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Abstract. We consider composition operators Cϕ on the Hardy space of
Dirichlet series H 2, generated by Dirichlet series symbols ϕ. We prove two
different subordination principles for such operators. One concerns affine sym-
bols only, and is based on an arithmetical condition on the coefficients of ϕ.
The other concerns general symbols, and is based on a geometrical condition
on the boundary values of ϕ. Both principles are strict, in the sense that
they characterize the composition operators of maximal norm generated by
symbols having given mapping properties. In particular, we generalize a re-
sult of J. H. Shapiro on the norm of composition operators on the classical
Hardy space of the unit disc. Based on our techniques, we also improve the
recently established upper and lower norm bounds in the special case that
ϕ(s) = c+ r2−s. A number of other examples are given.

1. Introduction

In a seminal paper, Gordon and Hedenmalm [9] obtained a characterization of
the bounded composition operators on the Hardy space of Dirichlet series H 2. A
Dirichlet series f(s) =

∑
n≥1 ann

−s belongs to H 2 if

‖f‖2H 2 :=

∞∑
n=1

|an|2 <∞.

The present paper is devoted to investigating the norms of composition operators
on H 2, in relation to certain mapping properties of the generating symbols.

By the Cauchy–Schwarz inequality, note that H 2 is a space of analytic functions
in the half-plane C1/2, where

Cθ := {s ∈ C : Re s > θ}.

Hence, if ϕ is an analytic function mapping C1/2 into itself, then Cϕf := f ◦ ϕ
defines an analytic function in C1/2, for every f in H 2.

However, the symbol ϕ has to satisfy additional arithmetical conditions to ensure
that f ◦ϕ is a Dirichlet series, and further mapping properties are required for f ◦ϕ
to have square summable coefficients for every f in H 2. The main result1 of [9]
shows that Cϕ defines a bounded composition operator on H 2 if and only if ϕ
belongs to the Gordon–Hedenmalm class G .
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Definition. The Gordon–Hedenmalm class, denoted G , consists of the functions
ϕ : C1/2 → C1/2 of the form

ϕ(s) = c0s+

∞∑
n=1

cnn
−s =: c0s+ ϕ0(s),

where c0 is a non-negative integer and the Dirichlet series ϕ0 converges uniformly
in Cε for every ε > 0, satisfying the following mapping properties:

(a) If c0 = 0, then ϕ0(C0) ⊆ C1/2.
(b) If c0 ≥ 1, then either ϕ0 ≡ 0 or ϕ0(C0) ⊆ C0.

That ϕ is defined on C0 in the characterization is initially surprising, and proving
the necessity of this is perhaps the most difficult aspect of [9]. That this requirement
is not unreasonable can be understood in view of Carlson’s formula

(1)
∞∑
n=1

|an|2n−2σ = lim
T→∞

1

2T

∫ T

−T
|f(σ + it)|2 dt,

which is valid when f converges uniformly for Re s ≥ σ. In particular, if the
Dirichlet series f converges uniformly for Re s ≥ 0, then we may choose σ = 0 to
express the H 2-norm as an L2-average of the boundary values f(it) of f . In general,
elements f ∈ H 2 only converge in C1/2, and there are certainly no boundary values
with respect to C0. However, there is a very useful notion of generalized boundary
values via vertical limit functions, discussed in Section 2.

Recall from [9] that composition operators Cϕ generated by symbols with c0 ≥ 1
always satisfy that ‖Cϕ‖ = 1. Since we are interested in non-trivial norm estimates,
we shall exclusively consider the case c0 = 0, when the symbol ϕ is a Dirichlet series.
The mapping properties of ϕ that we will refer to consist of the point ω = ϕ(+∞)
and the domain Ω = ϕ(C∗

0), where C∗
0 := C0 ∪ {+∞}.

We will prove two different kinds of subordination principles. If ϕ and ψ have
the same mapping properties, we will say that Cϕ is subordinate to Cψ whenever
it holds that

‖Cϕf‖H 2 ≤ ‖Cψf‖H 2

for every f ∈ H 2.
In the first part of the paper, we will consider affine symbols. These are symbols

of the form

(2) ϕc(s) = c+

d∑
j=1

cjp
−s
j ,

where c = (c1, . . . , cd) and (pj)j≥1 denotes the increasing sequence of prime num-
bers. In this case, the compactness of Cϕc has previously been studied in [2, 8, 19].
Note that ϕc is in G if and only if Re c > 1/2 and Re c− 1/2 ≥

∑
j≥1 |cj | =: r. For

an affine symbol, we see that c = ϕc(+∞) and Kronecker’s theorem implies that
ϕc(C∗

0) = D(c, r), where
D(c, r) := {s ∈ C : |s− c| < r} ,

see Lemma 3.
In terms of the mapping properties and the norm of Cϕcf , we can without loss

of generality assume that cj ≥ 0 for 1 ≤ j ≤ d. Suppose that b = (b1, . . . , bd) is
another vector with non-negative elements and

∑
j≥1 bj = r. Then, if c majorizes



NORMS OF COMPOSITION OPERATORS ON THE H2 SPACE OF DIRICHLET SERIES 3

b, b ≺ c, we will prove in Theorem 5 that Cϕb
is subordinate to Cϕc , and moreover

that the following are equivalent:
(a) b is a permutation of c.
(b) ‖Cϕb

f‖H 2 = ‖Cϕcf‖H 2 for every f ∈ H 2.
(c) ‖Cϕb

‖ = ‖Cϕc‖.
In particular, the symbols ϕ(s) = c + rp−sj generate composition operators of

strictly maximal norm in the class of affine symbols with the same mapping prop-
erties. Muthukumar, Ponnusamy and Queffélec [14] have recently investigated
the norm of these operators. It is of course sufficient to only consider the case
ϕ(s) = c+ r2−s. They established the estimates
(3) ζ(2Re c) ≤ ‖Cϕ‖2 ≤ ζ(1 + ξ)

where ξ := (Re c− 1/2) +
√
(Re c− 1/2)2 − r2. The lower bound in (3) is actually

a general lower bound which holds for any Dirichlet series ϕ ∈ G ,
(4) ‖Cϕ‖2 ≥ ζ(2Re c1),

see [9].
The full statement of Theorem 5 is a bit more precise. As a corollary, we will see

that the the lower bound (4) is the best possible, even when considering only affine
symbols with ϕ(C∗

0) = D(c, r). On the other hand, we shall prove in Theorem 11
that the lower bound is attained if and only if ϕ(s) ≡ c1.

In certain cases, we will also improve the estimates (3) for ϕ(s) = c + r2−s.
In Theorem 13 we obtain the new lower bound ‖Cϕ‖2 ≥ ξ−1. This constitutes a
major improvement when Re c− 1/2 is small; the difference between the upper and
lower estimates is now bounded (by 1), whereas it was previously unbounded. In
Theorem 18, we will combine our techniques with a result from [7] to improve the
upper estimate in (3), showing that

‖Cϕ‖2 ≤ ζ(1 + 2ξ) + ζ(1 + ξ)

2

when Re c− 1/2 = r ≥ α0, for a specific value α0 ≈ 1.5.
In the second half of the paper, we turn our attention to general Dirichlet series

symbols ϕ ∈ G . Consider a simply connected domain Ω ⊆ C1/2 with Jordan curve
boundary on the Riemann sphere, fix ω ∈ Ω, and let ψ(s) = Θ(2−s), where Θ is a
Riemann map from D to Ω with Θ(0) = ω. By standard methods, cf. [7, 9], it is
fairly easy to establish that if ϕ(C∗

0) ⊆ Ω and ϕ(+∞) = ω, then Cϕ is subordinate
to Cψ.

In analogy with Theorem 5, we will determine which symbols ϕ with the pre-
scribed mapping properties satisfy that ‖Cϕ‖H 2 = ‖Cψ‖H 2 . For the classical
Hardy space of the unit disc, the analogous problem has been solved by J. H. Shapiro
[22]. He showed that the norm equality holds if and only if the symbol generat-
ing the composition operator is an inner function, see Theorem 17 for a precise
statement.

We call a Dirichlet series f ∈ H 2 inner if its generalized boundary value f∗(χ)
is unimodular for almost every χ ∈ T∞. We refer to Section 2 for an explanation.
Our analogue of Shapiro’s theorem, Theorem 21, is the following: if ϕ, ψ and Θ
are as above, then the following are equivalent.

(a) Θ−1 ◦ ϕ is inner.
(b) ‖Cϕf‖H 2 = ‖Cψf‖H 2 for every f ∈ H 2.
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(c) ‖Cϕ‖ = ‖Cψ‖.
Of course, the most difficult implication is (c) =⇒ (a). To prove it, we first

consider the classical setting, improving a key estimate from [22] by showing that it
can be made uniform in the “non-innerness” of the symbol. By a trick, we are then
able to apply this improved uniform estimate “on average”, thereby extending it to
composition operators on H 2. Combining this estimate with the earlier mentioned
Theorem 11 yields the desired implication.

Organization.
• In Section 2 we compile some preliminary results regarding vertical limit

functions and non-tangential boundary values for H 2, having the study of
composition operators in mind.

• Section 3 is devoted to composition operators generated by affine symbols.
We prove Theorem 5 and revisit the upper bound in (3).

• In Section 4 we use partial reproducing kernels estimate to investigate lower
bounds for the norms of composition operators on H 2. In addition to
proving Theorem 11 and Theorem 13, we discuss a question from [14] on
whether the norm of the composition operator generated by ϕ(s) = c+r2−s

can be computed by testing Cϕ or its adjoint operator on reproducing
kernels.

• In Section 5 we consider composition operators and inner functions for the
Hardy space of the unit disc. Our goal is to obtain two versions of a key
estimate from [22]. The first is used in the proof of Theorem 21, while the
second plays a role in the proof of Theorem 18.

• Section 6 contains the proofs of Theorem 18 and Theorem 21.
• In Section 7 we present three examples related to the results of Section 3

and Section 6.

Acknowledgments. We are grateful to Horatio Boedihardjo, Titus Hilberdink,
and Hervé Queffélec for helpful discussions.

2. Vertical limit functions

The purpose of this preliminary section is to extract some useful information
about vertical limit functions and composition operators from [1, 9, 13, 19].

Let us begin by emphasizing that we cannot use Carlson’s formula (1) in general.
To obtain norm estimates it is, of course, sufficient to consider Cϕf for Dirichlet
polynomials f only, since they are dense in H 2. In this case, Cϕf is a bounded ana-
lytic function in C0; in particular, Cϕf is uniformly convergent in Cε for every ε > 0
and has non-tangential boundary values almost everywhere on the imaginary axis.
However, Saksman and Seip [21] have shown that even under these assumptions,
we cannot in general recover the H 2-norm as the L2-average of the non-tangential
boundary values. Therefore, for a general symbol ϕ, we do not expect to obtain
a complete understanding of the norm of its composition operator solely from the
non-tangential boundary values.

To introduce the vertical limit functions, we let T∞ denote the countably infinite
Cartesian product of the torus T := {z ∈ C : |z| = 1}. The infinite torus T∞

forms a compact commutative group under coordinate-wise multiplication. Its Haar
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measure m∞ is the countably infinite product measure generated by the normalized
Lebesgue arc measure of T, denoted m. For

χ = (χ1, χ2, χ3, . . .) ∈ T∞

we define the character n 7→ χ(n) to be completely multiplicative in n, setting
χ(pj) = χj . For f(s) =

∑
n≥1 ann

−s and χ ∈ T∞, the vertical limit function fχ is
defined by

fχ(s) :=

∞∑
n=1

anχ(n)n
−s.

Note that the vertical translation Tτf(s) := f(s + iτ), τ ∈ R, corresponds to
χ(n) = n−iτ . The name vertical limit function is justified by [13, Lem. 2.4], which
asserts that the functions fχ are precisely those obtained from the Dirichlet series
f by taking a limit of vertical translations,

(5) fχ(s) = lim
k→∞

Tτkf(s).

The convergence in (5) is uniform on compact subsets of the half-plane where f
converges uniformly. The proof of this fact relies on Kronecker’s theorem, which
analytically encodes the “arithmetical independence” of the prime numbers.

The vertical limit functions fχ sometimes have better properties than the original
function f . As explained in [13, Sec. 4.2], if f is in H 2, the Dirichlet series fχ
converges in C0 for almost every χ ∈ T∞, and the non-tangential boundary value

(6) f∗(χ) := lim
σ→0+

fχ(σ)

exists for almost every χ ∈ T∞. Moreover, f∗ is in L2(T∞) and satisfies

(7) ‖f‖2H 2 =

∫
T∞

|f∗(χ)|2 dm∞(χ).

Hence (6) explicitly provides the Bohr correspondence, which is an isometric isomor-
phism between H 2 and the Hardy space of the infinite torus H2(T∞). Extending
χ in a completely multiplicative fashion to act on the positive rationals Q+, any F
in L2(T∞) has a Fourier series F (χ) =

∑
q∈Q+

aqχ(q), and

‖F‖2L2(T∞) =
∑
q∈Q+

|aq|2.

The Hardy space H2(T∞) is the subspace of L2(T∞) of functions F such that
aq = 0 whenever q ∈ Q+\N.

We will now discuss the connection between composition operators and vertical
limit functions [9]. Recall that the Dirichlet series ϕ is in G if it converges uniformly
in Cε for every ε > 0 and ϕ(C∗

0) ⊆ C1/2. If f is in H 2, this implies that Cϕf
converges uniformly in Cε for every ε > 0 and that

(Cϕf)χ(s) = (f ◦ ϕ)χ(s) = f ◦ ϕχ(s) = Cϕχf(s).

This implies that ‖Cϕχ
f‖H 2 = ‖Cϕf‖H 2 , and thus ϕχ is in G for every χ ∈ T∞.

Moreover, the image of the extended half-plane C∗
0 is invariant under vertical limits.

As far as we know, this claim, certainly known to experts, has not been explicitly
stated in the literature.

Lemma 1. Suppose that ϕ is in G and fix χ ∈ T∞. Then ϕχ(C∗
0) = ϕ(C∗

0).
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Proof. Since χ(1) = 1, we have that

ϕ(+∞) = c1 = ϕχ(+∞).

If ϕ is identically constant we are done. Suppose therefore that ϕ is not identically
constant. Fix w ∈ C0 and let K be closed disk in C0 which contains w and satisfies
that

M = inf
s∈∂K

|ϕχ(s)− ϕχ(w)| > 0.

Since ϕ converges uniformly in Cε for every ε > 0, we get from (5) that there is
a sequence of real numbers τk such that ϕ(s + iτk) → ϕχ(s) uniformly for s ∈ K.
Hence there is some τk such that

M

2
≥ |ϕ(s+ iτk)− ϕχ(s)| = |ϕ(s+ iτk)− ϕχ(w)− (ϕχ(s)− ϕχ(w))|

for every s ∈ K. By Rouché’s theorem we conclude that there is sk ∈ K + iτk such
that ϕ(sk) = ϕχ(w). �

Let us now recall from [1] how to obtain vertical limit functions for symbols of
composition operators. We cannot appeal directly to the discussion above, since
there are Dirichlet series in G which are not in H 2. The Cayley transform

(8) T (z) :=
1− z

1 + z

is a conformal map from D onto the half-plane C0. Note that if ϕ is a Dirichlet
series in G , then

Φ(s) = T −1(ϕ(s)− 1/2)

is a Dirichlet series which converges uniformly in Cε for every ε > 0 and |Φ(s)| < 1
in C0. Hence Φ is in H ∞, the space of all Dirichlet series that converge to bounded
analytic functions in C0. The norm is given by

‖Φ‖H ∞ := sup
Re s>0

|Φ(s)|.

We recall from [13] that H ∞ coincides with the multiplier algebra of H 2. In
particular, H ∞ ⊆ H 2. Hence Φ has a non-tangential boundary value (6) for
almost every χ ∈ T∞. Since T extends to a homeomorphism on the Riemann
sphere C∗, we conclude that ϕ has non-tangential boundary values

ϕ∗(χ) := lim
σ→0+

ϕχ(σ),

for almost every χ ∈ T∞.
We conclude the present section with an extension of [19, Lem. 4.1], removing the

assumption that ϕ(C∗
0) is a bounded subset of C1/2. It shows that all information

about the norm of Cϕ is encoded in ϕ∗.
For its statement, recall from [13, Thm. 4.11] that if f is in H 2, then f has non-

tangential boundary values f(1/2 + it) almost everywhere on ∂C1/2. Furthermore,
there is a universal constant C ≥ 1 such that

(9)
∫ 1

0

|f(1/2 + it)|2 dt ≤ C‖f‖2H 2 .

Inequality (9) furnishes an example of a Carleson measure µ for H 2, that is, a
measure µ on C1/2 such that the inclusion H 2 ↪→ L2(µ) is bounded.
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Lemma 2. If ϕ is a Dirichlet series in G and f is in H 2, then

(10) ‖Cϕf‖2H 2 =

∫
T∞

|f ◦ ϕ∗(χ)|2 dm∞(χ).

Proof. We assume first that f is a Dirichlet polynomial. Since ϕ is in G we know
that f ◦ϕ is in H 2 and hence that the boundary value (f ◦ϕ)∗(χ) exists for almost
every χ ∈ T∞. Inserting this into (7), we find that

‖Cϕf‖2H 2 = ‖f ◦ ϕ‖2H 2 =

∫
T∞

|(f ◦ ϕ)∗(χ)|2 dm∞(χ).

Since f is a Dirichlet polynomial and the non-tangential boundary value ϕ∗(χ)
exists for almost every χ, we conclude that (f ◦ϕ)∗(χ) = f ◦ϕ∗(χ) holds for almost
every χ. Hence we have established (10) when f is a Dirichlet polynomial.

We now let µϕ∗ denote the push-forward of m∞ by ϕ∗, which for polynomials f
yields that

‖Cϕf‖2H 2 =

∫
T∞

|f ◦ ϕ∗(χ)|2 dm∞(χ) =

∫
C1/2

|f(s)|2 dµϕ∗(s).

Since Cϕ : H 2 → H 2 is bounded, we find that µϕ∗ is a Carleson measure for H 2.
Additionally, since the reproducing kernel of H 2 at the point w ∈ C1/2 is

Kw(s) = ζ(s+ w) =
1

s+ w − 1
+O(1),

a simple argument (see e.g. [16, Thm. 3]) shows that µϕ∗ satisfies Carleson’s condi-
tion forH2(C1/2). In particular, ν = µϕ∗ |∂C1/2

is absolutely continuous with respect
to the one-dimensional Lebesgue measure m, and the density dν

dm is bounded.
Suppose that (fk)k≥1 is a sequence of polynomials such that fk → f ∈ H 2.

Since µϕ∗ is a Carleson measure for H 2, the sequence (fk)k≥1 also has a limit in
L2(ν). But by the above observation and (9), the limit must coincide with the non-
tangential boundary values of f on the support of ν. Hence, by the boundedness
of Cϕ we conclude that

‖Cϕf‖2H 2 =

∫
C1/2

|f(s)|2 dµϕ∗(s), f ∈ H 2.

This is equivalent to (10), by the definition of a push-forward measure. �

As is well known, the proof of Lemma 2 shows that questions about composition
operators Cϕ can be recast in terms of embedding problems. For example, in the
special case that ϕ(s) = c+ r2−s, studied in [14], the upper estimate of (3) can be
restated as∫

C1/2

|f(s)|2 dµϕ∗(s) =

∫
T
|f(c+ rχ1)|2 dm(χ1) ≤ ζ(1 + ξ)‖f‖2H 2 , f ∈ H 2.

We also mention [7], where the norms of composition operators were computed
exactly through the associated Carleson embeddings, for a small family of operators.
In the latter example, boundedness of the induced Carleson embeddings is easily
seen to be seen to be equivalent to the embedding property (9), although the norms
are different. In general, the Carleson measures of H 2 arising from composition
operators [19] are much better understood than general Carleson measures [17]. In
the non-Hilbertian case of H p, p 6= 2, defined in the next section, the situation is
even more complicated [3, 11, 16].
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3. Composition operators generated by affine symbols

Let ϕ(s) = c+
∑
j≥1 cjp

−s
j be an affine symbol of the form (2). The terminology

here is justified by the fact that ϕ∗(χ) = c +
∑
j≥1 cjχj . We begin by computing

the image of the extended half-plane C∗
0 under ϕ.

Lemma 3. Let ϕ be an affine symbol of the form (2) belonging to G . Then ϕ(C∗
0) =

D(c, r), where

(11) r =

∞∑
j=1

|cj | ≤ Re c− 1/2.

Proof. By Lemma 1, we can replace ϕ with ϕχ without affecting ϕ(C∗
0). We begin

by choosing χ ∈ T∞ such that χ(pj)cj ≤ 0 for every j, which is possible since
χ(pj) = χj . Since ϕχ(C0) ⊆ C1/2 we find that

Re c−
∞∑
j=1

|cj | p−σj > 1/2

for every σ > 0. We let σ → 0+ to see that the coefficient sequence is summable
and satisfies (11). Furthermore, it is clear that ϕ(C∗

0) ⊆ D(c, r) since ϕ(+∞) = c
and

|ϕ(s)− c| ≤
∞∑
j=1

|cj |p−σj < r, s ∈ C0.

Replacing χ = (χ1, χ2, . . .) with eiθχ = (eiθχ1, e
iθχ2, . . .), we observe that the set

ϕ(C∗
0) − c is invariant under rotations. The conclusion now follows from the fact

that

σ 7→
∞∑
j=1

|cj | p−σj

maps (0,∞) onto (0, r). �

We will need a preliminary lemma before we proceed to the main result of this
section. Since the lemma might be of independent interest, we state it for general
Hardy spaces of Dirichlet series. Following [1], the Hardy space H q, 1 ≤ q <

∞, is defined as the closure of Dirichlet polynomials f(s) =
∑N
n=1 ann

−s in the
Besicovitch norm

‖f‖qH q := lim
T→∞

1

2T

∫ T

−T
|f(it)|q dt.

We will rely on the facts that the H q-norm satisfies the triangle inequality, that it
is invariant under permutations of the prime numbers, and that it is strictly convex
for q > 1. The easiest way to establish these properties is to identify H q with
Hq(T∞) [1, Thm. 2], as was described for q = 2 in Section 2.

For given d ≥ 1 and r > 0, let L (d, r) denote the family of sequences c =
(c1, c2, . . . , cd) satisfying cj ≥ 0 and c1 + c2 + · · · + cd = r. For every c ∈ L (d, r),
we consider the corresponding linear function

Lc(s) :=

d∑
j=1

cjp
−s
j .
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Let c↓ denote the decreasing rearrangement of c. We write b ≺ c if c majorizes b,
that is, if

k∑
j=1

b↓j ≤
k∑
j=1

c↓j

for k = 1, 2, . . . , d− 1, with equality for j = d. We note that

(12)
( r
d
,
r

d
, . . . ,

r

d

)
≺ c ≺ (r, 0, 0, . . . , 0)

for every c ∈ L (d, r).

Lemma 4. Let 1 ≤ q ≤ ∞. If b, c ∈ L (d, r) and b ≺ c, then ‖Lb‖H q ≤ ‖Lc‖H q .
The inequality is strict if b is not a permutation of c and 1 < q <∞.

Proof. By the Birkhoff–von Neumann theorem, b ≺ c holds if and only if there
is a finite number of permutations (Pk) and non-negative weights (λk) such that
λ1 + · · ·+ λK = 1 and

b =

K∑
k=1

λkPkc.

By the triangle inequality and invariance under permutations of prime numbers,
we obtain that

‖Lb‖H q =

∥∥∥∥∥
K∑
k=1

λkLPkc

∥∥∥∥∥
H q

≤
K∑
k=1

λk‖LPkc‖H q =

K∑
k=1

λk‖Lc‖H q = ‖Lc‖H q ,

which is the required inequality. If 1 < q <∞ and b is not a permutation of c, the
inequality is strict, owing to the strict convexity of H q. �

The main result of this section consists of a partial subordination principle for
the family of affine symbols that map the extended right half-plane onto the same
disc, and a sharpened inequality for comparison with the maximal element of the
family.

Recall from Section 2 that we may replace ϕ with ϕχ for any χ ∈ T∞ without
changing its mapping properties or the norm of ‖Cϕf‖H 2 , for any f ∈ H 2. Hence
we may assume that cj ≥ 0.

Theorem 5. Fix c and r such that Re c − 1/2 ≥ r > 0 and let d be a positive
integer. For c ∈ L (d, r), let

ϕc(s) := c+

d∑
j=1

cjp
−s
j .

Suppose that b, c ∈ L (d, r) and b ≺ c. Then

‖Cϕb
f‖H 2 ≤ ‖Cϕcf‖H 2 , f ∈ H 2.

Furthermore, if b ≺ c, the following are equivalent.
(a) b is a permutation of c.
(b) ‖Cϕb

f‖H 2 = ‖Cϕcf‖H 2 for every f ∈ H 2.
(c) ‖Cϕb

‖ = ‖Cϕc‖.
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Additionally, for every c ∈ L (d, r) it holds that

(13) ‖Cϕcf‖2H 2 ≤ (1− C)|f(c)|2 + C‖Cϕf‖2H 2 , f ∈ H 2,

where ϕ(s) = c + r2−s and C = ‖c‖2`2/‖c‖2`1 . The estimate (13) also holds in the
case when d = ∞.

Proof. Let f be any function in H 2. Following the notation of Lemma 4, we write
ϕc(s) = c+ Lc(s). We begin by Taylor expanding f at s = c to obtain

Cϕf(s) = f(c+ Lc(s)) =

∞∑
k=0

f (k)(c)

k!

(
Lc(s)

)k
.

The sequence (Lkc)
∞
k=0 is orthogonal in H 2, yielding that

(14) ‖Cϕcf‖2H 2 =

∞∑
k=0

|f (k)(c)|2

(k!)2
‖Lkc‖2H 2 =

∞∑
k=0

|f (k)(c)|2

(k!)2
‖Lc‖2kH 2k .

Hence if b ≺ c, then it follows directly from Lemma 4 that ‖Cϕb
f‖H 2 ≤ ‖Cϕcf‖H 2 .

It is also clear that (a) =⇒ (b) =⇒ (c).
To prove that (c) =⇒ (a), suppose that b is not a permutation of c. If f is

non-constant, so that there is some k ≥ 1 for which f (k)(c) 6= 0, then Lemma 4
actually shows that ‖Cϕb

f‖H 2 < ‖Cϕcf‖H 2 . Note that the vector b must have two
or more non-zero elements. Therefore Cϕb

is a compact operator, by the results
of [8]. In particular, Cϕb

is norm-attaining. The general lower norm-bound (4)
shows that the norm is not attained at a constant function f . We conclude that
‖Cϕb

‖ < ‖Cϕc‖.
It remains to prove (13). Consider the final sum in (14) for k ≥ 1. In this case,

since either d <∞ or we have summable coefficients, we have that

‖Lc‖2kH 2k = r2k

∥∥∥∥∥∥1r
d∑
j=1

cjp
−s
j

∥∥∥∥∥∥
2k

H 2k

= r2k lim
T→∞

1

2T

∫ T

−T

∣∣∣∣∣∣1r
d∑
j=1

cjp
−it
j

∣∣∣∣∣∣
2k

dt.

Since |r−1Lc(it)| ≤ 1, the integral on the right hand side is non-increasing in k.
This implies that

‖Lc‖2kH 2k ≤ r2k
‖Lc‖2H 2

r2
=

‖c‖2`2
‖c‖2`1

r2k.

The proof is completed by noting that if ϕ(s) = c+r2−s, then ‖ϕ−c‖2kH 2k = r2k. �

We now present a simple proof of [14, Lem. 3.7] which also yields a new lower
bound that will find use in the next section. It is inspired by an even simpler proof
for the case k = 1, shown to us by Horatio Boedihardjo.

Lemma 6. Let k be a non-negative integer. For σ > 1 it holds that
k!

(σ − 1)k
(ζ(σ)− 1) ≤ (−1)k

dk

dσk
ζ(σ) ≤ k!

(σ − 1)k
ζ(σ).

Proof. The case k = 0 is obvious. For k ≥ 1 we introduce an integral representation
for (log n)k and change the order of summation and integration, to obtain that

∞∑
n=1

(log n)k

nσ
=

∞∑
n=1

k

nσ

∫ n

1

(log x)k−1

x
dx = k

∫ ∞

1

(log x)k−1

xσ
Fσ(x) dx,
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where Fσ(x) := xσ−1
∑
n≥x n

−σ. Computing

k

∫ ∞

1

(log x)k−1

xσ
dx =

k

(σ − 1)k

∫ ∞

0

xk−1e−x dx =
k!

(σ − 1)k
,

it is sufficient to prove that ζ(σ) − 1 ≤ Fσ(x) ≤ ζ(σ) holds for x ≥ 1. Clearly,
x 7→ Fσ(x) is increasing on the interval (m,m + 1) for every positive integer m.
Hence we obtain upper and lower bounds of Fσ(x) by considering, respectively,

Uσ(m) := lim
x→m−

Fσ(x) = mσ−1
∞∑
n=m

1

nσ
=

∞∑
j=1

m−1∑
n=0

1

m

(
j +

n

m

)−σ
,

and

Lσ(m) := lim
x→m+

Fσ(x) = mσ−1
∞∑

n=m+1

1

nσ
=

∞∑
j=1

m∑
n=1

1

m

(
j +

n

m

)−σ
.

For each j, we recognize the inner summands as the left and right Riemann sums
with a uniform partition of length m−1 for the integral∫ j+1

j

y−σ dy.

Since y 7→ y−σ is decreasing on the interval (j, j+1), a simple geometric argument
yields that Uσ(m) ≤ Uσ(1) = ζ(σ) and Lσ(m) ≥ Lσ(1) = ζ(σ)− 1. �

Remark. Since y 7→ y−σ is convex on (1,∞), it actually holds that the sequences
(Uσ(m))m≥1 and (Lσ(m))m≥1 are decreasing and increasing, respectively. This is a
stronger statement than we require in the proof of Lemma 6. Monotonicity results
for Riemann sums of convex and concave functions have probably been rediscovered
many times (see e.g. [4]).

The next result is [14, Thm. 3.8]. We present a different, but ultimately equiv-
alent, proof that follows our approach to Theorem 5. For certain choices of the
parameters, we will improve this estimate in Theorem 18.

Theorem 7. Let ϕ(s) = c+r2−s with Re c−1/2 ≥ r > 0. Then ‖Cϕ‖2 ≤ ζ(1+ ξ),
where ξ = (Re c− 1/2) +

√
(Re c− 1/2)2 − r2.

Proof. Let f(s) =
∑
n≥1 ann

−s. We combine the Cauchy–Schwarz inequality, for
some parameter η > 0 to be chosen later, and Lemma 6, to obtain

|f (k)(c)|2 ≤
∞∑
m=1

(logm)k

mRe c+1/2+η

∞∑
n=1

|an|2
(log n)k

nRe c−1/2−η

≤ k!

(Re c− 1/2 + η)k
ζ(Re c+ 1/2 + η)

∞∑
n=1

|an|2
(log n)k

nRe c−1/2−η .
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We insert this estimate into (14) and note that in the case ϕc(s) = c + r2−s we
have ‖Lc‖2kH 2k = r2k. After changing the order of summation, we find that

‖Cϕf‖2H 2 ≤ ζ(Re c+ 1/2 + η)

∞∑
n=1

|an|2
1

nRe c−1/2−η

∞∑
k=0

r2k

k!

(log n)k

(Re c− 1/2 + η)k

= ζ(Re c+ 1/2 + η)

∞∑
n=1

|an|2n
r2

Re c−1/2+η
−(Re c−1/2)+η.

The proof is completed by letting η =
√
(Re c− 1/2)2 − r2. �

We can combine Theorem 5 and Theorem 7 with the Cauchy–Schwarz inequality
to obtain the following result.

Corollary 8. Suppose that ϕ(s) = c +
∑
j≥1 cjp

−s
j is in G . If r =

∑
j≥1 |cj | and

ξ = (Re c− 1/2) +
√
(Re c− 1/2)2 − r2, then

‖Cϕ‖2 ≤

(
1−

∑
j≥1 |cj |2

r2

)
ζ(2Re c) +

∑
j≥1 |cj |2

r2
ζ(1 + ξ).

We end this section by specializing Corollary 8 to the symbols ϕc, c ∈ L(d, r),
of minimal norm, see (12) and Theorem 5.

Corollary 9. Let ϕ(s) = c+ (r/d)
∑d
j=1 p

−s
j with Re c− 1/2 ≥ r > 0. Then

‖Cϕ‖2 ≤ ζ(2Re c)

(
1 +

1

d

)
.

Proof. From Corollary 8 and the fact that ξ ≥ Re c− 1/2, we obtain

‖Cϕ‖2 ≤ ζ(2Re c)

(
1 +

1

d

(
ζ(1/2 + Re c)

ζ(2Re c)
− 1

))
.

The upper estimate of Lemma 6 with k = 1 implies that σ 7→ (σ − 1)ζ(σ) is
increasing. Hence

ζ(1/2 + Re c)

ζ(2Re c)
= 2

(Re c− 1/2)ζ(1/2 + Re c)

(2Re c− 1)ζ(2Re c)
≤ 2,

yielding the statement. �

Lemma 3 and Corollary 9 demonstrate that the norm of a composition operator
on H 2 may be made arbitrarily close to the general lower bound (4) without
restricting ϕ(C∗

0). We shall see in the next section that the general lower bound
‖Cϕ‖2 ≥ ζ(2Re c) can never be attained unless ϕ ≡ c. Note that

ϕ(s) = c+
r

d

d∑
j=1

p−sj

actually converges to ϕ ≡ c in H 2 as d→ ∞.
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4. Partial reproducing kernels

The partial reproducing kernel of H 2 generated by Λ ⊆ N is defined by

KΛ
w(s) = ζΛ(s+ w) :=

∑
n∈Λ

n−s−w.

Let H 2
Λ denote the corresponding subspace of H 2,

H 2
Λ :=

{
f ∈ H 2 : f(s) =

∑
n∈Λ

ann
−s

}
,

and let σ(Λ) denote the abscissa of (absolute) convergence of ζΛ. If Λ is an infinite
set, then 0 ≤ σ(Λ) ≤ 1. Note that the elements of H 2

Λ are absolutely convergent
in Cσ(Λ)/2, by the Cauchy–Schwarz inequality. Moreover, KΛ

w is the reproducing
kernel at w ∈ Cσ(Λ)/2 of the Hilbert space H 2

Λ , from which it follows that

‖KΛ
w‖2H 2

Λ
= KΛ

w(w) = ζΛ(2Rew).

Let mult(Λ) denote the smallest set which contains Λ and is closed under multipli-
cation. The following basic lemma is crucial.

Lemma 10. Let ϕ(s) =
∑
n∈Λ′ cnn

−s be in G and set Λ = mult(Λ′). Then

‖Cϕ‖2 ≥ sup
Rew>σ(Λ)/2

ζ(2Reϕ(w))

ζΛ(2Rew)
.

Proof. Since ϕ ∈ G we know that Cϕf = f ◦ ϕ is in H 2 for every f ∈ H 2. Let
Re s > 1/2. By the absolute convergence of f ◦ ϕ and the computation

n−ϕ(s) =

∞∑
j=0

(− log n)j

j!
(ϕ(s))j , n = 1, 2, . . . ,

we note that Cϕf is in H 2
Λ , since Λ = mult(Λ′). Hence we may consider Cϕ as a

bounded operator Cϕ : H 2 → H 2
Λ and let C ∗

ϕ : H 2
Λ → H 2 denote its adjoint. If f

is in H 2 and Rew > σ(Λ)/2 we have that

〈f,Kϕ(w)〉H 2 = f(ϕ(w)) = 〈Cϕf,KΛ
w〉H 2

Λ
= 〈f,C ∗

ϕK
Λ
w〉H 2 ,

and hence C ∗
ϕK

Λ
w = Kϕ(w). Using this identity, we obtain the desired estimate,

‖Cϕ‖2 = ‖C ∗
ϕ‖2 ≥ sup

Rew>σ(Λ)/2

‖C ∗
ϕK

Λ
w‖2H 2

‖KΛ
w‖2H 2

Λ

= sup
Rew>σ(Λ)/2

ζ(2Reϕ(w))

ζΛ(2Rew)
. �

Our first application of Lemma 10 is to prove that the general lower bound (4) is
not attained unless ϕ is identically constant. This result will be needed in Section 6.

Theorem 11. Suppose that ϕ ∈ G is a non-constant Dirichlet series. Then
‖Cϕ‖2 > ζ(2Re c1), where c1 = ϕ(+∞).

Proof. Since ϕ is not identically constant, there is an integer m ≥ 2 such that

ϕ(s) = c1 +

∞∑
n=m

cnn
−s
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and cm 6= 0. We may assume that cm < 0 by a vertical translation. Let Λ =
{1} ∪ {n : n ≥ m}. By Lemma 10 we have that

‖Cϕ‖2 ≥ sup
1/2<σ<∞

ζ(2Reϕ(σ))

ζΛ(2σ)
.

Letting σ → ∞ yields the lower bound ‖Cϕ‖2 ≥ ζ(2Re c1). Hence it is sufficient to
prove that σ 7→ ζ(2Reϕ(σ))/ζΛ(2σ) is eventually decreasing. Logarithmic differ-
entiation leads us to verify that

(15) −2Reϕ′(σ)
ζ ′(2Reϕ(σ))

ζ(2Reϕ(σ))
≥ −2

ζ ′Λ(2σ)

ζΛ(2σ)

holds for all sufficiently large σ. We now note, since ζ ′(2Re c1) < 0, that

−2Reϕ′(σ)
ζ ′(2Reϕ(σ))

ζ(2Reϕ(σ))
∼ −2

ζ ′(2Re c1)

ζ(2Re c1)
|cm|(logm)m−σ,

as σ → ∞. On the other hand −2ζ ′Λ(2σ)/ζΛ(2σ) ∼ 4(logm)m−2σ, establishing (15)
for all sufficiently large σ. �

Assume that Λ ⊆ N is such that Cϕ maps H 2 into H 2
Λ . Set

Sϕ := sup
Rew>1/2

‖CϕKw‖H 2

‖Kw‖H 2

and S∗
ϕ(Λ) := sup

Rew>σ(Λ)/2

‖C ∗
ϕK

Λ
w‖H 2

‖KΛ
w‖H 2

Λ

.

Clearly both quantities constitute lower bounds for ‖Cϕ‖. The proof of the following
result is essentially the same as the proof of [6, Prop. 3.1].

Lemma 12. Suppose that ϕ ∈ G is a non-constant Dirichlet series and that Λ is
such that Cϕ maps H 2 to H 2

Λ . Then it holds that Sϕ ≥ S∗
ϕ(Λ).

Proof. Fix w such that Rew > σ(Λ)/2. Since Λ is an infinite set, we have that
σ(Λ) ≥ 0. Hence ϕ(w) is in C1/2. We recall that C ∗

ϕK
Λ
w = Kϕ(w) and use the

Cauchy–Schwarz inequality to see that
‖C ∗

ϕK
Λ
w‖H 2

‖KΛ
w‖H 2

Λ

=
〈Kϕ(w),Kϕ(w)〉H 2

‖KΛ
w‖H 2

Λ
‖Kϕ(w)‖H 2

=
〈CϕKϕ(w),K

Λ
w〉H 2

Λ

‖KΛ
w‖H 2

Λ
‖Kϕ(w)‖H 2

≤
‖CϕKϕ(w)‖H 2

‖Kϕ(w)‖H 2

.

Taking the supremum over Rew > σ(Λ)/2 yields that S∗
ϕ(Λ) ≤ Sϕ. �

Let us now return to the discussion of the symbol ϕ(s) = c + r2−s, where
Re c− 1/2 ≥ r > 0. It was asked in [14, Sec. 5] whether

(16) ‖Cϕ‖ = Sϕ = S∗
ϕ(N).

However, in this case, Cϕ maps H 2 into H 2
Λ , for Λ = {2j , j = 0, 1, . . .}. Note that

sup
Rew>1/2

ζ(2Reϕ(w))

ζ(2Rew)
= sup

1/2<σ<∞

ζ(2Re c− 2r2−σ)

ζ(2σ)
,

which implies that

lim
σ→(1/2)+

ζ(2Re c− 2r2−σ)

ζ(2σ)
= 0 and lim

σ→∞

ζ(2Re c− 2r2−σ)

ζ(2σ)
= ζ(2Re c).
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By the proof of Theorem 11, we hence find that there is a value σ∗ ∈ (1/2,∞) for
which

(S∗
ϕ(N))2 =

ζ(2Re c− 2r2−σ
∗
)

ζ(2σ∗)
.

Since ζΛ(2σ∗) < ζ(2σ∗), we conclude that S∗
ϕ(Λ) > S∗

ϕ(N). Therefore, the second
equality in (16) could not be true, in view of Lemma 12.

More generally, given some symbol ϕ, if Λ is the minimal set so that Cϕ maps
H 2 to H 2

Λ , we define
S∗
ϕ := S∗

ϕ(Λ).

Our next goal is to use Lemma 10 to prove a new lower bound for ‖Cϕ‖ when
ϕ(s) = c+ r2−s.

Theorem 13. Let ϕ(s) = c+ r2−s with Re c− 1/2 ≥ r > 0. Then
(17) (S∗

ϕ)
2 = sup

0<x<1
(2− x)xζ(2Re c− 2r(1− x)).

In particular,
(a) it holds that (S∗

ϕ)
2 ≥ ξ−1, where ξ is as in Theorem 7, and

(b) if Re c− 1/2 = r = ξ ≤ 1/4, then (S∗
ϕ)

2 = ξ−1.

Proof. Clearly Λ = {2j : j = 0, 1, . . .} is the smallest possible set such that Cϕ
maps H 2 into H 2

Λ . Moreover, σ(Λ) = 0. Hence, by definition and the fact that
Re c and r are positive, we see that

(S∗
ϕ)

2 = sup
Rew>0

ζ(2Reϕ(w))

ζΛ(2Rew)
= sup

0<σ<∞
(1− 2−2σ)ζ(2Re c− 2r2−σ),

Substituting x = 1 − 2−σ we get (17). To prove (a), we first apply the standard
integral estimate ζ(σ) ≥ (σ − 1)−1 to obtain

(S∗
ϕ)

2 ≥ sup
0<x<1

(2− x)x

2Re c− 1− 2r(1− x)
≥ 1

(Re c− 1/2) +
√
(Re c− 1/2)2 − r2

=
1

ξ
,

where we on the basis of a calculus argument chose

x = 1−
(Re c− 1/2) +

√
(Re c− 1/2)2 − r2

r
.

In the case (b), we have Re c− 1/2 = r = ξ. The lower bound (S∗
ϕ)

2 ≥ ξ−1 is then
obtained by letting x→ 0+. Hence it is sufficient to prove that

x 7→ (2− x)xζ(1 + 2ξx)

is decreasing on (0, 1). Logarithmically differentiating the right hand side and
multiplying with −x gives the condition

−2ξx
ζ ′(1 + 2ξx)

ζ(1 + 2ξx)
≥ 4− 3x

2− x
− 1, 0 < x < 1.

To verify this, note that the lower bound in Lemma 6 for k = 1 combined with the
estimate ζ(σ) ≥ (σ − 1)−1 yields that

−(σ − 1)
ζ ′(σ)

ζ(σ)
≥ 1− 1

ζ(σ)
≥ 1− (σ − 1), σ > 1.

Hence we are done if it holds for all 0 < x < 1 that

1− 2ξx ≥ 4− 3x

2− x
− 1 ⇐⇒ ξ ≤ 1

2(2− x)
,
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which is clearly true if 0 < ξ ≤ 1/4. �

Remark. The restriction 0 < ξ ≤ 1/4 in (b) can certainly be improved by more
careful estimates, but we cannot have (S∗

ϕ)
2 = ξ−1 for every ξ > 0, since we get

that (S∗
ϕ)

2 > ζ(2Re c) = ζ(1 + 2ξ) from the proof of Theorem 11.

Let us return to the question asked in [14, Sec. 5], about the validity of (16).
Revising the lattermost quantity in (16), we arrive at the following.

Question. If ϕ(s) = c+ r2−s is in G and r > 0, does it hold that ‖Cϕ‖ = Sϕ = S∗
ϕ?

While we do not have any additional results directly addressing this question,
let us briefly discuss what we can say about the analogous question for the family
of symbols considered in [7]. For 0 < α <∞, let

ϕα(s) :=
1

2
+ αT (2−s) =

1

2
+ α

1− 2−s

1 + 2−s
,

where T denotes the Cayley transform (8). The main result in [7] identifies
the symbols ϕα as those generating composition operators of maximal norm with
Reϕ(+∞) = 1/2 + α (see also Theorem 21). In other words, if ϕ ∈ G satisfies
Reϕ(+∞) = 1/2 + α, then for every f in H 2 it holds that

(18) ‖Cϕf‖H 2 ≤ ‖Cϕαf‖H 2 .

Furthermore, it was demonstrated in [7] that

(19) max

(
2

α
, ζ(1 + 2α)

)
≤ ‖Cϕα‖2 ≤ max

(
2

α
, ζ(1 + α)

)
.

The lower bound 2/α was obtained by establishing that (Sϕα
)2 ≥ 2/α, while the

lower bound ζ(1+2α) is simply the general lower bound (4). Appealing to the meth-
ods of this paper, note that the same considerations as in the proof of Theorem 13
show that

(S∗
ϕα

)2 = sup
0<x<1

4x

(1 + x)2
ζ(1 + 2αx).

We thus obtain that (S∗
ϕα

)2 ≥ max(2/α, ζ(1 + 2α)) by considering x → 0+ and
x→ 1−. This provides a new proof of the lower bound in (19) and, for sufficiently
large α, say, α ≥ 2, it also yields a small improvement. Combined with the upper
bound in (19), this shows that

‖Cϕα
‖ = Sϕα

= S∗
ϕα

=

√
2

α

for all 0 < α ≤ α0, where α0 ≈ 1.5 is the unique positive solution to 2 = αζ(1+α).
We do not know whether the first two of these equalities hold also for α > α0.

In analogy with this result, it is tempting to conjecture that ‖Cϕ‖ = Sϕ = S∗
ϕ

could hold at least for affine symbols ϕ(s) = 1/2+ξ(1−2−s) with sufficiently small
ξ > 0. If this holds, then part (b) of Theorem 13 implies that ‖Cϕ‖ = ξ−1/2 for all
sufficiently small ξ > 0.
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5. Composition operators on H2(T) and inner functions

Let H2(T) denote the Hardy space of analytic functions f(z) =
∑
k≥0 akz

k in
the unit disc D = D(0, 1) with square summable coefficients. Every f ∈ H2(T) has
non-tangential boundary values almost everywhere on T,

f(eiθ) = lim
r→1−

f(reiθ).

The norm of H2(T) is given by

(20) ‖f‖2H2(T) :=

∫
T
|f(z)|2 dm(z) =

∞∑
k=0

|ak|2.

Via non-tangential boundary values, H2(T) can be viewed as the subspace of L2(T)
of functions whose negative Fourier coefficients all vanish.

Every analytic function ϕ mapping D into itself generates a composition operator
on H2(T) by Cϕ(f) = f ◦ ϕ. The following well-known norm estimates are sharp,

(21) 1

1− |ϕ(0)|2
≤ ‖Cϕ‖2 ≤ 1 + |ϕ(0)|

1− |ϕ(0)|
.

The lower bound can be deduced from reproducing kernel arguments, cf. Lemma 10.
The upper bound is a consequence of Littlewood’s subordination principle, which
states that if ϕ(0) = 0, then

(22) ‖Cϕf‖H2(T) ≤ ‖f‖H2(T), f ∈ H2(T).

To extend this to the general case ϕ(0) = w 6= 0, we use the Möbius transformation

(23) ψw(z) :=
w − z

1− wz
,

which maps D onto itself and interchanges the points 0 and w. Writing
f ◦ ϕ = f ◦ ψw ◦ ψ−1

w ◦ ϕ

and applying Littlewood’s subordination principle to ψ−1
w ◦ ϕ yields that

(24) ‖Cϕf‖H2(T) ≤ ‖Cψwf‖H2(T), f ∈ H2(T).

The upper bound in (21) now follows from the fact that

‖Cψw
‖2 =

1 + |w|
1− |w|

,

which can deduced from changing the variables in the integral expression for ‖f ◦
ψw‖H2(T) from (20), together with a simple estimate.

If ϕ(0) = 0, then the upper and lower bounds coincide and thus ‖Cϕ‖ = 1.
However, this is no longer true in general if we restrict Cϕ to H2

0 (T), the subspace
of functions f ∈ H2(T) with f(0) = 0. In this case, J. H. Shapiro [22] has proved
the following theorem. Recall that ϕ is said to be inner if |ϕ(z)| = 1 for almost
every z ∈ T.

Theorem 14 (Shapiro). Suppose that ϕ is an analytic self-map of D with ϕ(0) = 0.
Then the following are equivalent.

(a) ϕ is inner.
(b) Cϕ : H2(T) → H2(T) is an isometry.
(c) ‖Cϕ|H2

0 (T)‖ = 1.
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The equivalence of (a) and (b) is due to Nordgren [15]. Note in particular that
the implication (b) =⇒ (a) can be deduced by considering the action of Cϕ on
monomials. Shapiro’s insight was to show that ‖Cϕ|H2

0 (T)‖ < 1 when ϕ is not inner,
by establishing a version of Littlewood’s subordination principle (22) which takes
the size of the symbol on T into account.

We will now strengthen Shapiro’s estimate, by showing that it can be made
uniform in the non-innerness of ϕ. In preparation, recall that if ϕ(0) = 0, a change
of variables in the Littlewood–Paley formula for the H2(T)-norm yields that

(25) ‖Cϕf‖2H2(T) = |f(0)|2 + 2

∫
D
|f ′(w)|2Nϕ(w) dA(w).

Here dA is the normalized area measure on D, and Nϕ is the Nevanlinna counting
function, defined by

Nϕ(w) :=
∑

z∈ϕ−1({w})

log
1

|z|
, w 6= 0,

where preimages are counted with multiplicity.

Lemma 15. Suppose that ϕ : D → D is analytic and fixes the origin. Let 0 ≤ δ ≤ 1,
and define Eδ := {z ∈ T : |ϕ(z)| < δ}. For every f in H2(T) it holds that

(26) ‖Cϕf‖2H2(T) ≤ Cδ|f(0)|2 + (1− Cδ)‖f‖2H2(T),

where Cδ = 1
2
1−δ
1+δm(Eδ).

Proof. Following the proof of [22, Thm. 3.2], we begin by defining

ϕw(z) := ψw ◦ ϕ(z) = w − ϕ(z)

1− wϕ(z)
,

for w ∈ D and z ∈ T, where ψw denotes the Möbius transformation (23). An
elementary computation yields that if z ∈ Eδ then

1− |ϕw(z)|2 ≥ 1− δ

1 + δ
(1− |w|2).

Combined with the inequality 1− x ≤ log 1
x , valid for 0 < x < 1, we deduce that

(27) log |ϕw(z)| ≤ −1

2

1− δ

1 + δ
(1− |w|2), z ∈ Eδ.

By Jensen’s formula and Fatou’s lemma we obtain that if w 6= 0, then

Nϕ(w) ≤ log
1

|w|
+

∫
T
log |ϕw(z)| dm(z) ≤ log

1

|w|
+

∫
Eδ

log |ϕw(z)| dm(z),

since |ϕw(z)| ≤ 1 for almost every z ∈ T. Inserting (27) into the latter integral thus
yields that

(28) Nϕ(w) ≤ log
1

|w|
− 1

2

1− δ

1 + δ
m(Eδ)(1− |w|2) = log

1

|w|
− Cδ(1− |w|2).
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If f(w) =
∑
k≥0 akw

k, then a simple calculation shows that

2

∫
D
|f ′(w)|2

(
log

1

|w|
− Cδ(1− |w|2)

)
dA(w)

=

∞∑
k=1

|ak|2
(
1− 2Cδ

k

k + 1

)
≤ (1− Cδ)

∞∑
k=1

|ak|2.

Hence, inserting (28) into (25) yields (26). �

The following special case of Lemma 15 will be used in the next section to
improve the upper bound in (3).

Lemma 16. Let ψ(z) = z/(2− z). For every f in H2(T) it holds that

(29) ‖Cψf‖2H2(T) ≤
|f(0)|2 + ‖f‖2H2(T)

2
.

Proof. We assume that f(z) =
∑
k≥0 akz

k and compute

Cψf(z) =
∞∑
k=0

ak

(
z

2− z

)k
= a0 +

∞∑
j=1

zj

2j

j∑
k=1

(
j − 1

k − 1

)
ak.

Taking the norm and using the Cauchy–Schwarz inequality, we conclude that

‖Cψf‖2H2(T) = |a0|2 +
∞∑
j=1

1

4j

∣∣∣∣∣
j∑

k=1

(
j − 1

k − 1

)
ak

∣∣∣∣∣
2

≤ |a0|2 +
∞∑
j=1

1

4j

(
j∑

k=1

(
j − 1

k − 1

)
|ak|2

)
2j−1

= |a0|2 +
1

2

∞∑
k=1

|ak|2
∞∑
j=k

(
j − 1

k − 1

)
1

2j
= |a0|2 +

1

2

∞∑
k=1

|ak|2,

which is the desired estimate (29), since a0 = f(0). �

Remark. The estimate (29) can also be extracted from [10, Thm. 6.10], but the
presented proof is shorter and more direct. In the notation of Lemma 15, the
constant Cδ = 1/2 is the best possible for the symbol ψ(z) = z/(2 − z). This can
be seen by testing Cψ on f(z) = 1/(1− rz) and letting r → 1−.

On the basis of Theorem 14, using Möbius transformations in a similar fashion
to the derivation of (24) from (22), Shapiro [22] also deduced the following theorem.
We have modified the original statement slightly, for easier comparison with our
Theorem 21.

Theorem 17 (Shapiro). Suppose that ϕ is an analytic self-map of D with ϕ(0) =
w 6= 0. Then the following are equivalent.

(a) ϕ is inner.
(b) ‖Cϕf‖H2(T) = ‖Cψw

f‖H2(T) for every f ∈ H2(T).
(c) ‖Cϕ‖ = ‖Cψw

‖ = 1+|w|
1−|w| .
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6. Norm estimates for general symbols

The goal of this section is to prove an analogue of Theorem 17 for composition
operators Cϕ : H 2 → H 2 generated by Dirichlet series symbols ϕ in G . We will
rely on Lemma 15, the Riemann mapping theorem, and two different tricks that
let us transplant knowledge about composition operators on H2(T) to the Dirichlet
series setting of H 2.

For our first trick, we note that the Dirichlet series g ∈ H 2 is supported on the
integers of the form n = 2k,

g(s) =

∞∑
k=0

b2k2
−ks,

if and only if there is some G ∈ H2(T) such that g(s) = G(2−s), and in this case
‖g‖H 2 = ‖G‖H2(T). In particular, if Φ maps D to C1/2 and ϕ(s) = Φ(2−s), then

‖Cϕf‖H 2 = ‖CΦf‖H2(T), f ∈ H 2.

To demonstrate the virtue of this simple observation, we apply it together with
Lemma 16 and (19) to obtain an improved upper bound for the composition op-
erator generated by the symbol ϕ(s) = c + r2−s, when Re c − 1/2 = r = ξ, cf.
Theorem 7.

Theorem 18. Let ϕ(s) = c+ r2−s with Re c− 1/2 = r = ξ ≥ α0, where α0 is the
unique positive solution to 2 = αζ(1 + α). Then

‖Cϕ‖2 ≤ ζ(1 + 2ξ) + ζ(1 + ξ)

2
.

Proof. Since vertical translations are isometries on H 2, we may replace ϕ(s) by
ϕ(s) + iτ for τ ∈ R without changing ‖Cϕ‖. Hence we may assume that c is real.
Let

Φ(z) =
1

2
+ ξ(1− z) and Φξ(z) =

1

2
+ ξ

1− z

1 + z
.

These are conformal maps from D to D(1/2+ξ, ξ) and C1/2, respectively, satisfying
that Φ(0) = Φξ(0) = 1/2 + ξ. A computation yields that

Φ−1
ξ ◦ Φ(z) = 2

2− z
= ψ(z).

Let f be a Dirichlet polynomial. Note that f ◦ ϕ is supported on the integers of
the form n = 2k. Hence,

‖Cϕf‖2H 2 = ‖f ◦ Φ‖2H2(T) = ‖f ◦ Φξ ◦ ψ‖2H2(T) = ‖Cψ(f ◦ Φξ)‖2H2(T).

Since f is a Dirichlet polynomial, clearly f ◦Φξ is in H2(T). Lemma 16 thus gives
us that

‖Cϕf‖2H 2 ≤
|f ◦ Φξ(0)|2 + ‖CΦξ

f‖2H2(T)

2
=

|f(1/2 + ξ)|2 + ‖Cϕξ
f‖2H 2

2
,

where, as before, ϕξ(s) = Φξ(2
−s). The proof is completed by applying the Cauchy–

Schwarz inequality, the upper bound in (19), and the density of Dirichlet polyno-
mials in H 2. �
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Our second trick takes its starting point in Lemma 2. To make use of it, we
introduce a dummy variable w ∈ T, acting coordinate-wise on χ ∈ T∞, allowing us
to apply Lemma 15 to the Hardy space of functions in the dummy variable. We
begin with the following lemma, closely related to [13, Thm. 4.1].

Lemma 19. Suppose that f ∈ H2(T∞). For w ∈ T and χ ∈ T∞, let

χw = (wχ1, wχ2, . . .).

Then, for almost every χ ∈ T∞, the function Fχ(w) := f(χw) is in H2(T) and

Fχ(0) =

∫
T∞

f(χ′) dm∞(χ′).

Proof. The fact that m∞ is invariant under rotations and Fubini’s theorem yields
that

‖f‖2H2(T∞) =

∫
T

∫
T∞

|f(χw)|2 dm∞(χ) dm(w) =

∫
T∞

∫
T
|Fχ(w)|2 dm(w) dm∞(χ).

We conclude that Fχ ∈ L2(T) for almost every χ. To additionally see that Fχ is in
H2(T), we need to verify that F̂χ(k) = 0 for almost every χ and every k < 0, where

F̂χ(k) =

∫
T
Fχ(w)wk dm(w).

To show this, note that for every k < 0 and n ∈ N we have that∫
T∞

F̂χ(k)χ(n) dm∞(χ) =

∫
T

(∫
T∞

f(χw)χ(n) dm∞(χ)

)
wk dm(w)

=

∫
T

(∫
T∞

f(χ)χ(n) dm∞(χ)

)
wk−κ(n) dm(w) = 0,

where κ(n) ≥ 0 denotes the number of prime factors of n, counting multiplicities.
Similarly, ∫

T∞
F̂χ(k)χ(q) dm∞(χ) = 0, q ∈ Q+\N,

since the corresponding Fourier coefficient of f is zero. Hence, the function χ 7→
F̂χ(k) is zero for almost every χ ∈ T∞, since all of its Fourier coefficients vanish.

With k = 0, the same calculation also shows that

Fχ(0) = F̂χ(0) =

∫
T
Fχ(w) dm(w) =

∫
T∞

f(χ′) dm∞(χ′),

for almost every χ ∈ T∞. �

Our next goal is to extend Lemma 15 to composition operators on H 2, with a
statement adapted to a domain Ω ⊇ ϕ(C∗

0). For simplicity, considering Ω ⊆ C1/2

as an open set on the Riemann sphere C∗, we assume that ∂Ω is a Jordan curve
on C∗. Then any Riemann map Θ of D onto Ω extends to a homeomorphism of D
onto Ω.

Lemma 20. Suppose that Ω ⊆ C1/2 has Jordan curve boundary in C∗ and that
ϕ ∈ G maps C∗

0 into Ω with ϕ(+∞) = ω. Let Θ be a Riemann map from D to Ω
with Θ(0) = ω, and for 0 ≤ δ ≤ 1, set

Eδ :=
{
χ ∈ T∞ : |Θ−1 ◦ ϕ∗(χ)| < δ

}
.



22 OLE FREDRIK BREVIG AND KARL-MIKAEL PERFEKT

Then
(30) ‖Cϕf‖2H 2 ≤ Cδ|f(ω)|2 + (1− Cδ)‖Cψf‖2H 2 , f ∈ H 2,

where Cδ = 1
2
1−δ
1+δm∞(Eδ) and ψ(s) = Θ(2−s).

Proof. Let f be a Dirichlet polynomial. As in the proof Theorem 18, we will rely
on the fact that ‖f ◦ ψ‖H 2 = ‖f ◦ Θ‖H2(T). We use Lemma 2, and that Θ is a
Riemann map, to see that

(31) ‖Cϕf‖2H 2 =

∫
T∞

|f ◦ ϕ∗(χ)|2 dm∞(χ) =

∫
T∞

|f ◦Θ ◦Θ−1 ◦ ϕ∗(χ)|2 dm∞(χ).

For w ∈ T, set χw = (wχ1, wχ2, . . .). Since Θ extends to a homeomorphism of D
onto Ω, Lemma 19 and the maximum principle implies that the function

Φχ(w) := Θ−1 ◦ ϕ∗(χw)

is an analytic self-map of D with Φχ(0) = 0, for almost every χ ∈ T∞. The measure
m∞ is rotationally invariant, so from (31) and Fubini’s theorem we find that

(32) ‖Cϕf‖H 2 =

∫
T∞

∫
T
|f ◦Θ ◦ Φχ(w)|2 dm(w) dm∞(χ).

Let χ belong to the set of full measure such that Φχ extends to an analytic self-map
of D. Lemma 15 yields that∫

T
|f ◦Θ ◦ Φχ(w)|2 dm(w) ≤ Cδ(χ)|f ◦Θ(0)|2 + (1− Cδ(χ))‖f ◦Θ‖2H2(T)

= Cδ(χ)|f(ω)|2 + (1− Cδ(χ))‖Cψf‖2H 2 ,

where Cδ(χ) = 1
2
1−δ
1+δm(Eδ(χ)), and Eδ(χ) = {w ∈ T : |Φχ(w)| < δ}. Note that∫

T∞
m(Eδ(χ)) dm∞(χ) = m×m∞ ({(w,χ) ∈ T× T∞ : |Φχ(w)| < δ}) = m∞(Eδ),

by Fubini’s theorem and the rotational invariance ofm∞. Inserting the last estimate
into (32) thus yields (30), at first for Dirichlet polynomials f , and by density for
all f ∈ H 2. �

When Ω = D(c, r) and ω = c, the function ψ in the statement is of course given
by ψ(s) = c+r2−s. Hence (30) extends the estimate (13) of Theorem 5 to non-affine
maps, with some loss of precision.

We now present the main result of this section, which identifies the symbols with
prescribed mapping properties that are maximal with respect to subordination of
composition operators. We say that a Dirichlet series f ∈ H 2 is inner if |f∗(χ)| = 1
for almost every χ ∈ T∞.

Theorem 21. Suppose that Ω ⊆ C1/2 has Jordan curve boundary in C∗ and that
ϕ ∈ G maps C∗

0 into Ω with ϕ(+∞) = ω. Let Θ be a Riemann map from D to Ω
with Θ(0) = ω and set ψ(s) = Θ(2−s). Then

‖Cϕf‖ ≤ ‖Cψf‖, f ∈ H 2.

Furthermore, the following are equivalent.
(a) Θ−1 ◦ ϕ is inner.
(b) ‖Cϕf‖H 2 = ‖Cψf‖H 2 for every f ∈ H 2.
(c) ‖Cϕ‖ = ‖Cψ‖.
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Proof. For χ ∈ T∞, define, as in the proof of Lemma 20,

Φχ(w) = Θ−1 ◦ ϕ∗(χw), w ∈ T.

Since Φχ : D → D satisfies Φχ(0) = 0, it follows from (32) and Littlewood’s subor-
dination principle (22) that

‖Cϕf‖H 2 ≤
∫
T∞

∫
T
|f ◦Θ(w)|2 dm(w) dm∞(χ) = ‖f ◦Θ‖2H2(T) = ‖Cψf‖2H 2 ,

for every Dirichlet polynomial f . If Θ−1 ◦ ϕ is inner, then Φχ ∈ H2(T) is inner for
almost every χ ∈ T∞, again with Φχ(0) = 0. Hence by the part of Theorem 14 due
to Nordgren [15], we know that CΦχ

is an isometry on H2(T). Inserting this into
(32) thus yields an equality in this case,

‖Cϕf‖2H 2 = ‖f ◦Θ‖2H2(T) = ‖Cψf‖2H 2 .

It remains to prove that (c) =⇒ (a). Suppose that Θ−1 ◦ϕ is not inner, and let f
be a Dirichlet polynomial. Then it follows from Lemma 20 and the Cauchy-Schwarz
inequality that there is a constant 0 < C < 1 such that

‖Cϕf‖2H 2 ≤ C|f(ω)|2 + (1−C)‖Cψf‖2H 2 ≤ ‖f‖2H 2

(
Cζ(2Reω) + (1− C)‖Cψ‖2

)
.

Combining this with Theorem 11 applied to Cψ, we obtain the strict inequality

‖Cϕ‖2 ≤ Cζ(2Reω) + (1− C)‖Cψ‖2 < (1− C)‖Cψ‖2 + C‖Cψ‖2 = ‖Cψ‖2. �

In the case that Ω = C1/2 and Reω = 1/2 + α, Theorem 21 sharpens (18).
The inequality (18) was originally used in [7] to address Problem 3 in [12]. This
problem asks about the maximal norm of a composition operator Cϕ, given that
Reϕ(+∞) = 1/2 + α.

Theorem 21 is the complete analogue of Shapiro’s Theorem 17. A corresponding
analogue of Shapiro’s Theorem 14 would concern composition operators Cϕ for
symbols ϕ ∈ G with c0 ≥ 1, where

ϕ(s) = c0s+

∞∑
n=1

cnn
−s = c0s+ ϕ0(s).

However, there is no simple way to transfer results between the cases c0 = 0 and
c0 ≥ 1. This is unlike the classical setting, where Möbius transformations allow us
to relate maps Φ: D → D satisfying Φ(0) = w 6= 0 with those satisfying Φ(0) = 0.
When c0 ≥ 1, Bayart [1, Thm. 16] has proven the analogue of Nordgren’s theorem:
Cϕ : H 2 → H 2 is an isometry if and only if T −1 ◦ ϕ0 is inner, where T denotes
the Cayley transform (8).

7. Examples

In this final section we give three examples. Fix Re c − 1/2 ≥ r > 0 and set
Ω = D(c, r). The composition operators we consider will be generated by symbols
ϕ mapping C∗

0 to Ω with ϕ(+∞) = c. Accordingly, we let Θ(z) = c+ rz.
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Figure 1. Plots of ϕc(it) for −200 ≤ t ≤ 200 with c equal to
r
4 (3, 1, 0),

r
2 (1, 1, 0) and r

6 (4, 1, 1). The inner radius is r
2 , 0 and r

3 .

7.1. The first symbol we consider is

ϕ(s) = c+
r

2
√
2

(
2−s + 2i 4−s + 8−s

)
,

which contains (powers of) only one prime number. Therefore the boundary value
ϕ∗ is a function of only one variable χ1 = eiθ1 . On the basis of the calculation∣∣Θ−1 ◦ ϕ∗(χ1)

∣∣ = 1

2
√
2

∣∣eiθ1 + 2i e2iθ1 + e3iθ1
∣∣ =√cos2(θ1) + 1

2

we find that ϕ maps C∗
0 into D(c, r). Theorem 21 and Theorem 7 thus yield that

‖Cϕ‖2 < ζ(1 + ζ), where, as always, ξ = (Re c− 1/2) +
√

(Re c− 1/2)2 − r2.
We can use Lemma 20 to give a better estimate. The calculation above also

yields that if 1/
√
2 ≤ δ ≤ 1, then

Cδ =
1

2

1− δ

1 + δ
m∞(Eδ) =

1

2

1− δ

1 + δ

(
1− 2

π
arccos

(√
2δ2 − 1

))
.

A reasonable choice is δ =
√
5/8. Hence we obtain that

‖Cϕ‖2 ≤ Cζ(2Re c) + (1− C)ζ(1 + ξ), C =
13− 4

√
10

18
= 0.01949 . . .

7.2. If there are d ≥ 2 primes in the symbol ϕ, it is generally much more difficult
to estimate m∞(Eδ). However, using the ergodic theorem, it is possible to express
m∞(Eδ) by looking only at the imaginary axis. By for example [18, Thm. 2.1.12]
we find that the equality

m∞(Eδ) = lim
T→∞

1

2T
meas

({
t ∈ [−T, T ] :

∣∣Θ−1 ◦ ϕχ(it)
∣∣ < δ

})
is valid for almost every χ ∈ T∞. If Θ−1 ◦ ϕ is a Dirichlet polynomial, then the
equality actually holds for every χ ∈ T∞, in particular for χ ≡ 1.

As an example, we will consider the following affine symbols:

ϕ1(s) = c+ r
4 (3 · 2

−s + 3−s),

ϕ2(s) = c+ r
2 (2

−s + 3−s),

ϕ3(s) = c+ r
6 (4 · 2

−s + 3−s + 5−s).
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Recall from [23, Sec. XI.5] that if ϕ(s) = c +
∑
j≥1 cjp

−s
j with c1 ≥ c2 ≥ · · · ≥ 0,

then the closure of the image of the imaginary axis is an annulus,

ϕ(iR) = {w ∈ C : r0 ≤ |w − c| ≤ r} , r =

∞∑
j=1

cj , r0 = max(0, 2c1 − r).

In Figure 1 we plot ϕj(it) for j = 1, 2, 3 and −200 ≤ t ≤ 200. Theorem 5 reveals
that ‖Cϕ1f‖H 2 ≥ ‖Cϕjf‖H 2 for j = 2, 3 and every f ∈ H 2, but it does not
yield any conclusion regarding the relationship between the composition operators
generated by ϕ2 and ϕ3. Inspection of their plots near the outer radius might lead
to the conjecture that Cϕ3

is subordinate to Cϕ2
.

To verify this conjecture, we recall from the proof of Theorem 5 that it is sufficient
to prove that ‖ϕ3−c‖2kH 2k ≤ ‖ϕ2−c‖2kH 2k holds for k = 1, 2, . . .. By the multinomial
theorem and a computation, this set of inequalities is equivalent to the statement
that ∑

j1+j2+j3=k

(
k

j1, j2, j3

)2

16j1 ≤ 9k
(
2k

k

)
, k = 1, 2 . . . .

This inequality can be checked by hand for small k. For large k, it can be proven
by using Stirling’s formula and the Laplace method, see for example [20] for a
calculation of the asymptotic behavior of a very similar sum. Note that the largest
term of the sum occurs when j1 ≈ 2k/3 and j2 ≈ j3 ≈ k/6. We omit the details.

Hence we find that Cϕ3 is indeed subordinate to Cϕ2 . It would be interesting to
know if a more general subordination principle than Theorem 5 holds, still operating
in the family of affine composition operators with the same mapping properties. In
particular, we pose the following question.

Question. If ϕb and ϕc are two affine symbols with the same mapping properties,
is it true that either Cϕb

is subordinate to Cϕc , or Cϕc is subordinate to Cϕb
?

By Theorem 5 a counter-example would have to contain d ≥ 3 prime numbers.

7.3. The inner functions on T2 are already difficult to describe or classify, see for
example [5]. To give an example of a non-trivial inner function g ∈ H 2, consider

g(s) = exp

−
∞∑
j=1

λj
eiθj + p−sj

eiθj − p−sj

 ,

where (eiθ1 , eiθ2 , . . .) ∈ T∞ and the sequence (λj)j≥1 is non-negative and summable.
This Dirichlet series g is inner, does not have any zeroes in C0, and fails to converge
on the imaginary axis. The symbol

ϕ(s) = c+ r
g(s)− g(+∞)

1− g(+∞)g(s)
,

is in G and maps C∗
0 to D(c, r) with ϕ(+∞) = c. If ψ(s) = Θ(2−s) = c + r2−s,

then Theorem 21 yields that ‖Cϕf‖H 2 = ‖Cψf‖H 2 for every f ∈ H 2.
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