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Abstract

Functional magnetic resonance imaging (fMRI) is one of the most widely used non-invasive neu-

roimaging technique in humans. fMRI measures neural activity indirectly in the form of the blood-

oxygen-level-dependent (BOLD) signal. This signal reflects hemodynamic fluctuations that are

induced by neural population activity. Statistical analysis of the acquired data requires compar-

ing the task-derived predictions of the BOLD signal to the one observed during the experiment.

Typically, the predicted BOLD signal is modeled by convolving a hemodynamic response function

(HRF) with the neural stimulus functions. The HRF shape represents the variation in BOLD signal

in response to a neural event. Most fMRI studies assume a pre-defined canonical HRF. However,

several earlier studies suggested that the HRF shows strong inter-subject and inter-regional varia-

tions that are not captured by the canonical HRF. Slight variations in the modeling of HRF could

cause significant deviation from the predicted and observed BOLD signal, affecting the results and

complicating subsequent interpretation of the data.

Here, we used 7T-fMRI in combination with virtual reality (VR) to study the shape of the HRF

related to virtual navigation behavior. We assess the HRF in 18 participants across cortical and

sub-cortical regions during a virtual navigation task. We estimate the HRF as a function of the

navigation behavior (translations and rotations) using finite impulse response (FIR) basis sets in

multilinear regression analysis. The flexibility of FIR acknowledges the variability of observed

BOLD signals, allowing us to estimate the HRF without prior assumption about its shape. We then

extracted the peak latency and the amplitude from the HRF of each voxel and compared it across

regions involved in visual perception and navigation. We found differences in the HRF parameters

across subjects and regions in line with previous work. Our predicted BOLD signal from showed

higher correlation to the observed BOLD signal in some regions when compared to the frequently

used canonical HRF.
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Chapter 1
Introduction

The neural underpinnings of spatial navigation have been studied for decades, revealing the ex-

istence of a ’cognitive map’ in the late 1940’s by Tolman [1]. His results propose that the brain

creates a unified representation of the spatial environment to guide memory and initiate future ac-

tions. In his experiment, rats who had learned a roundabout route to a goal were able to adapt

and change to a more direct path if the previously learned route was obstructed. This observation

helped to conclude the presence of a map-like representation of the environment , which the animal

uses to navigate by taking shortcuts, which a route-based strategy would not.

Through the years, neurobiological discoveries have supported the development of cognitive

maps. The pioneers of such discoveries were O’Keefe and Nadel [2], who found the place cells

in the rat hippocampus that fire as a function of spatial position of the animal. Subsequent to

this, various discoveries such as the grid cell (firing in hexagonal lattice, , which code metric

distances)[3], head direction cells(tracking head direction)[4] and border cells(tracking the distance

to a boundary)[5] have shaped a model system that encodes navigation related quantities , which in

turn helped us understand how the brain process high level cognitive functions.

Non-invasive neuroimaging methods have helped us study these complex systems in humans.

Functional magnetic resonance imaging (fMRI) is currently the mainstay in human neuroimag-

ing with relatively high spatiotemporal resolution and capacity to map the entire network of brain

regions during an experimental task. Introducing virtual navigation experiments in fMRI have al-

lowed us to study naturalistic navigation mechanisms. These studies have shown map-like[6] and

grid-like[7] [8] representation in different brain regions suggesting a similar mechanism in humans.
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Chapter 1. Introduction

However, most of these fMRI studies assume a specific relationship between neural activity and the

evoked fMRI signal. Evidences from various basic fMRI studies show that this assumed relation-

ship might not be accurate. Here we test this relationship in the context of spatial navigation in

humans.

1.1 Functional magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) is a widely used non-invasive technique that helps

us study human brain functions. Functional MRI is an extension of magnetic resonance imaging ,

which provide additional information about biological function alongside the anatomical informa-

tion. The activity of neurons within a brain region is coupled to the increase in cerebral blood flow

to that region, , which is often called as the neurovascular coupling [9]. Functional activation of

the brain corresponds to this neurovascular coupling . By measuring the blood- oxygenation-level-

dependent (BOLD) signal we measure the brain activity by detecting the signal variation as a result

of increased blood oxygenation[10]. This proxy signal reflects neuronal mass activity of different

brain regions. The presence of deoxyhemoglobin (dHb), which is paramagnetic, influences the

MR signal negatively. Upon neural activation the variation in blood oxygenation causes increase

or decrease in the BOLD signal. This signal variations give the contrast to the fMRI images we

acquire. The critical factors that help us make conclusions from these brain images depends on

the signal strength and spatio - temporal resolution. The generated images should have high sig-

nal strength, reflecting the actual neural responses to events. The degree of spatial and temporal

resolution helps us distinguish elementary units of activated regions and the time course of various

neural changes respectively[11]. The BOLD signal variation for a neural event is characterised

by the hemodynamic response function (HRF) , which helps us translate a neural response to the

respective vascular response.

1.2 Hemodynamic response function (HRF)

Hemodynamic response (HR) is a term coined to relate the MR signal triggered by a neural activity.

The basic goal of fMRI is to find the correlation between the BOLD response and stimulus to make

2



1.2 Hemodynamic response function (HRF)

conclusions about the neural activation. The function that explains the variation of BOLD signal in

response to a stimulus is called Hemodynamic response function (HRF). HRF modeling conducted

in most studies helps us get a potential measure of response magnitude, latency and duration of

neuronal activity.

Studying the shape of estimated HRF by measuring the response height, time-to-peak and full-

width at half-maximum can be used to infer information about the intensity, time to peak amplitude

and duration of the underlying hemodynamic response. The precise timing and waveform of the

hemodynamic function helps researchers infer about the relative timing of neural activity, neural

feedback events, and sustained activity of a brain region.[11]

Figure 1.1: Hemodynamic response function: Typical Hemodynamic response function characteristics
showing the initial dip, the peak and post stimulus undershoot. [adapted from [12]]

A hemodynamic response function has three major characteristics: initial dip, peak and an

undershoot, which I will describe in detail in the following:

Initial dip

The function characterise an initial dip in response to a stimulus. The transient energy demand due

to neural activity result in decrease in the oxygenated hemoglobin (Hb) in the respective neural
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Chapter 1. Introduction

region. This increases the deoxygenated Hb level, which in turn results in decreased MR signal.

The dip is seen within 1-2 seconds after the stimulus. In some of the HRF models, the initial dip is

ignored due its rare detection without finer temporal resolution of MR signal.

Peak

Subsequent to the dip, the function ramps to a peak value in a few seconds. Due to a sudden

decrease in oxygenated blood in the responsive region, blood flow towards the region is increased

to provide with more oxygen. This increases the MR signal. The MR signal keeps increasing

until it reaches a peak value and the maximum amplitude is achieved around 4-6 seconds after the

stimulus.

Post stimulus undershoot

After the peak amplitude is achieved, the function shoots down to baseline. The MR signal drops

rapidly to reach the baseline around 16 seconds and then it further goes below the baseline. The

BOLD response rises gradually to the a baseline activity for a sustained period of time. The accurate

mechanism for this post stimulus undershoots remains unclear. It likely is due to a) sustained

cerebral metabolic rate of oxygen b) post activation reduction in cerebral blood flow and c) delayed

change in cerebral blood volume[13].

1.3 HRF and Data analysis

The neural responses to a stimulus is mostly instantaneous. A disadvantage as mentioned before,

the fMRI signal acquired is a surrogate signal. The neural response to a stimulus and the acquired

BOLD response is delayed by 4-6 seconds. To match the time courses of neural response and the

time course of the BOLD signal, the stimulus function is convolved with a pre-specified hemody-

namic response function[14], assuming it to be a linear time invariant system[15]. This convolved

function is considered as a predicted BOLD signal time series. The predicted BOLD signal is then

used to explain the variability in the observed BOLD signal mostly using a general linear model

approach. Therefore, using an inaccurate HRF gives an inaccurate reflection of brain response to a

stimulus, which can question the validity of follow-up statistical analysis.
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1.4 Aim and rationale

The exact interpretability of an evoked BOLD response is complex, for instance; the neural

response to a repeated stimulus can vary over time during a experiment. Also, the duration of the

neuronal activity result in integration of the hemodynamic response across time giving an increased

amplitude and duration to the BOLD signal. Another factor that could affect the BOLD signal is

the saturation of the vascular response over time. These complex relationship between the neural

activity and the evoked BOLD response is not clear to date. In spite of this, studies have treated

the BOLD response as the signal of interest by adding them linearly and using smooth functions to

model a HRF[14].

In most studies the variability in HRF across participants and regions is assumed to be minimal

and all neural events is assumed to evoke a fixed shaped HRF. However, studies have shown that

this assumption is not right even on a simple sensorimotor task [16], showing significant varia-

tion in HRF shape across participants in primary motor cortex. Furthermore, HRFs seem to have

variation in amplitude and time-to-peak between regions within a single participant [17]. There

are multiple factors that cause this inter-subject and inter-region variability in the shape of HRFs.

The neural activity differences, partial volume imagining of veins, slice timing differences, global

magnetic susceptibilities, vasculature differences, pulse differences, caffeine, alcohol and baseline

cerebral blood flow [18] [19] [20] [21] are few of them. A statistical study that compared an empir-

ically derived HRF to a commonly used canonical HRF shows that a misestimation as small as 1

second in the time-to-onset affected the model parameter estimation.[22]. In summary, studies have

shown the variability in HRF and the potential negative effect of assuming HRF consistency across

participants and brain regions. Therefore, a precise estimation of evoked HRF plays a crucial role

in correct interpretation of neuroscientific studies based on fMRI data.

1.4 Aim and rationale

Relaying on the results from previous studies, it is evident that the hemodynamic response func-

tion varies across participants and brain regions[16][23]. Assuming a consistent HRF during data

analysis have given results, but in most cases causing assessing bias and power-loss. Currently

used HRF models are generally estimated based on studies from cortical regions like visual cortex

or motor-sensory cortex. The vasculature, firing mechanism and functions are drastically different
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Chapter 1. Introduction

across regions, questioning the use of these models in higher cognitive studies that mainly focus on

subcortical brain structures

From the BOLD fMRI data acquired in the quest for studying cognitive maps involved in nav-

igation during a object-location memory task, we used a finite impulse response model (FIR) to

estimate the true HRF for navigation onsets. The estimated HRF is used to extract the amplitude

and delay to peak (sec) values. The extraction is carried out by curve fitting the estimated HRF with

different canonical HRF kernels that vary in its delay to peak(sec) values. In addition, to test if the

FIR modelled HRFs outperform the canonical HRF in terms of predictability, we split the data into

training and test runs. The training run is used to estimate the FIR based HRF. The estimated model

from the training runs is convolved with the evoked BOLD signal of the test runs. The estimated

model is then compared to the commonly used canonical HRF. Furthermore, we suggest ways to

make the simulations better to reduce power-loss due to bias in modeling.

6



Chapter 2
Theory and Methods

This chapter is divided into five section. The first section (1) includes the details of the data ac-

quisition and the experimental design. The general outlook of fMRI data and the preprocessing

steps are also mentioned in the first section. The second part (2) of the chapter covers the first level

analysis steps including the theory behind the applied concepts that led to the estimation of the

HRF. Section 3 explains the method used for extracting parameters from the estimated HRF. The

following section (4) discusses statistical inferences carried out using the estimated HRF and their

parameters. In the final section (5), we compare the efficiency of the extracted HRF model to the

commonly used canonical HRF model .

2.1 Experiment

2.1.1 Data acquisition

The data analysed here have been used in previous work [24]. Twenty six participants (11 females,

age 19-36, mean 23 years) performed a virtual navigation task while brain activity was monitored

using 7T-fMRI. Out of the 26 participants 4 were removed from the analysis due to excessive move-

ment that exceeded the mean plus 1 standard deviation (number of instantaneous movements)[25].

In addition, another 4 participants were excluded for technical reasons or if they had fewer than 4

scanning runs. In total, 18 participant entered our analysis.

Blood-oxygenation-level-dependent(BOLD) T2* weighted functional images were acquired on

a 7T Siemens MAGNETOM scanner using a three dimensional echo-planar imaging (3D EPI) pulse

7



Chapter 2. Theory and Methods

sequence [26] on a 32-channel surface coil: TR = 2.7 s, TE = 20 ms, flip angle = 14, slice thickness

= 0.92 mm, slice oversampling = 8.3 %, in-plane resolution = 0.9∧ 2 mm, field of view (FoV) =

210 mm in each direction, 96 slices, phase encoding acceleration factor= 4, 3D acceleration factor=

2. The first five volumes of the main scan were discarded to allow for T1 equilibration. A field map

using a gradient echo sequence was recorded for distortion correction of the acquired EPI images.

2.1.2 Experimental Design

The navigation task performed by the participants was an object-location memory task (Fig.2.1)

while freely navigating in a virtual environment, a task adapted from Doeller and colleagues[27].

The participants collected and replaced six everyday objects within a virtual arena in their own

pace. They collected all objects from its associated location once during an initial trial, by running

over it. In the next trial they saw an image (cue) of one of the objects in the upper part of the screen

and had to move to the object’s associated location and press a button. Once the button is pressed,

the object appeared at its associated position and participants collected it again. After an average of

3 trials/runs (ranged 2-4 trials), a fixation cross on a gray background was presented for 4 seconds

(intertrial-interval,ITI). Each scanning session was subdivided into EPI acquisition blocks of 210

volumes. Participants had a maximum of 5 runs and the average per participant was less than 5.

Figure 2.1: Virtual Reality environment, in which participants performed a self-paced object-location mem-
ory task. [Image adapted from [24]]
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2.1 Experiment

2.1.3 Preprocessing

Preprocessing steps assures that the assumptions of the analysis are met. Preprocessing makes

sure that the time course comes from a single location and is uniformly spaced in time. There

are numerous physical influences on the signal, which make the analysis of fMRI data a complex

process. The analysis helps to separate noise from the data. The data undergo several preprocessing

steps before entering statistical analysis. For this project we used an already preprocessed data. All

the steps were carried out in a specific pipeline within different software toolboxes included in

SPM, FSL and ANTs. Below we will discuss the preprocessing steps:

a)Motion correction: removing noise from respiration, head motion etc; b)Unwarping: map-

ping and correcting magnetic field distortions; c)Slice-time correction: aligning the slices ac-

quired in one TR by phase shifting; d)Coregistration: aligning the structural scan to the functional

scans. e)Normalization: transforming each participant’s brain anatomy into a standardized space;

f)Segmentation: creating a tissue segmentation mask based on intensity and anatomical locations;

g)Spatial smoothing: smoothing each voxel with weighted average of itself and its neighbours.

h)High-pass filtering: to fix the mean-signal intensity drift over time[28].

The preprocessed data is used for further data analysis. The characteristics of fMRI data and

tools used here are explained in the following section.

2.1.4 fMRI data

The fMRI data is acquired as a four dimensional data file (3 x space and 1 x time), which corre-

spond to the BOLD signal of the brain over time. The data file is a sequence of three dimensional

functional volumes of brain images compiled together in time to give a 4D file. A single brain

image is modelled as thousands of cubes or ”voxels” of specific volume. Our data had 1328354

voxels per participant. Another view of looking at the acquired 4D data is as a time course of indi-

vidual voxels. The BOLD signal varies in the brain areas in response to the experimental task and

the basic fMRI task analysis help identify these activated locations.

In this project, the fMRI data analysis was carried out using the well-established Statistical

parametric mapping (SPM) toolbox [14] implemented in Matlab. SPM help us to create different

processed images where each voxel is analysed using univariate statistical parametric tests. The

9



Chapter 2. Theory and Methods

assembly of voxels are considered as an image constructed by spatially extended statistical pro-

cesses which help us to test hypotheses neurobiological effects on the regions we are interested in.

The wide application of SPM is mainly due to its simplicity and success in diverse experimental

paradigms. In SPM, the analysis can be divided into two major steps. The first level analysis and

the second level analysis, which correspond to participant-wise analysis and group level analysis

respectively.

2.2 First level-data analysis

The first level data analysis refers to single participant statistical testing. We conduct different steps

to extract interested information from each individual participant. We use the General linear model

(GLM) analysis which is widely used in fMRI studies for modeling and statistical testing. In this

section you will find how we modelled the variables of interest and how we defined the finite-

impulse response (FIR) basis sets to create a design matrix for the GLM analysis. The section also

includes basic theory necessary to understand the analysis.

2.2.1 General linear model (GLM)

The general linear model (GLM) is the most widely used technique for analysing task-based fMRI

experiments. The analysis helps us model the observed signal/data(Y) in terms of a single or

multiple explanatory variables. These variables are often known as regressors(X). Regressors are

the hypothesised variables of interest that could have affected the observed experimental data. The

regressors can be flickering checker boards, image cues, button presses, etc; which are included

at known or extractable time points during a experiment. The analysis scales these regressors and

linearly combine them together to give the best explanation of the data. The best scaling parameter

(β) is determined by finding the least residual error (ε)(least squared error), which is a measure

of the difference between the actual data and the scaled regressor model (Xβ) (equ. 2.1). GLM’s

can involve the use of time series and multiple regressors but the linearity in the model remains in

how the one type of regressor is combined together to explain the data. When we have multiple
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2.2 First level-data analysis

regressors for analysing the data, it is called as multi-linear regression (Fig.2.4).

Y = Xβ + ε (2.1)

2.2.2 GLM for fMRI data

The fMRI data is a time-series data which can be analysed using GLM. The analysis in most cases

involve more than one regressor, hence called a multi-linear regression. The regressors in fMRI

analysis are modelled differently by convolving the regressor function with a HRF to translate the

neural responses to vascular responses, which is explained below.

HRF-convolution

The neural responses are a lot quicker than the change in blood flow. The neuronal activity triggers

a hemodynamic change with a certain latency typically assumed to be around 6 seconds. To study

the observed BOLD signal we need to synchronize it to corresponding regressors. The regressors

as mentioned earlier are variables that could have affected the BOLD signal. To create a regressor

that matches the hemodynamic activity the regressors are convolved with a HRF (Fig.2.2). The

convolution helps us transform the neural stimulus regressors into vascular response regressors

[15], hence giving a prediction of the expected BOLD signal. Incorrect modeling of HRF might

cause significant variance in GLM coefficents, power and model validity [16][29]. Many models

have been proposed with various degrees of freedom to account for the variability in the evoked

BOLD signal[11]. Most of fMRI studies use a fixed shape (canonical HRF model) by ignoring the

variability in HRF shape. At the top of the flexibility spectrum is the finite impulse response (FIR)

basis sets, which is used in this project to estimate the true HRF for each regressor.

In fMRI analysis, the convolved regressors are specified in the form of a design matrix (X β)

(Fig.2.4), for any experimental design or nature of hypothesis testing, the design matrix defines

further analysis steps. In the design matrix, each regressor corresponds to a column that are exper-

imental conditions of interest. And the rows in the design matrix correspond to each data point. In

fMRI, the scan images represent data points over time. Given the navigational behaviour, a GLM

helps us relate the observed data to the one we expect to see, by expressing the observed neurophys-

iological responses (Y) as a linear combination of expected variables (X) and some residuals (ε).
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Chapter 2. Theory and Methods

Figure 2.2: HRF convolution: The convolution of stimulus functions with a canonical hemodynamic re-
sponse function to get the predicted time course for the stimulus. [Adapted from [14]]

The GLM analysis on fMRI data is done at voxel level. Consider a single voxel, which is a cube

of a particular area within the 3D image. The voxel size and location remains the same throughout

the experiment. The time series data of the BOLD activity within this voxel can be extracted from

the multiple images acquired during the experiment. By running a GLM on this time series data we

can get the beta value corresponding to the regressor for that particular voxel. If there are multiple

regressor types, the analysis estimates the beta values for each regressor. Likewise, we run the

GLM on the time series data of all the voxels separately. Eventually giving an image of results;

voxel-wise beta values of whole brain for each regressor type.

2.2.3 Variables of interest: Regressors

The fMRI image data as such gives a lot of information about what happens within the brain during

a task. Unlike most experiments where the regressors are designed before the experiment, here

we retrospectively look at when the event of interest occurred during the experiment to extract the

onsets time and their respective duration. The regressors of interest in this project are modelled

using the navigation onsets. The onsets and their duration are extracted from a time series that have

the real-time position and angular coordinates of the participants in the VR environment.

For HRF estimation, the regressors modelled rotation and locomotion onsets. The locomotion

onsets were extracted from the changes observed in x and y coordinates of the participant in the

VR. The time point that corresponded to respective change in any one of the coordinates from a

stationary state gave a locomotion onset. The duration was defined as the time period between an

onset and the subsequent stationary state. Similarly for rotation onsets, the point of angular change
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2.2 First level-data analysis

resulted in an onset. As expected in a self-paced navigation task, the number of onsets were high.

To compensate, the rotation onsets were divided into two independent: onsets- rotation right and

rotation left. Thus, giving three independent regressor types in total. Further, all the onsets with

duration less than 0.5sec were removed. Doing so, we removed all the erradic button tapping by

the participant. Later these onsets and their durations were separated out into corresponding runs

using the pulse time data that contained the time point for each TR 1.

2.2.4 Finite impulse response model

Finite impulse response model is considered to be the most flexible basic sets which make the least

assumption about the shape of a BOLD response. FIR model is a set of basis functions delayed in

time that model beta estimates for time points following a neural event. Instead of convolving the

regressor with a canonical HRF model, here the estimates of a set of stick functions for specific

time points to explain the BOLD response. Thus giving the actual shape of the response over the

specified time window. The adequate number of stick functions and the length of time window

should be chosen considering the data quality and TR.

Figure 2.3: FIR- Stick functions: Finite impulse response model : Our FIR model has 15 stick functions
evenly placed at fixed time points across the time window of 20 sec (a stick function every 1.33 sec). Each
estimated stick function here represent the mean BOLD signal variation for right rotation onsets. The plot
represent the HRF of pericalcarine sulcus from one participant.

1 Repetition time- Time points that corresponds to image acquisition, in our case TR = 2.756 sec
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In this study, we modelled the HRF using a FIR model across a time window of 20 seconds with

15 basis/stick functions. Each of the basis functions weight unit impulses that occur at time t =1.33,

2.66 to 19.99sec ; after an onset, modeling a weighted stick function every 1.33 second (20 sec/15

basis functions=1.33sec)(Fig.2.3). This value can be changed by varying the window length and

number of stick functions. The t is different from a imaging TR. Here t refers to a sub-resolution

time point where the model estimate a beta using the data acquired from the imaging TR’s, which

is nearest time point. Each of the 15 stick functions are regressors which model the activity of

locomotion and rotation onset for the time window. For instance, in a single experimental run there

are on average 100 locomotion onsets. Using the FIR model, the subsequent brain activity due

to all of the locomotion onsets were weighted in 15 stick functions. The estimation of the betas

is an ordinary least squares (OLS) solution and is carried out for all the voxels. The estimated

betas represent the BOLD activity across the specified time window, which is the Hemodynamic

response function (HRF) for the particular regressor.

Likewise, we estimated the betas from each stick function for all the three onset types. The

voxel-wise beta values were mapped across the whole brain for each stick function, giving 15

functional maps of the brain. We created 45 maps (15 beta maps*3 onset types) per run for each

participant. The respective betas for each stick function were averaged across runs to give the HRF

for each voxel.

2.2.5 Design Matrix

While designing the design matrix, we had 15 stick functions as subset to each of the three onsets

types. These regressors stayed as columns in the matrix that corresponded to the experimental

variables of interest. As the rows in the design matrix represent the data points, we had the 4D fMRI

images representing the rows (210- 3D images per run) (Fig.2.4). Alongside the main regressors,

we added the six nuisance regressors which factored the motion correction parameters. Likewise,

the design matrix was modelled for all runs per participant. These design matrices were used for

previously mentioned beta estimation.
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2.2 First level-data analysis

Figure 2.4: Design matrix: [Fig:A]. Representation of the General Linear Model (GLM) for a voxel with
time-series Y predicted by a design matrix X. This example include three regressors of interest and nuisance
regressors. Calculated betas( β) corresponding to each regressor are placed in amplitude vector (β). Vector
’ε’ contains calculated error terms to each time point ( adapted from [29] ). [Fig:B] The design matrix for one
participant across 5 runs, x axis representing the regressors and y axis representing the data points(images).
[Fig:C] Zoomed design matrix for one run, showing three 3 main blocks of regressors, each block containing
15 regressors representing 15 basis/stick functions of locomotion , left or right rotations. The right end of
the image represents the six nuisance regressors for motion correction.
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2.3 HRF-parameter extraction

Next, we extracted the HRF parameters from the regression output. Our extraction procedure builds

on several individual steps. The extraction was carried out from the estimated HRF for every voxel.

Firstly, we created HRF kernels from the canonical HRF model that vary in the delay to peak (sec)

value. The parameters were extracted by curve fitting the estimated HRF with the HRF kernels.

The amplitude and delay to peak values were extracted from the best fit. This procedure was carried

out for all the voxels across all participants. The canonical HRF is the most commonly used model

in fMRI analysis, below I briefly explain the characteristics of the model and later how it is used to

build the kernels .

2.3.1 HRF kernels

Canonical HRF

The Canonical HRF (CHRF) is considered as the typical BOLD impulse response, it is modelled

in the SPM toolbox [14] as a linear combination of two gamma functions(Fig. 2.5. In this model

the only unknown or flexible parameter is the amplitude (A). The CHRF is characterised by a delay

to peak (α1) of 6 seconds and undershoot delay (α2) of 16 seconds.The CHRF model do not have

a initial dip. The CHRF is used to convolve the stimulus function to get task related regressor

(Fig.2.2) which is used in the design matrix for GLM analysis. The model is popular due to its

simplicity and robustness. For most event-related fMRI data analysis, the canonical HRF and its

temporal and dispersion derivative seems to give a reliable detection of neural activity[30]. The

model is inflexible considering only one unknown parameter (A) in the model.

Figure 2.5: Canonical HRF Equation: where t refers time, α1= 6, α2= 16, β1 = β2 =1 and 1/6, Γrepresent
the gamma function. The only unknown value is amplitude ’A’.
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HRF kernels

The above mention terms in the CHRF equation are dependent on each other. Changing one of the

terms will give a different HRF shape. We created HRF kernels by varying the delay to peak (sec)

value (α1) and setting the time window to 20 sec matching the time window of estimated HRF.

Considering the possible variation in the true HRF shapes, we created kernels with all HRFs that

peaked between 2 sec to 10 sec with 0.5 sec difference from one another. We had 17 HRF kernels

with different attributes, which were used to fit the HRF estimated using FIR model.

Figure 2.6: Parameter extraction: (1) ’Test kernels’ : the HRFs with varying delay to peak latency, high-
lighting the best fit for the data (2) ’Mean square error’: selection of the best fitting kernel(red star)to the
data using the mse loss function (3) ’Model fit’: The data (blue) and the selected kernel (red)

2.3.2 Curve fitting

The created kernels were iterated through the estimated model from every voxel to find the best

fitting kernel for each voxel. The best fit was the HRF kernel that fits the data with least mean

square error (mse).The Y-hat 2 values of the best fitted kernel were estimated and the highest value
2Y-hat represent the predicted values for a line that best fits in a linear regression. Here, for each time point we get

a particular predicted value. We get 15 values that represent a line that best fits the data.

17



Chapter 2. Theory and Methods

from the Y-hat matrix was taken as the amplitude value of the voxel. And the delay to peak for the

selected kernel was extracted as the delay to peak of the voxel.(Fig.2.6). This extraction step was

done on all participants for both the rotations and locomotion onsets.

2.4 Statistical inference

2.4.1 Voxel-wise analysis

The first level analysis gave us the HRF for all the voxel across all participants. The estimated

HRFs were used to extract the amplitude and the delay to peak, which were mapped as separate

whole brain images allowed us to visualize the variations in these parameters across brain regions

corresponding to each onset type.

All the amplitude images across participants were smoothed separately for each onset in SPM

using nearest neighbor interpolation method. The smoothed images were used for second level or

group level analysis to find the regions that had threshold activity across all participants. To find

the delay to peak (sec) in group level, the median across all the participants were calculated to

create a brain image showing the median delay to peak (sec) across all regions during a specific

navigational onset. We also mapped the mean squared error values corresponding to each voxel

from the parameter extraction. The map from group analysis showed regions that had high and low

mse values which indirectly represented the success of curve fitting procedure. The results of this

analysis are shown in (Fig.3.6)

2.4.2 Regions of interest analysis

ROI definition

The region of interest (ROI) analysis refers to analysis on a selected cluster of voxels within the

brain where the investigators interest lies. The region can be selected by creating a search space or

by using anatomical atlases available in toolboxes like SPM, FSL or Freesurfer.

18



2.4 Statistical inference

Figure 2.7: Freesurfer region of interests : Each of the ROI’s and the analysis results from the respective
ROI’s were colour coded (V1- Blue, HC- Green, EC- Red, PHC- Yellow)

Here we used the Freesurfer atlases where neuroanatomical labels of each location were mod-

elled based on probabilistic information from a great number of manually labeled training set that

gave the geometric information and neuroanatomical boundaries of brain regions. The ROI’s were

extracted from the Freesurfer atlas. These binary ROI atlases were normalized and coregistered

(aligning with functional images) with the common MNI 3space (Fig.2.7). The ROI’s we were in-

terested in were the Pericalcarine(V1), Hippocampus(HC), Parahippocampus(PHC) and Enthorinal

cortex(EC). These regions were chosen considering the activity shown and spatial coding charac-

teristics mapped in these regions during previous navigation tasks. Each of the ROI’s and the

analysis results from the respective ROI’s were colour coded (V1- Blue, HC- Green, EC- Red,

PHC- Yellow)

ROI-based inference

The ROI analyses were conducted using unsmoothed data. The selected ROI maps were used to

extract the estimated basis functions (15 stick functions) for the voxels within the ROI region. The

median across these HRFs within a ROI were calculated to give the ROI specific HRF. For all 18

participants, the HRFs corresponding to the ROI’s were found for the rotations (left and right) and

locomotion onsets. Thus, giving three estimated HRF for each ROI.

Further, to evaluate how the HRF parameters varied across participants and regions, the region

3 MNI space(Montreal Neurological Institute space) space was developed by the Montreal neurologival institute to
define a brain that could be used as a representative of the population. They used large series of MRI scans on normal
controls to manually define various brain regions.
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specific HRFs were used to extract the amplitude and delay to peak value by curve fitting to the

HRF kernels created for voxel wise extraction. Considering that not all voxels within the selected

ROI showed activation, to reduce the noise from non-active voxels, we extracted the top 50 percent

of voxels that showed least mean squared error in the curve fitting (Fig.4.1, 4.2). The HRF and

their parameters from the voxels were estimated across the participants. (Fig. 3.1, 3.4, 3.3, 3.5)

2.5 Comparison study

The previous steps in the study helped us evaluate the HRF and the parameters across participants

and regions. To evaluate the estimated model efficiency compared to a commonly used canonical

HRF model, we did a correlation study using these two models. Firstly, we split the data into

training runs and test runs to avoid double dipping [31]. The convolution of both HRF with a boxcar

function generated the corresponding predicted BOLD timeseries for test runs. The predicted time

series were correlated with observed timeseries from test runs. For the correlation study was only

carried out for locomotion onsets.

2.5.1 Training runs and Test runs

The experiment was divided into different runs during data acquisition. Most participants had 5

runs. The test runs were runs 2 and 4. The remaining of the runs were used as the training runs.

The training runs were used to estimate the voxel wise HRF for the selected ROI’s. The results

from training run were used to correlate the data from test runs.

2.5.2 Convolution

With Canonical HRF

The widely used canonical HRF convolution was conducted on the test runs to estimate the pre-

dicted time series. A boxcar function of all the onsets of the test runs were modelled. The canonical

HRF was down-sampled( seconds to milliseconds ) to the time resolution of boxcar function. Each

onset from the boxcar function were then convolved with the canonical HRF to give a predicted

BOLD time series. (Fig.2.8)
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2.5 Comparison study

Figure 2.8: CHRF convolution: The blue line represent the boxcar function created using the onsets and
their duration. The red graph shows the predicted time series modelled by convolving the canonical HRF
with boxcar function.

With Estimated HRFs

As an alternate to convolving a CHRF , we used the optimal kernel associated with each individual

voxel from the training runs to convolve with the boxcar function from the test runs. We did the

similar down-sampling mentioned above to fit the time resolution of boxcar to get the predicted

time series. By using the selected kernels, we created different predicted time series for each

individual voxel. After convolution, these predicted time courses were again up-sampled to match

the temporal resolution of the imaging data.

2.5.3 Predicted model and true BOLD response

We had two predicted models, one created with the CHRF and another from the best fit of FIR

based HRF. Both the predicted BOLD time series were correlated to the actual BOLD time series

data of test runs. Using Spearman-rank correlation to evaluate our model’s efficiency for predicting

the observed BOLD signal, we then compared to the CHRF model.(Fig.3.7)
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Chapter 2. Theory and Methods

Figure 2.9: PHF and CHRF convolutions: The plot shows the canonical and estimated HRF convolutions
for similar onsets. The delay to peak for the selected HRF kernel is lower than the canonical HRF, hence the
visible shift in the time series.
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Chapter 3
Results

The objective of the thesis was to estimate the hemodynamic response function during a navigation

based object-location memory task. This chapter we present the estimated HRF across the partici-

pants and selected regions. The section focuses on the results from two types of onsets: locomotion

and rotation. We also plot the whole brain topology map which helped us visualise the delay to peak

and amplitude values across different brain regions. The regions with threshold activity on group

level was mapped, showing the regions activated during navigation and planning. In the ROI wise

analysis, we determine the HRF of 4 main regions which have shown significant functional impor-

tance during previous navigation related studies[32]. The extracted HRF parameters across these

regions were plotted, showing variation across participants and regions. The last section covers

the comparison study between the predicted BOLD signal using the estimated HRF and canonical

HRF.

3.1 Locomotion and rotation regressors

The locomotion and rotation onsets referred to the stimulus function that corresponded to the points

when the subject started moving forward or rotated (changed their field of view) while trying to

locate the objects in the virtual environment. The number of rotation onsets was higher than the

locomotion onsets. The number of onset were reduced by removing all the onsets with duration

less than 0.5 sec, thereby removing all the short instant button tapping by the participants during

the experiment. Even after this step, an average of locomotion onsets stayed around 100 per run.
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3.2 ROI analysis

The ROI wise analysis was carried out for 4 regions, which had significant importance during a nav-

igational task. The median of all the HRF estimated from the voxels within each ROI (Fig.2.7) gave

specific HRF shapes for each region. The median HRF was plotted across all participants, showing

the variance in shape across participants and regions. The plots were colour coded consistently in

all the results which corresponds to respective regions.

3.2.1 Locomotion HRFs

The HRFs for the locomotion onsets were plotted across (Fig.3.1) the 4 ROI’s. The plot for Peri-

calcarine (blue) showed the characteristics of the theorized HRF with an initial dip, a peak value

Figure 3.1: Hemodaynamic response function for locomotion onsets across the 4 ROIs: The black curve
represent the mean HRF across 18 participants and the coloured regions represent their standard error of the
mean(SEM).
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and a post stimulus undershoot. The hippocampus (green) and parahippocampal (yellow) HRFs

started with a peak and a gradual undershoot. The HRF in these two regions failed to estimate the

initial dip and the steep ramp to peak. The entorhinal (red) HRF was noisy with visible fluctuations

across time. The amplitude values in entorhinal cortex were lower compared to other regions.

Nevertheless, we see an initial dip and a peak around 6 seconds.

3.2.2 Rotation HRFs

The HRFs for rotations were estimated as two separate onsets for left and right rotations. The

estimated results for both type of rotations showed region wise similarity(Fig.3.2 . We combined

both HRFs from the rotations and plotted their mean(Fig.3.3). Unlike the locomotion HRF for

pericalcarine(blue), for rotations the HRF starts with a peak value, missing the initial dip and the

steep to reach peak. The function drops eventually going below the base line. In case of hippocam-

pus (green), parahippocampus (yellow) and entorhinal cortex (red) we see a clear HRF which was

not seen in locomotion onsets. For all three regions we see a initial dip and a consistent ampli-

tude above baseline. The HRF from entorhinal cortex shows similarity with its locomotion HRF

counterpart, representing a sudden steep peak around 6 seconds in both cases.

Figure 3.2: HRF-Visual cortex for Rotations: The two shades of blue represents left and right rotations. The
curve correspond to the mean across participants and the coloured region depict the SEM. The left and right
rotations elicited striking similar BOLD responses, as expected for visual regions
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Figure 3.3: Hemodaynamic response function for rotation onsets across the 4 ROIs: The black curve rep-
resent the mean of rotation onsets (both left and right combined) across 18 participants and the coloured
regions represent their standard error of the mean(SEM).

3.3 Amplitude and Delay to peak values

The amplitude and delay to peak values were estimated from the parameter extraction. The param-

eters were extracted from the median HRFs estimated across the ROI’s. The bar plot shows the

variation of the parameters across participants in their respective ROI’s.

3.3.1 Parameters from locomotion onsets

For locomotion (Fig.3.4) , we see a consistent BOLD signal. Surprisingly the amplitude values are

high for hippocampus (green) and parahippocampus (yellow), considering that they are subcortical

regions. The error bar suggest significant variance in amplitude across 18 participants for all re-

gions. The entorhinal cortex (red) has the highest fluctuation in ampliude, which is seen in the HRF

shape mentioned in the previous section. The peak latency is highest for Pericalcarine sulcus (blue)
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3.3 Amplitude and Delay to peak values

with a average value of 5.5 seconds, close to a canonical HRF peak (6 sec). The lowest latency to

peak is seen in hippocampus (green).

Figure 3.4: Locomotion Parameters: The mean of extracted parameters across participants for locomotion
onsets represented for different regions. Error bar showing the SEM across subjects.

3.3.2 Parameters for rotation onsets

For rotation (Fig.3.5), we see a massive difference in amplitude between the Pericalcarine sul-

cus(blue) and other regions. All the three subcortical ROI’s show low amplitudes. The variation

in amplitude is lower for rotations compared to locomotion across participants. The delay to peak

values are highest for hippocampus( green ) and parahippocampus (yellow), with values around 5.5

seconds.

Figure 3.5: Rotation Parameters: The mean of extracted parameters across participants for rotation onsets.
Error bar showing the SEM across participants
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3.4 Whole brain maps

The brain maps were created by assigning the estimated parameters to each voxel location. Sec-

ond level analysis using the smoothed amplitude maps across the participants gave regions with

threshold amplitude values. The result showed higher amplitudes in expected regions like V1 and

prefrontal cortex. There were activation in some voxels in subcortical structures like hippocampus,

entorhinal cortex and parahippocampus.

Figure 3.6: Whole brain maps: The three maps shown are from the second level analysis of extracted
parameters. The bright colour represent higher values. Amplitude map shows high activity in visual cortex
and prefrontal cortex. The delay to peak map shows clusters of regions with similar value. The dark regions
in mse map depict the regions that had least mean squared error while curve fitting.

The median map of the delay to peak(sec) values across participants show clusters of voxels in

different brain regions with consistent values. The result indirectly represent the regions activated.

The regions showing higher amplitude values have consistent delay to peak values. The peak

latency varied across regions, which could infer in variation across different regions. The regions

with higher mse values showed regions that did not fit well during curve fitting. The regions like

visual cortex showed low mse values suggesting the success in finding a best fit during curve fitting,

3.5 Predictive modeling

The Spearman correlation between the observed BOLD time series and the predicted time series

showed comparable results for estimated and canonical HRF. For the HRF estimated for locomo-
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tion onsets, the correlation is slightly higher than the CHRF in visual cortex (blue). The other

regions had very low spearman rho values for both HRFs. Surprisingly, the hippocampus region

had negative correlation with both predicted time course.

Figure 3.7: For locomotion onsets, the Spearman correlation between predicted time course using both the
HRFs and test runs data.The graph representing the correlations in 4 different regions. The first bar of each
colour represent the canonical HRF correlation(CHRF) and the neigbouring one represent the estimated
HRF correlation(EHRF) V1 showing higher correlation for estimated HRF when compared to canonical
HRF. Hippocampal region represent a negative correlation with both the predicted time series.
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Chapter 4
Discussion

4.1 Overview

In this study, we estimated the HRF during a self-paced navigation task using a finite impulse re-

sponse model. The modeling was carried out for events related to participants navigating in a VR

paradigm. Unlike most navigation based studies where they estimated a beta for the whole time

period, here we model basis functions for each time point following an onset. This helped us under-

stand the characteristic variation in HRF across different regions. We estimated the HRF for brain

regions involved in visual perception and navigation. The estimated HRF shapes across different

regions resemble a theorized HRF, with a initial dip, a peak and a post stimulus undershoot. The

extraction of HRF parameters showed their variance across regions and participants. The study

stands out by demonstrating the diversity in HRF shape during a navigational task. Our study pro-

vide evidence to support the concerns of how the variation in HRF could lead to mis-specifications

in fMRI data analysis. We also validated the model efficiency by comparing the predicted BOLD

signal modelled using our estimated HRF and the canonical HRF.

4.2 The human navigation network

The human navigation network studied here mainly focuses on four different brain regions. A

navigation task activates these regions, which are studied broadly to understand the navigation

cognition in humans[33][32].
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Our task relies on visual cues that helped participants navigate in the VR environment to find the

object location. Studies have shown how navigation is strongly driven by vision, which modulates

the activities in different cortical regions.[34][35][36][37]. The estimated HRF for the pericalcarine

(visual cortex) during locomotion (Fig.3.1) clearly depicts a HRF character, this shape is seen in

numerous studies, which initially lead to the modeling of the canonical HRF for fMRI studies[14].

The region showed the highest activity among other modeled regions. Here the HRF peaks around

6 seconds, matching the CHRF model[14]. The rotation onsets for the same region produced

a peak at the point of onset(Fig.3.3). The earlier peak during rotation could be due to the eye

movement that precedes the button presses[38]. The button presses that correspond to rotation

caused bigger changes in visual cues resulting in a greater optic flow compared to locomotion

related button presses. The higher amplitude during rotation could be due to this higher optic flow.

The consequence of optic flow[39]during navigation and spatial attention[40]is an established study

in other primates. The higher amplitude in the visual cortex compared to other regions could also

be due to MR coils, which are closer to this region than other deeper brain regions studied here.

The results of estimated HRFs for pericalcarine validates the estimation and extraction procedures

used in this study due to the characteristic similarities seen from previous studies[41].

Hippocampal activity is well documented in VR studies when participants used a cognitive map

based strategy to create shortcuts or plan novel routes during a navigation task[32]. The estimated

HRF in the hippocampus during locomotion onset (Fig.3.1) showed a negative response. The peak

at the beginning of the estimated HRF could presumably be an activity related to the decision

making process in the hippocampus that occurred seconds before the actual onset. Supporting

this inference, in a self-paced VR experiment, the movement initiation periods have shown higher

activity in the hippocampus[42]. Studies have predicted hippocampal representation of the future

locations during a goal-directed behavior, reflecting the importance of the region for navigation[43].

A similar HRF shape is see in our study for the parahippocampal region, which is often studied in

parallel with the hippocampus for spatial representation. Unlike locomotion onsets, for rotation we

see the normal characteristics of the HRF in both regions. This could suggest a difference in how

the regions respond to locomotion and rotation.

The Entorhinal cortex is considered as one of the central regions alongside the hippocampus

32



4.3 Variation in HRF

where we find functionally defined cells[44], which is studied in humans for understanding the

coding principles that result in spatial representation[33]. Our estimation from the entorhinal cor-

tex characterised a peak around 6 seconds both for locomotion and rotation. The HRF model looked

noisy with visible fluctuations. The functional images from our data cuts out a large portion of vox-

els from the entorhinal cortex during data acquisition, this could be a reason for the low amplitude

values resulting in noisy data.

The parameter extraction gave the amplitude and delay to peak values across regions and par-

ticipants. The mean of these parameters across participants showed consistency. For locomotion

onsets (Fig.3.4), the delay to peak varies from 4.5sec to 5.5 sec across the regions. The amplitude

values for locomotion was highest in the hippocampus, suggesting the functional importance of the

region during locomotion. For rotation onsets (Fig.3.5, the delay to peak varies from 4.5 sec to 5.5

sec across regions. The amplitude value for rotation was highest for visual cortex, showing drastic

difference compared to other regions.

4.3 Variation in HRF

There is a continuing challenge of understanding HRF variation in fMRI study. Even though we

see variation in the HRF across regions, these effects were small and did not survive the statistical

testing. The shape of the estimated HRF across different regions showed the characteristics of a

theorized HRF[14]. The initial peak in some regions mentioned above could be due to inaccuracy in

modelling the correct onset. The speculations mentioned could suggest that the HRF we modeled

for some regions missed the initial HRF characteristics, which might have occurred before the

modeled onset (button presses). These inter-stimulus events that led to the button presses are not

modeled. The estimated model only had the HR starting from the button presses. Most studies

use the button presses as the onset to do various statistical testing. Studies have shown that a

1 sec misestimate of the delay to peak could affect the magnitude fit by 10 percent and a 2 sec

misestimate would lead to decrease in magnitude by 38 percent[23]. In our object-location memory

task, the regions we study for spatial representation could involve these initial cognitive processes

that led to the events( button press). This misestimation could lead to drastic differences between

the observed and predicted BOLD signal. In the correlation study we conducted for hippocampus,
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both the predicted time series showed negative correlation to the observed BOLD response. This

could mean that none of the models work well in some regions or these regions have a totally

different HRF character. A recent study that supported this claim have shown negative HRF maps

in visual cortex, showing a entire network, which respond with characteristics opposite to currently

theorized HRF [45] .

Other than the misspecifications caused during different HRF modeling and physiological fac-

tors, there are various other factors, which could influence the HRF. HR varies in its shape as a

function of both the task and brain regions. Early studies from Aguirre [16] and Buckner[46] have

shown these variations across participants and regions. The delay to peak values varied between

4-8 sec in gray matter and 8-14 sec in regions with large blood vessels, suggesting a longer time for

blood to reach large vessels[47]. The vessel diameters and density within each voxel vary across

brain regions and this is one of the major non-neural reasons for HR variation. In our study we

don’t see such large variations in delay to peak values across regions probably due to the inaccu-

racy in finding the best fit during parameter extraction. The high amplitude values in visual cortex

and the similarity in low amplitudes in the other three closely connected subcortical regions could

suggest the vasculature differences which led to HRF variations. Using a fixed HRF model will

lead to misspecification in most brain regions [48]. The most common approach for these variabil-

ities while doing a GLM analysis is to use multiple basis functions for each variables of interest.

We decided to use FIR model considering the flexibility it offered to model a true HRF. Studies

from Lindquist [49] have shown that FIR model do not show large biases and could account for

large model misspecification and variation in timing and duration of onsets.

4.4 Which one is better?

The comparison study for locomotion onsets shows that the canonical HRF seems to be a good

compromise between robustness and flexibility for our data. The estimated HRFs have better cor-

relation in visual cortex, which showed the highest activity among the ROI’s. The result suggest

that the FIR model will likely outperform canonical HRF if provided with better data quality and

accuracy in extraction of parameters, which was validated in visual cortex that had the highest

number of active voxels.
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4.5 Limitations and recommendations

Finite impulse response model is a great tool to model a HRF without giving any bias to a specific

shape. Each basis set in the FIR allows you to have one free parameter for each time point within

the time window, making it one of the most flexible model to estimate true HRF. FIR helped us

study the variability of HRF across different regions for different conditions. The flexibility of FIR

have advantages and disadvantages while modeling a HRF. For FIR model, without a high quality

data the estimates will be noisy. The number of basis set determine the degree of freedom of the

model, the increase in basis functions decrease the statistical power. In our study we used 15 basis

functions, this number was selected to compromise between the resolution and robustness of the

data. Our data had a TR of 2.756, which resulted in very few data points for the amount of onsets

we had. The high TR and resultant data quality restricted our basis functions to 15. In addition, we

modeled the 20 second time window considering the characteristics of a HRF, which reach a post

stimulus undershoot around 16 second. The estimation can be improved by using a data acquired

in shorter TR’s, this will let us have more data points within the time window. Also, allow us to

increase the number of basis sets, leading to more precise estimation of the shape of the HRF.

For the parameter extraction, we used the HRF kernels adapted from a canonical HRF by vary-

ing the delay to peak values. The parameters extracted do not show significant variation. The

results could mean that the curve fitting using the different HRF kernels did not match accurately

(Fig.4.5). We used the median HRF across all voxels within an ROI to extract the parameters, this

could include a large number of voxels that do not show significant BOLD response. The curve

fitting for these voxels would lead to false results, affecting the median values for a ROI. Estimating

the HRF from top 50 percent of voxels that showed least mse during curve fitting have improved

the shape and characteristics of HRF (Fig.(4.1),(4.2)). We chose MSE as a loss function for the ex-

traction. However, there are other loss functions we could have used and this could potentially lead

to more accurate HRF parameters. Future studies could test other loss functions directly against

each other. Also, to validate the possible shift in the actual neural response related to movement

initiation, we could study the data points before the button presses. This would likely give the true

HRF characteristics in those mentioned regions.
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The variation in HRF across regions and subjects is evident. To overcome this limitation in the

future studies, we could acquire data solely for estimating the HRF for a particular task. Studies

have shown that the estimated HRF from one participant was able to explain 72 percent of the vari-

ation in other participants[46]. Another alternative is do multiple scans on a participant and using

a part of the data acquired to estimate a HRF. The HRF estimated from a ROI in the same subject

in multiple scans varied much less than HRFs estimated from the same ROI across subjects[16].

Given with sufficient quality data, using a FIR model will produce better results.

4.6 Conclusion

The field of fMRI has developed rapidly over the years with better scanners and pulse sequences

that improved the quality of acquired data. These developments improved our understanding of

the brain immensely. However, much of what we know about human brain function is derived

from studying hemodynamic responses following neuronal activity instead of studying this activity

directly. A critical remaining challenge is to interpret these hemodynamic responses, a task for

which, characterising these responses is imperative. The inter-subject and inter region differences

in the responses are rarely acknowledged in fMRI studies. Our FIR model showed its flexibility

in capturing the range of HR variations across different regions. The results could be improved if

provided with more data and better extraction methods. We have shown that the canonical HRF

seems to be a good compromise between the robustness and flexibility for our data, but also that

the FIR model has the potential to perform better.

Here, we have shown that the HRF varies across regions and participants during a navigation

task. Characterising the HRF variations in more detail will ultimately help us to avoid misspecifi-

cations that could occur while using a fixed HRF model and to improve our understanding of the

brain in general.
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Appendix

Least mean squared error voxels

During the curve fitting procedure, the HRF kernal that fits the best was estimated by finding the

least mean square error with the actual data. The lower the mean square error , better the fit.

Alongside the amplitude and delay to map maps created during voxel wise extraction, we also

created the mse values corresponding to the each voxel. Later, to find the top 50 percent voxels that

have the best fit was extracted by finding the top 50 percent of the voxels that had lower mse values.

This gave us the top performing voxels. The HRF’s estimated from these voxels across regions are

plotted below fig.4.1, fig.4.2.

Figure 4.1: Locomotion HRF from top 50 percent of voxels with least mse during curve fitting

43



Figure 4.2: Rotations HRF from top 50 percent of voxels with least mse during curve fitting

Figure 4.3: Locomotion parameters- median values
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Median values of extracted parameters

The median across subjects for different regions, showing the variation in parameters across them.

The plot was not included in the main text due to failure in showing a difference across subjects

and regions after the repeated measures ANOVA test. (Fig.4.3, 4.4)

Figure 4.4: Rotation parameters- median values
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Limitations of parameter extraction

Figure 4.5: Parameter extraction- Limitations: The plot show the inaccuracy in the delay to peak value,
selecting a kernel(red) leading to almost 2 sec inaccuracy to the actual data(green)
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