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Summary

Several research and industrial projects have been started in recent years to
drive the development of autonomous surface vehicles (ASVs). This thesis
is one of the contributions to this emerging field, and the topic is on target
tracking for maritime collision avoidance using a maritime radar. An ASV
requires a full overview of the environment to plan and perform safe ma-
neuvers. With exteroceptive sensors, such as a radar, ASVs are able to detect
other vessels, also the ones that are not equipped with an automatic identifi-
cation system (AIS) transponder. This is in particular relevant near harbors
and urban areas, where there is a larger amount of vessels without AIS.

At the core of this thesis is a target tracking system for ASVs based on
the probabilistic data association filter (PDAF). This thesis makes several
contributions on compensating for varying sensor performance. This is im-
portant for enabling smaller ASVs with low-cost sensors. In addition, it also
makes contributions to sensor preprocessing, tracking system architecture
and integration of target tracking with collision avoidance systems.

The first contribution is on compensating for navigation system errors. An
ASV is a moving platform, and uncertainty in the ownship state estimation
system can be accounted for in the target tracking system. Second, the radar
preprocessing and collision avoidance interfaces are described, as they are
important components in practical implementations of target tracking for col-
lision avoidance (COLAV). Third, the performance of track initiation methods
are investigated. This includes a performance comparison using detection
theoretic measures when the clutter and new target densities are unknown,
as they often are in practical systems. Fourth, variations target detection
probability is analysed, and three methods of estimating it are developed.
Fifth, applications of the tracking system to maritime collision avoidance are
presented.

The research goals of the thesis is primarily motivated by real data ob-
tained in the project. The results have been verified both in simulations and
in full-scale experiments.
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Chapter 1

Introduction
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1.1 Motivation

Autonomous ships has received significant attention in recent years. In ad-
dition to reducing the cost and increasing the safety in marine operations,
new applications where manned ships have been too expensive or impractical
are also emerging. A collision avoidance (COLAV) system is a key technol-
ogy for using autonomous surface vehicles (ASVs) in trafficked areas, where
both manned and other unmanned ships may be present. The COLAV system
depends on a good object detection and tracking system in order to plan
safe maneuvers. In addition to autonomous ships, manned ships also benefits
from increased autonomy, by e.g. improved decision support systems.

Aids for detecting and tracking other vessels at sea have a long history,
dating back to the introduction of the radar during the second World War.
Since then, several improvements and aids have been introduced to improve
safety and efficiency at sea, notably the automatic identification system (AIS)
system. The system consists of a global navigation satellite system (GNSS)
receiver, and a transmitter that sends the ASV position to other ships in the
vicinity. AIS is a useful tool, but not all ships are equipped with it and should
therefore not be the only source of target detection. Exteroceptive sensors can
measure the state of other ships without communicating with them. However,
the resulting sensor measurements are prone to missed detections and false
alarms, and more advanced state estimation techniques must be applied.

As often is the case of technological development, the first ASVs were
seen in military applications. However, the maritime industry is starting to
develop sensors and systems that are smaller and cheaper, which is enabling
ASVs in commercial and civilian applications.

1.2 The Autosea project

This PhD thesis is part of the project Sensor fusion and collision avoidance for
autonomous surface vehicles (Autosea). It is a competence-building project,
funded by the Research Council of Norway, DNV GL, Kongsberg Maritime
and Maritime Robotics. In addition to the work presented in this thesis, the
project has educated another PhD [17] focusing on modelling, control and
COLAV. Additionally, it has funded a postdoc and educated a large amount
of master students.

The project has focused on closing the loop between target tracking and
COLAV as shown in Fig. 1.1, by using exteroceptive sensors instead of AIS.
The sensor fusion module is responsible for estimating the target state, and
needs a set of navigation sensors in order to integrate AIS data and nautical
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Figure 1.1: The main focus of Autosea was on using exteroceptive sensors for COLAV. The
block diagram shows the main architecture and information flow in such a system.

charts with the imaging sensors onboard the ASV. The tracks are then sent
to the COLAV, which plans a safe route for the ASV.

One of the main focuses in Autosea has been experimental validation
of closed-loop COLAV. Before the interaction between the methods were
tested, they have been verified independently. The first experiments were
concerned with gathering raw sensor data, in order to design the sensor
preprocessing and tracking system. Simultaneously, control input response
data were collected to obtain a model for the experimental vessel. After the
tracking system and control system had been verified, the first closed-loop
tests were conducted in May 2017. Since then, both the target tracking and
the COLAV system have been continuously improved and tested in full-scale
experiments. Table 1.1 shows an overview of the experiments in the Autosea
project and their purpose.

3



Table 1.1: Autosea experiment overview.

Time Purpose

Winter 2015 Sensor data acquisition
Model identification experiments

Fall 2016 Controller verification
Spring 2017 Tracking system verification

Closed-loop experiments
Fall 2017 Closed-loop experiments
Fall 2018 Closed-loop experiments
Summer 2019 Final demonstration

1.3 Contributions at a glance

This thesis makes several contributions to target tracking for maritime colli-
sion avoidance. As ASVs can be small and are often equipped with low-cost
sensors, the sensor performance can vary significantly, which has been a
running theme for this work.

In order to track targets in a world-fixed reference frame, or to reference
world-fixed features such as landmarks from nautical charts in a body-fixed
reference frame, the ASV requires an accurate navigation system. However,
low-cost navigation systems may have lower performance than systems for
larger vessels such as supply ships. Additionally, the performance may be
temporarily degraded due to the reduced availability of GNSS systems. If the
estimation error covariance is provided by the navigation system, the tracking
system can compensate for this error. This thesis describes two methods for
this.

Although the entire tracking system is important for maritime COLAV,
reliable and quick track initiation is a key component. As most collision
avoidance methods does not consider the existence probability of targets,
it must be decided what tracks are to be passed on to the COLAV system,
i.e. what tracks should be confirmed tracks, and what tracks the decision
should be deferred for. With respect to this, the contributions of this thesis
is a detection-theoretic comparison of track initiation methods. In addition
to the established track initiation method, a sequential probability ratio test
(SPRT) with a new target density is also derived and compared with the
other methods. The tests were performed in an area with spatially varying
clutter, and tests were performed with and without knowledge of the clutter
density.

When performing COLAV experiments with multiple targets, it was dis-
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covered that the detection probability varied significantly both over time and
from target to target. It was investigated if target aspect angle could account
for these variations, in which case the trackers could possibly adjust the detec-
tion probability based on the estimated aspect angle. Although aspect angle
seems to contribute, the variations in detection probability likely originate
from several sources. This necessitated methods for tracking with a random
model for the detection probability, and this thesis contains three methods
for tracking targets with varying detection probability. Two extensions of
the integrated probabilistic data association (IPDA) have been derived, both
based on a Markov model for the detection probability. A marginalized par-
ticle filter was derived for more general models, for example constrained
Gaussian distributions. The advantage of marginalization is that the position
and velocity of the target does not have to be sampled, which reduces the
required number of particles dramatically compared to a particle filter that
samples the whole state.

This thesis also presents applications of target tracking to full-scale mar-
itime COLAV experiments. The contributions are both on the tracking system
input, i.e. the sensor data processing pipeline, and on the output, which
is the interface to the COLAV methods. In particular, the work in this the-
sis describes the detection, coordinate transformation, land masking and
measurement clustering performed on data from a typical consumer-grade
maritime radar. With respect to COLAV, it describes a method for reducing the
fluctuations in the state estimates, which is useful when the COLAV method
is vulnerable to e.g. noisy course estimates.

1.4 Publications

The thesis consists of 7 papers, which are listed below in chronological order:

Paper 1 (Wilthil2016) E. F. Wilthil and E. F. Brekke, “Compensation of
Navigation Uncertainty for Target Tracking on a Moving Platform”,
2016 19th International Conference on Information Fusion (FUSION),
Heidelberg, 2016, pp. 1616–1621.

Paper 2 (Wilthil2017) E. F. Wilthil, A. L. Flåten and E.F. Brekke, “A Target
Tracking System for ASV Collision Avoidance Based on the PDAF”, in
Sensing and Control for Autonomous Vehicles, T. I. Fossen, K. Y. Pet-
tersen and H. Nijmeijer, Eds., Springer, 2017, pp. 269–288.

Paper 6 (Eriksen2018) B.-O. H. Eriksen, E. F. Wilthil, A. L. Flåten, E. F.
Brekke and M. Breivik, “Radar-based Maritime Collision Avoidance
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using Dynamic Window”, 2018 IEEE Aerospace Conference, Big Sky,
2018.

Paper 3 (Wilthil2018) E. F. Wilthil, E. Brekke and O. B. Asplin, “Track Initi-
ation for Maritime Radar Tracking with and without Prior Information”,
2018 21st International Conference on Information Fusion (FUSION),
Cambridge, 2018.

Paper 7 (Kufoalor2019) D. K. M. Kufoalor, E. Wilthil, I. B. Hagen, E. F.
Brekke and T.A. Johansen, “Autonomous COLREGs-Compliant Decision
Making using Maritime Radar Tracking and Model Predictive Control”,
2019 European Control Conference (ECC), Naples, 2019.

Paper 4 (Wilthil2019a) E. F.Wilthil, Y. Bar-Shalom,P. Willett and E. Brekke,
“Estimation of Target Detectability for Maritime Target Tracking in the
PDA Framework”, 2019 22nd International Conference on Information
Fusion (FUSION), Ottawa, 2019.

Paper 5 (Wilthil2019b) E. F.Wilthil, P. Willett, Y. Bar-Shalom andE. Brekke,
“Varying Detectability in Maritime Target Tracking”, Draft, 2019.

Paper 4 received second place in the Tammy L. Blair student paper award at
the conference. In addition to these, three papers that are not included have
been coauthored during the work with this thesis:

Paper 8 (Brekke2017) E. F. Brekke and E. F. Wilthil, “Suboptimal Kalman
Filters for Target Tracking with Navigation Uncertainty in One Dimen-
sion”, 2017 IEEE Aerospace Conference, Big Sky, 2017.

Paper 9 (Eriksen2019) B.-O. H. Eriksen, M. Breivik, E. F. Wilthil, A. L.
Flåten and E. F. Brekke, “The Branching-Course MPC Algorithm for
Maritime Collision Avoidance”, Journal of Field Robotics, 2019; 36:
1222–1249.

Paper 10 (Brekke2019) E. F. Brekke, E. F. Wilthil, B.-O. H. Eriksen, D. K.
M. Kufoalor, Ø. K. Helgesen, I.B. Hagen, M. Breivik and T. A. Johansen,
“Dynamic maritime collision avoidance in theory and practice”, Interna-
tional Conference on Maritime Autonomous Surface Ships (submitted),
Trondheim, 2019

The papers may be read in chronological order1. However, an alternative
suggestion is given in Fig. 1.2. The papers on the top gives an overview of

1As most practical estimators, this thesis is a causal system.
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Wilthil2017

Brekke2019

Wilthil2016

Brekke2017

Wilthil2018 Wilthil2019a

Wilthil2019b

Eriksen2018
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Applications
to maritime
collision
avoidance

Variations
in detection
probability

System
overview

Track initia-
tion with and
without prior
information

Compensation
of navigation
uncertainty

Figure 1.2: Recommended reading order for the contributions in the thesis. Gray indicate
coauthored papers not included in the thesis, but are included in the figure to describe their
relationship with the other papers.

the tracking system and its interface to COLAV algorithms. [74] in particu-
lar describes how the radar tracking pipeline is setup to fulfill the classical
assumption of tracking methods. The tracking system has evolved since [74]
was written. Some of these changes are described in [8].

The remaining papers can be divided in four categories. Three of them
describes how a radar tracking system can compensate for varying sensor
performance. The first is on compensating for uncertainty in the navigation
sensor. As these papers does not contain experimental results, they may be
read independently of the system design and radar pipeline. The second
investigates the performance of track initiation methods. This is done in a
detection-theoretic approach, since COLAV algorithms usually does not con-
sider the target existence probabilities. The third addresses varying detection
probability. The cause of variations in detection probability is considered, and
methods for estimating the detection probability are derived. The last cate-
gory is on maritime COLAV applications, and contains papers that describe
how COLAV methods use the tracking system for situational awareness.

1.5 Outline

The rest of the thesis is structured as follows. Chapter 2 presents the back-
ground theory of target tracking. Chapter 3 presents the current state of the
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art of maritime target detection and tracking for COLAV. Chapter 4 presents
the contributions of this thesis. Chapter 5 contains conclusions and sugges-
tions for further work, and the original publications of the thesis is included
in Chapter 6.
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Chapter 2

Target tracking
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2.1 Overview

Target tracking is the processing of measurements obtained from exterocep-
tive sensors in order to estimate the state of one or more moving objects.
An exteroceptive sensor is a sensor that observes the environment remotely,
and is therefore independent of communication links and infrastructure. In
additional to filtering and state estimation, the problem of data association is
a considerable hurdle in target tracking. The goal of this chapter is to provide
a brief overview of the different approaches and mindsets for target tracking,
and describe the most popular methods.

In general, the surveillance region of a sensor can be very large, up to
thousands of square kilometers with a maritime radar. It may seem silly then,
to research single-target tracking, as there are inevitably more than one target
in such a large region. However, there has been an extensive research focus
on single-target tracking, including the methods developed in this thesis, and
we start off by defining singlet-target versus multi-target tracking.

The term single-target does not necessarily mean that the tracking system
is only capable of tracking only one target in the surveillance region. Rather,
the difference is that single-target methods calculate probabilities without
considering the possibility that the measurement originates from other tar-
gets in the vicinity. If targets are well separated in the state space, the joint
associations will be negligible. Consider the simplified examples shown in
Fig. 2.1. On the left, the probability that measurement z1 originates from
target t1 rather than target t2 is much higher, and vice versa for measurement
z2. On the right, it is not immediately clear which target is the origin of mea-
surement z1. However, measurement z2 is closer to target z2 than target t1,
such that the most likely association is that measurement z1 originates from
target t1, and measurement z2 from target t2. Missed target detections and
false alarms, which is not considered in this example, complicate matters fur-
ther. Missed targets and false alarms are also the primary complicating factor
in single-target tracking; although there are no uncertainties in what target
to assign measurements to, the absence of target-originated measurements
and presence of clutter can be a major problem.

10



Target

Measurement

z1
z1

z2
t1

t2

t1
t2

z2

Figure 2.1: Two situations with multiple targets. The situation on the left is easily resolved,
the one on the right is more ambiguous.

2.2 Sensors and sensor models

Measurements from several different sensors can be used to estimate the tar-
get state, and they may be classified as either active or passive. Active sensors
sends a signal into the environment, and measures the reaction of the envi-
ronment. Radar and sonar are examples of active sensors, as they transmit
electromagnetic and acoustic signals, respectively, andmeasure the return sig-
nal strength. Passive sensors does not transmit anything, but receives signals
that the environment itself transmits. Examples of passive sensors include
cameras and microphones.

Regardless of the sensor type, a measurement model provides the rela-
tionship between the measurement and the target state. Such a measurement
model is the fundamental requirement for state estimation, and the model
depends on both the target state and the type of sensor. Many active sen-
sors, such as radars, measure the position of the target, which may yield a
linear measurement model. Other types of sensors may provide nonlinear
measurements of the target state, such as e.g. the bearing angle to the tar-
get. In addition, sensors are affected by measurement noise which has to be
modeled.

In addition to the measurement model, exteroceptive sensors are subject
to missed detections and false alarms. This is because of the detection process
in the sensor, which performs a hypothesis test on the return signal strength.
If the detector declares a target present when it is not, a false alarm occurs.
these measurements are also referred to as clutter. A missed detection occurs
when the detector does not declare a target present when it is. Detectors are
based on setting a threshold on the returned signal strength, often adaptively
to avoid a large inflow of false alarms. For sensors with a large number of de-
tection cells, the most commonmodel for the number of cluttermeasurements
is the Poisson model, where the expected number of clutter measurements
is proportional to the sensor area/volume. This proportionality constant is
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Figure 2.2: Working principle of the radar illustrated.

called the clutter density. See [57, 26] for more information on the detection
process.

The most common active sensor for maritime target tracking is the radar,
and it has been the primary sensor for work carried out in this thesis. The
radar measures target range by measuring the round-trip time of an electro-
magnetic wave, illustrated in Fig. 2.2. The distance to the object can then be
calculated. By restricting the beamwidth of the radar pulse in the receiver,
the angle to the target can also be measured, which results in a polar posi-
tion measurement of the target. Since the target state often is formulated
in a Cartesian state with position and velocity, the polar measurement can
be converted to a position measurement before updating the tracker [3].
The advantage of this is that the measurement model becomes linear, which
simplifies the tracker design.

2.3 Target models

The most common state vector for tracking of point targets is the position
and velocity of the target in a Cartesian reference frame, e.g. north and
east coordinates. Although exteroceptive sensors measure the target in body-
frame coordinates, the target motion model is best formulated in a world-
fixed frame. It is possible to represent the target state in relative coordinates
as well, but in this case the movements of the ownship enters the target state
equations.

The simplest, and most common, target model is the nearly constant ve-
locity (NCV) model. As the name implies, it models the velocity as a constant
term plus a small increment given by a white noise term. Although true target
maneuvers are not random, it is assumed that they can be described by the
randomness of the velocity increment. The main advantage of this model is
the simplicity, as the only parameter needed in addition to the sensor sample
time is the covariance of the velocity increment. A large value will increase
the space of possible target maneuvers, which means the tracking system is
able to capture accelerations, stops and turns. However, this will lead to larger
uncertainties in steady-state course and velocity estimates when the target
is not maneuvering. The model is not suited for long-term prediction, as the
covariance of the state will grow rapidly and unbounded. When predicting

12



on a longer term, it is desirable to have a model that is at least bounded in the
velocity uncertainty, and a tendency to keep the current speed and course.

Variants of the Ornstein-Uhlenbeck process [12] introduces feedback from
a nominal position or velocity, and is better suited for long-term prediction
[47]. Although this family of models may represent target motion better for
maritime targets, they have more parameters than the NCV model, which
must be estimated. Additionally, for short time intervals, the difference with
the NCV model is negligible. If historic data of target motion in the surveil-
lance data, such as historic AIS data, is available, this may also be used to
perform long-term prediction [32, 13].

In addition to the position and velocity, it may also be desirable to estimate
the turn rate of the targets. The coordinates of the targets become coupled
[39], which may lead to more accurate state estimates. The turn rate is
usually modeled as a first-order process, requiring an additional covariance
parameter. Estimating target turn rate is covered in [3, 23].

Realistically, a target may change between models as it moves in the
surveillance area. For example, ships mostly have a constant course and
speed, but may maneuver when it closes in on its destination or to avoid
collision. The preferred way of handling multiple models for a single target is
the interacting multiple model (IMM) approach. The probability of being in
each model based on the measurements is calculated, and the model states
are weighted based on the probabilities to provide a total estimate of the
target state.

Although this chapter encompasses the most commonly used model for
maritime target tracking, several other models may also have their use. See
the survey [39] for an overview.

2.4 Data association

As previously mentioned, the biggest challenge in target tracking is data
association. The measurements from exteroceptive sensors are unlabeled,
and the process of assigning measurements to clutter, existing targets or new
targets must be done by a data association method. There is a vast literature
on the subject, and it would be overly ambitious to cover them all. Note also
that there may be methods that does not necessarily fit into the categories
below.

Tracking methods may be categorized as single- or multi-scan methods.
A single-scan method will associate the most recent measurements to targets,
and the association will not be changed at a later stage. The advantage of
this is simplicity, as once association probabilities has been calculated, there
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zk−2

zk−1

zk

Multi-scan

Single-scan

Measurements

Figure 2.3: Both data association methods assign zk−1 to the target at tk−1, but only a multi-
scan method would reassign it as clutter at time tk.

is no need to recalculate them at later scans. The advantage of a multi-scan
method is that it has the opportunity to discardmeasurements that previously
looked like a good choice. This is illustrated in Fig. 2.3. The measurement
zk−1 is a clutter measurement, and causes a large state estimation error
when it is associated to the target at time k−1. When the measurement zk is
associated to the target, a multi-scan method is able to infer that the target
was undetected at time k, changing the association of zk−1 from the target
to clutter.

Considerations like these can also apply to multi-target situations, where
the possibility to reassociate measurements to different targets at later time
scans can be invaluable. However, these methods naturally lead to a rapidly
expanding tree structure of association hypotheses. The size of this hypothesis
tree must be managed by merging similar hypotheses, or pruning the least
likely hypotheses. However, care must be taken to still preserve the hypothesis
diversity. An important parameter in such situations is the tree depth, which
defines the number of scans the method can reassign the measurement.

Methods may be either classified as hard or soft. Hard methods will asso-
ciate measurements without any uncertainty. Soft methods will not assign a
measurement directly to a target, but calculates an association probability
for each measurement-to-target match. Although the definition for single-
and multi-scan methods differs from soft and hard association, they are often
related. To increase the resilience against missed detections and clutter, a
data association method typically needs to either hedge on several measure-
ments as soft methods, or reassign measurements to the target at later times
as multi-scan methods. Historically, these combinations (single-scan with
soft association and multi-scan with hard association) have been the most
common approaches to target tracking.

More recently, finite set statistics (FISST) has been introduced as an ap-
proach to treat both targets and measurements as random finite sets (RFSs)
[45]. In principle, this expresses the prediction and update steps as a sin-
gle set-valued prediction and update equation, respectively. However, this
Bayes-optimal multitarget filter has no practical uses due to computational
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Figure 2.4: Although some of the targets are close to each other, two clusters can be formed
and data association is done independently.

complexity [43], and suitable approximations must be made. Many consider
FISST incompatible with the classical multi-target tracking approaches, but it
has been shown in [5] that the Possion multi-Bernoulli mixture (PMBM) filter,
which is based on RFS theory, generalizes the classical multiple hypothesis
tracker (MHT).

Validation gates are also commonly used to reduce the number of mea-
surements that are assigned to the track. A gate is setup around the position
of existing targets based on the covariance of the measurement innovation.
Any measurements inside the validation gate is associated to the track, and
measurements outside this gate is allowed to be associated with other tracks,
or form new tracks. The measurements inside the gate are not necessarily
assigned to the tested track only, as the main goal of gating is to reduce
the number of measurements that may be target-originated, before more
computationally demanding methods are used to e.g. calculate association
probabilities. This coarse sorting can be used inside in multi-target trackers as
well, in order to group tracks into clusters that can be tracked independently,
as shown in Fig. 2.4.

2.5 Track initiation

Track initiation is the process of associating measurements to a new target
in the surveillance region. Many tracking methods assume that tracks are
established on targets in the surveillance region, or track initiation may be
implicit in the tracking method. In either case, the track initiation need a new
target model, i.e. a description of how likely undetected targets are in the
surveillance region. The most common model for this is to assume that the
number of new targets in the surveillance region has a Poisson distribution,
with the expected number of new targets proportional to the surveillance area
volume. This mirrors the number of clutter measurements in the surveillance
region as previously described, and the density is called the new target density.
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Methods that only consider the possibility of a single target in the validation
gate may use a Markov chain for modelling new targets, with a specified
transition probability from the no-target state to the target-present state.

There are twomain ways to view track initiation. The first is as a detection
process, where the goal is to declare whether a sequence of measurements
originate from a previously undiscovered target or not. The second is an es-
timation process, where the goal is to calculate the probability of a sequence
of measurements originating from a target or not. This mirrors the hard and
soft data association methods from the previous section. Note that the detec-
tion process can be added to the estimation process by setting a threshold
on the estimated existence probability, and confirm targets that exceed this
value.

2.6 Filtering and track extraction

After measurements have been assigned to the target, filtering methods are
applied to obtain the state estimate. If the linear models previously discussed
applies, and the measurement noise has a Gaussian distribution, the Kalman
filter (KF)[34] is the workhorse of the estimation problem. Hard methods
will have at most one measurement associated to the track, and the KF can be
applied directly to update the state estimate of the track. If no measurement
is associated to the track, the filter simply does not perform an update step. If
the target or measurement model is nonlinear, a nonlinear estimator must be
used. The extended Kalman filter (EKF)[3] is the most common, but particle
filters [58, 29] can also be used if the nonlinearities are severe.

Soft methods may have more measurements associated to each track,
and the resulting state estimate is typically a weighted sum based on the
estimates depending on each of the measurements. The same applies to multi-
scan methods, as the different sequences of associated measurements have
a different state estimate. In this case, track extraction is needed to obtain
the total target state estimate. This may be the maximum a posteriori (MAP)
estimate, or moment-matching may be used to calculate the minimum mean
square error (MMSE) estimate, also known as expected a posteriori estimate.

2.7 Common tracking algorithms

Some popular tracking methods are summarized in Table 2.1, and a brief
description follows.

The simplest tracking method that could possibly be derived is the nearest-
neighbor standard filter (NNSF) [3]. As the name implies, it performs data
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Table 2.1: Overview of common target tracking methods.

Method Targets Scans Association Existence probability

NN Single Single Hard No
PDA Single Single Soft No
IPDA Single Single Soft Yes
TSF Single Multiple Hard No
GNN Multiple Single Hard No
JPDA Multiple Single Soft No
JIPDA Multiple Single Soft Yes
TO-MHT Multiple Multiple Hard No
HO-MHT Multiple Multiple Hard Yes
PHD Multiple Single Soft Yes
PMBM Multiple Multiple Soft Yes

association by selecting the closest measurement to the estimated target
position, and uses a standard KF to estimate the target state. As it does not
consider the possibility of an undetected target, it is very susceptible to track
loss. This makes it only somewhat suitable for applications with very high
signal-to-noise ratio (SNR).

The probabilistic data association filter (PDAF), a single-target, single-
scan soft tracking method, was developed in the early 1970’s [2] and is to this
day a very common tracking method in use in practical systems. Contrary to
the NNSF, the PDAF is an “all-neighbor” filter, and calculate the association
probability for each of the measurements in the validation gate, as well as
the probability that no measurement is target-originated. Additionally, it
assumes that the posterior estimate of the state can be represented by a
single Gaussian, which makes the computational burden only slightly higher
than a KF, and the hedging on all the measurements in the validation gate
greatly improves the robustness of the PDAF compared to the NNSF.

An extension of the PDAF to also calculate the existence probability of
the target is presented in [49], called the IPDA. This means it can be used
as a measure of track quality, which in turn means it can be used to confirm
or terminate tracks automatically.

Another approach to improve the mediocre performance of the NNSF
is to split the track and estimate the state with each measurement in the
validation gate independently of each other. This is called the track split filter
(TSF). If the track is split at consecutive timesteps, the resulting structure is
a tree. The likelihood of each sequence of measurements can be calculated,
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and sequences with a low likelihood can be removed from the structure to
keep the computational complexity manageable.

The thought process of the NNSF can be extended to multiple targets,
and we applied it to the scenario in Fig. 2.1 as an example of single-target ver-
sus multi-target methods. This is the global nearest neighbor (GNN) tracker,
which finds the optimal solution to a 2D assignment problem based on e.g.
distance, and update the track estimates by applying the selected measure-
ments with a KF. As with the NNSF, it is simple to implement but susceptible
to track loss.

If the validation gate of two or more targets overlap, the PDAF will calcu-
late the association probabilities of the measurements in common without
considering the presence of another target. This results in a higher associ-
ation probability for the measurements in common, increasing the risk of
track coalescence. This can be remedied by using a bona fide multi-target
tracker. The joint probabilistic data association filter (JPDA) [24] is the multi-
target version of the PDAF, and calculates the joint association probabilities
of the measurements. However, since the JPDA is still a single-scan method,
the target-originated measurement associations are not reevaluated for later
scans, and track coalescence can still be an issue [4]. Similarly to the IPDA,
the joint integrated probabilistic data association filter (JIPDA) [48] calcu-
lates the existence probability based on the joint association probabilities.

Instead of calculating the state estimate based on the joint associations as
in the JPDA, it is possible to explicitly associate the measurements to existing
targets and clutter, and calculate the likelihood of this hypothesis. These
hypotheses can then be stored, and the most probable hypotheses can be
expanded on as new measurements arrive. The result is the MHT [56], which
traditionally has been considered the gold standard of multi-target tracking.

There are several ways to structure the hypotheses of an MHT. The
hypothesis-oriented MHT (HO-MHT) maintains a number of global hypothe-
ses. The track-oriented MHT (TO-MHT) maintains the hypotheses as a track
tree for each target. Global hypotheses are found from solving a multidi-
mensional assignment (MDA) problem, often by means of integer linear pro-
gramming (ILP) [65]. Regardless of the hypothesis structure, the number
of hypotheses will increase exponentially as new sets of measurements are
used to expand the hypotheses, which makes computational complexity a
significant hurdle in practical implementations of the MHT. Pruning, both
with validation gates and removing the least likely hypotheses are a common
technique. Merging similar hypotheses would also reduce the tree size, but
is nontrivial and still an active research topic [1, 70].

The probability hypothesis density (PHD) filter is the most common so-
lution to approximate the FISST-based multitarget Bayes filter [43]. It only
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propagates the first-order moment, similar to the constant-gain KF. It has
gained significant popularity, but suffers from cardinality issues. This was
later improved by the cardinalized PHD (CPHD) filter [44]. It was shown in
in [69] that the output of the multitarget Bayes filter can be factored into a
Poisson and a multi-Bernoulli component, which leads to hypotheses similar
to the MHT.

The most popular track initiation methods for tracking methods that does
not calculate the track existence probabilities are the logic-basedM/Nmethod
[3] and the SPRT [64]. The M/N method is the simplest, and only counts the
number of scans the validation gate of the target contains measurements. If
the number is greater or equal to M after N scans, a target is declared present.
The SPRT branches out like the MHT, and declares a target present when
the likelihood ratio (LR) of the target-present versus clutter-only hypothesis
is larger than a selected threshold. The threshold can be set according to the
desired probabilities of obtaining a true or false track.

Once again, this is just a brief overview of the methods. For further read-
ing, see [3, 46, 65, 10, 55].
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Chapter 3

Maritime situational
awareness
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3.1 Exteroceptive sensors

Today, there are several aids available to navigators. Radars, mentioned in
Section 2.2, were introduced on ships shortly after their invention during the
second world war, and have been a key component of maritime situational
awareness ever since. Ships of 300 gross tonnage or above, and passenger
ships irrespective of size are required by the international convention for the
safety of life at sea (SOLAS) to have a radar mounted1.

Many radars comes with an automatic radar plotting aid (ARPA) sys-
tem that automatically estimate the position and velocity of targets in range.
However, many of these are so-called minimal ARPA, which means that the
user has to select, i.e. initiate, the targets of interest on the track display. For
the true ARPA with built-in track initiation capabilities, the output is often
restricted to the track itself, which prevents measurement-level fusion of sen-
sor data. It is possible to fuse the tracks from a tracker, and measurements
from another sensor with the information decorrelation approach [11]. Ad-
ditionally, the ARPA systems often provides only the position and possibly
velocity of the objects, not the covariance of the estimate. To the authors best
knowledge, algorithms for track fusion require the covariance of the state
estimate as well.

AIS transponders are also frequently used. It broadcasts the state of the
vessel based on the onboard positioning system over a standard very high
frequency (VHF) transmitter, possibly along with information such as vessel
size and voyage details. This is also mandatory under SOLAS for the same
vessels that are required to have a radar. Since the transmitted state is based
on the navigation system of the target, often the GNSS-indicated position
as detailed in Section 3.2, the expected accuracy of a fully working system
is very high. However, the system is based on several links, all of which can
deteriorate or cut off the availability of the service. First, GNSS may be faulty.
Although there is a very low probability that the satellites themselves or the
ground station stops working, the receiver onboard the ship may be out of
order. Second, the AIS transmitter may be off, either due to malice or negli-
gence. Third, the transmit rate of the AIS is very variable, and extrapolating
old data can be disastrous if the target has maneuvered since the last message
was received. Depending on AIS as the only tool for situational awareness
is therefore not recommended [30]. Although this thesis focuses on ASVs,
radars and AIS are the main sensors for maritime situational awareness for

1The SOLAS also allows for any other “means to determine and display the range and
bearing of radar transponders and of other surface craft, obstructions, buoys, shorelines and
navigational marks to assist in navigation and in collision avoidance”. Applying the duck test,
radars can be expected to be found on most ships.
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human mariners as well.
In addition to the radar and AIS, cameras are often used on ASVs [15].

Cameras are in particular useful for classification of objects, but depends
on the natural lightning of the environment, unless using infrared cameras.
Cameras only measure the bearing of the target, and the range is also needed
to fully resolve the target position. This means georeferencing, stereo vision
or other sensors must be used to obtain the full position of the target. Detec-
tions in the image frame are typically extracted using deep learning methods,
such as the single shot detector [41].

Although cameras and radars are both exteroceptive sensors, they have
some nice complementary properties which justifies the use of both on ASVs.
Radars have a long range that allows for early detection of an object, and the
feature-rich camera images can give great details at short range. Additionally,
classification is important to comply with the international regulations for
preventing collisions at sea (COLREGs). It is primarily the range that makes
radar the backbone for maritime situational awareness, whereas cameras
can play a larger role when the required range are shorter, for example in
autonomous cars [63].

3.2 Navigation systems

In order to utilize both a radar and the AIS system, the tracking system
will depend on a good navigation system to transform data from one of the
systems into another. Depending on the audience the term “navigation” has
two meanings. One is the task, of directing a vessel from one place to another.
Thus, it includes planning and maneuvering, in addition to the situational
awareness presented in this chapter. This is the meaning used by mariners. In
this thesis, however, navigation is defined as the process of determining the
state of a ship, i.e. the position, velocity and attitude. This is the definition
often used by researchers on state estimation.

The sensor package of maritime navigation systems are often comprised
of an inertial measurement unit (IMU) and a GNSS receiver with at least
two antennas. Their popularity can be attributed to their complementary
properties. IMUs measure the acceleration and angular rate of the object
they are fastened to. They have a high update rate, and the measurements
can be integrated to obtain the attitude, velocity and position of the ASV
without external references. However, measurement errors leads to an un-
bounded estimation error. By integrating the GNSS signals, which provides
measurements of the target position in a world-fixed reference frame, the
state estimates are corrected and the measurement error sources, such as the
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IMU bias,may be estimated. Error state EKFs [28] or nonlinear observers [27]
are the most common methods used to fuse IMU and GNSS measurements.

The general assumption in this thesis is that the ASV is equipped with
a navigation system, that may or may not have a significant uncertainty
associated with it.

3.3 Collision avoidance

As described in Section 1.2, the motivation behind the work of this thesis
has been target tracking for maritime COLAV. The goal of this section is not
to provide a comprehensive review of COLAV, but rather to give insight into
the requirements and desired properties of these methods with respect to
the target state estimates, and then give an overview of recent advances in
sensor-based COLAV. For more thorough references on maritime COLAV, see
[17, 61, 59].

Very few algorithms will cover the entire scope of ASV path planning
from port-to-port travel to emergency maneuvers. One way of separating the
responsibility is to divide the planning hierarchy into several layers based
on the time horizon. An example of this strategy is covered in [18], where a
three-layer architecture is used. The top layer is a path planner, which only
considers static obstacles, i.e. maps, and possibly long-term information such
as weather forecasts. The middle layer attempts to follow the path from the
path planner, but also considers the COLREGs, and aims to avoid collisions
in a controlled and predictable manner. The bottom layer performs safety
maneuvers for when the top two layers fail, e.g. if a target fails to follow
COLREGs. We will consider this form of layer structure in the following.
Note that other architectures may also be used, and examples are given in
e.g. [42, 9, 60]. However, the methods discussed below will fit into most
architectures. Additionally, the importance of a good tracking system based
on exteroceptive sensors are increasingly important as the time horizon is
reduced, regardless of the chosen architecture.

Optimization-based methods, such as model predictive control (MPC),
may be used for all layers in the described architecture. The flexibility of MPC
lies in the objective function, which can take a large number of variables into
account. For long prediction horizons, the optimization problem typically
takes static information, such as nautical charts, and possibly slowly-varying
information, such as weather forecast, into account. The resulting path can
be optimized for e.g. the fuel and crew costs under the constraint of reaching
the goal port within a certain timeframe.

For the middle layer of the architecture, typical information is data from
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AIS and radar, and the prediction is usually done by assuming that targets in
the vicinity will comply with the COLREGs, and possibly includes long-term
prediction methods as previously discussed in Section 2.3. These methods
usually ensures the ASVs maneuvers will comply with COLREGs, and can
be considered normal behavior at sea. Optimization-based methods can be
applied in this layer as well, see [21] for an example.

Several short-term methods have been developed to handle immediate
collision risk, e.g. when other vessels do not comply with the COLREGs. Be-
cause of this, they are typically fast and takes limited input, usually in the
form of position and velocity of targets in the immediate vicinity. A typical
property of these methods are that they are local, i.e. finds a collision-free
path in the near vicinity of the ASV without verifying that the path leads to
the destination. This is typically mitigated by the above layers, which can
replan after avoiding collision.

The velocity obstacles (VO) method [22] is a very popular short-term
method, which can be attributed to its experimental validation in [37]. It
calculates the set of admissible velocities that guarantees avoidance of all the
targets, given that they keep their current speed and course. Another example
of a short-term COLAV method is the dynamic window (DW) algorithm [25].
The advantage of this is that it considers the dynamics of the ASV, such that
the desired yaw rate and velocity are achievable. It has also been adapted
for nonholomic vehicles [16]. It is also possible to design control laws that
will ensure the target always have a safe distance to the obstacle, see [67].

Common for these methods is that they require the speed and course
of the targets to predict the future trajectories. If these are estimated in a
tracking system, the performance may decrease significantly. For example,
if the chosen velocity vector in the VO is always chosen such that it lies on
the edge of the set of admissible velocities, changes in the target course will
lead to constant changes in the reference velocity of the ASV. The branching-
course MPC (BC-MPC) algorithm [19] developed in the Autosea project seeks
to mitigate these effects. It uses a discrete input space, and use hysteresis to
favor the chosen control input at later timesteps. This results in maneuvers
that clearly shows the intent of the ASV, and maneuvers that are robust to
noise in the target estimates.
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Chapter 4

Contributions
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4.1 Research objectives

The material covered so far in the thesis is an overview of target tracking
and situational awareness. In this chapter, the specific research goals of the
thesis will be presented. Many of the goals were set based on results from
experimental work.

The first research question was “what is the impact of navigation uncer-
tainty on target tracking?”. The reason for this was that it was, at the time,
not sure what navigation system would be used, and a low-cost navigation
system could have a significant impact on target tracking.

The sensor package was determined to be a Navico Simrad 4G radar,
shown in Fig. 4.1, and a Kongsberg Seapath 330+, shown in Fig. 4.2. Addi-
tionally, an AIS receiverwas used to get the true target states. Data acquisition
tests were conducted in 2015 and 2016, and based on the data from these
tests, the following research question was proposed: “what is the simplest
tracking system that can be used for closed-loop collision avoidance?”. The
notion that it should be as simple as possible, but not simpler1 is important.
Although a simple system is desirable in order to proceed with closed-loop
experiments, the insight gained and improvements made should be applica-
ble to more advanced trackers. Due to this, the choice fell on the PDAF with
the M/N method for track initiation.

Even with conservative tuning, the M/N-method confirmed a lot of false
tracks. The research focus shifted to track initiation, and several methods
were compared. In addition to comparing the methods with respect to their
true track confirmation and false track rates, the goal was also to compare
the methods with and without clutter and new target densities, which are

1by the words of Prof. Yaakov Bar-Shalom, quoting Einstein.

Figure 4.1: The Navico Simrad 4G radar, with and without the dome.
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Figure 4.2: The Seapath 330+ navigation system, which consists of a processing unit, an
interface unit and an IMU, in addition to cabling and GNSS antennas not shown in the photo.

seldom known in practical tracking systems.
Track loss due to e.g. reduced detection probability can lead to dangerous

situations, and the research focus shifted to track maintenance, as this issue
emerged in experimental data. The temporal detection probability could vary
greatly from target to target, and the goal was to determine if the cause could
be identified and develop tracking methods that could estimate the detection
probability.

For an ASV running in the real world,multiple sensors in addition to radar
are necessary for both detection and tracking of all the potential targets along
the planned route, as well as for redundancy in case of sensor failure. Tracking
with AIS, cameras and lidar data, as well as multi-sensor fusion, have been
covered by other work within the Autosea project; see e.g. [40, 62, 31, 13,
51, 52].

4.2 Tracking with navigation uncertainty

One of the earliest hypotheses of the Autosea project was that target track-
ing from a moving platform instead of a fixed sensor location could have
a significant impact on the state estimates. When both the ownship and
stationary landmark states need to be estimated, simultaneous localization
and mapping (SLAM) [14] is the most widespread solution. This is viable in
an urban environment, where there are many stationary landmarks such as
buildings and signs. Out at sea, there is a lower amount of stationary land-
marks. There have been some research on including moving targets in the
SLAM-based solution [66, 38]. Such a system would also be able to integrate
navigation sensors such as an IMU and a GNSS receiver. However, there are
two main objections against using a SLAM-based solution as a joint tracking
and navigation module.
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First, such a tight coupling between the navigation system and the track-
ing system means that the measurements from the navigation sensors must
be integrated with the exteroceptive sensors in the SLAM module. A looser
coupling facilitates the use of existing methods and technology for navigation
systems.

Second, implementing a full SLAM solution means that the ownship state
would be affected by the measurements from exteroceptive sensors. This
makes the ownship state estimation vulnerable to faulty data association.
This is of course also the case for other SLAM implementations [50]. In
GNSS-denied environments, like indoor and underwater, this may be the only
solution. However, out at open sea, GNSS are often available. Additionally,
due to the low amount of stationary landmarks, the ownship state estimate
would rely heavily on moving targets, which has the additional uncertainty
of the motion model. The ideal solution for an ASV would be to account for
the uncertainty in the navigation system, without letting the target estimates
affect the navigation solution.

For these reasons, two methods for compensating for navigation uncer-
tainty in the tracking system were derived in [72]. The first method uses
the covariance from the navigation system to increase the measurement co-
variance, without maintaining correlations between the navigation and the
tracking state. By linearizing the measurement equation, an expression very
similar to the standard polar-to-Cartesian conversion of measurements [3]
was obtained, where e.g. the heading error covariance was accounted for in
the same way as radar bearing measurement covariance. The second method,
a Schmidt-Kalman filter, maintains correlations between the navigation sys-
tem error and the target state vector in order to more precisely account for
the navigation error. This resulted in a more consistent filter, which is an
important property of tracking systems.

In [7], several more variants were tested on a one-dimensional system,
including body-parametrized filters. The body-parametrized filters had the
best performance measured by the error in the relative distance between the
target and the ownship, which is important for collision avoidance. However,
the world-fixed Schmidt-Kalman filter had the best consistency results, as
in [72]. This resulted in better tracking results when data association was
introduced.
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4.3 Tracking system overview and sensor processing
pipeline

The next contributions of the thesis are on radar data preprocessing, described
in [74]. The Simrad radar outputs raw data continuously on a spoke level.
A spoke consists of all the detections from a single azimuth angle. There
are 1024 detections cells per spoke, and the radar outputs 2048 spokes per
revolution. At short range, this makes even small targets occupy hundreds of
resolution cells, violating the “one measurement per target” assumption. The
data is received in a body-fixed coordinate frame and in order to use nautical
charts to mask out large pieces of land, they are transformed into a earth-fixed
Cartesian reference frame. This is done using the Seapath navigation system.
Then, the detections were clustered together to obtain one measurement
per target. Additionally, the PDAF was implemented, and the process and
measurement noise covariance matrices were found from experimental data.
Because of this, [74] also describes the first iteration of the tracking system
that could be used for closed-loop experiments.

Since [74] was written in the fall of 2016, the tracking system have
been continuously improved for each round of experiments. Some of these
changes have been detailed in [8], and the most important changes to the
sensor pipeline and tracking architecture are summarized as follows.

To close the loop between target tracking and collision avoidance, it was
necessary to design an interface that could provide tracks to the collision
avoidance methods. Although the tracking methods only require the most
recent estimates, it may be necessary to keep track of older estimates as
well. Also, one of the goals for the Autosea project was that several collision
avoidance methods should be able to use the tracking system for situational
awareness. This necessitates a flexible tracking interface. The chosen de-
sign consist of both a robot operating system (ROS) service, and a network
interface.

A service is ROS’ implementation of a request/response model. The track-
ing system organizes the estimates from the PDAF into tracks, i.e. sequences
of estimates belonging to the same target. The collision avoidance requests
estimates of targets at given timestamps. The tracks are then interpolated to
the requested timestamps and sent in response. This ensures interpolation
and prediction is contained in the tracking system. Thus, collision avoidance
methods that are implemented in ROS should use this service as it provides
up-to-date estimates at the requested times. Collision avoidance methods
that are not implemented in ROS may receive obstacle estimates by connect-
ing to the TCP network service, which sends target estimates on a specified
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rate.
In [74], a Cartesian measurement model was used. This worked well at

close range, but when the target range exceeded approximately 1km the
effects of the high beamwidth of the radar became more prominent, and it
was found that a polar measurement model was needed. The values of these
covariance parameters was estimated using data from targets with a high-
rate AIS. Additionally, a radar angle offset was also calculated, as the radar
is not necessarily mounted with the zero angle aligned with the navigation
system reference frame.

4.4 Track initiation with and without prior informa-
tion

The biggest issue with the tracking system described in [74] was the amount
of false tracks, in particular near land. Much of this can be attributed to the
logic-based M/N track initiation method, which does not take into account
that the measurements in the validation gate may be clutter. It was spec-
ulated that other track initiation methods would perform better than the
M/N-method, and this hypothesis was investigated in [73]. In addition to
the established IPDA [49] and SPRT [64] methods, a Bayesian SPRT were
derived. It is very similar to the SPRT of [64], but takes the new target density
into account, if known. This leads to an initial likelihood ratio that is inde-
pendent of the initial size of the validation gate. A lower new target density
means the method has a lower initial likelihood ratio, which is reflected in
a lower false track confirmation probability. In addition to the new target
density, the impact of known clutter density were investigated as well, as this
is an additional parameter that is seldom known in real applications. The
clutter density was nonuniform, to mimic the challenges seen in the real data.
Unknown clutter density reduced the performance of all the methods, but to
a lesser extent for the IPDA.

To the knowledge of the author, this is currently the only comprehensive
analysis of IPDA and SPRT for track initiation in terms of standard measures
for detector performance. The results show that all the methods can be tuned
to have a high probability of detecting the target. However, the IPDA and
SPRTs outperformed theM/Nmethod significantly with respect to false tracks.
For example, to obtain a 99% target detection probability, the M/N method
has a false track probability of 7%, meaning that approximately one out of
fourteen tentative tracks will be confirmed even though no target-originated
measurements are present in the data. The other methods are able to obtain
false track probabilities in the range of 10−4 or less and still detect the target
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more than 99% of the time. The IPDA performed very well with respect to
both target detection and false track probabilities, despite being a single-scan
instead of a multi-scan method. It seems the largest benefit of using an SPRT
is reduced track initiation time, at least for the conditions presented in [73].

4.5 Estimation of detection probability

As the nonparametric IPDA was a significant improvement over the M/N-
method, it was selected for the next round of closed-loop COLAV experiments.
These experiments, conducted in September 2018, involved several targets.
Both the ocean space drone (OSD) of Kongsberg Seatex and Mukholmen II
of Trondheim harbor, shown in Fig. 4.3, were involved as targets. The targets
had a considerable difference in the observed detection probability, with the
OSD being significantly less detectable than Munkholmen II. Investigations
started to see if the difference could be accounted for by considering the
target state, such as the aspect angle, which was considered in [71]. The
varying detection probability can in part be explained by the aspect angle
to the target. However, the impact of the aspect angle varies from target to
target, and it is suspected that there are other factors that contribute to the
variations as well, e.g. the range to the target.

Instead of having a state- or measurement-dependent detection proba-
bility, it was modeled as a random process with a finite number of known
detection probabilities. Two methods were developed for estimating it in
[71]. The first uses a hidden Markov model (HMM) to estimate the detection
probability given the presence of a target, and this detection probability is
then used in a regular IPDA to estimate the existence probability. This means
the tracking method is unchanged with the exception of a parameter update,
which may be a constraint in some systems. The second method jointly calcu-
lates the existence and detection probability, and provides a generalization
of the IPDA equations.

The empirical detection probability as observed from the September 2018

Figure 4.3: The Kongsberg OSD (left) and Munkholmen II of Trondheim harbor (right).
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experiments in [71] seems to follow a continuous model instead of having
discrete values. A remedy to this is derived in [75], namely a marginalized
particle filter (MPF). Particle filters have previously been used for estimating
the target detection probability [53], but they require a lot of particles in order
to represent the full state estimate. Instead, a MPF employ a computationally
tractable solution to parts of the state, and sample the remaining variables.
In this case, the position and velocity of the target can be estimated by the
PDAF,whichmeans only the detection probability needs to be sampled. Initial
simulation results indicate that the MPF performs similarly to the IPDA of
[71] with the discrete detection probability model using as few as 50 particles.
As the PDAF is used for the kinematic state estimate, the kinematic tracking
results are similar even with as low as 5 particles. With a continuous detection
probability model, the MPF outperforms the IPDA.

Other approaches for handling varying detection probability can be found
in the literature. In [68], the detection threshold is adjusted based on the
measurement innovation. This means the detection threshold will be lower
for radar reflections close to the predicted position of targets. This allows
weaker signals to pass through the radar detector, and can mitigate effects
that would cause lower detection probabilities with a constant gain detector.
In [54], the aspect angle is used to adjust the SNR of the targets, which
yields similar results. Both of these approaches assumes that the lower-level
functionality in the radar, i.e. adjusting the detection threshold or knowledge
of the SNR value, which is not possible with the Simrad radar.

4.6 Applications to maritime collision avoidance

The first closed-loop application of the tracking systemwithmaritime collision
avoidance is reported in [20]. These tests were conducted in May 2017, and
the tracking system was nearly the same as the one reported in [74]. The
main difference, as explained in [20], is the addition of a retrodiction method
to improve the state estimates of the target. It had been found from previously
recorded datasets that the course estimates of targets varied considerably.
The retrodiction procedure smoothes the output of the tracking system by
not only using the latest state estimate, but also the previous state estimates
by assuming a constant velocity over the last timesteps. This is only applied
to the state estimates that are sent to the collision avoidance system, and the
tracking system still uses a NCV model, in order to prevent track loss.

The IPDA were tested in closed-loop experiments during autumn 2017
and 2018. The first published paper that shows the IPDA-based tracking
system with collision avoidance is [35]. It also reports on the results using
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the improved measurement noise model, as reported in Section 4.3. This
collision avoidance approach is based on [33].

In addition to the two methods described which is included in the thesis,
the tracking system has also been tested with the BC-MPC [19] and the
dynamic reciprocal velocity obstacles (DRVO) method [36].
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Chapter 5

Conclusions and further work
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5.1 Conclusion

This thesis presents a target tracking system for maritime COLAV. The track-
ing system, based on the PDAF, is modified in several ways to account for the
varying performance associated with low-cost sensors. The performance of fil-
tering, track initiation and track maintenance are all improved. The methods
are validated both in simulations and full-scale COLAV experiments.

The tracking system may have to compensate for the uncertainty in the
navigation system. The estimated covariance with an uncompensated tracker
will be lower than with one that accounts for the navigation uncertainties,
which can lead to over-optimistic results. This impacts the target tracking not
only in the estimated covariance in the tracking estimates, but also in data
association where e.g. the validation gates may be too small. Two methods
for compensating for navigation uncertainty were developed in [72]. A desir-
able property was that the navigation uncertainty should affect the tracking
estimates, but not the other way around as in e.g. SLAM. Results show that
maintaining correlations between the target state and the navigation results
can be important for consistency in the tracking estimates.

Track initiation methods were tested in [73], which includes the M/N-
method, the IPDA and SPRTs with both known and unknown new target
density. As most COLAV systems do not use the probabilistic estimate of tar-
get existence in their evaluation of different candidate maneuvers, target
existence must be determined as a detection process. Because of this, the
methods were tested by comparing the true track confirmation rate to the
false track confirmation rate, using different thresholds for track confirma-
tion. The resulting performance shows that the M/N-based method is greatly
outperformed by the other methods. The impact of unknown clutter den-
sity was also investigated. Generally, nonparametric methods set the clutter
density based on the number of measurements in the validation gate. The
IPDA in particular was able to maintain a low probability of false alarms,
even without knowledge of the clutter density. The advantage of using the
SPRT is lower track initiation time than the other methods. Overall, the IPDA
performed very well compared to the SPRTs, even though the computational
cost is significantly lower.

Varying detection probability was considered in [71], and methods for
estimating the target existence and detectability mode probabilities were
derived. One of the methods was based on the IPDA, with a Markov chain
for the joint existence and detectability mode. The closed-form expressions
are of a general nature similar to the Markov chain 2 IPDA. Although al-
lowing reduced detectability leads to longer false track termination time,
the trackers that compensate for varying detection probability are able to
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maintain tracks on targets that have sudden changes in the detectability. For
detection probability variations that does not follow a known Markov model,
a marginalized particle filter was derived in [75]. Instead of sampling the
entire state vector as in a regular particle filter, only the detection probability
is sampled, and each particle estimate the position and velocity of the target
with a PDAF.

Although there are several research results on maritime COLAV with exte-
roceptive sensors reported in the litterature, few has detailed the interactions
between target tracking and COLAV as extensively as the Autosea project. In
particular, the radar pipeline is extensively described in [74], which also de-
scribes how the process andmeasurement noise covariances can be estimated.
In [20], the impact of varying course estimates on the COLAV is described.
Varying course estimates can lead to frequent changes in the planned trajec-
tory, and the ASV will not be able to complete a maneuver. The impact of lost
tracks is described in [35], where tracks persisted in the cost function of the
MPC some time after termination. By scaling the weight of the terminated
track by the time since the last detection, tracks from the tracking system
still had priority over the predicted position of terminated tracks.

5.2 Further work

As in any research project, there are open questions and room for improve-
ments on the results of this thesis. In the following, some research topics are
suggested, ranging from direct extensions to broader suggestions.

The filtering methods for target tracking with navigation uncertainty
developed in [72] have not been tested with data association. Results from
[7] indicate that body-parametrized tracking filters performs better with
respect to relative error, and the Schmidt-Kalman filter is better with respect
to consistency in a one-dimensional tracking scenario. It remains to be seen
if this is the case for ASVs as well, when attitude uncertainties are present.

The performance of the track initiation methods in [73] are evaluated in
simulations. It remains to be seen if theoretic limits on the success rates can
be found, similar to the ones found in [6]. Both SPRTs investigated in [73]
had a larger performance decrease from the parametric to the nonparametric
methods compared to the IPDA. This may indicate that there are room for im-
provements on nonparametric tracking and clutter estimation for multi-scan
methods. Clutter maps have previously been used to estimate the clutter den-
sity in a IPDA framework. These methods could in principle be applied with
hard association methods as well, such as the SPRT and MHT. However, this
leads to a clutter map for every association hypothesis, which is an additional
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computational burden. Research on clutter maps for multi-scan association
methods is therefore, to the author’s knowledge, still an open research area.

As this PhD, and the Autosea project, is wrapping up, several research
projects on ASVs are starting. The Autoferry project1 will develop new con-
cepts and methods for autonomous ferries. The Autosit project aims to de-
velopmethods for increased situational awareness based onmachine learning,
fusion of radar and AIS data, and pose estimation using cameras. It is the
author’s hope that these projects can benefit from the results and experience
of this PhD thesis and the Autosea project, and the following paragraphs de-
scribe some research suggestions for these projects, as well as other research
projects on ASVs.

Throughout this thesis, a single NCV model has been used as the target
model. It would be advantageous to have multiple models for targets, to
make more accurate predictions and prevent track loss during maneuvers.
The most common way of achieving this is by means of the IMM method.
The additional models does not necessarily have to be more complicated and
require a lot of parameters. It is possible to run several NCV models with
different covariance values in paralell in an IMM. As the targets observed in
[74] were observed to mainly have two different covariance values, another
NCV model with higher covariance would make the tracking system handle
a wider variety of targets of opportunity in addition to the targets present in
the experiments. It would also allow the tracking system to capture target
maneuvers. Additionally, extending the target state model to include the turn
rate would also be beneficial, in particular for prediction. Although a NCV
model with a sufficiently high covariance will capture a maneuver, a turn
rate estimate would help in identifying the target intent, e.g. that the target
is turning to avoid collision.

A natural extension of the system is to trackmultiple targets by calculating
the joint association probabilities. As the current IPDA is performing very
well, it is natural to consider the JIPDA as a followup. In addition to the
classical multi-target problems like track coalescence and undetected targets,
the detectability estimation methods of [71, 75] are likely to have reduced
performance when other targets in the vicinity are not accounted for. If the
JIPDA is not powerful enough, a PMBM is the next step up in complexity, from
which the JIPDA can be derived. Although the PMBM may be required to
obtain adequate performance in congested areas such as harbors and rivers, it
also has additional computational requirements. Ideally, the tracking system
would be able to evaluate by itself when to use an IPDA, JIPDA or PMBM,
respectively.

1https://www.ntnu.edu/autoferry
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The tracking system presented in this thesis is based on radar data only.
Although radar is an important sensor for maritime target tracking, there
are several other sensors that must be included to obtain good situational
awareness. To detect smaller objects in close proximity, cameras or lidars
are beneficial. They are also important in order to classify objects. To get
the most optimal result, the sensors should be combined in a multi-sensor
tracking system. Preliminary results on multi-sensor fusion in the Autoferry
project are presented in [31]. An additional reason for having several sensors
is redundancy. If a sensor is faulty or obstructed, the system should still be
able to have an acceptable situational awareness level. Ideally, the system
should be able to determinte itself that the sensor is faulty, due to changes
in the sensor model.

Although several full-scale maritime COLAV experiments have been con-
ducted, there is still much to be explored in the interaction between situa-
tional awareness and COLAV. In a fully autonomous scenario, the COLAV
system must be able to interpret the uncertainty in the tracking results, in
order to fully ensure that the chosen maneuvers are safe.
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Abstract—The detection probability of maritime vessels may
change over time, either slowly or more abruptly, due to effects
such as sea state and varying aspect angle. If the varying
detectability is not accounted for in the tracking system, tracks
may be terminated or lost. The undetected targets may cause
dangerous situations in applications such as maritime collision
avoidance. In the following, we propose two methods for tracking
targets with varying detection probability, both in the integrated
probabilistic data association (IPDA) framework. One method
uses the number of validated measurements to estimate the
detectability of the target, while the other calculates the joint
detectability and existence probabilities based on the measure-
ment association likelihoods. Both methods show significant
improvements over the conventional Markov chain 1 and 2
IPDAs.

I. INTRODUCTION

With increased autonomy in the maritime domain, reliable
situational awareness and collision avoidance capabilities are
needed to ensure the safe operation of vessels. Although many
vessels are equipped with automatic identification system
(AIS) transponders, a good object detection and tracking
system is also needed to track targets without AIS, such as
kayaks and leisure craft, or as a backup to the AIS system.

The main priority of tracking systems for collision avoid-
ance is the capability to quickly and reliably track targets, as
an undetected target is a direct threat to safety. This is also
the case when confirmed tracks on targets are terminated, as
the collision avoidance system may decide to steer into the
now untracked target’s path. However, false tracks may induce
unnecessary maneuvers from the collision avoidance system
and cause dangerous situation from other ships, and the system
should also be able to terminate false tracks quickly.

The literature on track management for fluctuating detection
probability is sparse. In [2], it was found that a Shiryaev test
can greatly improve track termination performance when the
detection probability is varying. In [10], the authors use a
particle filter-based approach to estimate the detection proba-
bility, where the particle filter handles the nonlinearities that
arise when the detection probability is constrained to a limited
interval. Ref. [12] presents an adaptive tracker that is able to
estimate the detection probability using a belief propagation
message passing scheme. A method for extending random
finite set (RFS) filters to include the detection probability in
the state vector is presented in [6], with results in [7]. The

resulting filters performs well with a constant, but unknown,
detection probability.

The first contribution of this paper is an experimental inves-
tigation of whether the variations in small vessel detectability
can be adequately modeled by varying aspect angle, based on
a dataset from a collision avoidance test. The motivation for
using a Markov model as in e.g. [2], [10] is that it is difficult
to identify the primary contributing factor to the detectability
variations, and we will investigate if this is the case for this
dataset as well.

The second contribution of this paper is the extension of
the integrated probabilistic data association (IPDA) to handle
varying target detectability. The first extension estimates the
detectability based on the number of validated measurements,
and the second calculates the joint detection and existence
probability. We have chosen the probabilistic data association
(PDA) framework for two main reasons. The first is that the
PDA has proven to be an efficient tool for object detection and
tracking in short-range maritime collision avoidance, see e.g.
[16], [5], [4], [11]. The other is that the IPDA is a special case
of the joint integrated probabilistic data association (JIPDA)
[8], which in turn can be derived from Poisson multi-Bernoulli
mixture (PMBM) filters [14].

The rest of the paper is structured as follows. Section II
contains assumptions and motivation, Section III describes
the modifications made to the IPDA in order to account for
varying detectability, Section IV presents the results, and the
conclusion follows in Section V.

II. MOTIVATION AND PROBLEM FORMULATION

A. Definitions

The goal of the system is to estimate the state of the
target at time k, which consists of a kinematic component
xk with target position and velocity, and the detection prob-
ability dk. Measurements are denoted zik, Zk = {zik}mk

i=0 and
Zk = (Zk0 , . . . , Zk) for measurements, sets of measurements
and data (sequence of sets) at time k, respectively.

Assumption 1: The target moves according to

p(xk+1|xk) = N (xk+1;Fkxk, Qk) (1)

independent for all k, andN (x; x̂, P ) is the probability density
function (PDF) of the normal distribution of x, with expected
value x̂ and covariance P , respectively.



Assumption 2: The target is assumed to have time-varying
detectability, chosen from a discrete set of Nd states. Let Ejk
be the event that the target is in detectability mode j at time
k, i.e. that dk = P jD. Further, assume that the values of P jD
are known, and that d follows a random process according to

P (Ejk|Eik−1) = πij i, j = 1, . . . , Nd (2)

Assumption 3: The target-originated measurement is dis-
tributed according to

p(zk|xk) = N (zk;Hxk, Rk) (3)

independently for all k, and independent of Assumption 1.
The target is detected with probability P jD, according to the
current detectability mode.

Assumption 4: The number of false alarms in the surveil-
lance region follows a Poisson distribution, with probability
mass function (PMF)

µF (m) =
(λV )m

m!
e−λV (4)

where V is the area of the surveillance region, and λ is the
clutter density. The spatial distribution of clutter measurements
is assumed to be uniform.

Assumption 5: Target existence at time k is denoted Hk,
and H̄k is defined as the complementary event, namely that
the target does not exist at time k. It is assumed to follow a
Bernoulli random process according to

P (Hk|Hk−1) = ps (5)
P (Hk|H̄k−1) = pb (6)

where ps and pb are the probability of survival and birth,
respectively.

B. Track initiation with constant detectability

As one of the assumptions of PDA is that it cannot begin
before a track has been initialized, some form of track initial-
ization is needed. Fundamental to the PDA approach is the
calculation of the association probabilities for the validated
measurements at the current time based on a single prior.
For the mk validated measurements, let θik be the event
that measurement zik is the target-originated measurement for
i = 1, . . . ,mk, and that none of the measurements are target-
originated for i = 0. One of the first attempts at handling track
initiation in the PDA framework can be found in [3], where an
additional association event is added, the event that the target
is unobservable. This causes tracks that have a low probability
of being observable to have low association probabilities for
measurements in the validation gate, reducing their impact
on the posterior state estimate. However, the probability of
detection is still considered constant in [3] when the target is
detectable.

Other approaches to track initiation are logic-based track
formation [1] and sequential tests [13], [15]. This includes the
popular M/N-logic, which requires M detections in N scans
in order to confirm the track. This approach only accounts for
the detectability of the target implicitly by the choice of M

and N. As explored in [2], this may have a significant impact
on performance when the detectability of the target changes.
The detection probability also appears in the likelihood ratio
in the sequential probability ratio test (SPRT) of [13].

In the following, we will focus on the IPDA described in [9].
As opposed to [3], where the PDA association probabilities are
modified with an extra event, the evaluation of the association
event probabilities are the same as in the original treatment
of the PDA, and the existence probability of the target is
calculated by

P (Hk|Zk) =
LkP (Hk|Zk−1)

1− (1− Lk)P (Hk|Zk−1)
(7)

where Lk is the likelihood ratio of the target-present versus the
clutter-only hypotheses, based on the measurements in scan k.
Under the PDA assumption, this is given by

Lk = 1− PDPG + PDλ
−1

mk∑

i=1

p(zik|θik, Zk−1) (8)

where PG is the validation gate probability and
p(zik|θik, Zk−1) = N (νik; 0, Sk). The innovations are
given by νik = zik −Hx̂k|k−1, with corresponding covariance
Sk. The time update of the existence probability is given by

P (Hk|Zk−1) = psP (Hk−1|Zk−1) + pbP (H̄k−1|Zk−1).
(9)

This variant is denoted the Markov chain one (MC1) IPDA
in [9]. It is also derived with another Markov chain, named
the Markov chain two (MC2) IPDA. In addition to the target-
present and no-target state, it also includes an undetectable-
target state. The likelihoods of undetectable targets cannot be
distinguished from the clutter-only hypothesis in the MC2
IPDA, which means that erroneous tracks will have a high
existence probability several scans after the track is lost.

The one-point initialization procedure [1] is used for form-
ing preliminary tracks, with existence probability εI . If the
existence probability exceeds a threshold εC , the track is
confirmed. Tracks with existence probability below εT are
terminated. Established tracks are gated according to known
techniques, with gate probability PG [1]. Any measurements
that are gated by confirmed tracks are not used to update
preliminary tracks, and new preliminary tracks are formed
only with measurements that are not gated by confirmed or
preliminary tracks.

C. Forensic analysis of recorded data

Varying target detectability may have many sources, such
as target aspect angle, range and varying sea state. A scenario
where target detectability is an issue is shown in Fig. 1,
which shows data from a collision avoidance experiment
conducted in the Trondheimsfjord in September 2018. There
are three targets present in the tests, two boats and a stationary
seamark1. The target moving east-to-west is a tugboat with

1A seamark is an aid to navigation for passing ships, typically a board or
a buoy attached to the sea floor.
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Fig. 1. Scenario overview. The grey dots are radar measurements, the black
lines are AIS position trajectories, and the dashed line is the ownship position
trajectory.

Fig. 2. The targets present in the experiments. Top left: The Ocean Space
Drone. Bottom left: Munkholmen II. Right: The seamark.

callsign Munkholmen II (MH II), which has a steel hull. The
target moving north-to-south is a lifeboat, repurposed into
an autonomous test vessel, with callsign Ocean Space Drone
(OSD). It has a fiberglass hull. A radar is mounted on the
ownship, which successfully avoids collision with both targets.
The targets are shown in Fig. 2. The dataset has a low amount
of clutter, with the exception of near-shore areas close to the
origin and to the east.

In the following discussion, the ground truth is based on the
AIS-indicated position of the targets, and the measurements
recorded during the experiments. Although the AIS system is
based on satellite navigation with its own flaws, we believe it
to be of sufficient accuracy to discuss the issues presented in
the rest of this section.

Both targets have frequent detections for the most part,
but there are some periods with more sparse detections. By
assuming the AIS-indicated position is sufficiently accurate
and a low clutter density, a validation gate can be set up around
the reported position. Let δk be a measurement indicator,
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Fig. 3. Empirical detection probability for the two boats in Fig. 1, calculated
by (10), where the values close to the start and end of the dataset have been
calculated by truncating (10).
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Fig. 4. Resulting tracks after running the IPDA tracker described in Sec-
tion II-A. The track from the OSD target is terminated due to the assumed
high detection probability, as shown in the inset.

which is 0 when the validation gate is empty at time k, and
1 otherwise. Then, the moving average detection probability
can be calculated by

PD(k) =
1

2N + 1

k+N∑

n=k−N
δn. (10)

Fig. 3 shows the detection probability for each of the targets
with different values of N .

The MH II has very good reflective properties and has
a high detection probability throughout the experiment, but
the detection probability of the OSD varies a lot. Keeping
a continuous track on the OSD is hard, and Fig. 4 shows
a set of tracks resulting from running an IPDA described in
Section II-A with a detection probability of 0.8. The track on
the OSD is lost and regained during the experiment.

In addition to the dataset shown in Figures 1 and 4, an addi-
tional 15 datasets have been analysed. These datasets comprise
3554 radar scans of the targets from 2 hours and 50 minutes
of data, collected the same day as the previously discussed
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scenario. The goal is to investigate whether the aspect angle is
a main contributing factor to the varying detection probability.
For every timestep k, a validation gate is set up around the
AIS-indicated position, and δk is evaluated. Additionally, the
aspect angle is calculated based on the velocity information
of the target, also given by the AIS system. The aspect angle
α can be found from the angle between the vectors from the
target to the ownship and the velocity of the target, and is
given by

cosαk =
ptok · vtk
‖ptok ‖‖vtk‖

(11)

where ptok is the vector from the target to the ownship position,
and vtk is the target velocity. The accumulated aspect angle
and detection indicators are then used to evaluate the aspect-
dependent detection probability by dividing the ship aspect
angle into discrete bins, and the detection probability for each
bin is calculated by

PD =

∑N
`=1 δ`
N

. (12)

The results based on all the datasets are shown in Fig. 5,
where it has been assumed that the target is symmetric about
the centerline to increase the number of samples per bin. The
steel hull of MH II has good detectability from all aspect
angles, around PD = 0.9. The OSD is slightly less detectable,
usually about 0.8 and as low as 0.6 from the front. However,
there are no aspect angles with a detection probability which is
as low as the ones indicated in Fig. 3. This example shows that
it can be hard to model the detectability by a single parameter,
and justifies the use of a random process as in Assumption 2
for these datasets.
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Fig. 6. The cascade form HMM and IPDA estimators.

III. EXTENSIONS TO THE IPDA

In the following two sections, we introduce two extensions
which accounts for varying target detectability.

A. Cascade form HMM and IPDA

This method consists of a hidden Markov model (HMM) to
estimate the detectability of the target based on the number of
measurements in the validation gate, and the actual measure-
ments Zk are not used. A MC1-IPDA is used to estimate the
target existence probability based on the detectability estimate
P̄D. This structure is shown in Fig. 6.

To estimate the detectability of the target, the number of
measurements in the validation gate mk and the gate area
Vk are evaluated when the validation gate is setup. Under the
Poisson clutter assumption and detectability mode Ejk, mk has
the distribution

P (mk|Ejk,Hk) = µF (mk)(1− P jDPG) + µF (mk − 1)P jDPG
(13)

where the first term is the probability of mk clutter mea-
surements and a missed detection, and the second term is
the probability of mk − 1 clutter measurements and a detec-
tion, respectively. Given a sequence of observations mk =
(mk0 , . . . ,mk), the probability of being in mode j can be
calculated recursively by

P (Ejk|mk,Hk) =
1

c
P (mk|Ejk,mk−1,Hk)P (Ejk|mk−1,Hk−1)

(14)

where c = P (mk|mk−1) is a normalization constant.
As the detections and clutter are independent over time,
P (mk|Ejk,mk−1) = P (mk|Ejk), and

P (Ejk|mk,Hk) =
1

c
P (Ejk|mk,Hk)

·
Nd∑

i=1

πijP (Eik−1|mk−1,Hk). (15)

The estimate of the detection probability is then given by

P̄D =

Nd∑

j=1

P jDP (Ejk|mk,Hk) (16)

which is then used in a regular IPDA, as described in Sec-
tion II-B.

Although calculating the average detectability in this way
is a heuristic technique, the following example illustrates



how the approximation fits into the PDA framework. Con-
sider the probabilities of the measurement association events
p(θik|mk,Hk, Zk−1). By marginalizing over the detectability,
this becomes

P (θik|mk) =

Nd∑

j=1

P (θik|Ejk,mk)P (Ejk|mk) (17)

where the conditioning on target existence Hk and past data
Zk−1 has been omitted for brevity. The first term is the regular
PDA association event probability with detection probability
equal to P jD, and the second term is the HMM probability of
being in mode j. For the nonparametric PDA, this gives

P (θik|mk) =

{∑Nd

j=1(1− PGP jD)P (Ejk|mk) i = 0
∑Nd

j=1
PGP

j
D

mk
P (Ejk|mk) i = 1, . . . ,mk

=

{
1− PGP̄D i = 0
PGP̄D

mk
i = 1, . . . ,mk

(18)

which are expressions from the prior PDA probabilities using
the value P̄D.

B. Detectability-based IPDA

The estimation of the detectability state can also be inte-
grated into the IPDA presented in Section II-B, such that the
detectability is estimated based on the likelihood of the mea-
surement association hypothesis. The goal of this extension is
to estimate the joint probability of target existence Hk and
detectability mode Ejk, given by

P (Hk, Ejk|Zk) =
p(Zk|Hk, Ejk, Zk−1)

p(Zk|Zk−1)
P (Hk, Ejk|Zk−1).

(19)

where the dependence on the number of measurements mk

can be made explicit by

p(Zk|Ejk,Hk, Zk−1) =p(Zk|mk, E
j
k,Hk, Zk−1)

· P (mk|Ejk,Hk, Zk−1) (20)

where the last term is given in (13) since it is independent
of the past data Zk−1. By considering the different data
association hypotheses θik, we have

p(Zk|mk, E
j
k,Hk, Zk−1) =

mk∑

i=0

p(Zk|θik,mk, E
j
k,Hk, Zk−1)

· P (θik|mk, E
j
k,Hk, Zk−1) (21)

where the PDF of the measurements can be found in e.g. [1],
and are given by

p(Zk|θik,mk, E
j
k,Hk, Zk−1)

=

{
V −mk+1
k P−1

G N (νik; 0, Sk) i = 1, . . . ,mk

V −mk

k i = 0
. (22)
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Fig. 7. The Markov chain with the nonexisting target-state, and two
detectability states. The self-transition probabilities are not shown.

Conditioned on target existence and detectability, the prior
association event probabilites can be found from the regular
PDA equations, and are also found in e.g. [1]:

P (θik|mk, E
j
k,Hk, Zk−1)

=

{
1
mk
P jDPGc

−1
j i = 1, . . . ,mk

(1− P jDPG) µF (mk)
µF (mk−1)c

−1
j i = 0

(23)

where cj normalizes the association events. (13) divided by cj
can be shown to be µF (mk−1), and summing and multiplying
everything together into (20) gives

p(Zk|Ejk,Hk, Zk−1) = µF (mk)V −mk

k (1− P jDPG)

+ µF (mk − 1)V mk−1
k

1

mk
P jD

mk∑

i=1

N (νik; 0, Sk). (24)

Inserting the clutter PMF from Assumption 4 into (24),
cancelling and gathering terms yields

p(Zk|Ejk,Hk, Zk−1) =
λmke−λVk

mk!

[
(1− P jDPG)

+ P jDλ
−1

mk∑

i=1

N (νik; 0, Sk)
]

= CkLjk (25)

where Ljk is the likelihood ratio of the measurements in scan
k for the target present in detectability mode j versus the
clutter-only hypotheses, as in (8).

The prior P (Hk, Ejk|Zk−1) is calculated as follows. Since
the detectability mode change conditioned on target existence
is known from Assumption 2, it is rewritten as (omitting the
dependence on the past data Zk−1 for brevity)

P (Hk,Ejk) = P (Ejk,Hk|Hk−1)P (Hk−1)

+ P (Ejk,Hk|H̄k−1)P (H̄k−1)

=ps

Nd∑

i=1

πijP (Eik−1,Hk−1) +
pb
Nd

P (H̄k−1) (26)

These transition probabilities are equivalent to a Markov chain
with the Nd + 1 states H̄ and (H, Ej) for j = 1 to Nd. An
example with two detectability states is shown in Fig. 7.



The denominator of (19) is a normalization constant which
can be found by summing over the possible target hypotheses,
given by

p(Zk|Zk−1) = p(Zk|H̄k, Zk−1)P (H̄k|Zk−1)

+

Nd∑

j=1

p(Zk|Hk, Ejk, Zk−1)P (Hk, Ejk|Zk−1)

= Ck


1−

Nd∑

j=1

(1− Ljk)P (Hk, Ejk|Zk−1)




(27)

and the Ck cancels in (19) with the same term in (25). To
summarize, the time update of the IPDA with detectability
estimation is given by a Markov chain as shown in Fig. 7,
and the measurement update is given by

P (Hk, Ejk|Zk) =
LjkP (Hk, Ejk|Zk−1)

1−∑Nd

i=1(1− Lik)P (Hk, Eik|Zk−1)
.

(28)

The MC1- and MC2-IPDAs from [9] can be obtained from this
general expression by assuming a single mode with detection
probability PD or two detectability modes with detection
probabilities of PD and 0, respectively.

IV. RESULTS

The two trackers that account for varying target detectability
will be compared with the Markov chain 1 and 2 IPDAs. The
four trackers can be summarized as follows:

MC1-IPDA
The Markov Chain 1 IPDA without detectability
estimation. It has a single detection probability PHD .

MC2-IPDA
The Markov Chain 2 IPDA that allows for unde-
tectable targets. It also has a single detection proba-
bility PHD .

HMM-IPDA
The Markov Chain 1 IPDA with detectability esti-
mation provided by a HMM. The HMM has two
detection probability values, PHD and PLD .

DET-IPDA
The IPDA with joint detectability and target ex-
istence estimation, with two detection probability
values, PHD and PLD .

Apart from the detectability models, the trackers use the same
parameters, given in Table I. For the MC2-IPDA and DET-
IPDA, the target existence probability is the summed existence
probability of the two detectability modes.

All of the trackers use the same motion model, a white noise
acceleration model given by

Fk =

[
1 T
0 1

]
Q = q

[
T 4/4 T 3/2
T 3/2 T 2

]
(29)

independent for the north- and east dimensions with sample
time T . Cartesian position measurements are used, with co-
variance rI2, where I2 is the identity matrix.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Sample time T 3 s
Detection probabilities PH

D , PL
D 0.8, 0.3

Clutter density λ 1× 10−5 m−2

Measurement covariance r 100m2

Process noise covariance q 0.025m2 s−4

Survival probability ps 1.0
Birth probability pb 0
Detectability mode change probability πij 0.8, i = j

0.2, i 6= j
Initial existence probability εI 0.2
Confirmation threshold εC 0.99
Termination threshold εT 0.1
Number of simulations NMC 2500
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Fig. 8. Average number of confirmed tracks for the clutter-only scenario.
Error bars correspond to one standard deviation.

A. False tracks

It is expected that allowing targets to have a lower detection
probability in a surveillance area will increase the number of
false tracks. In this section, we investigate if this expectation
holds true, and to what extent it affects the tracking system.

To test the false track rejection capabilities of the trackers, a
square surveillance area with edge length 2 km is set up, and
clutter is generated according to Assumption 4 with clutter
density λ given in Table I. No targets are present. Fig. 8
shows the average number of confirmed tracks over NMC

simulations.
The premise that the trackers with lower detectability are

prone to more false tracks does not have merit as they all
have a similar number of false tracks. The DET-IPDA and
MC2-IPDA have a slightly lower number than the other two,
but the results are still comparable when considering the
sample standard deviation. The reason for this is that the
trackers account for the lower detection probability in the
update of the target existence probability. However, there is
a large difference in the average duration of the false tracks,
as summarized in Table II. The MC1-IPDA is very fast in
both track initiation and termination, and the MC2-IPDA is
very slow. When tracks persist for a long time, it will gate
measurements that may have been used to confirm another



TABLE II
FALSE TRACK DURATION

Tracker Avg. duration Avg. conf. time

MC1-IPDA 10.0 scans 4.8 scans
MC2-IPDA 78.5 scans 15.8 scans
HMM-IPDA 29.3 scans 10.1 scans
DET-IPDA 30.4 scans 7.7 scans
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Fig. 9. Average number of true tracks with a single target present. The black
line shows the ground truth. The detectability of the target drops at t = 100 s.

track, which in part may explain the lower average number
of false tracks in the DET-IPDA and MC2-IPDA. These also
have a slightly lower standard deviation in the number of false
tracks.

B. Detectability estimation and lost tracks

To test the capability of tracking a target with varying
detectability, a single target is added to the surveillance region
previously described. It starts in the high detectability-mode,
and changes to the low detectability-mode after 100 s. After
an additional 100 s, the target disappears, and the scenario
continues for an additional 100 s. The purpose of the change in
the detectability and track existence is to test both the ability to
track targets with reduced detectability, and track termination
capabilities, i.e. how fast the track is terminated when it is
lost.

More precisely, define a true track as a confirmed track
that has a position error of less than 100 m. Further, a lost
track is defined as a previously confirmed track that no longer
satisfied this requirement. Consequently, a confirmed track
that manages to track the target until it disappears will be
considered lost until it is terminated. For each tracker, the
average number of true tracks are shown in Fig. 9, and the
average number of lost tracks are shown in Fig. 10.

As expected, the IPDA with constant detection probability
struggles to keep track of the target when the detectability
decreases. However, the fast track termination capabilities
ensures the tracks are terminated rather than lost. The tracks
that are maintained until the target disappears are also termi-
nated very quickly. The other three trackers are much better
at tracking the target until it disappears. The MC2-IPDA,
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Fig. 10. Number of lost tracks with a single target present.
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Fig. 11. Average mode of the detectability estimate of confirmed tracks when
the target is present. The black line shows the ground truth.

however, still maintains over 90% of the lost tracks for more
than 30 scans after the target disappears. The HMM-IPDA and
the DET-IPDA terminates nearly all of the lost tracks before
the end of the scenario.

The average mode of the detectability estimate is shown in
Fig. 11. The DET-IPDA esitmates the detectability of the target
slightly better than the HMM-IPDA. When the detectability is
lowered, the MC2-IPDA is the closest, as one of the modes
allows for detectability lower than the true value.

C. Real data results

We now test the trackers on the motivating scenario pre-
sented in Section II-C with 3 targets (OSD, MH II and the
seamark). The tracking system parameters are the same as in
Table I, with some exceptions. The sampling interval varies
slightly according to when data is received, and the average
is 2.88 s. The clutter density is not known, and nonparametric
tracking methods are used by substituting λ = mk/Vk where
mk and Vk are the number of validated measurements and
the area of the validation gate, respectively. The Cartesian
position measurement model is still used, but the measurement
covariance is calculated by a polar to Cartesian conversion [1]
with polar measurement standard deviations of 20 m and 2.3◦.
Further details on the radar data processing can be found in
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Fig. 12. Number of true tracks for the tracking methods in the real data
scenario.
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Fig. 13. Number of false targets for the tracking methods in the real data
scenario.

[16], [15]. The limit for declaring a true track is now reduced
to 60 m.

The number of true and false tracks can be seen in Fig. 12
and Fig. 13, respectively. The MC1-IPDA loses the track
of the OSD from t = 280 s to t = 320 s, and the other
trackers are able to keep track. The MC2- and DET-IPDA
are slightly slower at confirming the track on the drone. Both
the MC1- and HMM-IPDA rapidly confirms three false tracks,
close to the island at the origin. The MC1-IPDA terminates
these quickly, but the HMM-IPDA maintains them for a while
longer. Both the MC2-IPDA and the DET-IPDA outperform
the two other methods with respect to false tracks. At the end
of the test, the OSD makes a 180◦ turn, and the trackers either
lose or terminate the track.

V. CONCLUSION

Accounting for varying target detectability can significantly
improve tracking performance when these issues are present.
The detectability can be estimated with a HMM based on
the number of validated measurements, or the probability of
the joint detectability and target existence may be jointly
evaluated using the based on the likelihood ratio of a target vs.
clutter. Simulations shows that both of these methods are able
to maintain the track when the detectability is lowered, and

terminates lost tracks significantly faster than a Markov chain
2-IPDA. Tests on real data shows that the joint estimation
of target detectability and existence probabilities reduces the
number of false tracks, at the cost of slightly higher track
confirmation time.
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D. K. M. Kufoalor, E. Wilthil, I. B. Hagen, E. F. Brekke, T. A. Johansen

Abstract— This paper addresses the challenges of making
safe and predictable collision avoidance decisions considering
uncertainties related to maritime radar tracking. When a
maritime radar is used for autonomous collision avoidance,
strategies for handling uncertain obstacle tracks, false tracks,
and track loss become necessary. Robust decisions are needed
in order to achieve clear and predictable actions according to
the international regulations for preventing collisions at sea
(COLREGs). We present robustness considerations and results
of using an Integrated Probabilistic Data Association (IPDA)
tracking method with a collision avoidance method based
on Model Predictive Control. The results are from full-scale
experiments that cover challenging multiple dynamic obstacle
scenarios, including realistic vessel interactions where some
obstacles obey COLREGs, while others do not.

I. INTRODUCTION

Maritime collision avoidance is a challenging task that
has been studied for many years, and the technology for
safe navigation of marine vessels have evolved over the
years. However, most of the existing technology is mainly
intended as an aid to the human operator. The human
operator makes a decision by evaluating the collision risk,
using the information available about obstacles obtained
from different sources, e.g. lookout, radar and nautical chart
plotters, Automatic Identification System (AIS), and Vessel
Traffic Service (VTS). Due to the reliance on a human oper-
ator, the reliability and accuracy of the existing automatic
obstacle detection/tracking systems may not be the most
crucial factors in the decision making process.

The existing “rules of the road” were also developed for
the human operator, and therefore do not generally provide
quantitative criteria for both the assessment of a potential
collision situation and the actions needed to avoid collisions.
Furthermore, COLREGs advocate “good seamanship” (see
e.g. Rules 2 and 8 of [1]), probably due to the uniqueness
of every situation and the characteristics of the maritime
domain that make the collision avoidance task challenging.
Specifically, the decision process needs to consider, among
other factors, a large variety of obstacles, different sea states,
dynamic motion in 2D space, and uncertainty in both sensor
information and (intended) motion of obstacles in different
environmental conditions. In view of the above observations,
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we acknowledge the difficulty of making the decision process
autonomous, especially, based on existing technology and
rules. An autonomous surface vehicle (ASV) must be able to
rely on its sensors and should implement a decision strategy
that is robust to uncertain information available for collision
avoidance.

The maritime radar, which is a primary sensor for safe
maritime navigation is useful in combination with effective
obstacle tracking algorithms for autonomous collision avoid-
ance if it produces accurate estimates of obstacle tracks,
and has a low rate of false tracks and track loss. Different
implementations and experimental validation of maritime
target tracking algorithms are provided in [2], [3], [4]. A
crucial aspect is to find a useful balance between false alarm
rate and track initiation time in order to avoid detecting
targets too late and also to reduce the risk of making wrong
collision avoidance actions [2].

Earlier work that discuss the challenges of using maritime
radar for autonomous collision avoidance include [5], [6].
While both focus on close-range situations, [5] assumes no
track loss occurs, and the reactive method in [6] does not
implement COLREGs compliance. Different methods that
aim at COLREGs compliance are treated in [7], [8], [9],
[10], [11], and some reviews of existing maritime collision
avoidance methods can be found in [12], [13]. As noted in
[8], different limitations in some of the existing collision
avoidance methods motivate the use of ideas from optimiza-
tion based control, which typically lead to a straightforward
approach to specifying constraints and objectives.

In this paper, we explore the potentials of using the esti-
mated maritime radar tracks from an Integrated Probabilistic
Data Association (IPDA) tracking method in a Scenario-
based Model Predictive Control (SB-MPC) decision frame-
work. The main contributions include robustness consider-
ations in the IPDA method, and the treatment of different
uncertainties associated with maritime radar tracking in SB-
MPC without using uncertainty estimates from the tracking
method. The work in [8] and [14] is extended by introducing
uncertainty adapted predictions of obstacle motion and a
strategy for reducing the adverse effect of false/lost tracks.
The overall collision avoidance system is suitable for both
long-range and close-range encounters. Our approach leads
to collision avoidance decisions that comply with COLREGs,
by prioritizing deliberate early, clear, predictable actions.
We also present full-scale experiments covering different
dynamic multi-obstacle scenarios, using an ASV that im-
plements the architectural components shown in Fig. 1.

The remainder of this paper is structured as follows:
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Fig. 1: ASV functional interface setup. The white boxes are
existing functions, and the gray boxes are tracking, obstacle man-
agement, and collision avoidance functions presented in this paper.

Sections II–III describe the radar tracking method, the col-
lision avoidance method, the uncertainties, and the related
robustness considerations made in this work. Presentation
and discussion of the experimental results follow in Section
IV, and concluding remarks are given in Section V.

II. MARITIME RADAR TRACKING

A. Radar tracking method

The backbone of the radar tracking system is described
in [2], which implements a single-target tracking method.
Through a parallel implementation of filters the tracking
method is capable of tracking multiple targets when the
targets are sufficiently separated in the state space. The
tracking system uses one target motion model, a nearly
constant velocity (NCV) model [15], which assumes that the
target moves according to the linear Gaussian model

p(xj+1|xj) = N (Fjxj , Qj), (1)

where N is the probability density function of the normal
distribution, xj = (pN , vN , pE , vE) is the state of the target
at time j, consisting of, respectively, the North and East
positions and velocities in a stationary North East Down
(NED) reference frame. The state transition matrix Fj and
the process noise covariance matrix Qj in (1) are defined as
follows:

Fj =

[
F1 022
022 F1

]
, F1 =

[
1 Tr
0 1

]
,

Qj =

[
Q1 022
022 Q1

]
, Q1 = q

[
T 4
r /4 T 3

r /2
T 3
r /2 T 2

r

]
.

Tr is the sampling time (i.e. the time between two radar
scans), q is the process noise covariance parameter, and 022
is a 2× 2 zero matrix. The observation model used is

p(zj |xj) = N (Hxj , Rj), (2)

where the matrix H extracts zj = (pN , pE) from xj , and
Rj is the measurement noise covariance matrix. The above
model captures the typical straight-line motion of marine
vessels.

The Integrated Probabilistic Data Association (IPDA)
method presented in [16] is used for track initiation and
track maintenance. The fundamental principle of the IPDA
[17] is to calculate an existence probability for each track,
based on the innovations of the measurements in the vicinity

of the track, i.e. the difference between the measurements
and their expected value based on the prior state estimate.
Initially, tracks are categorized as preliminary tracks, which
is only used internally in the tracking system. When the
existence probability exceeds a given threshold PC , the track
is confirmed as a valid target. Tracks are terminated if the
existence probability falls below another threshold PT .

The output of the radar tracking system consists of a list
of confirmed targets, each with an ID and estimates of the
target’s position (pN , pE), speed u, and course χ. The speed
and course are, respectively, the magnitude and direction
(angle) of the velocity vector (vN , vE). The estimates from
the tracking system are considered as obstacle measurements
used in the COLREGs-compliant decision method described
in Section III. Every new track is given a new ID, which
means that after a track is terminated, a new track that
appears on the same target gets a new ID.

In this paper, we focus on the consequences of the
assumptions made in the tracking system and the related
uncertainties that a collision avoidance method needs to
consider in its decision process. By not using uncertainty es-
timates computed by the tracking method in the COLREGs-
compliant decision method, we obtain a collision avoidance
system that does not depend on uncertainty representations
specific to the implemented tracking method. We also avoid
COLREGs-compliant method-specific representations in the
tracking method that may lead to a more complicated
(tightly-coupled) tuning procedure. For instance, prolonging
the life of tracks in the tracking system based on their
impact on collision avoidance decisions requires conservative
tuning that produces many false tracks. Further details of the
tracking system can be found in [2] and [16].

B. Radar track uncertainty

Radar tracking of obstacles introduces both data associa-
tion uncertainty and state estimation uncertainty, i.e. position
and velocity estimation errors, into a collision avoidance
decision process.

The accuracy of data association in the tracking method is
evident in the absence/presence of false tracks and the rate
of track loss. In the IPDA tracking method used, premature
track termination can be delayed by choosing a high value
for the survival probability of the IPDA. This means that the
existence probability will not be reduced below the threshold
until several misdetections have occurred. This also increases
the expected lifetime of any false track that appears. In
practice, a useful balance is determined through tuning, and
the collision avoidance decisions must be robust to both false
tracks and track loss.

Due to the NCV model used in the tracking method, track
loss may occur when the target is maneuvering. By choosing
the process noise parameter q of the motion model process
noise covariance properly, most of the typical maneuvers are
captured by the NCV model. Additionally, the fast track
initiation/establishment capabilities of the IPDA (see [16])
implies that the duration of track loss may not be significant
in this case, since new tracks may appear, and may be used to



trace the maneuvering path of the target. If the maneuvers are
not sufficiently followed by the NCV model, an interacting
multiple model (IMM) approach can be used [18]. Note that
using an IMM does not necessarily avoid this issue entirely
since one needs to deal with a more complex procedure
that switches between models, and handling of cases where
different models attain similar likelihoods (in a probabilistic
framework) may not be a trivial task (see e.g. [5]).

The tracking system also influences the collision avoidance
through fluctuations in the state estimate. In particular, the
speed and course estimation errors can have a large impact
on long-range collision prediction, as a small change of
course may lead to a large change of position at the end of
the prediction interval. This is remedied by representing the
range-dependent measurement noise in the tracking system
on a polar form, which is transformed into a Cartesian frame
[18], instead of working directly with the uncertainty in the
Cartesian frame as done in [2]. This provides less fluctuating
estimates of the target course and speed when it is tracked
from a long range.

III. COLREGS-COMPLIANT DECISION

In this section, we briefly describe our COLREGs-
compliant decision method, and we propose different im-
plementation strategies that enhance robustness to the radar
tracking uncertainties discussed in Section II-B.

A. COLREGs-compliant decision method

The scenario-based MPC (SB-MPC) COLREGs-
compliant decision method in [8] and the implementation
of [14] is used in this work, with some extensions. The
method solves the following optimization problem

k∗(t0) = arg min
k
Hk(t0), (3)

where

Hk(t0) = max
i

max
t∈D(t0)

(
li(tlost) · ci(ukm, χkm, t)

+ µi(u
k
m, χ

k
m, t) + τi(u

k
m, χ

k
m, t)

)

+ f(ukm, χ
k
m) + g(ukm, χ

k
m),

using the set D(t0) = {t0, t0 + Ts, . . . , t0 + T}, where Ts
is the sampling time and T is the prediction horizon. We
provide a brief description of the cost function components
li, ci, µi, τi, f, g in this section, and we refer to [8] and [14]
for their detailed specifications.

The cost function Hk(t0) expresses the hazard associated
with selecting a control behavior with index k and defined by
course (χkm) and speed (ukm) modifications that are applied
to corresponding desired reference values, χd, ud, for the
course (χ) and speed (u), respectively. We use the following
set of alternative control behaviors, which we assume to be
fixed on the prediction horizon:
• course offset in degrees: χkm ∈
{-90, -75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 90}

• speed factor: ukm ∈ {1, 0.5, 0}, which translates to
‘keep speed’, ‘slow down’, or ‘stop’.

The function ci denotes the cost of colliding with obstacle
i, considering a collision risk that depends on the time and
distance to the closest point of approach (CPA) and scales
with the relative velocity of the obstacle and ASV. The
allowed CPA is defined by a safety distance parameter dsafe
and the obstacle’s length (Li). Specifically, dsafe + Li/2 is
used to define the radius of a circular safety region, which
encloses obstacle i.

We introduce the track-loss factor li(tlost), which reduces
the relevance of the collision cost of obstacle i when its track
is terminated by the tracking system. The track-loss factor
becomes smaller, the longer the track-loss duration (tlost) is,
as specified in Section III-E. The cost of violating COLREGs
is expressed by the function µi, and τi is a transitional cost
that penalizes the termination of COLREGs-compliant ma-
neuvers, in order to avoid unnecessary switching of control
behaviors. The cost of maneuvering effort is specified by the
function f , and g is a grounding cost that penalizes control
behaviors that will result in collision with land or defined
no-go zones.

The cost for each control behavior k at time t ∈ D(t0) is
calculated based on the predicted state of the ASV and each
obstacle i, obtained from the simulation of their trajectories.
We simulate the trajectory of obstacle i using a kinematic
model:

η̇i = R(χi)vi, ηi = (xi, yi, χi), vi = (vxi
, vyi , ri),

and a 3-degrees of freedom (DOF) model for the ASV:

η̇ = R(ψ)v,

Mv̇ + C(v)v +D(v)v = τu,

where η= (x, y, ψ) denotes the position and heading in the
earth-fixed frame, v = (vx, vy, r) represents the velocities
in surge, sway, and yaw specified in the body-fixed frame.
The matrices M , C(v), D(v) are the vessel inertia matrix,
Coriolis, and damping, respectively. R(ψ) is a rotation matrix
from body-fixed to earth-fixed frame, and τu is the vector
of control forces from an autopilot (a control law), which
accepts the commanded reference, χc=χd+χ

k∗
m , uc=ud·uk

∗
m .

If estimates of environmental disturbances such as wind
and current are available, it is recommended to include
their effect in the 3-DOF model as shown in [8]. In our
experiments, we use a feedback-linearization controller for
speed control and a proportional-derivative controller for
course control. Both controllers are included in the prediction
model to provide the control forces τu, which are used in the
prediction of the ASV’s trajectory for each scenario k.

B. Inherent properties and robustness

An important property of the above hazard evaluation
criterion is that it seeks the least conservative solution
according to the given constraints, by prioritizing solutions
that result in tangential maneuvers w.r.t. the boundary of the
defined circular safety region. This implies that the collision
avoidance decisions inherently lead to straight-line motion,
which is considered as predictable behavior in a maritime
environment.



Due to the implementation of a COLREGs-transitional
cost τi(·), it is straightforward to prioritize COLREGs-
compliant maneuvers in long-range encounters. Moreover,
using a collision cost ci(·) that scales with the collision
time, range, and relative velocity, ensures that the SB-
MPC strategy will choose an evasive maneuver if collision
becomes imminent.

The main advantage of the SB-MPC strategy in terms of
robustness to noise/uncertainty is the fact that the effect of all
potentially uncertain variables that affect the collision avoid-
ance decisions are evaluated in the cost function Hk(t0) over
a long prediction horizon T . In combination with an adequate
choice of sampling time Ts and a scenario grid of alternative
control behaviors, the cost function provides a filtering effect
that ensures that changes in each variable must be significant
enough to produce a change in the decisions. Moreover, the
collision cost ci(·) prioritizes avoiding collision hazards that
are close in time over those that are more distant and usually
more uncertain [8].

C. ASV guidance uncertainty

We assume that the ASV state is accurately known and
the ASV’s motion controllers are capable of achieving the
desired references for course and speed, by compensating
for disturbances (i.e. environmental forces). This assumption
leads to a simple SB-MPC implementation, which relies on
the hazard Hk(t0) evaluation criterion in (3) in order to
achieve safe decisions.

D. Obstacle motion uncertainty

In the nominal case where the obstacle state is accurately
known, using a constant velocity model for predicting ob-
stacle motion is sufficient to avoid collision in many cases
(see e.g. [8],[14]). However, some cases may be difficult
to capture with a constant velocity model, and collision
avoidance decisions may become highly reactive.

We propose a few extra scenarios that branch on the
nominal scenario, by defining the following uncertainty-
adapted sets that are used to predict the region occupied by
the obstacle in the future:

Ui = {ûi − ūbr1 − ũ, ûi, ûi + ūbr2 + ũ},
Ψi = {χ̂i − χ̄br1 − χ̃, χ̂i, χ̂i + χ̄br2 + χ̃},

where ũ = min(σui
, σ̄u) and χ̃ = min(σχi

, σ̄χ) are limits
for specifying the extent of uncertainty adjustment allowed
for the estimated speed ûi and course χ̂i, respectively. We
consider obstacle speeds and course within one standard
deviation (σui

, σχi
) around the mean, and we enforce the

limits (σ̄u, σ̄χ) to ensure that initial estimates are within
acceptable limits. The estimated speed, course, and their
associated variances are obtained through an obstacle man-
agement interface (cf. Fig. 1) discussed in Section III-E.

The parameters ūbr1, ūbr2, χ̄br1, χ̄br2 specify asymmetric
branching offsets in speed and course, which account for
a possible change in speed and course at the beginning
of the prediction horizon. Therefore, the predicted region
possibly occupied by the obstacle becomes larger further

into the prediction horizon. This does not pose feasibility
issues in complex scenarios since the sets do not introduce
hard constraints into the optimization problem (3). Moreover,
branching the nominal (straight-line) predicted trajectory at
the beginning of the horizon is still useful if the actual
maneuver occurs later in the horizon since the predicted (con-
servative) region may still be valid. We choose asymmetric
parameters, typically ūbr1 = 1 m/s, ūbr2 = 0.1 m/s, χ̄br1 =
1 ◦, χ̄br2 = 5 ◦, because we expect obstacles that intend to
follow COLREGs in dangerous situations to prefer starboard
maneuvers over port, and may reduce speed, instead of
increasing speed.

E. Track loss and false tracks

We implement an obstacle management interface (see
Fig. 1), which maintains a list of obstacles that have been
previously used in the SB-MPC, and we manage this list
separately from the obstacle list obtained from the tracking
system. The intention is to be able to determine the impact
of a track on the current collision avoidance decision based
on its influence on previous decisions. The impact of a
track depends on how long the track has been alive. This
means that an obstacle that has been tracked for a while and
suddenly terminated by the tracking system should not cause
a (dangerous) abrupt change in behavior of the ASV.

Using a standard Kalman filter with relatively high mea-
surement covariance values allows the SB-MPC algorithm to
obtain position, speed, and course estimates that are close to
the tracks received from the radar tracking system. The filter
provides useful (open-loop) short-term predictions in case
of track loss, without the need of keeping a long history
of past states. If the track has been alive for less than a
minimum tracking time ttrackmin , it is immediately discarded
when terminated by the radar tracking system. Tracks that
are used for at least ttrackmin are still considered in the hazard
evaluation criterion Hk(t0) and the corresponding collision
cost is reduced using the track-loss factor (cf. (3)):

li(tlost) =
Ts

(tlost)ql
, tlost ≥ Ts, (4)

where tlost is the track loss duration and ql ≥ 1 is a tuning
parameter. After a short duration t̄lost, or if the Kalman
filter’s error covariance estimates grow beyond a defined
threshold, the track is discarded. This decision is based on
the observation that real tracks that are (falsely) terminated
will be regained quickly with a new ID (within t̄lost), while
false tracks or tracks that leave the radar sensing range may
not return.

At close range to an obstacle, it is important that tlost is
kept as short as possible since a lost target may return with
a new track that deviates significantly from the lost track
(e.g. due to a sharp turn). However, the track-loss penalty
ensures that the effect of a lost track diminishes quickly,
giving priority to any new track that may pose a greater
danger to the ASV. The above strategy also influences the
effect of false tracks in the collision avoidance decisions.



(a) Telemetron (ASV) (b) Munkholmen II (c) Ocean Space Drone I

Fig. 2: Vessels involved in the experiments.

TABLE I: Vessel data: Ocean Space Drone I (OSD. I)

ASV obstacles

Parameter Telemetron Munkholmen II OSD. I

Length [m] 8.0 14.0 12.0
Width [m] 3.0 6.0 3.0
Max. speed [kn] ∼ 34 ∼ 10 ∼ 8

IV. FIELD EXPERIMENTS

Experiments using the SB-MPC and the IPDA-based radar
tracking system were performed in the Trondheimsfjord
in order to evaluate the performance in both long-range
and close-quarter scenarios. The test setup and results are
presented and discussed in this section.

A. Test setup

The ASV used is called Telemetron, which is a Po-
lar Circle 845 Sport vessel owned by Maritime Robotics.
Telemetron is a stable and highly maneuverable Rigid Buoy-
ancy Boat (RBB). The obstacle vessels are the Trondheim
Port Authority’s Munkholmen II tugboat and Kongsberg’s
Ocean Space Drone I. An overview of relevant vessel
specifications are provided in Table I. The vessels were
equipped with the Automatic Identification System (AIS),
which transmitted their position, course, and speed infor-
mation. However, the AIS data was not always accurate
in our tests, possibly due to significant AIS signal delays,
especially when the obstacles were maneuvering. Therefore,
we do not consider the AIS measurements as ground truth
in our discussions.

The ASV Telemetron is equipped with the Kongsberg
Seapath 330+ navigation system, which has an accuracy
of 0.1◦ RMS in roll/pitch/yaw estimates, and 0.1 m RMS
accuracy in position estimates. This makes accurate naviga-
tion, guidance, and control of Telemetron possible. Using
the existing mission/path planning, Line-Of-Sight (LOS)
guidance, and low-level vessel control software installed on
Telemetron (cf. Fig. 1), we are able to achieve desired high-
performance motion control according to our assumptions
in Section III-C. A C++ implementation of the SB-MPC
collision avoidance method was installed as part of the on-
board control system (OBS), which runs on an embedded
computer in the Telemetron vessel. For obstacle tracking,
we use the Simrad Broadband 4GTM Radar, the Seapath
330+ navigation system, and the real-time Global Navigation
Satellite System (GNSS) corrections for positioning (known
as CPOS) from the Norwegian mapping authority (Kartver-

TABLE II: Radar tracking system parameters

Sampling time (Tr) 2.8 s
Process noise covariance parameter (q) (0.05 m s−2)2I2
Measurement noise covariance (range) (Rr) (20m)2

Measurement noise covariance (bearing) (Rθ) (2.3◦)2

Confirmation probability threshold (PC) 0.95
Termination probability threshold (PT ) 0.1

TABLE III: COLREGs-compliant decision parameters

Sampling time (Ts) 5 s
Prediction horizon (T ) 300 s
Obstacle considered close (dclose) 1000 m
Safety distance to obstacle (dsafe) 185.2 m
Action initialization range (dinit) 1852 m

ket) [19]. The IPDA tracking algorithm is implemented in
the Robot Operating System (ROS) installed on a separate
computer, which has an Intel R© i7 3.4 GHz CPU, running
Ubuntu 16.04 Linux.

The main parameters used for both radar tracking and
COLREGs-compliant decisions are shown in Table II and
III, respectively. The SB-MPC method is tuned to prioritize
changes in course over speed in order to produce ASV
behaviors that are clear to observing operators/vessels.

B. Scenarios and Results

The scenarios cover both cooperating and non-cooperating
obstacle situations, where the ASV is required to be proac-
tive, but is allowed to choose reactive actions if necessary.
We consider collision avoidance decisions that are made
1 nautical mile (NM) away from the target as long-range
decisions, which must be COLREGs-compliant. We focus
on the case where no communication exists between the
ASV and the obstacles, meaning that the ASV uses only
the IPDA radar tracking system installed for its collision
avoidance decisions. Results from different scenarios are
shown in figures 3–5.

In Fig. 3, a combined crossing and head-on situation is
shown, where Fig. 3a shows the trajectories of the vessels
involved, using the position estimates from the radar tracking
system. The Ocean Space Drone I is well tracked from North
to South, while the track of Munkholmen II is highly uncer-
tain in the beginning. Both false tracks and track loss were
experienced in this test run, with two ‘competing’ tracks (the
long yellow track and the short black track) appearing for the
same Munkholmen II vessel. For the COLREGs-compliant
decision system, the radar tracks of Munkholmen II describe
the motion of two different obstacles, and the COLREGs-
compliant strategy must be robust to the uncertain motion of
the obstacles.

We will use the snapshot of the vehicle control station
(VCS) in Fig. 3b to discuss our observations. The VCS figure
shows the planned waypoints and paths used throughout
the experiments. Note that Ocean Space Drone I deviates



(a) Trajectories showing the ASV’s measured position and position
estimates from the radar tracking system. The end of a trajectory is
indicated by the symbol

⊙
for the ASV and � for the obstacle vessels.

The position of each obstacle is enclosed by a relatively large circular
safety region (cf. dsafe in Table III).

(b) Vehicle control station (VCS) snapshot at position p1 in Fig.
3a, showing planned waypoints, paths, and vessel trajectories
obtained from both radar tracking (◦) and AIS values (B).

Fig. 3: Obstacle vessels Head-on and crossing from starboard.

significantly from its planned path from North to South. This
is due to the waves and eastward currents experienced during
the experiments. For Munkholmen II, it is easy to compare
the radar tracks (cf. Fig. 3a) with the AIS track, which is
a straight line in the West-East direction. The course and
track status at p1 are also shown in the VCS figure, where
the symbol ��© indicates that the short track is terminated
at p1. Before the short track was terminated it represented a
significant hazard on the ASV’s path, while the long track
made a large deviation from the path. However, the large
deviations did not lead to large reactive maneuvers by the
ASV. The most critical event occurs at position p1 when
the short track is terminated. The long (surviving) track has
an estimated course which suggests that Munkholmen II is
crossing the path of the ASV. This drastic change in situation
means a significant change in collision hazard, but this leads
to only a slight reaction in the ASV’s behavior due to the
robustness considerations in the SB-MPC strategy.

The next scenario shown in Fig. 4 describes a situation
with two obstacles that do not cooperate according to COL-
REGs. Munkholmen II was traveling with an average speed
of 6 kn (∼3 m/s), while the Ocean Space drone’s speed was
about 5 kn (∼2.5 m/s). The reference speed (10 kn) of the

Fig. 4: Non-cooperating obstacles head-on and crossing from port.
The end of a trajectory is indicated by the symbol

⊙
for the ASV

and � for the obstacles. The position of each obstacle is enclosed
by a relatively large circular safety region (cf. dsafe in Table III).

ASV allows it to make an early and clear starboard maneuver,
which is adapted into a nearly straight path. The ASV’s
path is predictable according to COLREGs, and the ASV
stays well clear of both obstacles, before heading towards
its original path from position p1. Note that both obstacles
are well tracked by the IPDA tracking method, and the noise
in the radar tracks does not have any significant effect on the
behavior of the ASV.

We take a closer look at the course and speed estimates
from the radar tracking method in the experimental results
shown in Fig. 5. In Fig. 5, we test a situation where the
ASV’s path (from West to East) crosses the paths of both
Munkholmen II and Ocean Space Drone I. An aerial photo
taken during this test run is shown in Fig. 5a. Munkholmen II
travels towards South, and after a while, it makes a starboard
maneuver with the intention of taking partial responsibility
in the head-on and crossing situation. Ocean Space Drone I
on the other hand chooses a passive strategy by maintaining
its course and speed. The ASV’s challenging task is to
understand the intentions of both obstacles based on their
uncertain state estimates. The scenario is such that a wrong
reaction of the ASV to Munkholmen II’s starboard maneuver
could easily lead to a close-quarter collision situation when
Munkholmen II returns to its original (intended) course.

In Fig. 5c–5d, significant variations can be seen in the
ASV’s own course and speed measurements (partly due to
the effect of waves) and estimates from the radar tracking
system. The control modifications by the SB-MPC strategy
show that the observed behavior of the ASV is not due to the
noise in the estimates, but mainly the result of the changes in
the actual collision situation and the corresponding assess-
ment of collision hazard in the SB-MPC (cf. Section III-B).

V. CONCLUSIONS

An autonomous collision avoidance system that uses an
IPDA radar tracking method and SB-MPC was presented
in this paper. The discussions focused on the robustness
considerations made when using the SB-MPC and IPDA
methods, and in particular, the case where no uncertainty
estimates of obstacle tracks are obtained from the IPDA



(a) Crossing situation, showing the planned ( ) and actual ( )
paths of the ASV, and the actual paths of Munkholmen II ( ) and
Ocean Space Drone I ( ).

(b) Trajectories showing the ASV’s measured position and position
estimates from the radar tracking system. The end of a trajectory is
indicated by the symbol

⊙
for the ASV and � for the obstacle vessels.

The position of each obstacle is enclosed by a relatively large circular
safety region (cf. dsafe in Table III).

(c) Desired value from LOS guidance ( ), SB-MPC modification ( ),
and measured value ( ). Compare SB-MPC modifications with desired
values from LOS guidance. The points represent p1 in Fig. 5b.

(d) Obstacle course and speed values from IPDA radar tracking. The colors
correspond to the trajectories in Fig. 5b, and the points represent p1.

Fig. 5: Obstacle vessels crossing from both port and starboard.

tracking method for making collision avoidance decisions.
Results from full-scale experiments were discussed, and the
results show that the IPDA radar tracking method produces
obstacle track estimates suitable for collision avoidance, and
the SB-MPC method is capable of handling uncertain tracks
in its decision process in both close-quarter and long-range
scenarios.
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