari-Vlasov theory.

This theory uses a differential equation with initial conditions to derive the elastic buckling

load. The Donnel equation is also used in Sano et al. (2017) and Amdahl (2010). It therefore

seems that this equation is the basis for the approaches to establish the elastic buckling level.

And that the ϕ-method is used to extend the approach to account for elasto-plastic behaviour.
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Chapter 4

Brief on Finite Element Analysis

A brief introduction on finite element analysis is presented in this chapter. This chapter is

especially focused on describing the theory with respect to LS-Dyna as finite element software.

4.1 Linear Buckling

The linear buckling load can be illustrated by point B in figure 3.1.1. No imperfections are

included in this analysis. This can be computed by solving for the eigenvalues in the system.

The eigenvalues can be found from the stiffness matrix K of the system. The equation for the

eigenvalue problem can be seen in equation 4.1.1. The matrix ”KM” is the material tangent

stiffness matrix, and ”KG” is the initial stress or geometric stiffness matrix. The eigenvalue, or

the buckling load is denoted by ”Λ”, and the corresponding buckling mode, or eigenvector is

”u” (Livermore Software Technology Corporation, 2017).

(KM + ΛKG)u = 0 (4.1.1)

4.2 Non-linear Buckling

To be able to find the buckling load L on the non-linear curve in figure 3.1.1, another solution

procedure must be used. The solution procedure in LS-Dyna to solve non-linear buckling prob-

lems is ”the arc-length method”. Dyna uses a combination of Riks and Wempner with BFGS
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method. The arc-length method introduces one new equation that includes both displacement

and load increment. The arc-length can be calculated by this equation, which makes it possible

to trace a non-linear buckling curve (Livermore Software Technology Corporation, 2017).

The non-linearities that can be introduced in a non-linear problem are non-linear material and

geometric non-linearity. The material non-linearity can be introduced by elasto-plastic material.

This material model introduces yield stress of the material. The stress-strain relationship

will become non-linear when stresses become larger than yield stress in this material model.

Geometric non-linearity takes the deformation of the structure into account (Mathisen, 2012).

4.3 Implicit and Explicit Solution Procedure

A step-wise method is needed to solve the system of equations in non-linear problems. A

distinction can be made between two types of solution methods. One method is the explicit

method, and the other is implicit method. The explicit method considers the equation at the

old step, and uses this to compute the new step in the analysis. While the implicit method

considers the equations in the new step to compute the new step in the analysis. The implicit

solution method requires an iterative solution procedure. It disregards inertial effects, and is

therefore suitable for static analysis. Explicit solution procedure includes inertial effects in the

solution, which makes it suitable for dynamic analysis (Erhart, 2016).
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Chapter 5

Linear Buckling Analysis of Half-sphere

This section includes two different analyses. An introductory eigenvalue buckling analysis was

conducted first in order to understand the analysis procedure and verify results. Then the same

type of analysis was conducted on a structure with realistic dimensions.

The introductory analysis conducted in LS-Dyna was compared with results from Abaqus. In

order to perform the buckling analysis in Dyna, a set of keywords had to be used. Keywords

are commands that are added for the specific analysis. The essential keywords for this analysis

are:

• Control Implicit General

• Control Implicit Solution

• Control Implicit Buckle

• Control Implicit Eigenvalue

”Control Implicit General” activates the implicit solver that should be used in this analysis.

”Control Implicit Solution” lets the user define which type of non-linear solver that should be

used. A linear solver was chosen in this case. ”Control Implicit Buckle” specifies the number of

desired buckling modes, and the command writes a file (”eigout”) that contains the eigenvalues

of the buckling problem. ”Control Implicit Eigenvalue” computes the eigenfrequencies, but the

computation of von-Mises stress can be activated by this command.
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5.1 Introductory Analysis and Comparison with Abaqus

Two different meshes were considered in this introductory analysis. Figure 5.1.1 and 5.1.2 show

these meshes. Figure 5.1.1 shows a regular mesh generated in Abaqus, while figure 5.1.2 shows

an axisymmetric mesh generated by Patran. The results from Dyna in the eigenvalue buckling

analysis was compared with the article from Tall et al. (2018), and results from Abaqus. It was

difficult to reproduce realistic buckling modes for the regular mesh in Dyna. The axisymmetric

mesh in figure 5.1.2 was therefore chosen.

Figure 5.1.1: Regular mesh generated by Abaqus

Tall et al. (2018) says on page 117 in the article that the theoretical fundamental buckling mode

will not be axisymmetric, and that this is shown by Koiter (1969). The axisymmetric buckling

modes are most frequently occurring with the mesh in figure 5.1.2. A regular mesh (figure 5.1.1)

gives different buckling modes than an axisymmetric mesh. Tall et al. (2018) show by this that

the buckling modes are very dependent of the mesh used on the sphere. It is established both

in DNVGL (1997) and Tall et al. (2018) that spheres are very imperfection sensitive. This

causes a large number of buckling modes to be very close to each other with respect to critical

buckling loads. Several modes may therefore interact in real life. It is therefore concluded that

the modes identified by numerical analysis in Dyna with axisymmetric mesh may not be the

fundamental buckling modes in real life structures. But the corresponding load should be the
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exact linear buckling load.

Figure 5.1.2: Axisymmetric mesh generated by Patran

The sphere with the axisymmetric mesh was exposed to a uniform external pressure. The

boundary conditions were determined to be zero translation and rotation around the equator-

line. Only one half of the sphere was modelled because of the symmetry the buckling mode

will have around the equator-line. The boundary conditions were chosen because the spherical

tank is supported along the equator by the skirt. It may be more accurate to just fix against

translation because the equator can have some movements. But all six degrees of freedom were

fixed in this case. Specific parameters of the simulation in Dyna of one half of the sphere can

be found in table 5.1.1. The same model was analysed in Abaqus with element type ”S4”.

Table 5.1.1: Parameters used in simulation of a half-sphere in
Dyna

Entity Magnitude
Radius 1000 mm

Thickness 1 mm
Uniform external pressure 0.2 MPa

Young’s modules 210e3 MPa
Poisson’s ratio 0.3

Element formulation 21
Nr. of elements 24964
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Figure 5.1.3: Model of half-sphere with boundary conditions

The model of the half-sphere is shown in figure 5.1.3 with the boundary conditions as white

crosses along the equator. Figure 5.1.5 and 5.1.6 show the first and fifth buckling mode respec-

tively from Abaqus and Dyna. The von Mises stress is plotted on the figures for illustrative

purposes. From these figures it can be seen that the buckling modes are the same in the two

different finite element programs. Figure 5.1.4 shows mode shape nr. 1 and 5 in the article

from Tall et al. (2018). Here it can be seen that the buckling modes are similar to the ones from

Abaqus and Dyna. Only difference is the number of waves occurring in the shell. Different

radius and thickness between the spheres may cause this difference. This substantiates the fact

that the mesh generated by Patran is fine to use. The reliability of the results is therefore

strengthened.

Figure 5.1.4: Eigenvalue nr. 1 (left) and nr. 5 (right) from Abaqus
with axisymmetric mesh from Tall et al. (2018)
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(a) Buckling mode 1 in Abaqus (b) Buckling mode 1 in Dyna

Figure 5.1.5: Buckling mode 1 in Abaqus and Dyna

(a) Buckling mode 5 in Abaqus
(b) Buckling mode 5 in Dyna

Figure 5.1.6: Buckling mode 5 in Abaqus and Dyna

The results from the simulations are summarised in table 5.1.2. It can be seen that both Abaqus

and Dyna overestimates the linear buckling load slightly compared to the Zoelly critical pres-

sure.
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Table 5.1.2: Results from linear buckling analysis in Dyna, ana-
lytic result and Abaqus

Method Critical pressure
Dyna 0.254 MPa

Abaqus 0.255 MPa
Zoelly critical pressure (Equation 3.2.1) 0.250 MPa

To compare the different element formulations in Dyna, two additional elements were tested.

Figure 5.1.7 shows buckling mode nr. 1 when element formulation 1 and 2 were used. Element

formulation 1 is called ”Hughes-Liu”, while element formulation 2 is called ”Belytschko-Tsay”.

All the element formulations tested (1, 2 and 21) are shell elements in Dyna. Element formula-

tion nr. 2 is the default element in Dyna. It can be seen that the buckling mode generated by

element formulation nr. 1 and 2 are different from the first buckling mode in figure 5.1.5. One

important difference between the elements is that element formulation 21 is specifically designed

for linear analysis, but formulation 1 and 2 can be used in non-linear analysis. Formulation nr.

2 was implemented in Dyna to make a computational faster alternative to formulation nr. 1

(Hallquist, 2006). Based on the buckling shape, element formulation nr. 1 and 2 were not used

further in the analyses.

(a) Element formulation nr. 1 (b) Element formulation nr. 2

Figure 5.1.7: Buckling mode nr. 1 with element formulation 1 and
2 in Dyna

5.2 Eigenvalue Buckling Analysis of Half-sphere with

Realistic Dimensions

Next the eigenvalue buckling analysis was performed on a half-sphere with realistic dimensions.

An axisymmetric mesh, as shown in figure 5.1.2 was chosen with element formulation 21 (”Fully

integrated linear C0 shell (5DOF)”) in Dyna. The diameter was taken to be 43 meters, which
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is a typical diameter of a spherical LNG tank according to Moss Maritime. The thickness of the

tank was chosen based on table 1.5.1, which contains the thickness over the different sections of

the tank. The thickness was chosen as an approximate average of 55 mm. Detailed parameters

of the simulation can be seen in table 5.2.1. Figure 5.2.1, 5.2.2 and 5.2.3 show buckling mode

nr. 1 to 5 for the half-sphere with realistic dimensions. It can be seen that mode nr. 1 is similar

to mode nr. 1 in the introductory analysis, while nr. 5 is different. The tank with realistic

dimensions has a different t/R-relationship then in the introductory analysis. This may be a

reason for the different deformed shape in buckling mode nr. 5. This assumption is based on

the elastic buckling pressure from Zoelly in equation 3.2.1. The t/R-relation affects the elastic

buckling pressure. It is therefore assumed to affect the deformation pattern.

Table 5.2.1: Parameters used in simulation of one half of a sphere
in Dyna

Entity Magnitude
Radius 21 500 mm

Uniform thickness 55 mm
Uniform external pressure 0.5 MPa

Young’s modules 210e3 MPa
Poisson’s ratio 0.3

Element formulation 21
Nr. of elements 22500

(a) Buckling mode nr. 1 (b) Buckling mode nr. 2

Figure 5.2.1: Buckling mode nr. 1 and 2 for half-sphere with
realistic dimensions
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(a) Buckling mode nr. 3 (b) Buckling mode nr. 4

Figure 5.2.2: Buckling mode nr. 3 and 4 for half-sphere with
realistic dimensions

Figure 5.2.3: Buckling mode nr. 5 for spherical tank with realistic
dimensions

The results of the eigenvalue buckling analysis can be seen in table 5.2.2. It can be seen that

the Zoelly critical pressure gives the same result in this case. When a smaller tank was used in

section 5.1, the finite element software overestimated the critical buckling value with approx-

imately 2-3%. This indicates that the finite element analysis and the analytic formula gives

more similar results for increasing t/R-relationship.

Table 5.2.2: Results from linear buckling analysis of half-sphere
with realistic dimensions in Dyna

Method Critical pressure
Dyna 1.664 MPa

Zoelly critical pressure (Equation 3.2.1) 1.664 MPa
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Chapter 6

Non-linear Buckling Analysis of Half-

sphere

A non-linear buckling analysis is conducted in this section. This analysis is conducted as a con-

tinuation of the linear eigenvalue buckling analysis. The main characteristics of the model in the

eigenvalue analysis is therefore used in this section, but some adaptions were needed in order to

perform the new analysis. The method used in this non-linear analysis is the arc-length method.

A series of keywords is used in order to conduct this analysis in LS-Dyna. Some of them will be

mentioned here. The non-linear solver is chosen to be nr. 12, which is a nonlinear solver with

BFGS updates + optional arclength. The keyword ”control implicit solution” is used to choose

this. The implicit solution method is activated by the keyword ”control implicit general”, the

time step is chosen and the geometric stiffness is included. Static analysis is used by ”con-

trol implicit dynamics”. Automatic time step is activated by ”control implicit auto”. Elastic

material is used in the first analysis in section 6.1. While elasto-plastic material is used in

section 6.2 and 6.4. Material nr. 18 in Dyna is used as model for elasto-plastic material. Only

parameters for the material are included by this material model, and not an entire stress-strain

curve. And the element formulation is chosen to be nr. 16, which is a fully integrated shell

element for non-linear analysis. Number of integration points through the thickness of the shell

is chosen to be 5. Three different types of imperfections were tested in this chapter. Each

imperfection is described in the current section. Table 6.0.1 summarise the parameters of the

model.
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Table 6.0.1: Parameters in non-linear analysis

Entity Magnitude
Radius 21 500 mm

Uniform thickness 55 mm
Uniform external pressure 2 MPa

Young’s modules 210e3 MPa
Poisson’s ratio 0.3

Element formulation 16
Nr. of elements 22500
Size of element 0.5 m

6.1 Imperfection Type nr. 1

The five buckling modes with the lowest buckling load found in section 5.2 are used as initial

imperfections in this non-linear analysis. The first buckling mode is not scaled when used as

an imperfection. The second mode is scaled by using 10% of the displacement, while 5% of

the third mode is used, 2.5% of the fourth and 1.25% of the fifth. It is assumed that the

first buckling mode will be most important in the deformation of the shell. And that each of

the modes will affect less as the corresponding buckling load increase. However many of the

modes have very similar buckling load. An alternative could therefore have been to not scale

the contribution from the individual mode. But the scaling is chosen in this analysis. The five

different buckling modes are shown in figure 5.2.1, 5.2.2 and 5.2.3 in section 5.2. Table 6.1.1

lists the buckling mode and the largest displacement in each mode before they are scaled. The

resultant displacement is the displacement when x-, y- and z-coordinates are combined to form

the displacement. The largest value in resultant displacement for the initial imperfection was

0.0175 m.

Table 6.1.1: Largest displacement in each buckling mode before
scaling

Mode nr. Largest resultant displacement
1 0.001734 m
2 0.001757 m
3 0.001927 m
4 0.001949 m
5 0.002967 m
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To identify the buckling load from the non-linear analysis, the displacement and the load were

extracted from the simulation. It is a known relation that the applied pressure in MPa on the

half-sphere is proportional to the time multiplied by two. This is because the force is applied

linearly so that 2 MPa is applied after 1 second. This was used to plot the force displacement

curve to identify the buckling load. The force displacement curve shown in figure 6.1.1 shows

the relation for node nr. 5945. From this figure it can be seen that the buckling load was 0.7178

MPa, and the maximum displacement was 0.0091 m.

When another node was chosen to plot the force-displacement relation, the curve looked differ-

ent. The curve for node nr. 4274 can be seen in figure 6.1.2. From this curve it can look like the

solution has some instabilities. A more smooth curve is expected as in figure 6.1.1 according

to Amdahl (2010). The reason for the unstable curve for node 4274 may be found by looking

at the displacement shape for the half-sphere. This can be seen in figure 6.1.3 and 6.1.4.

Figure 6.1.1: Pressure-displacement curve for node nr. 5945
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Figure 6.1.2: Pressure-displacement curve for node nr. 4274

It can be seen from the two figures of the displacement shape that a dent is initiated in the red

area in figure 6.1.3. This dent is moving from figure 6.1.3 to figure 6.1.4. It can be seen that

the dent is moving towards the top of the half-sphere as the simulation proceeds. This would

mean that the first dent is straightened out, and a new one is made. Node nr. 5945 is far away

from these dents, while node nr. 4274 is in the neighbourhood of the dents. This may cause

force-displacement curves with complicated shapes as shown in figure 6.1.2. From this analysis

it can be seen from figure 6.1.4 that a dent at the top of the half-sphere will be governing for

the post-buckling shape. The results are summarized in table 6.1.2.

Table 6.1.2: Results from non-linear analysis of half-sphere with
imperfection type nr. 1 and elastic material

Largest initial imperfection Material model Buckling load
0.0175 m Elastic 0.7178 MPa
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Figure 6.1.3: Resultant displacement, applied load of 0.7178 MPa,
displacement scaling factor = 100

Figure 6.1.4: Resultant displacement, applied load of 0.583 MPa
(post-buckling), displacement scaling factor = 100
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6.2 Imperfection Type nr. 2, Elastic and Elasto-plastic

Material

In order to obtain a force-displacement curve that corresponded to the theoretical curves as in

Amdahl (2010) and Tall et al. (2018) for instance, it was attempted to reduce the initial imper-

fections with a factor of 0.5. This means that the relative contribution from each buckling mode

is the same, but the resultant displacement is scaled by a factor. The smaller imperfections

gave a maximum displacement in the resultant initial imperfections of 0.0088 m. The analysis

was then repeated with elastic material. Another analysis was conducted with elasto-plastic

material. The parameters for the elasto-plastic material were taken from DNVGL-RP-C208

(DNVGL, 2016a), with exception of the plastic failure strain. This is set to a high value in

order to prevent rupture in the model, because rupture is not studied in this thesis. A table is

included in (DNVGL, 2016a) for structural steel type S235 on page 22 that can be used in this

case. The parameters used for the elasto-plastic material in this analysis are shown in table

6.2.1.

Table 6.2.1: Parameters for elasto-plastic steel S235

Entity Magnitude
Density 7850 kg/m3

Young’s modulus 210 GPa
Poisson’s ratio 0.3

Strenght coefficient, K 520 MPa
Hardening exponent, n 0.166

Yield stress 235 MPa
Plastic failure strain 0.15

The stress-strain curve can be generated by the Ramberg-Osgood equation from Misovic, Tadic,

and Lucic (2016) by equation 6.2.1. The stress-strain curve can be seen in figure 6.2.1.

ε =
σy
E

+
( σ
K

)1/n
(6.2.1)
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Figure 6.2.1: Stress-strain curve for steel based on Ramberg-
Osgood equation from Misovic, Tadic, and Lucic (2016)

The pressure-displacement curve can be seen in figure 6.2.2 for the elastic material and the

elasto-plastic material with the same imperfection. These curves can be seen to have a clear

top which represents the maximum load. They can be seen to follow each other in the elastic

(linear) region, while the elasto-plastic material causes the buckling load to be smaller. This is

because the elasto-plastic material takes the yield stress of the material into account. This is

not accounted for in the elastic material model. The structure is then able to buckle because

the stresses reaches yield with elasto-plastic material. If the elastic critical stress is higher than

yield stress, the elastic material model causes a higher buckling load as shown by the curves.
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Figure 6.2.2: Pressure-displacement curve for elastic and elasto-
plastic material, largest imperfection of 0.0088 m

The results of the non-linear analyses conducted in this section are summarized in table 6.2.2.

Here the buckling load of the three different analyses are shown. It can be seen that the buck-

ling load becomes larger when the imperfections are smaller. The elasto-plastic material causes

a lower buckling load than for elastic material with the same imperfections as shown in figure

6.2.2.

Table 6.2.2: Summary of results on non-linear analysis of half-
sphere

Largest imperfection displacement Material model Buckling load
0.0175 m Elastic 0.7178 MPa
0.0088 m Elastic 0.9514 MPa
0.0088 m Elasto-plastic 0.7606 MPa

The location of the node where the curves are plotted is in the dent that originates as shown in

figure 6.2.3. The red area shows were the dent appears for the elastic material. The deformation

of the half-sphere for the elasto-plastic material contain several dents more at the top. The

deformation of the half-sphere for elasto-plastic material can be seen in figure 6.2.4.
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Figure 6.2.3: Resultant displacement with elastic material, applied
load of 0.879 MPa

Figure 6.2.4: Resultant displacement with elasto-plastic material,
applied load of 0.640 MPa

The deformation of the half-sphere can be simulated for a longer period after buckling because

elasto-plastic material is taken into account. Figure 6.2.5 shows how the deformation looks like

for an applied load of 0.063 MPa. This is from the last step in the analysis, which corresponds
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to the end of the orange curve in figure 6.2.2. It can be seen that the structure is far beyond

buckling and a total collapse would most likely have happened before this state. The maximum

displacement is here 15 m.

Figure 6.2.5: Resultant displacement with elasto-plastic material,
applied load of 0.063 MPa (post-buckling)

6.3 Evaluation of Elasto-plastic Results

Because shells are very imperfection sensitive (Tall et al., 2018), an evaluation of the imperfec-

tions was considered to be necessary. The aim was to determine the size of the imperfections

used in the analyses relative to fabrication tolerance according to DNV. This can be done

by following the instructions in DNVGL (2016b). The imperfection tolerance is given as in

equation 6.3.1. The parameter g was taken to be the length of one wave in the first buckling

mode of the shell. This buckling mode can be seen in figure 5.2.1a. Inserting values gives the

imperfection tolerance as shown. It is emphasized that g is approximated, and this cause an

approximated imperfection tolerance.

δ =
0.01g

1 + g/R
=

0.01 · 4222

1 + 4222/21500
= 35.3 mm (6.3.1)

The rest of the procedure to calculate the critical load is done according to Classification Notes

30.1 (DNVGL, 2004). The procedure was written in a python script which can be found in

appendix A.3. The elastic buckling stress can be calculated by equation 6.3.2, and the knock-

down factor by equation 6.3.3.
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σE =
E√

3(1− ν3)
t

R
= 325 MPa (6.3.2)

ρ =
0.5√

1 + 0.01R
t

= 0.22 (6.3.3)

Then we can find the elastic buckling stress with knock-down factor by multiplying σE and ρ.

Or we can keep the elastic buckling stress without knockdown factor. The knock-down factor

takes initial imperfections into account in the calculation. By excluding this, the calculation

disregards initial imperfections. The reduced slenderness and the critical stress can be found

by equation 6.3.4 and 6.3.5. And the critical pressure can be found by equation 6.3.6.

λ =

√
σy
σEρ

(6.3.4)

σcr =
σy√

1 + λ4
(6.3.5)

Pcr =
σcr · 2t
R

(6.3.6)

The calculated values are summarized in table 6.3.1. Thess values were compared with two

new non-linear analyses in Dyna. The results from the two analyses are shown in table 6.3.2

and figure 6.3.1. A scaling factor (SCF) was used to scale the initial imperfections. It follows

that the relative contribution between the five different buckling modes are the same as shown

in table 6.1.1, but the resultant initial imperfection is scaled. The value for this scaling factor

is given in table 6.3.2 by ”SCF”.
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Table 6.3.1: Calculated critical pressure by Classification Notes
30.1

Knock-down factor Material model Calculated critical pressure
ρ = 0 Elasto-plastic 0.97 MPa
ρ = 0.22 Elasto-plastic 0.35 MPa

Table 6.3.2: Critical pressure from non-linear analysis in Dyna

Imperfection SCF Material model Largest initial imperfection Critical pressure from Dyna
1e-9 Elasto-plastic 1.8e-11 m 0.96 MPa

2 Ealsto-plastic 0.035 m 0.42 MPa

When the initial imperfections are disregarded, it can be seen that the calculated value (0.97

MPa) is approximately the same as the one from Dyna (0.96 MPa). When initial imperfections

are taken into account, the two procedures differ. The non-linear analysis in Dyna gives a crit-

ical pressure of 0.42 MPa, while the calculated value is 0.35 MPa. On reason for this deviation

may be the approximated ”g” when calculating the imperfection tolerance in equation 6.3.1.

This is calculated according to DNVGL-CG-0134 (DNVGL, 2016b). Another reason may be

that the calculated knock-down factor (ρ) from Calssification Notes 30.1 (DNVGL, 2004) does

not account for the same initial imperfection as in DNVGL (2016b). The knock-down factor

in DNVGL (2004) may use a different upper tolerance for initial imperfections than the given

δ from DNVGL (2016b). This means that the calculated critical pressure according to the

procedure in DNVGL (2004) may not use the same imperfection as in DNVGL (2016b). Which

causes the procedures to differ, because the calculated imperfection of 0.035 m is used in the

simulation in Dyna. It is not said in DNVGL (2004) how large imperfections the knock-down

factor accounts for, or if other aspects are considered in the same parameter (ρ).

The deformed shape in the post-buckling range is governed by a concentrated dent near the

equator of the half-sphere. The equator is were the boundary conditions are applied and the

assumed symmetry plane of the buckling mode. The node location in figure 6.3.1 is specified

as ”dent”, this refers to the dent that governs the post buckling shape of the structure.
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Figure 6.3.1: Pressure-displacement curve for elasto-plastic mate-
rial with different imperfections

6.4 Imperfection Type nr. 3, Elastic and Elasto-plastic

Material

The non-linear analysis was also conducted with only buckling mode nr. 1 as imperfection.

The amplitude of this buckling mode was scaled so that it had the same largest imperfection

as calculated in equation 6.3.1 (0.035 m). The analysis was performed with elastic and elasto-

plastic material. The force-displacement curve can be seen in figure 6.4.1, and the results can

be seen in table 6.4.1.

Table 6.4.1: Results with buckling mode nr. 1 as imperfection

Material model Largest initial imperfection Critical pressure from Dyna
Elastic 0.035 m 0.46 MPa

Elasto-Plastic 0.035 m 0.41 MPa

It can be seen that the critical pressure of 0.41 MPa with elasto-plastic material is very similar

to the critical pressure of 0.42 in table 6.3.2. Only difference between the two models is that
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the results from table 6.3.2 use the five buckling modes as imperfection.

Figure 6.4.1: Pressure-displacement curve for elastic and elasto-
plastic material, buckling mode nr. 1 as imperfection

The values from this analysis can also be compared with the elastic and the elasto-plastic

critical pressure. Which can be found by equation 6.4.1 and 6.4.2 respectively. Non-linear

analysis with elastic material was not compared with analytic results in previous section. But

the non-linear buckling pressure of 0.35 MPa with elasto-plastic material was calculated in the

previous section also. Here 235 MPa is the yield stress of the material. The magnitude of σE

and ρ were calculated in the previous section.

σE · ρ = 71.5 MPa⇒ Pcr,Elastic =
71.5 · 2t

R
= 0.37 MPa (6.4.1)

σcr =
235√

1 +
(√

235
71.5

)4 = 68.4 MPa⇒ Pcr,Ealsto−Plastic =
68.4 · 2t

R
= 0.35MPa (6.4.2)

It can be seen that the elastic critical pressure from Dyna, and the calculated elastic pressure

both are larger than the calculated elasto-plastic critical pressure. When the elastic material
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is used in Dyna, this analysis overestimates the calculated elastic buckling pressure of 0.37

MPa by 24%. When the elasto-plastic material is used in Dyna, this analysis overestimates the

calculated elasto-plastic buckling pressure of 0.35 MPa by 17%. It is emphasized once more

that it is not specified which imperfections that are accounted for in the knock-down factor

ρ in DNVGL (2004). This may cause the deviation between Dyna and the calculated critical

pressures.
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Chapter 7

Buckling Analysis of Spherical LNG Tank

Figure 7.0.1: Model of the spherical tank with skirt
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A linear and non-linear buckling analysis of a full sized spherical LNG tank exposed to uniform

external pressure will be conducted in this chapter. The previous chapter performed a linear

and non-linear analysis of a half-sphere made of steel S235. In order to be able to compare

with the half-sphere, steel is first used in this chapter. But since the tank is originally made

in aluminium, both the linear and non-linear analysis is performed with both materials. The

results for aluminium will therefore be representing more realistic result.

The last part of this chapter introduces additional loads for another loading condition. A lin-

ear and non-linear analysis is performed with the additional loads in order to investigate the

buckling load for this loading condition.

The model of the spherical tank can be seen in figure 7.0.1. The thickness and diameter is

the same as for the half-sphere. A uniform thickness of 55 mm is applied for both skirt and

sphere, and a diameter of 43 m. The boundary conditions are applied to the bottom of the

skirt by fixing all the nodes in all six degrees of freedom. Figure 7.0.2 shows the model with

the boundary conditions as white crosses.

Figure 7.0.2: Model of spherical tank with boundary conditions

The spherical tank is modelled with the supporting skirt. The skirt is modelled only with the

top two meters, which is the distance before the first stiffener in the skirt is introduced. Includ-

ing stiffeners in the model was disregarded because the sphere is the main aspect of this thesis.

The skirt is modelled in order to have some mobility of the equator of the sphere. If the skirt
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was disregarded, the boundary conditions would have to be applied to the equator. This would

decrease the mobility of the sphere. A transition piece is inserted after the first two meters of

the skirt, then the rest of the skirt is made of steel instead of aluminium. Consequently it is

convenient to model the first two meters.

The skirt is modelled with an offset from the equator line of the tank. Figure 7.0.3 shows a

close-up picture of the skirt. A triangle is used to model the offset between the skirt and the

sphere. The distance from the sphere to the skirt is 150 mm in horizontal direction, and the

distance from equator to the top of the triangle is 1000 mm. The mesh was generated with 38

896 elements on the entire model which implies an element size of 0.5 m.

Figure 7.0.3: Close-up picture of the skirt

The parameters for elasto-plastic steel are given previously in this report. These parameters

can be found in table 6.2.1. The parameters for elasto-plastic aluminium can be found in table

7.0.1. Two sources were used to determine these material properties; a web page with material

properties of aluminium alloy 5083 (AZO Materials, 2005), and the article from Misovic, Tadic,

and Lucic (2016). The plastic failure strain is set to a high value in order to prevent rupture

in the model. The analyses will not be conducted so far that rupture will occur.
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Table 7.0.1: Properties of Aluminium A5083, annealed condition

Entity Magnitude
Young’s modulus 7.1e10 Pa

Density 2650 kg/m3

Yield stress 134 MPa
Poisson’s ratio 0.3

Strength Coefficient, K 426 MPa
Plastic Failure strain 0.15

Hardening exponent, n 0.2004

The Ramberg-Osgood equation can be used according to Misovic, Tadic, and Lucic (2016) to

define the stress-strain curve for the aluminium alloy. For the elasto-plastic aluminium used in

this thesis, a stress-strain curve was generated based on Ramberg-Osgood model. This can be

seen in figure 7.0.4. The python script in appendix A.7 was used to make this curve.

Figure 7.0.4: Stress-strain curve for elasto-plastic aluminium
based on Ramberg-Osgood from Misovic, Tadic, and Lucic (2016)

ε =
σy
E

+
( σ
K

)1/n
(7.0.1)

The parameters used for elasto-plastic aluminium was investigated with respect to the Ramberg-

Osgood model in Misovic, Tadic, and Lucic (2016). The strength coefficient K and hardening
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exponent n is defined on page 185 in this article. K is defined as the stress where the strain

is equal to one, and n is the strain hardening rate. Equation 7.0.1 was used to generate this

curve. This is the Ramberg-Osgood equation which was also used in section 6.2 to generate

the stress-strain curve for steel S235.

7.1 Linear Buckling Analysis

(a) Buckling mode nr. 1 (b) Buckling mode nr. 5

Figure 7.1.1: Resultant displacement on buckling mode nr. 1
(top-view) and nr. 5 (bottom view)

Figure 7.1.2: Resultant displacement on buckling mode nr. 9,
top-view
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A linear buckling analysis was performed to begin with. This was done in order to compare

with the analysis of the half-sphere, because the total sphere should have the same linear buck-

ling pressure. In addition, the buckling modes from the linear analysis should be used as initial

imperfections in the non-linear analysis. Buckling mode 1, 5 and 9 can be seen in figure 7.1.1

and 7.1.2. Buckling mode nr. 2 to 10 resembled a version of nr. 5 and nr. 9.

The linear buckling pressure was found by Dyna to be 1.646 MPa. This is approximately the

same result as for the half-sphere in section 5.2 with the same diameter and thickness. The

buckling pressure for the half-sphere was 1.664 MPa. The results from the linear buckling

analysis of the spherical tank is summarised in table 7.1.1 for steel and aluminium, along with

the analytic buckling pressure according to Zoelly (1915). When aluminium is used as mate-

rial, the capacity decreases significantly. This is because the Young’s modulus of aluminium is

approximately one third of the Young’s modulus for steel.

Table 7.1.1: Results from linear buckling analysis of full spherical
tank

Approach Material Buckling Pressure [MPa]
Dyna Steel S235 1.646
Dyna Aluminium Alloy 5083 0.557

Zoelly crit. pres. Steel S235 1.664
Zoelly crit. pres. Aluminium Alloy 5083 0.544

7.2 Non-linear Buckling Analysis

This non-linear analysis was first performed with steel, then with aluminium. The buckling

modes from the linear analysis are used as imperfections in this non-linear analysis. From the

deformation pattern, it can be seen that the top and bottom of the sphere have the largest

resultant displacement in each mode. When all of the modes are combined to form the ini-

tial imperfection, it is expected that the top and bottom of the sphere will have the largest

imperfection. Buckling of the sphere will therefore most likely happen here.
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7.2.1 Steel S235

Table 7.2.1: Displacement and contribution for each mode with
steel S235

Buckling mode nr. Largest resultant displacement [m] Contribution Scale Factor
1 2.02e-2 1
2 2.0e-2 0.1
3 1.14e-2 0.05
4 1.12e-2 0.025
5 1.11e-2 0.0125
6 1.13e-2 0.00625
7 6.09e-3 0.00313
8 5.76e-3 0.00156
9 5.83e-3 0.00078
10 6.13e-3 0.00039

The initial imperfections in the following analyses were buckling mode nr. 1 to 10. The re-

sulting initial imperfection is a linear combination of these modes. By multiplying the largest

resultant displacement with the scale factor in table 7.2.1, the displacement contribution from

each mode is found. The initial imperfection is found by adding the contribution from each

mode.

The analysis was conducted with different size on largest initial imperfection. Table 7.2.2 show

the results from these analyses. It can be seen that the buckling pressure of 1.05 MPa is

approximately the same as was calculated in section 6.3 to 0.97 MPa with no imperfections.

And the non-linear analysis of the half-sphere gave 0.96 MPa in buckling pressure. It can

also be seen that the buckling pressure of 0.43 MPa with largest initial imperfection of 0.0344

m corresponds to the calculated pressure in section 6.3 of 0.35 MPa. And to the analysis of

the half-sphere, which gave a buckling pressure of 0.42 MPa. The results of the full-size spher-

ical tank therefore seems to correspond with the analysis of the half-sphere, and analytic values.

Table 7.2.2: Results from non-linear buckling analysis with steel
S235

SCF Largest Imp. [m] Material Model Load Case Buckling Pressure [MPa]
1e-10 1.75e-11 Elasto-Plastic Ext.Pressure 1.05
0.17 0.0344 Elasto-Plastic Ext. Pressure 0.43
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7.2.2 Aluminium Alloy 5083

Table 7.2.3: Displacement and contribution for each mode with
aluminium

Buckling mode nr. Largest resultant displacement [m] Contribution Scale Factor
1 3.48e-2 1
2 3.45e-2 0.1
3 1.96e-2 0.05
4 1.93e-2 0.025
5 1.91e-2 0.0125
6 1.94e-2 0.00625
7 1.05e-2 0.00313
8 9.91e-3 0.00156
9 1.00e-2 0.00078
10 1.05e-2 0.00039

The buckling modes look the same for aluminium, but the buckling load is different. The largest

resultant displacement in each of the 10 buckling modes are therefore different. This is shown

in table 7.2.3. The scale factor for each of the modes are the same for both steel and aluminium.

The results of the analysis conducted with aluminium instead of steel can be seen in table 7.2.4.

A pressure of 0.7 MPa was applied linearly from zero to one second. The buckling pressure is

found from the force-displacement curve. It can be seen that the non-linear buckling pressure is

significantly lower than the linear buckling pressure of 0.557 MPa. The size of the imperfection

is 5 mm larger compared to the last result for steel in table 7.2.2. Still the buckling pressure

for aluminium is only 37% of the buckling pressure for steel in table 7.2.2. This shows that the

tank has much larger capacity for steel than for aluminium.

Table 7.2.4: Results from non-linear buckling analysis with alu-
minium alloy 5083

SCF Largest Imp. [m] Material Model Load Case Buckling Pressure [MPa]
0.31 0.0393 Elasto-Plastic External Pressure 0.16
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7.3 Additional Loads

Up to this point, only external pressure has been considered as load on the structure. Some

additional loads need to be considered in order to asses the capacity of the structure. The

following loads will be considered in this thesis:

• Gravity, including weight of isolation in the tank.

• Sloshing load.

• External pressure.

• Additional acceleration on the tank due to ship motions.

A gravity load of 9.81 m/s2 should be applied on the structure. In addition to the weight of the

metal, the isolation on the tank should also be considered. This isolation is assumed to have

a weight of 15 kg/m2. The weight of the isolation is included by increasing the density of the

metal. The density of the metal per square meter is found by dividing by the thickness of the

model. The thickness is uniform over the model with a size of 55 mm. A factor can be found

to increase the density of the metal by dividing the density of the metal with isolation, by the

density of the metal per square meter. External pressure should also be applied in addition to

this. Next is a sloshing load that arises when the tank is partly filled with liquid gas. The ship

motions causes the liquid to move around in the tank. This causes a load on the tank due to

sloshing. The sloshing load can be computed based on DNVGL (2016b). The same motions of

the ship that causes sloshing also causes an acceleration of the material in the tank. This also

needs to be applied.

7.3.1 Procedure for Calculating Sloshing Load

The procedure for calculating the sloshing load is found on page 50 in DNVGL (2016b). A

Python script was generated in order to compute the force due to sloshing. This script can be

found in appendix A.1.

Sloshing may occur in the tank when it is partly filled with liquid gas. Because sloshing is

dependent on the movements of the tank, the sloshing load is a dynamic load. The procedure

in DNVGL (2016b) is developed in order to be able analyze this load statically. The result of
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the procedure is an acceleration that is computed, and this acceleration affects the hydrostatic

pressure from a sloped liquid surface. Figure 7.3.1 illustrates the partly filled tank with a sloped

liquid surface.

Figure 7.3.1: Hydrostatic pressure from sloped liquid surface

The hydrostatic pressure due to the sloped liquid surface is calculated by equation 7.3.1. Where

ρ is the density of the liquid, h is the height of the liquid normal to the surface, and aR is the

acceleration of the liquid. This is different from gravity because the movements of the ship

causes movements of the tank, which will accelerate the liquid.

P = ρ · h · aR (7.3.1)

The aim for the procedure in DNVGL (2016b) is to calculate the resulting acceleration aR. This

resulting acceleration should account for the sloshing forces in the tank. The procedure starts

by calculating the accelerations on a reference ship. Then the specifications on the desired ship

is introduced, such as speed, width and GM, in addition to information on the tank. Four types

of filling conditions are evaluated. These are full, h/D of 0.65, 50% filled and h/D of 0.29. Here

D is diameter and h is the distance from the bottom to the liquid surface. The volume of the

liquid is calculated for each case. A rolling angle and amplitude is calculated, these are used to
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calculate a tangential force. The formulas for this is found in DNVGL (2009). The transverse

acceleration ay is calculated based on ship specifications and filling condition. Then the force

on the tank in the reference ship is calculated, and this is used to calculate the forces on the

desired tank. The forces on the tank is used to define a transverse acceleration a∗y that includes

sloshing effects. A heel angle of the surface is chosen, and this is used to calculate the final

acceleration aR.

Figure 7.3.2 illustrates how aR is computed based on the transverse acceleration a∗y and the

vertical acceleration az. Where az is the vertical acceleration of the ship. The acceleration

components a∗y and az defines an ellipse. The length of the resulting acceleration aR is found by

the second point where the vector crosses the ellipse. The length of aR needs to be computed

by inserting the equation for a straight line into the equation of the ellipse defined by the

accelerations. The length of the vertical component of aR can then be found, and the total

resulting acceleration can be found by using the heel angle of the liquid surface named β.

Figure 7.3.2: Calculation of resulting acceleration

The angle β is taken to be the angle from the horizontal surface to the sloped surface measured

from the horizontal axis. The acceleration aR was calculated for a filling level of h/D = 0.29

and an angle of 20 degrees. It was found to be 13.4 m/s2.

According to DNVGL (2016b), an iteration procedure should be conducted in order to find the

slope and acceleration of the liquid that causes the worst stresses in the shell. The iteration is
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not used in this report, a slope is chosen and used in the analyses. The object of calculating

this load was to give an indication of the loads on the tank to compare with results from Dyna.

7.3.2 Linear Buckling Analysis

The additional loads need to be applied by keywords in LS-PrePost. One individual load curve

is made for each load, except for the sloshing load. To make the modelling of the loads easier,

the geometric model is rotated the same angle as the sloped liquid surface should be rotated.

In this way, the geometry is rotated, but the coordinate system stays the same. The acceler-

ation on the material can then be applied by ”Load Body X” in connection with the correct

load curve. The external pressure is applied by ”Load Segment Set” and the corresponding

load curve. The sloped liquid surface is applied by first defining a function. This function is

programmed to apply a hydrostatic pressure below a specified value in the vertical direction.

The function is then applied to the whole model by ”Load Segement Set”. The function can

be found in appendix B.1.

The linear buckling analysis in this section includes all the loads explained in section 7.3. The

analysis calculates an eigenvalue. All of the loads applied is scaled by this eigenvalue in order to

find the critical value for each load. Linear elastic aluminium is used with an increased density

because of the weight of isolation on the tank. The density of the aluminium is now taken to

be 2923 kg/m3. The rest of the material properties can be found in table 7.0.1.

An external pressure is applied, so is the acceleration of the tank due to ship movements. The

resulting acceleration on the tank includes gravity in the vertical component. The acceleration

is therefore applied in one command. This acceleration is applied to the material of the tank

and is only caused by ship movements. It does not include sloshing effects. The acceleration

components included in this is az, ay and g. All of the components are constants because

they are only dependent on the specifications of the ship. Pythagoras is then used to find

the resulting acceleration on the material. Typical values for ay and az are given from Moss

Maritime to be approximately 0.5g and 0.45g respectively. This gives a resulting acceleration

on the material of 15.05 m/s2. The acceleration on the material is applied normal to the liquid

surface, in the same direction as the hydrostatic pressure.
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The hydrostatic pressure because of the sloped liquid surface is applied separately. This is the

approximation for the sloshing force on the tank. The sloped liquid surface is applied with a

constant angle of 20 degrees. The tank was considered to be filled so that the h/D-ratio (height

of liquid/diameter) was equal to 0.29. The liquid is taken to be water with a density of 1000

kg/m3. The surface of the liquid is assumed to have constant heel angle, but the surface would

have an increasing heel angle for an increasing acceleration in real life. To increase the acceler-

ation on the liquid without increasing the heel angle of the liquid surface is an approximation

in this analysis. To summarize, the following loads have been applied:

• Weight of isolation and tank by increasing density of the material to 2923 kg/m3.

• Sloshing load by applying a hydrostatic pressure due to a sloped liquid surface. The liquid

is taken to be water with a density of 1000 kg/m3 and an acceleration of 30 m/s2.

• External pressure of 0.1 MPa.

• Additional acceleration on the material of 15.05 m/s2 due to ship movements.

Performing an eigenvalue analysis of the hydrostatic pressure force alone would be the best

way to perform this analysis, but this approach produced negative eigenvalues. Which indi-

cates that the hydrostatic pressure moves in the opposite direction. This does not happen in

real life. When applying the uniform external pressure in addition to the hydrostatic pressure,

a more reasonable buckling mode was generated by the linear analysis. That is why all of the

loads are applied in this linear analysis. It is emphasized that all of the loads are considered

to contribute to failure of the tank. If an eigenvalue analysis was possible for the hydrostatic

pressure force alone, the results would most likely have been higher for this load. Because it

would be the only load contributing to failure of the structure. Figure 7.3.3 shows the buckling

mode for the linear analysis with all of the loads applied, but an external pressure of 0.05 MPa

instead of 0.1 MPa. This was considered to not be a realistic buckling mode for this load case.

The same buckling mode was generated if only hydrostatic pressure was considered. It was

therefore concluded that the linear analysis should be performed with all of the loads applied,

and an external pressure of 0.1 MPa or higher.
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Figure 7.3.3: Resultant displacement on bucking mode nr. 1 from
linear analysis with all loads applied, external pressure of 0.05
MPa, bottom-view

Table 7.3.1 lists the linear critical values for all the loads from the analysis. The combination

of these loads is the loading condition that makes the structure fail. This does not mean that

it does not exists other combinations. But to investigate this, each combination would have

to be analyzed. The combination used in this analysis contained the lowest uniform external

pressure that produced reasonable buckling modes. If the external uniform pressure was set

lower, then the eigenmode in figure 7.3.3 was produced. The eigenvalue from this analysis was

found to be approximately 2.

Table 7.3.1: Results from linear buckling analysis with several
loads

Critical Pressure Critical Acceleration on fluid Critical Acceleration on material
0.20 MPa 60.8 m/s2 30.51 m/s2

Buckling mode 1 and 10 can be seen in figure 7.3.4. All the modes looked like a version of

these. It can be seen that the structure buckles around the area of the liquid surface.
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(a) Buckling mode nr. 1
(b) Buckling mode nr. 10

Figure 7.3.4: Resultant displacement on buckling modes for all
loads combined, bottom view.

7.3.3 Non-linear Buckling Analysis

This analysis was performed with elasto-plastic aluminium as material. The density included

the weight of the isolation as in the linear analysis. The density was taken to be 2923 kg/m3.

Table 7.3.2: Displacement and contribution from each buckling
mode with all the loads combined

Buckling mode nr. Largest resultant displacement [m] Contribution Scale Factor
1 1.05e-2 1
2 1.05e-2 0.1
3 1.051e-2 0.05
4 1.055e-2 0.025
5 7.73e-3 0.0125
6 7.70e-3 0.00625
7 8.76e-3 0.00313
8 8.77e-3 0.00156
9 9.78e-3 0.00078
10 1.02e-2 0.00039

A combination of the ten buckling modes from the linear analysis was used as imperfections

in this non-linear analysis. Table 7.3.2 lists the modes, the largest displacement in each mode,
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and the scaling factor for contribution on the initial imperfection.

To determine the size of the largest initial imperfection in the model, DNVGL (2016b) was

used to calculate the tolerance for the imperfection. Equation 7.3.2 shows how this is calcu-

lated, where g is given in equation 7.3.3. These equations give a conservative estimate for the

imperfection which becomes 0.036m. The highest imperfections used in this analysis was 0.04,

which can be seen to be a conservative value, 11% higher than 0.036 m. A new calculation of

the imperfection was made because the loading condition was changed from section 6.3 where

the calculation was last performed.

δ =
0.01g

1 + g/R
(7.3.2)

g = 4
√
Rt (7.3.3)

The non-linear analysis was also performed with all the loads applied on the model. But in

this procedure, only one load was increased until failure. Therefore all the other loads were

increased up to a certain value, then the non-linear analysis was started when the final load

was initiated. This makes the linear and the non-linear analysis not fully comparable. Because

the linear analysis scale all of the loads until failure, but the non-linear analysis only increases

the final load to failure, while the others have a constant value. Figure 7.3.5 shows how the

load-time relation is for the loads applied in the non-linear analysis.

The force-displacement curves are plotted in the non-linear analyses in this thesis to determine

the buckling level. Appendix A.5 shows how the force-displacement relation can be plotted. The

size of the largest initial imperfection was also important to know. A file named ”pert node res”

is generated by Dyna each time an analysis is conducted. Appendix A.6 shows how the largest

initial imperfection can be extracted from this file. Both are scripts written in Python.
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Figure 7.3.5: Explanation of application of loads in non-linear
analysis

Table 7.3.3 shows the results for the non-linear analyses that were conducted. According to

DNVGL (2016b), the tank should be checked against buckling for an external pressure of 0.005

MPa. A pressure of 0.05 MPa is therefore 10 times the size that the rules requires. Different

pressures were used to investigate the influence on the critical acceleration, and to compare

with the linear analysis. The linear analysis had a critical pressure of 1.94 MPa, and critical

acceleration on fluid of 60.8 m/s2. It can be seen when the largest initial imperfection is 1.13e-

12 m, which is approximately zero, the critical acceleration becomes 54 m/s2 for an external

pressure of 0.05 MPa. This approaches the linear critical value of 60.8 m/s2. When the pressure

is increased to 0.1 MPa, the critical acceleration can be seen to have the same value of 54 m/s2.

And when the pressure is increased to 0.2 MPa, the critical acceleration decreases to 53 m/s2.

All of these are still not very far from the linear value of 60.8 m/s2. The external pressure can

be seen to not have a very high influence on the critical acceleration if it is increased from 0.1

to 0.2 MPa. It is important to keep the external pressure below the buckling value for external

pressure. If it approaches the buckling value, the structure might buckle because of external

pressure instead. From the analysis of only external pressure, the non-linear buckling load was

found to be 0.16 MPa for a largest imperfection of 0.039 m, while the linear buckling load was
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0.56. If the external pressure is increased to more than 0.2 MPa, the structure may begin to

buckle because of the external pressure. The aim of including all the loads was to determine the

critical acceleration for the sloshing load. It was therefore decided not to increase the pressure

further.

Table 7.3.3: Results from non-linear analysis with all loads com-
bined

External Pressure Accel. on material Largest Iinitial Imp. Critical Acceleration
0.0075 MPa 18.06 m/s2 0.04 m 36 m/s2

0.05 MPa 15.05 m/s2 0.04 m 26 m/s2

0.05 MPa 15.05 m/s2 0.005 m 44 m/s2

0.05 MPa 15.05 m/s2 1.13e-12 m 54 m/s2

0.1 MPa 15.05 m/s2 1.13e-12 m 54 m/s2

0.2 MPa 15.05 m/s2 1.13e-12 m 53 m/s2

It can be seen that when the imperfections are increased, for a pressure of 0.05 MPa, the critical

acceleration is lowered to 44 m/s2, then to 26 and m/s2. This seems plausible because larger

imperfections will lower the capacity of the structure.

One analysis was performed with an external pressure of 0.0075 MPa, an acceleration on the

material of 18.06 m/s2, and with largest initial imperfection of 0.04 m. These values were

used in order to compare the result with DNVGL (1997). A load factor of 1.5 is applied to

the external pressure of 0.005 MPa, and a factor of 1.2 is applied to the acceleration on the

material of 15.05 m/s2. The critical acceleration then became 36 m/s2. The buckling shape

can be seen in figure 7.3.6. The orange line in figure 7.3.6a indicates the approximate position

of the liquid surface. All of the buckling modes from the analyses in table 7.3.3 buckles around

the surface of the liquid like in figure 7.3.6a. The post-buckling shape is mostly characterized

by a dent either on one, or both sides of the tank. Figure 7.3.7 shows the post-buckling shape

for the first analysis in table 7.3.3. The view is from the side as in figure 7.3.6. The same dent

appears symmetrically on the other side of the tank. It can be seen that the deformation of

the tank is clearly affected by the buckling modes from the linear analysis.
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(a) Deformation scale factor of 10 (b) Deformation scale factor of 70

Figure 7.3.6: Resultant displacement at buckling with ext. pres.
of 0.0075 MPa, initial imperfection of 0.04 m.

Figure 7.3.7: Post-buckling shape with external pressure of 0.0075
MPa, initial imperfection of 0.04 m

7.3.4 Extraction of Stresses in Spherical Coordinates

LS-Prepost was used in the post-processing phase to extract the stresses from the analysis.

By ”general setting”, a new coordinate system could be defined in the center of the sphere.

The z-axis would then be in vertical direction. By clicking ”sph” and ”apply”, and choosing

”user” instead of ”d3plot” in ”fringe component”, the stresses were transformed from x-, y-
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and z-direction to r-, θ- and φ-direction. Figure 7.3.8 shows the stresses in θ- and φ-direction

for the spherical tank exposed to only external pressure.

(a) Stress in φ-direction (b) Stress in θ-direction

Figure 7.3.8: Stress in θ- and φ-direction when exposed to external
pressure only

The largest compression in both directions (blue area) were compared to analytic stress in equa-

tion 7.3.4. The analytic stress could be seen to be 11.97 MPa for applied pressure of 0.0613

MPa. The largest compressive stress in φ-direction was 11.97 MPa, while the largest compres-

sive stress in θ-direction was 12.27 MPa. This confirmed that the stresses were successfully

transformed to spherical coordinates.

σ =
PR

2t
=

0.0613 · 21.5

2 · 0.055
= 11.97 MPa (7.3.4)

It should also be determined which direction is circumferential, and which is meridional. This

was determined by looking at the plots of the stresses in φ- and θ-direction of the sphere when

it was exposed to all the loads. The documentation on LS-Prepost was not found on this topic,

physical considerations were therefore used. The stress components can be seen in figure 7.3.9.

Pure compression was expected in the circumferential direction in the area of the waves in the

structure. This was because the bottom of the tank was stretched in vertical direction because of

the hydrostatic pressure. Because of transverse contraction, the tank will contract in the area of

buckling, which causes compressive stresses in the area of buckling in circumferential direction.

This can be seen for the θ-direction, and not for φ-direction. It was therefore concluded that
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circumferential direction corresponds to θ-direction in LS-Prepost, and φ-direction corresponds

to meridional direction. This implies that φ is measured from the z-axis, and θ is measued in

the x-y-plane in the local cartesian coordinate system. This was also confirmed by Dynamore

Nordic. The emails regarding the communication on this topic can be found in appendix C.2.

(a) Stress in φ-direction (b) Stress in θ-direction

Figure 7.3.9: Stress in θ- and φ-direction when exposed to all loads

It can be seen in figure 7.3.8 that the stresses occurs in different zones in the tank. The

resemblance is staring compared to the zones in figure 1.5.2. The blue area in the figure can

be seen to contain the largest compressive stresses. And the stresses decrease towards the top

and bottom of the sphere. The blue area in the figure has approximately the same position as

zone 4U/4L and zone 5/3. While the green area has the approximate position of zone 6 and 2,

and the red and yellow area has the approximate position of zone 7 and 1. This image of the

stresses therefore gives an explanation for why the tank is divided into zones as in figure 1.5.2.

7.3.5 Evaluation of Results

All of the results from Dyna for the critical acceleration on the fluid is significantly higher than

the calculated value for aR of 13.4 m/s2. This is the size of the sloshing load according to

DNVGL (2016b) that should be used in calculations. It may not be the highest value. Because

the procedure in DNVGL (2016b) is an iterative process. But it gives an indication of the ex-

pected tolerance level that should be checked. The analyses therefore show that the structure
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survives higher sloshing loads than the recommended value from DNVGL (2016b).

The result of 36 m/s2 as critical acceleration is found from the force-displacement curve from

the analysis. This can be seen in figure 7.3.10. The stresses were extracted at buckling when

the acceleration was 36 m/s2. This would be point 1 in the figure. These stresses were used to

do a buckling check according to DNVGL (1997). The stresses extracted were in the meridional

(σ20) and in the circumferential (σ10) direction. The stress in Dyna corresponding to σ10 was the

stress in θ-direction, and the stress corresponding to σ20 in Dyna was the stress in φ-direction.

The stresses were also extracted at point 2 and 3 in the figure. The check was performed

at all three points. The procedure was programmed in a python script that can be found in

appendix A.2. A summary of the approach is also provided in section 3.4.2 of this report. A

more detailed explanation will be given here.

Figure 7.3.10: Force displacement curve for first analysis in table
7.3.3

The buckling check according to DNVGL (1997) starts by calculating the elastic buckling stress

according to equation 7.3.5. Then this is normalized with equation 7.3.6.

σCL =
E√

3(1− ν2)
t

R
(7.3.5)
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ΛCL =
σCL
σ10

(7.3.6)

Then the knock-down factor ρ is found by iteration in equation 7.3.7. Where b, δ and γp is

found by equation 7.3.8, 7.3.9 and 7.3.10 respectively. The parameters δ1 and δ2 are different

sizes of imperfection tolerances.

ρ = 1−

(
3
√

3

2
γp
√
−bδ

t
ρ

)2/3

(7.3.7)

b = −0.5e1.15(σ20/σ10) (7.3.8)

δ = δ1 + (δ2 − δ1)e2.5[(σ20/σ10)−1] (7.3.9)

γp = 1/

(
1− 0.375

√
δ

t

√
−b

)
(7.3.10)

Depending on the ratio σ20/σ10, δ1 has two different definitions. These are shown in equation

7.3.12. If the stress ratio σ20/σ10 was found to be less than -1, it was assumed that the last

definition of g in equation 7.3.12 could be used. Although it says that it is valid for the stress

ratio between -1 and 0. The parameter δ2 is defined in quation 7.3.11 for aluminium tanks.

δ2 =
R

750
(7.3.11)

78



δ1 =
0.01g

1 + g
R

,

g = 4
√
Rt,

σ20
σ10

> 0

g = (4 + 2
σ20
σ10

)
√
Rt, −1 <

σ20
σ10

< 0

(7.3.12)

The reduced slenderness is found by equation 7.3.13. Where σy is yield stress, FE and σe0 is

defined in equation 7.3.14 and 7.3.15 respectively.

λE =

√
FE

σy
σe0

(7.3.13)

FE =
1

ρΛCL

(7.3.14)

σe0 =
√
σ2
10 + σ2

20 − σ20σ10 (7.3.15)

The criterion to be satisfied is that g defined by equation 7.3.17 should be larger than zero.

Where the size of κ depends on the reduced slenderness, while γm is 1.15. The definition of κ

can be seen in equation 7.3.16.

κ = 1.0,

√
σy

σe0ΛCL

< 0.2,

κ = 0.925 + 0.375

√
σy

σe0ΛCL

, 0.2 <

√
σy

σe0ΛCL

< 1.0

κ = 1.3,

√
σy

σe0ΛCL

> 1.0

(7.3.16)
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g = ΛCR − γsum =
1√

1 + λ4E

σF
σe0
− κγm > 0 (7.3.17)

Table 7.3.4 summarises the results of the buckling check for the three different points in figure

7.3.10. It can be seen that point 1 does not satisfy the requirements from DNVGL (1997) that

g should be higher than 0. Point 2 does not satisfy the requirement either, but point 3 satisfies

the requirements. From this it can be seen that the structure has some post-critical capacity

compared to DNVGL (1997). It therefore seems that the rules from DNV are very conservative.

The critical acceleration at buckling according to DNVGL (1997) would be between point 2

and 3. An interpolation can be done between the acceleration of 27 m/s2 (point 2) and 17 m/s2

(point 3) with the corresponding value for g. This interpolation gives a critical acceleration of

18.3 m/s2. According to figure 7.3.10, the structure can be seen clearly to buckle at 36 m/s2. If

point 1 is taken as reference for when the structure buckles, the structure has only used 50.8%

of the capacity at the tolerance limit from DNVGL (1997).

Table 7.3.4: Evaluation of results from non-linear analysis with
several loads

Point in figure 7.3.10 Acceleration σ10 σ20 g
1 36 m/s2 5.0e7 Pa 3.0e7 Pa -0.91
2 27 m/s2 3.0e7 Pa 1.34e7 Pa -0.405
3 17 m/s2 2.0e7 Pa 8.3e6 Pa 0.06

Plot of the circumferential and meridional stress components can be seen in figure 7.3.11. Blue

is negative compression, while red is positive tension. The orange circle indicates where the

stresses were extracted. This is the point in the structure that has largest resultant displace-

ment. The stresses are therefore extracted at this point. Both stresses are in compression as

can be seen from the figure.
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(a) Circumferential stress (b) Meridional stress

Figure 7.3.11: Normal stress components in the shell when ex-
posed to all loads

The supporting skirt of the tank has the same thickness as the rest of the structure of 55 mm.

This is assumed to be a structure with a quite high buckling capacity. A simple check can be

performed on the skirt in order to see if this assumption holds. The elastic buckling strength

of a cylinder according to DNVGL (2017) is given in equation 7.3.18, where L is the length of

the cylinder. The cylinder is in this case 2 meters long. The procedure was written in Python

and can be found in appendix A.4.

σE = C
π2E

12(1− ν2)

( t
L

)2
(7.3.18)

C = 2

√
1 +

(0.6 · 1.04
√
Z

2

)2
(7.3.19)

Z =
L2

Rt

√
1− ν2 (7.3.20)

The capacity of a cylinder exposed to hydrostatic pressure was considered. The elastic buckling

stress of the cylinder then becomes 112 MPa. The Von Mises stress in the skirt was maximum
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59 MPa. It can therefore be seen that the skirt is far away from buckling. Figure 7.3.12 shows

the deformation of the skirt with a scale factor of 70. This is also from the analysis with an

external pressure of 0.0075 MPa and the largest imperfection of 0.04 m.

Figure 7.3.12: Von Mises Stress on skirt with deformation scale
factor of 70, all loads applied on spherical tank
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Chapter 8

Buckling Analysis of Non-spherical LNG

Tank

Figure 8.0.1: Model of the non-spherical tank
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The spherical tank has been the focus of this thesis to this point. The objective of this thesis

was to analyse a non-spherical LNG tank, and compare this with the spherical version and

analytic expressions. The non-spherical tank can be seen in figure 8.0.1. The end caps are

half-spheres with radius of 21.5 m, and the middle section (red area) is a cylinder with length

of 7 m. This tank is also supported by a skirt, which is marked with blue, yellow and green.

The thickness of the different parts of the model is 55 mm for the spherical end caps in addition

to the skirt. But the cylindrical middle section has a thickness of 110 mm. The thickness is

applied outside the tank, so the inside should be a smooth surface. The skirt supporting the

spherical tank had an offset from the sphere, but because of difficulties with meshing, this

was not possible for the non-spherical model. Therefore the offset is neglected in the model

of the non-spherical tank. The number of elements generated on the model was 41 700. Each

element therefore has a length of 0.5 m. This is the same mesh size as was used for the sphere.

Aluminium was proceeded with as material, and the boundary conditions were applied on the

bottom of the supporting skirt. All nodes here were fixed against all six degrees of freedom.

Figure 8.0.2 shows the model with boundary conditions as white crosses.

Figure 8.0.2: Model of non-spherical tank with boundary condi-
tions

The thickness of the cylindrical middle section is set to be twice as large as the spherical thick-

ness. The reason for this is the difference in stresses in the cylinder and the sphere. This is

explained in section 1.6. Two different analyses will be conducted in this section. One type

where the sphere is only exposed to external pressure, and no other loads. The other analysis

will be performed with the loading conditions described in section 7.3. These loads were:
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• Gravity, including weight of isolation in the tank.

• Sloshing load.

• External pressure.

• Additional acceleration on the material due to ship motions.

8.1 External Pressure

The non-spherical tank was in this analysis exposed to uniform external pressure. The pressure

was applied linearly from zero up to a specified value during one second. The material properties

for aluminium in this analysis are the same as in table 7.0.1, which is found in the beginning of

chapter 7. Elastic aluminium was used in linear analysis, and elasto-plastic aluminium was used

in non-linear analysis. The analysis procedure in Dyna is the same as for the spherical LNG

tank exposed to uniform external pressure in section 7.1 for the linear analysis, and section 7.2

for the non-linear analysis.

8.1.1 Linear Buckling Analysis

(a) Buckling mode nr. 1 (b) Buckling mode nr. 2

Figure 8.1.1: Buckling modes with deformation scaling factor of
200
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Figure 8.1.2: Buckling mode nr. 3 with deformation scaling factor
of 200

A uniform external pressure of 0.2 MPa was applied linearly from 0 to 1 second, and the linear

buckling analysis was performed. Buckling mode nr. 1, 2 and 3 can be seen in figure 8.1.1

and 8.1.2. The deformation pattern is scaled by a factor of 200 to illustrate the buckling shape

more clearly. It can be seen that the cylindrical part buckles in this analysis. All of the ten

lowest buckling modes looked like a version of these three modes, or a combination of them.

The article from Jasion et al. (2015) confirms that this is a likely buckling shape for a sphere

that is stretched, and approaching a cylinder under external pressure. A simple calculation can

also be done with respect to elastic buckling pressure. By using equation 7.3.18, 7.3.19 and

7.3.20 with a length of 7 m, thickness of 110 mm and radius of 21.5 m, the elastic buckling stress

can be found. The elastic buckling pressure can be found by equation 1.6.2. The linear critical

pressure then becomes 0.277 MPa for the cylindrical section. The lowest buckling pressure from

Dyna was 0.287 MPa. The result is summarised in table 8.1.1. From section 7.1, it was found

that the elastic buckling pressure for a spherical LNG tank in aluminium was 0.56 MPa accord-

ing to Dyna. It can be seen that the cylinder has a lower buckling pressure than the sphere, this

substantiates the buckling shape from Dyna that the cylindrical section buckles. It can also be

seen that the buckling pressure for the non-spherical tank is very similar to the elastic buckling

pressure for a cylinder under hydrostatic pressure. The value from Dyna can be seen to be 0.01

MPa higher. A higher value than the analytic one can possibly be explained by the spherical

end caps. They seem to stiffen the cylindrical middle section slightly and give a higher capacity.
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Table 8.1.1: Results from linear analysis of non-spherical tank
exposed to external pressure

Approach Thickness of cyl. sect. Linear buckling pressure
Dyna 0.110 m 0.287 MPa

Analytic (cylinder) 0.110 m 0.277 MPa

The thickness of the structure can be seen to be crucial for the elastic buckling pressure. If the

thickness is increased to 150 mm from 110 mm, the elastic buckling pressure becomes 0.64 MPa.

Then it is larger than the buckling pressure for the spherical end caps. The length also affects

the linear critical value. If the length was reduced from 7 to 4 m for instance, the buckling

pressure would become 0.63 MPa, and again be higher than the value for the sphere. Some

additional analyses were performed to investigate the effect of changing thickness.

The linear analysis was conducted with a thickness of 0.15 m on the cylindrical section. Figure

8.1.3 shows buckling mode nr. 1 and 10 from this analysis. It can be seen that mode nr. 1

buckles in the cylindrical section. But there are some indications that the load is approaching

the limit for the spherical part at the top of the tank. The analytic buckling pressure for the

cylindrical section is 0.64 MPa with a thickness of 0.15 m. This exceeds the buckling pressure

of the sphere of 0.56 MPa. Nevertheless the cylindrical section buckles with a buckling load of

0.53 MPa. This is between the analytic buckling load for the sphere and cylinder. Mode nr.

10 can be seen to buckle in the spherical section. The buckling load is then increased to 0.56

MPa, which is the value for the elastic buckling pressure of the spherical section.

(a) Buckling mode nr. 1 (b) Buckling mode nr. 10

Figure 8.1.3: Buckling modes for non-spherical tank with thick-
ness of 0.15 m on cylindrical section
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The analysis was also conducted with a thickness of 0.250 m on the cylindrical section. The

analytic elastic buckling pressure is then increased to 2.59 MPa, which is significantly larger

than 0.56 MPa for the spherical part. From figure 8.1.4 that shows buckling mode nr. 1 and 10,

it can clearly be seen that the spherical section buckles. The results are summarised in table

8.1.2. From these examples it seems that the elastic buckling pressure can be used to identify

the weakest part of the non-spherical tank.

Table 8.1.2: Results from linear analysis of non-spherical tank un-
der external pressure with different thickness on cylindrical section

Approach Thickness of cyl. sect. Linear buckling pressure
Dyna 0.150 m 0.53 MPa
Dyna 0.250 m 0.56 MPa

Analytic (cylinder) 0.150 m 0.64 MPa
Analytic (cylinder) 0.250 m 2.59 MPa

(a) Buckling mode nr. 1 (b) Buckling mode nr. 10

Figure 8.1.4: Buckling modes for non-spherical tank with thick-
ness of 0.25 m on cylindrical section

8.1.2 Non-linear Buckling Analysis

As a continuation of the linear buckling analysis, a non-linear analysis was performed. An

external pressure of 0.3 MPa was applied linearly from 0 to 1 second. The buckling shape can

be seen in figure 8.1.5. The figure shows the bottom of the tank, where it can be seen that a

dent is beginning to characterize the post-buckling shape in the middle. The shape is plotted

for the last step in the analysis.
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Figure 8.1.5: Resultant displacement after buckling for non-
spherical tank

The force-displacement relationship was plotted in the area of this dent. Figure 8.1.6 shows

this relation. The buckling pressure was from this figure chosen to be 0.14 MPa. Around this

value the curve starts to flatten out. It could also be possible to define the buckling pressure

as the top of the curve with 0.15 MPa, or at for instance 0.12 MPa. But 0.14 is chosen in this

case.

Figure 8.1.6: Force-displacement relation for non-linear buckling
of non-spherical tank
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Table 8.1.3 summarises the results from this analysis. The linear analysis gave a buckling pres-

sure of 0.287 MPa. The results from the non-linear analysis can be seen to be approximately

50% of the linear buckling pressure with an imperfection of 40 mm at maximum. Previous

analyses have shown that the critical value can drop more than 50% from linear to non-linear

analysis. This was shown for the half-sphere in chapter 5 and 6. And it was verified to be

likely in section 6.3 by calculations. A decrease in capacity by 50% does therefore not seem

unlikely. The decrease in capacity is mainly caused by the imperfections as shown previously.

The capacity will increase if the imperfections were decreased, and opposite.

Table 8.1.3: Results from non-linear analysis of non-spherical tank

Largest initial imperfection [m] Material Model Load Case Buckling Pressure [MPa]
0.04 Elasto-Plastic External Pressure 0.14

8.2 All Loads Applied

All of the loads are applied in this analysis. This includes the sloshing load, gravity, external

pressure and acceleration on material. The same density of 2923 kg/m2 is assumed for the

non-spherical tank. This is the density of aluminium including isolation. A linear analysis is

performed first, then a non-linear analysis.

8.2.1 Linear Buckling Analysis

All of the loads could be applied in the same way for the non-spherical tank, as for the spheri-

cal tank. But the sloshing load needed some modifications. The static sloped liquid surface is

applied by rotating the model, and keeping the coordinate system fixed. By specifying a value

for the axis in vertical direction, the sloped liquid surface can be defined. The model is rotated

the same angle as the desired angle for the liquid surface. The distance from the origin of the

coordinate system in the model to the sloped liquid surface therefore needs to be calculated.

This is different from the distance in the sphere. The tank is filled so that h/d = 0.29 for the

horizontal liquid surface. Where h is the largest height of the liquid, and d is the diameter of

43 m.
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When the model is rotated, the volume under the liquid surface should be the same as before

it was rotated. Therefore the volume needs to be calculated for the sloped surface, and for a

horizontal liquid surface. The horizontal liquid surface is illustrated by the yellow line in figure

8.2.1a, while the sloped surface is illustrated by the yellow line in figure 8.2.1b. To calculate

the volume below both liquid surfaces, the middle cross-section of the model was plotted in

Geogebra by analytic expressions. Geogebra is able to integrate between functions, which was

used to determine the area between the functions in two dimensions. This was used since the

model is symmetric around the center cross-section. When the liquid surface denoted by the

yellow line was rotated 20 degrees around the center of the model, the area below the line was

0.94% larger than for the horizontal surface. This was accepted to determine the distance from

the coordinate system origin to the sloped liquid surface. This distance was determined to be

7.83 m. The coordinate system of the model is shown in figure 8.2.1b by the yellow arrows

(”CS in model”). The distance calculated by Geogebra is shown by the blue line (”Desired

distance”).

(a) Not rotated (b) Rotated

Figure 8.2.1: Rotated model and not

Buckling mode nr. 1, 2, 7, 8 and 10 can be seen in figure 8.2.2, 8.2.3 and 8.2.4. Similarities can

be seen to when the sphere was exposed to all the loads in section 7.3.2. The sphere could be

seen to buckle in the area around the liquid surface. This can also be seen to happen for the

non-spherical shape. The lowest buckling modes have a smaller area of generated waves, while

the waves propagate in the higher modes. This was seen also for the sphere.
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(a) Buckling mode nr. 1 (b) Buckling mode nr. 2

Figure 8.2.2: Buckling modes from linear analysis of non-spherical
tank with several loads, bottom view

(a) Buckling mode nr. 7 (b) Buckling mode nr. 8

Figure 8.2.3: Buckling modes from linear analysis of non-spherical
tank with several loads, bottom view
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Figure 8.2.4: Buckling mode nr. 10 from linear analysis of non-
spherical tank with several loads, bottom view

The results are summarised in table 8.2.1. The spherical tank had a linear critical external

pressure of 0.2 MPa, a critical acceleration on material of 30.51 m/s2, and a critical accelera-

tion on fluid of 60.8 m/s2. It can be seen that both accelerations are lower for the non-spherical

tank, than for the spherical tank. The critical pressure is 0.02 MPa higher for the non-sphere

than for the sphere. But it is still below the linear buckling pressure of 0.287 MPa for the

non-sphere when it is exposed to external pressure. From previous analyses performed in this

thesis, it has been seen that the external pressure does not seem to be decisive for the buckling

of the structure when the sloshing load is applied. The pressure could be increased, without

affecting the critical value for the sloshing load in a considerable amount. This may explain

why the critical value for the external pressure is 0.02 MPa higher for the non-sphere than for

the sphere. Simply that it does not matter very much for the final buckling. The hydrostatic

pressure seems to govern the buckling of the structure.

An external pressure of 0.15 MPa was applied, an acceleration on the material of 15 m/s2, and

an acceleration on the fluid of 30 m/s2. It was tried with an external pressure of 0.1 MPa as

was used for the sphere. But this produced negative eigenvalues. A pressure of 0.15 MPa was

the lowest external pressure that did not produce negative eigenvalues. See section 7.3.2 for

explanation on why negative eigenvalues are not wanted.
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Table 8.2.1: Results from linear anlysis of non-spherical tank with
all loads applied

Critical External Pressure Critical acceleration on material Critical acceleration on fluid
0.22 MPa 22.38 m/s2 44.61 m/s2

8.2.2 Non-linear Buckling Analysis

The non-linear analysis was performed with the ten buckling modes as initial imperfections. Ta-

ble 8.2.2 lists the modes along with the contribution factor. From the linear buckling analysis, it

could be seen that the buckling modes formed couples with approximately equal buckling load.

That is why couples of buckling modes have the same scaling factor. When the buckling load

is approximately the same, they are assumed to have equal influence on the non-linear buckling.

Table 8.2.2: Displacement and contribution from each buckling
mode with all the loads combined for non-spherical tank

Buckling mode nr. Largest resultant displacement [m] Contribution Scale Factor
1 2.32e-2 1
2 2.31e-2 1
3 2.31e-2 0.1
4 2.33e-2 0.1
5 1.99e-2 0.05
6 1.99e-2 0.05
7 2.25e-2 0.025
8 2.25e-2 0.025
9 1.75e-2 0.0125
10 1.75e-2 0.0125

The deformed shape at buckling for the non-sphere can be seen in figure 8.2.5. The orange

line in figure 8.2.5a indicates the approximate position of the sloped liquid surface. When

the deformation scaling factor is increased as in figure 8.2.5b, it becomes more clear that the

liquid surface stretches the tank because of the hydrostatic pressure. The non-spherical tank

can be seen to buckle in the same manner as the spherical tank. The wave pattern originates

around the liquid surface were the height of the liquid seems to be approaching maximum. The

buckling shape of the spherical tank can be seen in figure 7.3.6. The non-spherical tank can be

seen to buckle in the spherical end caps. The cylindrical part seems to withstand wave pattern

from developing. But the resultant displacement is still significant in the cylindrical part. The
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large thickness of the cylindrical section may be the reason for the wave pattern not continuing.

Although the wave pattern does not continue in the cylindrical section, figure 8.2.6 shows that

this section seems to have only slightly lower deformations than in the spherical section.

(a) Deformation scaling factor of 1 with liquid sur-
face indicated by orange line

(b) Deformation scaling factor of 100

Figure 8.2.5: Deformed shape at buckling for the non-spherical
tank, first analysis in table 8.2.3

Figure 8.2.6: Deformation of non-spherical tank before buckling
with scaling factor of 200, first analysis in table 8.2.3

The acceleration was plotted versus the displacement in the model to identify at which point

the structure buckles. From figure 8.2.7a it can be seen that the structure buckles at an
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acceleration of 20 m/s2 for the first analysis in table 8.2.3. The acceleration is increased

further to approximately 28 m/s2 before it decreases rapidly to zero. This indicates that the

structure has some post-critical capacity as mentioned for the spherical tank. Figure 8.2.7b

shows the force-displacement relationship for the second analysis in table 8.2.3.

(a) First analysis in table 8.2.3 (b) Second analysis in table 8.2.3

Figure 8.2.7: Force-displacement relation for non-spherical tank
with all loads applied

The first analysis in table 8.2.3 can be compared with the critical acceleration on the spherical

tank of 26 m/s2. This critical acceleration for the sphere had the same initial imperfection,

external pressure and acceleration on material. It can be seen that the sphere has 6 m/s2 higher

capacity than the non-spherical tank.

The second analysis in table 8.2.3 can be compared with the critical acceleration on the spheri-

cal tank of 36 m/s2. The critical acceleration can be seen to be 12 m/s2 lower for non-spherical

tank in this analysis. The buckling shape looks the same as in figure 8.2.5.

Table 8.2.3: Results from non-linear analysis of non-spherical tank
with all loads

Largest initial imperfection Ext. Pres. Acc. on material Critical acceleration on fluid
0.04 m 0.05 MPa 15.05 m/s2 20 m/s2

0.04 m 0.0075 MPa 18.06 m/s2 24 m/s2
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8.2.3 Evaluation of Results

(a) Circumferential stress in non-spherical tank (b) Meridional stress in non-spherical tank

Figure 8.2.8: Deformed shape at buckling for the non-spherical
tank

Figure 8.2.9: Force-displacement curve for non-spherical tank with
all loads applied
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In order to evaluate the results from the non-linear analysis, the stresses were extracted in the

circumferential and meridional direction of the spherical cap. The stresses were extracted in

the orange circle in figure 8.2.8. This is the point in the structure that has largest resultant

displacement. The stress state at this point is compression for both components.

The stresses were extracted at several accelerations in this analysis. The points are marked in

the force-displacement curve in figure 8.2.9. The approach used to assess the capacity of the

structure is found in DNVGL (1997). The approach is also explained in more detail in section

7.3.5.

It can be seen from table 8.2.4 that point 3 satisfies the rules from DNVGL (1997). Inter-

polation between point 2 and 3 gives a critical acceleration of 18 m/s2. If point 1 is taken

as buckling for this structure, it buckles at an acceleration of 24 m/s2. The capacity of the

structure is then utilized by 75% at the limit from DNVGL (1997). The value of 18 m/s2 is the

same value as was calculated for the spherical tank. The rules should predict the same capacity

for similar structures. The non-spherical tank is treated as a sphere by the rules, that is why

the same capacity is found. The same stresses are needed in the spherical cap and the spherical

tank in order for it to buckle. But since the spherical tank has a higher capacity than the

non-spherical tank, the utilization at buckling according to DNVGL (1997) is different. This is

75% for the non-spherical tank, and 50% for the spherical tank.

Table 8.2.4: Evaluation of results from non-linear analysis of non-
spherical tank with several loads

Point in figure 8.2.9 Acceleration σ10 σ20 g
1 24 m/s2 3.52e7 1.18e7 -0.59
2 20 m/s2 2.5e7 6.0e6 -0.19
3 17 m/s2 2.0e7 4.0e6 0.15

The same stresses appear in the the spherical cap at a lower acceleration than for the spherical

tank. The explanation for this may be that the volume below the surface is larger for the non-

spherical tank. If the pressure along the wet surface in the non-spherical shape is integrated,

this will be larger than for the spherical shape. Which may cause the capacity to decrease.

98



Chapter 9

Buckling Analysis of Spherical LNG Tank

with Different Thicknesses

Figure 9.0.1: Model of spherical tank with different sections
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A new model was created in order to approach the real life spherical LNG tank. This model

is divided into sections according to figure 1.5.2. Table 1.5.1 shows the height and thickness of

each section. The sections in the model in figure 9.0.1 has some approximations. The first is

that the equator-line is defined to be the part of the sphere that is located behind the skirt.

This has a height of 1 meter and is located from the original equator and 1 m upwards. This

gives zone 4U a height of 2 m, while zone 4L has a height of 3 m. Zone 3 and 5 have a height

of 10 m, and zone 2 and 6 have a height of 7 m. Finally zone 1 and 7 have a height of 1.5 m.

The thicknesses are listed in table 9.0.1. The rest of the model is the same as was studied in

chapter 7.

Table 9.0.1: Approximated dimensions of the zones of the spheri-
cal tank

Zone Height [mm] Thickness [mm]
1 1500 53
2 7000 53
3 10000 66

4L 3000 71
Equator-line 1000 195

4U 2000 57
5 10000 51
6 7000 32
7 1500 40

The same procedure is followed in this chapter with respect to analyses. The procedure starts

by load case number one, which is only external pressure. Linear and non-linear buckling

analysis is performed for this loading condition. Then all of the loads are applied in load case

number two. Linear and non-linear buckling analyses are performed on this loading condition

as well. The buckling modes from the linear analysis are used as imperfections in the non-linear

analysis. Each thickness was applied in order to make the inner surface of the tank smooth.

This can be controlled by the parameter ”NLOC” in ”Section Shell” for each of the sections.

9.1 External Pressure

Linear elastic aluminium was used in the linear analysis and elasto-plastic aluminium in non-

linear analysis. These properties can be found in table 7.0.1. The mesh size is the same as
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before with a length of 0.5 m for each element.

9.1.1 Linear Buckling Analysis

An external pressure of 0.7 MPa was applied linearly during one second. The linear buckling

analysis gave a deformation pattern as seen in figure 9.1.1. Only buckling mode nr. 1 is shown

here, but all ten buckling modes had the same shape. Only difference between them was a

small deviation in the number of waves occurring in the shell. From the figure, it can be seen

that zone 6 is the part of the structure that buckles. This is the second zone from the top, and

it has the smallest thickness. The thickness of this zone is 32 mm.

Figure 9.1.1: Resultant displacement on buckling mode nr. 1 from
linear analysis with external pressure

The results from this analysis can be compared with the equation for the elastic buckling pres-

sure according to Zoelly (1915). This formula is shown in equation 3.2.1. The thickness of

zone 6 is used in the equation. Table 9.1.1 summarizes the results from the linear analysis with

analytic results. It can be seen that Dyna gave a critical pressure of 0.191 MPa, while Zoelly

critical pressure gave 0.190 MPa. This confirms the result from Dyna. It can also be seen that

the zone that buckles can be treated as a full sphere in the formula with radius equal to the
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spherical tank.

Table 9.1.1: Results from linear analysis of spherical tank with
different sections exposed to external pressure

Approach Critical Pressure
Dyna 0.191 MPa

Zoelly critical pressure (equation 3.2.1) 0.190 MPa

9.1.2 Non-linear Buckling Analysis

An external pressure of 0.15 MPa was applied linearly from zero to one second in this non-linear

analysis. The ten buckling modes from the linear analysis were used as imperfections. Largest

resultant displacement and contribution scale factor can be seen in table 9.1.2.

Table 9.1.2: Displacement and contribution from each buckling
mode with all the loads combined for spherical tank with different
sections

Buckling mode nr. Largest resultant displacement [m] Contribution Scale Factor
1 1.18e-2 1
2 1.18e-2 0.1
3 1.15e-2 0.05
4 1.14e-2 0.025
5 1.17e-2 0.0125
6 1.16e-2 0.00625
7 1.07e-2 0.00313
8 1.06e-2 0.00156
9 1.14e-2 0.00078
10 1.14e-2 0.00039

The buckling modes from the linear analysis are quite similar. This causes all the buckling

modes to contribute to an imperfection pattern that is very concentrated in zone 6 of the

spherical tank. From this it can be concluded that the largest initial imperfection definitely

occurs in zone 6. The deformation pattern at buckling for an imperfection of 0.04 m can be

seen in figure 9.1.2. This shows that one of the waves dominates the deformation pattern. It

can be seen throughout this thesis that the post-buckling shape of the structure is governed by

one dent that develops to a larger deformation.
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Figure 9.1.2: Resultant displacement at buckling for spherical
tank with different thicknesses, largest initial imperfection of 0.4
m

Three different sizes of the largest resultant displacement were tested in this analysis. The

largest of these was 0.04 m. This imperfection was calculated based on a thickness of 0.055 m

of the sphere. But the model used in this section has different thicknesses in the shell. The

thinnest part of this model is zone 6 with a thickness of 0.032 m. The imperfection tolerance

limit for a sphere with a thickness of 0.032 m will be lower than for a thickness of 0.055 m. So

two additional sizes were used for largest initial imperfection. These were 0.029 m and 0.010

m. The imperfection of 0.029 m was found based on calculations according to the procedure

in equation 7.3.12. Where the definition of g for σ20/σ10 > 0 was used. This definition of

g would give the largest tolerance for the imperfection, and therefore lowest capacity. This

calculation gave a maximum tolerance limit for the largest initial imperfection of 0.029 m. The

last size of the imperfection was chosen to be significantly lower then 0.029 m, therefore 0.01 m.
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Figure 9.1.3: Force-displacement relation for spherical tank with
different thicknesses, largest initial imperfection of 0.04 m

(a) Largest initial imperfection of 0.029 m (b) Largest initial imperfection of 0.010 m

Figure 9.1.4: Force-displacement relation for spherical tank with
different thicknesses

The force-displacement relationship can be seen in figure 9.1.3 for a largest imperfection of 0.04

m. The relation can be seen to become non-linear before the top of the curve is reached. The
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exact point of buckling is therefore not easily identified. But based on this curve, the buckling

point is chosen to be 0.05 MPa. This is not the top of the curve, but a compromise of the top

and the increasing non-linearity of the curve. This buckling pressure is only 26% of the linear

buckling pressure. The force-displacement curve for the two other imperfections can be seen

in figure 9.1.4a and 9.1.4b. The top of the curve was chosen as the point of buckling for figure

9.1.4a because this curve is steeper. The top was also chosen for the curve in figure 9.1.4b as

point of buckling.

Table 9.1.3 summarises the results of the analyses performed in this section. The change in

largest imperfection from 0.04 m to 0.029 m did not affect the capacity in a large extent. The

buckling pressure increased with 0.005 MPa for a decreasing imperfection to 0.029 m. It could

be argued that the increase actually is larger. A larger increase can be obtained if a lower

buckling pressure is chosen from the curve in figure 9.1.3. The imperfection of 0.010 m caused

a buckling pressure of 0.08 MPa. This is approaching half of the capacity from the linear anal-

ysis which was 0.191 MPa. From the analysis of the spherical tank with uniform thickness, the

reduction in capacity was approximately 30% from linear to non-linear analysis. The capacity

is also seen to increase for decreasing imperfection for the spherical tank with different thick-

nesses. The results from the analysis of the spherical tank with different thicknesses therefore

seem reliable.

Table 9.1.3: Results from non-linear analysis of spherical tank
with different thicknesses exposed to external pressure

Largest initial imperfections Material Model Load Case Buckling Pressure
0.04 m Elasto-Plastic External Pressure 0.05 MPa
0.029 m Elasto-Plastic External Pressure 0.055 MPa
0.010 m Elasto-Plastic External Pressure 0.08 MPa

9.2 All Loads Applied

It was attempted to extend the analysis to the second loading condition as done previously

in this thesis. First a linear analysis was attempted, then a non-linear analysis. The aim of

analysing this loading condition is to determine how big the sloshing load can be before the

tank buckles. The magnitude of the sloshing load is investigated by the acceleration that is
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used to determine the hydrostatic pressure.

9.2.1 Linear Buckling Analysis

The linear buckling analysis applies all of the four loads. All loads are ramped up to a specified

value during one second for each load. Then the linear buckling analysis is performed. It was

attempted with an acceleration on the material of 18.06 m/s2. The density was increased to

2923 kg/m3 for the aluminium, and the acceleration on the fluid was 30 m/s2. The external

pressure was tested for 0.099 MPa and 0.095 MPa.

A limitation was found in this linear analysis. The external pressure needed to be larger than a

specific value in order for the analysis to produce reasonable results. For the spherical tank with

uniform thickness, the external pressure needed to be above 0.1 MPa. And for the non-spherical

tank it needed to be above 0.15 MPa. If the external pressure was lower than this, negative

eigenvalues were produced for both models. Negative eigenvalues indicate that the loads are

applied in the opposite direction than the direction defined by the user of the software. This

implies that the hydrostatic pressure also acts in the opposite direction, which is not wanted.

The same problem arose for the spherical tank with different thicknesses.

If the external pressure is too low, the deformation pattern in figure 9.2.1a is found. If the ex-

ternal pressure is too high, the deformation pattern in figure 9.2.1b is found. The deformation

pattern for too low external pressure is the same as in figure 7.3.3 for the spherical tank with

uniform thickness and too low external pressure. This buckling shape produce negative eigen-

values. From the previous analyses of the spherical, and the non-spherical tank, it is known

that the tank should buckle in the area around the liquid surface with a positive eigenvalue.

This does not happen for either of the figures.

For too high external pressure, the thinnest zone of the tank buckles because of the external

pressure (figure 9.2.1b). This can be seen to be zone 6. If we compare the buckling load with

the buckling pressure from the analysis with only external pressure in section 9.1.1, they can

be seen to be quite similar. The buckling load from the analysis in this section becomes 0.187

MPa, while the buckling pressure from the analysis with only external pressure in section 9.1.1

was 0.191 MPa. The eigenvalue is positive in this case, indicating external pressure. It was

106



therefore concluded that a pressure did not seem to exist with respect to producing reliable

buckling modes. Because too high external pressure cause zone 6 to buckle due to the external

pressure, and too low external pressure cause negative eigenvalues. The expected results would

be a buckling pattern around the liquid surface due to the hydrostatic pressure, with positive

eigenvalues. This could be achieved for the previous model with uniform thickness by increasing

the external pressure. But the problem of buckling in zone 6 arises in the model with different

thicknesses.

(a) External pressure of 0.095 MPa applied, bottom
view

(b) External pressure of 0.099 MPa applied, side
view

Figure 9.2.1: Buckling mode nr. 1 for non-linear analysis of sphe-
rial tank with different thicknesses with all loads applied

9.2.2 Non-linear Buckling Analysis

The linear analysis is usually conducted before the non-linear analysis. This is to get an upper

estimate of the critical level, and to get an impression on the buckling modes that may govern

the post-buckling shape. The buckling modes are also used in this report to apply initial imper-

fections in the non-linear analysis. But the non-linear analysis is still possible to solve without

inserting imperfections. It is emphasized that the critical level will be severely overestimated

without introducing imperfections in the non-linear analysis.
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A non-linear analysis was performed without imperfections. This was because the linear anal-

ysis appeared to be difficult to accomplish. The deformed shape just after buckling can be

seen in figure 9.2.2. The orange lines indicate the liquid surface. The surface stretches from

the red area and into the paper. The dotted line illustrates that the surfaces goes on the other

side of the tank. The dent occurs in the transition between zone 2 and 3, with thickness of

53 and 66 mm respectively. The spherical tank with uniform thickness had a thickness of 55

mm. Table 9.2.1 summarise the results from the non-linear analysis in this section. The value

of 59 m/s2 can be compared with the linear critical acceleration for the sphere with uniform

thickness in section 7.3.2. This was found to be 61 m/s2. It therefore seems reasonable that

the critical acceleration on the fluid becomes approximately the same when it buckles in the

transition between zone 2 and 3. To get a more realistic estimate, the non-linear analysis need

to be performed with initial imperfections. A decrease in capacity of approximately 50% would

then be expected. A similar decrease was seen in section 7.3.3.

Figure 9.2.2: Resultant displacement after buckling for sphere
with different thicknesses with all loads applied
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The buckling shape can be seen to be similar to the shape in figure 7.3.7 from the non-linear

analysis of the spherical tank with uniform thickness. The deformation is governed by a dent

that appears in the area of the liquid surface. The location of the dent is somewhat different. A

90 degree angle differs the two locations in the circumferential direction of the tank. The force

displacement curve can be seen in figure 9.2.3. This shows a clear peak where the structure is

said to buckle.

Table 9.2.1: Results from non-linear analysis of spherical tank
with different thicknesses and all loads applied

Largest initial imperfection Ext. Pres. Acc. on material Critical acceleration on fuid
0 m 0.0075 MPa 18.06 59 m/s2

Figure 9.2.3: Force-displacement curve for non-linear analysis of
spherical tank with different thicknesses and no imperfections
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Chapter 10

Buckling Analysis of Non-spherical LNG

Tank with Different Thicknesses

Figure 10.0.1: Model of non-spherical tank with different sections
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The last model used in this thesis is shown in figure 10.0.1. This LNG tank has the same

geometry as the one studied in chapter 8, but it is divided into different sections with different

thicknesses. The skirt is modelled without offset as it was for the non-spherical tank with

two thicknesses. The sections in figure 10.0.1 has a thickness on the spherical parts according

to table 1.5.1. Each cylindrical part with same position and height as the spherical part has

twice the thickness of the spherical part. Some simplifications were done with respect to the

height of the zones. Table 10.0.1 shows each zone with corresponding height. The zones follow

figure 1.5.2 by splitting the spherical tank in the middle along the vertical axis, and inserting

a cylindrical part. The thickness was attempted to be put outside the tank to make a smooth

inner surface. This was obtained only to some extent.

Table 10.0.1: Dimensions of different zones of the non-spherical
tank

Zone Height [mm] Thickness [mm]
1 1500 53
2 7000 53
3 10000 66

4L 2350 71
Equator-line 1300 195

4U 2350 57
5 10000 51
6 7000 32
7 1500 40

The mesh on this model can be seen to be different than the other models in previous chap-

ters. An axisymmetric mesh has been used previously in this report. The choice of mesh was

discussed when the half-sphere was analysed in chapter 5. The axisymmetric mesh was then

found to be most reliable. The mesh in figure 10.0.1 is generated by Patran with a method

called ”Paver”. This mesh becomes quite irregular, and may affect buckling shapes and stresses

that occurs. The geometry was too complicated for Patran to generate a regular axisymmetric

mesh. The different sections that should have different thicknesses cause Patran to give an

error that says the surface is not ”biparametric”. Consequently the axisymmetric mesh can not

be generated. The mesh size is still 0.5 m.

The same approach is used in this section for the analyses. The first load case is only external

pressure. Linear and non-linear buckling analysis is performed for this load case. The purpose
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was to conduct the analyses on the second load case as well. This was not accomplished in this

chapter.

10.1 External Pressure

An external pressure of 0.1 MPa was applied linearly from zero to one second in both the

linear and non-linear analysis. Linear elastic aluminium is used in the linear analysis, while

elasto-plastic aluminium is used in the non-linear analysis. Material data are found in table

7.0.1.

10.1.1 Linear Buckling Analysis

Buckling mode nr. 1 and 5 can be seen in figure 10.1.1. It can be seen that the cylindrical part

buckles in zone 6. The same zone buckled for the spherical tank in chapter 9. The non-spherical

tank also seem to buckle in some extent in zone 7 (the top). This seems likely because the

cylinder has lower capacity than the sphere, and zone 6 and 7 have the smallest thicknesses.

(a) Buckling mode nr. 1, top view (b) Buckling mode nr. 5, top view

Figure 10.1.1: Buckling modes from linear analysis of non-
spherical tank with different thicknesses exposed to external pres-
sure

The results from the analysis can be seen in table 10.1.1. The results from Dyna were compared

with the analytic value for the elastic buckle pressure of a cylinder under hydrostatic pressure
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from DNVGL (2017). This can be seen in the table to be 0.066 MPa, which is about 60% of

the value from Dyna. This is a much larger error than for the non-spherical tank with two

thicknesses. In that case the value from Dyna were 3.6% from the analytic value according to

DNVGL (2017). One cause of this difference may be the change in mesh. The paver-mesh is

more irregular than the axisymmetric mesh.

Table 10.1.1: Results from linear analysis of non-spherical tank
with different thicknesses, exposed to external pressure

Approach Critical Pressure
Dyna 0.105 MPa

Analytic 0.066 MPa

10.1.2 Non-linear Buckling Analysis

A non-linear buckling analysis was performed in the same manner as previously. The ten buck-

ling modes from the linear analysis were used as imperfections in the non-linear analysis. Table

10.1.2 lists the largest displacement in each mode, and the contribution factor for each mode.

Table 10.1.2: Displacement and contribution from each buckling
mode with all the loads applied for non-spherical tank with dif-
ferent sections

Buckling mode nr. Largest resultant displacement [m] Contribution Scale Factor
1 4.71e-2 1
2 4.72e-2 0.1
3 5.43e-2 0.05
4 5.31e-2 0.025
5 6.86e-2 0.0125
6 6.81e-2 0.00625
7 7.13e-2 0.00313
8 7.04e-2 0.00156
9 3.62e-2 0.00078
10 3.43e-2 0.00039

Figure 10.1.2 shows the deformation of the tank just after buckling. It can be seen that the

dent occurs in the red area. This will develop further if the analysis is conducted for a longer

period. This does not look like the deformation pattern that was seen in the non-linear analysis
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of the non-spherical tank in chapter 8. The non-spherical tank in chapter 8 developed a dent

in the middle of the cylindrical section. The non-spherical tank with different sections and

thicknesses develop a small dent in the transition between the sphere and the cylinder in zone

6. The force-displacement relation can be seen in figure 10.1.3.

Figure 10.1.2: Resultant displacement at buckling for non-
spherical tank with external pressure

Figure 10.1.3: Force-displacement relation for non-spherical tank
with external pressure
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The results are summarised in table 10.1.3. The linear buckling pressure and the deformation

in the non-linear analysis may indicate that this model is not reliable. The deviation between

analytic and numerical value in the linear analysis was quite large. The analytic value was

63% of the numerical value. Buckling mode nr. 5 in figure 10.1.1b seems to indicate a problem

with the mesh. Buckling in the transition between spherical and cylindrical part did not occur

when it was only two different thicknesses. There is no obvious reason for this to happen for

this model either. Based on these results, the model of the non-spherical tank with different

thicknesses does not seem reliable. It was therefore found counter-intuitive to proceed with the

analyses of this model. The analyses with external pressure should be confirmed before it is

proceeded with the second loading condition.

Table 10.1.3: Results from non-linear analysis of non-spherical
tank with different thicknesses, exposed to external pressure

Largest init. imperfection Material Model Load Case Buckling Pressure
0.029 m Elasto-plastic Ext. Pressure 0.056 MPa
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Chapter 11

Discussion

This chapter discusses the produced results and some of the utilized methods. The first part

discusses different methods that were used, and the second part discusses the actual results

from the analyses. The non-spherical tank is compared to DNVGL (2016b) in the end, where

the analyses of this tank is discussed further. Followed by a suggestion for modification of the

rules to account for a non-spherical shape.

11.1 Procedures

Different procedures were used on different parts of the analyses throughout the work. Some

of them are discussed below.

11.1.1 Simplifications in the Analyses

Two considerable simplifications were made in the analyses. One of them was made with re-

spect to the geometric model, and the other was in the setup of the analyses.

The geometric simplification was the tower in the middle of the spherical tank. In the real

spherical tank, a tower is placed in the middle of the tank to load and unload with LNG.

Because of this, the tower has to penetrate the sphere in the top. It therefore seems reasonable

that this tower may affect the stresses and capacity of the tank. The tank analysed in this
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thesis has been a continuous shell. It may had been more accurate to model the sphere with

a reinforcement in the top, or a hole to account for the discontinuity in the shell. In addition

to affect the top, it would most likely also affect the bottom of the tank. With respect to

the sloshing load, the tower may affect the capacity because the tank is stretched in vertical

direction. The tower may be an additional load that pushes the bottom of the tank in the same

direction as the hydrostatic pressure. Or it may stiffen the tank and prevent large deformations

in the bottom.

The temperature is the other simplification. The LNG is carried in liquid form, which implies

that the temperature inside the tank is quite low. The low temperature will cause the metal in

the tank to contract. This will affect the original shape in the tank and cause stresses in the

shell. This should be possible to include in Dyna, but it was not investigated in this thesis.

11.1.2 Extraction of Stresses in Spherical Coordinates

This section discusses the evaluation of stresses that was made in section 7.3.4, 7.3.5 and 8.2.3.

The extraction of the stresses are done according to colour coding in the structure. The colour

coding indicates the stresses at specific points in the structure. But one colour can contain

stresses with a range of approximately 10 MPa. Depending on if the highest or lowest stress

are used in the evaluation, the capacity of the structure according to DNVGL (1997) can be

quite different.

If the largest stresses are chosen for instance, the limit according to DNVGL (1997) can be as

low as 11 m/s2 for the non-spherical tank. This implies a utilization of the capacity of 46% at

the limit from DNVGL (1997) compared to the buckling acceleration of 24 m/s2 according to

Dyna. If the lowest stresses are chosen in the evaluation, the critical acceleration can become

as large as 25 m/s2. Which can be seen to be larger than the critical value predicted by Dyna.

But the spherical tank had a more narrow gap between smallest and largest value.

If the largest stresses were used in the evaluation of the capacity for the spherical tank, the

critical acceleration according to DNVGL (1997) became 16 m/s2. If the lowest stresses were

used, a critical acceleration of 22 m/s2 was found. The middle value of 18 m/s2 was chosen

as the critical limit according to DNVGL (1997). Because the rules treats spherical shapes,
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the critical acceleration should be the same for the spherical and non-spherical shape. The un-

certainty explained regarding extraction of stresses for the non-spherical shape in the previous

paragraph is therefore reduced.

It was attempted to extract the most accurate stresses at the specific point, but it can be seen

that this may vary according to the user of the software. However, it seemed clearer which

stresses to extract on the spherical tank, than on the non-spherical tank. Consequently, the

approach to extract the stresses can be seen to have some uncertainties. The reason why this

approach was chosen is that the transformation from cartesian to spherical coordinates needed

to be done in the post-processing phase. The best way to extract the stresses would be if Dyna

could calculate the stresses in the sphere in spherical coordinates during the analysis, and write

these stresses to a file for a specific point in the structure. The procedure to model this was

note found. And the approach that was used was suggested by Dynamore Nordic. The email

from Dynamore Nordic can be found in appendix C.1.

11.1.3 Determination of Buckling Point

The determination of the buckling point is a central part of both the linear and non-linear

analyses. The linear buckling analysis gives an output file that contains each buckling mode

with the corresponding eigenvalue. The buckling load is found by multiplying the eigenvalue

with applied load. The source of error is therefore very small. The non-linear buckling analysis

requires more interpretation of results. The force-displacement curve is plotted from the non-

linear analysis, and the buckling point is chosen to where the curve becomes significantly

non-linear. For classical bifurcation buckling, this will be the top of the curve because the

curve is linear until the top is reached. But some curves becomes non-linear before the top is

reached. In this case, the buckling point is said to be where the curve becomes significantly

non-linear. This point may vary between the curves. A more systematic and consistent method

for determination of the buckling point could have been preferable. When comparing the non-

linear buckling load between analyses, it could be said more certain which criteria that are used

in order to compare.
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11.1.4 Application of Imperfections

The non-linear analyses in this thesis include initial imperfections. The imperfections are made

of the buckling modes from the linear analyses. Each linear analysis search for ten buckling

eigenmodes, which are used as imperfections. Equation 11.1.1 shows how the eigenmodes are

added in order to produce the imperfection in most of the analyses. The letters a to j indicate

the number of eigenmode where a is mode nr. 1, b mode nr. 2 and so on. The way of

combining the contributions are specified for each non-linear analysis. In order to implement

the imperfections in the analysis, three files were written. Each file containing the displacement

in x-, y- and z-direction. In order to produce the resultant initial imperfection, these three files

are combined in the non-linear analysis.

a+ (b · 0.1) + (c · 0.05) + (d · 0.025) + (e · 0.0125) + (f · 0.00625) + (g · 0.00313)

+(h · 0.00156) + (i · 0.00078) + (j · 0.00039)
(11.1.1)

The contribution from each mode is scaled by a factor. This is because the buckling load

corresponding to each mode will increase for increasing number of the buckling mode. The

assumption is that the buckling mode with lowest load (mode 1), will have more influence on

the deformation than higher modes. That is why this scaling is used. But there may exist a

better way to scale the different contributions. For instance it can be seen that the contribution

from mode nr. 1 (a) is not scaled at all. But the contribution from mode nr. 2 (b) is scaled

by 10%. The percentage is then bisected for the following modes. It may be argued that mode

nr. 1 should not have that much influence compared to the other modes. In some analyses,

the buckling loads are quite similar. Then it can be argued that the x-, y- and z-files should be

combined of equal contribution for all the modes.

It is also possible to generate user specified imperfections in LS-Prepost. These can be written

to three files in the same manner and used as imperfections in the analysis in Dyna. However,

the linear analysis points out the lowest buckling eigenmode of the structure. It therefore

seems reasonable that this deformation pattern is the most sensitive for the structure. And

consequently this would trigger the lowest buckling load in the non-linear analysis. But how

much each mode should contribute is not determined by a linear analysis. It is emphasized that

the largest value of the initial imperfection is controlled by a single parameter when inserting
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the imperfections in LS-Prepost. The largest value of the initial imperfection can be scaled

by this parameter. The different contributions are therefore not decisive for the largest value

of the imperfection. But they will affect were the imperfections are inserted on the structure

depending on the buckling mode.

11.2 Results

This section discusses the results from the analyses. Two loading conditions are used through

this thesis. Number one is only external pressure, while number two includes external pressure,

sloshing load, weight of isolation in the tank and acceleration on material due to ship move-

ments. The results from the first loading condition is discussed first, followed by the second

loading condition.

11.2.1 External Pressure

Several analyses have been conducted on different models exposed to external pressure. A half-

sphere was used in the beginning, then a full sized spherical tank followed by a non-spherical

tank. Finally the spherical and non-spherical tank were analysed with different sections of

different thickness.

The half-sphere was started with in order to confirm the analysis procedure in Dyna. The buck-

ling modes from the linear analysis was the same in Dyna and the article from Tall et al. (2018).

The Zoelly critical pressure shown in the article also corresponded well with the critical pressure

from Dyna. Dyna overestimated the critical pressure by 1.6%. The axisymmetric mesh was

chosen because of the correlation between the results from Dyna, Tall et al. (2018) and Abaqus.

A non-linear analysis was proceeded with in order to estimate a more realistic result for the

critical pressure. It was found that elasto-plastic material gave a cleaner force-displacement

curve than elastic material. And the curves corresponded well with theoretical curves as in

Amdahl (2010). The non-linear results were finally evaluated based on DNVGL (2004). When

the knock-down factor was neglected in the calculations, this gave the same critical pressure

as Dyna without imperfections. But when the knock-down factor was included, Dyna overes-

timated the critical pressure by 20%. The largest resultant imperfection were chosen based on

equations from DNVGL (2016b). But it was not clear what imperfections that were accounted
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for in the knock-down factor from the calculations. This may cause the deviation of 20%. The

analysis of the half-sphere therefore seemed to be reliable.

The next model was a full sized spherical LNG tank. The linear analysis from Dyna is within

95% of the Zoelly critical pressure both for aluminium and steel. The analysis of the half-sphere

gave exactly the same result as Zoelly critical pressure. Since the full sized tank is within 95%

of the Zoelly critical pressure and the results from the half-sphere, the results from the linear

analysis seemed reliable for the full sized tank. From the non-linear analysis, the steel tank

can be seen to have 2.7 times the capacity of the aluminium tank for approximately the same

imperfection. It can therefore be concluded that the aluminium tank has a severely lower ca-

pacity than the steel tank. This is mainly caused by the decrease in Young’s modulus and

yield stress. These parameters for aluminium is approximately one third of the values for steel.

The sphere buckles at the top with a small dent in the beginning, this develops further as the

simulation runs. The shape of the deformation seems to correspond with the article from Tall

et al. (2018) when they study the geometrically non-linear analysis.

The buckling modes from the linear analysis of the full sized spherical tank were slightly dif-

ferent from the analysis of the half-sphere. In the full sized tank, the waves originate from the

top of the sphere, and decreases as they approach the equator. For the half-sphere, the waves

originates from one side along the equator. The waves seem to have rotated an angle of 90

degrees. This may be explained by the mesh on the sphere. The waves seem to be dependent

on the starting point of the mesh. For the full sized sphere, the starting point is located at the

top of the sphere where the colour becomes more black. This is because the size of each element

decrease as it approach the top. This point is located at the equator for the half-sphere. The

location of this point therefore seems to be vital for the deformation pattern in the buckling

modes.

The linear buckling pressure for the non-spherical tank according to Dyna overestimates the

analytic value by 3.6%. The analytic value to compare with here is the elastic buckling pres-

sure of a cylinder exposed to hydrostatic pressure according to DNVGL (2017). The reason

for the overestimation may be because the spherical end caps strengthen the cylindrical section.

Based on elastic calculations, it can be evaluated if the spherical or cylindrical section will
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buckle. The section with lowest elastic buckling pressure will most likely buckle. By changing

thickness of the sections or the length of the cylindrical section, it can be adjusted which part

that buckles. As the sphere stretches it becomes more like a cylinder. And according to Jasion

et al. (2015) the middle section will buckle if the sphere is stretched to become more like a

cylinder. This can be explained by the stresses that occur in the shell. The circumferential

stress in the cylindrical section will be twice as large as the stress in the spherical section if

they have the same thickness. The cylindrical section will therefore have lower capacity. The

non-linear analysis gave a decrease in the critical pressure of 50%. The decrease can be seen to

be coherent with other linear to non-linear transitions in the thesis.

When the spherical and non-spherical tank is split into sections, the thinnest zone buckles. The

spherical tank with different thicknesses buckles in the second zone from the top (zone 6) which

is the thinnest. The linear elastic value from Dyna is approximately the same as the Zoelly

critical pressure for the thickness in zone 6. The non-spherical tank with different thicknesses

was analysed with a more irregular mesh. This seemed to affect the results considerably. The

linear buckling pressure for zone 6 in the cylindrical part was compared with elastic buckling

pressure according to DNVGL (2017) as before. But the analytic value became approximately

60% of the value from Dyna. This is a significant deviation compared to previous results in this

report. The mesh is most likely what causes this problem. However, it may be possible that

the results are roughly correct. But further considerations must be made in order to confirm

this. The model is therefore deemed to not be reliable until further confirmations can be made.

A more regular mesh as the axisymmetric mesh may give more reliable results.

The thicknesses of the spherical and non-spherical tanks with several sections should be applied

outside the tank. Then the inner surface of the tank will be smooth. This was achieved for the

spherical tank, but only to some extent for the non-spherical tank. This may also affect the

results from the analyses of the non-spherical tank with different thicknesses.

11.2.2 All Loads Applied

The loads applied in this loading condition are:

• External pressure.
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• Acceleration on material due to ship movements.

• Weight of isolation in the tank.

• Sloshing load.

The aim of the analysis is to investigate the capacity of the tank with respect to the sloshing

load. The sloshing load is modelled as a static, sloped liquid surface according to DNVGL

(2016b). This is an approximation of the sloshing load in order to be able to model it statically.

An approximation is made in this thesis compared to DNVGL (2016b). The angle of the surface

is held constant while the acceleration is increased. For increased acceleration, the angle of the

surface should also be increased, but this was neglected in this thesis.

When several loads are applied on the structure, each load has to be applied separately. The

linear analysis scale up the loads until failure, while the non-linear analysis scale the last load

until failure. The last load is in this case the sloshing load. The best approach would be for

the linear analysis to use only the sloshing load. But the result from this approach was neg-

ative eigenvalues, which would indicate negative hydrostatic pressure. A negative hydrostatic

pressure will not be physically correct. Why all of the loads are needed in order to produce

purposeful results in the linear analysis is not clear. If this could be solved, the linear analysis

could be conducted with the sloshing load alone. This would give more accurate results for

the linear critical value for the acceleration on the fluid. It it also important to notice that the

external pressure needed to be above a certain value in order to produce reliable results in the

linear analysis. The amount of external pressure needed was different on each model.

Before the analyses were started, the resulting acceleration on the fluid was calculated by the

procedure on page 48 in DNVGL (2016b). The python script used to calculate this can be

found in appendix A.1. The calculated resulting acceleration was 13.4 m/s2. The results from

the linear analysis of the spherical tank with uniform thickness can be seen in table 11.2.1.

It can be seen that the critical acceleration on the fluid according to Dyna is significantly

larger than the value calculated according to DNVGL (2016b). This may be explained by the

procedure in DNVGL (2016b). An iteration should be conducted in order to find the worst

stresses in the shell from the liquid, so it may increase in further iterations. A linear analysis

also overestimates realistic values. The deformation of the structure occurred in the area of

the liquid surface. The article by Sano et al. (2017) analyses a standing non-spherical tank in
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partially filled condition. In that case the tank buckles in the area around the liquid surface.

The deformation pattern corresponds to the deformation of the spherical tank in figure 7.3.4.

Table 11.2.1: Results from linear buckling analysis of spherical
tank with uniform thickness with several loads

Critical Pressure Critical Acceleration on fluid Critical Acceleration on material
0.20 MPa 60.8 m/s2 30.51 m/s2

The linear analysis was followed by a non-linear analysis. Several non-linear analyses were per-

formed. The difference between them was either the amount of external pressure, or the size

of the largest initial imperfection. These parameters were found to affect the capacity in some

extent. The main result from these analyses are shown in table 11.2.2. The critical acceleration

can now be seen to be 36 m/s2, while the other loads are at a constant level throughout the

analysis. This is a decrease of 40% from the linear analysis. This result was then compared

with the rules in DNVGL (1997). The critical acceleration was according to these rules found to

be 18 m/s2. The rules are therefore very conservative compared to the critical level according

to Dyna. According to Dyna, the spherical tank with uniform thickness has only used 50% of

the capacity at the critical level from DNV.

Table 11.2.2: Results from non-linear buckling analysis of spheri-
cal tank with several loads

External Pressure Accel. on material Largest initial imp. Critical Acceleration on fluid
0.0075 MPa 18.06 m/s2 0.04 m 36 m/s2

Some of the potential sources of error are mentioned already. The method used to extract the

stresses in spherical coordinates is one source. These stresses are used in the capacity check

according to DNVGL (1997). The size of the largest initial imperfection is another source of

error. It could be argued that a smaller imperfection should be used, which would give a larger

capacity in Dyna. Or a larger imperfection which would give a smaller capacity, and a de-

creasing deviation between the rules in DNVGL (1997) and Dyna. But the imperfections were

chosen based on calculations according to DNVGL (2016b), so they should be of reasonable size.

The non-spherical tank was also analysed with all of the loads applied. The linear analysis was
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conducted in the same manner as for the spherical tank. A lower critical acceleration on the

fluid was found at 45 m/s2 compared to 61 m/s2. A possible explanation for this was believed

to be the volume of liquid in the two tanks. The integrated pressure along the wet surface in

the non-spherical tank will be larger than for the spherical tank. This may explain the decrease

in capacity. The non-linear analysis found a critical acceleration of 24 m/s2 compared to 36

m/s2 for the spherical tank. The difference between the two can be seen to be significant. The

results from this analysis was also compared with the rules from DNVGL (1997). It was then

found that the critical level from DNVGL (1997) was at 75% of the level from Dyna for the

non-spherical tank. This is 25% higher utilization than for the spherical tank. If the same level

of safety factors are wanted, they should be decreased for the non-spherical tank compared to

DNVGL (1997) according to these findings. The utilization should be decreased to 50% from

75% in order to apply the same level of safety.

The spherical tank was also analysed with different thicknesses. The linear analysis with all

of the loads applied was not possible to conduct in this case with reliable results. The ex-

ternal pressure applied was either too low, or to high to produce reliable results. For a too

low external pressure, negative eigenvalues were produced. The same problem occurred for the

spherical tank with uniform thickness. But if a high pressure was applied to the spherical tank

with different sections, the thinnest part of the tank buckled because of external pressure. This

did not happen for the spherical tank with uniform thickness. Hence the linear analysis of the

spherical tank with different thicknesses was not possible to conduct in this case. The expected

buckling shape would be buckling around the liquid surface, which did not occur. The non-

linear analysis was therefore performed with no initial imperfections. The critical acceleration

from this analysis was 1 m/s2 below the linear critical value for the spherical tank with uniform

thickness. From this it can be seen that the capacities with respect to the sloshing load are

quite similar with same filling of h/d = 0.29. This is expected because the thicknesses in the

three lowest zones are 53 mm and 66 mm. Which is very close to the thickness in the spherical

tank with uniform thickness of 55 mm.

The non-spherical tank with different thicknesses was not analysed with all of the loads applied.

This was because the analysis conducted with external pressure was deemed not reliable. To

proceed with analysis with additional loads would therefore not produce significant results. The

analysis with external pressure should be verified in order to proceed.
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11.2.3 Non-spherical Tank Compared with Class Guideline DNVGL-

CG-0134

Section 5 in DNVGL (2016b) gives guidelines for design evaluation of a non-spherical LNG

tank. The tank used as example is a standing non-spherical tank as was analysed in Sano et al.

(2017). According to these guidelines, the capacity of the spherical and cylindrical section can

be assessed individually according to existing rules for spheres and cylinders.

Some interesting aspects were found with respect to the linear analysis of the non-spherical tank

exposed to uniform external pressure. This is analysed in section 8.1.1. It can be seen from

these analyses that the elastic buckling pressure can be used to identify the weakest section

in the tank. When the elastic buckling pressure for the cylindrical section is lower than the

elastic buckling pressure for the spherical section, the cylindrical part buckles in Dyna. This

was tested with a thickness of 0.11 m on the cylindrical section. The elastic buckling pressure

of the cylindrical section is then 0.28 MPa compared to 0.56 MPa for the spherical section

according to the formulas. The buckling pressure from Dyna on the non-spherical tank was

3.6% higher than the analytic buckling pressure for a cylinder.

When the elastic buckling pressure for the cylindrical section is higher than the elastic buckling

pressure for the spherical section, the spherical part buckles. This was tested with a thickness

of 0.25 m on the cylindrical section. According to formulas, the elastic buckling pressure for the

cylindrical section becomes 2.56 MPa compared to 0.56 MPa for the spherical section. Dyna

estimated the linear buckling value for the non-spherical tank to the elastic buckling pressure

of the spherical section with insignificant error.

It seems to be a transition area when the elastic buckling pressures are close to each other

for the spherical and cylindrical section. If a thickness of 0.15 m is applied on the cylindrical

section, the analytic buckling pressure is 0.64 MPa. This is close to the analytic buckling value

for the spherical section of 0.56 MPa. The buckling load then became 0.53 MPa for the non-

spherical tank according to Dyna. It may therefore be some interaction between the sections if

the elastic buckling values for the sections are close to each other.
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It can be seen that the guidelines from DNVGL (2016b) seems to be correct in the assumption

that the cylindrical and spherical section can be investigated as individual parts. At least when

the elastic buckling pressures are different from each other. The rules for a cylinder (DNVGL,

2017) can be applied for the cylindrical section, and the rules for a sphere (DNVGL, 1997) can

be applied for the spherical section. This holds when the elastic buckling stresses are different

from each other. But when the pressures are close, this approach does not seem to give the

exact result.

With respect to design of this structure, it should evaluated which part of the tank to strengthen

in order to increase the capacity. If the elastic buckling pressure is close to each other for the

two sections, the whole structure may be affected. But if there is a difference in the pressures,

the weakest section can easily be identified. Knowing which part is the weakest may be an

advantage in a design procedure, because then this part can be strengthened. Strengthening of

the cylindrical part can be achieved by increasing thickness, or decreasing length. Strengthening

spherical part can also be achieved by increasing thickness or decreasing radius. The ways of

strengthening the structure must be compared to the cost of strengthening in terms of added

material. By considering the buckling modes in figure 8.1.3 and 8.1.4, it can be seen that the

whole cylinder buckles in figure 8.1.3. An area of equal length seems to buckle on the spherical

section. It therefore seems cheaper to strengthen the spherical section because of decreasing

radius for increasing length. But this occurs if the cylindrical section already is quite strong.

This involves adding a lot of material to the cylindrical section. Unless the cylindrical section

is designed to be quite short, it seems that this has to be strengthened in any case.

11.3 Suggestion Regarding Rules for Non-spherical Tank

With respect to the second loading condition, the utilization according to DNVGL (1997) com-

pared to Dyna were 50% for the spherical tank, and 75% for the non-spherical tank. Both

tanks had uniform thickness in spherical and cylindrical section. An attempt should be made

on adapting the rules to have the same safety factor for the non-spherical tank.

The non-spherical tank resembles the shape of an ellipse more than a sphere and a cylinder.

The elastic buckling stress for the sphere in DNVGL (1997) can be replaced by the elastic buck-

ling stress of an ellipse. Then the same capacity check can be conducted as in section 8.2.3.
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Table 11.3.1 summarises the stresses used in the capacity check when the elastic buckling stress

according to an ellipse was used in DNVGL (1997).

Table 11.3.1: Evaluation of results from non-linear analysis of
non-spherical tank with several loads

Point in figure 8.2.9 Acceleration σ10 σ20 g
1 24 m/s2 3.52e7 1.18e7 -0.77
2 20 m/s2 2.5e7 6.0e6 -0.44
3 17 m/s2 2.0e7 4.0e6 -0.16
4 13 m/s2 1.39e7 5.6e6 0.19

The equation for the elastic buckling stress of an ellipse was found in Ruiz-Teran and Gardner

(2008), and can be seen in equation 11.3.1. By interpolating between point 3 and 4, the critical

level according to DNVGL (1997) is estimated to an acceleration of 15 m/s2. This implies an

utilization compared to Dyna of 62.5%. This is a significant decrease from 75%. But the safety

factor is not as large as for the sphere, which had a utilization of 50%. The parameter ”a” was

taken to be the radius added with half of the length of the cylinder, while ”b” was taken to be

the radius.

σE =
E√

3(1− ν2)
t

a2/b
(11.3.1)
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Chapter 12

Conclusion

The spherical LNG tank from Moss Maritime was analysed in this thesis. The tank was ex-

posed to two loading conditions. First loading condition consisted of external pressure, while

the second contained external pressure, weight of isolation on the tank, additional acceleration

on material due to ship motions and a sloshing load. The non-spherical tank was analysed

when exposed to the same loading conditions. The purpose was to compare the capacity of the

non-spherical tank with the spherical tank and existing formulas. If existing formulas were not

applicable on the non-spherical tank, a proposition should be made on how to modify the rules.

This conclusion is based on the analyses of the tanks with uniform thickness. Both of the tanks

were exposed to external pressure in the first loading condition. The elastic buckling pressure

from Dyna seemed to correspond well with the analytic elastic buckling pressure. The linear

elastic buckling pressure from Dyna corresponded to analytic formula from Zoelly (equation

3.2.1) with over 95% accuracy for the spherical tank. The non-spherical tank was able to buckle

due to external pressure in the cylindrical section, or in the spherical section. The equations

for the elastic buckling pressure for a cylinder and a sphere was found to correspond with over

95% accuracy with the elastic buckling pressure for the non-spherical tank. The lowest analytic

buckling pressure governed the buckling of the tank. This holds when the difference between

the analytic values are large. If the analytic values are close to each other, the buckling load on

the non-spherical tank is affected by buckling of both cylindrical and spherical section. Conse-

quently, the difference between analytic and numerical values from Dyna increase.
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The main results from the first loading condition were obtained by a thickness of 55 mm on the

spherical tank, and on the spherical section of the non-spherical tank. The cylindrical section in

the non-spherical tank had a thickness of 110 mm. The results are shown in table 12.0.1. It can

be seen that the non-spherical tank had a capacity of 0.02 MPa less than the spherical tank for

approximately same imperfection size. The buckling pressure from the non-linear analysis will

vary depending on the size of the initial imperfection. The size of the imperfection was chosen

based on calculations according to DNVGL (2016b). The non-linear analysis of the half-sphere

was compared with DNVGL (2004) to verify the non-linear analysis procedure in Dyna.

Table 12.0.1: Results from non-linear analyses of spherical and
non-spherical tank in aluminium exposed to external pressure

Model Largest init. imp. Material model Buckling pressure
Spherical 0.0393 m Elasto-plastic 0.16 MPa

Non-spherical 0.040 m Elasto-plastic 0.14 MPa

For the second loading condition, the same tanks were analysed. It can be seen from the ta-

ble 12.0.2 that the non-spherical tank has 12 m/s2 smaller capacity than the spherical tank

with respect to the sloshing load. These critical accelerations were compared to critical levels

according to DNVGL (1997). The spherical tank was found to have a utilization of 50% at

critical level according to DNVGL (1997) compared to Dyna. While the non-spherical tank

had a utilization of 75%. The existing rules do therefore not apply the same level of safety on

the non-spherical tank compared to the spherical tank.

Table 12.0.2: Results from non-linear analyses of spherical and
non-spherical tank in aluminium exposed to all loads

Model Largest init. imp. Ext. Pres. Accel. on mat. Critical acceleration on fluid
Spherical 0.04 m 0.0075 MPa 18.06 m/s2 36 m/s2

Non-spherical 0.04 m 0.0075 MPa 18.06 m/s2 24 m/s2

A modification of the existing rules should therefore be implemented. A suggestion for this

modification was to replace the elastic buckling pressure for a sphere in DNVGL (1997) by

the elastic buckling pressure of an ellipse. This caused a utilization of 62.5% at critical level

according to DNVGL (1997) for the non-spherical tank. This gives a larger safety factor than
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75% utilization. But not as large as 50% utilization which was found for the spherical tank.

It is emphasized that these results should be verified by further analyses in order to confirm the

utilization at critical level from DNVGL (1997) compared to Dyna. The analyses conducted in

this thesis are too few to confirm that these utilizations are exact. The same analyses should

also be conducted on the spherical and non-spherical tank with different thicknesses. These

tanks are more realistic than a tank with uniform thickness. The analyses of these tanks were

not fully completed to produce reliable results in this thesis.
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Chapter 13

Further Work

According to both Amdahl (2010) and Odland (1991), the starting point to describe elastic

buckling of shells are most often an equation named ”Donnel’s equation”. When the standing

non-spherical tank is investigated in Sano et al. (2017), Donnel’s equation is also used to derive

the elastic buckling stress. To adapt the existing rules to the non-spherical tank investigated

in this thesis, Donnel’s equation could be used to derive an elastic buckling stress for this tank.

Another aspect that should be proceeded with is analyses of the spherical and non-spherical

tank with different thicknesses. The analysis of the spherical tank with different thicknesses was

not fully finished for the second loading condition. The linear analysis was not successfully con-

ducted, and the non-linear analysis was conducted without imperfections. The non-spherical

tank with different thicknesses seemed to have a problem with the mesh. It should be investi-

gated how to mesh this with axisymmetric mesh, and it should be analysed as the other models.

The linear analyses produce a set of buckling modes. The largest displacement in this mode is

not 1. How this displacement is calculated could also be investigated. Although this does not

have a major impact on the analyses. The material model in the non-linear analyses could also

be investigated further. Material nr. 18 is used in this report. It was noticed that material

nr. 24 maybe is better to use, because here you can specify the stress-strain curve for the

material. The tip came from Dynamore Nordic. Email can be found in appendix C.3. The

Ramberg-Osgood equation can be used according to Misovic, Tadic, and Lucic (2016) to define

the stress-strain curve for an aluminium alloy. This curve can be used in the material model.
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Appendix A

Python Scripts

A.1 Computation of Sloshing Load

1 import numpy as np

2

3 #Prelocating

4

5 Vol = np.array ([0.0 ,0.0 ,0.0])

6 FxRef = np.array ([0.0 ,0.0 ,0.0])

7 aY = np.array ([0.0 ,0.0 ,0.0])

8 Fx = np.array ([0.0 ,0.0 ,0.0])

9 FTheta = np.array ([0.0 ,0.0 ,0.0])

10 FyStar = np.array ([0.0 ,0.0 ,0.0])

11 aYStar = np.array ([0.0 ,0.0 ,0.0])

12

13 a = np.array ([0.0 ,0.0 ,0.0])

14 a2 = np.array ([0.0 ,0.0 ,0.0])

15 c = np.array ([0.0 ,0.0 ,0.0])

16 b = np.array ([0.0 ,0.0 ,0.0])

17 NegativexPositionBeta1 = np.array ([0.0 ,0.0 ,0.0])

18 PositivexPositionBeta1 = np.array ([0.0 ,0.0 ,0.0])

19 NegativexPositionBeta2 = np.array ([0.0 ,0.0 ,0.0])

20 PositivexPositionBeta2 = np.array ([0.0 ,0.0 ,0.0])

21 aResultBeta1 = np.array ([0.0 ,0.0 ,0.0])

22 aResultBeta2 = np.array ([0.0 ,0.0 ,0.0])

23

24 z = np.array ([10, 13, 15])

25 FxR = np.array ([0.054 ,0.117 ,0.143]) #FxR from fig 6 on page 45 in CG -0134

26

27 #Reference ship
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28

29 L0 = float (276)

30 V0 = 19.5*np.sqrt(L0 /237)

31 B = float (40)

32 GMR = float (7)

33

34 a0Ref = (0.2*( V0/np.sqrt(L0 )))+((34.0 -(600.0)/( L0))/(L0))

35

36 aYRef = 0.912* a0Ref

37

38 #Actual Ship

39

40 du = float (46.3) #Outer diameter of tank

41 di = float (42.5) #Inner diameter of tank

42 df = du -di

43 V = float (19) #Speed in knots

44 B = float (49)

45 g = 9.81

46 az = 0.45

47 ay = 0.5

48 rho = 500.0 #Cargo density

49 kr = 0.39*B

50 xL = 0.3

51 GM = 5.0

52

53 #Volumes of cargo and tank

54

55 #Total volume of tank

56 Vol100 = 45585

57 #Volume of cargo when h/d = 29%

58 Vol[0] = ((np.pi *(0.29* du )**(2.0))/(3.0))*((3.0* di/2) -(0.29* du))

59 #Volume of tank when 50% filled

60 Vol[1] = Vol100 /2

61 #Volume when 65% filled

62 Vol[2] = Vol100 -((np.pi *(0.35* du )**(2.0))/(3.0))*((3.0* di /2.0) -(0.35* du))

63

64 #Calculations ----------------------------------------------------------------

65

66 a0 = (0.2*(V/np.sqrt(L0 )))+((34.0 -(600.0)/( L0))/(L0))

67

68 kappa = np.maximum (13*( GM/B),1)

69

70 Tr = (2*kr)/(np.sqrt(GM))

71

72 Theta = (50.0*(1.25 -0.025* Tr))/(B+75.0)

73

74 for i in range (0,3):
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75 aY[i] = a0*np.sqrt (0.6+2.5*(( xL +0.05)**2.0)+ kappa *((0.6* kappa *(z[i]/B))\

76 **2.0))

77

78

79 #Forces on reference ship. Step 5 in procedure! Read FxR from

80 #graph , rearrange equation and calculate Fx based on the

81 #same equation as in step 5. Gamma is

82 #equal to the density*g

83

84 FxRef[i] = FxR[i]*rho*g*(du **3.0)

85

86 #Forces on actual ship

87

88 Fx[i] = FxRef[i]*(aY[i])/( aYRef)

89

90 FTheta[i] = rho*g*Theta*Vol[i]

91

92 FyStar[i] = np.sqrt(Fx[i]**2+ FTheta[i]**2)

93

94 aYStar[i] = FyStar[i]/( rho*g*Vol[i])

95

96 #Resulting acceleration with ellipse

97

98 beta1 = 20*(np.pi/180)

99 beta2 = 21*(np.pi/180)

100

101 #Beta1

102 for i in range (0,3):

103 a[i] = aYStar[i]**(2)+( np.tan(beta1 )*az )**(2)

104 b[i] = -2*aYStar[i]**(2)

105 c[i] = aYStar[i]**(2)*(1 - az**2)

106

107 NegativexPositionBeta1[i] = (-b[i]-np.sqrt(b[i]**(2) -4*a[i]*c[i]))/\

108 (2*a[i])

109 PositivexPositionBeta1[i] = (-b[i]+np.sqrt(b[i]**(2) -4*a[i]*c[i]))/\

110 (2*a[i])

111

112 if NegativexPositionBeta1[i]<PositivexPositionBeta1[i]:

113 aResultBeta1[i] = PositivexPositionBeta1[i]/np.cos(beta1)

114 else:

115 aResultBeta1[i] = NegativexPositionBeta1[i]/np.cos(beta1)

116

117 #Beta2

118

119 a2[i] = aYStar[i]**(2)+ np.tan(beta2 )*az**(2)

120 NegativexPositionBeta2[i] = (-b[i]-np.sqrt(b[i]**(2) -4*a2[i]*c[i]))/\

121 (2*a2[i])

iv



122 PositivexPositionBeta2[i] = (-b[i]+np.sqrt(b[i]**(2) -4*a2[i]*c[i]))/\

123 (2*a2[i])

124

125 if NegativexPositionBeta2[i]<PositivexPositionBeta2[i]:

126 aResultBeta2[i] = PositivexPositionBeta2[i]/np.cos(beta2)

127 else:

128 aResultBeta2[i] = NegativexPositionBeta2[i]/np.cos(beta2)

A.2 Buckling Check According to DNVGL (1997)

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 #Input -------------------------------------------------------------

5

6 Sigma10 = 2.77*10.0**(7.0)

7 Sigma20 = -4.4*10.0**(7.0)

8

9 E = 7.1*10.0**(10.0)

10 nu = 0.3

11 SigmaF = 134.0*10.0**(6.0)

12

13 t = 0.055

14 R = 21.5

15

16 LambdaF = Sigma20/Sigma10

17

18 SigmaCL = ((E)/(np.sqrt (3.0*(1.0 - nu **(2.0)))))*(t/R)

19

20 LambdaCL = (SigmaCL )/( Sigma10)

21

22 #Knock -down Factor -------------------------------------------------

23

24 b = -0.5*np.exp (1)**(1.15* LambdaF)

25

26 if LambdaF <0.0:

27 g = (4.0+2.0* LambdaF )*np.sqrt(R*t)

28 delta1 = (0.01*g)/(1+(g/R))

29

30 if LambdaF >0.0:

31 g = 4.0*np.sqrt(R*t)

32 delta1 = (0.01*g)/(1+(g/R))

33

34 #delta1 = 0.042

35 delta2 = R/750.0

36

v



37 delta = delta1 +((delta2 -delta1 )*(np.exp (1)**(2.5*( LambdaF -1.0))))

38

39 #Iterate to find rho!----------------------------------------------

40

41 my = (delta/t)*np.sqrt(-b)

42

43 Psi = 1.0 -(0.375* np.sqrt(my))

44

45 GammaP = 1.0/ Psi

46

47 rhoiterations = np.array ([0.5 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0])

48

49 for i in range (0,9):

50 rhoiterations[i+1] = 1 -(((3.0*np.sqrt (3.0))/2.0)* GammaP*np.sqrt(-b)*\

51 (delta/t)* rhoiterations[i])**(2.0/3.0)

52 rho = rhoiterations[i+1]

53

54 #rho = 0.74

55 #Final calculations ------------------------------------------------

56

57 Fe = 1.0/( rho*LambdaCL)

58

59 Sigmae0 = np.sqrt(Sigma10 **2.0+ Sigma20 **2.0 - Sigma10*Sigma20)

60

61 LambdaE = np.sqrt(Fe*( SigmaF/Sigmae0 ))

62

63 LambdaCR = (1.0/( np.sqrt (1.0+ LambdaE **4.0)))*( SigmaF/Sigmae0)

64

65 # Safety factors

66

67 LambdaECheck = np.sqrt(( SigmaF/Sigmae0 )*( Sigma10/SigmaCL ))

68

69 if LambdaECheck <1.0:

70 kappa = 0.925+0.375* LambdaECheck

71 GammaSum = kappa *1.15

72

73 if LambdaECheck >1.0:

74 kappa = 1.3

75 GammaSum = kappa *1.15

A.3 Buckling Check According to DNVGL (2004)

1

2 import numpy as np

3 import matplotlib.pyplot as plt

4
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5 R = 21.5

6 t = 0.032

7 E = 7.1*10.0**(10.0)

8 SigmaY = 1.34*10.0**(8.0)

9

10 rt = R/t

11

12 rho = (0.5)/ np.sqrt (1.0+(( rt )/(100.0)))

13

14 SigmaE = rho *0.606*E*(t/R) #Pa

15

16 Lambda = np.sqrt(SigmaY/SigmaE)

17

18 SigmaCR = SigmaY /(np.sqrt (1.0+ Lambda **(4.0)))

19

20 Pcr = (( SigmaCR *2.0*t)/R)*10.0**( -6.0) #MPa

21

22 SigmaENoIMP = 0.606*E*(t/R)

23

24 PNoIMP = (SigmaENoIMP *2.0*t)/R*10.0**( -6.0)

A.4 Buckling Check of Cylinder According to DNVGL

(2017)

1 import numpy as np

2

3 #Hydrostatic Pressure - DNVGl -RP-C202 -----------------------------------

4

5 L = 4.0

6 t = 0.11

7 R = 21.5

8 nu = 0.3

9 E = 7.1*10**(10)

10

11 psi = 2.0

12 rho = 0.6

13

14

15 Z = ((L**(2.0))/(R*t))*np.sqrt (1.0-nu **(2.0))

16

17 xi = 1.04*np.sqrt(Z)

18

19 C = psi*np.sqrt (1+(( rho*xi)/(psi ))**(2.0))

20

21 #Elastic Buckling stress ----------------------------------------------
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22

23 SigmaE0 = (C*((np.pi **(2.0)*E)/(12.0*(1.0 -( nu **(2.0)))))*((t/L)**(2.0)))*10**( -6)

24

25 #Elstic Buckling Pressure ----------------------------------------------

26

27 Pe = (SigmaE0*t)/R

A.5 Plotting of Force-displacement Curve

1

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import pandas as pd

5

6 #Rean in file nr. 1-----------------------------------------------------------

7

8 df = pd.read_csv(’DisplacementSectionsAllLoads.csv ’,skiprows =[0,1,2,3,4,5,6,7],sep=’\s+’, names = [’Load ’,’Displacement ’])

9 df = df.drop(df.index [-1])

10

11 #Convert first column from string to float

12

13 df.Load = df.Load.astype(float)

14

15 #Read in file nr. 2----------------------------------------------------------

16

17 #df2 = pd.read_csv(’displ -EalstoP -IMPmode1.csv ’,skiprows =[0,1,2,3,4,5,6,7],sep=’\s+’, names = [’Load2 ’,’Displacement2 ’])

18 #df2 = df2.drop(df2.index [-1])

19

20 #Convert first column from string to float

21

22 #df2.Load2 = df2.Load2.astype(float)

23

24 #Compute load forboth files

25

26 Load = (df.Load *100) -200

27 #Load2 = df2.Load2 *2

28

29 #Set displacement vector

30

31 Displacement = df.Displacement

32 #Displacement2 = df2.Displacement2

33

34 #Plot the results

35

36 line1 = plt.plot(Displacement , Load , label=’Elasto -Plastic Material ’)

37 #line2 = plt.plot(Displacement2 [1:30] , Load2 [1:30] , label=’Elasto -Plastic Material ’)
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38 plt.show()

39 #plt.title(’Applied Acceleration = 70 m/s^2’,fontsize =20)

40 plt.xlabel(’Resultant Displacement [m]’,fontsize =15)

41 plt.ylabel(’Acceleration [m/s^2]’, fontsize =15)

42 plt.grid()

43 plt.xlim (0,1)

44 plt.ylim (0,60)

45 plt.legend(framealpha =1, frameon=True);

46 plt.show()

47

48 #Extract max and min values

49

50 LoadMax = max(Load)

51 DisplMax = max(Displacement)

52

53 #Load2Max = max(Load2)

54 #Displ2Max = max(Displacement2)

55

56 DisplMin = min(Displacement)

A.6 Reading of Largest Resultant Imperfection From

File

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import pandas as pd

4

5 #Read in resultant imperfection file

6

7 df = pd.read_csv(’pert_node_resNonLinBucklIMP.csv ’,skiprows =[0,1,2,3,4,5],sep=’\s+’, names = [’Index ’,’Imperfection ’])

8 df = df.drop(df.index [-1])

9

10 #df.Index = df.Index.astype(float)

11

12 #Find minimum displacement

13

14 ImpMin = 1

15

16 for i in range(0,len(df.Imperfection )):

17

18 if ImpMin > df.Imperfection[i] and df.Imperfection[i] > 0:

19 ImpMin = df.Imperfection[i]

20

21

22 #Find maximum displacement
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23

24 ImpMax = max(df.Imperfection)

A.7 Generation of Stress-strain Curve for Elasto-plastic

Aluminium

1

2 import matplotlib.pyplot as plt

3 import numpy as np

4

5 K = 426.0

6 n = 0.2004

7 E = 71000

8

9 Sigmay = 134.0

10

11 epsilon = np.linspace (0.0 ,0.2)

12

13 sigma = K*(epsilon -(( Sigmay )/(E)))**n

14

15 line1 = plt.plot(epsilon ,sigma)

16

17 plt.show()

18 plt.title(’Ramberg -Osgood curve , Aluminium ’,fontsize =20)

19 plt.xlabel(’Strain ’,fontsize =15)

20 plt.ylabel(’Stress [MPa]’,fontsize =15)

21 plt.grid()

22 plt.xlim (0 ,0.25)

23 plt.ylim (0 ,350)

24 plt.legend(framealpha =1, frameon=True);

25 plt.show()
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Appendix B

Routines from LS-PrePost

B.1 Function for Application of Static Sloped Liquid

Surface

1

2 #refx: surface of liquid

3 #The hydrostatic pressure should be applied after 2 seconds

4

5 float hpres(float t, float x, float y, float z, float x0, float y0 ,\

6 float z0)

7 {float fac , trise , refx , rho , acc , h, time;

8 trise = 0.1; refx = -9.03; rho = 1000.0; acc = 30.0; time = 0.0;

9 if(t >=2.0) time = t -2.0;

10 fac = 1.0;

11 h = refx -x;

12 if(h <0.0) h = 0.0;

13 return time*rho*acc*h;}
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Personal Communication

C.1 Communication with Dynamore Nordic on Extrac-

tion of Stresses
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C.2 Communication with Dynamore Nordic on Direc-

tion of Spherical Stresses
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C.3 Communication with Dynamore Nordic on Material

Model
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