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Abstract 8 

Purpose: Models for quantifying impacts on biodiversity from renewable energy technologies are missing within life 9 
cycle impact assessment (LCIA). We aim to provide an overview of the effects of wind energy on birds and bats, with 10 
a focus on quantitative methods. Furthermore, we will investigate and provide the necessary background for how these 11 
can in future be integrated into new developments of LCIA models.  12 
Methods: We reviewed available literature summarizing the effects of wind energy developments on birds and bats. 13 
We provide an overview over available quantitative assessment methods that have been employed outside of the LCIA 14 
framework to model the different impacts of wind energy developments on wildlife. Combining the acquired 15 
knowledge on impact pathways and associated quantitative methods, we propose possibilities for future approaches 16 
for a wind energy impact assessment methodology for LCIA.  17 
Results and discussion: Wind energy production has impacts on terrestrial biodiversity through three main pathways: 18 
collision, disturbance, and habitat alterations. Birds and bats are throughout the literature considered the most affected 19 
taxonomic groups, with different responses to the before-mentioned impact pathways. Outside of the LCIA framework, 20 
current quantitative impact assessment prediction models include collision risk models, species distribution models, 21 
individual-based models and population modelling approaches. Developed indices allow scaling of species-specific 22 
vulnerability to mortality, disturbance and/or habitat alterations. 23 
Conclusion: Although insight into the causes behind collision risk, disturbance and habitat alterations on bats and birds 24 
is still limited, the current knowledge base enables the development of a robust assessment tool. Modelling the impacts 25 
of habitat alterations, disturbance and collisions within an LCIA framework is most appropriate using species 26 
distribution models as those enable the estimation of species’ occurrences across a region. Although local scale 27 
developments may be more readily feasible, further up-scaling to global coverage is recommended to allow comparison 28 
across regions and technologies, and to assess cumulative impacts.  29 
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Wind energy has emerged as a promising alternative to fossil fuels in an attempt to halt climate change, with an annual 34 
average growth rate of 24.3% from 1990 to 2014 (IEA 2016). In 2013 it represented 2.5% of the global electricity 35 
supply, and it is expected to grow to between 15-18%  by 2050 (International Energy Agency 2013). However, research 36 
has shown that wind farms, both onshore and offshore, can cause direct and indirect damage to wildlife (e.g., Edenhofer 37 
et al., 2012; Rydell et al., 2012; Schuster, Bulling, & Köppel, 2015). For onshore wind energy, this research describes 38 
bats and birds in particular to be vulnerable to collision, disturbance and habitat alterations during the construction and 39 
operational stages. Even if this damage may be relatively low today in comparison to other energy sources (Sovacool 40 
2013), the cumulative impacts due to the installation of projected wind farms may significantly affect more vulnerable 41 
populations (Carrete et al. 2009; Masden et al. 2010a; Schaub 2012). Wind power might also come as an additional 42 
impact to already existing environmental impacts, contributing critically to increased impacts upon specific species 43 
and populations.  For the impacts of wind energy different impact assessments exist, however, these are all site-, 44 
species- or impact- specific and a globally applicable tool is still lacking. 45 

Life cycle assessment (LCA) is an environmental impact assessment tool, which is widely used to evaluate and 46 
compare the environmental performance of products or services through their whole life cycle by using different impact 47 
categories, such as climate change, ecotoxicity or land use (Hauschild and Huijbregts 2015). LCA has been used to 48 
evaluate and compare environmental impacts associated with different energy production systems, but typically 49 
focuses on greenhouse gas emissions (Evans et al. 2009). Martínez et al. (2009) performed a LCA of a multi-megawatt 50 
wind turbine, analyzing the manufacturing, use, disposal, and transport stages throughout several impact categories 51 
(e.g., global warming carcinogens, acidification). The authors show that manufacturing of the components is the largest 52 
contributor to the impacts of a wind turbine, which was supported by a study by Arvesen and Hertwich (2012). 53 
However, none of these studies took into account impacts on biodiversity, due to insufficient or lacking impact 54 
assessment models. Including biodiversity will likely increase the contribution of the construction and operational 55 
stages of a wind farm to its overall impacts, although the magnitude of it is unknown. Even with recent developments 56 
in incorporating biodiversity related impacts in LCA (e.g., Azevedo et al. 2013; Chaudhary et al. 2015; Verones et al. 57 
2016; Cosme et al. 2017), currently available life cycle impact assessment (LCIA) models do not cover wind energy 58 
specific impacts on biodiversity.   59 

 60 

In an attempt to cover the lack of biodiversity impacts from renewable energy production, we aim to summarize the 61 
existing knowledge base and its applicability for the future development of LCIA models covering the impacts of wind 62 
energy on biodiversity. New developments of LCIA models should take into consideration the varying vulnerability 63 
among different species groups to each type of impact. Focusing on onshore wind energy, we provide an overview of 64 
the main impact pathways affecting two major taxonomic groups, bats and birds, showing the most relevant state 65 
mechanisms and conditional variables that should be considered in the development of an impact assessment model. 66 
Although other authors have qualitatively reviewed this topic before, there is yet a lack for a summary of quantitative 67 
methods and a link to LCIA. Therefore, we present the most commonly used environmental impact assessment tools 68 
in the wind energy sector, as well as recent developments in these. Finally, we explore how these can be used as a basis 69 
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to develop future LCIA models and provide recommendations for the next steps in the direction of these model 70 
developments.  71 

 72 

2. Methods 73 

Several authors (Drewitt and Langston 2006; Kunz et al. 2007b; Rydell et al. 2012; Langston 2013; Marques et al. 74 
2014; Dai et al. 2015; Wang et al. 2015; Schuster et al. 2015) have comprehensively reviewed the effects of wind 75 
energy on biodiversity from an ecological point of view. These served as a gateway to a more refined search within 76 
the subsections covered in each article (e.g., articles focusing on one species or group of species, or on a particular 77 
impact pathway). Despite the availability of several reviews, there was only one article focusing on quantitative 78 
models; regarding avian collision risk models (Masden and Cook 2016). 79 
We searched for available peer-reviewed and “grey” literature on the topic of impacts of wind energy on wildlife 80 
published up until the date of final submission. Using mainly Google Scholar (Google 2017) and Oria (Bybsys 2017) 81 
we began by using key terms including, but not limited to, ”wind energy”, “wind power” “biodiversity”, “LCA”, 82 
“impacts”, “assessment”, “birds”, “bats”, “collision”, “displacement”, “disturbance”, “avoidance”, “habitat loss”, 83 
“habitat alterations”. For an overview of available quantitative models, we mainly used Google Scholar to conduct our 84 
search, using key terms such as “collision risk”, “model”, “quantifying”, “quantitative”, “habitat loss”, “avian”, 85 
“displacement”, “bat”, “species distribution” and “wind energy”. When searching for available LCA related 86 
methodologies, we also included the key terms “LCA”, “LCIA”, “Life Cycle Assessment”, and “Life Cycle Impact 87 
Assessment”, in addition to the previous terms. For each article, we went through its reference list in search for other 88 
relevant studies. The most highly cited literature was taken as a basis for understanding the topic. Mendeley (Mendeley 89 
Ltd. 2016) and Elsevier (Elsevier 2017) also proved to be valuable sources of knowledge by linking previous searches 90 
to related articles and providing recommendations on relevant articles. “Grey” literature was also considered in this 91 
review, consisting mainly of technical reports from highly credited institutions or companies working on the topic at 92 
hand because of either the reports’ high number of citations or very high relevance to this study. Some articles were 93 
excluded from this review, as they were already well described in other reviews and would not contribute any additional 94 
content to this article. We also excluded articles describing non-predictive quantitative methods, i.e. those that would 95 
not contribute to the development of LCIA models. In total, we reviewed 138 articles. 96 
 97 

3. Effects of wind energy development on biodiversity 98 

Knowledge on the effects of wind energy on biodiversity at a species level, and how these reflect impacts on a 99 
population level (May et al. 2017), is the first step to adequately quantify impacts, outside and within the LCA 100 
framework. Drewitt and Langston (2006), as well as many other authors, identified collision, disturbance, as well as 101 
habitat loss and change as the main effects from wind power on birds, both on- and offshore. For bats, Brinkmann 102 
(2006) stated that collision is likely the main cause of impacts.. Schuster et al. (2015) consolidated literature on effects 103 
from wind power on birds and bats, with a focus on both taxa. We note that disturbance and displacement are two 104 
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similar terms that may be used interchangeably in wind energy impact assessment literature, and should therefore be 105 
clarified. As defined by Furness et al. (2013) disturbance relates to the added expenditure of resources by animals to 106 
avoid a wind farm and associated activity. Displacement refers to the reduced number of animals occurring in the wind 107 
farm area and its vicinity. We also follow this terminology in this article. 108 
 109 

3.1. Collision 110 

Collision risk, or the probability of mortality due to collision of all individuals intersecting with a wind turbine, occurs 111 
during the operational life cycle stage of a wind farm. Species that generally do not exercise avoidance behavior 112 
towards human-made structures, specifically wind turbines, are at risk of colliding with turbine blades, or  the 113 
monopoles (Kunz et al. 2007a). Cook et al. (2014), and later May (2015), described three main types of bird avoidance 114 
behavior, according to the scale of its occurrence. Two of these, meso- and micro-avoidance, take place inside the 115 
wind farm space, and therefore directly affect collision risk. Meso-avoidance is described by May (2015) when birds 116 
evade the wind turbines individually by anticipating or reacting to their presence. However, the longer it takes the bird 117 
to do this (i.e. the closer it gets to the wind turbine before it responds to the obstacle), the more likely it is to collide. 118 
He explains that at this point, birds may still narrowly escape the turbine structure, which the author classifies as a 119 
micro-scale avoidance. The bird may also avoid the wind farm altogether (macro avoidance), in which case it will 120 
either lead to no response (if the avoidance does not alter the birds’ habitat use), or displacement through disturbance.  121 
Different variables contribute to the collision risk of birds and bats, and have been observed to be site-, species- and 122 
turbine-specific (Drewitt and Langston 2006; Marques et al. 2014; Hein and Schirmacher 2016). Some studies show 123 
that wind turbine collisions only account for a considerably small percentage of total bird mortality (Erickson et al. 124 
2005; Calvert et al. 2013; Sovacool 2013). This may appear as an argument to reduce efforts to mitigate impacts of 125 
wind energy development on wildlife. However, the different authors agree that fatalities from wind energy come in 126 
addition to other sources of mortality. In other words, it is not only the main source of a species mortality that should 127 
be looked into (while ignoring other causes), as even smaller additions to a population’s mortality rate can have severe 128 
consequences, especially to species with slow life-history traits (i.e., long lifespans, few offspring and late maturity) 129 
such as raptors or bats.   130 
 131 

3.2. Disturbance 132 

Displacement can be considered as reduced flight activity within the wind farm area due to a functional loss in habitat 133 
(May 2015). This is true for not only resident species, but also migratory species through loss of stopover sites. It may 134 
also lead to a higher expenditure of energy for species that need to alter their flight path to avoid the wind farm (also 135 
known as “barrier effect”), which may potentially have consequences on population health if a high number of wind 136 
farms is to be avoided (Masden et al. 2009; Masden et al. 2010b). The extent and severity of disturbance and consequent 137 
displacement is dependent on site and species characteristics (Drewitt and Langston 2006), and some authors consider 138 
displacement to be potentially more threatening for birds than collision (Kuvlesky et al. 2007). Pearce-Higgins et al. 139 
(2012) show how the construction stage of wind farms may have a greater displacement impact on bird populations 140 
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than the operational stage. Nevertheless, indirect impacts of wind energy production remain greatly understudied, 141 
making their quantification very challenging (May 2015). Bird displacement from wind farms has been shown to 142 
translate into the avoided habitat effectively being lost (Pedersen and Poulsen 1991; Larsen and Madsen 2000; Pearce-143 
Higgins et al. 2008; Pearce-Higgins et al. 2009; Garvin et al. 2011; Petersen et al. 2011; May et al. 2013). However, 144 
some species may return to their original habitat with time, becoming habituated to the presence of the wind farm 145 
(Madsen and Boertmann 2008). Masden et al. (2009) evaluated this deviation and concluded that although avoidance 146 
of a single wind farm may be negligible in terms of energy cost, there may be a harmful cumulative effect over the 147 
avoidance of several wind farms. 148 
Bats, on the other hand, appear to either be undisturbed by wind turbines and even in some cases attracted to them, 149 
which thereby can increase the number of collisions (Rydell et al. 2012). Kunz et al. (2007b) present several hypotheses 150 
that may explain bat attraction to turbines. Most of these are related to a potential attraction to insects drawn to the 151 
wind turbines or associated altered landscape, which is also supported by other authors (Brinkmann 2006; Rydell et 152 
al. 2010a). Another hypothesis presented by Kunz et al. (2007b), is that tree-roosting bats are attracted to the turbines 153 
that they perceive as potential roosts. This is further described in the work of Cryan et al. (2014), as well as other 154 
observed bat behaviors around wind turbines in an experimental setting. Nevertheless, Rydell et al. (2012) note that 155 
indirect effects of wind energy on bats are relatively small, while possible the most relevant on birds. 156 
 157 

3.3. Habitat alterations 158 

Construction of wind turbines, like any infrastructure development, alters habitats at and surrounding the construction 159 
sites. However, the extent of this effect may vary depending on the original setting. For instance, habitat alteration 160 
effects may be more pertinent in e.g. forested and/or pristine wilderness areas, versus multiple-use landscapes with 161 
pre-existing anthropogenic influences. Specialist species, i.e. species with a narrow range of usable habitats (high 162 
habitat specificity) are more vulnerable (Swihart et al. 2003; Munday 2004; de Baan et al. 2013), and therefore 163 
potentially suffer a higher impact than more wide-ranging and generalist species.  164 

Apart from the direct loss of habitat for certain species where the turbines are placed, the tall structure of the turbines 165 
may be mistaken for previous natural structures such as trees, which, as described in the previous section, may attract 166 
certain species and lead to increased collision risk (i.e., an ecological trap; May 2015). In addition, roads and power 167 
lines associated with the wind farm may cause habitat fragmentation, which can be particularly damaging in previously 168 
unaltered areas (Rydell et al. 2012). Although these alterations can reduce habitat suitability for some species, other 169 
species may find these new conditions more favorable (Hötker et al. 2006). In turn, increased densities of benefiting 170 
species may attract predators, such as bats or birds of prey, which may end up suffering higher collision rates while 171 
hunting. Smallwood et al. (2007), for instance, showed how increased densities of ground squirrels near the base of 172 
wind turbines attracted burrowing owls closer to the blades, consequently increasing collision risk.  173 

 174 

3.4. Conditions influencing effects of wind farms on wildlife 175 
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Species-specific conditions 176 
Bat behavior towards wind farms and turbines can be explained with the concept of guilds. Denzinger and Schnitzler 177 
(2013) group different bat species based on their use of echolocation, foraging habitats and modes, as well as sensory 178 
and motor adaptations. They identify three main guild types, namely open space, edge space and narrow space, which 179 
forage at different distances from background structures (such as wind turbines) and may be more or less apt to avoid 180 
them. The authors conclude that the foraging and echolocation behaviors of all species within a guild are so similar 181 
that a small number of species or observations can be used as proxy for the whole guild with high certainty.  182 
Birds’ sensory capabilities, as well as behavior, may play a significant role in their response to a wind farm or turbine 183 
(e.g., Marques et al. 2014; May et al. 2015). Moreover, the morphology of birds appears to be a determinant parameter 184 
for collision risk (e.g., Bevanger 1994; Janss 2000; Herrera-Alsina et al. 2013). Rayner (1988) grouped flying birds 185 
according to their size, aspect ratio and wing loading and described how these relate to different flight behaviors. The 186 
mechanisms behind bird (and bat) flight, and how this in turn reflects in their flight behavior, are further described by 187 
Lindhe Norberg (2007). 188 
 189 
Environmental conditions 190 
Topographical features of the region influence bat and bird activity. Migrating bats use linear aspects of the landscape 191 
for navigation/movement, such as river valleys, tree rows or forest edges (e.g., Ahlén et al. 2009; Furmankiewicz and 192 
Kucharska 2009), which could increase collision rates with wind turbines placed in the proximity of these features 193 
(Rydell et al. 2010b). Similarly, Johnson et al. (2004) determined a negative correlation between bat activity and 194 
distance to woodlands. This knowledge is particularly important for the conservation of tree roosting bats, which may 195 
mistake wind turbines to be potential roosting or mating sites (Cryan et al. 2008), as these activities typically take place 196 
in tall trees (Cryan et al. 2014). Certain birds, such as raptors, are also known to utilize landscape features enhancing 197 
thermal or orographic lift, such as ridgelines or slopes,  in order to save energy, making their passages predictable to a 198 
certain extent (Duerr et al. 2012). An analysis by Hötker et al. (2006) on collision risk factors showed that habitat type 199 
has a significant influence on bird casualty rates, particularly mountain ridges and wetlands.  200 
Season also affects bird and bat behavior, particularly in terms of habitat use and flight activity, and consequentially 201 
collision risk. The highest bat fatality rates due to collision are observed during late summer and autumn, during which 202 
bat activity is typically at its peak (due to, among other factors, migration periods) (e.g., Brinkmann 2006; Rydell et 203 
al. 2010; Baerwald and Barclay 2011a). May et al. (2010, 2011) determined that the white-tailed eagle (Haliaeetus 204 
albicilla) had considerably higher flight activity in the spring, as well as more fatal collisions with wind turbines. 205 
Barrios and Rodríguez (2004) also noted a seasonal variation in the flight frequency of vultures in wind farms, with 206 
higher counts, but also variance, during the winter-autumn period. These findings are supported by Smallwood et al. 207 
(2009), who evaluated different bird species flying in wind farms at the Altamont Pass Wind Resource Area, USA. 208 
Relatively large seasonal variations in bird numbers are associated with migratory behavior, although some of these 209 
also coincide with post-breeding periods, when there is an increase of young and inexperienced birds (Drewitt and 210 
Langston 2008).  211 
Meteorological conditions, particularly wind speed and direction as well as temperature, are essential in determining 212 
the probability of negative effects of a specific site (e.g., by creating orographic and thermal updrafts), influencing the 213 
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flight behavior and activity of different species (Richardson 1998; Langston 2013; May et al. 2015). In particular, 214 
wind, fog and rain have a direct impact on birds’ maneuverability, flight height and sensory perception (Langston and 215 
Pullan 2003; Arnett et al. 2007). Furthermore, temperature (Arnett et al. 2006) and low wind speeds are positively 216 
correlated with bat activity, near wind turbines, and therefore a useful parameter in determining the areas of highest 217 
collision risk (e.g., Rydell et al. 2010; Baerwald and Barclay 2011a; Cryan et al. 2014). Brinkmann et al. (2006) report 218 
that operating wind turbines only at wind speeds above 5.5 m/s can be an effective measure to reduce bat collision 219 
rates with wind turbines. This was also tested and confirmed by Baerwald et al. (2009), at the same start-up speed, 220 
with only marginal costs from the decreased electricity production. Similarly, Barrios and Rodríguez (2004) show that 221 
wind speed also affects bird collision risk of raptors, with the highest being at wind speeds between 4.6-8.5 m/s, which 222 
is consistent with the observations of Smallwood et al. (2009). However, some species are able to fly at speeds 223 
considerably higher than these observed limits (Winter 1999), which needs to be taken into consideration when 224 
planning such mitigation strategies.   225 

 226 
Technological conditions 227 
Finally, type, size and number of wind turbines, as well as layout of wind farms are considered by some authors to be 228 
relevant aspects in determining avian and bat collision risk. Smallwood and Thelander (2004) identified tower size, 229 
blade tip speed and wind farm layout to be the most relevant factors contributing to golden eagle (Aquila chrysaetos) 230 
mortality at the Altamont Pass Wind Resource Area (APWRA). Barclay et al. (2007), on the other hand, reported that 231 
turbine height did have a significant effect on bats, but not birds, while rotor blade length had no effect on bird or bat 232 
fatality rates. de Lucas et al. (2008) also found taller turbines to be linked to a higher number of fatalities, although 233 
they could not conclude on the effect of the wind farm layout. Hötker et al. (2006) drew opposing conclusions, 234 
determining a statistically insignificant effect of turbine hub height on collision rates. Nevertheless, Hötker et al. (2006) 235 
recommend that wind farms should be arranged with turbine arrays parallel to the main flight direction to decrease the 236 
risk of collision. Rotor speed has also been identified as a determinant collision risk factor by model developers (e.g., 237 
Tucker 1996), such that more rotations per minute imply a higher chance of a bird or bat colliding if it traverses the 238 
rotor swept area. This makes turbine designs of inherent slower blade rotation (e.g., vertical axis wind turbine 239 
(VAWT)) potentially less deadly to birds and bats (Islam et al. 2013, Santangeli & Katzner 2015). Furthermore, designs 240 
that can cause a lower degree of motion smear of the blades may potentially be more detectable by avian species 241 
(Hodos 2003). 242 

 243 

4. Impact assessment modelling approaches 244 

Integrating wind energy impacts on biodiversity in LCIA not only depends on knowledge on the impacts, but also on 245 
how these can be assessed using currently available models. Therefore, and given the current lack of a literature review 246 
on the matter, we compiled different predictive modelling approaches used in assessing collision, disturbance and 247 
habitat alterations on bird and bat species. We grouped these models by type of method used, noting that each type 248 
may cover more than one effect. Table 1 summarizes our findings, and provides an overview on the inputs required 249 
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for each model type to cover the relevant conditions as described in the previous section. All model types are further 250 
detailed in the following paragraphs. At the end of this section, Table 2 summarizes a critical comparison between the 251 
different model types, showing the different advantages and disadvantages of each model type for inclusion in LCIA. 252 
 253 
Table 1 here 254 
 255 

4.1. Collision Risk Models (CRMs) 256 

Masden and Cook (2016) recently reviewed available avian collision risk models. Tucker (1996b) presented the first 257 
of these models, calculating collision risk as a ratio between the time spent by a bird flying through the rotor swept 258 
area over the time taken by one single rotation of the rotor blades. Similarly, Band et al. (2007) developed a model for 259 
onshore wind turbines which associates the risk of collision with the probability of the bird occupying the same space 260 
as the turbine blade during its flight through the rotor swept area. This model was then extended to take into account 261 
the variable distribution of birds with height within the rotor swept area (Masden and Cook 2016). Also other models 262 
have been developed (e.g., Podolsky 2008; Holmstrom et al. 2011; Eichhorn et al. 2012), but in general these  take a 263 
similar approach to Tucker (1996b) and Band et al. (2007). Bird size, flight characteristics, as well as rotor blade length 264 
and speed are typical inputs in this type of models and are combined with the expected number of birds flying within 265 
rotor swept height. In another approach, Korner-Nievergelt et al. (2013) used a combination of carcass searches and 266 
animal density indices in a mixture model to determine collision rates, yielding results “at least as precise as 267 
conventional estimates” from carcass search data. New et al. (2015) developed a predictive CRM based on the 268 
assumption of a relationship between pre-construction avian exposure and subsequent fatalities. Among other 269 
differences, this model distinguishes itself for the direct inclusion of uncertainty, as well as considering the entire 270 
turbine height when calculating the total hazardous volume of a wind turbine. This means that birds in this model are 271 
considered to be able to collide when flying under the rotor area, as opposed to most CRMs which only consider rotor 272 
blade length. Chamberlain et al. (2006) assessed the effects of estimating and using avoidance rates in the development 273 
of a collision risk model, based on the original Band model (Band et al. 2007). Fatality rates derived from estimated 274 
avoidance rates may be used for comparative purposes, but the authors underline the urgent need for more specific and 275 
empirical avoidance rate studies. Lastly, Calvert et al. (2013) estimated avian mortality, in Canada, due to different 276 
sources. The authors developed a stochastic simulation model and compared the effects of mortality at different life 277 
stages of different species, as well as across different mortality sources. This model also allowed the assessment of the 278 
effects at a population level. 279 

 280 

4.2. Species distribution models (SDMs) 281 

Species distribution models are used to determine the probability of occurrence of a species in a given location. 282 
Therefore, these can be used to predict avian and bat activity and, together with posterior effect modelling, the 283 
likelihood of a negative effect. One interesting application of SDMs is seen in a recent study by Santos et al. (2013), 284 
who applied a maximum entropy model (MaxEnt; Phillips et al. 2006), using presence-only data to determine the 285 
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collision risk associated with wind farms of four different bat species in Portugal. Given a small number of occurrences 286 
and a given set of environmental conditions, MaxEnt can be used to identify regions where a species is likely to be 287 
present (Pearson et al. 2007), and therefore delineate areas of higher conflict probability. Roscioni et al. (2014) also 288 
applied the MaxEnt approach, but rather to determine the impacts of wind energy developments on habitat connectivity 289 
for bats. Rebelo and Jones (2010) compared this approach with the ecological niche factor analysis (ENFA) (Hirzel et 290 
al. 2002), a similar model which also uses presence-only data, for modelling the potential distribution of a bat species 291 
in Portugal. The authors conclude that the differences between the two models make ENFA more appropriate for 292 
determining a species’ potential distribution, while MaxEnt is better suited for determining a species’ realized 293 
distribution. Hayes et al. (2015) created seasonally dynamic SDMs to study the impacts on migratory hoary bats 294 

(Lasiurus cinereus). Apart from MaxEnt, the authors used four other SDM approaches to model the species’ 295 

distribution. Bastos et al. (2016) assess the local impacts of wind energy on the skylark (Alauda arvensis) populations 296 
in Portugal via an index derived from a SDM, showing how this combined framework can be used for predictive impact 297 
assessments Elith et al. (2006) summarizes and compares other different modelling methods used in predicting species’ 298 
distributions from occurrence data.  299 
Bright et al. (2008) presents a bird sensitivity map of 16 protected species in Scotland, in which species distribution 300 
data were buffered and rated taking into account foraging ranges, collision risk and susceptibility to disturbance. The 301 
SDM was then overlapped with a map of existing or planned wind farm locations in order to provide a proportion of 302 
affected bird species by these developments. Similarly, Reid et al. (2015) modelled the movements of bearded vultures  303 
(Gypaetus barbatus) in southern Africa in terms of habitat use. Other behavior-inclusive SDMs focus on migratory 304 
species. Pocewicz et al. (2013) mapped important migratory areas for birds in Wyoming, US, including stopover 305 
habitats. The authors combined different geographical features, (such as ridges, streams and likely thermal updraft 306 
locations), which directly correlate to increased activity of migratory bird species. Similarly, Liechti et al. (2013) 307 
developed a model enabling the determination of areas with predictable high concentration of migratory bird species 308 
in Switzerland, which translate to a higher collision risk. Also, with a focus on soaring birds, BirdLife International 309 
(2017) developed a sensitivity mapping tool for migratory soaring birds in the Middle East. If migratory paths are 310 
known or predictable, siting new wind farms away from them could potentially decrease collisions and displacement 311 
effects on those species. These and other applications of species distribution models are further analyzed by Guisan 312 
and Thuiller (2005). May et al. (2013) evaluated habitat utilization and displacement of white-tailed eagles using 313 
Resource Utilization Functions (RUF), which correlate a species space use to its resource utilization. Other authors 314 
also used RUFs to assess potential negative effects on birds from wind energy developments (Mcnew et al. 2014; 315 
Miller et al. 2014). 316 

Two models have been developed to quantify the spatial implications of “barrier effects”. Masden et al. (2012) details 317 
models used to described birds’ movement in response to wind farms, based on bird movement data collected post-318 
construction of the wind farm. Masden et al. (2010a) had previously modelled the energy cost of avoidance by several 319 
seabirds due to offshore wind farm placement, using the model developed by Pennycuick (2008). The study concluded 320 
that the additional energy costs of avoiding the wind farm may be insignificant for some species, but a species-specific 321 
approach should be taken when assessing the effects of wind farms on seabirds. 322 
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 323 

4.3. Individual Based Models (IBMs) 324 

Several individual-based models (IBMs) have been developed for avian impacts. IBMs allow researchers to simulate 325 
interactions of individuals with the surrounding environment, as well as their adaptations to environmental changes. 326 
Grimm et al. (2006) further describe the concepts behind this tool, potential applications and provide a protocol for 327 
further developments, named ODD (‘Overview’, ‘Design concepts’ and ‘Details’). Eichhorn et al. (2012) followed this 328 
protocol in their collision risk model of red kites (Milvus milvus). They used landscape grid cells (with habitat 329 
characteristics based on West Saxony, Germany), a red kite and a wind turbine as entities in their model, each with 330 
their own particular variables. The bird entity is based essentially on its behavior and flight characteristics, as well as 331 
probability of collision (based on the Band model) and avoidance. For the wind turbine, position, hub height and rotor 332 
blade length were used as inputs. Schaub (2012) also based his model on the red kite species, although not following 333 
the same protocol, but nevertheless modelling the effect of a varying number and layout of wind turbines on the 334 
population dynamics of the species. Ferreira et al. (2015), also followed the protocol proposed by Grimm et al. (2006),  335 
for estimating bat mortality risk at wind farms. As with the model produced by Eichhorn et al. (2012), three entities 336 
were selected, referring to landscape, the bat and the wind turbines. Soil-use and altitude of the landscape were included 337 
in the first entity, taking into consideration the use for foraging and/or roosting by bats. Wind speed, temperature and 338 
species behavior determined the inputs of the bats entity. As for the turbines, the authors also included the variable of 339 
blade length, but not height. Masden (2010) developed an IBM following the ODD protocol to evaluate changes in 340 

collision mortality and habitat-related productivity in hen harriers (Circus cyaneus) due to technological conditions. 341 

From her results, the author concludes that the impacts of wind turbines on hen harriers depended not only on the 342 
number of turbines, but also their location, suggesting the need for knowledge on a species’ ecology in wind energy 343 
development planning. A recent work by Warwick-Evans et al. (2017) shows the use of the ODD protocol to study the 344 
effect of wind turbines on body mass, mortality rate and breeding success of Northern gannets (Morus bassanus). The 345 
authors state that this is the most complex and comprehensive model of its kind yet, and has the potential to be adapted 346 
for other seabird populations and other types of impacts from spatial change. 347 

 348 

4.4. Population models 349 

Widely used in ecology, population viability analyses (PVA) estimate the probability of a population or species 350 
becoming extinct in a given period of time, and based on a number of case-dependent variables together with 351 
demographic parameters (Beissinger and McCullough 2002). Multiple authors have used the program VORTEX (Lacy 352 
and Pollak 2014), an IBM used for PVA, to simulate the effects of avian mortality from wind farms on population 353 
dynamics of different species (Hötker et al. 2006; Carrete et al. 2009; García-Ripollés and López-López 2011; 354 
Rushworth and Krüger 2014). This type of modeling is mainly based on demographic parameters (e.g., mortality rates, 355 
population size, age at first reproduction), although some environmental variables such as carrying capacity can be 356 
incorporated. Sanz-Aguilar et al. (2015) designed a PVA without using VORTEX, using instead linear regression and 357 
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R based scripts to determine stochastic population growth. Nevertheless, their model is based on demographic 358 
parameters. Erickson et al. (2015), using branching process models, delivered a predictive model for the probability of 359 
extinction of four representative species: two bats and two birds. Although branching process models are in essence 360 
individual-based models, this output is characteristic of PVAs, and based on population dynamics. Rydell et al. (2012) 361 
presented a simple, deterministic population model based on population size, survival rates, fecundity and number of 362 
turbines. The mortality from wind turbines is a simple subtractive factor in the equation, dependent only on the annual 363 
mortality at each turbine and the number of turbines. Bellebaum et al. (2013) estimated mortality thresholds for red 364 
kites in Germany using a potential biological removal (PBR) model. They affirm that PBR models are needed to enable 365 
more precise estimations of thresholds for the added mortality from wind energy developments. In his PhD thesis, 366 
Dahl (2014) used a different approach and presented an age-structured matrix-based population model for the white-367 
tailed eagle in Smøla, Norway. This model focused on the demographic parameters of the population in study, 368 
including not only survival rates but also reproductive success. In a report by Grünkorn et al. (2016), matrix and 369 
elasticity models were used to identify consequences of bird mortality at a population level, for three raptor species, 370 
taking into account age-specific mortality and reproduction rates. Lastly, Cook and Robinson (2017) recently published 371 
an article where they present a framework for assessing wind energy impacts at a population level using Leslie matrix 372 
models. These models consider a generic seabird species with characteristics derived from literature. Of note is the 373 
evaluation of decision criteria previously summarized by Green et al. (2016). The authors highlight the need for 374 
transparency when it comes to the use of demographic values of populations. However, it would be very difficult, if 375 
not impossible at the moment, to obtain demographic data for a large number of species at scales relevant to LCIA. 376 

 377 

4.5. Index-based models 378 

Data scarcity can be a constraint when modelling ecological processes, especially at higher scales when many different 379 
species are involved. To overcome this obstacle, index-based models can potentially be used as proxies, delivering 380 
score-based outputs on effects rather than, for instance, a number of individuals affected. Data requirements are lower, 381 
and often based on what is known of a species in terms of e.g., behavior, morphology, habitat use. Garthe and Hüppop 382 
(2004) developed a vulnerability index for species affected by offshore wind power farms, with a focus on German 383 
seas, based on different seabird characteristics as well as their conservation status. More recently, Furness et al. (2013) 384 
constructed similar indexes for collision and displacement impacts on Scottish marine birds. Although somewhat 385 
simplistic in its nature, this type of sensitivity indexes can be used to identify important impact sources, as well as map 386 
areas of higher risk, even when experimental data is not widely available. Using the indexes from these publications, 387 
Busch and Garthe (2016) developed a novel method for assessing displacement combining a matrix of potential 388 
displacement and mortality levels of seabirds from offshore wind farms with a potential biological removal (PBR) 389 
model (Wade 1998). Perhaps one of the methodologies that encompasses the most impacts of wind energy on bats and 390 
birds to date was designed by Diffendorfer et al. (2015). The methodology prioritizes species based on previously 391 
gathered data, combining each species’ conservation status, as well as its relative risks from collision fatalities and 392 
habitat modification. The consequent impacts at a population level are then evaluated with the methodology’s 393 
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demographic and PBR models. The authors followed-up on this work, this time focusing on prioritizing bird taxonomic 394 
orders according to their impact risk indexes (Beston et al. 2016). 395 
 396 
Table 2 goes here 397 
 398 

5. On modeling biodiversity impacts from wind energy production in LCIA 399 

The integration of wind energy impacts on biodiversity in LCIA should include all three aforementioned impact 400 
pathways: collision, disturbance and habitat alterations. Figure 1 illustrates how the impact pathways can conceptually 401 
be integrated into a logical assessment flow (conditions – state – effect – impact), and the potential contribution of the 402 
different prediction models to quantify these. We propose that separate characterization factors should be developed 403 
for the three impact pathways and both birds and bats. All bat and bird species should be grouped into guilds or groups 404 
depending on their morphology and behavior, in order to cover as many species as possible without requiring all 405 
information for every individual species (which may not be available). However, a final impact score should include 406 
all the impacts on all species groups together, expressed in common LCIA units such as potentially disappeared fraction 407 
of species (PDF) as recommended by the UNEP-SETAC Life Cycle Initiative (Verones et al. 2017). Verones et al. 408 
(2015) propose four different options to aggregate land and water use impact scores into a single score: equal weight 409 
for species, equal weight for taxa and two options with special consideration of species’ vulnerability. Similar 410 
approaches could be used to combine impact scores for bats and birds, over the main impact pathways, into one score 411 
compatible with current LCIA methodologies. These options are particularly relevant when deciding if and which 412 
taxonomic groups between birds and bats should be given a higher impact score from wind energy developments. 413 

The three impact pathways generally affect a species’ probability of occurrence at a specific site. Whereas habitat 414 
alterations may lead to the loss of presence of a species at a site, displacement and collision reduce the number of 415 
individuals and thereby indirectly the probability of occurrence. Spatial estimation of species probability of occurrence 416 
can be done using SDMs. Harte et al. (2009) presents an approach on species-area relationships that estimates the 417 
number of species in a certain area through correlation of species richness with probability of occurrence. With such 418 
estimates, and knowing at which sites wind turbines are located, GIS tools can be used to quantify effects from wind 419 
energy developments in a spatially explicit manner. Estimating an altered probability of occurrence due to the expected 420 
effect, e.g. using respectively flight initiation distances (Blumstein 2006)and collision risk models (e.g. Tucker 1996, 421 
Band 2007), the expected loss of occurrence at a site can be determined,. MaxEnt, for instance, is a SDM that derives 422 
a score in each map cell proportional to the probability of occurrence of a species. Summing scores across species 423 
renders insight into the species richness at a site, allowing the calculation of regional and potentially global PDFs. An 424 
impact score can then be derived by applying species-area relationship models (SARs), which are already used in 425 
LCIA. Unlike classical SARs, which consider all biodiversity to be lost when habitat is changed, countryside SARs 426 
(Pereira and Daily 2009) factor in habitat suitability for a given species. This habitat suitability factor is analogous to 427 
the proposed use of MaxEnt scores. In addition, estimating a species distribution rather than directly using binary 428 
presence-absence range map is an improvement in terms of ecological significance. 429 
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Only in cases where population size and species distribution are known (either empirically or through estimation), can 430 
the number of affected individuals in each cell be determined. With such data, other approaches such as PVAs and 431 
IBMs also become feasible for developing (regional) LCIA models. Furthermore, if a relation between the area (or 432 
number of individuals) lost and probability of extinction is known, one can potentially quantify results directly in terms 433 
of PDF and therefore easily integrate the results in LCIA. However, to our knowledge, such relations are not known, 434 
and population data is scarce for a large number of species. As a generic approach for inclusion within the LCIA 435 
framework, such models are therefore deemed less appropriate. Although IBMs would give the most detail, they are 436 
in general  too complex and data intensive to be able to cover a large number of species and spatial distribution. 437 
Nevertheless, future research can be done to further develop or adapt CRMs or index-based models in order to obtain 438 
a descriptive result of a fraction of species lost, or another justifiable unit in LCIA. 439 

It is important to note that the three identified impact pathways are hierarchical. Displacement of individuals only 440 
occurs outside the area of habitat alteration. Only individuals which were not displaced face the risk of collision with 441 
turbines. This hierarchy should be taken into account to avoid double counting. However, species are known to respond 442 
behaviorally to these risks through avoidance, reducing the risk of an impact to occur (May 2015). Attraction of bats, 443 
or birds, towards wind turbines may on the contrary lead to increased occurrence and thereby a higher risk of collisions. 444 
Such pertinent avoidance and attraction effects should therefore also be taken into account.   445 

Furthermore, it is necessary to take into consideration that different species or populations may be more vulnerable to 446 
an effect than others. Understanding a species’ or species group’s behavior and population dynamics is key to 447 
adequately integrating vulnerability at an impact level. (Verones et al. 2013) added a vulnerability score to their LCIA 448 
characterization factors for biodiversity impacts from water consumption. The authors developed this score from 449 
species geographical distribution ranges together with IUCN threat levels. More variables could be added in order to 450 
adapt this method to other types of impacts on biodiversity, such as those from onshore wind energy on bats and birds. 451 
It is also important to keep the spatial scale that the methodologies are developed for in mind. Characterization factors 452 
developed for a certain region may not be applicable in another, due to differences in species composition, 453 
vulnerability, as well as technical and environmental characteristics. Furthermore, data may not be available for every 454 
region in the same quantity or quality, which therefore adds uncertainty to methodologies developed at a global scale. 455 
In addition, scaling up or down (i.e., going from a local to a global spatial scale, or vice-versa) must take into 456 
consideration that species composition, as well as environmental variables, may change in the process. Wessman 457 
(1992) further develops on the issues of scaling, discussing the matter of extrapolation of environmental or ecological 458 
information in modelling approaches. 459 

Irrespective of the approach used to quantify the impacts in question, various types of data are required (Table 1). 460 
Several existing databases cover some of these information needs (e.g., species data, turbine characteristics and 461 
locations, environmental data), while  other types of data may require the use of allometric relationships (e.g., bird 462 
wing loading from body mass). Empirical species-related data at a global level can be obtained from BirdLife 463 
International (2016) on birds, while IUCN (2016) provides data on many other species groups, including threat status 464 
and range maps. For occurrence data, GBIF (2016) provides an open access database describing more than 1.6 million 465 
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species. In addition, Wilman et al. (2014) compiled a great amount of data on animal diet and mass for all extant bird 466 
and mammal species, which can potentially be used to estimate important morphological parameters such as wing 467 
loading and aspect ratio using allometric relationships (Lindhe Norberg 2007). Lack of species data can also potentially 468 
be coped with by using better-known species, with similar characteristics, as proxies for a larger group (Denzinger and 469 
Schnitzler 2013). Such data can be used to, for instance, rank species according to characteristics that render them 470 
more vulnerable to the different effects of wind energy developments.  Environmental data, such as wind speed and 471 
topography, may be required to predict a species’ occurrence, especially when using SDM software such as MaxEnt. 472 
Temperature and wind speed data can be acquired from databases such as the NASA Langley Research Center 473 
Atmospheric Science Data Center Surface meteorological and Solar Energy (SSE) web portal (NASA 2016), among 474 
others. The U.S. Geological Survey (2016) provides remote sensing data, including digital terrain models. 475 
Technological data may be available through direct contact with the operating company, or local datasets. Remote 476 
sensing databases such as the CORINE Land Cover (Heymann et al. 2000) can provide information for present land 477 
cover types, which can also aid in the prediction of a species’ preferred habitat. Knowledge on a species’ flight 478 
initiation distance allows the determination of the extent of area disturbed for that species, although no database 479 
currently exists to provide these distances for a large number of bird species (but see Blumstein 2006). Lastly, although 480 
many of these databases provide relatively generic data, local datasets may also exist with higher resolution or more 481 
accurate data (e.g., in Norway: Artsdatabanken 2017; Kartverket 2017; NVE 2017) to complement larger databases. 482 

 483 

Figure 1 goes here 484 

 485 

6. Conclusions and recommendations 486 

Available literature on the impacts of wind energy on biodiversity allowed this article to focus on two main research 487 
gaps: a lack of a review on predictive quantitative methods on the topic, and a lack of attempts to develop a 488 
methodology for LCIA to address this type of impacts. This is a first effort to provide the necessary background 489 
knowledge for the development of said LCIA methodology, in terms of the effects of wind energy on birds and bats 490 
and how these are modelled outside of LCA. Based on the results in this study, we can now start to develop LCIA 491 
models for assessing impacts of onshore wind power on birds and bats. 492 

Collision, displacement and habitat alterations have been identified as the main impacts of wind energy on wildlife in 493 
numerous articles. According to current research, birds and bats are the most susceptible species groups to these effects 494 
for onshore wind turbines. As their responses to wind energy developments are considerably different, models should 495 
be developed separately for each of the two species groups. In addition, assessment of these species should take into 496 
consideration that within the two taxonomic groups there is considerable behavioral and morphological variation, 497 
especially among bird species. 498 
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Existing predictive models for the three main impact pathways show that quantitative estimations can be performed. 499 
GIS tools and remote sensing have proven invaluable in spatially differentiating areas of variable risk. More 500 
specifically, SDMs are widely used for determining areas of higher probability of conflict with biodiversity. This type 501 
of modelling has proven especially important in collision risk modelling, given the existing scarcity of data usually 502 
required by the more complex CRMs. However, an application of SDMs at a global scale for estimating wind energy 503 
impacts on biodiversity is still lacking. Index-based models offer a clear, simplistic approach to not only scale impacts 504 
according to the species’ sensitivity, but to include certain aspects that are often excluded from assessments, 505 
particularly those related to a species vulnerability (e.g., life-history traits, behavior). 506 

Inclusion of the three main pathways for impacts of wind energy on biodiversity in LCIA requires adaptation of these 507 
quantitative methods to the methodologies used in the LCA framework. In other words, results must be compatible 508 
with those of other ecosystem-related impact categories, which should be communicated in units of PDF (Verones et 509 
al. 2017). As an example, in order for a number of fatalities to be integrated, knowledge of a total number of individuals 510 
would be needed, so that a percentage loss of each species is obtained. This integration must be spatially explicit, with 511 
the support of GIS tools, given the variability between regions or countries in terms of ecosystem composition and 512 
wind energy technology. We suggest local characterization factors be constructed first, as data requirements should be 513 
lower and more accessible. Once a working model is in place, it should then be followed by an attempt of upscaling to 514 
a global level, taking into consideration data and technological constraints of up-scaling models. In either case, we 515 
point out that modelling habitat alterations, together with or followed by disturbance, is more readily feasible compared 516 
to collision. Modelling the first two impact pathways relies strongly on available GIS tools and remote sensing data, 517 
as well as knowledge of each species group’s general behavior towards wind turbines. SDMs show promise in their 518 
ability to tackle this set of impacts, and can be combined with currently used SARs in order to directly obtain 519 
characterization factors in units of PDF, as described before. Vulnerability should be introduced at this point for 520 
instance by means of indexes, in order to weigh species according to how strongly they are affected. 521 

The proposed LCIA development is not only a step towards more comprehensive impact assessments in LCA, but also 522 
outside of it. Most of the reviewed quantitative methods focused on only one or two of the three main impact pathways 523 
and at relatively small scales. Also, many studies are based on small samples or on few species that are not 524 
representative for all birds or bats (Sovacool 2013). This underlines the importance of grouping species after e.g. 525 
morphological similarities and creating archetypes for environmental conditions when data for all species and 526 
conditions is not available. Furthermore, there is still a lack of impact quantification relative to the energy produced 527 
by each turbine or wind farm. This hinders the possibility of an adequate comparison between wind energy production 528 
and other types of energy production, as well as between wind farms with variable production efficiencies. LCA has 529 
the potential to, in future, cover all these gaps, as well as integrate impacts on biodiversity from other energy sources. 530 
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