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Abstract
Hate speech detectors must be applicable
across a multitude of services and plat-
forms, and there is hence a need for detec-
tion approaches that do not depend on any
information specific to a given platform.
For instance, the information stored about
the text’s author may differ between ser-
vices, and so using such data would reduce
a system’s general applicability. The pa-
per thus focuses on using exclusively text-
based input in the detection, in an op-
timised architecture combining Convolu-
tional Neural Networks and Long Short-
Term Memory-networks. The hate speech
detector merges two strands with character
n-grams and word embeddings to produce
the final classification, and is shown to out-
perform comparable previous approaches.

1 Introduction
An increasing number of online arenas are be-
coming available for users worldwide to pub-
lish their opinions, from Internet fora and
blogs, to microblog services like Twitter and
social media such as Facebook and MeWe, and
various chat rooms. However, in all arenas
that are open to user generated content, there
is a risk of some people misusing this oppor-
tunity to purposefully insult others, or even
to convey hateful messages. This is often in
breach of the given arena’s terms and condi-
tions, and sometimes, in some countries, ille-
gal. Hence, there is a need for automatic de-
tection of these messages across a multitude of
online arenas, but without depending on any
information specific to a given forum, so that
the systems can be used across platforms with-
out being changed.
Notably, information about the text’s au-

thor, such as their usage history or their so-
cial network and activities, have been shown

to be useful when categorising hate speech
(Qian et al., 2018; Unsvåg and Gambäck,
2018; Mishra et al., 2018). In particular, on
some occasions, an author belonging to an
exposed group may use language that would
normally be considered hateful towards that
group, without the statement coming through
as hateful. In such cases, disregarding user
information may lead to misclassifications.
However, what user metadata is stored may
differ between services, and so using such in-
formation reduces the general applicability of
a system. The research in this paper there-
fore aims at avoiding any such information,
using exclusively text-based input in the de-
tection. This is accomplished through a deep
learning-based architecture combining Convo-
lutional Neural Networks and Long Short-
Term Memory-networks, and by utilising both
character n-grams and word embeddings as in-
put in a dual-strand methodology.
The rest of the paper is structured as fol-

lows: Section 2 describes prior work on hate
speech detection. Section 3 then introduces
the data set used in the experiments and Sec-
tion 4 the proposed architecture. Section 5
presents experiments and results, while Sec-
tion 6 discusses those. Finally, Section 7 con-
cludes and presents ideas for future work.

2 Related Work

Research on hate speech detection has at-
tempted many kinds of input features, and
many different classification methods. In the
early research, the input types used were
highly language dependent, utilising specific
syntax features and the presence of certain
words. Later, these kinds of features were
exchanged for more general text representa-



tions. Specifically, the approaches got more
directed towards word- and character mod-
els, and in various alternations. Some re-
searchers, such as Gambäck and Sikdar (2017),
used both types at the same time, while others,
e.g., Waseem and Hovy (2016) and Pavlopou-
los et al. (2017), used only one of the types.
Each kind of feature has its own advantage.
The character n-gram approach is relatively
resilient against misspellings, while word em-
beddings allow related words to produce sim-
ilar output. In Mehdad and Tetreault (2016),
word and character n-grams were used sepa-
rately, in order to compare their performance,
showing character n-grams to be more effec-
tive. Some systems, like that of Founta et al.
(2018a), also apply various metadata and in-
formation about the author of the text. How-
ever, as the aim of this paper is to achieve clas-
sification more independent of the origin plat-
form of the texts, such platform-dependent
systems will largely be disregarded here.

Early research used traditional machine
learning approaches, e.g., Support Vector Ma-
chines (SVMs) (Yin et al., 2009) and Naïve
Bayes-based classifiers (Razavi et al., 2010).
Some more recent research has also used tra-
ditional machine learning approaches, such as
Logistic Regression (Waseem and Hovy, 2016).
However, most recent work has focused on
Deep Learning approaches: Gambäck and Sik-
dar (2017) and Park and Fung (2017) used
Convolutional Neural Networks (CNNs), while
Pavlopoulos et al. (2017) used Recurrent Neu-
ral Networks (RNNs) with Gated Recurrent
Units (GRUs). Others have combined neural
network-types, with Zhang et al. (2018) util-
ising a CNN followed by a GRU-based RNN,
and Founta et al. (2018a) a two-part approach,
with one part using word embeddings fed into
an RNN-layer consisting of GRU-nodes, and
the other, parallel part taking metadata as in-
put to a feed-forward network.

Yet others have tried combining deep learn-
ers with more traditional methods: Badjatiya
et al. (2017) tested both a CNN-based and
a Long Short-Term Memory (LSTM)-based
system (Hochreiter and Schmidhuber, 1997),
in combination with Gradient Boosted Deci-
sion Trees (GBDT), while Gao et al. (2017)
also used an LSTM, but running in par-

allel with a logistic regression system. In
the SemEval 2019 OffensEval shared task
(Zampieri et al., 2019b), the best performing
systems utilised pretrained contextual embed-
dings such as BERT (Bidirectional Encoder
Representations from Transformers) (Devlin
et al., 2018) and ELMo (Embeddings from
Language Model) (Peters et al., 2018), hence
in essence focusing on word-level n-grams (or
word pieces as defined in BERT).
Several hate speech detection systems have

been tested on the data set from Waseem and
Hovy (2016) and can thus be compared more
directly. Although the SVM-Naïve Bayes clas-
sifier of Mehdad and Tetreault (2016) outper-
formed their RNN-based system, deep learn-
ers seem to in general perform better than
purely traditional machine learning classifiers
on this dataset, with the CNN-based system
of Gambäck and Sikdar (2017) outperform-
ing the Logistic Regression-based system of
Waseem and Hovy (2016), and with Badjatiya
et al. (2017) claiming outstanding results for
a hybrid system combining an LSTM with a
GBDT. However, other researchers have failed
to reproduce the experiments by Badjatiya
et al., with Fortuna et al. (2019) indicating
that Badjatiya et al.’s stated results rather
were due to a faulty cross-validation process
and with Mishra et al. (2018) noting that Bad-
jatiya et al.’s decision tree-boosted version was
tested on instances that the LSTM already
had been trained on, leading to over-fitting.

3 Data Set

The largest data set used in research on in-
appropriate language is the one in Pavlopou-
los et al. (2017), with 1.6 million comments
from the Greek sports site Gazzetta. However,
the labels in this data set are based on which
comments the site’s moderators found to be
inappropriate in some way, including, but not
restricted to, hate speech. The Twitter data
set from Davidson et al. (2017) is also reason-
ably large and could have been an interesting
option, but also somewhat lacks justifications
for how each sample has been labelled: David-
son et al. attempted to differentiate between
hate speech and other offensive content, but
relied heavily on the crowd-sourced (Crowd-
Flower) annotators to make the distinction.



Version Neutral Racist Sexist Total

Original 11,559 1,972 3,383 16,914
Available 10,913 1,924 3,097 15,934

Table 1: Size of the Waseem and Hovy (2016) data
set, as available at the time of data collection

On the other hand, Zampieri et al. (2019a),
Golbeck et al. (2017), Founta et al. (2018b),
and Waseem and Hovy (2016), all used ex-
tensive sets of rules when labelling their data.
However, the first of those is aimed at offen-
sive language, while the second is not straight-
forwardly available. And although the data set
of Founta et al. (2018b) is substantially larger,
the one by Waseem and Hovy (2016) has been
used in more previous research, and was thus
taken as the basis here, too, for reasons of eas-
ier comparison.
The data set of Waseem and Hovy (2016)

originally contained 16,914 tweets labelled for
racism and sexism. However, 980 of these
tweets had been deleted by the time the data
were collected, leaving 15,934 samples. As Ta-
ble 1 shows, most of the deleted tweets were
from the neutral group. As this is the largest
group, it is also where the impact of deletion is
the smallest. The smallest group, on the other
hand, is where the loss is the lowest; more
than 97% of the racist-labelled tweets were still
available. The group with the greatest loss rel-
ative to size, is the sexist. Even here, though,
more than 91% of the tweets still remained. In
total, the loss constitutes less than 6% of the
original tweets.
An issue with the data set is its representa-

tiveness. One aspect of this is the relatively
high percentage of hate speech, at about 30%.
In the data set of Pavlopoulos et al. (2017),
too, about 30% of the samples were consid-
ered inappropriate, but there the ‘positive’ la-
bel was not restricted to just hate speech. In
contrast, a study on the Facebook-pages of
two Norwegian TV channels showed that every
10th comment was hateful (Bjurstrøm, 2018),
even after the media outlets had had 12 hours
to moderate the debate. Similarly, Burnap
and Williams (2015) found that 11% of tweets
gathered in relation to a particularly hate-
inducing event included offensive or antagonis-
tic content, while Davidson et al. (2017), with
a somewhat stricter definition, found 5% of

their data to contain hate speech. This means
that the propensity of hate speech is higher in
the training data than what the system would
face in real use. Furthermore, the Waseem and
Hovy (2016) data was collected using boot-
strapping, in particular of tweets related to an
Australian TV cooking show, which could af-
fect the results when applying a system trained
on the data to arbitrary tweets.

4 Architecture

As discussed above, the input forms that
have proven best for hate speech identification
are word embeddings and character n-grams.
Hence, the system described here uses both
forms as input. However, the character- and
word-based inputs are initially treated sepa-
rately, in a dual-strand approach. Specifically,
the system consists of a preprocessor and three
main components. Two of those work in paral-
lel, operating on the word and character-based
inputs, respectively. The last component de-
termines the final classification by combining
the output of the previous two. Apart from
the preprocessing, the system is implemented
using TensorFlow.1

Text Preprocessing: The text samples
(tweets) are first divided into mini batches,
normally containing 20 samples each. Each
tweet is then treated in two disjoint ways; one
to create character representations, the other
to create word representations. In both cases,
Özcan’s tweet-preprocessor2 is used.
In the character-based preprocessing, each

tweet is first cleared of emojis and lowercased,
with each character transformed into a one-
hot vector representation (a vector of length
31, with one slot each for the 26 letters of
the English alphabet, four for space, number,
‘#’, and ‘@’, and one slot for any charac-
ter that does not fall into any of the other
categories). The samples of each mini batch
are then zero-padded (post-data padded with
only zero-valued vectors) to the length of the
longest sample of that mini batch.
In the word-based preprocessor, emojis,

URLs and Twitter-mentions are replaced with
placeholders. Then hashtags are split into sin-
gle words at capital letters, and the texts are

1www.tensorflow.org
2pypi.python.org/pypi/tweet-preprocessor



Figure 1: Character-handling component

lowercased, with punctuation and other sym-
bols removed, and with all symbols that are
not alphanumeric replaced by a space. The
tweets are tokenised by splitting on white-
spaces and the remaining words are trans-
formed into their word embedding represen-
tations, with the batch samples zero-padded.
The word embeddings used here are pre-

trained on external data sets, so as to avoid
an additional source of overfitting due to the
relatively small size of the Waseem and Hovy
(2016) data set. Two different kinds of em-
beddings were used, word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014).
The word2vec-embeddings have a dimension-
ality of 300 and were trained on about 100 bil-
lion words from the Google News data.3 The
GloVe-embeddings on the other hand, were
trained on Twitter, using 2 billion tweets.4
The highest available dimensionality, 200, was
used. Out of Vocabulary words were given a
random value of corresponding dimensionality.

Word Input Component: The part of the
system working on the word-based input, i.e.,
on word embeddings, is in the form of a Long
Short-Term Memory (LSTM) network. The
architecture allows for both unidirectional and
bidirectional LSTM. The component’s output
for each sample should be the output state of
the LSTM at the sample’s last relevant (non-
zero) time step. This is extracted by finding
the non-padded lengths of the different sam-
ples, and collecting the LSTM-output at the
time step corresponding to the last element.

3code.google.com/archive/p/word2vec/
4nlp.stanford.edu/projects/glove/

Figure 2: Architecture of the final classifier

Character Input Component: The
character-based portion of the system is
divided into two parts; one convolutional
and one recurrent, as shown in Figure 1.
The architecture is inspired by that of Zhou
et al. (2015) in how it combines these two
elements. The first part takes the input and
performs a 1-dimensional convolution, using
multiple filters of size n, essentially treating
the input as character n-grams. The output
of this convolution is sorted by locations in
the input, so that results of different filters
at any given location appear together. This
way, the results of the convolutions imitate
the time steps of an LSTM. The architecture
allows for several layers of convolution. In the
second part of the component, the results of
the convolution are input to an LSTM. The
sample lengths of the LSTM are calculated
from the output of the convolutions and used
to extract the component output.

Final Classifying Component: Since dif-
ferent input samples vary in length, the above
two components have to treat irregularity in
input size, but the final component requires
fixed-size inputs. Consequently, the outputs
at the last relevant (last non-zero) time step
for each of the first two components are com-
bined by merging the two output vectors of
each sample, with the result fed into a fully
connected, feed-forward network, as Figure 2
shows. Note that the input layer simply pro-
vides data for subsequent layers, without ap-
plying any activation function.
In the output layer, the network has one

node for each possible label (sexist, racist and
neutral). The hidden nodes use ReLU as acti-
vation, but the output layer uses linear activa-



tion, with the weighted sum of a node’s inputs
used directly as output. This is run through
a softmax layer, returning a probability distri-
bution on which class a sample belongs to.

Training: The classification error of a sam-
ple during system training is calculated using
cross entropy. The gradients of each weight’s
contributions to these losses are then calcu-
lated. After this, the gradients of the en-
tire mini batch are accumulated, and used to
update the system’s weights according to the
Adam optimiser (Kingma and Ba, 2014).
In order to avoid overfitting the network to

the training data, some regularisation is nec-
essary. The primary means of regularisation
in this system is dropout (Srivastava et al.,
2014), which is applied to the dense layers of
the final component, as well as the LSTMs of
the character- and word-based components. In
the LSTMs, the dropout nodes vary from one
time step to the next, and no dropout is ap-
plied to the states of the LSTM. In addition,
the system uses L2-regularisation, with the L2-
penalty calculated using all non-bias weights
in the system, then added to the cross entropy
classification error. Furthermore, the system
uses early stopping, so that the training does
not continue for too long. Combined, these
three regularisers reduce overfitting in the sys-
tem, thus increasing its general applicability.
In the experiments below, the hyperparame-

ters of the Adam optimiser had the values sug-
gested by Kingma and Ba (2014). The proba-
bility of “switching off” nodes due to dropout
was set to 0.5, in accordance to the sugges-
tions of Srivastava et al. (2014). All experi-
ments were run using 10-fold cross validation,
with stratified folds and size 20 mini batches.

5 Experiments and Results

To determine the optimal configurations of the
system described above, experiments were car-
ried out with varying layer sizes of the neural
networks, as well as varying number of layers
used in the different components. In addition,
the system was tested using both bidirectional
and unidirectional LSTMs.
In order to evaluate the effects of the vari-

ations consistently, the sizes of the word-
based and the character-based components
were changed separately. That is, when the

sizes of the character-based component were
changed, the word-based part was kept con-
stant, and vice versa. This was done so
that the best configuration of each component
could be found independently, reducing the
number of configurations to explore. As for
variations in the number of layers, these were,
for similar reasons, also made independently
by component. Furthermore, in the character-
based component, the number of convolutional
and LSTM layers were changed separately. In
the experiments with changes to the convolu-
tion, variations in the length of the convolu-
tional filters were also made.
In addition, the system was tested using

only character-based input, in order to eval-
uate the effectiveness of the CNN-LSTM com-
bination on the character input. For compar-
ative purposes, only using word-based input
was also tested, disabling the character-based
component. Beyond varying the setup config-
urations of the network itself, the effects of us-
ing different word embeddings were explored.

System Configuration Experiments:
The first experiments separately tested varia-
tions to the components, with the unmodified
part forming a baseline setup. In the first
half of these experiments, each kind of nodes
had one layer. Hence, the character-based
component had one convolutional layer,
followed by one LSTM layer; the word-based
component had one LSTM layer; and the
dense, feed-forward part had one hidden layer.
In the baseline system, the word-based com-

ponent had one layer of 150 LSTM nodes. This
dimensionality was chosen because it reduces
the number of dimensions from the word em-
beddings, going down to half the size in the
case of word2vec, without decimating the in-
formation carried through. The convolutional
layer in the character-based part had 64 fil-
ters of length 3. The filter length here denotes
the n in the character n-grams. This was set
to 3 as trigrams have proven useful in prior
work (Waseem and Hovy, 2016; Mehdad and
Tetreault, 2016). 64 convolution filters were
used since 64 is a power of 2 approximately
twice the length of the character vectors. As
such, it is significantly greater than the charac-
ter vector size, while at the same time smaller
than the size of each filter (i.e., 3 × 31).



Character Word Unidirectional LSTM Bi-LSTM

Filters LSTM LSTM P R F1 F1

64 100 150 79.12 75.87 77.46 77.46
100 100 150 79.06 74.90 76.93 77.08
50 50 150 79.42 74.94 77.11 77.31
512 256 150 79.59 75.24 77.35 77.06

64 100 50 79.87 74.58 77.13 77.11
64 100 100 79.30 74.67 76.92 77.04
64 100 200 79.10 75.38 77.20 77.21
64 100 250 79.24 74.67 76.89 77.10

Table 2: System configuration experiments.

The character-based component’s LSTM
layer had 100 nodes, a number chosen to bal-
ance the impact of the word- and character-
based components on the final classifier, and
since it should not be too much higher than
the dimensionality of the convolution output
(i.e., the number of filters used in the convo-
lution). Hence, the final component had 250
input elements (150 from the word-based part
and 100 from the character-based) and three
output nodes; one for each class. Basheer and
Hajmeer (2000) suggest that the number of
nodes in a hidden layer should be between the
numbers of input and output nodes. While
such rules are not entirely reliable, the hidden
layer size was set to 120; near the average of
the input and output sizes.
In addition, the bidirectional version of this

baseline configuration was tested, with each
direction of the LSTMs having the dimension-
ality described above, thus giving the input
to the final component twice the number of
dimensions of the unidirectional case, so the
hidden layer dimensionality was doubled.
The system was then tested with varying

configurations in the character-based compo-
nent, using 100 convolutional filters along with
the 100 dimensions of the character LSTM.
Then, the size was first cut down to 50 for
both number of filters and LSTM layer size,
and then increased to 512 filters and an LSTM
layer size of 256. Finally, experiments were
performed where the dimensionality of the
word-based component was changed, while the
character-based part had the default configu-
ration, running the system with word-LSTM
sizes of 50, 100, 200 and 250, respectively.
The results are shown in Table 2, for both

the uni- and bidirectional configuration ver-
sions (only unidirectional precision and recall
values are displayed, since the Bi-LSTM per-

Layer 1 Layer 2 P R F1

Filters Length Filters Length

64 3 — — 79.50 77.33 78.40
64 4 — — 80.53 76.03 78.22
64 3 64 3 80.45 76.18 78.26
64 3 128 3 79.88 76.58 78.19
128 3 64 3 79.40 76.75 78.05
64 3 64 4 80.01 76.93 78.44
64 3 128 4 79.71 76.20 77.92
128 3 64 4 80.00 76.07 77.98
64 4 64 3 80.51 77.73 79.10
64 4 128 3 80.35 76.88 78.58
128 4 64 3 80.48 76.12 78.24
64 4 64 4 80.57 76.34 78.40
64 4 128 4 79.72 76.89 78.28
128 4 64 4 79.55 76.84 78.17

Table 3: Varying the convolutional segment of the
character-based component. The setup columns
show the number of filters at each consecutive
layer, along with their corresponding filter lengths.

formance did not vary substantially). As the
table shows, the baseline setup (row 1) worked
best in terms of both recall and F1-score. Sev-
eral other configurations had better precision,
such as the version where the word-based, uni-
directional LSTM had a layer size of 50, but
the corresponding recall values were compara-
tively lower than in the baseline setup.
In these first experiments, the coefficient re-

stricting the impact of the L2-regularisation
was given the commonly used value 0.001.
However, the experiments showed that smaller
values gave better results, so later experiments
used a value of 0.0002 for this coefficient.

Convolution Experiments: In the next
group of experiments, shown in Table 3,
variations were made to the convolutional
part of the character-based component (hence
only unidirectional LSTMs were used, not bi-
directional). Specifically, the system perfor-
mance with filter length 4 was tested; then,
an extra layer of convolution was added, with
combinations of length 3 and length 4 filters
being used. The standard number of filters in
these experiments was 64, with the layers us-
ing a higher number having 128 filters. Next,
the same three experiments were performed
with the first convolutional layer using filters
of length 3, and the second layer length 4.
Then, the order was reversed, with the first
layer filters having length 4 and the second
layer length 3. Finally, the experiments were
run with both layers using length 4 filters.



Setup P R F1

Baseline setup 79.50 77.33 78.40
Two character-LSTM layers 80.21 76.20 78.15
Two character-LSTM layers, bidirectional 79.73 76.59 78.13
Two word-LSTM layers 79.61 76.31 77.92
Two word-LSTM layers, bidirectional 79.69 76.38 78.00
Two convolutional layers (64 × 3, 64 × 3) 79.39 76.09 77.71and two character-LSTM layers
Two convolutional layers (64 × 4, 64 × 3) 80.29 76.36 78.27and two character-LSTM layers
Two LSTM layers each 79.40 76.38 77.86

Table 4: Using multiple LSTM layers

Since these experiments used a smaller
value for the coefficient controlling L2-
regularisation, the first row of Table 3 reports
a different baseline performance than row 1
in Table 2. The baseline setup still had the
second highest score on recall, out-performed
only by the best setup in these experiments.
This configuration, with two layers of 64 con-
volutional filters where the first layer’s filters
were of length 4, and the second layer’s of
length 3, had a substantially better perfor-
mance than the rest of the setups.

Two-layer LSTM Experiments: In addi-
tion to multilayer convolution, configurations
using two-layer LSTMs were tested, with two
same-sized layers in the LSTM part of the
word- and character-based components, re-
spectively. First, the character-based compo-
nent’s LSTM was given two layers of size 100,
with the rest of the system having the settings
of the baseline configuration. Then two 150-
dimensional LSTM layers in the word-based
component were used, reverting the character-
based component back to the baseline. Fur-
ther, the system was tested with both two
convolutional layers and two LSTM layers in
the character-based part, trying two settings
of the convolutional section, one ‘baseline-like’
with the two convolutional layers each having
64 filters all of length 3, and the other version
being the one which performed best in the con-
volution experiments above, i.e., two layers of
64 convolutional filters, with the first layer’s
filters having length 4, and the second layer’s
length 3. Finally, the baseline configuration
was expanded to two LSTM layers in each of
the system components holding LSTMs.

Table 4 shows the results and also includes
the performance of the baseline setup, for
comparison. Using two unidirectional LSTM
layers in the character-based component of

Setup P R F1

Baseline setup 79.50 77.33 78.40
Baseline, characters only 81.38 77.18 79.23
Two conv. layers (64 × 4, 64 × 3) 80.51 77.73 79.10
Two conv. layers (64 × 4, 64 × 3), char. only 80.23 77.84 79.01
Baseline, words only 79.99 77.07 78.50

Table 5: Using only character or only word input

the baseline system setup and on the opti-
mal convolution configuration (i.e., with fil-
ters of length 4 in the first convolutional layer)
showed marked precision increases. How-
ever, recall in those cases was significantly
weaker than in the baseline setup. Similar re-
sults, but with less marked precision increase,
were found when using two LSTM layers in
the word-based part, as well as in the bi-
directional setup versions, and the equivalent
two-character LSTM. Using two convolutional
layers with all filters at length 3 and using
two LSTM layers in each of the system compo-
nents, gave lower precision than the baseline.

Single Component Experiments: Fi-
nally, the baseline setup was used, with one
convolutional layer and one LSTM layer, but
with the word-based LSTM removed and the
dense layer reduced to 50 nodes. Then the
equivalent was done using the best-performing
configuration above, the system having two
convolutional layers of 64 filters each, with
lengths 4 and 3. For comparison, the system
was then tested using just the word-based in-
put. Here, too, the baseline setup was used as
basis, meaning one LSTM layer of size 150.
The results are shown in Table 5. Inter-

estingly, both of the character-only systems
outperformed the baseline. Furthermore, the
characters-only version of the baseline setup
showed the highest precision of all the experi-
ments in this research. As for the characters-
only version of the configuration with two con-
volutional layers, the recall was higher than in
the version including word-based input, but
the precision was lower. Notably, it still out-
performed the word-inclusive baseline setup on
all measures. The word-only configuration was
outperformed by the character-only systems,
but still performed better than the baseline
using all inputs.
All the above experiments utilised pre-

trained word2vec embeddings. For compari-
son, the baseline and optimal configurations



were also evaluated using GloVe embeddings.
In terms of F1-score, both of the tested con-
figurations improved when changing to GloVe.
The baseline setup improved on all measures,
though the improvement in precision was very
slight. In the configuration with two convo-
lutional layers, the precision got worse when
changing to GloVe-embeddings. However, the
recall of this setup using GloVe was the high-
est recorded throughout this research (78.28),
outperforming the second best (the same con-
figuration with the word-based component dis-
abled) by more than 0.4%. In addition,
the precision, while lower than the equiva-
lent word2vec-performance, was still accept-
ably high (80.22). Hence, the resulting macro
average F1-score was 79.24 (84.14 micro aver-
age), which is higher than any other configu-
ration in these experiments.

6 Discussion

The experimental results showed several con-
sistencies. Notably, the recall values of all sys-
tem configurations were lower than the cor-
responding precision. Furthermore, the recall
had much greater variations between the dif-
ferent classes. Specifically, all the setups had
the best performance on the recall of neutral
samples, and the worst on sexist. The recall
of sexist samples was also where the main dif-
ference from the change in value of the L2-
coefficient occurred. Using the original value
of this coefficient, the recall on sexist samples
was mostly in the range 53–58%, whereas with
a lower coefficient value, the averages were
mainly in the range 60–65%. In general, the
performance on neutral samples was the most
stable. The performance on the sexist class
was mainly higher than on the racist one, al-
though they tended to display opposite varia-
tions, so that when one class performed better,
the other performed worse.
As Table 5 shows, using only one type of

input in the default setting improved perfor-
mance compared to using both. This is likely
due to a difference in convergence rates be-
tween the two strands of the system, similar
to the findings of Founta et al. (2018a). Word
embeddings are inherently more informative
than the one-hot vectors used for character
input, and so the word-based strand is likely

to have a significantly higher convergence rate
than the character-based one. Such a discrep-
ancy in convergence rates may cause one of
the strands to dominate the other, hamper-
ing the training and resulting in an overall
suboptimal performance. This issue may also
have affected the experiments on variations in
layer sizes and number of layers, as changes in
the size of a system component will change its
rate of convergence. These variations would
work to the advantage of some configurations
and the disadvantage of others. The results
indicate that this may be the case. However,
they are not sufficient to draw a conclusion.
The difference in performance between us-

ing word2vec- and GloVe-embeddings may to
some extent be explained by the fact that
the word2vec-embeddings were trained af-
ter removing stop words from the training
data. Hence, in word2vec-embeddings, the
stop words were considered Out of Vocabulary
terms and given a random value. With the
average number of words in the samples being
15, the impact of not having a meaningful rep-
resentation of stop words could be significant.
GloVe-embeddings, on the other hand, include
representations of typical stop words, and thus
have an advantage in the classification.
Several other researchers have tested their

hate speech detection systems on the Waseem
and Hovy (2016) data set. Table 6 shows
the performance of some of these. Notably,
Waseem (2016) introduced another, but re-
lated, data set, which Gambäck and Sikdar
(2017) used, while Park and Fung (2017) used
both data sets combined. A problem with the
results shown in Table 6 is that different pa-
pers have used different methods to calculate
the performance, with some using micro aver-
aging (or weighted macro averaging) and oth-
ers macro averages. Hence, Table 6 includes
both the macro and micro averaged perfor-
mance of the optimal configuration found in
Section 5 (GloVe-embeddings and two convo-
lutional layers: 64×4, 64×3).
As the macro averaged performance (up-

per part of Table 6) shows, the system us-
ing the optimal configuration with two con-
volutional layers and GloVe-embeddings out-
performed the Waseem and Hovy (2016) sys-
tem, and also had a higher performance, in



System P R F1
m
ac
ro

av
g

64×4, 64×3, GloVe 80.22 78.28 79.24
Waseem and Hovy (2016) 72.87 77.75 73.89
Waseem (2016), multiclass — — 53.43
Waseem (2016), binary — — 70.05
Gambäck and Sikdar (2017) 85.66 72.14 78.29
Fortuna et al. (2019) — — 78

w
ei
gh

te
d
/
m
ic
ro

av
g 64×4, 64×3, GloVe 84.14 84.14 84.14

Zhang et al. (2018) — — 82
Park and Fung (2017) 82.7 82.7 82.7
Founta et al. (2018a) 84 83 83
Badjatiya et al. (2017) 83.9 84.0 83.9
Mishra et al. (2018) (WS) 82.86 83.10 82.37
Mishra et al. (2018) (LR) 84.07 84.31 83.81
Mishra et al. (2018) (HS) 83.50 83.71 83.54

Table 6: System performance comparison

terms of F1-score, than the system of Gam-
bäck and Sikdar (2017). However, that paper
used a slightly different data set, and so the
comparison is not entirely valid. In the case of
the system by Waseem (2016), the approach
described in Section 4 performed significantly
better, particularly compared to the multiclass
version, although these results are not for the
primary data set of Waseem (2016), which had
markedly higher performance.
Based on micro averaged performance val-

ues, the system clearly outperforms those of
Zhang et al. (2018) and Park and Fung (2017).
It also outperforms the system of Founta et al.
(2018a), when this is restricted to using text
as input, and the best non-GBDT version re-
ported by Badjatiya et al. (2017).
Since Badjatiya et al.’s GBDT performance

and cross-validation have been found to be
questionable, Fortuna et al. (2019) give the
macro average results they reported obtaining
using the Badjatiya et al. (2017) system with
decision tree boosting. Furthermore, Mishra
et al. (2018) reimplemented three other sys-
tems in order to use as baselines for testing the
improvements that could be obtained when
utilising author profiling features. Hence,
Mishra et al. (2018) (WS) is essentially a re-
production of Badjatiya et al.’s results, but
with a slightly different setup, while Mishra
et al. (2018) (LR) reproduces the LR-based
approach taken by Waseem and Hovy (2016),
and Mishra et al. (2018) (HS) is their im-
plementation of the RNN approach used by
Pavlopoulos et al. (2017).

7 Conclusion and Future Work

The dual-stranded CNN-LSTM combination
for hate speech detection outlined here, which
uses both word embeddings and character n-
grams as input, performed relatively well on
the Waseem and Hovy (2016) data set. Specif-
ically, the system did well when using two lay-
ers of convolution on the character input, with
diminishing filter lengths, combined with sin-
gle layer LSTMs in both strands. Using multi-
ple layers of LSTMs, on the other hand, actu-
ally reduced performance. With a macro av-
eraged F1-score of 79.24, the architecture per-
formed better than all comparable, state-of-
the-art systems on the data set.
It is possible that the different conver-

gence rates in the architecture’s word-based
and character-based components may have re-
duced performance. A way to avoid this could
be to train the system using an interleaving
technique, as done by Founta et al. (2018a)
— or take the similar multi-task learning ap-
proach suggested by Waseem et al. (2018) —
so that only one of the two parallel system
components is trained at any given time.
Another idea for further research would be

to test the impact of using the architecture
described here in combination with other top-
level classifiers, such as the Gradient Boosted
Decision Trees used by Badjatiya et al. (2017).
It could also be interesting to investigate util-
ising dynamic convolutions for classifying hate
speech, since Wu et al. (2019) report those
as out-performing approaches based on self-
attention, such as BERT (Devlin et al., 2018),
on other language processing tasks.
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