
Internet Control for Residential Users

Torgeir Pedersen Cook

Master of Science in Communication Technology

Supervisor: Poul Einar Heegaard, ITEM
Co-supervisor: Bjørn J. Villa, ITEM

Department of Telematics

Submission date: June 2013

Norwegian University of Science and Technology

Title: Internet Control for Residential Users
Student: Torgeir Pedersen Cook

Problem description:

Some security issues exist in Wifi hot-pot systems found in airports and cafés.
These systems often employ unencrypted Wifi access, which gives that opportunity
to mount a variety of different attacks. Also, it is easy to obtain unauthorized access
to these systems by spoofing the MAC- and IP address of authorized clients. The
first part of this project will provide an analysis of the security issues found in Wifi
hot-spots and present some proposed solutions to these issues.

In the second part, a prototype Wifi hot-spot system for residential environments
will be implemented. The prototype will use the appropriate hardware and should
be managed from a central server. Similar residential Wifi hot-spot systems have
shortcomings when it comes to how end-users manage the system. This increases users
reluctance to learn and use the system. A detailed specification of the system will
be provided, including functional- and quality requirements. High emphasis will be
placed on usability, responsiveness and interoperability. The identified requirements
will impact the technology and design decisions made in the implementation. The
system will include:

– Appropriate hardware providing Wifi access and basic IP traffic filtering func-
tionality

– Central server for management and storage of end-user information
– Mobile-application intended for end-users to manage and control clients’ Internet
access

– Web-application intended for end-users to manage and control clients’ Internet
access. The web-application will also be used by requesting clients to obtain
Internet access

Testing of the most important functional requirements will be conducted to ensure
that these requirements are fulfilled.

Responsible professor: Poul Heegaard, ITEM
Supervisor: Bjørn J. Villa, ITEM

Abstract

The Internet has become instrumental in modern society. Many
Internet based services are a necessary part of people’s lives. Other
services are intended solely for entertainment purposes. For certain
groups there exists a need to control access to these services. This project
will implement a prototype Internet control system for the residential
environment. The implementation aims to amend existing Internet control
solutions by improving user interaction. The implemented system bears
resemblance to Wifi hot-spots found in coffee shops and book stores. This
project will explore security vulnerabilities present in these Wifi hot-spot
systems.

Contents

List of Figures vii

List of Tables ix

List of Code Snippets xi

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 1
1.3 Scope . 2
1.4 Rapport Structure . 3
1.5 Method . 3

2 Wifi Hot-spot Security 5
2.1 Wifi Access Domains . 5

2.1.1 Enterprise Access . 5
2.1.2 Public Access . 6
2.1.3 Residential Access . 6

2.2 Security Mechanisms . 6
2.2.1 Authentication . 6
2.2.2 Authorization . 7
2.2.3 Accounting . 8

2.3 Common Security Threats . 8
2.3.1 Eavesdropping . 8
2.3.2 MAC Address Spoofing . 9
2.3.3 Freeloading . 9
2.3.4 Session Hi-jacking . 10
2.3.5 Rouge Access Point . 11

2.4 Discussion . 11

3 System Requirements 13

iii

3.1 Overview . 13
3.2 Functional Requirements . 14
3.3 Quality Requirements . 16

3.3.1 Usability . 16
3.3.2 Responsiveness . 16
3.3.3 Interoperability . 17
3.3.4 Modifiability . 17

4 Development Platform 19
4.1 Residential Access Point . 19

4.1.1 Operating System . 20
4.1.2 Hostapd . 20
4.1.3 Dnsmasq . 20
4.1.4 Iptables . 20
4.1.5 Application Language . 23

4.2 Management Server . 23
4.2.1 Server Language . 23
4.2.2 Client Permission Format . 24
4.2.3 Front-end Framework . 24

4.3 Mobile Management Application . 24
4.3.1 Platform . 24
4.3.2 Push Notification . 24

4.4 Integrated Development Environment 25
4.5 Revision Control . 25

5 Implementation 27
5.1 Residential Access Point . 27

5.1.1 Wifi Access . 27
5.1.2 DHCP Server . 28
5.1.3 Authorization . 28
5.1.4 Obtaining Client Identifier . 29
5.1.5 Polling Server . 31

5.2 Management Server . 33
5.2.1 Storage . 33
5.2.2 Structure . 35
5.2.3 Requesting Access . 36
5.2.4 Remote Management . 36

5.3 Mobile Management Application . 37
5.3.1 Push Notification . 37
5.3.2 Manager Login . 41
5.3.3 Manage Internet Permissions 41

5.4 Web Management Application . 44

5.5 Functionality Overview . 46

6 System Testing 47
6.1 Allow and Block Internet Access . 47
6.2 Multiple Customers . 48

7 Discussion and Further Work 51
7.1 Authentication . 51
7.2 Authorization . 51
7.3 Accounting . 51
7.4 System Feedback . 52

7.4.1 Requesting Access . 52
7.4.2 Visible Permissions . 53

7.5 Uniform Management Interface . 53
7.6 Validating Permissions . 53
7.7 Double Network Address Translation 54
7.8 Modes of Notification . 54
7.9 Customer Management . 55

8 Conclusion 57

References 59

Appendices

A Raspberry Pi 63
A.1 Configuration files . 63

A.1.1 hostapd.conf . 63
A.1.2 dnsmasq.conf . 63
A.1.3 interfaces . 64

A.2 Bash Scripts . 64
A.2.1 add_static_lease . 64
A.2.2 reload_dhcp_leases . 65
A.2.3 iptables_setup . 66

A.3 Python Modules . 67
A.3.1 Polling Server . 67
A.3.2 Proxy Server . 70

B Management Server 75

C Mobile Application 77

D Development Aid 79
D.1 Raspberry Pi . 79

D.1.1 Commands . 79
D.1.2 Directories . 80

D.2 Management Server . 80
D.2.1 Apache Tomcat . 81
D.2.2 MySQL . 81

D.3 Mobile Application . 81
D.4 Software Tools . 82

D.4.1 Eclipse . 82
D.4.2 Git . 82

List of Figures

2.1 OSI Reference Model . 5
2.2 Captive Portal . 7
2.3 Freeloading Attack . 9
2.4 Session Hi-jacking Attack . 10

3.1 System Architecture . 14

4.1 Raspberry Pi Type B Specifications . 19
4.2 Iptables Table-Chain-Rule Structure . 21
4.3 Iptables Overview . 21
4.4 Custom Client Chain . 23

5.1 Authorized and Unauthorized Sub-net 29
5.2 User and Client Table . 34
5.3 Request Access Web Page . 36
5.4 Get Clients . 37
5.5 GCM Registration Procedure . 38
5.6 Access Request Notification . 39
5.7 Push Notification . 40
5.8 Select Client Internet Permission . 40
5.9 Manager Login . 41
5.10 Get Clients . 42
5.11 Client List . 44
5.12 Manager Web Page . 45
5.13 Functionality Overview . 46

7.1 Access Request Feedback . 52
7.2 Client Internet Permissions . 53

D.1 Install Android Application . 82

vii

List of Tables

3.1 Functional Requirements . 15

6.1 Allow and Block Access Test Results . 48
6.2 Multiple Customers Test Results . 49

ix

List of Code Snippets

4.1 Iptables Command: Accept Rule . 22
4.2 Iptables Command: FORWARD Chain Policy Rule 22
5.1 Iptables Command: NAT Rule . 27
5.2 Dnsmasq Initial Configuration . 28
5.3 DHCP Lease . 28
5.4 Linux Command: /etc/network/server/proxy.py 30
5.5 Iptables Command: HTTP Port Redirect Rule 30
5.6 Python Method: /etc/network/server/util.py 30
5.7 Python Method: /etc/network/server/util.py 31
5.8 JavaScript Object Notation: Client 32
5.9 MySQL Command: /etc/init.d/mysql 33
5.10 Management Server Structure . 35
5.11 JavaScript Object Notation: Client Array 43
7.1 Pseudocode: Access Request Notification Procedure 55
A.1 Configuration File: /etc/hostapd/hostapd.conf 63
A.2 Configuration File: /etc/dnsmasq.conf 63
A.3 Configuration File: /etc/network/interfaces 64
A.4 Bash Script: /etc/add_static_lease.sh 64
A.5 Bash Script: /etc/reload_dhcp_leases.sh 65
A.6 Bash Script: /etc/network/if-up.d/iptables_setup.sh 66
A.7 Python Module: /etc/network/server/configserver.py 67
A.8 Python Module: /etc/network/server/transproxy.py 70

xi

List of Acronyms

ADT Android Development Tools

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CA Certificate Authority

CSS Cascading Style Sheets

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DTD Data Retention Directive

EAP Extensible Authentication Protocol

EU European Union

GB Gigabyte

GCM Google Cloud Messaging

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

iOS iPhone OS

IP Internet Protocol

xv

ISO International Organization for Standardization

ISP Internet Service Provider

JRE Java Runtime Environment

JSON Java Script Object Notation

LTS Long Term Support

MAC Media Access Control

Mbps Megabit per second

NAT Network Address Translation

NIC Network Interface Controller

NTNU Norwegian University of Science and Technology

OS Operating System

OSI Open Systems Interconnection

PEAP Protected Extensible Authentication Protocol

PHP Hypertext Preprocessor

RPI Raspberry Pi

SDHC Secure Digital High Capacity

SIM Subscriber Identity Module

SMS Short Message Service

SQL Structured Query Language

SSH Secure Shell

SSID Service Set Identifier

SSL Secure Sockets Layer

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TTLS Tunneled Transport Layer Security

TURN Traversal Using Relays around NAT

URL Uniform Resource Locator

USB Universal Serial Bus

VoIP Voice over Internet Protocol

WEP Wired Equivalent Privacy

WPA WiFi Protected Access

XML Extensible Markup Language

Chapter1Introduction

1.1 Motivation

Internet based services have become an important part of people’s lives. In the
residential environment there exists a need to control Internet access for certain
groups. Reports exist of children being addicted to Internet services such as World
of Warcraft and Facebook.

Many different Internet control systems for the residential environment are
available on the market today. A common weakness of existing systems is how users
interact with the system. Extensive configuration is often required by the user to
enable the offered Internet control features. Also, existing Internet control systems
give little consideration to how clients request Internet access.

1.2 Related Work

Existing Internet Control solutions for the residential environment fall into three
categories.

– Software centric

– Router centric

– Dedicated hardware

Software centric solutions is installed on client devices to provide Internet control.
Solutions in this category offer a wide range of Internet control features. The software
needs to be installed on each device requiring Internet control. This is impractical
in environments containing a variety of devices such as laptops and smartphones.
Different software needs to be configured on each device to provide complete Internet
control.

1

2 1. INTRODUCTION

The second category is router centric solutions. Some major router manufacturers
have Internet control functionality implemented in their routers. This centralizes the
Internet control on the residential network since all Internet traffic passes through
the router. Internet control is one of many services offered by routers. Extensive
configuration is often required by the user to enable the offered Internet control
features. Also, no consideration is given to how Internet access is requested and
granted.

The third category is Internet control realized on dedicated hardware. A prototype
system in this category was implemented in a prior project at Norwegian University
of Science and Technology (NTNU) [1]. Systems in this category are connected to
home-routers. More consideration is given to how users interact with these systems
than in the two other categories. The Internet control feature provided by these
systems usually demand a substantial annual fee.

1.3 Scope

The first part of this project will analyze the security provided in different Wifi
access domains. The analysis will uncover security threats found in the public-
and residential access domain. Some countermeasures to the identified threats
are presented. The second part of the project will implement an Internet control
prototype system for the residential environment. The implementation will not
provide countermeasures to the threats uncovered in the first part of the project.

The Internet control system implemented aims to prototype a managed service
where customers can either purchase or subscribe to the service. To support multiple
customers, a central server will be utilized for storage of customer information. The
Internet control features of the system will be implemented on dedicated hardware
that is connected to the home-network of the customer. The dedicated hardware can
be managed from the central server. Clients can request Internet access through the
Wifi network offered by the dedicated hardware. The system customer can manage
clients’ Internet permissions through a mobile- and web application. This project
aims to improve how Internet access is requested and granted on existing Internet
control systems.

Having customer management is necessary for the service provided by the planned
system. No customer management functionality will, however, be implemented. The
main focus of this project is to create a system suited for demonstration purposes.
The project also aims to lie the groundwork for further development. Initially, the
project intended to implement a mobile- and web application that managed clients’
Internet permissions, but due to time limitations only a mock-up implementation of
the web application was created. The mobile application was given priority as it is

1.4. RAPPORT STRUCTURE 3

better suited to demonstrate the functionality of the system.

1.4 Rapport Structure

In the Wifi Hot-spot Security Chapter the main Wifi access domains will be presented.
Some common security threats found in the public- and residential domain are
analyzed. The analysis includes some defenses against the identified threats. The
System Requirements Chapter gives an overview of the planned prototype system
and specifies the functional- and quality requirements. The Development Platform
Chapter provides a description of the hardware- and software components needed
to meet the requirements specified in the System Requirements Chapter. The
Implementation Chapter gives a description of the implementation work performed in
the project. The most important functionality of the systems is tested in the System
Testing Chapter. The Discussion and Further Work Chapter presents some challenges
and limitations of the system. This chapter also suggests issues and features that
should be considered in further development.

1.5 Method

An overview of the system domain was established through the work performed in a
prior project [1]. This project aimed to improve on poor design and implementation
choices in the prior project. The functional- and quality requirements were specified
subsequent to the system implementation. The requirements were used to plan and
direct development efforts.

A deep understanding of Python, Hypertext Preprocessor (PHP) and Java Script
Object Notation (JSON) was obtained to meet the specified requirements. Working
with these software components yielded valuable insight into challenges and limitations
faced in a distributed system. Learning to work with these components in a distributed
environment was challenging. Much time was spent on debugging and tracing the
origin of system bugs.

Chapter2Wifi Hot-spot Security

2.1 Wifi Access Domains

2.1.1 Enterprise Access

Enterprise access is used in access networks that require high security, such as
networks found in companies and government offices. Wifi access is encrypted at the
data link layer in the Open Systems Interconnection (OSI) reference model [2].

Figure 2.1: OSI Reference Model

These systems often utilize the WiFi Protected Access (WPA)-Enterprise standard
[3] to provide encrypted access. Since companies can have thousands of employees,
enterprise systems require a reliable and scalable scheme to distribute the authentica-
tion information. Enterprise systems offer strong security, but configuration is often
required of client equipment to obtain access. The institutions utilizing enterprise

5

6 2. WIFI HOT-SPOT SECURITY

access often have technical support departments that aid clients in configuration of
their equipment.

2.1.2 Public Access

Public hot-spots are used to grant clients access in public places such as coffee shops
and book stores. The primary focus of these systems is to provide access free of
configuration. For this reason most public hot-spots employ open networks, i.e the
access is not encrypted. Some public hot-spots do however provide encrypted access.
The encryption key can often be obtained at the counter of the coffee shop or book
store. This does not provide stronger security than the open network approach since
anyone can obtain the encryption key.

2.1.3 Residential Access

Resident access is used in the home environment. The access offered often uses
encryption standards such as Wired Equivalent Privacy (WEP) [3] and WPA-Personal
[3]. Clients can obtain access by providing the encryption key. For the purpose of
this project a residential hot-spot is a Wifi access point that provides Internet control
features.

2.2 Security Mechanisms

2.2.1 Authentication

Authentication is the process of identifying an individual or a systems component. In
enterprise systems authentication is provided through the Extensible Authentication
Protocol (EAP) [4]. EAP provides multiple modes of authentication. The modes
most commonly used are Protected Extensible Authentication Protocol (PEAP),
EAP-Subscriber Identity Module (SIM) and EAP-Tunneled Transport Layer Security
(TTLS). These modes provide mutual authentication, i.e the clients are authenticated
to the network and the network is authenticated to clients. Clients authenticate
themselves to the network by providing the authentication information provided by
their organization or company.

In public hot-spots captive portals are widely used to provide client authentication.
Captive portals utilize a special gateway between the access point and the rest of
the network.

2.2. SECURITY MECHANISMS 7

Figure 2.2: Captive Portal

Source [5]

The gateway redirects all web requests originating from unauthenticated clients
to a Secure Sockets Layer (SSL) web page located on the captive portal. Clients
usually authenticate themselves by providing payment details.

In the residential environment a client is authenticated by providing the encryption
key to the hot-spot. This provides weaker authentication than in enterprise- and public
hot-spots, since any client with knowledge of the encryption key can authenticate
them self.

2.2.2 Authorization

Authorization is granting an individual or a system component permission to perform
a particular activity. In Wifi hot-spots authorization is provided by employing traffic
filtering and bandwidth management. Some authorization services are listed below.

– Allow and Block Internet access

– Time based Internet access

– Allow and Block Internet services

– Transferred content limit

– Allocate bandwidth

These services are enforced by filtering traffic based on Media Access Control
(MAC)- and Internet Protocol (IP) address. In enterprise systems, traffic is encrypted
using client specific encryption keys. Bypassing the authorization services of these
systems would require breaking the WPA-Enterprise encryption, which is considered
infeasible [6].

8 2. WIFI HOT-SPOT SECURITY

In public hot-spots, the authentication procedure implemented is considered
secure since the procedure is encrypted using application layer protocols such as
SSL. However, the authorization services provided by these hot-spots can often be
bypassed with minimal effort. This will be discussed in Section Common Security
Threats.

The access in residential systems is often encrypted at the data link layer. Clients
can act in collusion to bypass the systems authorization services. This will also be
discussed in Section Common Security Threats.

2.2.3 Accounting

Accounting is to track an individual’s or system component’s consumption of resources.
In Wifi hot-spots accounting can be provided by recording:

– Which web domains are accessed

– Which web services are used

– How much data is transferred

Accounting services are provided by coupling the recorded data with the MAC-
and IP address of clients. The system can utilize the recorded data to track which
and how much system resources clients use.

In accordance with the establishment of the European Union (EU) Data Retention
Directive (DTD) in 2006, hot-spot owners may be required to provide their national
government with client Internet traffic data. Implementing reliable and secure
accounting services thus becomes important in a juridical sense, since hot-spot
owners may be held responsible for illegal activities on their network.

2.3 Common Security Threats

Public and residential hot-spots aim to provide clients Wifi access free of configuration.
Less consideration is given to security than in enterprise systems. Some security
threats found in public and residential hot-spots are presented in the preceding
sections.

2.3.1 Eavesdropping

The Wifi access offered by public and residential hot-spots is often left unencrypted
or the encryption key is available to the other clients on the network. An attacker

2.3. COMMON SECURITY THREATS 9

may eavesdrop on Wifi traffic by using software such as Wireshark [7]. The attacker
can recover passwords and other content of web services the victim is using.

2.3.2 MAC Address Spoofing

Public and residential hot-spots provide authorization services based on clients’ MAC
address. By spoofing the MAC address, an attacker can gain the same permissions in
the system as an authorized client. The MAC address of authorized clients can easily
be obtained by eavesdropping on the Wifi traffic. Several Wifi drivers in Windows
support spoofing of the MAC address. Other tools for MAC address spoofing are
available on the Internet, e.g smac1.

2.3.3 Freeloading

A problem with the MAC spoofing is that public and residential hot-spots often
provide authentication services based on the IP address, in addition to the MAC
address. An attacker can easily circumvent this problem by assigning an unauthorized
device, the same IP address as an authorized device. This will result in that the
attacker also receiving traffic intended for the victim (since the attacker and victim
have the same IP address). However, if both the attacker and victim run personal
firewalls, a freeloading attack will perform reliably. Personal firewalls typically only
allow packets that are part of a session. This results in no traffic interference between
the attacker and victim. This attack can be performed by a single attacker or in
collusion. In a collusion attack clients cooperate to obtain unauthorized access.

Figure 2.3: Freeloading Attack

Source [5]

1http://www.klcconsulting.net/smac

10 2. WIFI HOT-SPOT SECURITY

A freeloading attack can be prevented by detecting when a MAC address is
spoofed. The appropriate actions can be initiated to deny the attacker access. A
novel MAC spoofing detection scheme is presented in [5]. The purposed solution
traces the sequence number of data link layer frames. Data link layer frames contain
a 12 bit sequence number that is incremented for each network layer datagram sent.
This number is set and verified by the Network Interface Controller (NIC) hardware,
and can typically not be altered by software. By recording trend-lines for each client,
the solution can determine if abnormal changes in the MAC sequence number is the
result of a freeloading attack. This MAC spoofing detection solution is performed in
the hot-spot and is completely transparent to clients.

2.3.4 Session Hi-jacking

A session high-jacking attack can be mounted by eavesdropping on the traffic of a
victim authenticating with the hot-spot. The attacker can factor de-authentication
frames so that they are seemingly coming from the hot-spot. These frames can be
periodically sent to prevent the victim from gaining access. By spoofing the victim’s
MAC- and IP address the attacker can obtain unauthorized access.

Figure 2.4: Session Hi-jacking Attack

Source [5]

This attack cannot be defected by the MAC spoofing detection solution described
in Section Freeloading, since there has not been enough traffic to create reliable
trend-lines for the attacker and victim. A defense is presented in [5]. This solution
presents clients with a SSL session management web page. The web page has an
associated cookie containing a session id, i.e a cryptographic random number, and is
configured to refresh automatically. A session high-jacking attack is detected when

2.4. DISCUSSION 11

no refresh requests containing the session id are made within a certain time interval.
This solution requires that the session management web page remains open.

2.3.5 Rouge Access Point

In public and residential hot-spots clients authenticate themselves to the hot-spot,
but the hot-spot does not authenticate itself to clients. An attacker can configure a
rouge hot-spot with the same Service Set Identifier (SSID) as a legitimate hot-spot
with a stronger signal. Most client devices will automatically change to the hot-spot
providing the stronger signal. This attack is difficult for clients to detect since most
operating systems do not provide any information regarding activity at the data link
layer. Once associated with the rouge hot-spot, the attacker has complete control
over the victim’s traffic.

2.4 Discussion

Enterprise hot-spot systems provide strong authentication, authorization and ac-
counting services. Configuration is often required of the client devices to gain access.
Enterprise systems also require a scheme to distribute authentication information. In
public- and residential hot-spots clients can gain access with minimal effort. These
systems are however vulnerable to the attacks presented in Section Common Security
Threats. Bypassing the authorization services will result in a revenue loss for the
public hot-spot owner. In the residential environment a likely attack scenario is that
clients act in collusion to obtain unauthorized access. A successful attack will defeat
the purpose of the system, as residential hot-spots aim to control clients’ Internet
access permissions. A defense against the identified attacks should be considered in
development of public and residential hot-spot systems. The defense mechanisms
should be transparent to clients since ease of configuration and use is key to successful
hot-spot deployment.

Chapter3System Requirements

3.1 Overview

This project will implement a prototype Internet control system for the residential
environment. The implemented system aims to provide a managed service. A central
management server is thus required to store customer information such as name and
email address. A management server is also required to provide remote management
of the residential access point located on the home network. the Internet control
features of the system are realized on the residential access point. The residential
access point will offer clients Wifi access and provide IP packet filtering functionality.
Customers of the system can grant clients Internet permissions through a mobile-
and web management application. Clients can request Internet access through a web
page located on the management server.

13

14 3. SYSTEM REQUIREMENTS

Figure 3.1: System Architecture

In the following sections the functional- and quality requirements of the system
will be presented. The identified requirements will impact the choices of software-
and hardware components made in Chapter Development Platform.

3.2 Functional Requirements

The focus of this project was to implement a system suited for demonstration purposes.
The functional requirements will thus prioritize the core aspects of the system, i.e to
allow and block clients’ Internet access. As the system aims to prototype a managed
service, priority will be given to enable support for multiple customers. Less emphasis
will be placed on providing a rich set of Internet control features. The Functional
requirements for the residential access point, management server, mobile management
application and web management application are listed below. The requirements are
listed in order of importance.

3.2. FUNCTIONAL REQUIREMENTS 15

Title Functional Requirement Priority

1 Wifi access The residential access point can provide Wifi
access to clients High

2 Unauthorized Permissions
The residential access point can block all

traffic from unauthorized clients. Only traffic
required to request Internet access is allowed

High

3 Allow Internet Access The residential access point can allow clients
Internet access based on MAC- and IP address High

4 Block Internet Access The residential access point can block clients
Internet access based on MAC- and IP address High

5 Time Based Internet Access The residential access point can allow or block
clients Internet access based on time of day Low

7 Domain Black List The residential access point can allow or block
clients Internet traffic to custom web domains Low

8 Accounting The residential access point can gather IP
traffic statistics from clients Low

9 Customer Information The management server can store customer
information High

10 Remote Management The residential access point can be managed
remotely from the management sever High

11 Multiple customers
The management server can support
managing of residential access points

belonging to different customers
High

12 Allow Internet Access The mobile application can allow clients
Internet access High

13 Block Internet Access The mobile application can block clients
Internet access High

14 Access Request Notification
The mobile application can receive push
notifications when clients request Internet

access
High

15 Time Based Internet Access The mobile application can allow or block
Internet access based on time of day Low

16 Domain Black List The mobile application can allow or block
Internet traffic to custom web domains Low

17 Allow Internet Access The web application can allow clients Internet
access High

18 Block Internet Access The web application can block clients Internet
access High

19 Request Access Internet access can be requested by through
the web application High

20 Time Based Internet Access The web application can allow or block
Internet access based on time of day Low

21 Domain Black List The web application can allow or block
Internet traffic to custom web domains Low

22 Accounting The web application can display clients IP
traffic statistics Low

Table 3.1: Functional Requirements

16 3. SYSTEM REQUIREMENTS

3.3 Quality Requirements

As the system implemented in this project is a prototype, emphasis will be placed on
user interaction with the system. The quality attributes addressed will be usability,
responsiveness and interoperability. Since the system is likely be the the subject of
further work, emphasis will also be placed on the modifiability of the system.

The following sections will present the importance of each quality requirement
and provide quality scenarios for each requirement.

3.3.1 Usability

International Organization for Standardization (ISO) 9241-11 , Guidance on Usability
[8] states that:

Usability is the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use.

Usability is key to encourage users to learn and use this system.

No Access Point Configuration When the residential access point is initially
connected to the home network of the customer, no configuration should be required
to provide Wifi access.

Managing Clients Internet Access Managing clients’ Internet access permis-
sions through the mobile- and web application should not require a tutorial.

Requesting Internet Access Requesting Internet access should not require a
tutorial.

3.3.2 Responsiveness

Research indicates that responsiveness is a fundamental issue for positive human-
computer interaction. Long response times induces reactions such as annoyance,
stress and decreased productivity.

Internet Permission Update Time When a client’s Internet permissions are
updated by the manager, through the mobile- or web application, the affect of the
changes should take less than eight seconds.

3.3. QUALITY REQUIREMENTS 17

Responsive User Interface The user interface of the mobile- and web application
should have response times of less than 200 milliseconds.

3.3.3 Interoperability

Interoperability in the context of this system is supporting a wide range of client
devices. Utilizing web technologies not supported by client devices will prohibit the
clients from requesting Internet access. Not supporting the most common Wifi access
standards would remove the opportunity for some devices to obtain Wifi access. The
system should support client devices ranging from desktop computers to smartphones.
The system aims to support only devices containing a web browser. An increasing
number of devices are gaining Wifi access, e.g smart-grid appliances such as fridges.
Arguably, these devices do not require Internet control features.

Web Application Support The web application should support all client equip-
ment containing a web browser.

Wifi Support The local hardware should support client hardware implementing
the following IEEE 802.11 Wifi access standards: a, b, g [3][9][10].

3.3.4 Modifiability

To simplify further development of the system, consideration should be given to
code quality and structure of software components. A detailed guide of the software
components used should also be provided to aid further development.

Code Quality This project will involve multiple programming languages. Code
written in high-level languages should have self-explanatory variable-, method- and
class names. Code written in low-level languages should contain comments where
the functionality of the code is unclear.

Software Component Structure As the systems will contain multiple software
components, each component should have a consistent and logical structure.

Adding Client Permissions The functional requirements only specify a limited
set of Internet access permissions. The system should have the capability to add new
client Internet permissions without undergoing architectural changes.

Chapter4Development Platform

4.1 Residential Access Point

Raspberry Pi (RPI) is a single board computer the size of a credit card. The RPI was
originally intended to promote computer science education. Two different models are
currently available, type A and B. The main difference is that type A is not equipped
with an Ethernet port. Because network access was required in this project, type
B was chosen. A price of 25$ to 35$ has resulted in a rapidly growing development
community for the RPI. Development projects range from using the RPI as a home
media server to home automation and robotics1.

Figure 4.1: Raspberry Pi Type B Specifications

Source2

Since the RPI is not equipped with on-board Wifi, a Wifi Universal Serial Bus
(USB) dongle was required. Several different dongles were tested. The RPI was

1http://www.raspberrypi.org/phpBB3/
2http://www.trustedreviews.com/opinions/raspberry-piP age − 2

19

20 4. DEVELOPMENT PLATFORM

found compatible with D-link DWL-G122. For storage a Samsung 16 Gigabyte (GB)
Secure Digital High Capacity (SDHC) Class 10 Card was used.

The RPI provides a good prototype platform since it resembles the resource-
constrained hardware of similar residential Internet control systems.

4.1.1 Operating System

The RPI is capable of running a variety of OSs. The recommended beginner Operating
System (OS) is Rasbian wheezy [11]. This is a Linux based OS with a large number
of pre-installed packages.

4.1.2 Hostapd

To provide Wifi access the hostapd package [12] was used. Hostapd supports the
Institute of Electrical and Electronics Engineers (IEEE) 802.11 access point manage-
ment [3] and offers a wide range of configuration options for Wifi access control and
authentication.

4.1.3 Dnsmasq

The Dynamic Host Configuration Protocol (DHCP) [13] is used to dynamically
allocate IP addresses to clients on a network. In the system a DHCP server was
required to grant IP addresses. Dnsmasq [14] provides Domain Name System
(DNS) forwarder and DHCP server. Dnsmasq was easy to configure and offers rich
functionality.

4.1.4 Iptables

To provide Internet control functionality iptables [15] was utilized. Iptables is the
most used traffic filtering package available for Linux. Iptables can set up and
maintain tables of IP packet filter rules in the Linux kernel. When a IP packet arrives
at the RPI, it is sequentially checked against the rules in iptables. The main tables
in iptables are filter, nat and mangle. Each table contains a number of chains and
each chain has a set of rules.

4.1. RESIDENTIAL ACCESS POINT 21

Figure 4.2: Iptables Table-Chain-Rule Structure

Adopted from3

The filter table contains three chains, i.e INPUT, OUTPUT and FORWARD.
Packets destined for a local process visit the INPUT chain in the filter table. Locally
generated traffic visits the OUTPUT chain. Packets not destined or generated by
a local process visit the FORWARD chain. The nat table is consulted when new
connections are encountered. The mangle table is utilized for specialized packet
alteration.

Figure 4.3: Iptables Overview

Adopted from4

3http://www.thegeekstuff.com/2011/01/iptables-fundamentals/

22 4. DEVELOPMENT PLATFORM

Iptables allows the creation of a wide range of filtering rules. A rule can contain
a set of matching criteria and a target. The matching criteria specifies which packets
the rule applies to. Examples of matching criteria is source- and destination IP
address. The target specifies the destination of a packets once a matching criteria is
fulfilled. Iptables has several pre-defined targets such as ACCEPT and DROP.

Code Snippet 4.1 Iptables Command: Accept Rule

iptables -t filter -A INPUT -s 10.0.0.6 -j ACCEPT

Rules are added to iptables by running commands in the command line.
This rule is added to the INPUT chain in the filter table. The matching
criteria is the source IP-address. The target is ACCPET, i.e packets with

source address 10.0.0.6 are allowed through iptables.

If none of the rules in a chain apply to a packet, the policy of the chain is followed.

Code Snippet 4.2 Iptables Command: FORWARD Chain Policy Rule

iptables -t filter -P FORWARD DROP

This rule sets the policy of the FORWARD in the filter table to DROP. A
packet visiting the FORWARD chain is then dropped if none of the rules in

the chain apply to the packet.

An additional feature provided in iptables is the creation of custom chains.
This feature can be utilized to create client specific chains. Each client allowed
Internet access can have a custom chain in iptables where the client’s Internet access
permissions are added. Traffic can be directed towards the custom chains based on a
client specific criteria such as MAC- or IP address.

4http://www.linuxnetmag.com/en/issue9/m9iptables1.html

4.2. MANAGEMENT SERVER 23

Figure 4.4: Custom Client Chain

Utilizing custom chains will yield better performance, as less rules will have to be
consulted than in a purely sequential approach.

4.1.5 Application Language

A programming language was required to enable communication between the RPI
and management server. Python is a free, general purpose programming language
that offers a comprehensive standard library. Python’s lightweight and elegant syntax
makes it an ideal language for scripting and prototype development. Python is also
the native application language for the RPI, which makes it a good candidate for
implementing the specified functionality.

4.2 Management Server

Due to previous experience MySQL 5.1.66 [16] database server was used for storage.
An Ubuntu 10.04.4 Long Term Support (LTS) [17] virtual server was provided at the
start of the project. To provide an interface for clients requesting access, an Apache
Tomcat 6 [18] web server was installed on the management server. Apache Tomcat
is an open source web server that supports multiple server languages.

4.2.1 Server Language

A language was required on the management server to provide the communication
with the RPI. The language should also support communication with the mobile-
and web application. PHP is a free and widely used server language designed for
web development. PHP contains native extensions for handling Hypertext Transfer

24 4. DEVELOPMENT PLATFORM

Protocol (HTTP) traffic. Database interaction is made simple through the native
extensions included in PHP. PHP 5.3.2 [19] was installed on the management server.

4.2.2 Client Permission Format

A format for representing client Internet permissions was required. The format
should be complex enough to represent a wide range of Internet permissions. JSON
is a format used for storing and exchanging text information. JSON is derived from
the JavaScript scripting language, where it is used for representing data structures.
Despite the name, JSON is language independent, i.e parsers exist in numerous
programming languages. Extensible Markup Language (XML) was initially considered
as it provides more structure than JSON. XML also providers the capability of
validation through XML schemas. XML schemas describe the valid structure of
XML documents. A XML document can be validated towards its respective XML
schema. This would provide the capability to validate clients Internet permissions.
The complexity of XML was however a major obstacle. The XML parsers available
in the relevant programming proved to be complex and difficult to work with. The
capabilities of JSON was considered sufficient to represent clients Internet permissions.

4.2.3 Front-end Framework

Twitter Bootstrap [20] was utilized to simply the front-end work of the web application.
Twitter Bootstrap is a front-end web application framework built around HyperText
Markup Language (HTML), Cascading Style Sheets (CSS) and JavaScript. Twitter
Bootstrap provides a clean and uniform solution for the development of most web
applications, while remaining more flexible than other front-end frameworks such as
Drupal5.

4.3 Mobile Management Application

4.3.1 Platform

Android is a Linux-based operating system designed primarily for smartphones and
tablets [21]. Android application code is written in Java. Previous experience with
both Java and Android made Android an appealing platform to realize the mobile
application.

4.3.2 Push Notification

Mobile network providers aim to protect their customers by blocking Internet sessions
not initiated by their customers. Without this restriction, customer devices could

5http://www.drupal.org/

4.4. INTEGRATED DEVELOPMENT ENVIRONMENT 25

be flooded with unwanted Internet traffic. A requirement for this system was to
notify the customer when a client requests Internet access. To bypass the restriction
described above, Google Cloud Messaging (GCM) [22] was utilized. GCM is a free
cloud service that allows push notifications from a server to Android devices.

4.4 Integrated Development Environment

Due to previous experience, Eclipse Juno 4.2.2 was chosen as the Integrated De-
velopment Environment (IDE) for software development in this project. Eclipse
supports plug-ins for numerous software components and programming languages.
The PyDev plug-in was used for Python development. This plug-in provides Python
auto-complete and debugging features. The Web Tools 3 Platform was used for web
development on the management server. This platform provides an Apache Tomcat
plug-in that creates a local Apache Tomcat Server. This simplified the development
on the management server since the web application code could be deployed to the
local Apache Tomcat server. Small changes to the web application code could thus be
tested without deploying the web application to the remote Apache Tomcat server on
the management server. Android Development Tools (ADT) was installed to provide
and environment for Android development. A guide on how to set up and use Eclipse
is provided in Appendix D.4.1.

4.5 Revision Control

Git [23] is a commonly used revision control technology. Application code written in
this project was published on the public repositories hosted by GitHub [24]. Utilizing
revision control eases the distribution of application code in further development.

Chapter5Implementation

5.1 Residential Access Point

5.1.1 Wifi Access

Hostapd was configured to provide Wifi access to clients via the Wifi interface (wlan0)
on the RPI. The configuration file of hostapd is available in Appendix A.1.1. Network
Address Translation (NAT) [25] was implemented on the RPI to grant clients an
internal IP address on the network. NAT provides a mapping from the externally
visible IP address to internal IP addresses. This provides some security as external
hosts cannot initiate connections with the internal clients. The main purpose of NAT
is to remedy the lack of available IPv4 addresses.

Code Snippet 5.1 Iptables Command: NAT Rule

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

This rule is added to the POSTROUTING chain in the nat table. The rule
applies to packets leaving the eth0 interface on the RPI. The target is

MASQURADE. The MASQURADE target provides a mapping between
the externally visible eth0 interface and the internal IP addresses of clients

In the case of connecting the RPI to the router of a customer, providing NAT
will simplify the set-up of the RPI as IP addresses are granted dynamically by
dnsmasq to clients on the network. This setup will however result in double NAT,
i.e NAT is performed on the RPI and home-router. This can cause complications for
commonly used NAT traversal schemes such as Session Traversal Utilities for NAT
(STUN) and Traversal Using Relays around NAT (TURN). This will be discussed in
Section Double Network Address Translation.

27

28 5. IMPLEMENTATION

5.1.2 DHCP Server

Minimal configuration was required to enable dnsmasq as a DHCP server.

Code Snippet 5.2 Dnsmasq Initial Configuration

interface=wlan0
dhcp-range=10.0.0.1,10.0.0.100,2h

The following lines were added to the the configuration file of dnsmasq to
bind dnsmasq to the wlan0 interface and specify the range of IP addresses
offered. The configuration file of dnsmasq is available in Appendix A.1.2

When a client request Wifi access a DHCP lease is granted by dnsmasq.

Code Snippet 5.3 DHCP Lease

74:2f:68:37:d5:a2 10.0.0.83 TorgeirLaptop

DHCP lease line from the lease file of dnsmasq. The DHCP lease contains
the MAC, IP and name of the client device

With hostapd and dnsmasq configured, the RPI functioned as a router. Hostapd
provided Wifi access and dnsmasq granted clients IP addresses in the range specified
in Code Snippet 5.2.

5.1.3 Authorization

To provide client authorization, the IP address range offered by dnsmasq was split
into two ranges. The upper part of the range was dedicated to clients who have not
been granted Internet access permissions (unauthorized clients). The lower part of
the range is for clients who have been granted Internet access permissions (authorized
clients).

5.1. RESIDENTIAL ACCESS POINT 29

Figure 5.1: Authorized and Unauthorized Sub-net

A client requesting Wifi access is granted a lease in the unauthorized range. A
client is granted Internet access by adding a static lease within the authorized range.
A static lease is added by the bash script available in Appendix A.2.1.

5.1.4 Obtaining Client Identifier

For clients requesting Internet access, an identifier must be obtained by the manage-
ment server to identify the client. The client’s MAC address is a good identifier as
it should be globally unique. In an implementation made prior to this project the
MAC address was obtained by running a Java Applet in the web page where clients
requested access. This proved to be a poor solution as Java Applets assume that the
client device has a Java Runtime Environment (JRE) installed. Java Applet is also
an outdated web technology.

The approach adopted in this project was to intercept unauthorized clients’ HTTP
traffic at the RPI. The RPI already has knowledge of clients’ MAC address through
the DHCP lease file of dnsmasq, as illustrated in Code Snippet 5.3. The MAC
address was appended to the HTTP payload and propagated to the management
server.

To intercept HTTP traffic, a Python HTTP proxy server was utilized. Multiple
Python proxies were available at the public repositories hosted by GitHub. The
proxy available at1 was chosen due to its simplicity. This proxy was modified to
realize the required functionality. The implemented Python proxy server is available
in Appendix A.3.2.

1https://github.com/erijo/transparent-proxy

30 5. IMPLEMENTATION

Code Snippet 5.4 Linux Command: /etc/network/server/proxy.py

sudo python proxy.py

This command starts the Python proxy server. The proxy was run on port
8089

All client Internet traffic visited the FORWARD chain in iptables. HTTP traffic
originating from clients in the unauthorized sub-net was directed towards the proxy
server by adding the following rule to iptables.

Code Snippet 5.5 Iptables Command: HTTP Port Redirect Rule

iptables -t nat -A PREROUTING -s $IPunauth -p tcp --dport 80
-j REDIRECT --to-ports 8089

This rule is appended to the PREROUTING chain in the nat table. The
rule specifies that Transmission Control Protocol (TCP) traffic with

destination port 80 (the default HTTP port number) is directed to port
8089, i.e the port of the proxy server

When HTTP requests arrive at the proxy server, the source IP address is read
from the request packet, and the MAC address of the client is obtained from the
DHCP lease file.

Code Snippet 5.6 Python Method: /etc/network/server/util.py

def getMacAddressFromIP(ip):
dhcpleases = open("/var/lib/misc/dnsmasq.leases", "r")

for line in dhcpleases:
if (ip in line):

s = line.split()
mac = s[1]
return mac

This method locates the line in the DHCP lease file of dnsmasq that
contains the input parameter ip. The MAC address in the located line is

returned

5.1. RESIDENTIAL ACCESS POINT 31

The RPI MAC address was also required at the management server to determine
which RPI the access request originated from.

Code Snippet 5.7 Python Method: /etc/network/server/util.py

def getMacAddress(ifname):
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack(’256s’,
ifname[:15]))

return ’’.join([’%02x:’ % ord(char) for char in
info[18:24]])[:-1]

This method returns the MAC address of a network interface on the RPI.
The MAC address of the eth0 interface on the RPI was used as the RPI

identifier.

The client- and RPI MAC address were appended to the payload of the HTTP
traffic of unauthorized clients. The proxy server modified the HTTP request URL
to point to the management server. This ensured that all HTTP requests made by
unauthorized clients were directed to the Request Access Web Page on the management
server. This web page is displayed in Figure 5.3.

5.1.5 Polling Server

In an implementation made prior to this project remote management was realized
through establishment of a Secure Shell (SSH) tunnel from the RPI to the management
server. When a client’s Internet access permissions were changed, the management
server utilized the SSH tunnel to apply the changes to the RPI. This would not scale
well in a real implementation. Significant load would be placed on the management
server as SSH tunnels would have to be maintained with potentially thousands of
RPIs.

In this project remote management was provided by running a Python process
on the RPI. The Python process polls the management server every five seconds
for changes in client permissions. The Python process, configserver.py, is available
in Appendix A.3.1. If changes have been made to any client permissions, the
management server will resond to a polling request with a JSON string containing
client_info and permissions.

32 5. IMPLEMENTATION

Code Snippet 5.8 JavaScript Object Notation: Client

{ "client" : { "client_info" : { "mac" : "23:F3:45:34:44",
"name" : "Torgeir"

},
"permissions" : { "access" : { "allow" : "true" } }

}
}

The management server responds polling requests from the Python process.
The payload of the HTTP response is a JSON string. The JSON string
contains the client’s Internet permissions and the client_info required to

convert the permissions to iptables rules

Upon the reception of a JSON string, the Python process initiates the following
sequence:

1. Read the JSON string of the HTTP response

2. Convert the JSON string to a Python JSON object

3. Convert the JSON object to a client object. The client object is defined in the
Python module available in Appendix A.3.1

4. Assign the client object an IP address in the authorized sub-net. As described
in Section Authorization

5. Add a lease to the DHCP lease file containing the authorized IP address. A
new DHCP is added using the bash script available in Appendix A.2.1.

6. Create a custom chain in iptables based on the client’s MAC- and IP address

7. Add rules to the FORWARD chain in iptables to direct traffic from the autho-
rized client to the custom chain just created. As illustrated in Figure 4.4

8. Add the permissions from the received JSON string to the custom client chain
created in step 6

9. Finally, reload dnsmasqs configurations by using the bash script available in
Appendix A.2.2. The next time the client requests a DHCP lease, the leases
added in step 5 is granted.

5.2. MANAGEMENT SERVER 33

It was discovered late in the implementation that the dnsmasq does not provide
a way to force DHCP lease renewal. The minimal lease time allowed in dnsmasq is
2 minutes. It may take up to 2 minutes before the DHCP lease added in step 5 is
granted to the client and the permissions added in step 8 are enforced. This will be
discussed in Section Authorization.

5.2 Management Server

The management server lies at the center of the system and requires functionality
for communication with the RPI as well as the mobile- and web application.

In implementation made prior to this project, communication between the man-
agement server and RPI was provided utilizing Java Servlets. Using a compiled
language like Java proved to be cumbersome as any changes to the management
server required recompilation of the code. PHP is an interpreted language, i.e it
avoids explicit compilation. PHP is also better attuned to web development then
Java Servlets. PHP was thus chosen as the server language in this project. The
functionality already implemented with Java Servlets was rewritten to PHP.

5.2.1 Storage

The MySQL server on the management server contains the database WifiAccess. The
database has two tables, user and client. The user table contains information related
to the system customers. Customers were added to the system by manually adding
the customer information to the user table in the WifiAccess database.

Code Snippet 5.9 MySQL Command: /etc/init.d/mysql

INSERT INTO user (name, email, rpi_mac) VALUES
(’Torgeir’, ’torgeirpc@gmail.com’, ’b8:27:eb:5e:c5:53’)

This command is used to insert a customer’s name, email and rpi_mac
into the user table.

It is assumed the customer is the same individual that manages clients’ Internet
permissions. Customer and manager will be used interchangeably for the remainder
of this report. The client table contains information about clients either requesting
or granted Internet permissions. An overview of the two tables is displayed below.

34 5. IMPLEMENTATION

Figure 5.2: User and Client Table

The rpi_mac and rpi_ip fields in the user table, contain the MAC- and IP
address of the RPI. The name and email fields are the name and email of the a
customer. The app_id is granted by the GCM service and is necessary to allow the
transmission of push notification to customer mobile devices.

The mac and name fields in the client table are the MAC address and name of
clients requesting Internet access. The rpi_mac is the MAC address of the RPI from
which an access request originated. This field is required to support the management
of RPIs belonging to different customers. The json_permission field contains a JSON
formatted string describing a clients Internet permissions. The update_flag field is
used to minimize the traffic sent to the RPI. When the manager changes a client’s
permissions, this flag is set. The management server receives polling requests from
the Python process described in Section Polling Server. Clients having the update
flag are included in the response to the polling request. This ensures that client
permissions already present on the RPI are not sent from the management server.

5.2. MANAGEMENT SERVER 35

5.2.2 Structure

Code Snippet 5.10 Management Server Structure
root

index.html

requestaccess.php

functions.php

mysql.php

admin

common

getclients.php

postclient.php

mobile

loginapp.php

register.php

manageclients.php

rpi

bindingupdate.php

getclients.php

assets

css

img

js

36 5. IMPLEMENTATION

The tree structure in Code Snippet 5.2.2 illustrates the file structure on the manage-
ment server. Index.html and requestaccess.php are accessed by clients who request
Internet access. Fuctions.php and mysql.php contain methods used by the other PHP
scripts in the structure. The admin directory contains PHP scripts related to the
manager functionality of the system. The PHP scripts in the common directory
are utilized by both the mobile- and web application to get clients permissions and
post clients. The loginapp.php and register.php in the mobile directory are used to
provide login and register functionality for the mobile application. The rpi directory
contains PHP scripts that respond to the polling requests sent from the Python
process described in Section Polling Server. The css, img and js contain resources
provided by Twitter Bootstrap. The management server is available in Appendix B.

5.2.3 Requesting Access

Clients requesting Internet access are directed to the Uniform Resource Locator
(URL) of the management server, i.e apc.item.ntnu.no. Client traffic is directed to
the management server using the Python process described in Section Obtaining
Client Identifier.

Figure 5.3: Request Access Web Page

Index.html contains a web form for clients requesting Internet access. No functionality is
currently implemented behind the email and phone fields, these fields may be used for

client authentication in further development. This will be discussed in
Section Authentication. The only input required by the client is his/her name. When

pressing the submit an access request is sent to the management server

5.2.4 Remote Management

The management server implements remote management of the RPI through the
rpi/getclients.php script.

5.3. MOBILE MANAGEMENT APPLICATION 37

Figure 5.4: Get Clients

This rpi/getclients.php script responds to the polling requests from the python process
described in Section Polling Server. The response holds a JSON array containing

clients’ Internet permissions. A sample JSON array is displayed in Code Snippet 5.11

5.3 Mobile Management Application

The manager should be able to grant clients Internet access from any location. The
mobile application implements functionality to receive push notifications when clients
request Internet access. The mobile application is available in Appendix C.

The main functionality of the mobile application is implemented in: ClientLis-
tActivity, ClientPermissionsActivity and LoginActivity. In the Android framework
an activity is usually associated with a single screen presented to the user. The
LoginActivity is used to login to the mobile application. The ClientListActivity and
ClientPermissionsActivity are used to manage clients’ Internet permissions.

5.3.1 Push Notification

To allow the mobile application to receive notifications when a client requests access,
GCM was used. To receive push notifications, the mobile application must be
registered with the management server and GCM service. The tutorials available at2

were utilized to implement the GCM registration procedure.

2http://developer.android.com/google/gcm/index.html

38 5. IMPLEMENTATION

Figure 5.5: GCM Registration Procedure

The mobile application provides the application_id and manager_email to the GCM
server. The application_id is an identifier generated by the mobile application, the

manager_email is obtained through the LoginAcivity described in Section Manager Login.
The GCM server response with an unique registration_id. To register the mobile

application on the management server, the manager_email and registration_id is sent to
the admin/mobile/registerapp.php script

With the mobile application registered with the management server and GCM
service, the management server can send notifications to the mobile application by
utilizing the registration_id provided in the registration procedure in Figure 5.5.

5.3. MOBILE MANAGEMENT APPLICATION 39

Figure 5.6: Access Request Notification

1. The client requests access through the web page in Figure Request Access Web Page. 2.
The client_mac and rpi_mac are appended to the request at the RPI as described in

Section Obtaining Client Identifier. The management server locates the appropriate app_id
based on the received rpi_mac. In the creation of the WifiAccess database fields, a

mismatch was made in the naming of the app_id field. This field holds the registration_id
provided by the GCM registration procedure. 3. The management server sends the name,
client_mac and registration_id to the GCM server. The registration_id is used by the

GCM service to locate the destination of the mobile application. Finally, 4. GCM sends a
push notification to the mobile application containing the name and client_mac

Upon receiving the push notification, the notification below is displayed in the
status bar on the Android device.

40 5. IMPLEMENTATION

Figure 5.7: Push Notification

When pressing the notification displayed in Figure 5.7, the ClientPermissionAc-
tivity is started.

Figure 5.8: Select Client Internet Permission

5.3. MOBILE MANAGEMENT APPLICATION 41

5.3.2 Manager Login

The LoginAcivity is displayed to the manager when the mobile application is initially
started. The manager can login by providing an email address that was added to the
WifiAccess database, as shown in Code Snippet 5.9. The password field is not used
in the current implementation.

Figure 5.9: Manager Login

5.3.3 Manage Internet Permissions

After logging into the mobile application, clients’ Internet permissions are requested
from the management server.

42 5. IMPLEMENTATION

Figure 5.10: Get Clients

The manager_email obtained through the LoginActivity is included in the request. The
request is sent to admin/common/getclients.php on the management server. This PHP

script uses the manager_email to locate the appropriate clients in the WifiAccess database.
The script responds to the request with a JSON array containing the clients’ Internet

permissions. A sample JSON array is displayed in Code Snippet 5.11.

5.3. MOBILE MANAGEMENT APPLICATION 43

Code Snippet 5.11 JavaScript Object Notation: Client Array

[
{

"client": {
"client_info": {

"mac": "5c:ff:35:22:bd:4e",
"name": "Alf"

}
}

},
{

"client": {
"permissions": {

"access": {
"allow": false

}
},
"client_info": {

"mac": "f0:7d:68:14:4c:78",
"name": "Ingrid"

}
}

},
{

"client": {
"permissions": {

"access": {
"allow": true

}
},
"client_info": {

"mac": "74:2f:68:37:d5:a2",
"name": "Torgeir"

}
}

}
]

44 5. IMPLEMENTATION

The ClientListActivity uses the JSON array displayed in Code Snippet 5.11 to
populate the client list.

Figure 5.11: Client List

The client Alf is identified as a new access request, as no permissions are present in the
received JSON array. Ingrid and Torgeir have been granted permissions by the

ClientPermissionActivity

5.4 Web Management Application

Due to time limitations the web application does not meet the functional requirements
specified in Section Functional Requirements. The web application is a mock-up
implementation of the specified functionality. The mobile application was given
priority since it is better suited for demonstration purposes.

5.4. WEB MANAGEMENT APPLICATION 45

Figure 5.12: Manager Web Page

46 5. IMPLEMENTATION

5.5 Functionality Overview

Figure 5.13: Functionality Overview

Chapter6System Testing

To ensure that the highest ranked functional requirements were fulfilled, system
testing was conducted. The first system aimed to test the core functionality of the
system, namely allowing and blocking clients Internet access. The second system
test performs the same steps as the first test, but also tests the support for multiple
customers in the system.

The system test-setup included the following equipment: 2 RPI type B, 1 Samsung
Galaxy 2 Android 4.1.3 Smartphone, 1 Asus Transformer Android 4.0.1 Tablet, 1
Asus U31SD Windows 8 Laptop computer, 1 iPhone 5 iPhone OS (iOS) Smartphone.
The Android devices were used by managers of each RPI. The laptop and iPhone
were used to request Internet access. Prior to the system tests the following system
configuration was performed.

1. Configure each RPI to offer Wifi access with different SSID. This was performed
by editing the configuration file of hostapd.

2. Add 2 entries to the user table in the WifiAccess database. Each entry included
the MAC address of its respective RPI as well as the name and email of the
manager. This was performed using the MySQL command in Code Snippet 5.9.

3. Install the mobile application on each Android device and provide the appro-
priate login credentials.

6.1 Allow and Block Internet Access

In this system test the following steps where performed:

1. Clients on the laptop and iPhone gain access to the Wifi offered by the RPI

2. The clients request Internet access through the web browser on the device

47

48 6. SYSTEM TESTING

3. The manager allows Internet access through the mobile application

4. After 2 minutes have elapsed, the manager blocks Internet access through the
mobile application

Step Title Functional Requirement Result

1 Wifi access The residential access point can
provide Wifi access to clients

Verified

1 Unauthorized Permissions

The residential access point can block
all traffic from unauthorized clients.

Only traffic required to request Internet
access is allowed

Verified

2 Request Access Internet access can be requested by
through the web application

Verified

3 Allow Internet Access
The residential access point can allow
clients Internet access based on MAC-

and IP address
Verified

3 Remote Management
The residential access point can be

managed remotely from the
management sever

Verified

3 Access Request Notification
The mobile application can receive

push notifications when clients request
Internet access

Verified

3 Allow Internet Access The mobile application can allow
clients Internet access

Verified

4 Block Internet Access
The residential access point can block
clients Internet access based on MAC-

and IP address
Verified

4 Block Internet Access The mobile application can block
clients Internet access

Verified

Table 6.1: Allow and Block Access Test Results

6.2 Multiple Customers

The systems should support the management of RPIs associated with multiple
customers. For this test the second RPI in the test set-up was employed. This test
included the steps in the previous section. The steps were however performed by
requesting access to the Wifi network offered by each of the RPIs. Internet access
was allowed and blocked by the Android device associated with its receptive RPI.

6.2. MULTIPLE CUSTOMERS 49

Step Title Functional Requirement Result

1 Wifi access The residential access point can
provide Wifi access to clients

Verified

1 Unauthorized Permissions

The residential access point can block
all traffic from unauthorized clients.

Only traffic required to request Internet
access is allowed

Verified

2 Request Access Internet access can be requested by
through the web application

Verified

3 Allow Internet Access
The residential access point can allow
clients Internet access based on MAC-

and IP address
Verified

3 Remote Management
The residential access point can be

managed remotely from the
management sever

Verified

3 Multiple Customers
The management server can support
managing of residential access point
belonging to different customers

Verified

3 Access Request Notification
The mobile application can receive

push notifications when clients request
Internet access

Verified

3 Allow Internet Access The mobile application can allow
clients Internet access

Verified

4 Block Internet Access
The residential access point can block
clients Internet access based on MAC-

and IP address
Verified

4 Block Internet Access The mobile application can block
clients Internet access

Verified

Table 6.2: Multiple Customers Test Results

Chapter7Discussion and Further Work

7.1 Authentication

The client authenticating procedure implemented in the current system requires clients
to provide their name into the Request Access Web Page displayed in Figure 5.3.
A client requesting access could potentially masquerade as a different client by
providing a false name. No restriction is placed on the amount of times a client
can request access. A malicious client could flood the manager with bogus access
requests. These attacks can be prevented by implementing a stronger authentication
procedure. Clients could authenticate themselves by providing their email or phone
number. An authentication code could be provided by the management server either
by email or Short Message Service (SMS).

7.2 Authorization

The current implementation provides client authorization by splitting the IP address
range offered by the DHCP server into two ranges. When a client is given Internet
permissions a lease is granted in the authorized range, as depicted in Figure 5.1. The
change from unauthorized range to the authorized range may take up to 2 minutes
due to the minimum DHCP lease time allowed by dnsmasq. This delay is significantly
higher than any other response-time and thus becomes the responsiveness bottle-neck.

This problem can be eliminated by having iptables maintain a white-list of MAC
address. The white-list should contain the MAC-addresses of clients who have been
granted Internet permissions. Clients who are not on the white-list should be directed
towards the Request Access Web Page displayed in Figure 5.3.

7.3 Accounting

Gathering IP traffic statistics from clients on the RPI was a low-priority requirement
specified in Section Functional Requirements. Clients’ Internet traffic statistics could

51

52 7. DISCUSSION AND FURTHER WORK

be gathered on the RPI and sent to the management server. The statistics could be
presented to the manager through the mobile- and web application. Some Internet
traffic statistics that might interest the manager are listed below.

– Most visited web sites

– Internet services used, e.g online games or video-streaming

– Peak Internet usage period

– Average bandwidth used

7.4 System Feedback

In the current implementation no feedback is given to clients regarding the operation
of the system. Providing feedback is key in promoting a satisfactory user experience.

7.4.1 Requesting Access

When clients request Internet access a considerable amount of time may elapse
before the manager reacts to the access request. To prevent the client from growing
impatient, the system should give feedback to the client about the state of the access
request.

Figure 7.1: Access Request Feedback

This functionality can be realized by using Asynchronous JavaScript and XML
(AJAX). AJAX provides the functionality to update elements of a web page without
reloading the entire page. After a client has initially requested access, AJAX-requests
could be sent querying about the state of the request.

7.5. UNIFORM MANAGEMENT INTERFACE 53

7.4.2 Visible Permissions

In the current implementation no functionally is realized to display clients Internet
permissions. If traffic is blocked by iptables, no feedback is given to the client
explaining why the traffic was blocked. Feedback could be provided by directing
clients to web page explaining why their traffic was blocked.

Figure 7.2: Client Internet Permissions

7.5 Uniform Management Interface

The interface provided by the mobile- and web application offers the same management
functionality. Developing a separate mobile- and web application proved to be a time
consuming task. PhoneGap [26] is free and open source development platform based
around HTML, CSS and Javascript. PhoneGap supports the major mobile platforms
such as Android, iOS and Windows Phone. Developing a PhoneGap application
would provide many benefits to the approach used in this project. Open standards
such as HTML, CSS and JavaScript would allow reuse of code between the mobile-
and web application. Reusing code would provide a more uniform manager interface
and also greatly reduce development time. PhoneGap would also provide support for
other mobile platforms in addition to Android.

7.6 Validating Permissions

In the current system, client Internet permissions are represented using JSON.
Creating the JSON objects representing clients’ permissions is a trivial task in the
current implementation, since the only client permissions supported is to allow and
block Internet access. The light-weight nature of JSON makes it unsuitable to
represent more complex permissions. The JSON permissions are read and written by
multiple components in the system, providing some form of permission validation
becomes very important to identify invalid permissions. Consider the case where

54 7. DISCUSSION AND FURTHER WORK

the mobile- or web application generate overlapping client Internet permissions, e.g
block all Internet traffic and allow Internet traffic between 18:00 and 21:00. These
permissions are mutually exclusive and cannot be enforced simultaneously. In the
current implementation this overlap would not be detected, and the permissions
would be converted to iptables rules on the RPI. Which permissions are enforced
depends on the order they are added to iptables. The practical work of this project
revealed that it was very difficult do detect overlapping rules in iptable.

One might argue that extensive care could be given to the mobile- and web
application code generating the JSON permissions. Specifically, Graphical User
Interface (GUI) elements could be enabled or disabled to prevent the creation of
overlapping JSON permissions. This approach would leave great margin for error.
The application programmer would require a complete overview of overlapping
Internet permissions, and enable or disable GUI elements accordingly.

XML provides document validation through the use of XML schemas, as described
in Section Client Permission Format. A XML schema could be created defining the
valid set of client Internet permissions. XML schemas have the capability to define
mutually exclusive elements. XML also provides more structural features than JSON.
In spite of this, XML is harder to work with. An approach utilizing the strengths of
both XML and JSON should be considered in further development.

7.7 Double Network Address Translation

The system implemented is likely to impose double NAT on the network of the
customer, i.e NAT is performed on the RPI and home-router. Double NAT causes
complications for applications using peer-to-peer and Voice over Internet Protocol
(VoIP) traffic. A solution to this problem not involving configuration of the home
router of customer was not found. A way to solve this issue would be to remove
the home router and let the RPI function as the router on the home network. This
would, however, give rise to new challenges of how to configure the RPI to function
with the Internet Service Provider (ISP) of the customer.

7.8 Modes of Notification

The current implementation allows push notifications to the mobile application when
clients request Internet access. The mobile application may not be able to receive
the push notification for a variety of reasons. If the mobile application is unable to
receive the push notification, a requesting client must wait for an indefinite time
before the manager reacts to the access request. Other modes of notification should
be considered in further development. The manager could be notified of clients’
Internet access requests through email and SMS. The functionality described below

7.9. CUSTOMER MANAGEMENT 55

could be implemented on the management server to decrease the manager response
time.

Code Snippet 7.1 Pseudocode: Access Request Notification Procedure

if (is mobile application activty) do:

Send push notification to managers mobile application

if not (is push notification response received within 60 sec) do:

Send SMS to the managers mobile phone

if not (is sms response received within 60 sec) do:

Send e-mail to manager

7.9 Customer Management

The main focus of this project was to implement a prototype system suited for
demonstration purposes. Consideration was not given to how customers are managed
in the system. Further development of the system should consider the implementation
of an administration interface that can be utilized by the service provider of the
system. Through this interface a link could be created between the customer and
the RPI. The administration interface could support other services such as billing
and customer support.

Chapter8Conclusion

This project has implemented a working prototype Internet control system for the
residential environment. The prototype offers a simple and intuitive interface to
users, and thus provides a good platform do demonstrate how effortless residential
Internet control can be. The practical work performed yielded valuable insight into
software development in distributed systems. Strengths and weaknesses of the relevant
platforms and technologies were discovered during the course of implementation.

The current system has shortcomings both in regard to security and offered
Internet control features. However, this report lies the groundwork to make amends
in further development.

57

References

[1] Torgeir Pedersen Cook. Wifi parental control. Technical report, May 2013.

[2] Hubert Zimmermann. Osi reference model-the iso model of architecture for open
systems interconnection. Communications, IEEE Transactions on, 28(4):425–432,
1980.

[3] Ieee standard for information technology–telecommunications and information
exchange between systems local and metropolitan area networks–specific require-
ments part 11: Wireless lan medium access control (mac) and physical layer (phy)
specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pages
1–2793, 2012.

[4] Bernard Aboba, Larry Blunk, John Vollbrecht, James Carlson, Henrik Levkowetz,
et al. Extensible authentication protocol (eap). Technical report, RFC 3748,
June, 2004.

[5] Haidong Xia and José Brustoloni. Detecting and blocking unauthorized access in
wi-fi networks. In NETWORKING 2004. Networking Technologies, Services, and
Protocols; Performance of Computer and Communication Networks; Mobile and
Wireless Communications, pages 795–806. Springer, 2004.

[6] Wi-Fi Alliance. Wi-fi protected access: Strong, standards-based, interoperable
security for today’s wi-fi networks. Retrieved March, 1:2004, 2003.

[7] Gerald Combs. Wirehark, network protocol analyzer tool. Software. http://www.
wireshark.org/, 1998.

[8] Ergonomic requirements for office work with visual display terminals. (ISO
9241-11), 1998.

[9] Supplement to ieee standard for information technology- telecommunications and
information exchange between systems- local and metropolitan area networks-
specific requirements- part 11: Wireless lan medium access control (mac) and
physical layer (phy) specifications: Higher-speed physical layer extension in the
2.4 ghz band. IEEE Std 802.11b-1999, pages i–90, 2000.

59

http://www.wireshark.org/
http://www.wireshark.org/

60 REFERENCES

[10] Iso/iec 8802-11:2005/amd4 [ieee std 802.11g-2003] information technology– local
and metropolitan area networks– part 11: Wireless lan medium access control
(mac) and physical layer (phy) specifications–amendment 4: Further higher data
rate extension in the 2.4 ghz band. ISO/IEC 8802-11:2005/Amd.4:2006(E) IEEE
Std 802.11g-2003 (Amendment to IEEE Std 802.11-1999), pages 1–83, 2006.

[11] Raspberry Pi Foundation. Raspbian wheezy, debian based operating system.
Software. http://www.raspberrypi.org/downloads, 2012.

[12] Jouni Malinen. hostapd, ieee 802.11 ap, ieee 802.1x/wpa/wpa2/eap/radius
authenticator. software. http://hostap.epitest.fi/hostapd/, 2009.

[13] R. Droms. Dynamic host configuration protocol. Technical report, 1997. IETF,
RFC2131.

[14] Simon Kelley. dnsmasq, linux dns forwarder and dhcp server. Software. http:
//www.thekelleys.org.uk/dnsmasq/doc.html, 2001.

[15] Rusty Russell. iptables, linux kernel ip packet filtering. Software. http://www.
netfilter.org/projects/iptables/index.html, 1998.

[16] Oracle. Mysql, open source database community server. Software. www.mysql.com,
1995.

[17] Canonical Ltd. / Ubuntu community. Ubuntu lts server, linux based operating
system. Software. http://releases.ubuntu.com/lucid/, April 2010.

[18] Apache Software Foundation. Tomcat 6 web server. Software, May.

[19] The PHP Group. Php, server scripting language. Software. http://www.php.net/,
1995.

[20] Twitter. Twitter bootstrap, sleek, intuitive, and powerful front-end framework for
faster and easier web development. Software. http://twitter.github.io/bootstrap/,
August 2011.

[21] Google. Android, linux based smartphone operating system. Software. http:
//www.android.com/, 2007.

[22] Google. Google cloud messaging, push notification service for android. Software.
http://developer.android.com/google/gcm/index.html, June 2012.

[23] Linus Torvalds. git, technology for distrubted version control and source code
managemnet. Software. http://git-scm.com/, 2005.

[24] PJ Hyett Chris Wanstrath and Tom Preston-Werner. Github, web-based hosting
service for software development projects that use the git revision control system.
Software. http://www.github.com, 2008.

[25] Pyda Srisuresh and Kjeld Egevang. Traditional ip network address translator
(traditional nat). Technical report, 2001.

http://www.raspberrypi.org/downloads
http://hostap.epitest.fi/hostapd/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.netfilter.org/projects/iptables/index.html
http://www.netfilter.org/projects/iptables/index.html
www.mysql.com
http://releases.ubuntu.com/lucid/
http://www.php.net/
http://twitter.github.io/bootstrap/
http://www.android.com/
http://www.android.com/
http://developer.android.com/google/gcm/index.html
http://git-scm.com/
http://www.github.com

REFERENCES 61

[26] Adobe Systems. Phonegap, front-end web applcaition framework. Software.
http://phonegap.com/, 2009.

http://phonegap.com/

AppendixARaspberry Pi

A.1 Configuration files

A.1.1 hostapd.conf

Code Snippet A.1 Configuration File: /etc/hostapd/hostapd.conf

interface=wlan0
driver=nl80211
ctrl_interface=/var/run/hostapd
ctrl_interface_group=0
ssid=raspberry
hw_mode=g
channel=8
wpa=0
beacon_int=100
auth_algs=1
wmm_enabled=1

A.1.2 dnsmasq.conf

Code Snippet A.2 Configuration File: /etc/dnsmasq.conf

interface=wlan0
dhcp-range=unauth,10.0.0.65,10.0.0.94,2m
dhcp-option-force=unauth,1,255.255.255.224
dhcp-option-force=unauth,6,129.241.200.170,129.241.200.170
dhcp-range=auth,10.0.0.1,static,2m
dhcp-option-force=auth,1,255.255.255.192
dhcp-authoritative
dhcp-hostsfile=/etc/dnsmasq.hosts

63

64 A. RASPBERRY PI

A.1.3 interfaces

Code Snippet A.3 Configuration File: /etc/network/interfaces

auto lo
iface lo inet loopback
iface eth0 inet dhcp

iface wlan0 inet static
address 10.0.0.1
netmask 255.255.255.0

post-up /etc/network/if-up.d/router.sh

A.2 Bash Scripts

A.2.1 add_static_lease

Code Snippet A.4 Bash Script: /etc/add_static_lease.sh

#Add lease to the DHCP lease file of dnsmasq
if ! grep -q $1 /etc/dnsmasq.hosts; then

line=$(grep $1 /var/lib/misc/dnsmasq.leases)
myarr=($line)
device=${myarr[3]}
dhcphost="dhcp-host=$1,$2,$device,$3"
echo $dhcphost >> /etc/dnsmasq.hosts
echo "lease added to dnsmasq.hosts: $dhcphost"

else
echo "dnsmasq.hosts already contains a lease with mac: $1"

fi

A.2. BASH SCRIPTS 65

A.2.2 reload_dhcp_leases

Code Snippet A.5 Bash Script: /etc/reload_dhcp_leases.sh

#Realod dnsmasq configurations
pid=$(pgrep dnsmasq) # store the return value
echo "dnsmasq pid: $pid"

sudo /bin/kill -s SIGHUP $pid
echo "dnsmasq config reloaded"

66 A. RASPBERRY PI

A.2.3 iptables_setup

Code Snippet A.6 Bash Script: /etc/network/if-up.d/iptables_setup.sh
#DNS server of unathorized subnet
DNS1="129.241.200.170"
#IP range of unthorized subnet
IPunauth="10.0.0.64/27"
#IP range authorized subnet
IPauth="10.0.0.1/26"

#Flush all tables and delete all custom chains
iptables -F
iptables -X
iptables -t nat -F
iptables -t nat -X
iptables -t filter -F
iptables -t filter -X
iptables -t mangle -F
iptables -t mangle -X
iptables -t raw -F
iptables -t raw -X

#Default policies for chains in filter table
iptables -t filter -P INPUT ACCEPT
iptables -t filter -P FORWARD DROP
iptables -t filter -P OUTPUT ACCEPT

#NAT
iptables -A POSTROUTING -t nat -o eth0 -j MASQUERADE

#Allow traffic to and from the management sever
iptables -A FORWARD -s $IPunauth -d $DNS1 -j ACCEPT
iptables -A FORWARD -s $DNS1 -d $IPunauth -j ACCEPT

#Direct http traffic to local proxy to obtain client MAC address
iptables -t nat -A PREROUTING -s $IPunauth -p tcp --dport 80
-j REDIRECT --to-ports 8089

#Redirect localy generated DNS traffic
iptables -t nat -A OUTPUT -p udp --dport 53 -j DNAT --to $DNS1
iptables -t nat -A OUTPUT -p tcp --dport 53 -j DNAT --to $DNS1

A.3. PYTHON MODULES 67

A.3 Python Modules

A.3.1 Polling Server

Code Snippet A.7 Python Module: /etc/network/server/configserver.py

#!/usr/bin/python
import httplib
import socket
import fcntl
import struct
import urllib
import json
import clienthandler
import util
import iptablesapi
import time, threading

class Server:

def __init__(self, client_list=None):

self.clientlist = clienthandler.ClientList()
iptablesapi.initialSetup()
self.isInitialRequestSent = False
self.bootFlag = 0;

def getClientPermissions(self):
#Start polling thread
threading.Timer(5.0, self.getClientPermissions).start()

print ’Boot Flag: %s’ % self.bootFlag

httpServ = httplib.HTTPConnection("129.241.200.170", 80)
httpServ.connect()
payload = urllib.urlencode({’macaddress’:
util.getMacAddress(’eth0’), ’boot_flag’ : self.bootFlag})
headers = {"Content-type":
"application/x-www-form-urlencoded","Accept":
"text/plain"}

68 A. RASPBERRY PI

request = httpServ.request(’POST’, ’/rpi/getclients.php’,
payload , headers)
response = httpServ.getresponse()
print ’Permissions Polling Request Sent’

if response.status == httplib.OK:
array = response.read()
data = json.loads(array)
self.bootFlag = 1;

if len(data) == 0:
print ’No client updates recieved from server’

else:
for str in data:

client_string = json.dumps(str)
print ’Client from server : %s’
% client_string

client_json = json.loads(client_string)
key = client_json [’client’][’client_info’]
[’mac’]

self.clientlist.removeClient(key)
self.clientlist.addClient(client_json)

reload_leases_cmd =
’bash /etc/reload_dhcp_leases.sh’
iptablesapi.executeCommand(reload_leases_cmd)

httpServ.close()

def sendBindingUpdate(self):
#Start posting thread
threading.Timer(60.0, self.sendBindingUpdate).start()

httpServ = httplib.HTTPConnection("129.241.200.170", 80)
httpServ.connect()
payload = urllib.urlencode(
{’macaddress’: util.getMacAddress(’eth0’), ’ipaddress’: util.getIpAddress(’eth0’)})
headers = {"Content-type":
"application/x-www-form-urlencoded","Accept": "text/plain"}
request = httpServ.request(’POST’, ’/rpi/bindingupdate.php’,
payload, headers)

A.3. PYTHON MODULES 69

response = httpServ.getresponse()
print ’Binding Update Sent’
if response.status == httplib.OK:

print "Binding Update Success"

httpServ.close()

serv = Server()
serv.getClientPermissions()
serv.sendBindingUpdate()

Repository The Python code is published to the the public repositories hosted by
GitHub. The code can be viewed either through a web browser or retrieved to your
computer by following the procedure described in Appendix D.4.2. Repository URL:
https://github.com/TorgeirCook/RPIConfigurationServer.git.

70 A. RASPBERRY PI

A.3.2 Proxy Server

Code Snippet A.8 Python Module: /etc/network/server/transproxy.py
#!/usr/bin/python
from twisted.web import http
from twisted.internet import reactor, protocol
from twisted.python import log
import re
import sys
import util
log.startLogging(sys.stdout)

class ProxyClient(http.HTTPClient):
def __init__(self, method, uri, postData, headers,
originalRequest):

self.method = method
self.uri = uri
self.postData = postData
self.headers = headers
self.originalRequest = originalRequest
self.contentLength = None

def sendRequest(self):

log.msg("Sending request: %s %s" % (self.method, self.uri))
self.sendCommand(self.method, self.uri)

def sendHeaders(self):
for key, values in self.headers:

if key.lower() == ’connection’:
values = [’close’]

elif key.lower() == ’keep-alive’:
next

for value in values:

if key == ’Content-Length’:
self.sendHeader(’Content-Length’,
len(self.postData))

A.3. PYTHON MODULES 71

else:
self.sendHeader(key, value)

self.endHeaders()

def sendPostData(self):
log.msg("Sending POST data")
self.transport.write(self.postData)
log.msg(’The POST data sent: %s’ % self.postData)

def connectionMade(self):
log.msg("HTTP connection made")
self.sendRequest()
self.sendHeaders()
if self.method == ’POST’:

self.sendPostData()

def handleStatus(self, version, code, message):
log.msg("Got server response: %s %s %s"
% (version, code, message))

self.originalRequest.setResponseCode(int(code), message)

def handleHeader(self, key, value):
if key.lower() == ’content-length’:

self.contentLength = value
else:

self.originalRequest.responseHeaders
.addRawHeader(key, value)

def handleResponse(self, data):
data = self.originalRequest.processResponse(data)

if self.contentLength != None:
self.originalRequest.setHeader(’Content-Length’,
len(data))

self.originalRequest.write(data)

self.originalRequest.finish()
self.transport.loseConnection()

72 A. RASPBERRY PI

class ProxyClientFactory(protocol.ClientFactory):

def __init__(self, method, uri, postData, headers,
originalRequest):

self.protocol = ProxyClient
self.method = method
self.uri = uri
self.postData = postData
self.headers = headers
self.originalRequest = originalRequest

def buildProtocol(self, addr):
return self.protocol(self.method, self.uri, self.postData,

self.headers, self.originalRequest)

def clientConnectionFailed(self, connector, reason):
log.err("Server connection failed: %s" % reason)
self.originalRequest.setResponseCode(504)
self.originalRequest.finish()

class ProxyRequest(http.Request):
def __init__(self, channel, queued, reactor=reactor):

http.Request.__init__(self, channel, queued)
self.reactor = reactor

def process(self):

ip = http.Request.getClientIP(self)
rpi_mac = util.getMacAddress(’eth0’)
client_mac = util.getMacAddressFromIP(ip)
url = self.uri

A.3. PYTHON MODULES 73

log.msg("Request IP : %s, Request MAC : %s , RPI MAC: %s,
Request URL: %s" % (ip, client_mac , rpi_mac, url))
host = self.getHeader(’host’)
if not host:

log.err("No host header given")
self.setResponseCode(400)
self.finish()
return

port = 80
if ’:’ in host:

host, port = host.split(’:’)
port = int(port)

self.setHost(host, port)
self.content.seek(0, 0)
postData = self.content.read()
postData += ’&client_mac=%s&rpi_mac=%s’
% (client_mac, rpi_mac)

factory = ProxyClientFactory(self.method, self.uri,
postData, self.requestHeaders

.getAllRawHeaders(),
self)

self.reactor.connectTCP(host, port, factory)

def processResponse(self, data):
return data

class TransparentProxy(http.HTTPChannel):
requestFactory = ProxyRequest

class ProxyFactory(http.HTTPFactory):
protocol = TransparentProxy

reactor.listenTCP(8089, ProxyFactory(), interface=’0.0.0.0’)
reactor.run()

74 A. RASPBERRY PI

Repository The Python code is published to the the public repositories hosted by
GitHub. The code can be viewed either through a web browser or retrieved to your
computer by following the procedure described in Appendix D.4.2. Repository URL:
https://github.com/TorgeirCook/RPIProxyServer.git.

AppendixBManagement Server

Description The management server contains:

– Web page for clients requesting Internet access

– Web for managing clients Internet permissions

– Functionality to respond to Raspberry Pi polling requests

– Functionality to support the mobile application

Repository The PHP, HTML, CSS and JavaScript code is published to the the
public repositories hosted by GitHub. The code can be viewed either through a
web browser or retrieved to your computer by following the procedure described in Ap-
pendix D.4.2. Repository URL: https://github.com/TorgeirCook/ManagementServer.git.

75

AppendixCMobile Application

Description Android application to manage clients Internet permissions.

Repository The Java code is published to the the public repositories hosted by
GitHub. The code can be viewed either through a web browser or retrieved to your
computer by following the procedure described in Appendix D.4.2. Repository URL:
https://github.com/TorgeirCook/WifiAccessManager.git.

77

AppendixDDevelopment Aid

The purpose of the Development Aid is to easy further of the system. If you have
any questions please contact me at torgeirpc@gmail.com.

D.1 Raspberry Pi

The Debian Wheezy system image used on the RPI is provided on request.

D.1.1 Commands

login to rpi
username=pi
password=pcontrol

start-stop-restart hostapd
sudo /etc/init.d/hostapd start-stop-restart, started on boot

start-stop-restart dnsmasq
sudo /etc/init.d/dnsmasq start-stop-restart, started on boot

run initial set-up of iptables, the rules in this bash script are added # to iptables on boot
sudo /etc/network/if-up.d/iptables_setup.sh

view all rules in iptables
sudo iptables -L -v -n

run add_static_leas bash script
/etc/add_static_lease.sh

run reload_dhcp_leases bash script

79

80 D. DEVELOPMENT AID

sudo /etc/reload_dhcp_leases.sh

run python script
sudo python example.py

view all running processes
ps aux | less

edit crontab jobs. crontab is used to schedule time based tasks
crontab -e

view non-commented lines of a file
grep ^[^#] /etc/file

D.1.2 Directories

hostapd configuration file
/etc/hostapd/hostapd.conf

dnsmasq configuration file
/etc/dnsmasq.conf

network interfaces configuration file
/etc/network/interfaces

dnsmasq dhcp dynamic lease file
/var/lib/misc/dnsmasq.leases

dnsmasq static dhcp lease file. leases added to this file are
added to dnsmasq on dnsmasq restart
/etc/dnsmasq.hosts

directory of the python code used in this project
/etc/network/server/

D.2 Management Server

login to management server
username=torgeir

D.3. MOBILE APPLICATION 81

password=pedersen

D.2.1 Apache Tomcat

#start-stop-restart apache tomcat server
sudo /etc/init.d/tomcat6 start-stop-restart

apche tomcat log file
/var/log/tomcat6/catalina.out

deployed web applications directory
/var/lib/tomcat6/webapps/

web interface to manage and deploy web applications
username=admin
password=pcontrol
http://apc.item.ntnu.no/manager/html

root web application url
http://apc.item.ntnu.no

D.2.2 MySQL

login to mysql server
usernamer=root
password=pcontrol

start mysql database interface
sudo mysql

mysql command: use database
use WifiAccess

D.3 Mobile Application

To enable Android development install the Android Software Development Kit and
Tools available at: http://developer.android.com/sdk/index.html.

82 D. DEVELOPMENT AID

D.4 Software Tools

D.4.1 Eclipse

Eclipse was used as the IDE for all development in this project. Eclipse is available at:
http://www.eclipse.org/downloads/. Eclipse provides plug-ins for all the programming
languages used in this project. Plug-ins can be installed through Help->Eclipse
Marketplace in the Eclipse menu bar.

Eclipse is the default IDE for Android development. An Android application is
installed on your the device by running the application in Eclipse.

Figure D.1: Install Android Application

D.4.2 Git

The revision control technology used in this project was git. All the code written in
this project is available at the public repositories hosted by GitHub. The URL to
the different repositories is given in the Appendix. To gain access to the code, first
install git on your Linux system using the following command.

sudo apt-get install git

To retrieve the the code from the repositories given in Appendices, run the
following git command in the command line.

git clone URL

D.4. SOFTWARE TOOLS 83

example, get mobile application
git clone https://github.com/TorgeirCook/WifiAccessManager.git

Git clients are available for other operating systems at: http://git-scm.com/downloads/guis.
To gain a more comprehensive understanding of git consult: rogerdudler.github.io/git-
guide/.

	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	Motivation
	Related Work
	Scope
	Rapport Structure
	Method

	Wifi Hot-spot Security
	Wifi Access Domains
	Enterprise Access
	Public Access
	Residential Access

	Security Mechanisms
	Authentication
	Authorization
	Accounting

	Common Security Threats
	Eavesdropping
	MAC Address Spoofing
	Freeloading
	Session Hi-jacking
	Rouge Access Point

	Discussion

	System Requirements
	Overview
	Functional Requirements
	Quality Requirements
	Usability
	Responsiveness
	Interoperability
	Modifiability

	Development Platform
	Residential Access Point
	Operating System
	Hostapd
	Dnsmasq
	Iptables
	Application Language

	Management Server
	Server Language
	Client Permission Format
	Front-end Framework

	Mobile Management Application
	Platform
	Push Notification

	Integrated Development Environment
	Revision Control

	Implementation
	Residential Access Point
	Wifi Access
	DHCP Server
	Authorization
	Obtaining Client Identifier
	Polling Server

	Management Server
	Storage
	Structure
	Requesting Access
	Remote Management

	Mobile Management Application
	Push Notification
	Manager Login
	Manage Internet Permissions

	Web Management Application
	Functionality Overview

	System Testing
	Allow and Block Internet Access
	Multiple Customers

	Discussion and Further Work
	Authentication
	Authorization
	Accounting
	System Feedback
	Requesting Access
	Visible Permissions

	Uniform Management Interface
	Validating Permissions
	Double Network Address Translation
	Modes of Notification
	Customer Management

	Conclusion
	References
	Raspberry Pi
	Configuration files
	hostapd.conf
	dnsmasq.conf
	interfaces

	Bash Scripts
	add_static_lease
	reload_dhcp_leases
	iptables_setup

	Python Modules
	Polling Server
	Proxy Server

	Management Server
	Mobile Application
	Development Aid
	Raspberry Pi
	Commands
	Directories

	Management Server
	Apache Tomcat
	MySQL

	Mobile Application
	Software Tools
	Eclipse
	Git

