
Kryptoanalyse og anngrep på Bluetooth

Marius Amund Haugen

Master i kommunikasjonsteknologi

Hovedveileder: Stig Frode Mjølsnes, ITEM

Institutt for telematikk

Innlevert: Desember 2012

Norges teknisk-naturvitenskapelige universitet

Problem Description

Bluetooth Security Attacks and Cryptanalysis

Bluetooth is a personal area wireless communication network intended for se-
cure short-range connections of small mobile devices. This master thesis will
investigate the security properties of the Bluetooth channel. This will be done
by setting up an experimental lab configuration of Bluetooth device commu-
nications, existing eavesdropping hardware devices (Ubertooth), with various
antennas, and software tools for collecting and processing intercepted commu-
nication. The possibilities of active attacks, such as spoofing and message replay,
should also be investigated. The second part of the thesis work will study the
reported and published cryptanalytical attacks on Bluetooth, and implement the
fastest and most practical cryptanalytical attacks in software, then test the imple-
mentation by trying to establish a successful attack on actual intercepted com-
munication from the lab setup. If time allows, a proposal should be worked out
for including Bluetooth experiments and cryptanalysis in the lab of TTM4137
Wireless Security master course.

i

Abstract

Bluetooth is used for short range communication in ad-hoc networks. The tech-
nology is used in billions of devices worldwide, and is implemented in a wide
range of devices. It connects virtually any electronic device to another without
the need for large overhead or complex setup.

The Ubertooth is a Bluetooth monitoring tool aimed at making security as-
sessments available to anyone with the time and interest. It’s a fully open source
project with an active community. The current state of the Ubertooth provides
device discovery of any Bluetooth device, and has the possibility to lock on and
follow a Bluetooth conversation. The Ubertooth is not fully developed, but gives
monitoring capabilities not present in other openly available tools.

In this thesis, we investigate the usage of the Ubertooth as a tool in attacking
Bluetooth. Its capabilities to monitor traffic are tested, and how it can be used in
both active and passive attacks is looked at. An injection attack is proposed, but
not realized in code. The timing and encoding challenges presented when send-
ing Bluetooth traffic is not yet beaten with the Ubertooth, and it can therefore
not be used to send traffic. The attacks presented here is therefor only theoret-
ical, and no implementation is given. The software belonging to the Ubertooth
is examined, and the changes necessary to make the injection work is presented.
Along with the possibility to use the Ubertooth to enhance existing attacks on
Bluetooth.

iii

Acknowledgements

I would like to thank my professor Stig Frode Mjølsnes for support and advice
during the work with this thesis. I would also like to thank the people on the
Ubertooth General mailing list, and especially Dominic Spill, for helping me and
giving me good advice on the Ubertooth.

v

Contents

Contents vii

List of figures xi

List of tables xii

Acronyms xiii

1 Introduction 1

2 Background 3
2.1 Bluetooth . 3

2.1.1 The Bluetooth Architectural Overview 3
2.1.2 Asynchronous Connection-Oriented Logical Transport . . 6
2.1.3 Link Manager Protocol . 9
2.1.4 Logical Link Communication and Adaption Protocol . . . 13
2.1.5 Bluetooth Security Measures 16

2.2 Attacks . 19
2.2.1 Active . 19
2.2.2 Passive . 21

2.3 Ubertooth . 23
2.3.1 History . 23
2.3.2 Specification and Capabilities 23

2.4 Other Bluetooth Sniffers . 24
2.4.1 Capabilities . 24
2.4.2 Limitations . 25

3 Lab 27
3.1 Hardware . 27

3.1.1 Bluetooth Controllers . 27
3.1.2 Bluetooth Adapters . 27
3.1.3 Ubertooth . 28
3.1.4 Antennas . 28

vii

viii CONTENTS

3.2 Software . 28
3.2.1 Host code . 28
3.2.2 Firmware . 31
3.2.3 Software Limitations . 32

3.3 Capability Testing . 32
3.3.1 Basic Operations . 33
3.3.2 Range Testing . 34
3.3.3 Processing Captured Information 38

4 Attacking with the Ubertooth 41
4.1 Passive . 41

4.1.1 Traffic Monitoring . 41
4.1.2 Location Tracking . 42
4.1.3 Stream Cipher . 42

4.2 Active . 42
4.2.1 Proposed Attack . 42
4.2.2 Initial Attack Phase . 43
4.2.3 Obtaining The Header . 43
4.2.4 Constructing a Detach Request 44
4.2.5 Construction a Disconnect Request 44
4.2.6 Encoding The Packet . 46
4.2.7 Implementing The Attack 46
4.2.8 Additional Attacks . 46

5 Analysis 49
5.1 Why Use The Ubertooth . 49

5.1.1 Other Open Source . 49
5.1.2 High End . 49
5.1.3 Advantage From Other Sniffers 50

5.2 Ubertooth Capabilities and Limitation 50
5.2.1 Range . 50
5.2.2 Tools . 51

5.3 Improved Passive Attack . 53
5.3.1 Stream Cipher . 53
5.3.2 Location Tracking . 54

5.4 Improved Active Attacks . 54
5.4.1 Denial of Service . 54
5.4.2 Disable Encryption . 56
5.4.3 Changing The Link Key . 56
5.4.4 Man In The Middle . 57

5.5 Implication of A Successful Attack 57

CONTENTS ix

6 Conclusion 59
6.1 Further Work . 60

Bibliography 61

A measurements 65
A.1 Range measurements . 65

List of figures

2.1 Piconets . 4
2.2 The Bluetooth stack . 5
2.3 Basic Packet Format . 7
2.4 Payload example . 8
2.5 Payload header . 8
2.6 LMP PDU . 10
2.7 Link setup . 12
2.8 Authentication Stage 1 . 13
2.9 Authentication Stage 2 . 14
2.10 L2CAP Signaling PDU . 14
2.11 Encryption procedure . 18
2.12 Encryption procedure . 19
2.13 Man in the middle . 20

3.1 Ubertooth specan . 29
3.2 Ubertooth hopping . 31
3.3 Kismet discovering devices . 33
3.4 Average number of packets . 37

xi

List of tables

2.1 ACL packet types . 9
2.2 Signaling Command Codes . 16
2.3 Complexity Comparison for Hamming Weight and Run Properties . 22

3.1 Number of packet before hopping sequence was found 34
3.2 Measurements from Antenna-1 . 35
3.3 Measurements from Antenna-2 . 36
3.4 Number of packets decoded . 38

4.1 Complete DM1 detach request packet 44
4.2 Complete DM1 disconnect request packet 45

A.1 Packets captured with Antenna-1 . 65
A.2 Packets captured with Antenna-2 . 66

xii

Acronyms

ACO Authentication Ciphering Offset

ACL Asynchronous Connection-Oriented Logical Transport

ACL-U User Asynchronous/Isochronous Logical Link

ACL-C ACL Control Logical Link

CID Channel Identifiers

CRC Cyclic Redundancy Check

DOS Denial of Service

EDR Enhanced Data Rate

FEC Forward Error Correction code

HCI Host Controller Interface

HEC Header Error Check

LAP Lower Address Part

LFSR Linear-Feedback Shift Register

LMP Link Manager Protocol

L2CAP Logical Link Communication and Adaption Protocol

MITM Man-in-the-middle

NAP Non-significant Address Part

PDU Packet Data Unit

UAP Upper Address Part

xiii

xiv LIST OF TABLES

RF Radio Frequency

SSP Secure Simple Pairing

Chapter 1
Introduction

This thesis is an analysis of how the Ubertooth can be used in attacking Blue-
tooth communication. When writing this there are only a small number of prac-
tical attacks on Bluetooth and only few ways of doing security analysis of a
given Bluetooth setup. The goal of the Ubertooth is to bring security analysis
on the level of what we see on Wi-Fi today. The main problem of attacking the
security on Bluetooth is the fact that commercial Bluetooth adapter’s only gives
limit information and require knowledge about the devices being monitored.
The Ubertooth presents information from all of the Bluetooth channels, and can
be used to monitor various Bluetooth devices with relative ease.
The Ubertooth was used in a lab to listen to traffic generated by two commercial
Bluetooth devises. The traffic captured gave information about the devices, and
about the logical channels used. The payload was however mostly unreadable.
Some of the signaling done by Bluetooth is sent in clear text, but most of it is
encrypted. Since the encryption is still considered secure there is no way of pro-
cessing most of the captured traffic. Examining the protocol standard reveals
opportunities in the signaling that can be used to attack Bluetooth.
Given that the Ubertooth can be used to observe ”hidden” traffic, it gives new
possibilities to old attacks and presents new possible attacks. The Ubertooth is
however not a finished product, it contains the core functionality you need to
monitor Bluetooth traffic, but it lacks functions that makes it possible to send
Bluetooth packets. It can send ”Bluetooth-like” traffic, but this would not be
accepted by a real Bluetooth device due to the way Bluetooth encodes and de-
codes its packets. Injecting a packet into a live conversation is possible, but still
lacks proper implementation to be done in practice. Replaying packets is also
possible, but like a crafted packet it requires to be encoded in the right manner
to be accepted. Recording and replaying traffic without processing is therefore
not an option.
When it comes to cryptanalytic attacks there are none present that can be done

1

2 CHAPTER 1. INTRODUCTION

with real traffic. There is one attack that claims to break the cipher used, but the
details of how it is accomplished is not disclosed.
As the Ubertooth still lacks some functionality to attack or provide enough in-
formation about the traffic captured a lab for TTM4137 is not given here.

Outline

Chapter 2 describes all of the background material used when analyzing the
capabilities of the Ubertooth and how it can be used in passive and active attacks
on Bluetooth. Chapter 3 described the lab setup used in the analysis. Chapter 4
is a description of how the information obtained by the Ubertooth can be used in
attacking Bluetooth. Chapter 5 is the analysis of the possibilities the Ubertooth
presents and describes the weaknesses it can exploit. This also describes the
limitation of the Ubertooth. Chapter 6 is the final conclusion and describes what
the author thinks can be done with the Ubertooth given further development.

Chapter 2
Background

In the first section of this chapter the Bluetooth architecture and its security mea-
sures relevant to the lab are described. In the second section known weaknesses
in Bluetooth is presented. The third presents an overview of the Ubertooth and
is capabilities.

2.1 Bluetooth

Bluetooth is a short range Radio Frequency (RF) technology that operates in the
2.4 GHz band, connecting various devices together in a ad-hoc manner. Blue-
tooth enabled devices span from mobile phones, PCs, headsets to USB-adapters.
On a worldwide basis the number of devices number in the billions [1]. At the
time of writing this, there were 4 core versions of Bluetooth. The material pre-
sented here will be from version 2.1 due to the hardware used in the lab.

2.1.1 The Bluetooth Architectural Overview

Topology

Bluetooth uses a master slave topology that is defined ad-hoc. When devices
connect to each other they form a piconet consisting of one master and one or
more slaves.

A device can only be master of one piconet at a time, but it can be slaves in
several. In Figure 2.1 A and E are masters, D is a slave connected to two piconets.

Protocol stack

The protocol stack can be divided into two main parts, controller and host. The
host has the responsibility of the upper levels, containing resource and chan-
nel management. The controller handles the lower levels, containing link man-
agement, link control, baseband resource management, and the physical layer.

3

4 CHAPTER 2. BACKGROUND

Figure 2.1: Example of two piconets

Figure 2.2 is a simplified description of the Bluetooth stack, containing only the
main components.

A common setup is with a device with computational power (e.g. a PC) that
implements the host part, with an adapter that takes care of the controller and
RF part. This kind of setup uses a Host Controller Interface (HCI) to communi-
cate between the two components.
To make the setup of Bluetooth easier to explain the rest of this thesis will focus
on the two main parts in Figure 2.2, mainly the Logical Link Communication
and Adaption Protocol (L2CAP) layer and the Link Manager Protocol (LMP).
For simplicity the HCI will be ignored, as this is not present in all types of im-
plementations, and not vital for the explanations done here.

Addresses

Bluetooth addresses are a 48-bit unique identifier divided into three parts:

• Lower Address Part (LAP), consisting of 24 bits

• Upper Address Part (UAP), consisting of 8 bit

• Non-significant Address Part (NAP), consisting of 16 bit

The address may take any value except from 64 reserved LAP values used
for inquiries. The general inquiry LAP is 0x9E8B33, this is used by all devices to
send inquiry requests.

Logical channels

Bluetooth uses Asynchronous Connection-Oriented Logical Transport (ACL) chan-
nels to send data between devices. There are two channels used for basic rate
transmissions.
The ACL Control Logical Link (ACL-C) carries LMP Packet Data Units (PDUs).

2.1. BLUETOOTH 5

Figure 2.2: The Bluetooth stack. Modified from [2]

The User Asynchronous/Isochronous Logical Link (ACL-U) carries L2CAP packets,
this can either be user data or L2CAP PDUs.

Bit processing

The last processing a packet goes through before its sent out on the RF channel is
the whitening and Forward Error Correction code (FEC) encoding. The header
is always FEC encoded, and the payload of some packets are. The whitening
is done by XOR-ing the data with a whitening word. The whitening word is
obtained by using the master clock as input to a Linear-Feedback Shift Register
(LFSR). This must not be confused as a security measure, but a RF technique
used to improve transmissions through noise.

6 CHAPTER 2. BACKGROUND

The FEC encoding is done at a rate of 1/3 or 2/3, dependent on the type of
packet. This is done to reduce the number of errors caused in transmission.
A FEC with a rate of 1/3 will repeat every bit three times. This will make the
sequence ”1010” into ”111000111000”.
A FEC with a rate of 2/3 is a (15,10) shortened Hamming code. This is a LFSR
generating code that will produce 15 bit for every 10 it receives.

Hopping sequence

Bluetooth divides the 2.4 GHz band into 79 different channels; these channels are
used in a pseudo random hop sequence. The hopping sequence for the piconet
is determined from the address and clock of the master device. The hopping
sequence therefore determines the physical channel a piconet uses, and limits a
device to being a master in one piconet at time. A Bluetooth device will hop at
rate of 1600 times per second.

Data rates

Basic data rate and Enhanced Data Rate (EDR) transmissions uses different packet
format, but the access code and header are identical for both packets. EDR
packet has a guard space, sync word and a trailer in addition to the payload.

Class of devices

There are three classes of Bluetooth devices. Class 1 has a maximum range of
100 meters, class 2 has a range of 10 meters and class 3’s range is 1 meter [3].

2.1.2 Asynchronous Connection-Oriented Logical Transport

The ACL is the the data carrier for the logical channels using basic rate1. It
defines the types of packets that are used and separates the logical channels by
a payload header. Both channels use the same basic packet format, but the type
of packet and the type of payload differs between the channels.

Packet format

The general packet format for basic rate packages consists of three parts: access
code, header and payload. Figure 2.3 describes the complete packet, with the
values contained in the access code and the header.

The access code is 72 bit identifier for the piconet. It consists of three fields:

• Preamble, 4 bit
1This applies for both ACL-U and ACL-C

2.1. BLUETOOTH 7

• Sync word, 64 bit

• Trailer, 4 bit

Both the preamble and the trailer consist of alternating ones and zeros2. The
sync word is derived from the LAP of the master.

The header is 54 bit3 and consists of six fields:

• LT ADDR, 3 bit logical transport address

• Type, 4 bit packet type identifier

• Flow, 1 bit flow control

• ARNQ, 1 bit acknowledge indicator

• SEQN, 1 bit sequence number

• HEC, 8 bit error check

The LT ADDR is a logical address assigned by the master to the slaves in
the piconet. This is used to identify the slave a packet is going to or from. The
master has no logical address; the direction of the packet is determined by the
timing of when the packet is sent.
The flow bit is used to stop or start the traffic on the ACL link.
The sequence number is used together with the acknowledgment bit to provide
reliable transport of some types of packets. The Header Error Check (HEC) is a
sum that is calculated to check that the header does not contain errors.

Figure 2.3: Basic Rate packet structure.

The payload is 0 to 2745 bit long and can contain any type of data. Some packet
types append a Cyclic Redundancy Check (CRC) to the end of the payload field
as a guard against errors. Figure 2.4 show an example of a payload containing a
PDU, note that the CRC is not appended all types of packets.

2The sequence is either 1010 or 0101 depending on the adjacent bit. The last bit of the pream-
ble is always the opposite of the first bit in the sync word. The first bit of the trailer is the opposite
of the last in the sync word.

3The header in its raw format only spans 18 bits, but is expanded to 54 bits when it is encoded.

8 CHAPTER 2. BACKGROUND

Figure 2.4: A PDU as payload

Payload Header

The ACL packets has a payload header that defines what type of logical link it
belongs to. The ACL-U is used for L2CAP messages. The ACL-C is used for
LMP messages. The header for basic rate packets and un-fragmented packets
consists of three fields.

• LLID: Two bit that indicates ACL-U message, continuation of a ACL-U
message or ACL-C message4.

• Flow: One bit that stops or starts the traffic on L2CAP level.

• Length: Five bit, contains the length of the payload that follows.

For all EDR packets and ACL packet that are fragmented into several pack-
ets, the payload header is 2 bytes. The difference from basic rate header being a
length field of 10 bits and 3 reserved bits (set to 0) at the end. Figure 2.5 shows
the palyload header for a ACL packet sent with basic rate.

Figure 2.5: ACL payload header

Packet types

ACL carries eleven different packets. Four of the are special control packets that
is only used in specific cases. The packets and their main properties are listed
underneath:

401 indicates continuation of ACL-U, 10 is start of a ACL-U. 11 indicated a ACL-C

2.1. BLUETOOTH 9

Type Payload header size in bytes User payload in bytes FEC CRC
DM1 1 0-17 2/3 yes
DM3 2 0-121 2/3 yes
DM5 2 0-244 2/3 yes
DH1 1 0-27 no yes
DH3 2 0-183 no yes
DH5 2 0-399 no yes
AUX1 1 0-29 no no

Table 2.1: ACL packet types

• ID: Identity packet only containing device access code, derived from the
address of the paged device.

• NULL: Contains only channel access code and packet header.

• POLL: Similar to the NULL packet. Can only be sent from the master and
has to be acknowledged.

• FHS: Is a special control packet used to synchronize the hopping sequence.
This is only used in page, inquiry and role switch. This packet is FEC 2/3
encoded and has a CRC.

The FHS packet is a Frequency Hopping Synchronization packet, that con-
tains 144 bits of information. The most important fields are: The entire address
of the sending device, the class of device, LT ADDR, and a 26 bit native time
value. This is enough information so that the receiving side can determine the
hopping sequence the sending side is following.

The ACL also carries general packet types used for both user data and con-
trol messages. The packet types listed in Table 2.1 is all of the packets that are
sent over ACL with basic rate, with their main difference provided in the table.

2.1.3 Link Manager Protocol

This controls all of the link layer operations. This includes link establishment,
pairing and encrypting the link. This is at this layer the packages are formatted
before transmission, checksums are calculated, and encryption/decryption is
handled. To communicate between link managers in a piconet predefined PDUs
are used.

10 CHAPTER 2. BACKGROUND

LMP PDU

All LMP PDUs are send with DM1 as packet type. All of the PDUs are prede-
fined and can only hold specific values. The PDU hold three fields:

• Transaction ID, a one bit direction identifier

• OpCode, either 7 or 15 bit PDU identifier

• Payload, dependent on on the type of OpCode used.

Figure 2.6 shows the general format of a LMP PDU.

Figure 2.6: LMP PDU format

It’s possible to fragment PDUs over several packets, and each of the frag-
ments has to be acknowledged5 by the recipient before the next fragment is sent.
Because of this there is a possibility for a collision if a device needs to send a
command to adjust some of the link properties. There is therefore defined a set
of PDUs that always will be accepted. The PDUs is listed below.

• LMP channel classification

• LMP decr power req

• LMP incr power req

• LMP max power

• LMP max slot

• LMP min power

• LMP preferred rate

• LMP set AFH

5This i done with a LMP accepted PDU

2.1. BLUETOOTH 11

Connection procedure

When setting up a Bluetooth channel with version 2.1 or greater, devices follows
a number of steps that insures that the channel is secure and the connection is
to the right devices. First the link is established. Figure 2.7 sums up the link
establishment procedure, the parentheses indicates what kind of packet that are
used.
The procedure starts with one of the devices, the non-initiating part, in discov-
erable mode, which means that it listens for inquiry messages. The initiating
device sends out an inquiry message on a predefined channel common to all
devices. The non-initiating device responds with a FHS packet. The initiating
device will be the master of the piconet, and the responding will be a slave.
Knowing the address and the time of the other device the master sends a pag-
ing request on a channel specific to the slave. Upon receiving a ID packet as a
response on the same channel, the master send a FHS packet. This is acknowl-
edged by a ID packet by the slave. The slave now knows the hopping sequence
of the piconet, and will start listening accordingly. The master confirms this by
sending a POLL to the slave.
The master sends a feature request to the slave, the response to this message
contains capabilities used to determine the level of security used during pair-
ing. The master then sends a connection request, and upon receiving a response
paring is initiated.

Secure Simple Pairing

The pairing and authentication procedure is called Secure Simple Pairing (SSP),
and is used on all devices using version 2.1 or higher. When a link is established
this is used to to create a secure Bluetooth. All of the messages sent are in clear
text until the channel establishment procedure is complete and the encryption is
switched on.
The first step of pairing is to exchange IO capabilities. This is done via a LMP
PDU and decides what kind of association model that is used. The next step is
then to exchange public keys between the devices. The first step of authentica-
tion then follows. This uses one of four association models: Numeric Compari-
son, Just Works, Out-of-Band or Passkey Entry.

Numeric Comparison will be used when both devices has a display that can
display six digits and both of them are capable of answering ”yes” or ”no”. The
user has to confirm that both devices are showing the same number. An exam-
ple is between a PC and a phone.

12 CHAPTER 2. BACKGROUND

Figure 2.7: Link setup

Just Works is used when one of the devises cannot display six digits or does
not have a keyboard to enter six digits. The user may just be asked to accept the
connection. An example is a phone and headset.

Out of Band is designed for the scenarios where an out of band mechanism is
used for both device discovery and cryptographic exchange.

Passkey Entry is used when one of the devices does not have a display, but
has input capabilities, and the other device has a display. An example is a PC
and a keyboard.

2.1. BLUETOOTH 13

Figure 2.8: Authentication Stage 1 with Numeric Comparison. Taken from [4].

Figure 2.8 describes the first authentication step when Numeric Comparison
is used.

When authenticated, both devices calculate a confirmation value containing
a shared key derived in the first part of the authentication process. This is sent to
the other device and confirmed. If there is an error in the conformation value the
link will be terminated. Upon confirmation both sides calculate a link key. When
this is done the devices is considered paired. Figure 2.9 describes the calculation
of the confirmation value and the link key. Note that the IO capabilities used in
the figure comes the PDU exchanged at the start of the paring.

2.1.4 Logical Link Communication and Adaption Protocol

At the L2CAP layer data received from applications are broken down into smaller
chunks for processing on the underlying layers. The L2CAP layer also has the
responsibility of maintaining Bluetooth channels, as well as quality of service
settings for the channel. To transmit data L2CAP uses the ACL-U and uses its

14 CHAPTER 2. BACKGROUND

Figure 2.9: Authentication Stage 2. Reproduced from [4].

own PDUs to contain the information.

PDUs

The L2CAP PDUs consists of two fields: a header and a payload of variable
length. The header contains the length and the channel id and is present in all
L2CAP PDUs
The rest of the PDU is dependent of what kind of information that is carried.
The types of information are separated into frames. Figure 2.10 is an example
on a L2CAP PDU with a C-frame.

Figure 2.10: Example of a L2CAP C-frame PDU

2.1. BLUETOOTH 15

• B-frame: Basic information frame, contains only an information payload.

• I-frame: Information frame, contains a control field, length field6, payload
and a Frame Check Sequence7.

• S-frame: Supervisory frame, contains only a control field and a Frame
Check Sequence.

• C-frame: Control frame, contains predefined commands as payload.

• G-frame: Group frame, contains a Protocol/Service Multiplexer field, and
payload.

PDU header

The L2CAP header contains a length field that defines the length of the payload
in the PDU, and a Channel Identifiers (CID).
L2CAP uses its own ID’s to separate the channels in a piconet from each other.
Upon channel establishment the master sets a CID that defines the endpoints.
This makes it possible to tell the difference of the traffic sent on different chan-
nels and the direction of it. Some of the name space are reserved, but most of it
is dynamically assigned and can take a value between 0x0040-0xFFFF. The ID is
present in all PDU headers and defines the endpoint the packet is heading for.
In some signaling packet there are two IDs, for both sender and receiver8.

L2CAP has its own signaling packets it uses for channel management. These
packet are sent in a C-frame with CID = 0x0001, a command code, a identifier,
length field and a data field.
The command code used in the signaling packet is twelve predefined values.
Table 2.2 sums up the signaling commands and its description. The identifier
is a way of tracking requests and responses. A new request will take the next
available value, and the response will contain the same value. When the avail-
able values are used up it starts with the first value again.
The length field here is the length of the data field that follows. The data field
contains different values based on what code that is used. Common values are
CIDs or data relating to a request.

6Used when the payload is fragmented into several frames
7Used for error detection
8Named DCID for Destination CID and, SCID for Sender CID

16 CHAPTER 2. BACKGROUND

Code Description
0x00 Reserved
0x01 Command reject
0x02 Connection request
0x03 Connection response
0x04 Configure request
0x05 Configure resonse
0x06 Disconnection request
0x07 Disconnection response
0x08 Echo request
0x09 Echo response
0x0A Information request
0x0B Information response

Table 2.2: Signaling Command Codes

2.1.5 Bluetooth Security Measures

Discoverable modes

A Bluetooth device can be in one of three discoverable modes: Either non-
discoverable, limited discoverable or general discoverable mode. The discover-
able modes only restricts inquiry messages, paired devices can be non-discoverable
and still communicate.

• Non-discoverable mode: A device in this mode will never answer on an
inquiry message.

• Limited discoverable mode: A device in this mode will answer on inquiry
messages for a limited amount of time.

• General discoverable mode: A device in this mode will answer on all in-
quiry messages it receives.

Connectable modes

A Bluetooth device can be in either connectable mode or in non-connectable
mode. When it is in non-connectable mode it will never answer to any paging
requests. When in connectable mode it will answer to any paging request it
receives.

Bondable modes

There are two bondable modes, non-bondable and bondable. Non-bondable will
refuse any pairing requests, bondable will accept them.

2.1. BLUETOOTH 17

Security modes

Bluetooth version 2.1 uses security mode 4 when establishing a channel. This is
a service level security that uses the highest level of security available at the re-
mote device. When connecting to a 2.1 device Simple Secure Pairing is required.
A device in security mode 4 will however respond to devices in security mode 3
due to backwards compatibility. When connecting to devices with a version pre
2.1 security mode 2 is used. The full list of security modes and its requirement
is as follows:

• Mode 1: No security.

• Mode 2: Service level enforced security. Authorization, Authentication
and Encryption are required. Security enabled after channels is estab-
lished.

• Mode 3: Link level enforced security. Security will be initiated before chan-
nel setup is completed. A device can reject connection requests.

• Mode 4: Service level enforced security. Requires either an authenticated
link key, an unauthenticated link key or no security9.

Keys and encryption

Before any encryption can occur a common encryption key has to be created.
This is done after the link is authenticated and Secure Simple Paring has been
complete.
When establishing a secure channel a public-private Elliptic Curve Diffie-Hellman
key pair is used for the initial stages. This key is generated on the device in the
initial stages of pairing and can be discarded at any time. From the public key
of the other device a Diffi-Hellman key is calculated. After one of the four asso-
ciation models is used to authenticate, the Diffi-Hellman key is used to confirm
that the pairing was successful through a challenge-response. This is what was
described in Figure 2.9 under Authentication Stage 2.

The keys that are used and how they are created is as follows:
Initialization key, Kinit, is generated using a Bluetooth address, a PIN10 and a ran-
dom number. Before authentication is achieved this is the link key
Authentication is achieved by a challenge-response scheme. It uses a random
number, the Bluetooth address of the device being challenged, and the current

9An authenticated link key is one there either out of band, numeric comparison or passkey
entry was used during simple secure pairing. An unauthenticated link key is one where just
works is used.

10The PIN used by one of the devices can be fixed, but not both. The PIN can be input by a
user or generated at the application layer

18 CHAPTER 2. BACKGROUND

link key. A successful authentication generates a Authentication Ciphering Off-
set (ACO).
Combination key is calculated by two random numbers, LK KA and LK KB, one
from each device. LK KA and LK KB is calculated by the devices own address
and a random number. The number is then transferred to the other device by
XOR-ing it with the current link key. A new link key, KAB, is then derived by
XOR-ing LK KA and LK KB. Figure 2.11 describes the generation of the combi-
nation key.

Encryption key, Kc, is derived from a random rumber, ACO, and the link key.

Figure 2.11: Encryption procedure. Taken from [4]

Note that the random number used here is chosen by the master, and transmit-
ted to the slave in clear text. This is denoted EN RANDA in Figure 2.12
Encryption of the payload in packets are realized by using Kc, address to the
master device, the native time value of the master11. This is a stream cipher that
updated for every packet that is sent.
Figure 2.12 describes the encrypt and decrypt procedure.

After the Encryption Key has been created the encryption can be turned on.
Encryption is only used on the payload of packets and are controlled by the
LMP.

Secure Simple Pairing

Secure simple pairing gives a number of security measures that protects the user.
The link key and the encryption used by Bluetooth gives a strong protection

11This is sent in the FHS packet at link establishment

2.2. ATTACKS 19

Figure 2.12: Encryption procedure. Taken from [4]

against passive eavesdropping. The values used to derive the link key is pro-
tected by a private-public key pair during set up, making inserting false values
almost impossible. Man-in-the-middle (MITM) protection is provided by the
Numeric Comparison and Passkey Entry association models. For an attacker to
be successful, the 6 digits used in these models have to be guessed.

2.2 Attacks

2.2.1 Active

There are a number of proven active attacks on Bluetooth. Some of them are
attacks on mobile phones, exploiting flaws in the manufacture implementation
and user settings [5]. There are a range of Man-in-the-middle attacks using USB-
adapters with changeable Bluetooth addresses [6, 7].

Man-in-the-middle

To execute a successfull MITM attack you need to impersonate two legit de-
vices. One can achieve this by changing the addresses on USB-adapters to the
addresses of the devices being attacked. Re-programmable USB-adapter is avail-
able and software used to re-write firmware can be found online [6]. These types
of attacks rely on that you can get the address of the target devices, and force a
reconnect. By timing it right it is possible get the targeted devices to connect to

20 CHAPTER 2. BACKGROUND

the modified adapters in stead of the real ones. By resending the traffic from
both the targeted devices the connection will appear legit. Since the attacker
now sits in between the information is not encrypted and can be read as clear
text.
Figure 2.13 describes the general nature of MITM attack. This case forces the
targeted devices to use Just Works association model upon connection. This is
done by pretending to have no capability to see or enter a code. By doing this
the MITM protection provided by the other association models is avoided.

Figure 2.13: Man in the middle. Taken from [6]

Attacks on mobile phones

Bluesnarf and Bluesnarf++ is attacks that give the attacker access to the file system
of a phone. This exploits a flaw in the OBEX implementation that grants remote
access without pairing.
BlueBug is a vulnerability present on some mobile phones that lets an attacker
execute AT commands that takes over the control of the device.
Bluejack lets a attacker send anonymous vCards or text messages to a phone.
Physically harmless.
HeloMoto a combination of Bluesnarf and Bluejack. Only works on some Mo-
torola phones.

2.2. ATTACKS 21

2.2.2 Passive

Passive attacks are an attack that can be performed without sending any traffic
to the target. Similar attacks on Wi-Fi are performed by recording data traffic
first, and use the collected data to break the crypto used. Another type of passive
attack is to use device addresses to provide location tracking for specific devices.

Key stream attack

In the authors knowledge there are only one practical attack on the stream ci-
pher used by Bluetooth. In [8] a zero-knowledge-like analysis of E0 is presented.
Zero-knowledge-like meaning that the basis for the analysis and its computation
is given, but not the weaknesses.

The E0 chipher is a stream cipher that produces a random output sequence
given that the keys used are random. The paper goes out to find keys that pro-
duces an output with a given property and targeted Hamming weight, thus
proving that the cipher has weaknesses. The length of the input used in the
proof is n=128 bit. This length is chosen to resemble the output used in real life
implementations of Bluetooth, and would be usable in a real attack.

The first property used in the cryptanalysis is Hamming weight12. The goal
is to find keys K such that a 128 output sequence has a Hamming weight (at
most) equal to a value k. The second property is a number of consecutive zeros
r that appear anywhere in the stream.
The interesting thing here is the computational complexity of finding such a se-
quence. The computational complexity of finding a given Hamming weight at
least k, by random search with n = 128, is denoted Ck. Cr is the complexity of
finding a sequence of r consecutive zeros that appear at the start of the stream.
Cr+ is consecutive zeros anywhere in the stream. The complexity of finding a
sequence cumulating both values k, and r is denoted Cr,k, and similar with r+
and k is denoted Cr+,k . Table 2.3 sums up some of the values presented in the
paper, if you are to use a random search to get a sequence that exhibits that kind
of properties.

The weaknesses apparently present in E0 is detected by the use of two non-
public packets used in a pre-computing step, namely CoHS3 and VAUBAN. The
weaknesses are combinatorial in nature, and are to the authors’ knowledge not
published. The pre-computing step is said to take one week to be performed,
but is only required to be done once. With the use of this information different
values for r and k is a cryptanalysis step is preformed and the first keys is re-

12The total number of non-zero bits in a sequence

22 CHAPTER 2. BACKGROUND

(r,k) Ck Cr Cr,k Cr+,k

(69, 29) 232.76 269 272.28 266.40

(69, 27) 236.39 269 272.57 266.69

(69, 25) 240.30 269 273.25 267.36

Table 2.3: Complexity Comparison for Hamming Weight and Run Properties
(Random Search; n = 128) Modified from [8]

trieved within the first hour. In a period of five weeks it is claimed that 48,000
keys is retrieved.
The paper gives a number of keys that has been retrieved by their use of the
weakness. Where one of the most important keys produce a output that has a
hamming weight of 29 and 69 consecutive zeros at the start. To obtain a key
that can produce such a sequence by random search has a complexity of 272.28.
This is not something that can be achieved with existing computing resources.
The overall complexity of this attack, given the time used and keys obtained is
calculated to be 235. Compared with other known attacks on E0, with the same
size known key stream bits, the best is 286[9]. This attack also uses assumptions
that would make it unusable in a real attack.

This paper gives the reader information to verify the findings, but does not
disclose any information about which weaknesses that is exploited. This is done
for several reasons. If a paper discloses detailed information on how to break an
encryption, it will be available to anyone that wishes to exploit it. It will apply
pressure to change the encryption, but that is not something you can do over
night. Vendors will have financial reasons to delay a switch of technology, and
users are in general reluctant to change equipment. The time spent to change
out all of the affected devices, with Bluetooth devices ranging in the billions,
would probably be counted in years.

Location tracking

Location tracking is not a traditional attack, but it detects the possible presence
of a person by detecting a Bluetooth device [10]. It does no harm to the device
or the traffic transmitted, but it poses as a privacy concern. The addresses used
in Bluetooth are unique and are set by the manufacturer of the device; it can
therefore be used as a mean to identification. There is possible to alter the ad-
dresses of some devices, but in the author’s opinion, the only reason to do this
is to perform an attack, and will not be something a normal user would do.
In a normal situation a user would be protected against this as long as the Blue-

2.3. UBERTOOTH 23

tooth device is set to non-discoverable. Even if the address is known an attacker
would not be able to confirm the presence of a device without being paired with
it. This makes the privacy relatively secure.

2.3 Ubertooth

The Ubertooth is a 2.4GHz transceiver built specifically to monitor and inject
Bluetooth traffic. The Ubertooth project is open source, aimed at making Blue-
tooth security analysis available to anyone. All of the hardware plans and soft-
ware needed to make one is available on the projects website [11].

2.3.1 History

Project Ubertooth is the product of Michael Ossmann’s quest of trying to do
Bluetooth security assessment easier. The result is Ubertooth Zero and Uber-
tooth One, both are USB-adapters available through his company Great Scott
Gadgets [12]. For more information on the development process see his presen-
tation from ShmooCon 2011 [13].

2.3.2 Specification and Capabilities

At the time of writing the Ubertooth is capable of Basic Rate Bluetooth monitor-
ing, including LAP and UAP discovery, hop sequence discovery and following
a given piconet. It is also capable of Bluetooth Low Energy monitoring13. This
section will only focus on the main capabilities used in the lab, the full list of
tools is briefly listed in Chapter 3.

Address discovery

One of the Ubertooth’s functions is address discovery, and it can be achieved in
two different ways. The first is the use of the ubertooth-lap and ubertooth-uap
tools. The -lap will look for devices and recover the LAP for any device in range,
but only one at the time. The -uap requires the LAP of a device and will recover
the UAP for that specific device.
The second method is by the use of the Kismet[15] plugin, and once installed it
is the most user friendly. The plugin lists all of the Bluetooth addresses the Uber-
tooth is picking up, and the number of packets associated with the address. A
note here is that the Ubertooth produces a number of false positives, an address
observed only a couple of times is most likely a packet decoded wrong. There is
also a difference between the packets that is recognized with both LAP and UAP

13Bluetooth low energy is a standard used for devices intended to operate for extended periods
of time on batteries [14]

24 CHAPTER 2. BACKGROUND

or just the LAP. Bluetooth uses a specific and shared address for device discov-
ery, meaning that there will be an address listed with a number of packets that
originates from any device. Since this is a fixed address it is easily recognized,
and can be ignored, though it is an indication that there are devices actively
trying to discover other devices.

Ubertooth-hop

This tool is essential when trying to monitor a specific piconet. The pseudo -
random hopping sequence used by Bluetooth means that the traffic in a piconet
will be obscured from any observer, unless one can monitor all of the 79 chan-
nels at the same time or follow the hopping sequence. Ubertooth-hop requires
the UAP and the LAP of one of the devises in the piconet, and will stay on one
of the channels observing packets and try to calculate the hopping sequence by
determining the clock of the master. Once the sequence is discovered the Uber-
tooth can begin to hop along with the piconet and observe the packet stream.
Once in hop-mode the Ubertooth begins to try to decode the packets observed.
A successful decode means that the packet is unwhiten, the FEC and the HEC is
reversed, and the CRC-check is correct. The tool will print out information from
the header and any payload present. Note that the payload is still encrypted.
There is no guarantee that the received packets are decoded correctly.

The Ubertooth does not support EDR, so it can only be used to partially
observe EDR transmission. Meaning that is can still recognize the access code
and the header, but not the payload. Signaling packet however is sent with basic
rate, and is therefore fully observably.

2.4 Other Bluetooth Sniffers

There are professional Bluetooth sniffers available for developers of Bluetooth
devices. These sniffers have complete control over any and all targeted Blue-
tooth traffic.

2.4.1 Capabilities

The professional sniffers are developer tools used to make a Bluetooth imple-
mentation work as it is intended to do. To do this full control over any message
that is sent, on any level, is needed. The site [16] provides such a sniffer.
The sniffers provided there displays all types of messages from HCI to RF traffic,
and they can even decrypt encrypted packets. This is used to debug any fault in
the messaging.

2.4. OTHER BLUETOOTH SNIFFERS 25

2.4.2 Limitations

There are however major limitation to the use of such sniffers. Since these are
intended for developers there are prerequisites for using its full potentials.
For one, the addresses and time value for the devices targeted are required to be
able to follow a piconet from its formed.
To decode the encrypted traffic the link key for the devices has to be entered into
the sniffer.
These are things you will be able to get if you have full access to the devices
used. As an attacker using these devices you will probably have none of it.

Chapter 3
Lab

This chapter explains the lab setup used to examine the use of the Ubertooth in
this thesis. You will also find the measurements data from range testing in this
chapter.

3.1 Hardware

The hardware used in the lab was two computers, two Bluetooth 2.1 USB-adapters,
one HTC Sensation, and one Ubertooth One.

3.1.1 Bluetooth Controllers

When generating traffic to observe with the Ubertooth two computers and a mo-
bile phone was used.
Computer-1 was running Windows 7, and was used to generate Bluetooth trans-
missions, either with the second computer or the mobile phone. Computer-2
was running Ubuntu 12.04 and was to generate Bluetooth traffic, and as the
Ubertooth controller. The main reason for running Ubuntu on this machine was
because of the requirements for installing and running the Ubertooth software.
The mobile phone was only used to receive traffic at a distance from the Uber-
tooth to collect range data.

3.1.2 Bluetooth Adapters

The two USB-adapters were designated Alice and Bob. The adapters was iden-
tical, they were class 1 devices and was using Bluetooth version 2.1 with EDR.
Alice: Used with Computer-1. Bluetooth address: 00:15:83:43:60:25
Bob: Used Computer-2. Bluetooth address: 00:15:83:43:5F:40

27

28 CHAPTER 3. LAB

3.1.3 Ubertooth

The Ubertooth’s capabilities are described in 2, but from a hardware standpoint
it is a 2.4 GHz transceiver. It is not recognized as a Bluetooth device but is able to
observe and decode Bluetooth traffic. It has the hardware requirement to send
Bluetooth packets, but no implementation for sending real packets is developed
as of yet. There is some test functionality that lets you send a ”Bluetooth-like”
packet, which mimics a real packet, but due to the timing constraints on the
encoding and decoding of packets the fake packets will not be recognized by a
Bluetooth device.

3.1.4 Antennas

For the range testing of the Ubertooth two antennas was uses. The first one,
denoted Antenna-1, was the standard antenna that came with the Ubertooth.
This is an 8 cm antenna found on wireless network cards and other 2.4 GHz
equipment. This was the antenna used for all of the testing except the second
part of the range testing.
Antenna-2 was a larger antenna designed to boost the range of a 2.4 GHz signal
with a 5 dBi gain. The antenna was used to demonstrate the possibilities of
added range when monitoring traffic.

3.2 Software

The Ubertooth software is split into two main parts. One part for Bluetooth
specific operations like FEC decoding and hopping sequence generation and one
for Ubertooth management and bit stream handling. For the sake of simplicity
the code is from now on referred to as host code and firmware, where the host
code will be equivalent to a Bluetooth host, and the firmware the a Bluetooth
controller.

3.2.1 Host code

The host code contains all of the tools running locally on the host machine and
is utilizing functionality on the Ubertooth via USB. The host code is where the
packets revived by the Ubertooth are processed. This includes address recovery,
packet decoding and extracting information from the header.

Tools

The Ubertooth has a number of tools for monitoring Bluetooth. The complete
list as of writing is:

• ubertooth-lap: LAP recovery

3.2. SOFTWARE 29

• ubertooth-uap: UAP recovery

• ubertooth-hop: Hop sequence recovery for a piconet

• ubertooth-specan: Signal strength readings for the 2.4GHz spectrum

• ubertooth-specan-ui: Graphical representation of the signal strength read-
ings

• ubertooth-dump: A bit stream dump

• ubertooth-utl: Utility tool

• ubertooth-dfu: Firmware flashing tool

• ubertooth-ble: Bluetooth Low Energy monitoring

This list is subject to change due to the constant development of the Uber-
tooth, and has changes several times during the workings of this thesis.

Figure 3.1: Ubertooth-specan-ui

Figure 3.1 shows ubertooth-specan-ui. The spikes represent active Bluetooth
traffic, much of the other traffic that can be seen is two active wireless-LANs.

Hopping sequence

The hop sequence is discovered by using the observed traffic to determine the
correct clock value. A large number of possible clock values are generated and
the values are used to try to unwhiten a packet. Values are removed if they
don’t produce the right UAP and get the CRC-check correct. If the entire list
is tried with no positive result the list is reset and a new packet is used to try
to get the clock value. Once the correct clock is found the hopping sequence
can be calculated using the master address and the clock value. The Ubertooth

30 CHAPTER 3. LAB

then uses the hopping sequence to hop along and only observe traffic from the
targeted piconet. When a packet is revived it is attempted decoded, meaning
that the packet is unwhiten and the FEC encoding is reversed. The packet type
is determined and information from the header and the payload is printed. The
Ubertooth is however not capable of decoding every packet it observes.

Kismet plugin

The kismet tool is a way of monitoring the traffic and confirming the LAP and
UAP of active Bluetooth devices. A lot of the observed traffic will be from a
single address (9E:8B:33). This address is a broadcast address used by all Blue-
tooth devices. There will also be a steady stream of new addresses discovered.
These are false positives identified by the Ubertooth and can be ignored. This
means that any monitoring is reliant on receiving a number of packages before
any certainty of the addresses of an active piconet can be confirmed. There will
also be two package counts related to any adapter, one with only LAP, and one
with LAP and UAP. This means that four of the lines displayed by Kismet will
represent one active Bluetooth connection.
Kismet also logs the traffic as .ppt files that can be read by Wireshark for fur-
ther analysis. These log files structure the information captured, separating the
payload and the header making an analysis easier. This could be useful for an-
alyzing a large number of captured packets. It also makes it possible to sort out
traffic from a single source, even though Kismet captures data from multiple
sources.

Packet information

The Ubertooth displays a fair amount of information about the packet it receives.
Once the correct clock value is determined and it begins to decode it gives in-
formation about the header, but not the content of the payload of a data packet.
The header includes the link layer address, link layer id, flow bit and payload
length.
The payload of signaling packets are however sent in clear text and useful infor-
mation can therefore read from these. Knowing the type and structure of specific
packets makes is possible to extract useful information about the piconets Blue-
tooth channels such as channel ID’s. The task of recognizing different packets
beyond the basic packet types is however not at thing the Ubertooth does yet.

Figure 3.2 shows the Ubertooth acquire the master clock and starting to hop
along with the piconet and decoding packets.

3.2. SOFTWARE 31

Figure 3.2: Ubertooth-hop

Packet encoding

The Ubertooth contains code to reverse the whitening, HEC, FEC and calculate
the CRC. The tools only use this to decode, but it possible to reuse some of it
to craft a packet. The unwhitening code can be used to whiten as it only XOR’s
data. There are also a function that FEC encodes 10 bits of data at a time.

3.2.2 Firmware

The firmware is code that is loaded onto the Ubertooth-chip and acts as a link
between the hos code running on the pc and the hardware on the chip. The core

32 CHAPTER 3. LAB

functionality can be broken down to receiving Bluetooth packages and sending
”Bluetooth-like” packages. The code as it is from the developer site contains
only bit stream processing. There is a small amount of test code for using the
Ubertooth for doing range tests, but this requires two Ubertooth and will only
mimic Bluetooth traffic.

3.2.3 Software Limitations

The main goal for this thesis was originally to develop code to prove a attack
on Bluetooth is possible. The main reason for that this was not accomplished is
development state that Ubertooth is in.
At the startup of this thesis the Ubertooth did not provide functions vital for
making an attack work. The main function being the hopping sequence re-
trieval. This was added to the development code, but it was not entirely sta-
ble. A bug in the code caused the Ubertooth to crash as the master clock was
retrieved. This particular bug proved to be hard to reproduce by other than the
author. The developers of the Ubertooth, mainly by Dominic Spill, tried to track
down and fix this bug, but upon the completion of the thesis the bug still per-
sists. As far as the author knows, no one else is experiencing this particular bug.
To rule out any local factors multiple hosts PC’s was tried, and a second Uber-
tooth was tested. None of the testing produced any local variable that could be
cause of the bug. A workaround was eventually found by combining old and
new code.
The time spent digging around after a possible cause gave valuable information
on how the Ubertooth and the code work, but left little time to develop.
The core code as it is today has not a lot of documentation. Most functions are
explained by the name and the comments, but the interaction between them is
not explained in any way. The architecture is similar to a Bluetooth device, and
the naming convention for the functions relates to the Bluetooth specification,
but this still require comprehensive background knowledge to understand.
The main function of the Ubertooth today is monitoring traffic, this means that
all of the code i written to decode an extract information. All of the packet han-
dling is done on the host side of the code, while injection requires that some
of this is handled on the firmware side. Crafting a packet to inject requires re-
versing most of the functions used to decode, some can reused as it is but not
all.

3.3 Capability Testing

When testing the Ubertooth capabilities two setups were used. The basic setup
used the two Bluetooth adapters with the computers. The second used Computer-
1 and the mobile phone to generate traffic at a distance from the Ubertooth. In

3.3. CAPABILITY TESTING 33

both cases a large text file was used to generate a continuous stream of traffic.
The native OS Bluetooth software used numeric comparison when setting the
connection. The PIN number used was generated by the application layer and
required only the author to compare the two numbers presented on the screens.
The native OS software also gives the complete Bluetooth address for any dis-
coverable device in range; this was used to confirm the addresses of the USB-
adapters before any testing started. Between each of the test the USB-adapters
was un-paired and the Ubertooth was reset to ensure no interference between
the tests.

3.3.1 Basic Operations

When testing general capabilities the basic setup with the two computers was
used. Both the computers where in close proximity of each other to ensure min-
imal interference.
The kismet plugin was used as an initial address discovery. This confirmed
that the Ubertooth can detect Bluetooth devices in non-discoverable mode. This
also demonstrated the number of false positives the Ubertooth generates, as the
kismet plugin showed an ever increasing list of detected addresses. These ad-
dresses were either close to the one used by the adapters, or completely wrong.
The common thing about all of these addresses was the low number of packets
associated with them. This could be either real traffic unintentional intercepted
or just false positives.

Figure 3.3: Kismet discovering devices

Figure 3.3 show Kismet discovering devices. The top line is the general
discovery address. Note that there was only one discoverable device present

34 CHAPTER 3. LAB

Attempt number Number of packages
1 180
2 80
3 28
4 10
5 8
6 372
7 8
8 4
9 164
10 25

Table 3.1: Number of packet before hopping sequence was found

when this snapshot was taken. The second and third line represents Alice,
which is discoverable. While the fourth and sixth is Bob who are set to be non-
discoverable.

Obtaining hopping sequence

Ubertooth-hop with the LAP and UAP as input, was used to obtain the hopping
sequence, and note the amount of information available with minimum setup.
Getting hold of the hopping sequence means that you have to have traffic to
test the possible master clock value against. An idle piconet will generate some
traffic without the user interacting by sending link level packets1 packets. This
can be used to get the clock value as any other traffic, but the amount of packet
is less than a file transfer will produce. The time the Ubertooth used to obtain
the hopping sequence varied greatly. Table 3.1 is the results from 10 consecutive
attempts to obtain the sequence. As can be seen clearly the number of packets
required varies with several hundred. The average number of packets required
in this trail was 87,9.

3.3.2 Range Testing

The range testing used Computer-1 and a mobile phone. The phone was posi-
tioned 15 cm away from the USB-adapter, and the two devices were moved at 5
meter increments away from the Ubertooth. The test was performed on campus
at NTNU and would be equivalent to a real world office scenario with multiple
wireless-LANs and walls present. To generate traffic a 1 MB pdf was sent from
the computer to the phone. The test was performed when the Ubertooth already
had obtained the hopping sequence. The measuring was done five times at each

1These are NULL and POLL packets used to maintain the link.

3.3. CAPABILITY TESTING 35

Meters Average observed Max observed Min observed
0 33 56 20
5 22.8 38 13
10 15.8 21 6
15 21 32 7
20 11.2 18 6
25 8 20 4
30 5 6 2
35 3.2 9 0
40 0 0 0
45 0 0 0
50 0 0 0
55 0 0 0

Table 3.2: Measurements from Antenna-1

location, and the average of these was calculated. The number of packets in-
tercepted by the Ubertooth at each distance was recorded. These are packets
that belong to the targeted piconet, but what kind of packets and information
available in them is not recorded for this test. The Ubertooth was used with
the standard antenna which it comes with, and a larger 2.4 GHz antenna. The
closest measurement was done at less than 1 meter from the Ubertooth and the
furthest was 55 meters for both antennas.

Antenna-1

Antenna-1 is a standard 2.4 GHz antenna, 8 cm in length, commonly used with
a wireless network card or on a wireless switch. The furthest distance which
gave reading with Antenna-1 was 35 meters. The tests at greater lengths gave
no reading at all. Table 3.2 sums up the measurements for Antenna-1, for the
complete set see Table A.1 in Apendix A.1. Note the difference between max-
imum and minimum number of packets in the table. The lowest number with
the closes range is the same as the maximum at 25 meters. This indicates that the
measurements are effected by uncontrolled factors in a real life environment.
The blue line in Figure 3.4 shows the average number of packets for Antenna-1.
There is a slight dip at 10 meters and a peek at 15 meters. This is most likely
local radio conditions interfering and making the measurements uneven.

Antenna-2

Antenna-2 is a 2.4 GHz, 5 dBi antenna designed to extend range of wireless
equipment. Table 3.3 sums up the measurements for Antenna-2, for the com-
plete set see Table A.2 in Apendix A.1. The furthest distance packets was ob-

36 CHAPTER 3. LAB

Meters Average observed Max observed Min observed
0 77.6 94 54
5 46.8 79 25
10 31.6 64 21
15 35.2 58 23
20 25 40 17
25 9.6 11 8
30 4 16 0
35 19.2 27 7
40 5 12 0
45 10.2 27 0
50 0 0 0
55 0 0 0

Table 3.3: Measurements from Antenna-2

served was 45 meters. Like in the measurements from Antenna-1 there are vari-
ations in the number of packets observed at each distance. The red line in Figure
3.4 shows the average values for Antenna-2. This also shows the same dip at 10
and peek at 15 meters, which confirms the local conditions interfering in the
same way as with Antenna-1. It also shows peeks at 35 and 45 meters, this is
again a local variation, and are interesting because of the large number of pack-
ets that where intercepted at that distance.

The antennas compared

The graph in Figure 3.4 shows the results from the range test for both antennas.
This clearly show Antenna-2 being a lot better at close range, over doubling
the number of packets observed in average. Antenna-2 also captured the same
amount of packets at 35 meters as Antenna-1 did at 15 meters. The distance
Antenna-2 captured data at was only 10 meter further away that with Antenna-
1, but the number of packets captured at the end of the range was significant.
Being able to capture an average of 20 packets at 35 meters is almost the same
as Antenna-1 had at 5 meters. Antenna-2 it therefore not only able to extend the
range, but is also more efficient of capturing data.

Traffic monitoring

While following a piconet all of the intercepted packets are attempted decoded.
Since there is no support for EDR traffic only parts of the packet stream are visi-
ble. A decoded packet will display header fields and the payload if there is one.
The payload displayed by the Ubertooth is in hexadecimal form, but is still en-
crypted. A great deal of the packets observed will be NULL and POLL packets,

3.3. CAPABILITY TESTING 37

Figure 3.4: Average number of packets observed

which contains no payload. These are LMP level packets that is used to main-
tain the link.
The Ubertooth reported every time it received a packet belonging to the targeted
piconet, but will only display information about the packet if it can decode it.

Decoding here means that the payload format is recognized. The packet
is attempted un-FECed and then unwhiten. If the packet type has a payload
header this is attempted processed first, given a success the rest of the payload
is attempted processed. If any of these steps fails the operation breaks and no
information about the payload or header is given. A EDR packet would not be
decoded.

Table 3.4 shows the summary of 10 tests done with Antenna-2 at less than
1 meter, to see the average number of packets that are decoded. The same file
transfer used to do the range test was also used here. The numbers of packets
that are observed vary a great deal more in this trail than when doing the range
test, but the total average is about the same. See line 1 in Table 3.3 for a compar-
ison. The test shows that the average number of decoded packet is 86%, and the
number of failed decodes is 14%.

38 CHAPTER 3. LAB

Test number Packets decoded Packets not decoded Total packets
1 75 13 88
2 62 15 77
3 130 3 133
4 29 2 31
5 27 6 33
6 20 10 30
7 102 14 116
8 82 10 92
9 74 23 97
10 76 15 91

Average 67.7 11.1 78.8

Table 3.4: Number of packets decoded

3.3.3 Processing Captured Information

To make any use of the information captured the packets has to be recognized.
The Ubertooth gives information about the basic packet type, but nothing about
the content of the payload.

Recognizing known packets

In the event that a packet is decoded and the payload is displayed, it still has to
be manually decoded. The software only separates out the fields in the payload
header. The payload header holds the LLID field that indicates which of the
logical channels that are used which can be useful for identifying the payload.
A DM1 with a LLID equal to three would indicate ACL-C packet. This will
always contain LMP PDU.
A DM or DH packet with a LLID equal to two or one would indicate a ACL-U
packet. This could contain any kind of information, and could be encrypted. If a
LLID is set to one, the PDU is fragmented and indicates that the current packet
is a continuation and contains only parts of a PDU. With the LLID set to two an
entire PDU may be contained in the payload.

Decoding by hand

As the software does nothing more than recognize the types of packets, one
would have to decode the packet by hand. Any ACL-U packet may be encrypted
and may break the PDUs into several packets this is almost impossible to extract
useful information.
A ACL-C packet is possible to recognize and decode by hand. The LMP PDUs
is well defined, but the number of that kind of PDUs is large and only contains

3.3. CAPABILITY TESTING 39

link management information.

Chapter 4
Attacking with the Ubertooth

In this chapter attacks on Bluetooth with the use of the Ubertooth is presented.
The first section is a look at passive attacks. The second section proposes active
attacks that can be performed by the Ubertooth.

4.1 Passive

Preforming a passive attack on Bluetooth is a major challenge. The way the
traffic is obscured form any observer makes the capturing of data a task in itself.
The Ubertooth makes this a lot easier since it can follow a piconet and decodes
parts of the traffic it captures.

4.1.1 Traffic Monitoring

The main problem with monitoring a packet stream is the time it takes the Uber-
tooth to obtain the hopping sequence. The time this takes and the number of
packet required varies greatly. This is caused by two factors, one being that the
traffic can be subject to interference and there is no way of being sure where in
the packet stream you start to observe. The second is that a large number of
clock values have to be tested. Basically one makes an educated guess what the
clock value of the master is, and tries values based on the guess.
As seen in Chapter 3, the Ubertooth may require a number of packets, or a con-
nection that persists over several minutes to begin to monitor the transmission.
When the hopping sequence is discovered the number of packets actually de-
coded is varying. The Ubertooth does not support EDR, meaning that any con-
nection using EDR would just be subject to partially monitoring. This means
that even with the Ubertooth following a piconet the amount of data you can
extract is limited. The payload itself is also encrypted with a stream cipher, one

41

42 CHAPTER 4. ATTACKING WITH THE UBERTOOTH

that has no practical attacks against it, except the zero-knowledge attack pre-
sented in Chapter 2.

4.1.2 Location Tracking

Location tracking with the Ubertooth means targeting traffic belonging to one
or several devices. The Kismet plugin could be used to do general observing in
an area.
It is possible to target a single device even if it is part of various piconets. The
input parameters used by the Ubertooth is the address of the targeted device,
no matter if it’s the master or not. The challenge here is to obtain the correct
address and that the targeted device has to generate traffic. As seen in Chapter
3, the number of packet captured decreases by the distance you are from the
targeted device, this sets constrains on how close you have to be to a target.

4.1.3 Stream Cipher

The stream cipher used by Bluetooth is still considers secure, and there is there-
fore no direct use of the Ubertooth in decoding the payload of normal packets.
It may be used to record data to use in a future attack, and would be well suited
to do just that.

4.2 Active

Using the Ubertooth to do an active attack is possible, but there is no imple-
mentation for a injection attack currently available. The following text describes
attacks which is possible to perform with the Ubertooth, given the right imple-
mentation and under the right circumstances. The attacks are very similar in
nature and only differ in the layer they are targeted against. The first part of the
text underneath describes a Denial of Service (DOS) attack, based on injecting
correct packets. This explains how it can be done, what values that are needed,
and how it can be implemented. The last part explains what attacks can be done
if the DOS attack succeeds, and the implications of this.

4.2.1 Proposed Attack

The attack proposed here is a denial of service attack against a specific piconet.
Using a disconnect packet to shut down the Bluetooth communication. A dos
attack is very basic but it can be a starting point for other attacks. Given that
one can prove that Bluetooth injection is possible, one can craft other types of
packets and preform more elaborate attacks. The proposed attack in its basic
form will be performed in the following manner:

4.2. ACTIVE 43

• Obtain the LAP and UAP of one of the devices in the piconet. By using the
kismet plugin or ubertooth-uap/-lap tools.

• Use the ubertooth-hop code to discover the hopping sequence and hop
along with the piconet.

• Edit the fields in a observed packet, or use a premade packet.

• Encode the packet.

• Send the packet to the targeted piconet.

If the attack is successful the observed data stream would disappear. This
would prove that it is possible to forge Bluetooth packages and get them ac-
cepted. Note that this is a packet sent with Basic Rate as this is the only rate
supported by the Ubertooth. This attack does not compromise the data sent
over link in any way. A extended attack could potentially do just this, exploit-
ing that the piconet has to establish a new link. Making it possible to observe
the link setup procedure and extract information used to extend the attack.

The attack proposed here can be performed with two types of packet, de-
pending on what layer it’s possible to inject packets in. A LMP packet would
target the link layer and disconnect the physical link. A L2CAP packet would
tear down the channel but maintain the link. This attack could be a more dis-
crete way of launching a MITM attack. A lost connection would from a user’s
perspective look like a bug, and may not alert the user to the presence of an at-
tacker.

4.2.2 Initial Attack Phase

In both cases addresses of one of the devices in a piconet is needed to launch its
initial phase. Knowing that an address belongs to the right device would be a
task in itself and is outside the scope of this thesis. Observing an address that
is in use is easy with the Ubertooth. Even with the Bluetooth device in non-
discoverable mode will be visible, as long as it’s transmitting some type of data.
The addresses gives the basis for hop-sequence discovery, but is hinged on the
amount of traffic observed. It is possible to obtain the sequence from a small
amount of traffic, but that may require a larger amount of time.

4.2.3 Obtaining The Header

The header to both attack packets would be identical, and a valid header could
be used in both cases. One possibility would be to observe a packet and reuse
parts of it. Any decoded packet would do as the direction of the packet doesn’t

44 CHAPTER 4. ATTACKING WITH THE UBERTOOTH

Field Size Value
Access code 72 bit Reused or constructed
Header 18 bit Reused or constructed
Payload Header 8 bit 0xE02 (LLID=3, FLOW=1, Length=2)
Transaction id 1 bit 0x1
OpCode 7 bit 0x07
Error code 8 bit 0x1F
CRC 16 bit Must be calculated

Table 4.1: Complete DM1 detach request packet

affect the header. It’s possible to reuse most of the header from a observed packet
because most of the header values would be static for a given piconet. It is
therefore also possible to craft one by hand if the target address is known. The
only header value that is dependent is on the rest of the packet is the type field.
The header must therefore be modified to match the type of packet that is used.
The Ubertooth code currently has code that makes it possible to craft an almost
correct header, given that the address of the master is known. The only value
that can’t be calculated with the current code is the HEC.

4.2.4 Constructing a Detach Request

A packet with the right header would be accepted by a Bluetooth device, but
getting the a disconnect request to be accepted requires a bit more information.
The payload header has to be correct for the PDU that is sent. The LLID field
has to be set to 3 to indicate a ACL-C packet, the flow bit is set to one but will be
ignored. The length of the PDU is set to 2 bytes.
A LMP detach PDU requires only three fields and they are all well-defined. First
is the transaction ID, this is one bit and could be set to both 1 and 0, as the
direction of the packet isn’t a concern. A detach request would be accepted
by both master and slaves. The second field is the OpCode, and has a value
of 0x07 for the detach request. The last field is an error code field. From a
attackers point of view this may be set to any of the predefined error codes.
The code 0x1F which means ”unspecified” seems to be a good enough choice.
An LMP detach req is always sent as a DM1 packet, and would require a header
that has the right type field. Table 4.1 sums up the fields in a DM1 detach request
packet, their values and where the values come from.

4.2.5 Construction a Disconnect Request

To generating a disconnect request that will be accepted means making a L2CAP
PDU. Most of the packet can be prepared except the CIDs contained in the pay-

4.2. ACTIVE 45

Field Size Value
Access code 72 bit Reused or constructed
Header 18 bit Reused or constructed
Payload Header 8 bit 0xAA (LLID=2, FLOW=1, Lengt=10)
Channel id 16 bit 0x0001
Code 8 bit 0x06
Identifier 8 bit 0xFF
Length (of data fields) 16 bit 0x0020
Data (DCID, SCID) 32 bit Must be observed and reused
CRC 16 bit Must be calculated

Table 4.2: Complete DM1 disconnect request packet

load. For a given Bluetooth channel there are assigned two ID’s to define the two
endpoints, denoted DCID and SCID. As these are values that are dynamically
assigned by the master upon channel establishment they must be observed and
reused. The main problem is therefore to observe and recognize a L2CAP PDU.
The channel IDs are used in all L2CAP PDUs, and are contained in the L2CAP
header in the second and third octet. To get both endpoints in a piconet one
would have to be able to recognize the correct PDU and extract the correct bits.
Two recurring values in the same position would signify the presence of the
CIDs. Note here that this only holds for a piconet with one slave, as each slave
would have its own CID. One must also take consideration of reserved CIDs
like the signaling channel.
The CIDs are also used in three signaling packets, the disconnect request, the
connection response and configuration response. The two last are both packets
sent at the channel setup, so observing these could be a challenge. Observing a
disconnect request would not be useful as the channel then would disappeared.
Therefore to get the CIDs from a signaling packet one has to find a packet with
payload containing channel id=0x001, and with the right response codes.
After the correct CIDs is obtained and inserted into the payload the CRC has to
be computed.
To send a L2CAP signaling packet we need a suitable packet type, it must be
basic rate and support the right length of the payload. Since the length of the
PDU that is to be sent is only 10 bytes a DM1 packet can be used. In the payload
header the LLID has to be set to 2, as this is a ACL-U packet, and the flow bit are
set to 1. Table 4.2 list up all of the fields in a DM1 disconnect packet, its value
and where the value comes from.

46 CHAPTER 4. ATTACKING WITH THE UBERTOOTH

4.2.6 Encoding The Packet

Crafting a packet that would be accepted as a Bluetooth packet also requires
the right encoding. It is not possible to just replay a revived packet because of
the whitening. The whitening is dependent on the clock and a replayed packet
would be whitened with the wrong clock value.
The main task for constructing a packet would therefore be to whiten and then
FEC encode it. Since the clock is required for whitening this must be done with
an active connection.
The both header and the payload in a DM1 and DM3 packet is whiten and 2/3
FEC encoded before transmission.

4.2.7 Implementing The Attack

When implementing this attack in code timing is a concern. Most of the packet
can be prepared without consideration of the time spent, but not the encoding.
The header values and the payload, along with the CRC calculation should be
done on the host side, as none of these values are dependent on timing. The
whitening is done before the FEC encoding and the packet must therefore be
sent reasonably quick after the encoding is done. This must therefore be done
on the firmware side.
For the LMP packet everything can be prepared before the attack begins. The
only thing that must be done live is the encoding.
For the L2CAP packet the CIDs has to be observed and reused. This requires
a method that can recognize a L2CAP signaling packet and extract the values.
The alternative is to guess the CIDs, or try to brute force them.

The optimal solution would therefore be to observe a L2CAP PDU with
the CIDs in the payload. Extract the values and insert them into the prepared
packet. Calculate the CRC. Send the packet to the firmware, whiten and FEC
encode the entire packet, then send it.

4.2.8 Additional Attacks

Being able to successfully inject a packet will open the possibility for other at-
tacks. The detach request is a LMP PDU, and there are other LMP PDUs that can
form the basis for attacks. The most interesting may be the PDUs that handle
encryption. Both the ”pause encryption” and ”stop encryption” are interesting,
but both poses its own challenges.
The L2CAP PDUs used for signaling is also interesting but is limited in the num-
ber of valid options availible.

4.2. ACTIVE 47

Link Manager Protocol PDUs

The LMP stop encryption would be the most interesting to get accepted, as it
would make an attacker able to listen into any traffic sent. The main problem
here is that it can only be sent from master to slave. A slave has no opportunity
to make a master switch off encryption. This makes it impossible to use as an
attack, besides a type of denial of service attack disabling encryption on one side.

The LMP pause encryption may be an easier target, as it can be sent from both
master and slave.

• Option 1: A ”pause encryption” received by the master. The master will
respond with a ”stop encryption” response to the slave. The encryption is
thus paused on both sides.

• Option 2: A ”pause encryption” is received by a slave. The slave will send
a ”pause encryption” in to the master and Option 1 occurs.

In effect both options halt the encryption with one injected packet, but there
is still requirements to that packet. First off, there is a transaction ID required
in the packet. The transaction ID is a one bit value and signifies the direction
of the packet. If the bit is set to 1 it would look like a packet from the slave to
the master, if set to 0 it would appear like the opposite. The effect would be the
same; the encryption would be disabled in both cases. The main problem with
both the master and slave in the ”pause encryption” state it that it does not al-
low user data being transmitted, only logical command messages is allowed in
this state. The all of the ACL-U traffic is paused when the encryption is paused
and can only be resumed when the encryption is turned back on.

The LMP comb key is the third interesting PDU, which changes the current
link key. If the current link key is a unit key, pairing procedure will be done
again, producing a new link key. This PDU can be sent from both master and
slave and only contains a random number. By itself it does no harm, but it can
still be exploited by a malicious observer.

L2CAP PDUs

The signaling sent with L2CAP PDUs is mostly interesting because of the dis-
connect request. The other signaling commands that is available only controls
the flow of the traffic and does not interfere with user data directly. An accepted
signaling message will however prove that it is possible to interfere with the
traffic on a higher level. In the advent of a practical attack on the encryption this
is the first step against interfering with user level data, as the L2CAP link does

48 CHAPTER 4. ATTACKING WITH THE UBERTOOTH

not only carry signaling commands but user data as well. Being able to inject
falsified information into user data would create a whole new attack vector.

Chapter 5
Analysis

In this section the analysis of the Ubertooth as a tool for improved attacks on
Bluetooth is presented.

5.1 Why Use The Ubertooth

The Ubertooth is a monitoring device that differs from other available sniffers.
It’s for one not reliant on prior knowledge about the devices that are targeted.
It is also entirely open source and the hardware is available at around 100$.
Compared to other methods it has distinct advantages.

5.1.1 Other Open Source

The attacks presented in Chapter 4 is for the most part performed by Bluetooth
adapters that you can change the address of, and thereby trick legit devices. The
problem is therefor that you have to get the address somehow, reprogram the
firmware of your device. Then you need to get the targeted device to pair with
your own device before you get anything useful out of it.
Getting the address of a device, using a standard unmodified adapted, is possi-
ble. The problem is that the target has to be discoverable. A non-discoverable
device will not be visible to a standard adapter.
If you can get the address there is still the problem of pairing it with your own
device. This means that you are reliant of a user interaction, and that the user is
fooled by your pairing.

5.1.2 High End

There are high end professional devices capable of doing Bluetooth monitoring.
The can give you the complete traffic stream, and even decode encrypted traffic.
Using this in an attack scenario seams perfect, except it requires information that

49

50 CHAPTER 5. ANALYSIS

is unrealistic to obtain as an attacker. As this is a developer tool it’s not designed
around detecting traffic and devices. To be able to observe a conversation from
the very beginning the native clock and full address of the devices is needed. To
be able to decode traffic the encryption key is required. As an attacker you will
most likely not be able to get this, not in a realistic scenario anyway.

5.1.3 Advantage From Other Sniffers

The Ubertooth give the advantage of being able to detect any active Bluetooth
device in range, non-discoverable or otherwise, and get the address. It also gives
you the possibility to lock on to a device and follow its traffic stream, using only
the address as input.
Ubertooth is also open source, meaning that anyone can access and modify the
code. Even the schematics for the hardware is available, and the hardware cost
will only set you back about 100$. Buying one premade is not that much more
expensive, and are available from several web shops.
The cost, its functionality and the possibility to modify the code as you see fit
separates it from other available sniffer.

5.2 Ubertooth Capabilities and Limitation

The Ubertooth is a good tool for monitoring Bluetooth traffic, but there are lim-
itations on the capturing of the data. The main problem is the instability in the
amount of traffic observed. In chapter 3 both the range test and the decode test
shows grate variance in the number of packet observed. This is despite that the
test was done with little delay between them and with no change to the setup.

5.2.1 Range

The range of the Ubertooth is equivalent to a Class 1 Bluetooth device, and has
a maximum range of 100 meters. The practical distance decreases with any dis-
turbance and noise created by the local environment. As shown by the results
in Chapter 3 the local conditions have a lot to say when it comes to intercept-
ing traffic. Another environment may give an attacker both better and worse
results. The range test was done against a known target and with the Ubertooth
already following the piconet, which does not mimic a realistic attack situation.
Despite this the results obtained is still interesting as this was done as a test of
range, and not information extraction. It also gives an indication to how much
information that is possible to get at range.

5.2. UBERTOOTH CAPABILITIES AND LIMITATION 51

Antenna-1

As seen in Chapter 3 the range of the Ubertooth even with a small antenna is
significant. The test done showed that it it’s possible to intercept traffic at a
distance of 35 meters in a office environment. The amount of data captured at
35 meters was not large, but it could still provide information of a device. The
loss of information increased quite rapidly with the distance, meaning that any
attack focused on the information in the packet stream would be hindered. Any
attack reliant on large amounts of data would require a closer range or a greater
time span.

Antenna-2

The test results from the second antenna show that it is possible to intercept
traffic at distances up to 45 meters. The average number of packets captured
at 35 meters was 19.2, and had a maximum at 27 packets. This is more or less
one fourth of the traffic captured at less than 1 meter, and gives an attacker
considerable range even if it’s at 75% loss.

Implications

The average loss of data increases a lot with distance, and one have to be lucky
to observe an entire packet stream. One would not be able to capture entire files,
and certainly not at greater distances. This does not however guarantee that the
information captured is not critical. An attacker looking for information about
the devices in an area, or looking for someone specific, would not be hindered
by loss of data as long as it’s possible to observe some traffic.
Being able to listen into traffic going on in a radius of about 45 meters away
from you is a lot. There could be a great number of people with Bluetooth en-
abled devices in a sphere that big. Note that none of the measurements was
done through floors or with a vertical aspect, only through walls in a horizontal
fashion. Going through floors will probably put extra constrains on the practical
distance, but that does not make the measurement any less interesting.
In the author’s opinion, the range of the Ubertooth is impressive in a real world
scenario. Despite the fact that its equivalent to a class 1 device but could not
detect traffic at 50 meters, being able to listen in on a packet stream at half the
maximum range in a real world test is quite the feat.

5.2.2 Tools

The tools provided with the Ubertooth when writing this has limited use. They
provide basic traffic monitoring, but the lack of functionality that can send traffic
limits the areas it can be used. There is no way of extracting payload information
other than decoding it by hand.

52 CHAPTER 5. ANALYSIS

Payload extraction

As seen in Chapter 3 the average number of successful decodes of packets at
close range are 86%. This implies that an attacker is not able to observe a com-
plete packet stream, even if the target is unrealistically close. Any contents in the
payload may be obscured because of this, depending on the type of information
transferred.
Because the encryption used on the payload still is considered secure the pay-
loads captured has little to no value as of yet. The packages that is transmitted
with clear text payloads is still interesting, but exposes little information about
what goes on above the link layer. The information from captured packets is pre-
sented in a manner that only persons with intimate knowledge of the Bluetooth
standard will be able to read it. Given the development state of the Ubertooth
this is not unexpected, but it narrows the amount of people that can use the in-
formation provided. This limits the number of people that can use it maliciously,
but it also limits people with good intentions.
The inability to decode EDR traffic is also a hindrance, as most devices from
version 2.1 and up uses EDR. There are still uses for the Ubertooth in its current
state with EDR devices, but there are major limitations to it.
It is possible to decode some of the packet by hand, as some of the PDUs only are
sent with certain packet types. This will however only give low-level informa-
tion that is of little use. As of now it is no possibility to process the information
captured by any other means.

Address retrieval

The addresses are a vital part of monitoring Bluetooth traffic, and the Ubertooth
retrieves addresses with great user friendliness via the Kismet plugin. All Blue-
tooth adapters will broadcast the entire address while in discoverable mode, but
the option to get a hold of the address of a device in any mode is still a vital im-
provement. All attacks directed at any one piconet will be based on retrieving
the address to at least one of the devices in question.
The LAP is retrieved within seconds using the ubertooth-lap tool. The UAP re-
quires the LAP and takes more time before it is confirmed, but does not require
a large amount of traffic. Both address parts can be obtained with the tools with
the minimal traffic an idle piconet generates.
Kismet is therefore useful in a general observing role, and the tools will be more
useful when targeting something specific or from a development point of view.

Hopping sequence

The retrieval of the hopping sequence is in the authors’ opinion one of the Uber-
tooth most useful tools. It lays the basis for both information extraction and in-

5.3. IMPROVED PASSIVE ATTACK 53

jection. The ability to follow a piconet takes care of one of the difficulties when
it comes to Bluetooth monitoring. Even if not all of the traffic can be decoded
it greatly increases the amount one can observe with one antenna. The time it
takes to retrieve the sequence is still not a reliable thing and requires a vary-
ing amount of traffic. There are not all scenarios where one can expect a steady
stream of data, especially if the paring between two devices has persisted for
some time. The time used to obtain the hopping sequence has been improved
during the writing of this thesis, pointing to the fact that it is still being worked
on.

5.3 Improved Passive Attack

The one passive attack mention in Chapter 2 is not an attack that can be im-
proved with ease. The nature of the presentation makes specific improvements
impossible to present, but by analyzing the cipher used and taking in count the
additional information Ubertooth can provide, a general improvement can still
be proposed.

5.3.1 Stream Cipher

The cipher used in Bluetooth is a stream cipher that uses the address to the mas-
ter device, a link key and the current clock value as input values. The address of
the master is easily obtained with the Ubertooth, though this is not information
that would be considered secret. The link key is on the other hand a well-kept
secret. The last variable, the clock value, is normally not something that you
could obtain, unless you are monitoring the traffic with a Ubertooth or paired
with the target. The clock value is central for the hopping sequence and for the
unwhitening, meaning that every packet the Ubertooth decodes has the right
corresponding clock value.
The zero-knowledge attack presented in Chapter 2 shows that it is possible to
obtain the cipher key used for a specific data stream. Meaning that three of the
variables in the E0 computation is can be obtained.
This may give the basis for the Link key. Given that it is possible to perform the
stream cipher attack on real traffic, and not just constructed traffic with known
statistical properties. This may be possible to do if you can observe the connec-
tion setup, which is possible if you can perform a type of DOS attack.
A Bluetooth device will ask for services of a connected device, this will happen
after the connection is set up, and therefore when the encryption is active. A
service request is sent in a standardized fashion, and may contain the right sta-
tistical properties the zero-knowledge attack needs.
The main advantages here are that it is possible to record traffic for a given pi-

54 CHAPTER 5. ANALYSIS

conet, and the corresponding clock value for each packet. If it’s possible to ob-
tain the cipher key for a given packet, that packet can be used to find a possible
link key. If the link key is obtained the rest of the recorded traffic can be deci-
phered.
The E0 function has yet to be broken and may still be considered safe, but that
does not make it safe for future attacks. The crypto analysis done in [8] point to
a possible exploitable weakness. The presence of tools like the Ubertooth that
provide information that is considers difficult to obtain in a real world scenario
may even present other viable attacks.

5.3.2 Location Tracking

The Ubertooth makes it possible to observe Bluetooth devices in non-discoverable
mode that are sending traffic. Paired Bluetooth devices will regularly send pack-
ets, and will therefore small but steady stream of observable traffic. If the ad-
dress to a device is known the Ubertooth can be used to track or confirm the
presence of that device.
Location tracking uses no other information than the address, and can there-
fore be done with minimal effort, but poses no threat against the victim other
that privacy. In [17] one of the first things mention to mitigate passive attacks
is to turn off discoverability on a device. This may seem too be a sound advice,
but this does not provide real security from passive listeners, and may provide
a false sense of security. Non-discoverable does not equal non-observer-able
when transmitting something though the air.
Using the kismet plugin can also make it possible to observe behavioral patterns
captured over a large amount of time. The capturing of data from a day, or even
a week could provide information on when people are arriving and leaving a
area. The presence of a device associated with a time stamp could make it pos-
sible to track the habits of people or companies.
In a location tracking scenario, being able to detect devices at a range of 45 me-
ters in a office is quite significant. An open area environment would boost the
detectable range and could disclose even more information.

5.4 Improved Active Attacks

5.4.1 Denial of Service

Making a DOS attack on Bluetooth is not that hard to accomplish. All you need
is a microwave oven, or anything that can produce a lot of interference with
the 2.4 GHz specter. A crude and simple method like that will also interfere
with any Wi-Fi networks in the general area. In other words easy to notice for
anyone with a basic Wi-Fi monitoring tool, such as a smart phone with the right

5.4. IMPROVED ACTIVE ATTACKS 55

application.
Bluetooth is built while knowing that it uses a noisy channel, and compensates
for this with techniques like FEC and whitening. It utilizes channel hopping to
avoid using only the ones with mass interference. A more elegant dos attack
would be to exploit the protocols own means of terminating a connection. This
means that one would have to inject a Bluetooth packet, which has been proven
to be hard to do, but definitely doable. Two disconnect packets is presented in
Chapter 4 and both presents the possibility of a DOS attack.

LMP

The LMP packet presented in 4 has almost all of the required values. There is
still a matter of generating the HEC for the constructed header. In addition it
has to be whitened and FEC encoded at the right time. This is the most practical
of the attacks and would be possible to do with the right implementation.

L2CAP

The L2CAP packet is lacking the values that have to be obtained dynamically
and therefore the hardest to fake. The CIDs has to be extracted while the con-
nection still exist and the CIDs are valid. As explained in Chapter 4, this can
be done by observing L2CAP PDUs. There is also a possibility of doing a brute
force attack to obtain the CIDs. By constructing a packet for each possible CID
combination and send it to see if it will be accepted. The combination is is a 32
bit value, and that that means trying 232 packets. The DM1 packet described
in 4.2 would span one time slot, with 1600 hops/s and one time slot per hop,
makes the time required a little over 31 days to send all packets. In other words
an impractical amount of time for a Bluetooth connection. You may be able to
do an educated guess on where to begin, and increment in a smart fashion, but it
is not a very viable approach. This packet would also have to be whitened and
FEC encoded before transmission, but this would be the same as to the LMP
packet.

Implementing

The code to implement this attack is almost present in the existing Ubertooth
code. There are no function that calculates the HEC, but a reverse function ex-
ists. The whitening can be used as is, and there is a function for FEC encoding.
The code has to be adapted it so it takes in the prepared packets, and this would
have to be done on the firmware, not in the host code as it is today.
The major challenge here is the timing of it all, since this cannot be done with-

56 CHAPTER 5. ANALYSIS

out the hopping sequence. The Ubertooth has to get and maintain the correct
sequence, transition from a listening state to a transmitting state, encode the
packet and sent it. There is a function present in the current code which turns
the Ubertooth into a repeater for ”Bluetooth-like” packets sent from a second
Ubertooth. This may be utilized to make the switch from listening to transmit-
ting, but this has to be invoked from the host code, as a successful decode is
necessary to be sure of the hopping sequence.

5.4.2 Disable Encryption

With a proven injection attack as a basis there is the possibility of doing an attack
that disables the encryption. As the encryption used still is considered secure be-
ing able to disable it on a lower layer would pose as a possible attack angle. The
encryption is controlled through LMP PDUs, so it is similar to a detach message.
Though disabling encryption it is a tempting target it gives no direct use, as the
master has to send the ”stop encryption” message. It’s not possible to instruct
a master to stop the encryption. Instructing the slave to stop encrypting is pos-
sible, if it’s only the information sent from the slave that is interesting. It is not
entirely clear what would happen if the master suddenly only receives unen-
crypted packets, and how long the channel would stay unencrypted or active.
In any case this would at best give a small amount of clear text information, and
would rely on luck for it to yield anything useful. This would also almost cer-
tainly alert the user.
Pausing the encryption is possible from both master and slave, and both can be
faked. The main problem here is that this would also pause the ACL-U traffic.
Having no clear text user level traffic limits the uses of this attack. From what
the author can see there is no command that can be given in this state that makes
this attack interesting. Access to clear text link level information poses close to
no threat against a user. This renders the attack to nothing more than another
denial of service attack.

5.4.3 Changing The Link Key

If one can successfully fake a LMP comb key PDU, an new link key will be
made. This in itself poses no harm, but it allows an attacker to observe the en-
tire pairing procedure, or launch a MITM attack. The advantages of requesting a
new link key would be that the entire process would require no user interaction.
Setting up a MITM attack with this would leave out the user entirely, and would
make the attack invisible.

5.5. IMPLICATION OF A SUCCESSFUL ATTACK 57

5.4.4 Man In The Middle

MITM attacks presented in Chapter 2 has one thing in common, you have to
know the address of both the target devices, and you have to program your
own devices to mimic them. By the use of the Ubertooth getting the address
from any device, even hidden is simple. The main problem these kinds of at-
tacks presents, and is often ignored, is how to get the address in the first place.
There is still the problem of knowing you got the right address, but you will be
one step closer.
A well timed dos attack, where the addresses is obtained beforehand, makes it
possible to stop a connection before it gets going. Stopping the connection while
a user has the attention focused on connecting or sending, will most likely result
in a rapid retry. When one retry is all that is needed before the sending succeeds
the user will most likely be none the wiser that someone is trying to interfere
with the transmission.
In the authors experience during testing of the Ubertooth, sending a file to an-
other Bluetooth device does not always work on the first try. This happened
multiple times, and there was no indication that this was caused by someone
external. This indicates that this is caused by Bluetooth is self, a bug that proba-
bly is very common. So having to resend will probably not raise any suspicion
with a normal user.

5.5 Implication of A Successful Attack

Being able to inject packets into Bluetooth traffic would at first glance not seem
to be of any significance. The packets proposed injected here does nothing more
that deny a user the use of a device for a short period of time. There is always the
risk of someone using the attack as a basis for a MITM attack, but that wouldn’t
change the security situation significantly from where it is today. What it does,
is lay the basis for other injection attacks. The stream cipher is not broken, but
there is no guarantee that it will stay that way. Being able to access Bluetooth
data on both higher and lower levels makes it possible to alter and monitor
anything the user is doing. It is also possible that this would give access to
higher functions on the device that implements the controller. The wide range
of devices Bluetooth is used in makes this a concern. With billions of devices
on the market makes the attack surface large. A major security issues that is
uncovered may force a change in the technology, but the change will take time.
The development of new security measures is not done overnight, neither is
changing out all of the devices effected. This of course depends on the type of
issue uncovered, but the number of effected devices would in any case be large.

Chapter 6
Conclusion

This project had as a goal to make use of the Ubertooth to examine Bluetooth
and its security properties. A lab was set up to examine the capabilities of the
Ubertooth and see how it could be used in a practical attack. The Ubertooth
proved to give information about active Bluetooth adapters, and was able to de-
tect traffic and display parts of the stream. The information captured is however
limited in use. The information is displayed in its raw format and only the type
of packet and the logical channel is separated from the rest of the payload.

The Bluetooth specification was studied and a practical attack was proposed.
The attack is possible to preform, but the lacking possibility to send packet into
an ongoing conversation hinders it. This functionality is however something
that is being worked on and may be available in the near future.

The encryption of the payload is also a hindrance in getting information sent
between devices. The E0 encryption used is as of today not broken. It may seem
that it inhabits some weakness that is possible to exploit, but the exact nature of
this is not yet public. What is known is that weakness uses some time to begin
to retrieve encryption keys, and in a time sensitive attack this may not be usable.
Recording traffic and decoding it later is however a real possibility, when weak-
ness is made public.

The Ubertooth at its current state is best at monitoring and giving general
information about the activity in the Bluetooth channel. The fact that is it avail-
able to anyone at reasonable price is also a advantages over other sniffers. It
gives Bluetooth monitoring a more versatile tool those adapters with spoofed
addresses. It also makes a new entry into basic surveillance with the possibility
to detect ”hidden” devices. It proves that the only way a Bluetooth device is
undetectable is if its turned off.

59

60 CHAPTER 6. CONCLUSION

6.1 Further Work

There is still a lot that can be, and will be done with the Ubertooth. Making in-
jection possible is a goal of the current Ubertooth community. The ”only” thing
that is stopping it from being done at the time of writing is FEC encoding and
whitening done at the right time.

There is also a need for a better way of extracting information from the pack-
ets captured. Logic separating packets that can contain valuable information
and possible to detect values is needed for more advanced attacks.

Packet crafting code is also vital for any injection to work on a more general
basis. Most of the information needed to craft a viable packet can be extracted
as it is now. Recombining it in a known packet format will be possible to do, at
least for the lower level packets.

Documentation of the Ubertooth code is perhaps one of the things most
missed during the work done in this project. There are comments explaining
the functionality, but an overall description and the interaction between the code
parts is non-existent.

Bibliography

[1] i. Bluetooth SIG, “Simple. secure. everywhere.” Retrieved 14 November 2012,
from http://www.bluetooth.com/Pages/Simple-Secure-Everywhere.

aspx. [cited at p. 3]

[2] Network Security:Current Status and Future Directions, ch. 18. Wiley-IEEE Press, 2007.
[cited at p. 5]

[3] B. SIG, “Bluetooth basics.” Retrieved 05 Desember 2012, from http://www.

bluetooth.com/Pages/Basics.aspx. [cited at p. 6]

[4] B. S. I. Group, “Specification of the bluetooth system, core version 2.1 +
edr.” Retrieved 12 November 2012, from http://www.bluetooth.org/spec/.
[cited at p. 13, 14, 18, 19]

[5] J. Alfaiate and J. Fonseca, “Bluetooth security analysis for mobile phones,” in Infor-
mation Systems and Technologies (CISTI), 2012 7th Iberian Conference on, pp. 1 –6, june
2012. [cited at p. 19]

[6] K. Haataja and P. Toivanen, “Two practical man-in-the-middle attacks on bluetooth
secure simple pairing and countermeasures,” Wireless Communications, IEEE Trans-
actions on, vol. 9, pp. 384 –392, january 2010. [cited at p. 19, 20]

[7] J. Barnickel, J. Wang, and U. Meyer, “Implementing an attack on bluetooth 2.1+ se-
cure simple pairing in passkey entry mode,” in Trust, Security and Privacy in Com-
puting and Communications (TrustCom), 2012 IEEE 11th International Conference on,
pp. 17 –24, june 2012. [cited at p. 19]

[8] E. Filiol, “Zero-knowledge-like proof of cryptanalysis of bluetooth encryption.”
Cryptology ePrint Archive, Report 2006/303, 2006. http://eprint.iacr.

org/. [cited at p. 21, 22, 54]

[9] A. W. Ophir Levy, “A uniform framework for cryptanalysis of the bluetooth e0
cipher.” Cryptology ePrint Archive, Report 2005/107, 2005. http://eprint.

iacr.org/. [cited at p. 22]

[10] J. Dunning, “Taming the blue beast: A survey of bluetooth based threats,” Security
Privacy, IEEE, vol. 8, pp. 20 –27, march-april 2010. [cited at p. 22]

61

http://www.bluetooth.com/Pages/Simple-Secure-Everywhere.aspx
http://www.bluetooth.com/Pages/Simple-Secure-Everywhere.aspx
http://www.bluetooth.com/Pages/Basics.aspx
http://www.bluetooth.com/Pages/Basics.aspx
http://www. bluetooth.org/spec/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

62 BIBLIOGRAPHY

[11] M. Ossmann, “Project ubertooth.” Retrieved 18 November 2012, from http://

ubertooth.sourceforge.net/. [cited at p. 23]

[12] M. Ossmann, “Great scott gadgets.” Retrieved 18 November 2012, from http:

//greatscottgadgets.com/. [cited at p. 23]

[13] Youtube, “Shmoocon 2011: Project ubertooth: Building a better bluetooth adapter.”
Retrieved 18 November 2012, from http://www.youtube.com/watch?v=

KSd_1FE6z4Y. [cited at p. 23]

[14] B. SIG, “Bluetooth basics.” Retrieved 05 Desember 2012, from http://www.

bluetooth.com/Pages/low-energy.aspx. [cited at p. 23]

[15] M. Kershaw, “Kismet.” Retrieved 10 Desember 2012, from http://www.

kismetwireless.net. [cited at p. 23]

[16] Frontline, “Packet sniffers and protocol analyzers for bluetooth.” Retrieved 16 De-
sember 2012, from http://www.fte.com/. [cited at p. 24]

[17] J. Padgette, “Bluetooth security in the dod,” in Military Communications Conference,
2009. MILCOM 2009. IEEE, pp. 1 –6, oct. 2009. [cited at p. 54]

http://ubertooth.sourceforge.net/
http://ubertooth.sourceforge.net/
http://greatscottgadgets.com/
http://greatscottgadgets.com/
http://www.youtube.com/watch?v=KSd_1FE6z4Y
http://www.youtube.com/watch?v=KSd_1FE6z4Y
http://www.bluetooth.com/Pages/low-energy.aspx
http://www.bluetooth.com/Pages/low-energy.aspx
http://www.kismetwireless.net
http://www.kismetwireless.net
http://www.fte.com/

Appendices

63

Appendix A
measurements

Underneath follows the complete set of measurements done in the practical tests.

A.1 Range measurements

Meters Test 1 Test 2 Test 3 Test 4 Test 5 Average
0 20 26 56 40 23 33
5 38 22 18 23 13 22.8
10 6 20 21 16 16 15.8
15 17 21 28 7 32 21
20 6 18 7 9 16 11.2
25 4 20 5 7 4 8
30 6 2 6 5 6 5
35 0 0 1 6 9 3.2
40 0 0 0 0 0 0
45 0 0 0 0 0 0
50 0 0 0 0 0 0
55 0 0 0 0 0 0

Table A.1: Packets captured with Antenna-1

65

66 APPENDIX A. MEASUREMENTS

Meters Test 1 Test 2 Test 3 Test 4 Test 5 Average
0 78 54 94 75 87 77.6
5 34 79 25 68 28 46.8
10 22 27 24 21 64 31.6
15 35 23 34 58 26 35.2
20 20 31 17 17 40 25
25 9 8 10 11 10 9.6
30 0 0 16 3 1 4
35 26 7 11 25 27 19.2
40 6 0 12 0 7 5
45 2 18 27 0 4 10.20
50 0 0 0 0 0 0
55 0 0 0 0 0 0

Table A.2: Packets captured with Antenna-2

	Tittelside
	Contents
	List of figures
	List of tables
	Acronyms
	1 Introduction
	2 Background
	2.1 Bluetooth
	2.1.1 The Bluetooth Architectural Overview
	2.1.2 Asynchronous Connection-Oriented Logical Transport
	2.1.3 Link Manager Protocol
	2.1.4 Logical Link Communication and Adaption Protocol
	2.1.5 Bluetooth Security Measures

	2.2 Attacks
	2.2.1 Active
	2.2.2 Passive

	2.3 Ubertooth
	2.3.1 History
	2.3.2 Specification and Capabilities

	2.4 Other Bluetooth Sniffers
	2.4.1 Capabilities
	2.4.2 Limitations

	3 Lab
	3.1 Hardware
	3.1.1 Bluetooth Controllers
	3.1.2 Bluetooth Adapters
	3.1.3 Ubertooth
	3.1.4 Antennas

	3.2 Software
	3.2.1 Host code
	3.2.2 Firmware
	3.2.3 Software Limitations

	3.3 Capability Testing
	3.3.1 Basic Operations
	3.3.2 Range Testing
	3.3.3 Processing Captured Information

	4 Attacking with the Ubertooth
	4.1 Passive
	4.1.1 Traffic Monitoring
	4.1.2 Location Tracking
	4.1.3 Stream Cipher

	4.2 Active
	4.2.1 Proposed Attack
	4.2.2 Initial Attack Phase
	4.2.3 Obtaining The Header
	4.2.4 Constructing a Detach Request
	4.2.5 Construction a Disconnect Request
	4.2.6 Encoding The Packet
	4.2.7 Implementing The Attack
	4.2.8 Additional Attacks

	5 Analysis
	5.1 Why Use The Ubertooth
	5.1.1 Other Open Source
	5.1.2 High End
	5.1.3 Advantage From Other Sniffers

	5.2 Ubertooth Capabilities and Limitation
	5.2.1 Range
	5.2.2 Tools

	5.3 Improved Passive Attack
	5.3.1 Stream Cipher
	5.3.2 Location Tracking

	5.4 Improved Active Attacks
	5.4.1 Denial of Service
	5.4.2 Disable Encryption
	5.4.3 Changing The Link Key
	5.4.4 Man In The Middle

	5.5 Implication of A Successful Attack

	6 Conclusion
	6.1 Further Work

	Bibliography
	A measurements
	A.1 Range measurements

