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i

Abstract

Export cables are essential components in o↵shore wind farms, as they are re-
sponsible for transporting the produced power to the shore. Any failures in the
export cables can lead to huge losses for the operators, and thus they want to
monitor the cables to be alerted of any developing faults that can be corrected.
Physical laws govern the relationships of the temperatures of the cable, the electric
current through the cable and the surrounding environment. These relationships
are complicated to model physically, but might be implicitly learned by a machine
learning model.

Asynchronous data sources describe the system of the export cable and its
surroundings. Experiments were conducted to establish how best to handle this
asynchronicity in deep learning prediction models. The preferred model was an
LSTM with inputs resampled to the same uneven sampling rate.

No known failures have occurred in the export cables. The normal behaviour
of the temperatures of the cable was modelled, and deviating behaviour was used
to detect anomalies. Synthetic faults were constructed to evaluate the anomaly
detection models.

Anomaly detection based on temporal and spatial relationships was explored
separately. The best models were combined, but the combined model did not
beat the best spatial model. The best model used principal component analysis
to encode and reconstruct sequences of temperatures through the cable, and got
impressive results for the constructed gradually developing faults.

Additionally, a new cross validation based evaluation scheme for time series
data with seasonality is proposed. It involves dividing the data into small con-
secutive blocks, and randomly dividing the blocks into the required number of
folds.
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Sammendrag

(Abstract in Norwegian)

Eksportkabler er viktige komponenter i en o↵shorevindmøllepark, siden de trans-
portere den produserte energien til land. Feil i kablene kan føre til store tap for
operatørene, og de vil derfor overv̊ake kablene for å kunne varsle om feil under
utvikling som kan korrigeres. Fysiske lover regulerer forholdet mellom tempera-
turene i eksportkablene, strømmen gjennom kabelen og omgivelsene. Det er kom-
plisert å fysisk modellere disse forholdene, men de kan læres implisitt av en dyp
læring-modell.

Asynkrone datakildene beskriver systemet rundt eksportkabelen. Ekperimenter
ble utført for å fastsl̊a hvordan asynkronisiteten best skulle h̊andteres i dyp læring-
modeller. Den foretrukne modellen var en LSTM modell med inputdata resamplet
til å være synkron, men ugjevnt samplet.

Det er ikke kjent at det har vært feil i kabelen. Den normale oppførselen til
temperaturene i kabelen ble modellert, og avvik ble brukt til å finne feil. Syn-
tetiske feil ble konstruert for å evaluere de forskjellige modellene. Feildeteksjon
basert p̊a temporale og spatiale forhold ble undersøkt hver for seg. De beste mod-
ellen ble kombinert, men slo ikke den beste spatiale modellen. Den beste modellen
bruke prinsipalkomponentanalyse (principal component analysis, PCA) til å en-
code og rekonstruere sekvenser av kabeltemperaturer, og fikk gode resultater p̊a
de konstruerte feilene.

Til slutt er en ny metode for trening og validering av modeller for periodisk
tidsseriedata foresl̊att. Den er basert p̊a kryssvalidering, og g̊ar ut p̊a å dele dataene
opp i sm̊a, sammenhengende blokker som tilfeldig fordeles p̊a det ønskede antallet
deler.
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Chapter 1

Introduction

This chapter provides the background and motivation of the thesis. Section 1.2
introduces the goal and research questions that have guided the research. The
research method is described in section 1.3, and the contributions of the thesis are
summarized in section 1.4. Section 1.5 presents the structure of the rest of the
thesis.

1.1 Background and Motivation

In 2015, the UN launched 17 global sustainable development goals for 2030. The
13th goal concerns climate change and promotes developments in renewable en-
ergy [UN.org, 2019]:

Take urgent action to combat climate change and its impacts by regulating emis-

sions and promoting developments in renewable energy.

Wind power is a renewable and emission free source of electricity. A wind
farm uses wind turbines to convert the kinetic energy of the wind into electrical
power, and needs stable and strong wind conditions for stable power production.
Wind turbines are large and prominent. As a consequence, building an onshore
wind farm can lead to interest conflicts, where the demand for renewable energy
is met with concern for interventions in nature. In building wind farms o↵shore,
fewer conflicts of interest arise. O↵shore installations can also get access to better
and more stable wind resources, and there are large areas available for construc-
tion [vindportalen.no, 2019]. However, o↵shore wind farms are more expensive to
build, operate and maintain. Thus it is important for operators reduce the costs
where possible, for o↵shore wind to be a profitable and attractive investment.

Export cables are a crucial part of an o↵shore wind farm installation, since all
the produced power has to pass through them. The failure of an export cable can

1



2 CHAPTER 1. INTRODUCTION

have huge e↵ects, as it will lead to a significant decrease in the amount of power
being transported from the wind farm. The operators want to keep the cables in
good condition, and want to be notified about any measurements that can be con-
sidered anomalous. This could indicate that a cable is developing a problem, and
further investigation can be carried out that might lead to finding and correcting
faults before they evolve beyond easy correction. The current monitoring of the
export cables consists of temperature threshold values based on the properties of
the cable. When the temperature in a segment of the cable reaches a threshold
value, an alarm sounds in the control room. These thresholds are crude values
that warn of an occurring failure. They cannot detect gradually developing faults
at an early stage, and thus do not facilitate correcting faults at an early stage.

A distributed temperature sensing (DTS) system indirectly monitors the tem-
peratures at discrete points through the export cable. Physical laws govern the
relationships between the electric current through the cable, the temperature of
the cable and other surrounding variables. These physical relationships are com-
plicated to model mathematically, as not enough data is available from the envi-
ronment surrounding the cable. How the heat dissipates from the cable depends
on the thermal conductivity of the surrounding material, which can include soils,
clays and sea water depending on the burial location. The thermal conductivity
varies along the cable, and the heat dissipation also depends on other factors such
as the sea current and sea temperature. Since the heat dissipation cannot feasibly
be mathematically modelled, this motivates the use of deep learning to instead
implicitly learn the complicated physical relationships governing the cable and its
environment.

The studied export cables have yet to experience any failures. There are how-
ever plentiful observations of the normal behaviour of the cables. This motivates
focusing on unsupervised methods for anomaly detection.

1.2 Goals and Research Questions

The following overarching goal has guided this thesis:

Goal Find the best deep learning approach to anomaly detection in the submarine

export cables.

To guide towards achieving this goal and limit the scope of the research, two
research questions were constructed.

Research question 1 How are the asynchronous time series of the export cable

system best handled in sequential deep learning models?
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The measurements of the DTS system together with related variables make up
an asynchronous time series. The asynchronicity must be handled when using the
data for anomaly detection. Di↵erent ways to handle asynchronous time series
when using deep learning for time series prediction are reviewed and compared.
In particular, di↵erent resampling schemes are compared. Also including time
information explicitly in the input features is attempted, and deep learning models
specialized to handle asynchronous data are reviewed. It is hypothesized that
models not depending on resampling the inputs give more accurate predictions.

Research question 2 Does exploiting relationships in both the temporal and spa-

tial dimensions of the export cable data give more robust anomaly detection

than only regarding one of the dimensions?

Each observation of the export cable has a spatial dimension, and observations
over time give a temporal dimension. The information needed to find anomalies
can be contained in the spatial distribution of the temperatures, in the temporal
evolution of the temperature of a single segment, or distributed over both dimen-
sions. The hypothesis is that using information from both dimensions makes for
superior anomaly detection. It might however be easier to learn how best to ex-
ploit the information captured in each dimension, when regarding each dimension
on its own. Combining the approaches that work best for each dimension into one
model will hopefully give even better anomaly detection results.

Attempting to answer this research question includes finding the best deep
learning approaches to anomaly detection using information only in the spatial
dimension, only in the temporal dimension and in both dimensions.

1.3 Research Method

A structured literature review is carried out to establish the state of the art of
anomaly detection in DTS systems, anomaly detection using deep learning and how
asynchronous time series data is handled in deep learning. With the knowledge
gained from this, practical experiments are devised to see how best to handle the
asynchronous export cable data in deep learning prediction models. A second series
of experiments investigates anomaly detection based on temporal information only,
spatial information only and temporal and spatial information combined.

1.4 Contributions

The main contributions of the thesis are outlined here. They are further discussed
in section 6.2. They include:
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• A proposed complete anomaly detection scheme for the export cables. It is
based on using principal component analysis to encode and reconstruct the
sequence of DTS values at a single time step. The reconstruction error is
used to di↵erentiate normal and anomalous behavior.

• A proposed anomaly score for high-dimensional error vectors that can be
used to detect faults of a local character.

• A proposed scheme for how to train and evaluate models with time series
data with seasonality, using cross validation with small sequential blocks
randomly distributed to the di↵erent folds.

1.5 Thesis Structure

The next chapter reviews the background theory deemed necessary to understand
the contributions of the thesis. Chapter 3 presents an overview of related work
on anomaly detection and asynchronous time series data in deep learning. It also
summarizes the motivation of the thesis. Chapter 4 presents the experiments
conducted on asynchronous time series in deep learning prediction models. The
model architectures are detailed, the experimental setup is explained, and the
results are presented and discussed. Chapter 5 builds on the results of its preceding
chapter with experiments on anomaly detection in the export cables. First the
experimental setup is explained. The chapter is further split into three main
sections, where the temporal, spatial and combined experiments are described
separately. In each of the sections, the model architectures are detailed, and
results are presented and discussed. Chapter 6 wraps up the thesis with a final
discussion of all the obtained results, a discussion of the contributions of the thesis
and proposal of future work.



Chapter 2

Background Theory

This chapter reviews background theory useful for understanding the contributions
of the thesis.

2.1 Export Cables and DTS Systems

Export cables contribute a significant capital expenditure in the construction of
an o↵shore wind farm. The cables are required to have su�cient current carrying
capacity, so that they are not damaged by high temperatures at high currents.
Due to the high cost there is usually little redundancy in the cables, which makes
the condition of the export cables critical. Each cable is buried in varying seabed
materials and at varying depths. As the power output of the wind farm is linked
to wind conditions, the output varies in ways di�cult to predict and the cable is
exposed to varying electric currents.

A distributed temperature sensing system (DTS system) is a technology used
for export cables to indirectly monitor the temperatures of the cable. The tech-
nology provides temperature measurements along a fibre optic cable [Ukil et al.,
2011]. The temperature is measured along the cable by having a short laser pulse
emitted. As the light travels along the fiber, it collides with the atomic lattice
structure of the side walls of the fibre and is reflected back to the source at slightly
shifted frequencies. The mechanical properties of the side wall a↵ect the scattered
frequencies, and the shifts in frequencies can be used to detect strain in the fibres.
The strain is influenced by temperature, pressure and direct force. The returning
light is analyzed by a recording instrument that can determine the strain. Changes
in strain are assumed to be influenced only by the temperature. It can however
also be a↵ected by the cable having to support itself due to changes of the sup-
porting ground, such as the seabed being washed away from under the cable. Since
light travels at constant speed, the two-way travel time since the pulse was emitted

5
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determines the location of the measurements along the cable. In this manner a
continuous temperature profile can be made available, but in practice the data is
discretized during the analysis.

At Dudgeon o↵shore wind farm o↵ the coast of Norfolk in UK, two export
cables are responsible for exporting the generated power to the mainland. A
map showing the wind farm and the approximate route of the export cables can
be seen in figure 2.1. There is little to no redundancy in the current carrying
capacity of the two cables at full production, making each an important asset.
The distribution of the power between the two cables is explicitly controlled, such
that each wind turbine generator is connected to only one of the cables at any
time. The experiments of this thesis will only use data from export cable 1, to
reduce the scope of the experiments.

Figure 2.1: Map giving an overview of Dudgeon o↵shore wind farm. The draw-
ing is simplified to only show one cable, while in reality there are two cables.
The thesis is only concerned with the submarine portions of the cables. Image
from [statkraft.no, 2019].
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Figure 2.2: Some of the di↵erent classes of time series. a) Univariate time se-
ries with uniform samples. b) Synchronous multivariate time series with uniform
samples. c) Asynchronous multivariate time series with uniform samples. d) Asyn-
chronous multivariate time series with uneven samples.

2.2 Time Series Terminology

This section introduces the terminology used to describe the characteristics of a
time series. A time series is a collection of ordered data points indexed by time,
and is usually a repeated measurement of the same variables. Univariate time
series consist of a single variable varying over time, while multivariate time series
consist of multiple variables. These variables are often highly interrelated.

A time series can either be uniformly or unevenly sampled. Uniformly sampled
time series have their data points equally spaced in time, while an unevenly sam-
pled time series has unequally spaced data points. Multivariate time series can be
either synchronous with all variables recorded at time same time, or asynchronous
with variables recorded at di↵erent times. Figure 2.2 shows some of the di↵erent
time series classes.

Methods for time series analysis often assume synchronous, uniformly sampled
time series. Many real world applications produce time series of an asynchronous
character. Methods exist for transforming time series to a uniformly sampled,
synchronous format, but this comes with a cost. Often di↵erent resampling tech-
niques are employed, inventing new values to make a time series uniformly and
synchronously sampled. A signal can be upsampled to a higher frequency to match
the sampling rate of other variables. Linear interpolation is often used to infer the
new values. When downsampling a signal to a lower frequency, linear interpola-
tion can again be used, but it is also possible to use aggregated values such as the
average, sum or maximum value.

All types of resampling come with the cost of either loss of information or en-
largement of the data set. Interpolation for upsampling results in both. Larger
data sets make the analysis more computationally expensive and can hurt perfor-
mance, and thus an enlargement of the data set is not desired.
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2.3 Export Cable Data Sources

With the time series terminology in place, the data sources available to the ex-
periments can be further introduced. The data available includes measurements
from the DTS systems monitoring the two export cables at Dudgeon o↵shore wind
farm. There are also observations of the electric current through each cable, and
of the sea temperature at a central point in the wind farm.

DTS Data

The bulk of the data available stems from the DTS systems. For the cable used
in the experiments, 39516 observations are available at each time step. Each in-
dividual observation is referred to as a segment of the cable, and the segments
are approximately one meter apart in distance. The DTS data is unevenly sam-
pled, with 50% of the sampling intervals between 16.5 and 21.4 minutes. 95% are
between 14.6 and 24.4 minutes.

The DTS data can be indexed in two dimension; spatially and temporally.
Defining t(⌧, s) to be the DTS value at time step ⌧ measured in segment s, the
segment s can be varied to see how the DTS value at a given time ⌧ varies along
the cable. Figure 2.3 plots two snapshots of the DTS value profile of cable 1. Many
of the same trends can be seen in the two snapshots, even if they are more than
one year apart and of di↵erent magnitudes. The correlation between the sequences
is 0.91. This hints at strong spatial relationships that hopefully are possible for a
deep learning model to learn.

Figure 2.3: Snapshots of the DTS values of the cable

In figure 2.4 the segment s is frozen and the time ⌧ varied, so that two distinct
segments are plotted for the same time period. The cable segments in question are
located at 70.141 and 3996.621 meter from the shore for the orange and blue signals
respectively. Although some of the same trends are present for both segments, the
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relationship between the segments does not seem to be trivial. The correlation
between the plotted sequences is 0.85.

Figure 2.4: The DTS values of two cable segments through time

Further analysis of the correlation between the segments also hints at strong
spatial correlation. In figure 2.5, the correlation matrix of the temperatures of
the first 500 segments is plotted. Big patches of dark red color show big groups
of highly correlated temperatures. This might hint that dimensionality reduction
techniques should be able to successfully reduce the temperature profile to a much
smaller dimension.

Figure 2.5: DTS correlation matrix for first 500 segments.

Electric Current

The data source with the highest frequency is the electric current through the
cable. The univariate time series is uniformly sampled at 10 minute intervals. The
plots in figure 2.6 show the temperature in a random cable segment and the current
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through the cable in the same time period. From inspection of the plots, it can
be seen that the temperature trend is a somewhat rounded version of the current
trend. The electric current in believed to be the biggest driver of the evolution of
the temperatures of the cable.

Figure 2.6: The DTS values of a single segment plotted with the electric current.

Sea Temperature

Only a centralised sea temperature reading from Dudgeon o↵shore wind farm was
available, not sea temperature values along the cable route. The sea temperature is
plotted in figure 2.7. It shows a seasonal character, with the temperature increasing
from March to August, before decreasing again from August to March. The data
of the sea temperature will not accurately describe the sea temperature along the
di↵erent segments of the cable, but might serve as a proxy for the overall trend.
The sea temperature data is uniformly sampled at every whole hour.

Figure 2.7: Sea temperature measured at a central point in Dudgeon o↵shore wind
farm.

Combining the Data Sources

The electric current and sea temperature are believed to be important drivers of
the evolution of the temperature in the cable. This motivates joining the three
data sources together to a multivariate time series describing the system of the
DTS values, the electric current and the measured sea temperature. This leads
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to an asynchronous time series with most of the variables unevenly sampled. The
electric current and sea temperature are later referred to as control variables.

2.4 Neural Network Architectures

The neural network architectures most relevant to this thesis are reviewed in this
section.

2.4.1 Recurrent Neural Networks and LSTMs

Recurrent neural networks (RNNs) are extensions of feedforward neural networks
(FNNs) that allow feedback connections. The feedback connections enables mem-
ory of past observations, and lead to deep model structures. They are often used
for sequence modelling tasks. Strengths of RNNs are that they make the order
of observations explicit, and allow applying the same weights to each time step.
This makes them flexible to use, as they can be applied to sequences of varying
lengths. Figure 2.8 shows how unfolding the graph of applying an RNN to multiple
timesteps leads to a deep structure.

Figure 2.8: The deep structure of an unfolded RNN

A problem with RNNs is that they are susceptible to the problem of vanishing
gradients, making it hard for the networks to learn long-term dependencies. To
learn long-term dependencies, the error needs to backpropagate longer than for
short term dependencies. The gradients will often decay on the way due to the
repeated multiplication of the same weights. This makes for small updates, which
gives slow training.

Long short-term memory networks

The introduction of long short-term memory networks (LSTMs) [Hochreiter and
Schmidhuber, 1997] is responsible for much of the success of RNNs. A more
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complicated recurrent cell with gating mechanisms allows propagating changes
through many time steps, since gradients to a lesser degree vanish. LSTMs have a
hidden state and a cell state that are transferred between time steps, and updates
to these are controlled by the forget, input and output gates. The cell state can be
thought of as the long running memory of the cell, while the hidden state is used
for generating outputs and controlling the gates that control the state updates of
the next unit.

The activation functions hyperbolic tangent and sigmoid are used in the LSTM
cell, and can be seen in figure 2.9. The sigmoid outputs values between 0 and 1
and is used by the gating mechanisms to generate vectors that are applied through
element-wise multiplication. An output value of 0 for a position means that no
information is let through, while a value of 1 lets information though unchanged.
Values in between decay the information to di↵erent degrees. The hyperbolic
tangent outputs values between -1 and 1, regulating the values of the network.

Figure 2.9: Hyperbolic tangent and sigmoid activation functions

Figure 2.10: Unfolded LSTM. The cell state and hidden state are transferred from
the previous unit. Gates control updates to the states based on the current input
and previous hidden state. The new hidden state is used to generate outputs. The
figure is based on a figure from [colah.github.io, 2019].
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Figure 2.10 shows an unfolded LSTM with forget gate f , input gate i and
output gate o. The gates have their own weights Wxf , Whf , Wxi, Whi, Wxo and
Who and biases bf , bi and bo. In addition the weights Wxc and Whc and bias bc
controls the proposed addition to the cell state. The same weights and biases are
applied to all time steps.

The input to an LSTM unit at a time step is the previous cell state ct�1, the
previous hidden state ht�1 and the current sequence input xt. The sequence input
and previous hidden state are used to calculate the gating vectors of the forget
gate ft, input gate it, and output gate ot. In the equations below � denotes the
sigmoid activation function.

ft = �(xtWxf + ht�1Whf + bf ) (2.1)

it = �(xtWxi + ht�1Whi + bi) (2.2)

ot = �(xtWxo + ht�1Who + bo) (2.3)

A hyperbolic tangent activation calculates the proposed addition to cell state:

c̃t = tanh(xtWxc + ht�1Whc + bc) (2.4)

The forget and input gates control the update of the cell state. The forget
gate controls how much to keep of the previous cell state, while the input gate
controls how much is added of the proposed addition c̃t. The symbol � denotes
element-wise multiplication.

ct = ft � ct�1 + it � c̃t (2.5)

The output gate controls the updated hidden state:

ht = ot � tanh(ct) (2.6)

ht is returned as the output at time t, and also forwarded to the next time
step.

Many extensions of the LSTM have been proposed. Some extensions that
facilitate asynchronous inputs are discussed in chapter 3.

2.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are FNNs that depend on local connections
and weight sharing to find location-invariant features. They typically consist of
convolutional layers, activation functions and max pooling layers. Special for the
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convolutional layers is that each neuron only is connected to a small region of the
preceding layer, and that weights are shared between the neurons of a layer. This
facilitates finding location-invariant features, and allows di↵erent input sizes.

The inputs to 2D convolutional networks have three dimensions; height, width
and depth. In colored images, this corresponds to the height and width of the
image, and the three color channels red, green and blue.
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Figure 2.11: A 3 ⇥ 3 convolutional filter applied to a single channel input with
stride 1. The ⇤ symbolizes applying the convolutional operation with the left
matrix as the filter to the right matrix.

Convolutional layers consist of filters that are applied to small regions of the
input. Each filter consists of weights and a bias. The filter is slid over smaller
regions of the input, across the height and width. It calculates the dot product
of its weights and the inputs across all input channels. The filter has the same
depth as the input, and a width and height that can be decided. The number of
filters in a layer decides the depth of the representation produced by the layer. The
stride decides how far the filter slides before doing a new calculation. The edges
of the input can be padded with zeroes to conserve the size of the representation
through the convolutional operation. Figure 2.11 shows the result of applying a
convolutional filter with weights and 0 bias to an input matrix with depth 1, using
a stride of 1.
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Figure 2.12: 2⇥ 2 max pooling with stride 2

A max pooling layer reduces the spatial dimension of its input. The max
pooling layer has a size and stride, and outputs the maximum value of its input
field. Figure 2.12 shows how max pooling with a filter size of 2 ⇥ 2 reduces the
spatial dimension of the input.
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All the operations of the convolutional and max pooling layers are di↵eren-
tiable, so the usual optimization strategies based on backpropagation of a loss
function can be used.

The CNNs used for image processing use 2D convolutional layers that convolve
over the height and width of images. 1D convolutional layers can be used for
inputs with a single spatial or temporal dimension, and have been successfully
applied to language modelling, for example in Collobert and Weston [2008]. A 1D
convolutional layer is a 2D convolutional layer with a height of 1.

2.4.3 Autoencoders

Autoencoders are neural networks trained to reproduce their inputs. They consists
of encoder and decoder parts. The encoder constrains the network to produce a
more sparse representation of the input, and the decoder tries to reconstruct the
input from the representation. For some applications, the representation of reduced
dimensionality is what is of interest from the autoencoder. In other applications,
the reconstruction error is interesting. This will be shown can be the case for
anomaly detection.

An undercomplete autoencoder is shown in figure 2.13. Undercomplete au-
toencoders are FNNs with fewer units in the hidden layers than in the input layer,
and thus must learn how to e�ciently represent the inputs in order to optimally
reproduce them.

Figure 2.13: Undercomplete autoencoder
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LSTM autoencoders

LSTMs can also be used in autoencoders. Sutskever et al. [2014] introduced using
LSTMs for sequence to sequence learning, and showed how they could be used
for machine translation. In sequence to sequence learning, one LSTM is used
to encode an input sequence to a vector representation of fixed length. Another
LSTM decodes the target sequence from the input. For an LSTM autoencoder,
the target sequence is equal to the reversed input sequence. Reversing the se-
quence makes learning easier, as the model can begin with looking at short range
correlations [Srivastava et al., 2015].

Figure 2.14: LSTM autoencoder. The blue boxes represent the encoder LSTM cell
and the orange boxes the decoder LSTM cell.

The decoder can be either conditional or unconditional. A conditional decoder
receives the last generated output as input, while an unconditional decoder does
not receive any input. Figure 2.14 shows an LSTM autoencoder. The conditional
version of the decoder uses the ijs as input during training and îjs as inputs
during inference, as shown with dotted arrows. The unconditional decoder only
uses the states to produce output. The figure also shows how the input sequence
is reconstructed in reversed order.

Convolutional autoencoders

Also autoencoders based on CNNs have been proposed [Masci et al., 2011]. Here
the advantages of CNNs are applied to feature learning in an autoencoder archi-
tecture. Local connections and shared weights lead to preserved spatial locality.

The encoder part of a convolutional autoencoder (CAE) typically consists of
convolutional layers followed by max pooling layers, this way producing an encod-
ing of reduced dimensionality. Equation 2.7 shows how the representation of the
k’th channel Hk is produced by the 2D convolutional operation with filter k. X
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is the input, � an activation function, Wk the weights of the k’th filter and bk the
bias that is broadcast to all the values. The symbol ⇤ denotes 2D convolutions.

Hk = �(X ⇤Wk + bk) (2.7)

The decoder layer tries to reverse the operations of the convolutional layer to
reconstruct the input. For this purpose transposed convolutional layers followed
by upsampling layers can be used. The transposed convolutional layer does not
perform the mathematical inverse of the convolutional operation, but rather per-
forms the normal convolutional operation with extra padding to increase the size
instead of decreasing it. Masci et al. [2011] use the same weights W̃ in the decoder
as in the encoder, but they are flipped over both dimensions. Equation 2.8 shows
the transpose convolution operation. Again ⇤ symbolizes the 2D convolutional
operation. Depending of the filter sizes and output shape, it might add padding.
The reconstruction X̃ is obtained by applying 2D convolutions to all the channels
and summing the result, adding a bias and feeding the result through an activation
function.

X̃ = �(
X

k2H

Hk ⇤ W̃k + c) (2.8)

Upsamling reverses the dimensionality reduction preformed by the max pooling
layers. An example of an upsampling operation is to broadcast values, and an
example can be seen in figure 2.15. Here each value is broadcast to 2 ⇥ 2 values,
and such the spatial dimension of original input is regained after 2⇥2 max pooling
with stride 2. All the values are not regained, which is not possible to perfectly
achieve from the smaller representation.
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Figure 2.15: 2 ⇥ 2 max pooling with stride 2, followed by the upsampling by
broadcasting to regain the input size.

2.5 Principal Component Analysis (PCA)

Principal component analysis is a powerful linear dimensionality reduction tech-
nique based on the singular value decomposition (SVD) from linear algebra. The
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Figure 2.16: PCA applied to points generated by a multivariate Gaussian dis-
tribution. The arrows show the right singular vectors, with the longest arrow
corresponding to the first principal component.

SVD of a n⇥ p matrix X of rank r can be seen in equation 2.9. X has n obser-
vations of p features.

X = U⌃V
T = �1u1v

T

1 + �2u2v
T

2 + ...+ �rurv
T

r
(2.9)

⌃ is an n ⇥ r rectangular diagonal matrix with the singular values �i on the
diagonal. U is n ⇥ n and has orthonormal columns ui called the left singular
vectors. V is p ⇥ r and has orthonormal columns vi called the right singular
vectors.

What makes the SVD useful for dimensionality reduction is that the singular
values can be ordered by importance, such that �1 > �2 > ... > �r. Each direction
vj of the SVD accounts for �2

j
/
P

r

i=1 �
2
i
of the variance in the data. Using the k

first componentsXk as shown in equation 2.10 gives the best rank-k approximation
to X [Strang, 2016].

Xk = Uk⌃kV
T

k
= �1u1v

T

1 + �2u2v
T

2 + ...+ �kukv
T

k
(2.10)

From a statistical point of view, the first component has the maximal vari-
ance [Rencher and Christensen, 2012]. It finds the dimension where the observa-
tions are maximally spread out. The succeeding principal components have the
maximal possible variance, given that they are orthogonal to the all the preced-
ing components. Figure 2.16 shows how PCA finds orthogonal dimensions with
maximal variance.

PCA leads to the transformation tk = V
T

k
x that uses the top k right singular

vectors from the SVD. The transformation leads to an encoding tk = (t1, t2, ..., tk)
of length k. To reconstruct the data from the encoding, the inverse transform
xk = Vktk is applied. The error in the reconstruction is e = xk � x.
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2.6 Linear Regression

Linear regression models a linear relationship between a dependent variable y and
a number p of explanatory variables x, such that:

yi = w0 + w1xi,1 + w2xi,2 + ...+ wpxi,p + ✏i

The dependent variable is assumed to be a linear combination of the explana-
tory variables with an added error term. The error term can be due to measurement
errors, and the errors are assumed to be of constant variance.

A prediction ŷi of yi is given by

ŷi = w0 + w1xi,1 + w2xi,2 + ...+ wpxi,p (2.11)

The weights wj are fit to minimize (y� ŷ)2 for the training data. This can be
solved analytically, and the best weights are given by equation 2.12 [Russell and
Norvig, 2016]. X is an n ⇥ p matrix of the explanatory variables of the training
data, and y is a vector of length n with the corresponding dependent values.

w = (XT
X)�1

X
T
y (2.12)

2.7 Training and Evaluation Scheme

This section introduces how machine learning models with time series can be
trained and evaluated. First the sliding window approach to constructing multiple
samples from a long sequence is presented, and then variations of cross validation
for time series are discussed.

2.7.1 The Sliding Window Approach

The sliding window approach is a method used in time series analysis for con-
structing multiple samples from a long time series. Samples are constructed by
sliding a fixed-sized window along the time series. When the window slides over a
sub-sequence it is used to construct samples. The sub-sequences might be overlap-
ping depending on the stride used when constructing samples. The stride describes
how many time steps to slide between each sample, and often a stride of one is
used to maximize the number of samples. For prediction problems, each window is
further subdivided into inputs and targets, both of a fixed size. Thus the samples
contain a fixed number of observations as inputs and a fixed number of the next
consecutive observations as targets. Figure 2.17 shows how the sliding window
approach can be used to construct samples.
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Original sequence: abcdefgh

1) abc, bcd, cde, def, efg, fgh

2) abc, cde, efg

3) ab ! c, bc ! d, cd ! e, de ! f, ef ! g, fg ! h

Figure 2.17: The sliding window approach used to constructing multiple samples
from the sequence abcdefgh. 1) Uses a stride of 1 to construct overlapping samples
of length 3. 2) Uses a stride of 2 to construct overlapping samples of length 3. 3)
Uses a stride of 1 to construct overlapping samples for prediction with inputs of
length 2 and targets of length 1.

For time series analysis, an alternative to using the sliding window approach
is to consider the whole time series as it is. Advantages of using the sliding
window approach instead, is that it allows for many of the techniques that speed
up training of deep learning models and also makes them more successful. In
particular, constructing individual samples allows for training of neural networks
in batches. It also allows randomization of the samples in each epoch, and the
individual samples facilitate the cross-validation techniques described in the next
section.

Disadvantages of the sliding window approach include that it constrains how
much previous history is available to the models when making predictions. Thus an
assumption needs to be made of how many timesteps of previous history is su�cient
for the task at hand. Also the constructed samples will not be independent if
overlapping sub-sequences are used during construction. Care must be taken when
training and evaluating, such that the same data is not used both for training and
testing.

2.7.2 Cross Validation

One of the biggest challenges in machine learning is producing models that not
only perform well on the data seen during training, but also generalize well to
unseen data. This is usually evaluated during model construction by dividing the
available data into three distinct sets called the training, validation and test sets.
The training data is used for fitting the model parameters by back-propagating the
error on the training set to update the network weights. A validation data set is
often used to keep from overfitting the model to the training data. The validation
performance can be used for early stopping, meaning that the weight configuration
best performing on the validation data is kept, even though the weights can be
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tweaked to fit even better to the training data. Performance continuing to increase
for the training data and decreasing for the validation data is a clear sign of
overfitting.

Even though the validation data is not used directly to update the weights,
it does influence the model selection. It will give a biased measure of the models
performance on unseen data, as information about the validation set leaks into the
training procedure. Thus a separate test set is usually set aside and used only for
final evaluation of the trained model.

Traditionally, the last consecutive block of data was set aside for testing when
constructing time series prediction models [Bergmeir and Benitez, 2012]. A disad-
vantage of splitting the data into training, validation and test data is that not all
the available data is used for fitting the model. Also not all the data is used for
evaluation, and a small test set might not be representative of the true data dis-
tribution. A procedure called k-fold cross validation tries to mitigate these issues.
The data is randomly split into k parts of approximately equal size. In k rounds,
one of the k parts is kept for evaluation while the other k-1 parts are used for
training the model. Each part is used for evaluation in one of the rounds, and the
average performance is reported. This way all of the data is used both for training
and evaluation which gives a more robust measure of the performance.

An extension to this is cross validation with both validation and test sets. In
this approach, one of the k parts is used for testing, one part is used for validation
and the other k � 2 parts are used for training. As previously explained, using a
test set that has not influenced the training in any way gives a less biased estimate
of the performance on unseen data.

For time series analysis of one single time series, this picture becomes somewhat
more complicated than for problems with independent samples. The reason for this
is that the samples are more interconnected. The sliding window approach is often
used to construct overlapping samples. This leads to consecutive samples not being
independent, as many of the same time steps occur in multiple samples. Awareness
of this is crucial during training, as the samples in the training, validation and test
sets should be independent.

Inspired by the findings of Bergmeir and Benitez [2012], blocked 5-fold cross
validation with validation and test sets is employed for training and evaluation in
the experiments. Blocked cross validation di↵ers from regular cross validation in
that the k parts are made up of contiguous data, as shown in figure 2.18. This
guarantees that each time step only contributes to either training, validation or
testing in each fold. According to Bergmeir and Benitez [2012], using cross valida-
tion leads to more robust validation and model selection compared to using only
the last contiguous block for testing. They find no practical e↵ect of theoretical
problems that could invalidate using data from the past to test models trained
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Figure 2.18: Division into folds by 5-fold blocked cross validation in the export
cables.

with future data.

2.8 Evaluation Metrics and Statistical Significance

This section reviews the evaluation metrics used in the experiments, and the sta-
tistical test used to test the significance of the experimental results.

2.8.1 Evaluation Metrics for Time Series Prediction

The mean squared prediction error is used to evaluate the prediction models of
chapter 4. Squaring the error heavily penalizes big errors compared to multiple,
smaller errors. The measure is also used as the loss function in the trained neural
networks.

2.8.2 Evaluation Metrics for Anomaly Detection

The problem of anomaly detection is an instant of binary classification with the
classes ”anomaly” and ”normal”. Anomaly detection problems with real world
data often have imbalanced class distribution. Most of the data is normal and
constitutes negative samples. A few anomalies may be present, and these consti-
tute positive samples. The task of the anomaly detection model is to return as
many of the positive samples as possible, while limiting the amount of negative
samples returned.

Positive samples that are correctly classified are called true positives, while
negative samples that are wrongly classified as positive are false positives. Similarly
a positive sample that is wrongly classified as negative is a false negative, and
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a negative sample correctly classified is a true negative. These definitions are
summarized in table 2.1.

positive sample negative sample
classified as positive true positive false positive
classified as negative false negative true negative

Table 2.1: Definition of anomaly detection outcomes

Two types of errors can be made by an anomaly detection model. The first
type is false negatives, which corresponds to not alerting of an anomaly when there
is one. The other type is false positives, which corresponds to falsely alerting of
an non-existing fault.

For many classification models, a threshold value has to be set to decide the
cuto↵ for classifying samples as negative or positive based on the model output.
By varying this threshold, the trade-o↵ of having few false positives or few false
negatives can be somewhat controlled, as the rates of false positives and false
negatives can change based on the threshold setting. A way to visualize this is to
use a receiver operating characteristic curve (ROC-curve). The ROC-curve plots
the true positive rate against the false positive rate for di↵erent threshold values.
True positive rate is defined in equation 2.13 and false positive rate is defined in
equation 2.14.

true positive rate =
true positives

true positives + false negatives
(2.13)

false positive rate =
false positives

false positives + true negatives
(2.14)

The measure AUC (area under the curve) is the area under the ROC-curve, and
is an aggregated measure of model skill across threshold values. The maximum
possible AUC is 1 for a perfect model. A skill-less model will produce an ROC-
curve with a diagonal line, and will have an AUC of 0.5.

AUC is used to evaluate the anomaly detection models of chapter 5. It is
chosen because a balanced set of equally many anomalous and normal samples is
used for evaluation. Had the dataset been highly imbalanced with fewer anomalous
samples, it would have been more appropriate to use a precision-recall curve, and
calculate the area under that curve instead. Precision is defined in equation 2.15,
while recall is equivalent to true positive rate. Precision does not use the number
of true negatives in its calculation, which makes is more appropriate than false
positive rate for imbalanced data sets.

Precision =
true positive

true positive + false positive
(2.15)
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2.8.3 Establishing Statistical Significance

In the experiments of chapters 4 and 5, statistical hypothesis tests are executed to
test whether the seemingly best model is better than the other tested models with
statistical significance. The Wilcoxon signed-rank test is used [Wilcoxon, 1945].

The Wilcoxon signed-rank test is a hypothesis test that assesses whether two
paired samples stem from distributions with di↵erent population means. The null
hypothesis is that the di↵erences of the pairs are normally distributed around zero.
For a two-sided test, the alternative hypothesis is that they do not center around
zero. If the p-value of the test is lower than the chosen significance level, the null
hypothesis is rejected. It is then believed that the di↵erences are not centered
around zero, and one population has to have a larger mean than the other. If the
p-value is not lower than the chosen significance level, the null hypothesis cannot
be rejected. That does not mean than the null hypothesis is proven to be true,
only that it cannot be disproven.

The test entails ranking the absolute values of the paired di↵erences. The ranks
of the negative di↵erences receive a negative sign, and all the ranks are summed.
The test statistic is the sum of the signed ranks. The test statistic is compared to a
critical value from a statistical table to decide whether the null hypothesis should
be rejected. Alternatively, a p-value can be calculated. The statistical software
R [R Core Team, 2017] and the function wilcox.test is used to calculate p-values
in the tests executed in this thesis. The tests use a significance level of 0.05.

The Wilcoxon signed-rank test is chosen as it assesses paired samples, and the
experiments of both chapters 4 and 5 yield results that can be assessed as paired
samples. Each model will be evaluated multiple times under certain constraints.
Evaluations of two models under the same constraints make up a paired sample,
which is further explained where the test is applied. The test is chosen as it is
the most appropriate test found. It does not assume that the variables themselves
are normally distributed. It takes the magnitude of the samples into account, not
just whether one is larger than the other. It does however assume that the pairs
are independent. The paired results from the experiment will not be completely
independent, which also is discussed where the test is applied.



Chapter 3

Related work and Motivation

This chapter presents previous research related to the thesis. A structured lit-
erature review was performed, and is detailed in section 3.1. The related works
that were uncovered are presented in section 3.2. Section 3.3 summarizes the re-
lated work and connects it to the export cables, while section 3.3 summarizes the
motivating elements of the thesis.

3.1 Structured Literature Review

A structured search inspired by Kofod-Petersen [2015] was performed as a formal
and systematic way of exploring research relevant towards finding answers to the
research questions stated on page 2. The research questions are repeated here for
completeness:

Research question 1 How are the asynchronous time series of the export cable

system best handled in sequential deep learning models?

Research question 2 Does exploiting relationships in both the temporal and spa-

tial dimensions of the export cable data give more robust anomaly detection

than only regarding one of the dimensions?

Some advantages of reviewing literature in a structured way are that it helps
avoiding biased work, it helps identifying gaps of knowledge and it can highlight
areas where additional research is needed [Kofod-Petersen, 2015].

To work towards answering the research questions, related literature was read
to cover the topics of asynchronous time series in deep learning and deep learning
applied to anomaly detection in time series. The following set of literature review
questions were designed to uncover related work relevant to the research questions,
and guide the literature review:

25
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Q1 Has deep learning based anomaly detection been applied successfully to DTS
systems?

Q2 What approaches exist to unsupervised anomaly detection in time series
using deep learning?

Q3 What other deep learning approaches to anomaly detection in time series
exist with other degrees of supervision, and can they be transformed to be
used in an unsupervised setting?

Q4 How have asynchronous time series been handled in sequential deep learning
models?

The review protocol of the following section describes the steps taken to find
the related work presented in the later sections of this chapter, with the aim of
making the literature review procedure reproducible.

3.1.1 Protocol

Google Scholar was used as a search engine to find related literature. This decision
was made as Google Scholar searches across many di↵erent publication databases
and other web pages. It tries to rank the results the way a researcher would do,
weighing where the text was published, who it was written by, its citation history
and the full text of the documents [scholar.google.com, 2019]. The searches were
done without including patents and citations, as they were not of interest. The
results were returned sorted by relevance by the search engine. No restriction was
put on the publication year of the articles, as the search engine ranks partly based
on how often and how recently articles have been cited in other scholarly literature,
and this was judged to be a su�cient measure to ensure finding recent relevant
work. Only full research papers written in English were considered, excluding
isolated abstracts and review articles. Duplicate papers were ignored. The 20 first
hits of each search were reviewed, as thousands of papers were returned and it
was not plausible to review all. Separate searches were executed to find literature
covering each of the literature review questions. The search terms employed for
each question are presented in table 3.1.

When 20 articles were obtained from each search, an inclusion screening was
done to trim away work not relevant to the thesis. Di↵erent inclusion criteria were
used to screen the results for the di↵erent searches. Some articles could be included
or discarded by only reviewing the abstract, while for some papers the whole text
had to be surveyed to see if it met the relevant inclusion criterion. Works that
were judged not to meet a criterion were excluded from further consideration. The
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Question Search terms

Q1: (anomaly OR outlier OR fault) AND
(”deep learning” OR LSTM OR RNN OR GRU OR
CNN OR ”machine learning”) AND
”distributed temperature sensing”

Q2: (anomaly OR outlier OR fault) AND
(”deep learning” OR LSTM OR RNN OR GRU OR
CNN OR ”machine learning”) AND
”time series” AND
unsupervised

Q3: (anomaly OR outlier OR fault) AND
(”deep learning” OR LSTM OR RNN OR GRU OR
CNN OR ”machine learning”) AND
”time series”

Q4: (”heterogeneous time series” OR ”asynchronous time se-
ries” OR ”unevenly spaced time series”) AND
(”deep learning” OR LSTM OR RNN OR GRU OR
CNN OR ”machine learning”)

Table 3.1: Search terms used to find related work as part of the structured litera-
ture review.

Question Inclusion criteria

Q1: Concerns deep learning applied to anomaly detection in a DTS
system

Q2: Concerns deep learning applied to unsupervised anomaly de-
tection in time series

Q3: Concerns deep learning applied to anomaly detection in time
series

Q4: Concerns applying deep learning techniques to asynchronous
time series

Table 3.2: Inclusion criteria employed in the structured literature review.
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criteria were set to exclude work that did not contribute towards answering the
literature review questions and guide towards the research goal.

For the fourth literature review question concerning asynchronous time series,
some additional articles are included in the review of related work in addition to
the articles found by the structured search. These articles did not appear through
the search, but were referenced as related work in some of the reviewed articles,
and proved to be very relevant upon inspection. In particular, this applies to the
reviewed works of Neil et al. [2016] and Baytas et al. [2017].

3.2 Review of Related Work

This section presents the related work uncovered in the literature review. Sec-
tion 3.2.1 presents the results of the search related to Q1 which concerns deep
learning based anomaly detection applied to DTS systems. Section 3.2.2 presents
works regarding deep learning used for anomaly detection in other domains, and
contains the works resulting from the searches connected to questions Q2 and Q3.
Previous research on asynchronous time series in deep learning is presented in
Section 3.2.3 and is the result of the search of Q4.

3.2.1 Anomaly Detection Applied to DTS Systems

Only a single paper came through the search on applying deep learning to anomaly
detection in DTS systems. It only contains ”initial proof-of-concept results”, and
very little details on the anomaly detection approach or machine learning models
tested.

Araujo et al. [2018] approach detecting leaks from liquid pipelines by applying
machine learning to the signals of the DTS system monitoring the pipelines. With
30km of pipelines and DTS samples spaced 0.5 meters in space and 8 minutes in
time, they are facing a problem with very similar characteristics to the one of this
thesis. They compare machine learning approaches to the traditional approach
of setting value thresholds to detect anomalous values. They argue that machine
learning is a more suited approach than thresholding. This is due to serviceable
thresholds being di�cult to set, and might need to be changed in answer to changes
in the surroundings. They also remark of the advantage of using DTS systems for
monitoring the pipelines. Compared to other solutions, analysis of DTS system
data o↵ers analysis of higher resolution. This allows better localization of leaks.

They train and compare a number of models. The di↵erent models are trained
using data exhibiting only normal behaviour. The datasets for both validation
and testing contain some leak events. They explore both statistical and machine
learning methods, and find that singular value decomposition (SVD) is unsuited to
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detect the subtle changes caused by the pipeline leaks. It was reportedly compu-
tationally expensive and better suited to small sections of pipeline without much
variation. They further report investigating several di↵erent machine learning
techniques that include LSTMs, CNNs, autoencoder architectures and shallow ML-
classification approaches. They do not report any further specifics of the models
nor how the di↵erent models compared, only that they decided to go with a con-
volutional undercomplete autoencoder model that incorporates both spatial and
temporal information. It is not clear how this model is used to detect anomalies.

3.2.2 Anomaly Detection

More work was found on deep learning for anomaly detection in general, not only
applied to DTS data. Few papers explicitly treat unsupervised anomaly detection.

Malhotra et al. [2015] propose a semi-supervised method for anomaly detec-
tion in time series. It uses deviation from predicted normal behaviour to detect
anomalies. The prediction model consists of stacked LSTMs. Two LSTM cells
are stacked by using the output of the first LSTM as the input to the one stacked
above it. The cell state is not passed between the two LSTM cells. Using stacked
LSTM cells may allow the network to better capture the features of the time se-
ries, similar to how deep FNN architectures benefit from hierarchically building
abstract representations of features with increasing network depth.

The model is trained with non-anomalous data to model the normal behavior.
The utility of this approach is motivated by real-word applications where plenty
of non-anomalous data often is available. Data with anomalous behaviour may
however be rare, as in the export cables of this thesis. The modelled normal
behaviour is used to make predictions for a number of time steps. The prediction
errors from a validation set are modelled by a multivariate Gaussian distribution,
which is used to calculate the likelihood of anomalous behavior. Validation sets
of both normal and anomalous data are used to set a threshold to judge whether
observations are normal or anomalous based on the anomaly likelihood.

In Malhotra et al. [2016], the idea of using LSTMs for anomaly detection has
been further matured. They propose an LSTM autoencoder that is trained to
reconstruct time series exhibiting normal behaviour. The reconstruction error
obtained from comparing the original time series to its reconstructed version is
used to detect anomalies.

They report that this model better allows normal phase changes due to ex-
ternal factors that are not well handled by the LSTM prediction approach. Time
series may be inherently unpredictable due to manual controls or un-monitored en-
vironmental controls. In these situations, the prediction-based anomaly detection
model might not be suitable. When the phase changes are unpredictable, they can
lead to unpredictable behavior that is well within what is normal.
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The model consists of an encoder that learns to produce a fixed dimension
representation of the input time series, and a decoder that learns to reconstruct
the input from the encoding produced by the encoder. The encoding produced
is the final state of the encoder, which is used as the initial state of the decoder.
A linear layer transforms the output of the LSTM decoder to predict the target.
The encoder and decoder are jointly trained using only non-anomalous time series.
The reconstruction error of a sequence is used to compute an anomaly likelihood
score. The score is a proxy of the likelihood of the sequence being anomalous.
The intuition is that the model has only seen normal sequences during training,
and thus is better at reconstructing normal sequences. In a supervised setting, an
anomaly threshold is set based on both normal and anomalous data.

They apply their model to four datasets, where the application to an ECG
dataset is of the biggest relevance to this thesis. In this application they do not
have anomalous data for setting the threshold, instead showing that the model can
be used in an unsupervised setting. Here they set the threshold based on statistics
of the anomaly likelihood scores from a validation set of only normal data.

They compare the LSTM autoencoder model to their previously proposed
LSTM prediction model, and find that for predictable datasets the prediction
based model is superior. For datasets that are inherently unpredictable due to
external factors, the LSTM autoencoder model does considerably better.

An application of the prediction-based LSTM anomaly detection model pro-
posed by Malhotra et al. [2015] is seen in Filonov et al. [2016], where they apply
the model to detection of cyber-attacks in a gasoil plant. They focus on multivari-
ate industrial time series that contain both data from sensors and control signals.
As they do not have such a dataset available, they create a mathematical model
of a real gasoil plant. They use this to generate data of normal behaviour, but
they also modify some of the process logic to simulate a cyber attack, and this
way generate data containing anomalies.

Instead of fitting a distribution to the prediction errors as done by Malhotra
et al. [2015], they use the prediction error directly. A sequence is marked as
anomalous if the prediction error exceeds a threshold ⌧ . They first report setting
⌧ to be the 0.999-quantile of the empirical error distribution. Then they vary
the threshold and compare the precision as recall at di↵erent thresholds. They
consider the threshold to be a tunable parameter that can be used to control the
rate of false negatives versus the rate of false positives.

Chauhan and Vig [2015] present a direct application of Malhotra et al. [2015]
to electrocardiography (ECG) signals with the goal of detecting multiple arrhyth-
mias. They claim that advantages of the LSTM prediction approach compared to
previous techniques used to analyse ECG signals, are that minimal pre-processing
of the data is needed. It does not require hand coded features nor prior knowledge
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of the anomalies to work.
Yan and Yu [2015] address anomaly detection in gas turbine combustors. They

learn features from sensor measurements using stacked denoising autoencoders1

(SDEA). Anomaly detection using the extracted features is compared to anomaly
detection using features that were handcrafted based on engineering and domain
knowledge. They want to avoid handcrafting features, as the crafted features will
be very problem specific, and the approach does not scale. Anomaly detection
is done by feeding the features to an extreme learning machine classifier2 that
outputs the probability of an anomaly. The data is highly imbalanced with a
lot more samples of normal behavior than anomalous behaviour. To overcome the
class imbalance, the anomalous samples are more heavily weighted during training.

Liu et al. [2017] apply deep learning to anomaly detection in rotating electric
machines. They want to detect faults to reduce maintenance costs and prevent
accidents. Previous methods depend on handcrafted feature extraction, which
heavily depends on prior knowledge and human labor. They claim that industry
structures and data are becoming increasingly complicated, making handcrafting
features an even less attractive option. They are considering rotation machinery,
which results in strongly periodic data. They propose a CNN-structure that takes
as input a matrix of shifted subsets of the input time series. To allow direct
comparison of the same phases of the period, the length between the shifted time
series corresponds to a multiple of the period of the signal.

3.2.3 Asynchronous Time Series Data

Finally the related works on asynchronous time series data in deep learning are
presented. Zhang et al. [2017] address rare event prediction with multivariate,
non-uniformly sampled time series data consisting of both continuous and cat-
egorical variables. The nature of the data and complex dependencies between
the variables make the prediction problem challenging. Previous approaches have
relied on handcrafted features, or breaking up the problem into synchronous vari-
ables. Their proposed approach involves symbolizing the input and feeding the
symbolized words to an LSTM. The representation of the vocabulary is trained
jointly with the LSTM to learn discriminative features for the given task. Further
they cast the prediction problem as a classification problem, with di↵erent classes
corresponding to di↵erent times until the next event of interest.

Neil et al. [2016] approach the problem of traditional RNN models being ill-
suited to process asynchronous and unevenly sampled time series data. Real world

1
Denoising autoencoder are autoencoders where some of the inputs are randomly masked

during training.
2
Extreme learning machine (ELM) is a version of a two-layer FNN where the hidden nodes

are randomly chosen while the output weights are analytically determined[Huang et al., 2016].
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scenarios where multiple sensors with di↵erent sampling rates give rise to asyn-
chronous time series motivate their model. In these scenarios, enforcing constant
update rates negatively a↵ect the precision and e�ciency of RNNs, due to the
e↵ects of resampling.

To deal with these issues, they introduce the Phased LSTM (PLSTM). It is an
extension to the LSTM that adds a time gate in addition to the forget, input and
output gates. The time gate is controlled by independent rhythmic oscillations. In
one of the phases of the oscillations the time gate is closed, which does not allow
any updates to the states of the LSTM cell. In the other phases it is partly or
fully open, allowing updates to the states. The oscillations are specified by three
parameters that can be learned or set by the user. The parameters are the period
of the oscillations ⌧ , the phase shift s and ron, which controls the ratio of the open
phase to the duration of the period. They propose the following calculation of the
time gate kt:

�t =
(t� s)mod⌧

⌧
, kt =

8
>>>><

>>>>:

2�t

ron
if �t <

1

2
ron

2� 2�t

ron
if
1

2
ron < �t < ron
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(3.1)

The parameter ↵ is the leak rate. It is used in the closed phase, and allows
propagation of important gradient information when the time gate is closed. The
time gate kt controls updates to the cell state ct and hidden state ht as presented
in equations 3.3 and 3.5. When the time gate is fully open (kt = 1), the updates
are identical to a normal LSTM. As the gate closes, less of the proposed updates
are applied, and more of the old states are kept.

c̃t = ft � ct�1 + it ⇤ tanh(Wc · [ht�1,xt] + bc) (3.2)

c = kt � c̃t + (1� kt)� ct�1 (3.3)

h̃t = ot � tanh(c̃t) (3.4)

ht = kt � h̃t + (1� kt)� ht�1 (3.5)

They report favorable results of the PLSTM compared to an LSTM with times-
tamps of observations as an additional feature. It is reported being superior on
signals sampled asynchronously and at high resolution.

An e↵ort towards making LSTMs accept univariate time series with uneven
sampling rates is presented by Baytas et al. [2017]. They are concerned with
analyzing patient records with very irregular sampling intervals, raging from days
to years between recorded events. They want to cluster patients into disease
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characterizing subtypes, with the aim to o↵er the most suitable type of treatment.
In healthcare, the time between two consecutive hospital visits is an important
factor of the decision making, and thus they require a model that takes the elapsed
time between records into account. They propose an LSTM modification that they
call time-aware LSTM (T-LSTM) to meet their needs. It has the LSTM cell state
decomposed into short-term and long-term parts. Based on the elapsed time, the
e↵ect of the short term part is discounted. The altered previous cell state is used
to update the cell state and the hidden state.

They report that the T-LSTM is able to learn powerful representations of
temporal patient journals that they use to cluster the population. They compare
their approach to two LSTM extensions that alter the forget gate to take time into
account, and shows that their approach learns more powerful features.

Binkowski et al. [2018] address prediction of multivariate asynchronous time
series. They are concerned with financial data, where the same signal can be ob-
served from di↵erent sources in asynchronous moments of time. These observations
might be correlated, and the significance of each past observation upon the predic-
tion can change over time. They are inspired by the relatively good performance of
traditional econometric models such as autoregressive models3. Inspired by these
they propose the significance-o↵set convolutional neural network, which they see
as a neural network extension of standard autoregressive models. The model uses
a nonlinear weighting mechanism, such that the final output prediction is obtained
as a weighted sum of adjusted inputs. The weights are data-dependent functions
learned through a CNN.

They further motivate their network structure by observing that many real-
world applications give rise to multivariate time series, where the di↵erent dimen-
sions are observed separately and asynchronously. The much used pre-processing
step of aligning the dimensions at fixed frequencies may lead to loss of information
if a frequency too low is used, or prohibitive enlargement of the data set. They
rather propose decomposing all the dimensions to a single dimension, with dimen-
sion marker and duration as additional features. This representation is used in
their proposed model.

They compare their model to LSTM, PLSTM and multilayer CNN on several
datasets, and find that their model outperforms the others on all tested asyn-
chronous datasets. On a synchronous dataset the model almost matches the results
of the others.

Stec et al. [2018] expand the T-LSTM of Baytas et al. [2017] to multivariate,
non-uniformly sampled time series, by introducing five di↵erent feature types.
They introduce dense features for sequential features with high frequency, sparse

3
An autoregressive model is a stochastic model where the output depends linearly on its own

previous values as well as a stochastic error term.
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feature for sequential features with low frequency, delta features related to the
time between events, and two types of static features that apply to the sequences
as a whole. The decay function is modified to handle an arbitrary number of delta
features, not just the time elapsed since the last time step. The calculated decay
factor is used to decay the short term component of the cell state as in Baytas
et al. [2017]. In addition, the hidden state is split into distinct parts for long-term
and short-term memory. Also each sparse feature has its own cell and hidden
states that are kept unchanged between value updates. This is a result of the
assumption that sparse features do not change between observations, so that only
when a new observation arrives does the value change. This way features that
are present frequently are handled di↵erently from features that are present rarely
when updating the cell states. Finally, the static features are applied to the last
output of the LSTM cell as they apply to the sequence as a whole. They compare
their model to the T-LSTM, and report getting better results on two data sets.

3.3 Summary

There seems to be a consensus in the reviewed works as to the main motivation
behind using deep learning for anomaly detection. The deep learning approaches
require little pre-processing. This means that less domain knowledge and less
human labour is needed. Features that traditionally were handcrafted by experts
can be substituted with features automatically extracted by the deep learning
models.

To further summarize the reviewed literature, the literature review questions
introduced on page 25 are revisited.

Q1 Has deep learning based anomaly detection been applied successfully to DTS
systems?

A single paper was found that applies deep learning based anomaly detection
to a DTS system monitoring pipelines, but few details of the constructed models
were provided. It is thus hard to judge whether deep learning was successfully
applied, but they do report getting better results than thresholding. The models
are not described in a way to make them reproducible. They did report using the
deep learning models to learn the normal behaviour of the time series, an approach
that was used in many of the other reviewed works on anomaly detection, and is
employed in this thesis as well.

Q2 What approaches exist to unsupervised anomaly detection in time series
using deep learning?
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Q3 What other deep learning approaches to anomaly detection in time series
exist with other degrees of supervision and can they be transformed to be
used in an unsupervised setting?

As little has been written directly on the subject of unsupervised anomaly
detection, it seems natural to answer the second and third question together.
Among the reviewed methods, the LSTM prediction model proposed by Malhotra
et al. [2015] seems to be the most influential, with multiple applications in other
reviewed works. The LSTM based autoencoder model has not seen the same
wide application, which might be due to the fact that most researchers have been
concerned with time series of a predictable nature.

Common to both methods proposed by Malhotra et al. is that they center
around learning the normal behavior of the data, then use deviations from this to
mark anomalous behaviour. The utility of this is motivated by normal behaviour
data being readily available, while anomalous data often is scarce. In the export
cables anomalous data is non-existent, but normal data is available. Thus methods
based on modelling the normal behaviour are suitable.

While both methods proposed by Malhotra et al. are semi-supervised in their
nature, they seem to be easily transferred to be unsupervised. Anomalous data
is only used at the end to set appropriate threshold values, and this can be done
with only normal data. An example of this was shown in Malhotra et al. [2016],
where the threshold was set using only statistics of the normal data. This way the
false positive rate can be controlled to a degree. The approach can also be applied
to setting the threshold of the prediction based anomaly detection model.

Few fully supervised methods were proposed. This is probably a results of
normal behaviour data being much more available than data of anomalous behavior
in real-world scenarios.

Q4 How have asynchronous time series been handled in deep learning?

Traditionally, asynchronous time series in deep learning have been handled by
having them resampled to the same frequency, as most models assume uniform
sampling rates. Resampling has been argued to lead to loss of information from
downsampling or high computational cost from upsampling. Most of the reviewed
papers propose making changes to existing sequential deep learning models to
accept asynchronous data, instead of resampling the inputs. The proposed models
have mostly been alterations of the LSTM.

Some of the reviewed works address problems that are not relevant to the
export cables. There are no categorical variables in the export cables as in Zhang
et al. [2017], so there should be no need to symbolize the input. Baytas et al. [2017]
and Stec et al. [2018] were concerned with taking the elapsed time into account.
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The time between observations does not hold the same semantics in the export
cables as in health care.

One of the simpler tricks reported in the reviewed works involve providing
the time elapsed as a feature to a traditional deep learning model. This trick is
attempted for the export cables. Also the representation of inputs preferred by
Binkowski et al. [2018] is tested. The representation decomposes all the dimensions
to a single dimension, with dimension markers and duration as additional features.
Neil et al. [2016] were motivated by asynchronous time series produced by real
world settings, and their proposed PLSTM will be tested for the asynchronous
data from the export cable system.

3.4 Motivation

It has previously been explained that wind farm operators want to early detection
of developing faults in the export cables. Currently, the only measure monitoring
the studied export cables is crude thresholds. This measure is not able to pro-
vide early detection of developing faults. As has been the case in many of the
reviewed works, plenty of data of the normal behaviour of the system is available.
This motivates building upon the work of Malhotra et al. [2015] to model the nor-
mal behaviour of the export cable system. Deviations from the modelled normal
behaviour can be used to detect anomalies.

Mathematically modelling the system of the DTS data and the environment
surrounding the cable is not practical. This motivates using machine learning
to learn a model of the normal behaviour. As in the reviewed works, there is a
desire to avoid handcrafting features. This is believed to be di�cult and time
consuming, and will not yield results that can generalize to other domains or
potentially even other cables. This motivates looking into deep learning methods
to instead implicitly learn the complicated relationships directly from the raw data.

All the reviewed works on anomaly detection have looked at the temporal evo-
lution of the variables of interest to find anomalous behaviour. The time dimension
is believed to be of high importance also in the export cables. Further, the system
is believed to be predictable, so a prediction based anomaly detection model might
be appropriate. The electric current and sea temperature are believed to be big
drivers of the evolution of the temperature in the cable, and these data sources
are available to the analysis. This motivates first looking into how best to handle
the asynchronicity in the time series that stem from combining the data sources
related to the export cable. That a prediction based approach is believed to be
suitable for the export cables, motivates focusing on asynchronous time series in
deep learning prediction models.

The export cable data di↵ers from the data addressed in the reviewed works
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in that it also has a pronounced spatial dimension. The spatial sequences are
highly correlated and might contain information that allows detecting anomalous
behaviour. This motivates extending the general anomaly detection approach of
modelling normal behaviour to be attempted in the spatial dimension as well.
Finally it is believed that combining the temporal and spatial dimensions might
enhance anomaly detection by looking at the temporal evolution of the spatial
distribution of the DTS values.
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Chapter 4

Experiments part 1:

Asynchronous Time Series Data

in Deep Learning Prediction

Models

The next two chapters detail the two series of experiments conducted. The exper-
iments of this chapter try to establish how best to handle the asynchronous time
series data of the export cables in deep learning prediction models. This is done by
exploring whether there are better ways to handle asynchronous time series data
than resampling it to be of the same uniform sampling rate, which is the format
assumed by most sequential deep learning models. The experiments are in direct
connection to research question 1, which was defined on page 2. It is repeated here
for convenience.

Research question 1 How are the asynchronous time series of the export cable

system best handled in sequential deep learning models?

The asynchronous time series used in the experiments consists of the DTS value
of a single segment, the electric current and the sea temperature. The electric
current and sea temperature are uniformly sampled with sampling intervals of
10 minutes and one hour respectively. The sampling rate of the DTS system is
uneven. The mean interval between the DTS samples is 1141 seconds, and the
standard deviation is 176 seconds. Figure 4.1 shows a subset of the asynchronous
time series with the di↵erent sampling rates of the component time series.

39
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Figure 4.1: A subset of the asynchronous time series making up the export cable
system. It consists of the DTS value of a segment of the export cable, the electric
current through the cable and the sea temperature. Each blue dot represents an
observation.

4.1 Experimental Plan

How best to handle asynchronous data is established for the export cables by
comparing di↵erent techniques for handling asynchronous time series input when
using RNNs to make predictions for the next temperature reading. Only a single
segment of the cable is included in this series of experiments, together with the
electric current and the sea temperature. Here, the temporal dimension is of inter-
est. This leads to only regarding the DTS values of a single cable segment, as this
allows studying the temporal dimension in isolation from the spatial dimension.

The particular problem of one step prediction is chosen for exploring how to
handle asynchronous time series data because it is a simple and well-defined prob-
lem. No assumptions need to be made regarding the nature of anomalies or other
aspects, as the time series data itself makes up both the inputs and the targets for
training and evaluation. The problem gives results that make it easy to compare
the tested models. Time series prediction is also a problem that intuitively should
be a↵ected by the assumptions made when handling the asynchronous data. If
the model is to learn the physical relationships governing the temperature of a
segment, the electric current and the surrounding environment, knowing the time
passed between observations should make the relationships clearer when the time
can vary.

A big advantage of reviewing time series prediction in this series of experiments,
is that the implications of the results are directly applicable in the next series
of experiments. There, prediction-based anomaly detection models are used for
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anomaly detection in the export cables, and it is advantageous to have confidence
in the prediction model being used in the anomaly detection models. Hopefully
these first experiments will give general insight into how to treat asynchronous
time series data in deep learning, but the end goal is finding insights that positively
a↵ect the downstream anomaly detection.

Section 3.2.3 shows that most of the contemporary approaches to deep learning
with asynchronous data use LSTM-based models. For this reason, all approaches
to handling asynchronous data are applied to LSTM-based models. Only regard-
ing LSTM-based models has the benefit of keeping the models comparable, and
reducing the scope of the experiments. The models are trained to predict the
next temperature reading, given the last few temperature, electric current and sea
temperature readings.

A few approaches are tested that resample the input data to make it syn-
chronous. This resampling leads to loss of information. In the process of re-
sampling, explicit assumptions need to be made about how the variables behave
between observations. In the experiments the new values are interpolated linearly.
Other approaches are tested that keep the input data at their sampled frequen-
cies. For these, no assumptions need to be made about how variables act between
observations. This should be an advantage, and thus it is expected that one of the
latter approaches achieves the best results in the experiments.

4.2 Experimental Setup and Architectures

To ease and speed up training, the sliding window approach with stride 1 is used
to construct samples, as described in section 2.7.1. Using a fixed size window
to represent the state of the sequence is a simplification, but should hold in the
export cables since the data is not expected to contain very long term dependen-
cies. Physical properties govern the relationship between the cable temperature,
the electric current though the cable and the sea temperature. This relationship
may be of a lagged character, such that past values have an impact on future ob-
servations. These lagged relationships motivate using multiple past observations
to make predictions. Multiple input steps might also expose information about
the current physical properties of the surrounding environment of the cable, with
regards to heat dissipation. This should improve predictions. The number of in-
put steps to include in each sample is a hyperparameter that is decided by initial
experiments.

Blocked cross validation with validation and test folds is used for training and
evaluation, as described in section 2.7.2. At the beginning of each fold, each
feature is z-normalized1 based on the mean and standard deviation observed in

1
That the data is z-normalized means that the population mean has been subtracted from
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Figure 4.2: Data used in the first series of experiments. The red vertical lines show
the division into 5 folds used for blocked cross validation.

the training data of the fold. This is done to put equal emphasis on each feature.
Also the validation and test sets are z-normalized based on the mean and standard
deviation of the training data.

When training, a maximum number of 1000 epochs is allowed with a patience
of 50 epochs. This means that training terminates after 50 epochs with no im-
provement in validation accuracy or after a total of 1000 epochs, whichever comes
first. The reported accuracy stems from the epoch with the best validation accu-
racy. All models are implemented in Tensorflow [Abadi et al., 2015]. Training is
done in mini-batches of size 128.

This series of experiments was executed using 15 months of data from November
2017 out through January 2019. The segment 34327.4 meters from the shore was
drawn randomly among all segments to be used in the experiments. Figure 4.2
shows the DTS values, the electric current and the sea temperature from this
period. The red vertical lines show how the data was distributed into 5 sequential
folds.

A number of di↵erent methods for handling asynchronous time series data were
compared, and care was taken to make the comparison across the di↵erent methods
as fair as possible. The same input samples were used by all models. Each input
sample consisted of a fixed number of raw DTS values, with all the electric current
and sea temperature observations in the same time range. As a result of this, the
samples were of di↵erent duration. For the models requiring resampled inputs,
each input sample was individually resampled. This way values outside the input
sample could not a↵ect the interpolated values. Most importantly, information
about the target could not leak to the inputs values. All models were trained to
make the same prediction, regardless of what resampling was applied to the inputs.

each sample, and the samples have been divided by the population standard deviation. This way

the data has a mean of zero and a standard deviation of 1.
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For all models, the target value to predict was the next raw measured DTS value.
Figure 4.3 shows an input sample with corresponding target value.

The time passed from the last input to when the prediction was to be made
for was also included as input to the models. This was to allow the models to
handle the di↵erence in time between the predictions. Samples that had prediction
intervals larger than twice the median (2218s) or smaller than half the median
(554.5s) were not included in training or evaluation.

Figure 4.3: Input data and target value for time series prediction. The blue dots
are the inputs at raw sampling rates. The one red dot to the right in the top plot
is the DTS value to be predicted.

Before training the models of interest, some exploratory experiments were con-
ducted to find reasonable hyperparameter settings. The specifics and full results
of the exploratory experiments can be found in the appendix in section A.1.1.
From this, the LSTM configuration was set to a single layer with 64 units. A
learning rate of 0.01 was set to use with the Adam optimizer. Dropout was not
used. The samples consisted of inputs with 50 input steps of DTS values with the
sea temperature and electric current in the same time range.

The first models had the input data resampled to be synchronous. The data
was then input directly to an LSTM cell. The final output of the LSTM was con-
catenated with the z-normalized time between the last input and the target. The
result was forwarded to a fully connected layer with linear activation. The weights
of the fully connected layer were initialized using a standard normal distribution,
and the bias was initialized to 0. This architecture can be seen in figure 4.4. MSE
was used to calculate the loss.

Table 4.1 summarizes the parameter settings common to all models. Now each
model is presented with its specific input format and model architecture.
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Figure 4.4: The base LSTM architecture used in the experiments. At each time
step, the DTS value dt, electric current ct and sea temperature st is fed to the LSTM
cell. The time until the prediction is concatenated to the final cell output, and
the resulting vector is fed through a fully connected layer with linear activations
to produce the prediction of the next DTS value d̃t+1. Both the hidden and cell
states are transferred between time steps, but only the hidden state is drawn.

Number of epochs 1000
Patience 50
Batch size 128
Learning rate 0.01
LSTM units 64
Optimizer Adam

Table 4.1: Parameter settings for the first series of experiments
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Figure 4.5: The input format used by model A. 50 time steps with the electric
current and sea temperature resampled to fit the DTS sampling rate. Blue dots
represent observations.

Model A: Values resampled to fit the rate of the DTS

The first model kept the DTS-value at its raw sampling rate. Both the electric cur-
rent and sea temperature were resampled to fit, linearly interpolating values at the
appropriate timesteps. As a consequence, the input to the model was synchronous
but unevenly sampled, and there was no indication of the intervals between the
observations. All the inputs to model A had 50 time steps of observations. Fig-
ure 4.5 shows an example of the resampled inputs. The basic LSTM architecture
of figure 4.4 was used with the input.

Model B: Values resampled to fit the median DTS rate

For model B, the DTS value was resampled to make the observations uniformly
sampled. The chosen sampling rate was 1109 seconds(⇡ 18.5 minutes), which cor-
responds to the median sampling interval observed in the DTS data. Both the
electric current and sea temperature were resampled to fit the resampled DTS
value. Linear interpolation was used for the new values. Resampling to a uni-
form rate together with the uneven sampling rate of the DTS value led to inputs
of di↵erent length, such that the longest had 69 time steps. The basic LSTM
architecture of figure 4.4 was used.

Model C: Values resampled to fit the rate of the electric current

For model C, the electric current was kept at its raw 10-minute sampling rate. The
DTS-value and sea temperature were resampled to fit. Again linear interpolation
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was used to interpolate the new values. The resampling to a uniform rate together
with the uneven sampling rate of the DTS value again lead to input samples
of di↵erent lengths, where the longest had 126 input steps. The basic LSTM
architecture of figure 4.4 was again used.

Model D: Raw temperature readings with interval as input

Model D had the same input as model A, but with the time passed between
each DTS observation as an additional input feature. Thus the input consisted
of the DTS value at its raw, uneven sampling rate, the electric current and sea
temperature linearly interpolated to fit, and the time between each observation.
As for model A, all samples had inputs with 50 input steps. The basic LSTM
architecture of figure 4.4 was used, but with the time since the last observation ⌧i
as additional input to the LSTM cell at every time step.

Model E: All features collapsed into one dimension

Model E di↵ers from the previously introduced models in that it allows all the
measurements to be kept at their raw sampling rates. This is done by collapsing
all the measured values into one dimension. Three other dimensions provide a one-
hot encoding of what value is reported in each row. The last feature provides the
time since the previous variable update. Figure 4.6 shows this format for a small
input sample. Collapsing all features into one dimension made for longer samples,
and they were again of di↵erent lengths. The longest sample had a length of 197
input steps. Normalization of each feature was done before combining the values.
An architecture similar to that of figure 4.4 was used, but with the described input
format.

Model F: Phased LSTMs

Also the phased LSTM allows the measurements to be kept at their raw sampling
frequency. This was achieved by feeding each signal to its own PLSTM cell together
with the timestamps of the measurements. These timestamps were constructed
to be relative to the first temperature reading of each sample and were measured
in seconds. The outputs from the PLSTMs were combined, and ultimately the
z-normalized time between the last observation and the target was also input.

Three schemes for combining the three PLSTMs were applied to blocked cross
validation with only validation sets. The most favourable of these was retrained
using blocked cross validation with validation and test sets, in order to be compared
to the other models.

The two first schemes accepted the raw inputs of each of the three signals.
The input samples consisted of 50 input steps of DTS value and concurrent inputs
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Time DTS
00:35:13 37.147
00:55:05 37.041
01:17:26 37.421

Time Sea T.
01:00:00 12.5

Time Current
00:40:00 3374.0
00:50:00 3405.0
01:00:00 3406.0
01:10:00 3312.0

values DTS Sea T. Current interval
37.147 1 0 0 0

3374.000 0 0 1 287
3405.000 0 0 1 600
37.041 1 0 0 305
12.500 0 1 0 295

3406.000 0 0 1 0
3312.000 0 0 1 600
37.421 1 0 0 446

Figure 4.6: Input format used by model E. The values of the DTS, sea temperature
and electric current are collapsed into one dimension. Three one-hot features mark
what feature is being updated, and the last features counts seconds since the last
value update.

steps of the sea temperature and electric current. The maximum number of input
steps was 26 for the sea temperature and 126 for the electric current. Each signal
was fed to its own PLSTM.

The first of the three schemes naively added the last outputs of the three
PLSTMs, then concatenated the resulting vector with the time until predictions.
The resulting vector was fed through a fully connected layer with a single output
and linear activation.

The second scheme concatenated the three vectors containing the last outputs
of each PLSTM to a long vector, and also included the time until prediction. The
resulting vector was fed through a fully connected layer with sigmoid activation
and 64 units. This result was again fed through another fully connected layer with
only one output and linear activation.

The third scheme follows the approach described in Neil et al. [2016], and
forwards all the PLSTM outputs to a final PLSTM. To allow this, the data for
the third scheme is of a slightly di↵erent format than for the two other. To allow
feeding the outputs to a final PLSTM, the input sequences need to be of the same
length. The samples for all three signals were thus made to have the timestamps
of the updates made to all of the signals. The last observed value was copied to fill
all new timestamps for each signal. This was done in accordance with Neil’s input
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in an online forum2 discussing how to train PLSTMs using popular framework
implementations. The time gate should learn to ignore the copied values, and only
regard the new updates.

With this input format, the three input signals were input into three di↵erent
PLSTMs. The outputs at each time step were concatenated and input into a fourth
PLSTM. The last output from this PLSTM was concatenated with the input time
information and fed through a fully connected layer with a single output and linear
activations to produce the prediction. A diagram of the architecture can be seen
in figure 4.7.

Figure 4.7: Phased LSTM architecture. The DTS value, electric current and sea
temperature is fed to separate PLSTM cells at each time step. Only the cells for
the DTS values and electric current are drawn. The same time input is presented to
each cell. The top cell has as input the outputs from the bottom cells at each time
step. Both the hidden state h and cell state c are transferred between timesteps,
but only the hidden state is drawn.

2https://www.reddit.com/r/MachineLearning/comments/5bmfw5/r_phased_lstm_
accelerating_recurrent_network/

https://www.reddit.com/r/MachineLearning/comments/5bmfw5/r_phased_lstm_accelerating_recurrent_network/
https://www.reddit.com/r/MachineLearning/comments/5bmfw5/r_phased_lstm_accelerating_recurrent_network/
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The results of the initial PLSTM configurations using blocked cross validation
can be seen in table A.5 in the appendix. Based on the results, the final approach
with a fourth PLSTM merging the results was chosen for model F.

Further setup of the PLSTM is summarized in table 4.2 and was applied to all
the tested units. ron was initialized to 0.1, and the initial phase shift s was drawn
uniformly between 0 and 0.1. The initial period ⌧ was drawn from exp(U(1, 1000)),
where U denotes a uniform distribution. The three parameters controlling the time
gate were learnable, and so they were changed from their initial values during the
training process. The leak rate ↵ was set to 0.001.

units 64
leak ↵ 0.001
initial ron 0.1
initial ⌧ exp(U(1, 1000))
initial s U(0, 0.1)

Table 4.2: Parameters settings of the PLSTMs

Model G: Combined individual LSTMs

Model G also treated the raw observations of all three signals. The signals were
each fed to their own 64 unit LSTM. The last output of each were concatenated,
together with the time until prediction. The resulting vector was fed to a fully
connected layer with sigmoid activation and 64 units. This result was again fed
to another fully connected layer with only one output and linear activation. This
is identical to one of the tested PLSTM approaches, but with the PLSTM cells
substituted with regular LSTM cells. The architecture can be seen in figure 4.8.

Linear regression baseline

Finally, a linear regression baseline was implemented for comparison. The im-
plementation LinearRegression from the module linear model of sklearn [Pe-
dregosa et al., 2011] was used. It needs fixed size inputs and was fed the same inputs
as model D, namely the raw DTS values, the electric current and sea temperature
resampled using linear interpolation to fit, and the time between observations. It
was trained using the same cross validation scheme as the other models, thus us-
ing 3 folds for training and one for testing. The validation set does not have the
same purpose for linear regression as for deep learning models. The model is fit
analytically, so the validation data is not used for early stopping. Setting aside
the validation set is however needed if the model is to be extended for anomaly
detection.
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Figure 4.8: Model G architecture. Both the hidden state h and cell state c is
transferred between timesteps, but only the hidden state is drawn.

4.3 Results and Discussion

This section presents the results of the experiments on asynchronous time series
data in deep learning prediction, with a test of the statistical significance of the
results. Following is a discussion of the results.

4.3.1 Experimental Results

Model Train MSE Val MSE Test MSE
A: DTS rate 0.0451 0.0548 0.0673
B: DTS resampled 0.0520 0.0673 0.0787
C: El. current rate 0.0440 0.0574 0.0758
D: DTS rate + interval 0.0412 0.0575 0.0703
E: one dimension 0.1373 0.2230 0.3552
F: PLSTMs 0.0407 0.0525 0.0611

G: Combined LSTMs 0.0496 0.0563 0.0694
Linear regression 0.0550 0.0636 0.0636

Table 4.3: Averaged MSEs of the tested models for prediction with asynchronous
time series data

Table 4.3 presents the results of the trained models. The reported MSEs are
averaged over the in total 20 model versions trained for each test and validation
fold combination.
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The PLSTMs get the best averaged results for both the training, validation
and test sets. On the training data, model D is very close behind. Also models C
and A are close. Closest behind on the validation data is model A, while on the
test set the linear regression model used as a baseline is closest. Model E, which
collapses all value updates into one dimension, stands out as notably bad on all
three data sets.

Quite a large gap can be observed in the training and testing MSEs of the neural
networks. The linear regression model seems to have been better at generalizing,
being the second worst model on the training data and second best on the test data.
More discussion of this comes in the next section. First the statistical significance
of the results is tested.

The Wilcoxon signed-rank test was applied to the MSEs of model F and each
other models in turn, to see whether model F was the best model with statistical
significance. The test was executed with a one-sided alternative hypothesis of
model F having a smaller population mean. The paired samples used were the
test MSEs of two models for the same combinations of test and validation folds.
Thus 20 paired samples were input to the test. As four and four samples use the
same test fold, the samples might invalidate the independence assumption of the
test. No better suited test was however found, and it is believed to be the best
way get some statistical insight.

The analysis found that model F was not statistically significantly better than
model A nor the linear regression model at a significance level of 0.05. It was
significantly better than the other tested models. The p-values of the statistical
analysis are presented in table 4.4. These findings lead to a discussion of the initial
results.

A B C D E G lin reg
0.07145 3.147e-05 0.004718 0.005344 9.537e-07 0.008591 0.1305

Table 4.4: P-values from the Wilcoxon signed-rank test with the alternative hy-
pothesis that the MSEs of model F come from a distribution with a smaller mean
than the MSEs of the other tested models.

4.3.2 Discussion

The statistical analysis shows that while model F was better than all other models
on average, it was not statistically better than model A nor the linear regression
model. This discussion will look at why that is the case. Table 4.5 shows the
test results at finer granularity, where the test MSE is reported for each test fold
averaged over the 4 corresponding validation folds. Tables A.6 and A.7 report the
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validation and training MSEs respectively in the same way and can be found in
the appendix.

Model test 1 test 2 test 3 test 4 test 5
A 0.0849 0.0966 0.0495 0.0651 0.0405
B 0.0874 0.1144 0.0576 0.0836 0.0507
C 0.0713 0.1087 0.0778 0.0787 0.0424
D 0.0657 0.1133 0.0515 0.0715 0.0496
E 1.0284 0.2091 0.2931 0.1539 0.0913
F 0.0641 0.0905 0.0465 0.0653 0.0393

G 0.0754 0.1060 0.0489 0.0687 0.0481
LR 0.0828 0.0742 0.0545 0.0635 0.0430

Table 4.5: Test MSE for di↵erent tested models for each test fold averaged over
each validation fold.

From table 4.5 it can be observed that model F only performs best on the
test set for 3 out of the 5 folds. On folds 2 and 4 the linear regression baseline
beats all the deep learning models. This is also the case for the validation data.
Model F beats linear regression on all folds for the training data. Many of the
deep learning models show a better ability of fitting to the training data, but also
a larger tendency to overfitting and not generalizing to the test data. It is of note
that model D shows strong results on the training data, being ahead of model F
on folds 2 and 5 and being almost equally good on fold 3.

The tables show that there are significant di↵erences in the results given what
fold is used for testing. This can be seen by inspecting the test results of model F.
For fold 5 it has a test MSE of 0.0393, while for fold 2 it is 0.0905 which is more
than the double.

Continuing this analysis, the tables in figure 4.9 show the test results for model
F and the linear regression model at an even finer granularity, broken down to
each test fold with each individual validation fold. Di↵erent test folds are on the
rows, while the validation folds are in the columns. The cells report the MSE
on the test set and are colored such that a darker color means a higher MSE.
Linear regression seems more stable across the validation folds within each test
fold (across the columns of each row), while model F and the other deep learning
models are more unstable. Thus changing the validation fold for the same test fold
has a bigger impact for the deep learning models. This might be a consequence
of the deep learning model using the validation data during training for early
stopping. Linear regression does not use the validation data at all for training, so
the only e↵ect is the change in the composition of the training data. This hints
at potential overfitting to the validation data in the deep learning models. The
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(a) PLSTM (b) Linear regression

Figure 4.9: Full test results for PLSTM and linear regression by test fold on the
y-axis and validation fold on the x-axis. The numbers are the MSE on the test set.
The squares are colored by magnitude of the MSE, so that low scores are bright
and high scores are dark purple.

interested reader can find the full test results of models A, B, C, D, E and G in
tables A.1, A.2, A.3, A.4, A.5 and A.6 respectively in the appendix.

There is some randomness present in the deep learning models due to random
initialization of weights and random shu✏ing of samples during training. There
is no randomness in linear regression. The randomness in deep learning could
account for some of the variation across the folds, but the observed variation is
believed to be too substantial and too similar across di↵erent models to be due
to this randomness alone. The same combinations of test and validation folds are
observed to stand out as bad for many of the models.

The boxplots of figure 4.10 show that the distributions of the electric current,
the DTS value and the sea temperature vary substantially across the 5 folds.
Further, the heat dissipation from the cable might have seasonal variances that
are not captured by the input variables. This makes blocked cross validation
problematic because the test and validation folds have data distributions that
di↵er from each other and the training folds. This can lead to poor generalization.

The poor generalization can come from the models having to extrapolate when
facing values in the test set that are more extreme than what have been observed
during training. It might be that the linearity of the linear regression model
handles the extrapolation better than the nonlinear deep learning models.

Another problem occurs when a validation set is used to guide early stopping,
and this validation set has a distribution that is very di↵erent from the test set.
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Figure 4.10: Boxplots of DTS value, electric current and sea temperature for each
fold.

The di↵erent distributions might prefer di↵erent parameter settings, such that
what best fits the validation set does not generalize to the test set. This way the
deep learning models can overfit to the validation set.

4.4 Randomly Blocked Cross Validation

Based on the previous discussion, blocked cross validation seems unsuitable for
seasonal data when few periods have been observed. This leads to the proposal
of a training and evaluation scheme that tries to alleviate these issues. The pro-
posed scheme involves making a much larger number n of sequential blocks, and
constructing samples within each block. The blocks are then distributed randomly
between the k folds, such that each of the k folds contains the samples of n

k
random

blocks. An example of how this can look can be seen in figure 4.11 for n = 60 and
k = 5, where each color represents a di↵erent fold. Only the DTS data is drawn
to show the temporal division into the di↵erent folds.

The block size must be chosen so that the number of time steps in each block is
at least the number of time steps needed in a training sample. Ideally the number
of time steps will be significantly larger, as some samples are lost near the block
borders when using a small stride for constructing samples. There is a trade-o↵
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Figure 4.11: Fold division for sequentially blocked cross validation and for ran-
domly blocked cross validation for the DTS data.

of having more samples or more blocks. With large amounts of data, finding a
reasonable configuration should not be too challenging.

The discussion has made it clear than the training and evaluation scheme uti-
lized might not have given a fair evaluation of the methods. It has also highlighted
that linear regression seems more robust to extrapolation than the deep learning
models. This series of experiments is wrapped up by a rerun of models A, F and
linear regression with the proposed randomly blocked cross validation scheme. The
hope is to now get statistically significant results, so that the model to extend to
use for anomaly detection in the export cables can be established. Also model D
is retrained with the new evaluation scheme, as model D showed strong results on
the training set and might now generalize better.

The setup of the individual models was kept the same as in the first run, and
is described in section 4.2. The only thing that has changed is the distribution of
the data into the 5 folds used for cross validation with validation and test sets.
Now the data is separated into 60 consecutive blocks, each with about 1 week of
data. Samples were constructed from each block. The 60 blocks were randomly
distributed among the 5 folds, such that each fold contained the samples of 12
random blocks of consecutive data. Then the same procedure for cross validation
was followed, such that the data was normalized based on the data of the three
training folds, the model was fit using the samples from the training folds, the
samples of the validation fold were used for early stopping and the samples of the
test fold were used only for evaluation in the very end. This was repeated for every
combination of test and validation fold. The aim of this approach is to make the
distribution within each fold more equal.
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4.4.1 Experimental Results

The results of the rerun experiments averaged over test and validation folds can
be seen in table 4.6. As before, model F has the best results for both the training,
validation and test sets. The discrepancy between the training, validation and test
sets is a lot smaller than it was using blocked cross validation with large sequential
blocks.

Model Train MSE Val MSE Test MSE
A: DTS rate 0.0352 0.0429 0.0461
D: DTS rate + interval 0.0341 0.0430 0.0450
F: PLSTM 0.0336 0.0414 0.0448

Linear regression 0.0562 0.0588 0.0588

Table 4.6: Averaged MSEs of the tested models for prediction with asynchronous
time series data.

From statistical analysis of these results conducted in the same way as described
in 4.3.2, model F is statistically better than model A and linear regression at a
significance level of 0.05. It is however not statistically better than model D. The
p-values of the analysis are presented in table 4.7.

A D Lin reg
0.03793 0.2045 2.861e-06

Table 4.7: P-values from the Wilcoxon signed-rank test with the alternative hy-
pothesis that the MSEs of model F come from a distribution with a smaller mean
than the MSEs of the other tested models.

4.4.2 Discussion

The boxplots in 4.12 show that the distributions of all three variables are pretty
similar across the folds with the new fold division scheme. Making the blocks even
smaller will make the distributions even more equal.

Figure 4.13 shows the full test results for models D and F respectively. In
comparison to figure 4.9 from blocked cross validation with long sequential blocks,
there is very little variability across the validation folds within the test folds. There
is also a lot less variability across the test folds. Fold 3 stands out as getting
markedly poor results for both deep learning models. This is especially true when
used as the test set, but also when used for validation it systematically performs
comparably bad. This is again probably due to di↵erences in data distribution.
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Figure 4.12: Boxplots for DTS value, electric current and sea temperature for each
fold when using blocks containing 12 randomly distributed blocks.

From figure 4.11, fold 3 has three of its blocks next to each other, which might go
towards explaining this. Using even smaller blocks would make this less likely to
happen.

The full test results of the linear regression model can be seen in figure 4.14.
It has even more even results across validation fold, and pretty even results across
test fold as well. From the darker colors it can also be seen very clearly that it is
outperformed by the deep learning models. For the interested reader, the full test
results of model A can be found in figure A.7 in the appendix.

Thus it seems like the distributional problems of blocked cross validation with
large sequential blocks for seasonal data have been alleviated by the proposed
randomly blocked cross validation scheme.

4.5 Conclusion

The first series of experiment is wrapped up by revisiting the first research question.

Research question 1 How are the asynchronous time series of the export cable

system best handled in sequential deep learning models?

Experiments have been conducted to explore how to treat the asynchronous
time series of the export cable in time series prediction with deep learning mod-
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Model D: DTS rate + interval Model F: PLSTM

Figure 4.13: MSEs for each test and validation fold combination for models D and
F after retraining with randomly blocked cross validation. The test fold is on the
y-axis and validation fold on the x-axis.

Figure 4.14: Full test results for linear regression after retraining with randomly
blocked cross validation. Test fold is on the y-axis and validation fold on the
x-axis.
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els. Based on the results, there seems to be little to gain by using the much
more involved phased LSTM, compared to simply resampling the data to be syn-
chronous and using conventional LSTMs. There is no statistical di↵erence in the
performance of models F and D, and model D is chosen for the prediction based
anomaly detection of next series of experiments. The ease of implementation of a
conventional LSTM compared to the PLSTMs, and significantly higher speed of
training contributes to making model D the preferred choice.

It is a surprising results that a model utilizing resampling is preferred. The
resampling of the electric current and sea temperature was hypothesised to lead
to loss of information that would hurt performance, and it is surprising that it did
not significantly do so. The DTS value was however kept at its original sampling
rate. It was the most important variable to learn, as it was the variable to be
predicted. Still the electric current is hypothesised to be what drives the changes
in the temperature, and thus having more information about the electric current
was hypothesized to help predictions.

It seems like conventional LSTMs handle the uneven sampling rates of the
DTS system well, at least when the time between samples is provided as an ad-
ditional input feature. The sampling rate of the DTS system was however not
terribly uneven. 50% of the intervals were between 16.5 and 21.4 minutes, and
95% were between 14.6 and 24.4 minutes. During the process it was wondered
whether the samples were taken uniformly, but some post-processing lead to un-
even timestamps. This was denied by the operator, so the uneven sampling rate is
assumed to be real. This belief is strengthened by the fact that information about
the sampling rate helps the deep learning model.

This wraps up the discussion of time series prediction with deep learning models
with asynchronous input data. The focus now returns to anomaly detection, where
the preferred model for time series prediction is used for anomaly detection and
evaluated on its downstream anomaly detection results.
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Chapter 5

Experiments Part 2: Anomaly

Detection

In this chapter the focus returns to the main goal of this thesis, namely anomaly
detection in the export cables. How best to exploit the spatial and temporal
relationships in the DTS data to detect anomalies is explored. This is directly
connected to the second research question, first introduced on page 2 and repeated
here for convenience:

Research question 2 Does exploiting relationships in both the temporal and spa-

tial dimensions of the DTS-data give more robust anomaly detection models

than only regarding one of the dimensions?

Anomaly detection based on temporal and spatial relationships are first ex-
plored separately in sections 5.2 and 5.3. The lessens learned from these experi-
ments guide how to construct models that exploit the relations in both dimensions.
These are presented in section 5.4. The hypothesis is that utilizing both dimen-
sions gives a more robust anomaly detector compared to looking at one of the
dimensions in solitude. Exploring each dimension separately allows confirming or
rejecting the hypothesis, and will lead to experience useful towards building the
final combined models.

All models are trained only on normal data to learn the normal behaviour of the
temperatures in the export cables, indirectly measured by the DTS system. This is
done through prediction of future values or reconstruction of observed values from
a smaller encoding. That the models have not been exposed to anomalous data
during training is exploited for detecting anomalies. This is done by comparing
model output to target values to get an error vector. The errors are expected to
be larger for anomalous behaviour than for normal behavior, and this is used to
detect anomalies. The approach is inspired by the results of Malhotra et al. [2015]
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and Malhotra et al. [2016]. A set of synthetic faults are constructed and used to
evaluate the models. First section 5.1 describes the experimental setup common
to all the experiments of this chapter.

5.1 Experimental Setup

Data from 01.11.2017 to 03.04.2019 was used in the second series of experiments.
The data was divided into 2-day blocks, and the blocks were randomly distributed
into 5 folds as proposed in section 4.4. The four first folds contained 52 blocks and
the last contained 50. The high number of blocks in the folds should lead to the
data being evenly distributed.

As before, each experiment was repeated with di↵erent folds used for testing.
Another fold was used for validation and the three remaining for training. Di↵erent
from before was that only one designated validation fold was used with each test
fold, instead of using each of the four other folds. This was the result of prohibitive
training times. Training each model 20 times was not feasible. Each model was
instead trained five times, once for each test fold. The subsequent fold was used
for validation, such that test fold 1 used fold 2 for validation and test fold 5 used
fold 1 for validation.

The data was z-normalized based on the statistics of the data from the training
folds, and the models were trained using the normalized data from the training
folds. The data from the validation fold was used for early stopping. Error vectors
were obtained from applying the model to the validation data and comparing the
outputs to the target values. These were used to fit the parameters of the anomaly
score calculation, as described in section 5.1.2.

The data from the test fold was used for evaluation of the models. The blocks of
the test fold were used to construct two types of synthetic faults. The blocks were
also used as samples of normal behaviour. This allowed evaluating the amounts of
both false negatives and false positives.

A fault sample thus consisted of 2 days of data. Inputs and targets were
constructed from each fault using the sliding window approach with stride one
and the sample format required by the respective models. The inputs were fed to
the models. Each output obtained from the model was compared to its respective
target value, and based on this an error vector was constructed. The error vector
was used to calculate an anomaly score for the time step. The anomaly score for
the whole fault sample was sat to the maximum anomaly score of the contained
time steps. The same procedure was used to give anomaly scores to each sample
of normal behaviour. The anomaly scores of the faults and normal samples were
compared for each model to judge model skill. This was done by drawing ROC
curves and calculating AUC scores.
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5.1.1 Generation of Synthetic Faults

Synthetic faults in the export cable were constructed for evaluation of the anomaly
detection models. They were generated in cooperation with a domain expert.

From the domain expert, two distinct situations describe the probable temporal
development of future cable failures. The first situation is an instant fault. During
an instant fault, the physical properties of the cable change rapidly. With the DTS
system’s sampling rate of about 18 minutes, this can lead to a visible temperature
increase in the a↵ected segments from one observation to the next. The other
situation is a gradually developing fault that can be due to slow changes is the
surroundings of a cable segment. The time frame of gradual faults will vary, and
is di�cult to predict. A gradual upwards drift of the temperature of the a✏icted
segments over a three month period is deemed prudent to detect by the domain
expert.

When it comes to the spatial characteristics of future faults, they are believed
to be of a local character. The implemented synthetic faults have a center seg-
ment a↵ected with a temperature increase that dissipates to its four neighbouring
segments on each side. This way the faults span about nine meters. Figure 5.1
shows how a 10% increase in the center segment dissipates to its neighbours. From
the domain expert, the faults can have the temperature changes occurring for all
values of the electric current.

Figure 5.1: Spatial distribution of implemented faults. One segment is a✏icted
with a temperature increase that dissipates to four neighbouring segments on each
side.

A memo of the characteristics of the failure scenarios written by the domain ex-
pert can be found on page 129 in the appendix. Some additional research scenarios
are provided that are not implemented and evaluated in this thesis. They include
shorter time periods for the gradual faults and di↵erent temperature changes.
These scenarios are judged to be less di�cult to detect than the implemented
failure scenarios.
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Instant Faults

The instant faults are implemented as a 10% increase in the temperature of the
center a✏icted segment between one time step and the next. The faults are con-
structed from blocks of two days of normal data. The blocks contain about 130
time steps of DTS values. 100 time steps of normal data are copied over to the
fault. From time step 100 and out, the 10% increase is applied to the center seg-
ment, with smaller increases applied to its four neighbours on each side. An image
of the temporal development of an instant fault can be seen in the bottom plot
of figure 5.2. The plotted instant fault has been generated from the normal block
in the plot above. The center a✏icted segment and its five neighbours on each
side are plotted. From time step 100 it can be seen that the temperatures of the
a↵ected segments vary more from their neighbours than before the fault occurred.

Figure 5.2: Temporal profile of a synthetic instant fault. 11 neighbouring segments
are plotted, with an instant fault occurring at time step 100 for the bottom plot.
The top plot shows the same segments in the normal data block used to generate
the fault.

Quantiles of the normal distribution were used to get the shape of the fault
requested by the domain expert. Increases of 6.17%, 3.171%, 1.34% and 0.46%
were applied to the neighbours of the center a✏icted segment in respective order
of steps out from the center segment. The spatial temperature distribution after
the inflicted fault can be seen in figure 5.3. The top image shows the temperature
profile of a normal time step. The bottom plot shows the temperature profile for
the same time step after an instant fault has been applied. Around segment 6000
the temperature has increased by 10% for the center a✏icted segment. The change
is drawn in red. Figure 5.4 shows the same time step, but has zoomed in on the
a✏icted segments.
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Figure 5.3: The spatial profile of the DTS values of the export cable. The top
plot shows a normal profile for the export cable. The bottom plot shows the same
profile with a synthetic fault drawn in red color around segment 6000.

Figure 5.4: Closeup on the spatial DTS value profile of the export cable with a
constructed instant fault. The red lines represent the change made to the normal
frame to get the synthetic instant fault.
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Gradual Faults

For the gradual faults, the temperature increase rises over 90 days from 0% to 10%
for the center a✏icted segment. This too is implemented with 2-day blocks as basis.
The gradual drift of the temperature increase is assumed to be linear, and thus the
temperature increase at the beginning and end of each block can be calculated.
To simulate 90 days of increase, 45 2-day blocks are needed. These are randomly
drawn and ordered from the available test blocks of each fold. The increases are
applied to each block by calculating the appropriate temperature increase at every
observed time step for the a✏icted segments. The same quantiles from the normal
distribution are used for the spatial distribution, such that the neighbours of the
center segment have increases of 0.617, 0.317, 0.134 and 0.046 times that of the
center segment.

Figure 5.5 shows three di↵erent stages of the gradual faults applied to the same
normal block. Again 11 segments are plotted, with the middle one being the center
a✏icted segment. The top figure shows the two first days of the gradual increase.
The temperature in the a✏icted segment rises by 0.22%, which is not visible to
the eye. The middle figure shows halfway through the increase. For this block,
the temperature increase goes from 4.89% to 5.11%. The bottom plot shows the
last two days of the gradual increase, where the temperature rises from 9.78% to
10% above the normal data.

Figure 5.6 shows a closeup of the spatial profile on the cable with the gradual
increase at the same stages. At the end of the second day of the fault, the tem-
perature increase is 0.22% which is hardly visible. After 46 days the increase is
5.11% and after 90 days the increase is 10%.

Construction

Faults were constructed for all the five test folds. Instant faults were constructed
from every block of each test fold. Only 45 blocks were needed for the gradual
faults. These were randomly drawn and ordered from the blocks of each test fold.

Faults were constructed for three segments. The rational for this will become
clearer when the temporal models are described in section 5.2. The temporal
models were only trained for a single segment, and were evaluated only on the faults
constructed for that segment. The spatial and combined models were evaluated
on the faults in all three segments. Reported experimental results are averaged
over the three segments and 5 folds.
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Figure 5.5: Temporal development at three stages of a synthetic gradual fault.

Figure 5.6: Closeup on the spatial DTS value profile of the export cable with
di↵erent stages of gradual faults.
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5.1.2 Anomaly Likelihood Score

The anomaly detection models produce error vectors. An observation is classified
as anomalous or normal based on the characteristics of its error vector. The error
vectors stemming from the normal data of the validation set are modelled to learn
what error vectors are typical for normal behaviour, so that deviating error vectors
can be used to detect anomalous behaviour.

This is achieved by using maximum likelihood estimation to fit a multivariate
Gaussian distribution to the error vectors of the validation fold. Thus the mean
vector of the distribution is set to the mean vector µ of the validation errors, and
the covariance matrix ⌃ of the distribution is set to the covariance matrix of the
validation errors. This way both the typical magnitude of the errors and how they
interact across terms for normal data is modelled.

f(x) =
e�

1
2 (x�µ)T⌃�1(x�µ)

p
(2⇡)k|⌃|

(5.1)

Equation 5.1 shows the density function of a multivariate Gaussian distribution.
x and µ are column vectors, where µ is the mean vector of the distribution.
The covariance matrix ⌃ must be positive definite, and |⌃| is its determinant.
The only dependency on x is in the exponent. As there is a negative sign, the
density decreases with an increase of the exponent. Thus a larger exponent will
have smaller density than a smaller exponent. Based on these facts, an anomaly

likelihood score is constructed as a proxy for the probability of an anomaly, as
the determinant of the covariance matrix is unstable for large covariance matrices.
Equation 5.2 shows the anomaly likelihood calculation.

a(i) = (e(i) � µ)T⌃�1(e(i) � µ) (5.2)

Calculating the expression is expensive and numerically unstable with large co-
variance matrices. Rewriting the expression as shown in equations 5.3, 5.4 and 5.5,
allows using a di↵erential equation solver instead of inverting the covariance ma-
trix. This makes the calculation both more numerically stable and faster.

b
(i) = ⌃

�1(e(i) � µ) (5.3)

⌃b
(i) = (e(i) � µ) (5.4)

a(i) = (e(i) � µ)Tb(i) (5.5)

The calculation can be sped up even further by calculating an LU factorization
of the covariance matrix, and reusing the factorization to speed up solving the
equation system of equation 5.4. This approach was utilized in this thesis, using
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lu factor and lu solve from the linalg module of scikit-learn [Pedregosa et al.,
2011].

5.2 Temporal Experiments

This section details the conducted experiments concerning the temporal dimension
of the export cable data. The temporal dimension is explored by constructing
models that only regard a single segment of the export cable, together with the
electric current and the sea temperature. Multiple consecutive time steps are
provided to the analysis to capture temporal trends. The models will have to
learn how the temperature in a single segment normally develops, given the electric
current through the cable and the surrounding sea temperature. Figure 5.7 shows
the time series that are analysed by the temporal models.

Figure 5.7: The DTS value for a single segment, electric current and sea temper-
ature make up the time series that are modelled by the temporal models.

The goal of the experiments is to gain experience with temporal anomaly de-
tection models. Having individual models for each of the 39516 segments does
not scale well, and the hypothesis is that they are not powerful enough on their
own. They should be able to pick up on the instant faults, as they will lead to
abrupt changes from one time step to the next. The gradually developing faults
might be more challenging, as the di↵erence between each time step is minimal.
The experiments result in experience towards deciding what model is best suited
to expand with spatial information.
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5.2.1 Experimental Plan

Methods based on predicting future values and reconstructing sequences are imple-
mented. A prediction based model is hypothesized to perform best for the export
cables, as discussed in section 3.3. LSTM based prediction models inspired by
Malhotra et al. [2015] are implemented. Also LSTM autoencoder models inspired
by Malhotra et al. [2016] are implemented, as well as a linear regression prediction
model that will be used as a baseline.

LSTM Prediction

The prediction based LSTM models heavily lean on the results from the first
series of experiments. Based on these, model D is used as a basis for anomaly
detection. The model will make predictions for a number of time steps into the
future. This way each time step will have a number of predictions made for it, and
these predictions are compared to the observed value to produce an error vector.
The error vector is used to calculate the anomaly score.

Models predicting both one and three steps ahead are implemented. It is hy-
pothesised that one step is superior. The MSE will su↵er from making predictions
further into the future. It is guesswork to predict how the temperature behaves in
an hour, when it is not known how the control variables behave. It is however not
the MSE of the predictions that is the main concern, but rather the downstream
anomaly detection results. The anomaly likelihood model should learn to accept
larger errors in predictions further into the future.

Malhotra et al. [2015] predict both control variables and dependent variables
when doing anomaly detection. The stated rationale is that it forces the network to
learn normal usage patterns. If a control variable has changed between timesteps,
this will likely lead to large prediction errors in the dependent variables, even when
they behave normally given the change. When the control variable is also being
predicted, the anomaly likelihood model will learn that large prediction errors in
the dependent variables together with large errors in the control variable can be
within normal behaviour.

In the export cables, the control variables are not of a binary on/o↵ nature that
results in abrupt changes, making this concern less relevant. There is also a concern
of not wanting to find anomalies in the sea temperature or the electric current.
Because of the unpredictable characteristics of the electric current, there is reason
to believe that the network will not learn to successfully predict it. This fact should
however be captured by the anomaly score calculation. It is still hypothesized
that only predicting the temperature is more appropriate for the export cables.
Models predicting only the DTS-reading as well as models predicting both the
DTS-reading, the electric current and the sea temperature are implemented and
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tested for the export cables.

LSTM Autoencoder

Also LSTM autoencoder models are implemented for anomaly detection. The
models consist of two sub-models, first an LSTM encoder that takes a sequence as
input and produces an encoding of it, then a decoder that takes the encoding as
input and tries to reconstruct the input sequence. The models are trained jointly
to reduce the mean squared reconstruction error obtained from comparing the
reconstructed sequence to the input sequence. The reconstruction error vector is
used to calculate the anomaly likelihood score.

Initial experiments examine what encoding should be produced by the encoder
and passed to the decoder. Malhotra et al. [2016] report transferring the final
state of the encoder to be the initial state of the decoder, but it is ambiguous
what state is transferred. It can be only the cell state, only the hidden state or
both. The papers Sutskever et al. [2014] and Srivastava et al. [2015] were also
conferred. The first is also not clear on what state is transferred, while the latter
report transferring both the hidden and cell states. All three variants are tested
in an initial experiment to see what encoding is appropriate to use for the export
cable dataset.

Models are implemented both for univariate and multivariate input. The uni-
variate model only reconstructs the DTS readings, while the multivariate also re-
constructs the electric current and sea temperature. In Malhotra et al. [2016] they
only input univariate time series into their model. In the domains where they have
multivariate inputs, they use the first principal component after applying principal
component analysis. For a single segment of the export cable, the electric current
and the sea temperature, only about 63% of the variance is explained by the first
principal component. This is judged to be too little, and there are no technical
reasons not to reconstruct all three signals. As for the prediction model, there is
a concern that including the control variables will introduce anomalies that are
due to the control variables not acting as expected, which is not what is wanted.
There is however reason to believe the control variables to be instrumental in find-
ing anomalies, as they decide what DTS temperature developments constitute as
normal. Implementations are done both with and without the control variables to
shed light on these concerns.

Linear Regression

The first series of experiments a�rmed the importance of using a baseline to
compare results to. The linear regression prediction model from the first series
of experiments is also applied to anomaly detection, to be used as a baseline for
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Figure 5.8: A snapshot of the DTS values in the cable at a random time step.
The three segments drawn to use for the temporal experiments are marked by red
arrows.

the temporal models. As for the LSTM prediction model, the predicted values
are compared to observed values to produce an error vector that is used in the
anomaly likelihood score calculation.

5.2.2 Experimental Setup and Architectures

The temporal models only cover a single segment of the cable, and it was not
plausible to train models for all 39615 segments. Instead it was chosen to repeat
the experiments for three random segments. This was thought to be more robust
towards di↵erences between segments than only using one. Three segments were
randomly drawn, resulting in the segments located 6284.6, 17696.3 and 31999.5
meters from the shore. They are shown in figure 5.8.

Models were trained for each segment and faults of both types were constructed
for evaluation. Training samples were constructed using the sliding window ap-
proach to make appropriate samples from each block of the training folds. More
details follow on the implementations of the di↵erent temporal models.

LSTM Prediction

The LSTM prediction models are extensions of model D from the first series of
experiments. The input thus consisted of the 50 last steps of DTS values for a
segment, with electric current and sea temperature interpolated to fit as input.
Also the time passed between samples was provided as input.

Four models were implemented that are di↵erentiated by their target values:

LSTM p1 Predicts only the next DTS value

LSTM p3 Predicts the next 3 DTS values
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LSTM p1 c Predicts the next observation of DTS value, electric current and sea temper-
ature

LSTM p3 c Predicts the next 3 observations of DTS value, electric current and sea tem-
perature

Figure 5.9 shows an example input sequence with the di↵erent target values.

Figure 5.9: Inputs and targets for the prediction models. The dark blue dots
represent the inputs to the prediction models. The blue vertical line shows the
prediction limit. LSTM p1 predicts only the red dot. LSTM p3 predicts the red
and turquoise dots. LSTM p1 c predicts the red and black dots, and LSTM p3 c
predicts all the red, turquoise, black and green dots.

MSE was used as a loss function comparing the predicted values to the target
values. The Adam optimizer was used to backpropagate the loss and update
the weights with a learning rate of 0.01. The models only predicting the DTS
temperature were 64 unit single layer LSTM. When also predicting the control
variables, a 128 unit single layer LSTM was used. The setup further follows the
setup of model D described in section 4.2.

LSTM Autoencoder

The LSTM autoencoders consisted of two single-layer LSTMs that were jointly
optimized to reconstruct the input sequence. A conditioned LSTM autoencoder
was used, so that the predicted values were fed back to the decoder cell during
inference. The input sequence was reversed and fed to the encoder to build up the
cell states. The final state of the encoder-LSTM was used as the initial state of
the decoder-LSTM. The decoder was trained to reconstruct the sequence in the
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reverse order of how it was fed to the encoder. All zero input was provided to the
decoder LSTM in order to reconstruct the first value. For all the subsequent steps,
the true target value of the previous step was provided as input during training.
During inference, each predicted value was fed back to the model to make the
next prediction. During both inference and training, the same weights and biases
were applied to the LSTM output at each step to produce outputs of the right
dimension. Figure 5.10 shows the inputs of the LSTM autoencoder at inference
time.

Figure 5.10: LSTM autoencoder at inference time. The green boxes represent the
encoder LSTM cell, and the blue boxes the decoder LSTM cell. The sequence is
reconstructed in the reverse order of the input.

The reconstructed sequence was compared to the input sequence, and the mean
squared reconstruction error was used to calculate the loss. The Adam optimizer
was used to backpropagate the loss and update the weights.

A window size of 50 time steps was used for the input sequences. The size is
within a reasonable range when compared to the lengths of 30, 82, 208 and 500
used in the experiments reported in Malhotra et al. [2016]. There is no natural
periodicity in the data to guide the window size, and setting the window size to
50 allow the LSTM-AE models same amount of context as the prediction models.
Both the encoder and decoder LSTMs were single-layer LSTMs. When only re-
constructing the DTS values, a 64 unit LSTM cell was used. When the electric
current and sea temperature also were reconstructed, a 128 unit LSTM cell was
used.

Initial experiments were conducted to decide what state to pass between en-
coder and decoder. Based on the results presented in table A.8 in the appendix, it
was decided to only transfer the hidden state from the encoder to the decoder. The
initial cell state of the decoder was set to all zeros. From the initial experiments
the learning rate was set to 0.001. The reconstruction error obtained when com-
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paring the reconstructed sequence to the input was used to calculate the anomaly
likelihood score.

Linear Regression

The linear regression prediction model from the first series of experiments was also
fit and applied to anomaly detection. The input was the same as for the LSTM
prediction model, and thus consisted of 50 steps of DTS-temperature with the
electric current and sea temperature interpolated to fit. Also the time between
observations and the time until the prediction was provided as input. The target
was the next DTS temperature. The prediction error from this one prediction was
used for the anomaly likelihood calculation.

Table 5.1 summarizes the setup of all the temporal models.

Model input dim output dim LSTM units LR
LSTM p1 50⇥ 4 1⇥ 1 64 0.01
LSTM p3 50⇥ 4 3⇥ 1 64 0.01
LSTM p1 c 50⇥ 4 1⇥ 3 128 0.01
LSTM p3 c 50⇥ 4 3⇥ 3 128 0.01
LSTM AE 50⇥ 1 50⇥ 1 64 0.001
LSTM AE 50⇥ 3 50⇥ 3 128 0.001
Lin Reg 50⇥ 4 1⇥ 1 � �

Table 5.1: Details of the setup of the temporal models. For the input and output
dimensions, the first number describes the number of timesteps and the second
number the number of variables at each each time step. 1 corresponds to DTS
value only, 3 to DTS value, electric current and sea temperature and 4 to DTS
value, electric current, sea temperature and the time since the last observation.
LR is the learning rate used.

5.2.3 Experimental Results

The anomaly detection results of the temporal models are presented in table 5.2.
The ROC curves for instant and gradual faults can be seen in figure 5.11. The
results are presented as AUC scores averaged over the three segments and the five
folds. To make the result tables easier to review, the best result in each column is
bolded.

From table 5.2, regarding the temporal dimension gives close to perfect results
for instant faults for several di↵erent models. For the gradual faults all models do
poorly, hardly better than chance. This di↵erence in performance of the temporal
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Model Instant faults Gradual faults
LSTM p1 0.995 0.559
LSTM p3 0.981 0.553
LSTM p1 c 0.990 0.547
LSTM p3 c 0.902 0.532
LSTM AE1 0.842 0.561

LSTM AE3 0.715 0.529
Lin Reg 0.998 0.551

Table 5.2: Average AUC scores for the temporal models

Figure 5.11: Mean ROC for the temporal models. Instant faults are on the left
and gradual faults on the right.
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models for the instant and gradual faults was partly expected. The gradual faults
lead to very little relative di↵erence from one time step to next, and thus at every
time step the observed development might be well within normal behavior. The
slight drift away from the neighbouring segments is of course not captured by the
models only regarding the temporal dimension.

Again the Wilcoxon signed-rank test was used to test for statistical significance
in the results. The paired samples in the anomaly detection experiments were two
models trained for the same test fold and evaluated at the same segment. Thus 15
paired samples were input to the test when comparing two models. Again there is
a concern of the independence of the samples, but the test is used as it is the best
found alternative to getting statistical insight.

Linear regression surprisingly has the best results at detecting the instant
faults. It is statistically better than all the other temporal models at a signifi-
cance level of 0.05. The autoencoder only reconstructing the DTS values performs
best at the gradual faults, but at a significance level of 0.05 it is not statistically
better than LSTM-p1 or LSTM-p3. Tables A.9 and A.10 show the P-values of the
statistical analysis, and can be found in the appendix.

For the instant faults, all prediction models do better than the autoencoder
models. This corresponds to what was hypothesized due to the control variables
being available. Among the autoencoders, the one only reconstructing the DTS
values gets the best results. This too corresponds to the hypothesised result.

The best LSTM prediction model was the one only predicting the next DTS
value, which also confirms the hypothesised result. Predicting multiple steps
ahead, or also predicting the control variables, hurts anomaly detection perfor-
mance. The additional variables should be more di�cult to predict, but the re-
sulting larger errors in the error vectors should be accommodated by the anomaly
likelihood score calculation. However, the more di�cult predictions get larger er-
rors during training. The loss function used during training was MSE without any
individual weighing of the di↵erent terms of the error vector. Larger errors in the
less important additional variables steal focus away from making the best possible
predictions for the next DTS value. This is believed to result in worse anomaly
detection results. This might be improved by applying individual weights to the
predicted variables in the loss calculation, to put more emphasis on optimizing the
prediction of the next DTS value.

5.2.4 Discussion

This section investigates why the LSTM based prediction models were outper-
formed by linear regression in detecting anomalies. The implications of this result
for constructing a model combining the temporal dimension with the spatial di-
mension are also discussed.
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From the results of the first series of experiments, LSTM based prediction
models should make more accurate predictions than the linear regression model.
With the care taken when subdividing the data into folds, the models should not
be extrapolating. The most successful LSTM prediction model is analysed to see
where and why it fails under these conditions that should be pretty ideal. The
analysis looks into the second fold trained and evaluated for segment 6285. Here
the LSTM prediction model has an AUC score of 0.9889 for instant faults. The
linear regression model is also analysed. It has a perfect AUC score of 1.0 for
instant faults in the chosen fold and segment.

Figure 5.12: Training loss and validation loss plotted for the training procedure
of the LSTM prediction model trained for fold 2, segment 6285. Red line marks
minimum observed val loss.

The training procedure of the LSTM model is plotted in figure 5.12. While the
training procedure might look unstable, it was found that the rather high learning
rate of 0.01 hits lower validation errors than a smaller learning rate giving a more
stable learning procedure. The lowest reached validation error is marked with a
red line in the figure. It corresponds to validation MSE 2.62 · 10�4, with training
MSE 2.50 · 10�4 and test MSE 3.10 · 10�4. In comparison the linear regression
model has training MSE 4.21 · 10�4, and test MSE 4.37 · 10�4. The LSTM thus
makes significantly better predictions on average, confirming the results of first
series of experiments. Still the linear regression model gets better anomaly detec-
tion results. It is not the average accuracy that is of importance to the anomaly
detection, but rather if the errors being made for anomalous behaviour are sys-
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tematically di↵erent from the errors being made for normal behaviour. Thus even
if the LSTM on average makes better predictions, it might be less discriminatory
towards the anomalies.

Figure 5.13 compares the anomaly scores of the linear regression and LSTM
prediction models for the normal samples and corresponding constructed instant
faults from fold 2, segent 6285. The blue dots represent the scores of normal
samples, and the red dots at the same id represent the score of the fault constructed
from the same block.

Figure 5.13: Linear regression prediction and LSTM prediction anomaly scores for
the instant faults of segment 6285, fold 2. Red dots represent faults, blue dots the
corresponding normal data the faults are constructed from. The green dotted lines
at id 28 and 30 show the samples that the LSTM prediction model has problems
with.

The LSTM notably has two outlying points among the normal points for blocks
28 and 30. Apart from these two points, the anomalous and normal points are
clearly divided. The boundary between the classes seems wider for the LSTM than
for linear regression, when the two outlying points are ignored. The di↵erence in
the mean scores of the normal and anomalous points is larger for the LSTM, with
a di↵erence of 332. For linear regression, the di↵erence is 203. This suggests that
the LSTM model would in fact have been better, where it not for these two samples
of normal behaviour being classified as anomalous.

This raises the question of why the LSTM predicts these two points of normal
behaviour so badly. The normal sequence of block 28 is plotted in figure 5.14
with the predictions made by the LSTM. The sea temperature is not plotted, as



80 CHAPTER 5. ANOMALY DETECTION EXPERIMENTS

it is not interesting to the discussion. Time step 60 has a bad prediction and is
marked by an orange dotted line. Here the LSTM model predicts a substantial
increase in the temperature that does not occur. This gives one very high anomaly
score, which gives a high anomaly score to the whole sample. While it is di�cult
to interpret the output of deep learning models, it looks as if the bad prediction
happens at the first time step where the current decreases after a quick increase.
One can imagine that the model expected the current to continue its increase, and
thus expected the temperature to rise sharply. Also the outlying normal sample of
block 30 has a large error following a quick change in the electric current, as can
be seen in figure in 5.15.

Figure 5.14: LSTM prediction for the normal sample of block 28. The orange
dotted line shows time step with largest error. The data is normalized.

Figure 5.16 plots predictions for block 28 for the linear regression model. It is
not thrown by the sudden change in the direction of the current. It does also give
a large scores when the current shifts around time step 75, but this score is still
below all the anomalous scores. Figure 5.17 shows the linear regression predictions
for the normal data of block 30. Here all the scores are low.

It can be concluded that while the LSTM makes good predictions on average,
it is not reliable enough to beat linear regression at anomaly detection. The
wide border between the anomalous and normal points, apart from the outliers,
motivates looking into making its predictions more stable.

From the plots of the predictions, the observations of the electric current seem
a lot less stable than the observations of the DTS temperature. A lot can happen
to the electric current in the ⇡ 18 minutes between each sample. This uncertainty
should have been captured by the models, but the LSTM prediction model has not
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Figure 5.15: LSTM predictions for the normal samples of block 30. The orange
dotted line shows time step with largest error. The data is normalized.

Figure 5.16: Linear regression predictions for the normal samples of block 28.
The orange dotted line shows where it goes wrong for the LSTM. The data is
normalized.



82 CHAPTER 5. ANOMALY DETECTION EXPERIMENTS

Figure 5.17: Linear regression prediction for the normal data of block 30. The or-
ange dotted line shows where it goes wrong for the LSTM. The data is normalized.

been very successful. Predicting the control variables in addition could catch the
prediction errors due to the electric current not behaving as expected. This was
however attempted, but resulted in worse anomaly detection results. In figure 5.18,
the anomaly scores of the LSTM also predicting the control variables for the next
time step are compared to scores of the LSTM only predicting the DTS value. The
outliers are not a problem in the right plot, but also many of the anomalous points
have a lower score. Thus predicting the control variables is not the solution to
making the LSTM prediction model better at distinguishing normal and anomalous
behaviour.

The first series of experiments found that resampling the electric current to
fit the temperature did not hurt predictions much on average. Including more
information about the electric current might still lead to more stable predictions.
This can be done in two ways, that can also be combined. The first way is to change
the input format to accept the raw sampling rate of the electric current. This can
be achieved by retrying the resampling scheme of fitting the temperatures to the
electric current observations, though might not be preferred as information is lost
about the DTS value. Instead, the phased LSTM can be applied to include all the
current observations. Another way to allow the model more information about the
electric current is to include all the electric current observations up to and including
the time of the observation of temperature that is to be predicted. Figure 5.19
shows the proposed input. The two electric current observations between the blue
and red lines were not included in the input to the trained models, but might
improve predictions. This can be implemented without any major changes to the
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Figure 5.18: LSTM prediction with and without predicting the control variables.
Anomaly scores for instant faults of segment 6285, test fold 2. Red dots represent
faults, blue dots the corresponding normal data the faults are constructed from.
Index 28 and 30 are marked with dotted green line to show outliers in plot on the
right.

architecture. The electric current could be concatenated to the last LSTM output
in the same manner as the time until the next prediction.

The sampling rates might be too low for the LSTM to make reliable predic-
tions, even if more information about the electric current is included. The linear
regression model did however get pretty good results for the instant faults, but
the margin dividing the normal and anomalous points was not very wide. The
next section will show that spatial models get even better results for the instant
faults. It thus seems to be the case that the temporal dimension is not critical for
detecting anomalies, contrary to what was hypothesised.

The anomaly scores for gradual faults are also plotted for the linear regression
model and the LSTM prediction model. They can be seen in figure 5.20. The
temperature increase is 0 to the very left and rises gradually to a 10% increase to
the right. As has already been established by the average AUC score, none of the
models are very skillful. Any di↵erences between the scores of the normal samples
and the faults are dwarfed by the di↵erences in scores within the normal samples.
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Figure 5.19: Proposed model input with more information about the electric cur-
rent

Figure 5.20: Linear regression and LSTM anomaly scores for the gradual faults of
segment 6285, fold 2.
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Figure 5.21: A single timestep of normalized DTS values is the input to the spatial
models.

5.3 Spatial Experiments

This section presents the experiments executed on the spatial dimension of the
export cable data. The models of this section have a single time step of all the
DTS data as input, and might have more success at detecting some segments
drifting from the rest. While the temporal models were said not to be scalable,
the spatial models do not need to be scaled up to be deployed and used, as they
already handle the whole cable. Thus the models of the spatial experiments can
be used for anomaly detection in the export cables on their own should they be
successful. Figure 5.21 shows an example sequence of DTS data that constitutes
the input to the spatial models.

5.3.1 Experimental Plan

The general approach to anomaly detection in the spatial dimension is to con-
struct a more compact encoding of the sequence of DTS values at a single time
step, then reconstruct the original sequence from this encoding. The error in the
reconstruction is used to calculate the anomaly score.

The spatial experiments have two main objectives. The first is find a good
model for anomaly detection in the export cables. A lot of data is available in
the spatial dimension, which might be su�cient to find both instant and gradually
developing faults. A sub-goal of the experiments is to find a useful, smaller repre-
sentation of the data that can be fed to a temporal model for enhanced anomaly
detection.

The spatial models are evaluated on the faults constructed for the three seg-
ments of the temporal experiments. This allows comparing the spatial and tem-
poral models across the experiments.
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Autoencoders

A number of neural network autoencoder models are implemented. They are
evaluated both on their ability to find anomalies, but also on their intermediate
ability to reconstruct normal sequences. First some fully connected architectures
are attempted. Also some more complex architectures based on convolutional
layers are implemented.

Principal Components Analysis (PCA)

PCA is implemented as a baseline for the spatial models. PCA is fit to the data,
and di↵erent numbers of components are kept and used to encode and reconstruct
the sequence. Again both anomaly detection based on reconstruction error, and
how good the models reconstruct normal input is evaluated.

5.3.2 Experimental Setup and Architectures

This section presents more detailed setup of the spatial models. The analysis of
the spatial dimension led to a big increase in the amount of data to handle, as
the model input now consisted of 39516 values. This led to some computational
challenges that had to be overcome.

Autoencoders

Initially a fully connected, undercomplete autoencoder was planned as a base-
line spatial deep learning model. This architecture enforced an enormous amount
of weights and gradients to be computed, and turned out not to be feasible to
train. As a result of this, fully connected architectures were skipped from further
consideration.

In hindsight, a fully connected architecture seems excessive. It should not be
necessary for every segment in the cable to be connected to every other segment
in the whole of the cable. The spatial locality in the cable should be captured by
a convolutional autoencoder (CAE) [Masci et al., 2011]. Local connections and
shared weights reduced the number of parameters to fit, making training plausible.

The encoder consisted of four convolutional layers, each followed by a max
pooling layer reducing the encoding size. The decoder consisted of four transposed
convolutional layers each followed by an upsamling layer. It increased the size of
the encoding at the same rate as it had been decreased by the encoder.

In the convolutional layers 1D convolutions were computed. The stride was set
to one, and padding was used to maintain the encoding size. Bias was added to
the computed values with one bias per output channel, and the result was passed
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through a sigmoid activation function. Then max pooling was applied to reduce
the dimension of the representation.

In the transposed convolutional layers of the decoder, transposed 1D convo-
lutions were computed. Bias was added with one bias per output channel, then
sigmoid activation was applied. The upsampling layers upsampled to the desired
length by linearly interpolating values. The channels of the final layer were com-
bined by multiplication with weights and addition of a bias. The encoder and
decoder did not share any weights between them. Figure 5.22 shows a CAE archi-
tecture with 2 convolutional and transposed convolutional layers.

Multiple channel, width and stride configurations were planned to train, and
the configuration with the largest encoding size was trained first. It used a width
of 5 for the convolutions in all four layers. All max pooling layers used a width
and stride of 4. The first convolutional layer took the DTS values as input, and
thus had a single input channel. All layers had 30 output channels. The details
of the encoder are presented in table 5.3. This configuration led to an encoding of
size 4650 at the narrowest point, which is about 12% of the original length of the
cable. The decoder increased the encoding size at the rate it was decreased by the
encoder. All of the layers had 30 output channels, and the 30 channels of the final
layer were combined by multiplication with weights and adding a bias.

conv max p. out channels channel width encoding size
1 39 516 39 516

5,1 4,4 30 9879 296 370
5,1 4,4 30 2470 74 000
5,1 4,4 30 618 18 540
5,1 4,4 30 155 4650

Table 5.3: CAE encoder setup. The first row shows the input size. The first
column presents the width and stride used by convolutional layers, while the 2nd
column presents the width and stride used by the succeeding max pooling layers.
The encoding size is given by channel width⇥ number of out channels.

Another configuration was attempted that produced a smaller encoding. Again
convolutions with a width of 5 were used, but the max pooling layer used a width
and stride of 5 for the last layer and 6 for the rest. The final layer of the encoder
had a reduced number of 4 output channels. This lead to an encoding size of 148.
The configuration is summarized in table 5.4. The first layer of the decoder had
4 input channels. All decoder layers produced 30 output channels, and these were
again combined for the last layer by multiplication with weights and addition of
bias. After training for the first fold, the evaluation came out terrible, and further
training was put on hold. Due to the impressing results of the much simpler



88 CHAPTER 5. ANOMALY DETECTION EXPERIMENTS

Figure 5.22: Layers of a CAE. The blue parts make up the encoder, and the
green parts make up the decoder. Each hidden representation has 5 channels.
The max pooling layers reduce the encoding size, while the upsampling layers
increase the size. The convolutional and transposed convolutional layers keep the
size unchanged. The channels of the final layer are combined by multiplication
with weights W and addition of bias b to make the reconstruction of the input
sequence.
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PCA model that is introduced next, no more e↵ort was put into making the CAE
work better. More discussion of the poor performance of the CAE follows in
section 5.3.4.

conv max p. out channels channel width encoding size
1 39 516 39 516

5,1 6,6 30 6586 197 580
5,1 6,6 30 1098 32 940
5,1 6,6 30 183 5490
5,1 6,6 4 37 148

Table 5.4: CAE encoder setup. The first column presents the width and stride
used by convolutional layers, while the 2nd column presents the width and stride
used by max pooling layers. The encoding size is given by channel width ⇥
number of out channels.

In the CAE, all biases were initialized to zeroes, and all weights were initialized
drawing from a standard normal distribution. The mean squared error was used
to calculate the loss, comparing the reconstructed sequence to the original. The
Adam optimizer was used with learning rate 0.001.

Principal Component Analysis (PCA)

The implementation of PCA from the decomposition module in scikit-learn [Pe-
dregosa et al., 2011] was used for the PCA models. As the amount of features was
large, randomized SVD by the method of Halko et al. [2011] was used to find the
requested number of components. Calculating the full SVD was neither necessary
nor feasible. The PCA model was fit to the training data, which entailed finding
the right singular vectors making up the matrix Vk. The data was encoded by
applying the PCA transformation Tk = XVk. Reconstruction was performed by
applying the inverse PCA transformation to the encodings, such that Xk = TkV

T

k
.

The reconstruction error obtained from comparing the reconstructions to the orig-
inal sequences was used in the anomaly score calculations.

Anomaly Score

The anomaly likelihood score calculation ran into trouble with the increased size
of the reconstructions, due to the huge error vectors. Even with the precautions
taken, the anomaly likelihood calculation turned numerically unstable with almost
40000 elements in the reconstruction error vector.

Assuming independent errors, the calculation simplifies to the product of the
densities of individual Gaussian distributions per segment. This was also not
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useful, since the product of 40000 number all less than one also was numerically
unstable. This might have been overcome by calculating individual likelihood
scores and summing them, but the assumed independence in this approach is not
attractive. The interactions between the terms of the error vector are believed to be
instrumental in detecting anomalies. An anomaly of assumed local character will
probably be characterized by one or a few sections of the cable having abnormally
high individual errors compared to the other sections. The interactions between the
terms are captured by the covariances in the multivariate Gaussian distribution,
used in the original anomaly likelihood calculation in equation 5.2.

A simplification was engineered that looks at each likelihood score in context
of all the other scores. The proposed scheme first places univariate Gaussian
distributions upon all of the segments. From the validation error vector, the means
of every individual anomaly score µ is calculated. Also the individual variances
�

2 are calculated. From these the individual anomaly likelihood scores s
(⌧) for

time step ⌧ can be calculated, as shown in equation 5.6. The proposed anomaly
score for the reconstructed sequence is the maximum individual anomaly likelihood
score divided by the mean anomaly likelihood score among all segments, as shown
in equation 5.7.

s
(⌧) =

(e(⌧) � µ)2

�2
(5.6)

a(⌧) =
max(s(⌧))

mean(s(⌧))
(5.7)

With this approach, any one individual anomaly likelihood score that sticks
out as being significantly more unlikely than the rest in a moment in time, will
lead to a high anomaly score.

A disadvantage of this new score is that it is not as directly interpretable as the
Gaussian based anomaly likelihood score. It also strongly assumes that anomalies
will be of a local character, and will fail at marking very unlikely sequences if
all the individual anomaly likelihood scores are unlikely. An advantage is that it
directly admits locating the anomaly in the cable. The anomaly is believed to be
in the segment with the maximum individual anomaly likelihood score.

5.3.3 Experimental Results

The anomaly detection results for the spatial models are presented in table 5.5
in the form of average AUC scores. The results are averaged over the faults
constructed for each of the three segments, and over the five test folds. The table
also presents the mean reconstruction error on the test set, averaged over the five
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test folds. To make the result table easier to review, the best result in each column
is boldfaced. The mean ROC curves can be seen in figure 5.23.

Model Encoding size Instant faults Gradual faults Test R. MSE
CAE 4650 0.7476 0.6152 0.002455
PCA 10 0.9935 0.8238 0.0008847
PCA 25 0.9997 0.8898 0.0003754
PCA 50 0.9997 0.9017 0.0001622
PCA 100 1.0000 0.9177 8.442e-05
PCA 500 1.0000 0.9251 4.679e-05
PCA 1000 1.0000 0.9271 4.271e-05
PCA 2000 1.0000 0.9257 3.836e-05
PCA 4000 0.9999 0.9210 3.296e-05

Table 5.5: Mean AUC scores and reconstruction MSE on the test set for the spatial
models

For both types of faults, it is clear both from the table and the ROC plots
that all PCA models are significantly better than the convolutional autoencoder.
Statistical analysis using the Wilcoxon signed-rank test confirms this, and the p-
values of the analysis can be seen in tables A.13 and A.11 in the appendix. The
PCA models with 500, 1000 and 2000 components got perfect scores for the instant
faults. They are even better at catching the instant faults than the temporal
models. For the gradual faults, the PCA model with 1000 components is superior
among the models tested so far. It is statistically better than all the other spatial
models, except for the PCA model with 500 components. The P-values of this
analysis can be seen in the appendix in table A.14. The largest tested PCA model
with 4000 components has the smallest reconstruction error on the test set, while
the CAE has the largest.

The experiments concerning the spatial dimension have found the best anomaly
detection model so far, which is one that might be di�cult to beat. Now, the results
of this part of experiments are discussed. In particular the disappointing results of
the autoencoder in comparison to PCA are analysed. Also the encodings of both
PCA and CAE are inspected to see how well they represent whole sequences of
DTS values.

5.3.4 Discussion

This section discusses the results of the spatial models.
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Figure 5.23: Mean ROC for the spatial models. Instant faults are on the left and
gradual faults are on the right.

Convolutional Autoencoder

Figure 5.24 shows the anomaly scores for the CAE anomaly detection model ap-
plied to the instant and gradual faults of segment 6285 for test fold 2. The red
dots are the scores of anomalies, while the blue dots at the same id are the scores
of the corresponding normal samples. The plots show that the CAE poorly di-
vides the anomalous and normal samples. Many of the dots appear purple, which
happens where normal sample and corresponding constructed fault get the exact
same score. This is due to another segment than the anomaly getting the largest
individual anomaly score, and thus the overall score for the sample is not a↵ected
by the introduced anomaly. This could mean that anomaly score calculation was
sub-optimal. It does however work very well for PCA, so the calculation of the
score is not the problem.

The CAE got the highest reconstruction error among the tested models, and fig-
ure 5.25 shows reconstructions produced by the CAE. The representation learned
by the network results in a reconstruction that is a smoothed version of the original
sequence. This is not good enough for anomaly detection. The poor reconstruction
makes the extra error imposed by the anomaly not stand out as significant. The
individual anomaly likelihoods of each segment for the plotted sequences can be
seen in figure 5.26. For the plotted fault, the score does get higher for the induced
anomaly, but the di↵erence is not very significant. Overall the model does not
successfully separate the normal and anomalous samples.
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Figure 5.24: Anomaly scores for convolutional autoencoder reconstruction model
for instant and gradual faults of segment 6285, test fold 2. The blue dots represent
normal samples and the red dots at the same index the corresponding constructed
fault.

It is believed that a spatial autoencoder model can achieve results at the same
level as the PCA model, with a more suited architecture. Deep learning models
should be able to learn reconstructions at least as good as PCA when given enough
parameters to tune1. Not being constrained to only use linear relationships could
even give them the edge to outdo PCA.

Possible improvements to the current implementation include making the en-
coder and decoder share weights. Also the upsampling operation used might not
be optimal, as the linear interpolation leads to large values bleeding into sections
were the values are smaller, as can be seen in figure 5.27. Plain broadcasting might
be better. Twin objectives of detecting anomalies and producing small encoding
were chased when constructing the model. With anomaly detection as the end
goal, it might be preferable to focus solely on anomaly detection and thus allow
larger encodings.

Principal Component Analysis (PCA)

Figure 5.28 shows the anomaly scores of the PCA anomaly detection model with
500 components applied to instant and gradual faults in segment 6285 for test

1
A neural network with a single hidden layer with n nodes and linear activations can theo-

retically learn the top n principal components by gradient descent.
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Figure 5.25: CAE reconstruction. The blue graphs are the original sequence of
DTS values. The reconstructions are drawn on top. The top plot shows a normal
sequence. The bottom plot has an error marked by the dotted red line.

Figure 5.26: CAE reconstruction error for a normal and an anomalous time step
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[ 3 . 0 , 4 . 0 , 5 . 0 , 5 . 0 , 6 . 0 , 9 . 0 , 9 . 0 , 8 . 0 , 8 . 0 , 1 . 0 , 3 . 0 , 1 . 0 ]
[ 5 . 0 , 9 . 0 , 9 . 0 , 3 . 0 ]

[ 5 . 0 , 6 . 1 , 7 . 2 , 8 . 3 , 9 . 0 , 9 . 0 , 9 . 0 , 9 . 0 , 7 . 9 , 6 . 3 , 4 . 6 , 3 . 0 ]

Figure 5.27: Example of the max pooling and upsampling operations. The first
list is the original list. The second line is the result of applying the max pooling
operation to the original list. The last line is the result of applying the upsampling
operation to the list in the second line.

fold 2. A very clear decision boundary between the anomalous points and normal
points for the instant faults can be seen in the left plot. The gradual faults are
plotted to the right. Here a very clear trend can be seen of an increase in the
anomaly score of the faults, with the rising temperature increase moving towards
the right. For these scores, a line can be drawn that separates the normal data
and the faults from day 17(id 9). Here the temperature increase is 2%.

Figure 5.28: Anomaly scores for the PCA reconstruction model with 500 compo-
nents for isntant and gradual faults.

Figure 5.29 shows how successful a PCA model with 500 components is at
reconstructing the normal sequence in the top graph. In the bottom graph the
induced error of a 10% increase clearly stands out as not being reconstructed.
Comparing the reconstructions produced by PCA to the ones made by the CAE
in figure 5.25, it is clear that PCA is able to capture a lot more of the variation
along the cable. It is a much better representation of the DTS values, at a smaller
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Figure 5.29: Reconstructions produced by the PCA model with 500 components.
The top plot shows the normal data, while the bottom shows how the reconstruc-
tion of the instant faults in unable to reconstruct the segments with the fault.

Figure 5.30: Individual anomaly scores for the PCA model with 500 components.
The top plot shows the errors of the normal data, while the bottom shows how
the errors for the corresponding fault. Note the di↵erent scales of the y-axes.
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Figure 5.31: Three principal components combined to a reconstruction of the
export cable temperatures.

size. The individual anomaly scores of the segments in figure 5.30 show that the
model very successfully distinguishes the anomalous part of the cable.

Figure 5.31 shows three first components learned by PCA, and how linearly
combining them results in a reconstruction of the cable. Adding more principal
components make the reconstructions more accurate, as can be seen in table 5.6.
The continued decrease in validation and test MSE with additional components
shows that PCA is not overfitting to the training data.

The PCA model with the best anomaly detection results uses encodings of size
1000, which is only 2.53% of the original length of the sequence of DTS values.
The anomaly detection performance monotonically increases with the number of
component up to 1000. Further increasing to 2000 components leads to a decrease
in the performance for gradual faults. It was expected that the performance would
eventually start decreasing with further increases in the number of components.
When given enough components, PCA will eventually be able to reproduce all the
nuances in the cable, also the anomalous parts. This will lead to low reconstruction
errors for anomalous behavior, and thus the model will not be able to use the re-
construction errors to distinguish normal and anomalous behaviour. Using too few
components leads to poor reconstructions also for normal behaviour. This again
leads to the model not being able to distinguish normal and anomalous behaviour,
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Components train MSE val MSE test MSE
10 0.0008438 0.0008864 0.0008847
25 0.0003456 0.000376 0.0003754
50 0.0001451 0.0001623 0.0001622
100 7.515e-05 8.436e-05 8.442e-05
500 4.245e-05 4.682e-05 4.679e-05
1000 3.685e-05 4.274e-05 4.271e-05
2000 2.958e-05 3.839e-05 3.836e-05
4000 2.043e-05 3.298e-05 3.296e-05

Table 5.6: Reconstruction errors of the PCA models

this time because both will have high reconstruction errors. Table 5.7 shows the
amount of variance in the data explained by di↵erent numbers of components. The
first component explains over 98% of the variance, but the nuances explained by
the first 1000 components are needed to increase the anomaly detection abilities.
Further increasing to 2000 leads to 0.005% more of the variance being explained,
and this seems to be past the tipping point of being too much.

Components Ratio
1 98.9288%
10 99.9209%
100 99.9930%
1000 99.9965%
2000 99.9970%

Table 5.7: Ratio of the variance in the DTS data explained by di↵erent numbers
of principal components

It is clear that with the current implementations, PCA is the choice of the
spatial model to move forwards with. It has more or less solved detecting instant
faults, and also detects the gradually developing faults at an early stage. It pro-
duces very good reconstructions of the sequence of DTS values from an e�cient
encoding. It also has the added benefit of being fast to fit. The next section tries
to combine the spatial and temporal dimension, to see if the PCA model can be
enhanced to find the gradually developing faults at an even earlier stage.
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5.4 Combined Experiments

Now that the spatial and temporal models have been tested and discussed sep-
arately, it is time to combine them. The inputs to the combined models vary,
but have in common that they include multiple timesteps of observations of all
the 39516 DTS values. Additionally, some of the models also use observations of
the electric current, sea temperature and time between samples. This way the
amount of data is even larger than it was for the spatial models. The anomaly
score calculation proposed in equation 5.7 is used for the combined models as well.

Experiments are executed to see if the PCA model can be enhanced to find
the gradual faults at an even earlier stage. By analysing the spatial distribu-
tion over time, the model might pick up on the fact that the di↵erences between
neighbouring segments are growing, and this might lead to earlier detection.

5.4.1 Experimental Plan

Temporal information is introduced to the most promising model for anomaly de-
tection evaluated so far, namely the PCA model. First di↵erent input formats are
tried with the PCA model, so that multiple timesteps are part of the reconstruc-
tion. Also a promising temporal model is merged with the PCA model, such that
the encodings produced by PCA are fed to a prediction model. The next section
present the details of the setup of the tested combined models.

5.4.2 Experimental Setup and Architectures

A simple approach that introduces the temporal dimension into PCA is to con-
catenate multiple timesteps to use as input to the PCA setup described in sec-
tion 5.3.2. This was implemented and evaluated with concatenations of 3 consecu-
tive timesteps, resulting in inputs as can be seen in figure 5.32. A further extension
to this approach also concatenates the control variables so that they also have to
be reconstructed.

A more involved extension combined prediction and PCA, the best models of
the temporal and spatial experiments. PCA was fit and applied to the DTS data
of the training set. The top components were kept and the resulting encodings
of reduced dimension were used as inputs and targets to the prediction model.
The prediction of the next step was then decoded by the PCA model, and the full
prediction error of the whole cable was used to calculate the anomaly likelihood
score.

The LSTM prediction model showed some promise among the temporal models,
and thus a PCA-LSTM prediction model was implemented. A single-layer LSTM
with 1000 units was used. Due to memory constraints only 10 input steps of
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Figure 5.32: The DTS values of three consecutive timesteps concatenated.

encoded DTS values with 100 components, together with the control variables,
were used to predict the encoding of the next observed DTS values. As before,
the time until the next prediction was concatenated with the last LSTM output.
The result of this operation was fed through a fully connected layer with linear
activation. The weights of the fully connected layer were initialized by drawing
from a standard normal distribution, while the biases were initialized to zeroes.
The Adam optimizer was used with a learning rate 0.001, and the loss function was
the MSE obtained by comparing the predicted encoding to the target encoding.
The MSE was weighted by the variance explained by the associated principal
component to ensure the quality of the reconstructions.

Table 5.8 summarizes the dimensions of the inputs, encodings and outputs of
the combined models.

Model Input dim. Encoding dim. Output dim.
PCA 3⇥ 39156 150 3⇥ 39156
PCA c 3⇥ (39156 + 2) 150 3⇥ (39156 + 2)

PCA-LSTM 10⇥ (39516 + 3) 10⇥ (100 + 3) 1⇥ (39516)

Table 5.8: Input, encoding and output dimensions of the combined models. For the
input and output dimensions, the first number described the number of timesteps,
and the second number the dimension of each time step. +2 means that the electric
current and sea temperature is included. +3 means that the electric current, sea
temperature and time since last observation is included
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5.4.3 Experimental Results

The results of the combined experiments are presented in table 5.9. As before, the
models have been evaluated on the faults constructed for three di↵erent segments
in five folds, and the reported results are the averaged AUC-scores.

Model Instant faults Gradual faults
PCA 0.9999 0.9064
PCA c 0.9999 0.9007

PCA-LSTM 0.9973 0.8399

Table 5.9: Mean AUCs for the combined models.

The best among the tested combined models was the PCAmodel reconstructing
three consecutive time steps. None of the models are however improvements from
the spatial models of comparable encoding size, and they are all statistically worse
than the PCA model with 1000 components at the gradual faults. P-values from
the statistical analysis confirming this can be found in table A.16 in the appendix.
The next section further discusses the results.

Figure 5.33: Mean ROC for the combined models. Instant faults are on the left,
and gradual faults on the right.

5.4.4 Discussion

As speculated, the best spatial model proved di�cult to beat. None of the tested
combined models achieved the same performance as the PCA model of comparable



102 CHAPTER 5. ANOMALY DETECTION EXPERIMENTS

Model Encoding size Instant faults Gradual faults
PCA 50 0.9997 0.9017
PCA 100 1.0000 0.9177

Table 5.10: Mean AUC for a subset of the spatial models for comparison for the
combined models.

encoding size.

The simplest attempt at introducing the temporal dimension into PCA did not
succeed. Including multiple time steps to be reconstructed by the PCA model gave
worse performance than only including one step. This can be seen by comparing
the results of the extended PCA models to the results of the PCA models of
comparable size in table 5.10, that was copied from the spatial results. The single
step PCA model with encodings of size 50 was beaten by the 150 component multi-
step PCA model for all fault types, but not by much. The single step PCA model
with 100 components beats the multiple step PCA with 150 components on both
fault types. There seems to be more to gain by getting the encoding size correct
for reconstructing a single time step, rather than trying to reconstruct multiple
steps.

Including the control variables in the pure PCA model reconstructing multiple
steps gave worse results than not including them. More information had to be
reconstructed from the same sized encoding, which might have hurt reconstruction.
The relationship of the temperature through the cable and the electric current is
believed to be of a lagged character, and this might explain why including the
current to be reconstructed does not enhance performance. The electric current
is probably more vital for prediction models than for models purely based on
reconstruction.

The PCA-LSTM model was not successful at beating the pure PCA model with
the same encoding size. The points made in the discussion of the temporal models
hold here as well. The prediction problem is di�cult when so much can happen to
the electric current in between time steps, and might thus not be appropriate for
anomaly detection in the export cables. Also not many time steps of history were
provided to the model, so it did not have many examples from which to extract
information about the current physical properties of the cable surroundings.

The memory constraints encountered when combining PCA and LSTM can be
overcome, so that more than 10 time steps can be allowed in the analysis. The
PCA could be calculated from the training data and applied to every time step
of both the training and validation data. The full DTS sequences would then not
need to be kept in memory while training the model, which is though to be the
reason for the memory issues experienced.
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Even though the linear regression model was crowned as the most suited tem-
poral model to expand, it has not been part of the experiments of the combined
models. This is a consequence of first evaluating the models based on a threshold
set to the 0.999 quantile of the anomaly scores, which lead to marginally bet-
ter results for the LSTM prediction model than for the linear prediction model.
Changing the evaluation to look across thresholds judges linear regression as bet-
ter, and the prior results might be a result of the chosen thresholds being more
optimal for the LSTM model.

It is however believed that the poor predictability of the DTS values might make
reconstruction more promising than prediction, when combining the temporal and
spatial dimensions. The PCA model reconstructing 3 time steps did get very good
results, just not as good as only using the spatial dimension. After the CAE has
been improved, it can be extended to use two dimensional convolutional layers,
such that it can convolve over both time and space. Thus it was not prioritized
to combine PCA and linear regression for predicting the next time step of DTS
values.

5.5 Conclusion

This chapter ends with an attempt to answer the second research question, again
repeated for convenience:

Research question 2 Does exploiting relationships in both the temporal and spa-

tial dimensions of the DTS-data give more robust anomaly detection models

than only regarding one of the dimensions?

From the experiments of this chapter, the spatial dimension is believed to carry
the most important information for detecting anomalies. None of the combined
models succeeded in beating the best spatial model. It is still believed that moni-
toring the spatial distribution over time might lead to even earlier detection of the
gradual faults than only regarding the spatial information in a single time step.
This way, a slight drift of a few segments from their neighbours might be captured
at an earlier stage. More experiments are however needed to find models that
better analyse the temporal evolution of all the DTS values.

In the introduction, the physical laws governing the relationships of the cable
and its surrounding variables were emphasised. It is believed that the electric
current is the strongest driver of the temperature developments in the export
cable. It is thus unexpected that the best anomaly detection models completely
disregard the electric current. A single time step of DTS values is made up of
39516 individual values. From the results of the experiments, it is believed that
these values are capable of capturing a lot of information about both the state of
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the surrounding variables, and the recent history of the electric current. Explicit
information about the electric current or sea temperature is thus not necessary
for the model. The electric current is still believed to be the biggest driver of
the temperature evolution. But also the history of local sea temperatures, the
temperature and thermodynamic properties of the distributed surrounding of the
cable, the sea current and probably other unknown variables a↵ect the development
of the temperatures. A lot of this information is believed to be implicitly captured
in the DTS value distribution in the cable. Thus the cable observations themselves
give the best summary of the history of its environment, and a single time step of
the DTS data might still prove to give unbeatable anomaly detection results, even
after further experiments.



Chapter 6

Conclusion and Future Work

This chapter concludes this thesis with a discussion and evaluation of the obtained
results. Further the contributions of the thesis are summarized, and future work
is proposed.

6.1 Discussion and Evaluation

The tested models have only been evaluated on synthetic faults, as these are the
only faults that are available. The faults were only constructed for three random
segments. It might be that some of the other cable segments are more di�cult to
find faults in, and some segments have been observed to experience more variation
than others. Hopefully, the models will still be able to di↵erentiate what variation
is within normal behavior for each segment. This has however not been evaluated,
and thus the quantitative results of the experiments with regard to the AUC scores
should not be taken to literally. They are believed to give a potentially inflated
estimate of the expected performance of the models in a deployed setting. The
qualitative results are believed to be more accurate, such that the best performing
PCA model is believed to really be the best model among the ones tested.

It might also be that the assumed characteristics of the faults correspond poorly
to the characteristics of future failures in the export cables. The faults are assumed
to be of a local character, and this has influenced the proposed calculation of the
anomaly score for the spatial models. As a result, the models will not detect global
faults with the current anomaly score. This is not a problem if other measures are
in place to detect those. A measure to detect global faults can even be devised from
the same underlying anomaly detection model. The local anomaly score, calculated
as the maximum individual score divided by the mean, can be supported by a
global anomaly score. This can also come from the individual anomaly likelihood
scores of each segment, and can be the sum or the mean of the individual scores.

105
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All tested models for anomaly detection are based on the error of comparing an
expected result to what is observed. This is obvious for prediction models, as they
compare a predicted future value to the real observation. Also the reconstruction
based models do a comparison of what is expected to what is observed. The
reconstructed sequence can be seen as what the sequence was expected to look
like, given that the cable had behaved normally. That the anomaly detection
models depend on comparing what is observed to what is expected contribute to
making them interpretable, as the expected value can be compared to the observed.
This can be visualised and inspected to see what gave rise to an anomaly warning.
This is a strength of the models, as it gives the operators a chance to inspect the
deviations. It also facilitates locating the faults, without which the models would
be a lot less useful.

The cable might experience more extreme values than what have yet been
observed. Exposure to higher sea temperatures or longer stretches of continuous
power production at full capacity can lead to higher temperatures than have yet
been observed in the cable. This can lead to the models having to extrapolate.
The first series of experiments showed that machine learning models are sensitive
to input data with di↵erent distributions than the data used for training, and the
negative impacts of extrapolation. Under these conditions, the models cannot be
expected to work well. The current models have no way of warning when this
happens. Frequent retraining will contribute towards preventing extrapolation,
but there should still be a measure in place to warn of extrapolation if it should
happen. The global anomaly score could potentially warn of extrapolation, if it
leads to large reconstruction errors over the whole sequence.

The division of the data into blocks with two days of consecutive data can be
argued to imply frequent retraining of the models. In the experiments, the models
were never evaluated on data from time periods more than a few days away from the
data used for training. This prevented extrapolation in the controlled training and
evaluation setting of the experiments. The small block size was also convenient for
constructing samples of normal and anomalous data for evaluation. It is believed
that the models realistically can be retrained as frequently as every second day,
although it might su�ce to retrain once or twice a week. The training of the PCA
model in particular is not very resource intensive, and can easily be automated.

Frequent retraining might however have negative consequences for the detection
of gradually developing faults. If a model is retrained frequently and a fault is
gradually developing, then the model with be trained with partly anomalous data.
The gradual drift will however only constitute a small proportion of the training
data when a lot of data is available, which could limit the impact of including
the anomalous data. This situation has not been part of the experiments, so the
extent of the problem is not known. It is hypothesized that including the drifting
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data might lead to slightly slower detection.

A precaution to avoid this issue is to deploy multiple parallel anomaly detection
models trained on di↵erent temporal subsets of the data. A recent model can be
trained with all data to guard against hurtful extrapolation. An earlier model
can be trained with data that does not include the last chronological proportion.
If a gradual fault is developing, the earlier model will not be trained on the tail
of the developing fault, and should thus have better chances of catching it. Any
potential anomalies detected only by the earlier model should be inspected. If the
high anomaly score is caused by the model having to extrapolate, and the recent
model does not regard the behaviour as anomalous, then the cable is probably in
order. If the high anomaly score from the earlier model does not seem to be caused
by extrapolation, it might have caught a gradually developing fault that has been
absorbed as normal behaviour by the recent model. The number of parallel models
can be more than two, such that for example one was trained with all data, one
excluding the past week and one excluding the past month.

The anomaly detection experiments evaluated the models across thresholds.
When deploying a model, a threshold must be set to decide the cuto↵ between
normal and anomalous behaviour. Setting this threshold must be done with at-
tention to the trade-o↵ of having fewer false negatives versus having fewer false
positives. For assets of high importance, minimizing the number of false negatives
will often be prioritized. This will be at the cost of su↵ering more false positives.
In a deployed setting, the models will meet an overweight of false samples, as
most of the behaviour of the system is normal. This motivates trying to constrain
the number of false positives, as too many false positives might lead to operators
ignoring warnings of real anomalies.

If past faults are available, ROC plots can be used to find acceptable ratios
of false positives and false negatives. If faults are not available, as is the case
for the export cables, a threshold can be set based only on the statistics of the
anomaly scores of normal samples. For example the maximum observed anomaly
score, or a high quantile such as 0.999 can be used to set a threshold. This allows
somewhat controlling the ratio of false positives, and is not at risk of overfitting
to assumed fault characteristics. It does however not o↵er any control of the rate
of false negatives. Alternatively, synthetic faults can be constructed and used for
setting the threshold. This is more involved. It gives the same control of the false
positive rate, and o↵ers an estimate of the false negative rate. It might however
lead to overconfidence, or overfitting to the assumed characteristics of the faults
that guide the construction of the synthetic faults. This might in turn lead to
faults with di↵erent characteristics going undetected.

The PCA model only regarding the sequence of DTS values from a single time
step has the best results among the models evaluated in this thesis. It is tuned
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by a single parameter, which is the number of principal components to use in
the intermediate encoding. Multiple numbers were tried in the experiments, and
the best configuration used 1000 components. Choosing this number in a totally
unsupervised setting is challenging. Optimizing the reconstruction error does not
help, as the reconstructions must be good enough to reconstruct normal behaviour,
but not too good as then also the anomalous parts can be reconstructed. Finding
the tipping point requires testing di↵erent configurations for anomaly detection.
Table 5.5 shows a relatively small di↵erence in anomaly detection performance
between the PCA models with 100 to 4000 components, so there seems to be a
large space of reasonable configurations. From table 5.5, these models all have
reconstruction MSE on the test set to the order of 1e� 05. Thus if a general rule
were to be made from the experiments conducted, the reconstruction error should
be in the order of 1e�05 to be good enough. A more involved method for choosing
the number of components is to make samples with small changes to a segment,
and see what number of components best detect the fault.

A similar challenge presents itself when constructing deep learning models to
use for anomaly detection. The approach of modelling normal behaviour to use
deviations to detect anomalies does not entail explicitly training the deep learn-
ing models for anomaly detection. Rather, the models are trained with another
objective, being it mean squared prediction error or reconstruction error. This
leads to the same challenge as for the PCA model, namely selecting the most ap-
propriate model if no faults have occurred. It might not be the model with the
lowest reconstruction error that achieves the best anomaly detection results. The
temporal anomaly detection experiments showed that the lowest prediction errors
do not necessarily correspond to the best anomaly detection results. Model selec-
tion can be solved in the same way as proposed in the previous paragraph for the
PCA model, by constructing some simple synthetic faults and choosing a model
performing well at detecting these.

To close the discussion, the research questions presented in the introduction
are again revisited to see how far the research has come in answering them. Finally
the research goal is revisited, to see to which extent it has been achieved.

Research question 1 How are the asynchronous time series of the export cable

system best handled in sequential deep learning models?

It was found that for prediction, the asynchronous time series of the export
cable system could safely be handled by resampling to the uneven rate of the DTS
observations. When including time information in the input to the prediction
model, the unevenness did not have a significantly negative impact on predictions
of the DTS value for the next time step.

The first research question proved not be very consequential to the best anomaly
detection model, as it completely disregarded the temporal dimension.
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How best to handle asynchronous and unevenly sampled time series data for
reconstruction has not been given any attention. The reason for this is that pre-
diction models were hypothesised to be more appropriate for the export cables.
The DTS values proved not to be as predictable as hypothesized, and the predic-
tion models had very little success at detecting gradually developing faults. The
reconstruction based spatial models were superior by far. Reconstructing multiple
time steps might further enhance anomaly detection. For this purpose, it might be
valuable to experiment with how best to handle asynchronous time series in recon-
struction based deep learning models. The experiments of this thesis resampled
the time series to be synchronous but unevenly sampled. How this a↵ected the
reconstructions is not known, as no other methods were evaluated for comparison.

Research question 2 Does exploiting relationships in both the temporal and spa-

tial dimensions of the DTS-data give more robust anomaly detection than

only regarding one of the dimensions?

The second series of experiments found the spatial dimension to be the most
successful at anomaly detection in the export cable. A lot of information about
the surrounding environment of the cable and the recent history of the electric
current is believed to be implicitly captured in the temperature distribution. It is
believed that further improving a spatial reconstruction model, or expanding it to
also include temporal information, has the most promise for further improvement.

Goal Find the best deep learning approach to anomaly detection in the submarine

export cables.

This work cannot claim to have found the best deep learning approach to
anomaly detection in the export cables. The best model shows great promise at
being able to detect gradually developing faults at an early stage, but it is not a
deep learning model. Constraining the goal to only include deep learning models
was a precaution to constrain the scope of the research, and finding a good solution
that does not use deep learning is not a defeat. On the contrary, the PCA model
is fast and easy to fit, as compared to the procedure of finding and training a
reasonable deep learning architecture. Thus it has many advantages in addition
to the observed superior performance.

The PCA model will not be proclaimed to be the best possible approach to
anomaly detection in the cables. It is merely the best approach among the ones
tested, but it does achieve very promising results.
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6.2 Contributions

As many of the reviewed works on anomaly detection, this work builds on the
ideas of Malhotra et al. [2015] and Malhotra et al. [2016]. Abundant data of nor-
mal behaviour was modelled in order to detect deviations from normality. While
Malhotra et al. use this idea only in the temporal dimension, this work has also
successfully applied it to the spatial dimension. As in Malhotra et al. [2016], re-
construction error vectors were used to calculate an anomaly score. New is that
the reconstructed sequence was a spatial sequence, not a temporal sequence. Also
the model used to encode and reconstruct the sequences di↵er. Malhotra et al.
[2016] use LSTMs, while the experiments of this thesis achieved the best results
with a shallow PCA model. Finally the anomaly score at the center of the anomaly
detection was altered to be usable with higher dimensional inputs.

Araujo et al. [2018] reported that SVD was unsuited for anomaly detection in
their DTS system. It was reportedly computationally expensive and better suited
to small sections of pipeline without much variation. This experience is contrary
to the results of this thesis. Using randomized SVD by the method of Halko et al.
[2011] to get the top few thousand singular values was e�cient for the whole of the
export cable. Getting the whole SVD was not e�cient, but this is not problematic
as it is not needed for reconstruction based anomaly detection.

Araujo et al. [2018] reported using a CAE model that regarded both temporal
and spatial dimensions. They do not report on whether it was evaluated against
models only regarding the spatial dimension. The experiments of this thesis got
poor results using a CAE. More work can be put into making it better, as has
been discussed. The poor results obtained do show a weakness of deep learning
methods as compared to PCA. They can be more di�cult to get to work, as they
have a lot more hyperparameters to tune. For PCA, the only hyperparameter is
the number of components to keep. For CAE the number of possible architectures
is infinite, with di↵erent combinations of the number of layers, activation function,
convolutional width, stride, width of the max pooling layers etc.

Araujo et al. [2018] only report analysing the data from the DTS system. This
work tried to include more information than only DTS data, by also including the
electric current and sea temperature. The e↵orts did not enhance the anomaly
detection abilities. It has been speculated that the information in the control
variables is implicitly captured within the export cable temperature distribution,
so that nothing is gained by explicitly including the variables.

Extending on the work of Bergmeir and Benitez [2012], blocked cross validation
was altered to use multiple distributed small blocks rather than large sequential
blocks. This makes the approach suitable also for periodical time series when few
periods have been observed. This approach should be valuable to other domains
where the data has annual periodicity, as a long time has to pass before many
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periods are observed.
In summary, the main contributions of this thesis include:

• A proposed complete anomaly detection scheme for the export cables. It is
based on using PCA to encode and reconstruct the sequence of DTS values
at a single time step. The reconstruction error is used to di↵erentiate normal
and anomalous behavior.

• An anomaly score for high-dimensional error vectors when faults can be
assumed to be of a local character, as proposed in equation 5.7. It uses
individual univariate Gaussian distributions placed on each element of the
error vector, and the score is the maximum individual likelihood divided by
the mean individual likelihood. This enables using the anomaly detection
method of Malhotra et al. [2015] with high-dimensional data.

• A proposed scheme for how to train and evaluate models with time series
data with seasonality, using cross validation with small sequential blocks
randomly distributed to the di↵erent folds. It builds on the work of Bergmeir
and Benitez [2012], but better facilitates periodical data when few periods
are available.

6.3 Future Work

Throughout the discussion of the anomaly detection models, possible improve-
ments of the current models have been proposed that can constitute future work.
Spatial models have been crowned most promising for further improving anomaly
detection in the export cables, and should receive the most focus. In particular,
more attention can be paid to spatial deep learning models. As discussed, they
should be able to learn to reconstruct at least as well as PCA when given enough
parameters to adjust. It is believed that the spatial dimension is able to capture the
information needed to capture most types of anomalies. Spatial models can also be
expanded to include temporal information by reconstructing multiple consecutive
time steps. Even though the initial attempts of combining the dimensions were
unsuccessful in outperforming the purely spatial models, other combined models
may prove to be successful and should be attempted. As a step in the e↵ort of
including temporal information into spatial reconstruction models, how to handle
the uneven sampling rate of the DTS system in reconstruction models can be more
rigorously explored.

Future work can also focus on making the anomaly detection models more
interpretable. Having interpretable model output has been voiced as a wish from
the wind farm operators. They are more likely to trust the output of the model
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if it can explain its reasoning. Being able to show the discrepancy between the
observed and expected values is a step towards achieving this. Getting a measure
of the uncertainty of the model can improve trustworthiness. This can be done in
the form of confidence intervals, that have the benefit of being easily visualized. It
would be useful if the model warned when extrapolating and producing uncertain
results. An additional global anomaly detection score has been proposed with this
aim, but the idea should be matured and tested.

Due to the anomaly-free nature of the available data, the proposed model
has only been evaluated on synthetic faults. Rather than focusing on improving
the anomaly detection performance on the constructed faults, it might be useful
to evaluate the model on data with real anomalies from other domains. DTS
systems are used to monitor other types of systems, as the liquid pipelines that
were the subject of Araujo et al. [2018] that had experienced a few faults. Anomaly
detection based on PCA reconstruction can also be applied to other data with a
spatially distributed nature. Randomly blocked cross validation can be tested
more rigorously on multiple datasets, to see whether the results obtained on the
export cable data are general results.
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Appendices

A.1 Supportive material to the 1st series of ex-

periments

A.1.1 Exploratory experiments for experiments with asyn-

chronous time series data

The goal of the exploratory experiments was to find a reasonable position in the hy-
perparameter space. For the experiments all hyperparameters but one were frozen,
and one varied to find its best configuration at the given settings of the others.
While this approach will not result in finding the absolutely optimal parameters,
it should be su�cient to find valuable results. The same hyperparameters are used
for all of the following experiments, and all experiments will thus be subject to
the same possible suboptimality in the hyperparameters.

The data used for the exploratory experiments were the dts values at their raw
sampled frequency, with the electric current and sea temperature resampled using
linear interpolation to fit. Cross validation with only training and validations sets
was used to validate the results. The evaluation in these exploratory experiments
was not very strict, but as mentioned the goal was to find reasonable settings, not
necessarily the best ones. A quick approach was thus favoured. They will also
be optimized for model A, not the others, which might bias towards this model.
There is however not enough time to prioritize fitting the hyperparameters to each
individual model.

Initial experiments explored the learning rate to use for the Adam optimizer.
Learning rates of 0.01 and 0.001 were tested. The number of LSTM units was kept
at 32, and the training input consisted of 15 input time steps. The training target
was the following DTS reading, and only the last prediction was utilized when
updating the weights. The results of these experiments are presented in table A.1.
While none of the learning rates were better across all folds, both seem to be a
reasonable choice. While 0.001 is the default in Tensorflow, it was chosen to use
0.01 instead. It seemed to give better results, and also resulted in sligtly faster
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training.

lr train val time
0.001 0.045 0.056 34.8min
0.01 0.042 0.053 25.1min

Table A.1: Validation MSE for two di↵erent learning rates when using 15 input
steps to predict the next DTS reading with a 32 unit LSTM.

Fixing the learning rate, the number of LSTM units was explored and set. 16,
32, 64 and 128 single unit LSTMs were tried, as well as some stacked versions.
Again 15 input steps were used to make 1 prediction of the next DTS temperature.
Based on the results presented in table A.2, it was decided to go with a 64 unit
configuration for the full-scale experiments.

LSTM units train val
16 0.044 0.053
32 0.042 0.053
64 0.046 0.050

128 0.043 0.051
32, 32 0.044 0.054
64, 64 0.047 0.051

32, 32, 32 0.041 0.053

Table A.2: Validation MSEs for di↵erent LSTM configurations using 15 steps to
predict the next DTS temperature.

Next, how many steps to use to make updates was experimented with. Two
di↵erent aspect were of interest, the first being how many input steps to include,
and the second being how many predictions to produce and use to update the
model weights. A larger number of input steps will provide the model with more
context, but might not be necessary and will also make for slower training. As for
the number of predictions to use to make updates, the models will be evaluated
on making only one prediction of the next DTS reading following the inputs. The
LSTM does however produce output for each input step that might be used to
make a prediction for the next step. It might potentially serve as a regularizing
precaution to make use of more than only the last prediction made to update
the weights during training, as this could lead to a more robust representation of
the internal state and faster training. It is however more challenging to construct
comparable training samples for all the di↵erent resampling methods when using
multiple predictions.
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The results of this experiment is presented in table A.3. A 64 unit single layer
LSTM was used for the experiments, and the learning rate was 0.01 for the Adam
optimizer. Based on the results, it was decided to go with inputs consisting of 50
inputs steps.

Comparing both rows with input steps and 1 and 20 prediction steps respec-
tively motivates the choice of only using the last prediction for updating the weight
during training. This also makes for easier construction of comparable training
data for the di↵erent models to be tested.

I P train val
5 1 0.057 0.059
15 1 0.042 0.051
50 1 0.039 0.049
100 1 0.040 0.048

50 20 0.039 0.052

Table A.3: Initial experiments of how many input steps to include, and how pre-
dictions to use in loss calculation.

Finally, whether to use dropout regularization was experimented with. Di↵er-
ent dropout configurations and rates p of keeping a unit intact where tried. The
tried configurations include randomly masking (setting to zero) a proportion of the
inputs, randomly masking a proportion of the outputs, a combination of masking
both inputs and outputs and variation output applied to the LSTM hidden state
as described in Gal and Ghahramani [2015]. The masking was only applied during
training. During test time, the weights in the layers where dropout was applied
were multiplied with p. Also no dropout was tried. The rest of the setup consisted
of a 64 unit LSTM cell accepting 50 input steps to make 1 prediction. The raw
DTS data was utilized, with electric current and sea temperature resampled to fit.
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Dropout config train val
No dropout 0.044 0.048

Input keep 0.5 8.303 8.675
Input keep 0.8 0.677 1.055
Output keep 0.5 0.085 0.073
Output keep 0.8 0.057 0.053

Variational keep 0.5 0.046 0.051
Variational keep 0.8 0.046 0.051

Table A.4: Results for initial dropout experiments. Results are averaged over the
five validation folds.

config train val
add 0.049 0.051

concat, sigmoid 0.046 0.052
final merged PLSTM 0.042 0.048

Table A.5: Results of initial experiments on PLSTM configurations. Results are
averaged over the five validation folds.
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A.1.2 Supplemental experimental results

Supportive material to section 4.3.2.

Model val 1 val 2 val 3 val 4 val 5
A 0.053 0.046 0.065 0.055 0.055
B 0.064 0.054 0.081 0.070 0.067
C 0.050 0.047 0.071 0.065 0.054
D 0.054 0.045 0.072 0.058 0.058
E 0.439 0.191 0.209 0.151 0.125
F 0.048 0.046 0.065 0.052 0.051

G 0.053 0.051 0.065 0.058 0.055

LR 0.056 0.063 0.066 0.065 0.067

Table A.6: Validation MSE for di↵erent tested models averaged over each test fold
for test data.

Model train 1 train 2 train 3 train 4 train 5
A 0.047 0.042 0.048 0.044 0.044
B 0.049 0.046 0.058 0.052 0.054
C 0.039 0.046 0.050 0.046 0.040

D 0.039 0.037 0.045 0.045 0.040
E 0.169 0.120 0.141 0.144 0.113
F 0.038 0.039 0.045 0.041 0.041
G 0.046 0.048 0.055 0.047 0.052

LR 0.052 0.052 0.057 0.055 0.059

Table A.7: Training MSE for di↵erent tested models averaged over each test fold
for test data.



122 APPENDICES

Figure A.1: Full test results for model A by test fold on the y axis and validation
fold on the x axis.

Figure A.2: Full test results for model B by test fold on the y axis and validation
fold on the x axis.
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Figure A.3: Full test results for model C by test fold on the y axis and validation
fold on the x axis.

Figure A.4: Full test results for model D by test fold on the y axis and validation
fold on the x axis.
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Figure A.5: Full test results for model E by test fold on the y axis and validation
fold on the x axis.

Figure A.6: Full test results for model G by test fold on the y axis and validation
fold on the x axis.
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A.1.3 Results from rerun with randomly blocked cross val-

idation

Full results from rerun with randomly blocked.

Figure A.7: Second iteration full test results for model A. Test fold is on the y
axis and validation fold on the x axis.
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A.2 Supportive material to the 2nd series of ex-

periments

Table A.8 presents the results of the initial experiments conducted to decide what
state to pass between the encoder and decoder in the LSTM autoencoder of section
5.2.2. The models were trained on data from folds 3, 4 and 5. The 2nd fold was
used as the validation data. The 1st fold was set aside for testing, and was not
used in the initial experiments. The table reports the MSEs for training and
validation data of each tested configuration. Also the train loss is reported. It
is di↵erent from the train MSE due to using a conditioned LSTM. Thus, the
input is di↵erent during training than during evaluation on the training set. The
experiments reconstructed a sequence length of 50.

state lr train MSE val MSE train loss
Cell 0.000 100 0.000 959 0.000 800 0.000 218
Hidden 0.000 100 0.000 903 0.000 741 0.000 221
Both 0.000 100 0.000 943 0.000 807 0.000 233
Cell 0.000 500 0.000 232 0.000 239 8.69e-05
Hidden 0.000 500 0.000 222 0.000 231 9.16e-05
Both 0.000 500 0.000 241 0.000 247 9.45e-05
Cell 0.001 000 0.000 132 0.000 144 5.11e-05
Hidden 0.001 000 0.000 122 0.000133 4.62e-05
Both 0.001 000 0.000 146 0.000 165 5.81e-05
Hidden 0.010 000 0.000115 0.000 146 4.62e-05

Table A.8: Results of initial experiments of what state to transfer between LSTM
encoder and decoder.



 

 

 

Failure Prediction for Offshore Wind Turbines 
Distributed Temperature Sensing (DTS) system 

 
Failure Scenarios: Characteristics 

 

1 Introduction 

This memo describes and quantifies the failure scenarios that need to be detectable on the 
DTS system at the Dudgeon wind farm. These failure scenarios are based on engineering 
principles and are the output of discussions between the electrical engineering discipline 
(OEX TIOP) and analysts in OEX DPA. 
 
To-date (Q1 2019) no failures have been experienced on the system. However, within the 
data, the algorithm being developed requires failure patterns to learn from. Therefore, it is 
necessary to create synthetic failures based on the characteristics provided here.  

2 Failure Types 

2.1 Absolute Temperature Limits 

Absolute cable temperature limits can be established from the cable’s physical properties. 
It is not necessary for the algorithm to detect or react to these absolute limits as there are 
already audible warnings and alarms set in the SCADA system within the control room. For 
reference, the limits are: 

• Warning:  85OC. 
• Alarm: 90OC. 

 
Source: C177-DOW-E-RA-0001 “Cable Conductor Temperatures & Manual Response” 

2.2 Instant Failure (step-change) 

During an instant failure (or near-instant failure) the cable’s physical properties will change 
rapidly. The DTS systems samples the temperature every c.17 minutes. Therefore, within 
an instant failure the temperature rise is expected to be evident within one time-step 
 
It is likely that an instant failure will affect the temperature of the cable section over all 
current ranges since the physical damage is not dependent on temperature. A realistic 
minimum detectable temperature change for the worst-affect segment is +10%, as 
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compared to the normal temperature. Due to temperature dissipation, the affected cable 
segments are likely to experience a normally distributed temperature rise affecting in the 
region of +/- 4m of cable (with a peak of +10%). 

2.3 Gradual Failure (degradation) 

If the cable is degrading physically, if the cable is gradually becoming exposed or if a cable 
free-span is growing, it is expected that a gradual temperature change would be detected 
by the DTS system. 
 
Due to the potential underlying root causes, the timeframe for this deterioration is difficult to 
predict. For the purposes of this analysis, a period of 3 months is deemed prudent to detect. 
 
All other characteristics remain the same as the instant failure scenario (e.g. the cable 
currents affected, the temperature change and the length of cable affected). 

2.4 Additional Research 

In addition to the instant and gradual failures described above, the following parameter 
changes could be investigated: 

1. Different failure periods, for example: 6 months, 1 week or 6 hours. 
2. Specific current ranges, for example: failure only detectable during peak cable 

currents (e.g. top 20%). 
3. Different temperature changes, for example: +5%, + 20%, or + 10OC. 
4. Different special ranges, for example: 1 specific cable segment, or a 100m stretch. 

 
Of these, the different periods and different temperature ranges are the most probable real-
life failure scenarios. 
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Model P-value
LSTM p1 0.01053
LSTM p3 3.052e-05
LSTM p1 c 0.0003615
LSTM p3 c 3.052e-05
LSTM AE1 3.052e-05
LSTM AE3 3.052e-05

Table A.9: P-vales from applying the Wilcoxon signed-rank test to the temporal
models for instant faults. The alternative hypothesis used is that the AUCs of the
linear regression model have a greater mean.

Model P-value
LSTM p1 0.2388
LSTM p3 0.06984
LSTM p1 c 0.003357
LSTM p3 c 3.052e-05
Lin reg 0.009033

LSTM AE3 0.0003624

Table A.10: P-vales from applying the Wilcoxon signed-rank test to the temporal
models for gradual faults. The alternative hypothesis used is that the AUCs of
the LSTM-AE1 model have a greater mean.
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Model Encoding size P-value
PCA 10 3.052e-05
PCA 25 3.052e-05
PCA 50 3.052e-05
PCA 100 3.052e-05
PCA 500 3.052e-05
PCA 1000 3.052e-05
PCA 2000 3.052e-05
PCA 4000 3.052e-05

Table A.11: P-vales from applying the Wilcoxon signed-rank test to the spatial
models for instant faults. The alternative hypothesis used is that the AUCs of
CAE4650 have a smaller mean.

Model Encoding size P-value
CAE 4650 3.052e-05
PCA 10 1 0.01113
PCA 25 0.1855
PCA 50 0.09072
PCA 100 0.5
PCA 500 1
PCA 2000 1
PCA 4000 0.5

Table A.12: P-values for the spatial models on the constructed instant faults.
From Wilcoxon signed-rank test with alternative hypothesis that the models had
lower AUC scores than the PCA model with 1000 components.
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Model Encoding size P-value
PCA 10 3.052e-05
PCA 25 3.052e-05
PCA 50 3.052e-05
PCA 100 0.0003624
PCA 500 3.052e-05
PCA 1000 3.052e-05
PCA 2000 3.052e-05
PCA 4000 3.052e-05

Table A.13: P-values for the spatial models on the constructed gradual faults.
From Wilcoxon signed-rank test with alternative hypothesis that the models had
higher AUC scores than the CAE model

Model Encoding size P-value
CAE 4650 3.052e-05
PCA 10 0.0003624
PCA 25 6.104e-05
PCA 50 0.0002136
PCA 100 0.01508
PCA 500 0.03666
PCA 2000 0.1147
PCA 4000 0.02396

Table A.14: P-values for the spatial models on the constructed gradual faults.
From Wilcoxon signed-rank test with alternative hypothesis that the models had
lower AUC scores than the PCA model with 1000 components.
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Model P-value
PCA 0.1855
PCA c 0.1855

PCA LSTM 0.001258

Table A.15: P-values for the combined models on the constructed instant faults.
From Wilcoxon signed-rank test with alternative hypothesis that the models had
lower AUC scores than the PCA model with 1000 components.

Model P-value
PCA 0.0008085
PCA c 0.0001526

PCA LSTM 0.0003624

Table A.16: P-values for the combined models on the constructed gradual faults.
From Wilcoxon signed-rank test with alternative hypothesis that the models had
lower AUC scores than the PCA model with 1000 components
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